RENESAS

ForgeFPGA Running String Example SLG47910V

Abstract

This application note shows how to create a Running String effect on an LED Dot Matrix by using the SLG47910 FPGA. This application note comes complete with design files which can be found in the References section.

Contents

Abs	tract		1
1.	Term	as and Definitions	1
2.	Refe	rences	1
Aut	hors:	Andrii Sviatobatko, Ivan Pavlyk	2
3.	Intro	duction	2
	3.1	FSM buffer Module	4
	3.2	FSM indicator Module	5
	3.3	FSM prepare BRAM Module	6
	3.4	Waveform SPI for working with indicator Module	6
4.	Com	ponents	7
5.	Forg	eFPGA Running String Demo Board	8
6.	Veril	og Code for ForgeFPGA Running String	. 9
7.	Floo	rplan: CLB Utilization	16
8.	Desi	gn Steps	17
9.	Cond	clusion	18
10.	Revi	sion History	19

1. Terms and Definitions

FPGA FPGA Editor Go Configure Software Hub ForgeFPGA Window Field Programmable Gate Array Main FPGA design and simulation window Main window for device selection Main FPGA project window for debug and IO programming

2. References

For related documents and software, please visit:

ForgeFPGA Low-density FPGAs | Renesas

Download our free ForgeFPGA[™] Designer software [1] to open the .ffpga design files [2] and view the proposed circuit design.

[1] Go Configure Software Hub, Software Download and User Guide, Renesas Electronics

[2] <u>AN-FG-015 ForgeFPGA Running String Example.ffpga</u>, <u>AN-FG-015 ForgeFPGA Running String U2 Design</u> (<u>SLG46582V).gp5</u>, ForgeFPGA Design Files

[3] SLG47910, ForgeFPGA Datasheet, Renesas Electronics

Authors: Andrii Sviatobatko, Ivan Pavlyk

3. Introduction

This application note shows how to utilize an LED Dot Matrix for scrolling LEDs to create a Running String effect by using the ForgeFPGA SLG47910. This design uses the SPI module (Module Library) for reading the symbol arrays from external flash memory to BRAM and sending the output text to the LED Dot Matrix based on a MAX7219. Every period the data is shifted by one column. Also, a GreenPAK is used for level shifting between the FPGA and LED Dot Matrix.

The connections between each component are shown in **Figure 1** below.

Figure 1: ForgeFPGA Running String Demo Board connections.

In the Verilog code we have ten sub-modules:

- input_reset_buf Module for the input reset buffer
- init_data_mux Module to determine the values sent to the dot matrix
- init_bram Module to control and initialize BRAM (bram0, bram1)
- **fsm_buffer** FSM module prepares the data buffer for indicator
- segment_bram Module for control and connection for segment BRAM (bram4, bram5, bram6, bram7)
- fsm_prepare_bram FSM module control to process read data from flash and write it to BRAM
- indicator Module for data and control for indicator
- pause_between_shift Module to pause between shifting data on the dot matrix.

- **spi_master** SPI master, with one slave (Serial Peripheral Interface) is a 4-wire synchronous serial communication interface
- spi_io_buf Module for SPI GPIO buffer
- **indicator_top** All sub-modules are connected to each other to form the top module.

In **Figure 2**, the connections between the Verilog block are shown. The user can cross check the defined signal and wire names with Verilog Code.

Figure 2: ForgeFPGA Running String Software structure

3.1 FSM Buffer

FSM module prepares the data buffer for indicator. FSM Buffer diagram is shown in Figure 3.

Figure 3: FSM Buffer

3.2 FSM Indicator

FSM module initializes and sends the data and controls the byte to be sent. FSM Indicator diagram is shown in **Figure 4**.

Figure 4: FSM Indicator

3.3 FSM Prepare BRAM

FSM module control process reads data from flash and writes it to BRAM. FSM Prepare BRAM diagram is shown in **Figure 5**.

Figure 5: FSM Prepare BRAM

3.4 Waveform SPI for use with the Indicator

SPI packages and package sequence for controlling the dot matrix display. Waveforms are shown in Figure 6.

ForgeFPGA Running String Example

alle				
CIK				
mosi	Address for segment 1	Y Data Y	Address for segment 2	Data
clk				
CS				
mosi	Address for seament 3	γ Data γ	Address for segment 4	Data
		^^		
cs (segment 4)		γ = = = = = = = = = = = = = = = = = = =		
sequence 14 (4)	00 X 00 X 00 X 00 X 00 X 00 X 0F X 00 X	00 X 07 V		
sequence 58 (4)				
sequence 912 (4)		<u>/ 00 (00) 00 (00) 00 (07) 00 </u>	/ 00 <u>00</u> 00 <u>00</u> 00 <u>00</u> 00 08 00 00	<u>/ 00 / 00 / 00 / 00 / 00 / 00 / 00 / 0</u>
sequence 14 (4)	00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00 \ 00	00 (00) 00 (00) 00 (0A) 02		
cs (segment 3)		<u>\</u> /		
sequence 14 (3)	00 X 00	00 00 00 00 00 0B 07 00 00 00	00 00 00 00 00 00 00 00 00 00 00	<u>00 00 00 00 00 01 00 00 00 00 00 00 00 0</u>
sequence 58 (3)				
sequence 912 (3)	00 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 07 00 00 00 00 00 00 00 0	<u>00 00 00 00 00 00 00 00 00 00 00 00 00 </u>	
sequence 14 (4)	00 00 00 00 00 00 00 00 00 00 00 00 00	00 \ 00 \ 00 \ 00 \ 00 \ 0A \ 02 \ 00 \ 00		
cs (segment 2)		<u>\/</u>		
sequence 14 (2)	00 00 0F 00 00 00 00 00 00 00	00 00 00 00 00 00 00 00 00 00 00 00 00		
sequence 58 (2)				
sequence 912 (2)		<u>00 00 07 00 00 00 00 00 00 00 00 00 00 0</u>		
sequence 14 (4)		<u>00 00 00 00 00 00 00 00 00 00 00 00 00 </u>		
cs (segment 1)		\/		
sequence 14 (1)		OB 07 00 00 00 00 00 00 00 00	00 \ 00	
sequence 58 (1)				
sequence 912 (1)				
sequence 14 (4)		<u>0A X 02 X 00 X 00 X 00 X 00 X 00 X 00 X </u>		
wait				
cs (segment 4 data)		· <u> </u>	· · · · · · · · · · · · · · · · · · ·	
sequence 14 (4)	<u></u>	<u>/ 00 X 00 X 00 X 00 X 00 X 02 X xx</u>	<u>/ 00 X 00 X 00 X 00 X 00 X 03 X xx</u>	<u>/ 00 X 00 X 00 X 00 X 00 X 04 X ×x</u>
sequence 58 (4)	00 (00) 00 (00) 00 (00) 05) xx	00 (00) 00 (00) 00 (00) 06 (xx)	00 X 00 X 00 X 00 X 00 X 00 X 07 X XX	

Figure 6: Waveform SPI packages for use with the Indicator

PARAMETERS THAT CAN BE CHANGED.

Using the ForgeFPGA Workshop software, the code is synthesized, and the bit stream is loaded into the SLG47910 device. The design uses the internal 50 MHz oscillator as reference for the PLL that provides a 10 MHz clocking source for the application.

The information in the init_data_mux module can change what is shown using symbols code, with two symbols for each one byte for a total of 64 symbols available.

Also, the running line speed can be changed in the pause_between_shift module.

To change symbols, data must be edited in the flash and in the init_data_mux module.

4. Components

The following components are used in this example:

- ForgeFPGA IC's SLG47910V
- ForgeFPGA Development Board with USB cable and power supply
- GreenPAK Universal Dev.Board with USB cable
- Flash memory AT25FFA-SHN-T
- Latest Revision of ForgeFPGA Workshop software
- ForgeFPGA Running String Demo Board R1.0
- LED Dot Matrix 8x32

5. ForgeFPGA Running String Demo Board

The ForgeFPGA Running String Demo board is small and is designed to demonstrate how to use the ForgeFPGA SLG47910V in this application.

The board layout of the PCB is shown in Figure 7.

Figure 7: ForgeFPGA Running String Demo Board

6. Verilog Code for ForgeFPGA Running String

The indicator_top module code is shown below. The named (*top*) module has interconnections between all submodules shown in **Figure 2**. The Verilog code for the Running String can be found in the complete design example which is available for download <u>AN-FG-015 ForgeFPGA Running String Example.ffpga</u>.

```
(* top *) module indicator top (
// Main inputs
  (* iopad_external_pin, clkbuf_inhibit *) input i_clk,
  (* iopad_external_pin *) input i_por,
// OSC config outputs
  (* iopad_external_pin *) output o_osc_en,
// PLL config outputs
  (* iopad_external_pin *) output o_pll_en,
  (* iopad_external_pin *) output o_pll_sel,
  (* iopad_external_pin *) output o_pll_byp,
  (* iopad external pin *) output [11:0] o pll fbdiv,
  (* iopad external pin *) output [2:0] o pll postdiv1,
  (* iopad_external_pin *) output [2:0] o_pll_postdiv2,
  (* iopad external pin *) output [5:0] o pll refdiv,
// IO
  (* iopad external pin *) input i miso,
  (* iopad_external_pin *) output oe_miso,
  (* iopad_external_pin *) output o_flash_ncs,
  (* iopad_external_pin *) output o_indicator_ncs,
  (* iopad_external_pin *) output o_clk,
  (* iopad external pin *) output o mosi,
  (* iopad_external_pin *) output oe_flash_ncs,
  (* iopad_external_pin *) output oe_indicator_ncs,
  (* iopad external pin *) output oe clk,
  (* iopad external pin *) output oe mosi,
  (* iopad_external_pin *) output reg o_dff,
  (* iopad_external_pin *) output o_dff_oe,
//BRAM
  (* iopad_external_pin *) input
                                       [7:0] i_bram0_data_out,
  (* iopad external pin *) output
                                      [1:0] o bram0 ratio,
  (* iopad_external_pin *) output reg [7:0] o_bram0_data_in,
  (* iopad_external_pin *) output reg
                                             o_bram0_web,
  (* iopad external pin *) output reg
                                             o bram0 wclken,
  (* iopad external pin *) output reg [8:0] o bram0 write addr,
  (* iopad_external_pin *) output reg
                                             o_bram0_reb,
  (* iopad_external_pin *) output reg
                                            o_bram0_rclken,
  (* iopad external pin *) output reg [8:0] o bram0 read addr,
  (* iopad external pin *) input
                                      [7:0] i bram1 data out,
  (* iopad_external_pin *) output
                                      [1:0] o_bram1_ratio,
  (* iopad_external_pin *) output reg [7:0] o_bram1_data_in,
  (* iopad_external_pin *) output reg
                                            o_bram1_web,
  (* iopad_external_pin *) output reg
                                             o_bram1_wclken,
```

(* iopad_external_pin	*)	output	reg	[8:0]	o_bram1_write_addr,
(* iopad_external_pin	*)	output	reg		o_bram1_reb,
(* iopad_external_pin	*)	output	reg		o_bram1_rclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram1_read_addr,
(* iopad_external_pin	*)	input		[7:0]	i_bram4_data_out,
(* iopad_external_pin	*)	output		[1:0]	o_bram4_ratio,
(* iopad_external_pin	*)	output	reg	[7:0]	o_bram4_data_in,
(* iopad_external_pin	*)	output	reg		o_bram4_web,
(* iopad_external_pin	*)	output	reg		o_bram4_wclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram4_write_addr,
(* iopad_external_pin	*)	output	reg		o_bram4_reb,
(* iopad_external_pin	*)	output	reg		o_bram4_rclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram4_read_addr,
(* iopad_external_pin	*)	input		[7:0]	i_bram5_data_out,
(* iopad_external_pin	*)	output		[1:0]	o_bram5_ratio,
(* iopad_external_pin	*)	output	reg	[7:0]	o_bram5_data_in,
(* iopad_external_pin	*)	output	reg		o_bram5_web,
(* iopad_external_pin	*)	output	reg		o_bram5_wclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram5_write_addr,
(* iopad_external_pin	*)	output	reg		o_bram5_reb,
(* iopad_external_pin	*)	output	reg		o_bram5_rclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram5_read_addr,
(* iopad_external_pin	*)	input		[7:0]	i_bram6_data_out,
(* iopad_external_pin	*)	output		[1:0]	o_bram6_ratio,
(* iopad_external_pin	*)	output	reg	[7:0]	o_bram6_data_in,
(* iopad_external_pin	*)	output	reg		o_bram6_web,
(* iopad_external_pin	*)	output	reg		o_bram6_wclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram6_write_addr,
(* iopad_external_pin	*)	output	reg		o_bram6_reb,
(* iopad_external_pin	*)	output	reg		o_bram6_rclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram6_read_addr,
(* iopad_external_pin	*)	input		[7:0]	i_bram7_data_out,
(* iopad_external_pin	*)	output		[1:0]	o_bram7_ratio,
(* iopad_external_pin	*)	output	reg	[7:0]	o_bram7_data_in,
(* iopad_external_pin	*)	output	reg		o_bram7_web,
(* iopad_external_pin	*)	output	reg		o_bram7_wclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram7_write_addr,
(* iopad_external_pin	*)	output	reg		o_bram7_reb,
(* iopad_external_pin	*)	output	reg		o_bram7_rclken,
(* iopad_external_pin	*)	output	reg	[8:0]	o_bram7_read_addr,
);					
<pre>// assign configuration</pre>	pir	าร			
assign o_osc_en	= 1	l'b1;			
assign o_pll_en	= 1	l'b1;			
assign o_pll_sel	= 1	1'b0;			
assign o_pll_byp	= 1	1'b0;			
assign o_pll_fbdiv	= 2	20;			
assign o_pii_postdiv1	= 7	;			

```
assign o_pll_postdiv2 = 7;
  assign o pll refdiv
                       = 2;
  assign oe flash ncs
                          = 1'b1;
  assign oe indicator ncs = 1'b1;
  assign oe clk
                 = 1'b1;
  assign oe mosi = 1'b1;
  assign oe_miso = 1'b0;
  assign o_dff_oe = 1'b1;
  wire
        [7:0] w_rx_byte, w_spi_data, w_tx_indic_byte, w_tx_flash_byte;
  wire
        [4:0] w address init;
  wire
              w_next_show, w_next_byte, w_rx_rdy, w_finish_read_flash;
        [8:0] w segment row rd addr, w segment row wr addr;
  wire
  wire [2:0] w row number read;
  wire
        [1:0] w_segment_no_init;
  wire
              w_work_data, w_work_init;
  wire [7:0] w_segment_init_value;
  wire [11:0] w_value;
  wire [8:0] w_addr_prepare_bram;
  wire
              w_wen_prepare, w_prepare_data, w_init_finish, w_data_finish;
  wire [31:0] w_data_to_bram, w_data_from_bram;
  wire
              w_new_wen;
  wire
              w_spi_clk, w_spi_miso, w_spi_mosi, w_indicator_en, w_ncs_indicator_en;
  wire
              w_flash_en, w_ncs_flash_en, w_ncs_spi_en;
  always @(posedge i_clk) begin
    if (w_rst) begin
      o_dff <= 1'b0;</pre>
    end else begin
      o_dff <= ~o_dff;</pre>
    end
  end
// reset buffer
  wire w_rst;
  input_reset_buf impl_input_reset_buf (
    .i_clk
                  (i_clk),
    .i por
                  (i_por),
    .o_rst
                  (w_rst)
  );
// SPI external connection for two slave
  spi_io_buf impl_spi_io_buf (
    .i_clk
                            (i_clk),
```

.i_rst	(w_rst),
.i_flash_miso	(i_miso),
.o_flash_miso	(w_spi_miso),
.i_spi_mosi	(w_spi_mosi),
.o_flash_mosi	(o_mosi),
.o_indicator_mosi	(o_mosi),
.i_spi_clk	(w_spi_clk),
.o_flash_clk	(o_clk),
.o_indicator_clk	(o_clk),
.i_flash_ncs	(w_flash_en),
.o_flash_ncs	(o_flash_ncs),
.i_indicator_ncs	(w_indicator_en),
.o_indicator_ncs	<pre>(o_indicator_ncs),</pre>
.i_flash_ncs_en	(w_ncs_flash_en),
.i_indicator_ncs_en	<pre>(w_ncs_indicator_en),</pre>
.o_spi_ncs_en	(w_ncs_spi_en),
.i_tx_flash_byte	(w_tx_flash_byte),
.i_tx_indic_byte	(w_tx_indic_byte),
.o_spi_data	(w_spi_data)
);	
/ SPI	
<pre>spi_master impl_spi_mast</pre>	ter (
c]k	(i, c]k

```
.clk
                        (i_clk),
.rst
                        (w_rst),
                        (w_spi_clk),
.sck
                        (w_spi_mosi),
.mosi
                        (w_ncs_spi_en),
.nss_en
.nss
                        (),
.tx_data_valid
                        (1'b1),
.miso
                        (w_spi_miso),
.tx_data
                        (w_spi_data),
.rx_data
                        (w_rx_byte),
.tx_int
                        (w_next_byte),
.rx_int
                        (w_rx_rdy)
```

```
);
```

//

// data and control for ind	dicator
indicator impl_indicator	(
.i_clk	(i_clk),
.i_rst	(w_rst),
.i_tx_rdy	(w_next_byte),
.i_start	(w_next_show),
.i_fin_rd_flash	<pre>(w_finish_read_flash),</pre>
.i_init_data	<pre>(w_segment_init_value),</pre>
.i_data_from_bram	(w_data_from_bram),

```
(w_ncs_indicator_en),
    .o_ctrl_cen
    .o ctrl indic
                            (w indicator en),
                            (w row number read),
    .o row
    .o_tx_data
                            (w_tx_indic_byte),
    .o addr
                            (w address init),
    .o_work_init
                            (w_work_init),
    .o_work_data
                            (w_work_data),
    .o_init_finish
                            (w_init_finish),
    .o_data_finish
                            (w_data_finish)
  );
// Message on indicator
  init_data_mux impl_init_data_mux (
    .i clk
                            (i_clk),
    .i rst
                            (w rst),
                            (w segment row wr addr[5:3]),
    .i_seg_row_addr
    .i_seg_num_init
                            (w_segment_no_init),
    .o_value
                            (w_value)
  );
// bram contains symbol code and initial sequence of dot matrix
  init_bram impl_init_bram(
    .i_clk
                            (i_clk),
    .i_rst
                            (w_rst),
    .i_addr_prepare_bram
                            (w_addr_prepare_bram),
    .i_wen_prepare
                            (w_wen_prepare),
                            (w_prepare_data),
    .i_prepare_data
    .i_work_init
                            (w_work_init),
    .i_rx_byte
                            (w_rx_byte),
    .i_address_init
                            (w_address_init),
    .i_segment_row_rd_addr (w_segment_row_rd_addr[2:0]),
    .i_row_number_read
                            (w_row_number_read),
    .i_rd_value_bram0
                            (w_value[5:0]),
    .i_rd_value_bram1
                            (w_value[11:6]),
    .o_segment_init_value
                            (w_segment_init_value),
    .o_bram_pd
                            (),
    .i_bram0_data_out
                            (i_bram0_data_out),
                            (o_bram0_ratio),
    .o_bram0_ratio
    .o bram0 data in
                            (o_bram0_data_in),
    .o_bram0_web
                            (o_bram0_web),
    .o_bram0_wclken
                            (o_bram0_wclken),
    .o_bram0_write_addr
                            (o_bram0_write_addr),
    .o_bram0_reb
                            (o_bram0_reb),
    .o_bram0_rclken
                            (o_bram0_rclken),
    .o_bram0_read_addr
                            (o_bram0_read_addr),
```

.i_bram1_data_out	(i_bram1_data_out),
.o_bram1_ratio	(o_bram1_ratio),
.o_bram1_data_in	(o_bram1_data_in),
.o_bram1_web	(o_bram1_web),
.o_bram1_wclken	(o_bram1_wclken),
.o_bram1_write_addr	(o_bram1_write_addr),
.o_bram1_reb	(o_bram1_reb),
.o_bram1_rclken	(o_bram1_rclken),
.o_bram1_read_addr	(o_bram1_read_addr)
);	

```
// FSM control process read data from flash and write it to BRAM
  fsm_prepare_bram impl_fsm_prepare_bram (
```

```
.i clk
                          (i_clk),
  .i_rst
                          (w_rst),
  .i_rx_rdy
                          (w_rx_rdy),
  .i_miso
                          (w_spi_miso),
                          (w_ncs_flash_en),
  .o_spi_ce
  .o_flash_en
                          (w_flash_en),
  .o_tx_byte
                          (w_tx_flash_byte),
                          (w_addr_prepare_bram),
  .o_addr
  .o_wen
                          (w_wen_prepare),
  .o_finish
                          (w_finish_read_flash)
);
```

```
11
```

<pre>indicator bram segment_bram impl_segment .i_clk .i_rst</pre>	c_bram((i_clk), (w_rst),
.i_data_to_bram	<pre>(w_data_to_bram),</pre>
.i_segment_row_rd_addr	(w_segment_row_rd_addr),
.i_segment_row_wr_addr	(w_segment_row_wr_addr),
.i_wen	(w_new_wen),
.i_row_number_read	(w_row_number_read),
.i_work_data	(w_work_data),
.o_data_from_bram	(w_data_from_bram),
.o_bram_pd	(),
.i_bram4_data_out .o_bram4_ratio	<pre>(i_bram4_data_out), (o_bram4_ratio), (a_bram4_data_in)</pre>

```
.o_bram4_data_in
                        (o_bram4_data_in),
.o_bram4_web
                        (o_bram4_web),
```

```
.o_bram4_wclken
                        (o_bram4_wclken),
.o_bram4_write_addr
                        (o_bram4_write_addr),
.o_bram4_reb
                        (o_bram4_reb),
```

.o_bram4_rclken	<pre>(o_bram4_rclken),</pre>
.o_bram4_read_addr	(o_bram4_read_addr),
.i_bram5_data_out	(i_bram5_data_out),
.o_bram5_ratio	(o_bram5_ratio),
.o_bram5_data_in	(o_bram5_data_in),
.o_bram5_web	(o_bram5_web),
.o_bram5_wclken	(o_bram5_wclken),
.o_bram5_write_addr	(o_bram5_write_addr),
.o_bram5_reb	(o_bram5_reb),
.o_bram5_rclken	(o_bram5_rclken),
.o_bram5_read_addr	(o_bram5_read_addr),
.i_bram6_data_out	(i_bram6_data_out),
.o_bram6_ratio	(o_bram6_ratio),
.o_bram6_data_in	(o_bram6_data_in),
.o_bram6_web	(o_bram6_web),
.o_bram6_wclken	(o_bram6_wclken),
.o_bram6_write_addr	(o_bram6_write_addr),
.o_bram6_reb	(o_bram6_reb),
.o_bram6_rclken	(o_bram6_rclken),
.o_bram6_read_addr	(o_bram6_read_addr),
.i_bram7_data_out	(i_bram7_data_out),
.o_bram7_ratio	(o_bram7_ratio),
.o_bram7_data_in	(o_bram7_data_in),
.o_bram7_web	(o_bram7_web),
.o_bram7_wclken	(o_bram7_wclken),
.o_bram7_write_addr	(o_bram7_write_addr),
.o_bram7_reb	(o_bram7_reb),
.o_bram7_rclken	(o_bram7_rclken),
.o_bram7_read_addr	(o_bram7_read_addr)
);	

// FSM prepare data buffer for indicator

```
fsm_buffer impl_fsm_buffer (
```

	•
.i_clk	(i_clk),
.i_rst	(w_rst),
.i_init_fin	(w_init_finish),
.i_start	(w_data_finish),
.i_init_data	<pre>(w_segment_init_value),</pre>
.i_prev_data	(w_data_from_bram),
.o_new_data	(w_data_to_bram),
.o_wen	(w_new_wen),
.o_segment	<pre>(w_segment_no_init),</pre>
.o_addr_rd	<pre>(w_segment_row_rd_addr),</pre>
.o_addr_wr	(w_segment_row_wr_addr),
.o_prepare	(w_prepare_data)

); // shift timer pause_between_shift impl_pausa_between_shift (.i_clk (i_clk), .i_rst (w_rst), .o_next_show (w_next_show));

endmodule

7. Floorplan: CLB Utilization

The Floorplan tab in the FPGA Editor shows the placement of each of the CLBs and FFs (**Figure 8**). The resource utilization is shown in the top left corner.

Figure 8: ForgeFPGA Running String CLB Utilization

RENESAS

8. Design Steps

- 1. If the ForgeFPGA Running String Demo board (**Figure 7**) is available, it can be used to demo this project. Plug it into your USB port.
- 2. Otherwise, the rest of the components listed in Section 4 are needed.
- 3. Make all of the connections as shown in Figure 9.

Figure 9: ForgeFPGA Running String Connections

- 4. Launch the latest version of the Go Configure Software Hub. We will need to open two windows, one for ForgeFPGA (SLG47910V) and the second for GreenPAK (SLG46582V).
- 5. Select the SLG47910V device and the ForgeFPGA Workshop software will load.
- 6. Download the design example <u>AN-FG-015 ForgeFPGA Running String Example.ffpga</u> as well as <u>AN-FG-015</u> <u>ForgeFPGA Running String U2 Design (SLG46582V).gp5</u> for GreenPAK.
- 7. In the first window open the <u>AN-FG-015 ForgeFPGA Running String Example.ffpga</u> file after downloading. In the second window open the <u>AN-FG-015 ForgeFPGA Running String U2 Design (SLG46582V).gp5</u>.
- 8. Open the FPGA editor and review the Verilog code.
- 9. Open the IO Planner tab in the FPGA editor and review the pin assignment.
- 10. Next press the Synthesize button on the lower left side of the FPGA editor.
- 11. Press the Generate Bitstream button on the lower left side of the FPGA editor. Check the Logger and Issues tabs to make sure that the bitstream was generated correctly.
- 12. Now click on the Floorplan tab and check the CLB utilization (**Figure 8**). Press Ctrl + mouse wheel up to zoom-in. Confirm that the IOs selected in the IO Planner are shown in the floorplan.
- 13. Close the FPGA Editor and go to the ForgeFPGA Workshop window (Figure 10). Selecting the Debug tab will enable the debug controls. Double-click on the VDD pin and set VDD = 1.1 V. Then double-click on the VDDIO pin and set VDDIO = 2.75 V.

			* Debugging controls (2) 29
@ + (9107)		;; ;; ;; ;; ;;	Debugging Controls Terger Pick Development Platform Import configuration Import configuration
©• (2705)			Emulation Test Mode - Program
			External Flash controls Read Program Generators controls
PL	PPGA Care		Stop All TP Map
			PNL SLG47910C-V (XKQ, DB HW FW: 1.1-0.2
Co- CP102		Grow - G	Composients ✓ VO PAD: ✓ CRICI10 (PN 1) ✓ CRICI10 (PN 2) ✓ CRICI10 (PN 2) ✓ CRICI10 (PN 2) ✓ CRICI10 (PN 2)
© • • • • • • • • • • • • • • • • • • •			V Chrois Jpnik (j) V Ghrois Jpnik (j) V Chrois Jpnik (j)

			✓ GROS (PN 16) ✓ GROS (PN 17) ✓ GROS (PN 18) ✓ GROS (PN 19) ✓ GROS (PN 19)
	wrad		VODIO (HI 21) VODIO (HI 21) V ono (HI 23) V ono (HI 23) V ono (HI 24) Secial Components

Figure 10: Forge FPGA Window

14. Double-click on EN and PWR and select Force On. This ensures that all blocks are powered up.

15. In the GreenPAK Designer window, open Debug and run Emulation for level shifting (Figure).

Figure 11: GreenPAK Designer Window

- 16. The ForgeFPGA Running String design is now ready to load onto the FPGA using the development board. Connect the development board to the adapter board. Connect the DOT Matrix and Flash board to the adapter board. Connect the USB and the power supply to the development board.
- 17. In the ForgeFPGA Workshop window, select Change platform on the Debugging Controls tab.Choose the ForgeFPGA Development Platform then select Emulation.

Now the design is loaded onto the FPGA device.

9. Conclusion

This application note shows how the SLG47910 can be used to control a complicated sequencing of a Dot matrix as a running string. This testcase is available for download from our website (<u>AN-FG-015 ForgeFPGA Running</u> <u>String Example.ffpga</u>). If interested, please contact the <u>ForgeFPGA Business Support Team</u>.

10. Revision History

Revision	Date	Description
1.00	Jun 5, 2024	Initial release.