

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 APPLICATION NOTE

AN0403008/Rev.1.00 March 2004 Page 1 of 47

PRELIMINARY

HEW
Embedded C Programming III - Optimization (ECProgramIII_opt)

Introduction
This application note, Embedded C Programming III, will cover the various topics on optimization.

Two main areas are elaborated:

- Embedded C Programming Techniques and use of #pragma Directives
- High-performance Embedded Workshop (HEW) Optimizer Setting

The examples used will be based on HEW H8 Toolchain. These concepts will also be applicable to other toolchains and MCU series.
(Note: SH series will have a different set of HEW optimization handling as cache and pipeline issues must be considered)

Target
All

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 2 of 47

PRELIMINARY

Contents

1. Recapitulate Part 1 & 2 ... 5

2. Basic Concept of Optimization.. 6
2.1 Definition ... 6
2.2 Methods .. 6
2.3 Basic Illustration.. 6
2.4 Evaluation ... 7

3. Further understanding of optimization .. 9
3.1 Do not optimize ... 9
3.2 Bound conditions .. 9
3.3 Optimize hot spot .. 9
3.4 Confusion to source level debugger ... 9
3.5 Dead code elimination .. 9
3.6 Test & evaluate ... 9

4. Optimization Jargon .. 10

5. How to optimize – Programming Technique... 11
5.1 Data Handling ... 11
5.1.1 RAM usage... 11
5.1.2 Data Type Usage.. 11
5.1.3 Use Variables of the Same Type for processing.. 12
5.1.4 Use of Unsigned Type .. 12
5.1.5 Float and Double .. 12
5.1.6 Data Declaration - Constant ... 12
5.1.7 Data Declaration - Volatile.. 12
5.1.8 Data Initialization at Declaration... 12
5.1.9 Data Definition - Arrangement and Packing ... 13
5.1.10 Global and Local Variables ... 13
5.1.11 Passing Parameter Registers and Working Registers.. 14
5.1.12 Global Register variables .. 14
5.1.13 Passing Reference as Parameters ... 15
5.1.14 Return Value ... 15
5.1.15 Register Save and Restore ... 15
5.1.16 Use of short addressing to access variables... 16
5.1.17 Pointer and Array .. 17
5.1.18 Better Data Structure and Representation.. 17
5.1.19 Accessing Structure .. 17
5.1.20 Array and Structure Initialization ... 17

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 3 of 47

PRELIMINARY

5.2 Flow Control Handling... 18
5.2.1 Switch ... 18
5.2.2 Jumps ... 19
5.2.3 Inline function ... 19
5.2.4 Function Calls and Addressing Modes... 19
5.2.5 Tail Recursions... 20
5.2.6 Loop Unrolling .. 20
5.2.7 Loop invariant IF code floating ... 20
5.2.8 Do-While statement .. 20
5.2.9 Loop Hoisting.. 21
5.2.10 Common expression shall be calculated once or earlier. ... 21
5.2.11 Else clause removal .. 21
5.2.12 Loop Overhead.. 21

5.3 Other Handling.. 22
5.3.1 Native Instruction and Data .. 22
5.3.2 Hand coded assembly .. 22
5.3.3 Lookup Table and Calculation.. 23
5.3.4 Polling and Interrupt ... 23
5.3.5 Fixed-point and floating-point arithmetic .. 23
5.3.6 Standard Library Routines.. 23
5.3.7 Input and Output Access .. 24
5.3.8 Specify Optimization Type for Each Module .. 24
5.3.9 Horner’s Rule of Polynomial Evaluation ... 24
5.3.10 Factorization.. 24
5.3.11 Use Finite Differences to Avoid Multiplies... 24
5.3.12 Condition Determination Using Substitution Values ... 25
5.3.13 Modula... 25
5.3.14 Division & Multiplication... 25
5.3.15 Constant Folding and Propagation.. 25
5.3.16 Constant in Shift Operations ... 25
5.3.17 Use Formula.. 26
5.3.18 Simplify Condition.. 26
5.3.19 Absolute Value .. 26

6. How to Optimize – HEW Setting ... 27
6.1 C/C++ - Optimize Category Setting ... 29
6.1.1 Register .. 29
6.1.2 Shift to multiple ... 29
6.1.3 Struct Assignment .. 30
6.1.4 Expression.. 30
6.1.5 Loop optimization ... 30
6.1.6 Loop unrolling ... 30
6.1.7 Inline function ... 31
6.1.8 Switch Statement.. 31
6.1.9 Function Call... 31
6.1.10 Data Access .. 32

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 4 of 47

PRELIMINARY

6.2 C/C++ - Other Category Setting .. 33
6.2.1 Avoid optimizing external symbols treating them as volatile .. 33
6.2.2 Treat enum as char if it is in the range of char ... 33
6.2.3 Increase a register for register variable.. 34
6.2.4 Put common subexpression on a register temporarily ... 34
6.2.5 Use EEPMOV in block copy ... 34
6.2.6 Group data by alignment .. 34

6.3 Standard Library Optimize and Other Category Setting ... 35
6.4 CPU setting ... 36
6.4.1 Change number of parameter registers from 2(default) to 3.. 36
6.4.2 Treat double as float... 36
6.4.3 Pass struct parameter via register.. 36
6.4.4 Pass 4-byte parameter/return value via register .. 37
6.4.5 Pack struct, union and class... 37

6.5 Link/ Library - Optimize Category Setting .. 38
6.5.1 Unify strings.. 38
6.5.2 Eliminate dead code ... 39
6.5.3 Use short addressing.. 39
6.5.4 Relocate registers... 39
6.5.5 Eliminate same code .. 39
6.5.6 Use indirect call/jump ... 39
6.5.7 Optimize branches.. 39

6.6 Inter module optimization.. 40
6.6.1 Unifies Constant / Literal Strings .. 41
6.6.2 Delete No-referenced Symbols .. 42
6.6.3 Short Absolute Addressing ... 42
6.6.4 Indirect addressing ... 42
6.6.5 Register save/restore ... 43
6.6.6 Unifies same codes .. 43
6.6.7 Uses better branch instruction.. 43

7. Suggested Optimization Steps.. 44

8. Conclusion .. 45

Reference.. 45

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 5 of 47

PRELIMINARY

1. Recapitulate Part 1 & 2
The topics covered in “Embedded C Programming I” are:

- Generated C files and sections of HEW.

- Effect of C initialization on each variable characteristics and storage areas

- Utilization of Stack and Heap.

- Usage of preprocessor directives (macro, conditional compilation and etc).

- Usage of extended functions (pragma, intrinsic functions and etc).

- Usage of available library.

- Effect of a function call on the stack and registers.

- Management of section by HEW

- Comparison of similar operation.

- Information on flow of project compilation, linking and debugging.

- Suggested programming techniques.

“Embedded C Programming II” illustrated the software control techniques on:

- Peripherals and ports

- External memory.

In this third part of Embedded C Programming, optimization is the key topics.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 6 of 47

PRELIMINARY

2. Basic Concept of Optimization

2.1 Definition
Optimization is a process of improving efficiency of a program in time (speed) or space (size).

2.2 Methods
Generally, optimization can be achieved by four methods:

- Choice of Compiler

- Compiler Setting

- Programming Algorithm and Techniques

- Rewrite program in assembly

2.3 Basic Illustration
A simple illustration of optimization by speed and size is as follow:

It can be observed that optimization with one method may affect the other.

A general phenomenon is faster operating code will have a bigger code size, whereas smaller code size will have a slower execution
speed. However this may not be always true.

// Faster Speed

main()
{ …
 …
 XXXX
 YYYY
 ZZZZZ
 …
 …
 XXXX
 YYYY
 ZZZZZ
 …
 …

XXXX
 YYYY
 ZZZZZ
 …
 …

XXXX
 YYYY
 ZZZZZ
 …
 …
}

// Smaller Size

main()
{ …
 …
 call_routine();
 …
 …
 call_routine();
 …
 …
 call_routine();
 …
 …
 call_routine();
 …
 …
}

void call_routine(void)
{

XXXX
 YYYY
 ZZZZZ
}

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 7 of 47

PRELIMINARY

2.4 Evaluation
A program’s optimization level can be evaluated based on the measurement of:

- Total code size,

- Total number of execution cycles (time taken).

These are determined by the basic component of a program, which is the assembly code (Instruction set / Opcode / Mnemonic).

In the MCU manual, these assembly codes characteristic are detailed:

- Instruction length Æ Determine Code Size

- Number of execution states Æ Determine Execution Speed

Example:

Mnemonic Instruction length (bytes) Number of execution states Remarks
MOV.B Rs, Rd 2 2

MOV.W Rs, @Rd 2 6
Register usage has faster

execution

JSR @aa:16 4 8
JSR @@aa:8 2 8

8-bit absolute address jump
take up smaller space

Based on the instruction information, programmer can calculate the size and execution states of a module or project.

However it is almost impossible to make such calculation for large programs. The simpler methods are:

- Code size Æ The number of bytes allocated to each function and section are detailed in the generated MAP file.

Example:

*** Mapping List ***
SECTION START END SIZE ALIGN
$VECT0 00000000 00000003 4 0
P 000017f6 000049a9 31b4 2
D 000049aa 000049aa 0 2
C 000049aa 00006fcb 2622 2
B 00ffe3b2 00ffe3b2 0 2
R 00ffe3b6 00ffe3b6 0 2
S 00ffee00 00ffefff 200 2
…
FILE=C:\ …\ release\mcu.obj
 00003a3a 00003b69 130
 _initio 00003a3a 0 none ,g 1
 L96 00003ad0 0 none ,l 0
 _enable_usb_irq 00003ada 0 none ,g 1
 _disable_usb_irq 00003aea 0 none ,g 0
 _start_wdog 00003afa 0 none ,g 0
…

Program Section takes up
H’31b4 bytes

Enable_usb_irq takes up
H’(3aea-3ada) bytes

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 8 of 47

PRELIMINARY

- Execution speed Æ The time taken can be obtained by

• Manual measurement through a hardware mean (such as using stop watch or scope)

• Emulator / Simulator run-time counter (In HEW Status window)

• Emulator / Simulator Trace Window - time stamping function.

Example:

Simulator Status Window
- Indicating the numbers of
executed Instructions and Cycles

Emulator Status Window
- Indicating the Run Time in ns
(depending on resolution setting)

Simulator Trace Window
- Indicating the cumulative cycles

Emulator Trace Window
- Indicating cumulative instruction timestamp at a
preset resolution of 125ns

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 9 of 47

PRELIMINARY

3. Further Understanding of Optimization

3.1 Do Not Optimize
It is suggested that unless necessary, optimization shall be omitted. This process should be planned for, and not done at the end
of the development cycle, whereby most scenarios had been tested. This may cause changes to the initial design and introduce
more wastage of time and resources in debugging.

3.2 Bound Conditions
i. I/O

ii. Memory

iii. CPU

Generally these are the three main bound conditions that will slow the system performance. Excessive activity shall be avoided
on I/O access, as it has the slowest events. There are different types of memory. Access to these memories must be managed
efficiently to take proper utilization. If neither the I/O nor Memory is the performance deterrence factor, the CPU processing
must be the main bottleneck.

3.3 Optimize Hot Spot
It is important to identify the objective of the intended improvement. It may be speed or size. For the speed improvement, the
hot spot must be identified. Otherwise time may be wasted on non-critical area.

Pointers:

- In General, 80% of a program’s execution time is spent executing 20% of the code.

- The most redundant area is the initialization code, which is used only once.

- Optimize the hot spot even at the cost of making the other area slower.

3.4 Confusion to Source Level Debugger
C Source level debugging is done with reference to the original source code. Since optimization may change the interpretation
of the original source code, the debugger may not able to relate the assembly code directly to the C source file accurately.

3.5 Dead Code Elimination
This is just an example of how optimization works. The optimizer will remove code that it sees as redundant. Thus,
programmers must define their routines and variables with the correct keyword. Otherwise, useful components may be
eliminated by the optimizer.

3.6 Test and Evaluate
It is important to document and keep all test results. Comparison and evaluation of the results, before and after optimization,
will help to maintain the integrity of the software.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 10 of 47

PRELIMINARY

4. Optimization Jargon
The following are list of commonly used optimization terms/ techniques:

Loop unrolling: Means repeating lines of code inside a loop.

Loop flipping: Allow the elimination of the initial conditional jump.

Loop invariant: Code within a loop, which deals with data values that remain constant as the loop
repeats.

Constant folding: Process of detecting operations on constants, which could be done at compiler time
rather than run time

Constant propagation: Constants used in an expression are combined, and new ones are generated. Some
implicit conversions between integer and floating-point types are drawn.

Copy propagation: The use (copy) of similar values.

Strength Reduction: Replacing expensive calculation with one that takes less time.

Algebraic transformations: Use of algebraic properties such as commutativity, associativity and distributive.

Induction variable simplification: Induction variables change linearly with the loop count. The process includes strength
reduction, and simplifies calculations for variables whose value would otherwise be
dependent upon the loop index.

Tail recursions: Placement of function call at the end of the calling function, to reduce the returning
process.

Dead store elimination: Eliminate code that cannot be reached or code whose results are not subsequently used.

Inlining: Replace function calls with actual program code.

Common subexpression elimination: Parts of the expressions that appear in several places are computed in temporary
variables.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 11 of 47

PRELIMINARY

5. How to Optimize – Programming Techniques
The following sections will focus on:

- Programming techniques

- Usage of #pragma directives (for H8 toolchain)

These techniques will enable a better optimization control over each function and module.

However the intelligent HEW optimizer can perform some of these techniques automatically. This will be detailed in section 6,
whereby the controls over the whole project or individual files by HEW will be explained.

5.1 Data Handling
5.1.1 RAM Usage
Shortage of RAM space is a common concern. The nominal RAM size for most 8-bit MCU is a mere 1 to 4K bytes size.

Three main components of RAM are:

- Stack

- Heap

- Global data

The reduction in one component will enable the increase in the others. Unlike stack and heap, which are dynamic in nature, global
data is fixed in size. Programmers may like to consider the reduction of global data usage, and place more emphasis on local
variables control in stack and registers.

- Stack Depth can be estimated using the HEW Call Walker and Profiler. Please refer to Application Note on “Stack
Analysis using Call Walker”

- Global Data allocation can be viewed in the MAP file (Generated via HEW option Æ H8 Toolchain Æ Link/Library Æ
List)

5.1.2 Data Type Usage
The use of correct data type is important in a recursive calculation or large array processing. The extra size, which is not required, is
taking up much space and processing time.

Example

- Speed concern:- Byte multiplication - MULXU .B R1L,R2L - take up 12 cycles

 - Word multiplication - MULXU.W R1,ER2 - take up 20 cycles

- Size concern: - char data_collect[100];

 - long data_collect[100]; -take up 4 times more spaces

Other considerations:

- Programming algorithm

- Instead of accessing external bus for two times, it may be better to read the data as a word (16-bit external data bus), and
process it as a byte.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 12 of 47

PRELIMINARY

5.1.3 Use Variables of the Same Type for Processing
Programmers should plan to use the same type of variables for processing. Type conversion must be avoided. Otherwise, precious
cycles will be waste to convert one type to another (Unsigned and signed variables are considered as different types).

5.1.4 Use of Unsigned Type
All variables must be defined as “unsigned” unless mathematical calculation for the signed bit is necessary. The “signed-bit” may
create complication, unwanted failure, slower processing and extra ROM size.

5.1.5 Float and Double
Maximum value of Float = 0x7F7F FFFF

Maximum value of Double = 0x7F7F FFFF FFFF FFFF

To avoid the unnecessary type conversion or confusion, programmers can assign the letter “f” following the numeric value.

x = y + 0.2f;

To further limit the use of double, programmers can set the option “Treat double as float” in the HEW Option Æ H8 Toolchain Æ
CPU window.

5.1.6 Data Declaration - Constant
The “const” keyword is to define the data as a constant, which will allocate it in the ROM space (section C). Otherwise a RAM space
will also be reserved for this data. This is unnecessary as the constant data is supposed to be read-only.

5.1.7 Data Declaration - Volatile
“Volatile” keyword will forbid the compiler from performing any optimization on the variable. This is usually used on IO registers
and variables that will be altered by interrupts. This is necessary as the value of these variables can be asynchronously accessed.

5.1.8 Data Initialization at Declaration
Data should be initialized at declaration.

In the first case, ‘a’ being an uninitialized data (B section) will require the program to perform assignment instructions when main
routines is entered (Taking up of P section). However if data is initialized during declaration, the compiler will treat the data as an
initialized data (D section). These data will have their initial values loaded at the startup stage, whereby D section (ROM) is copied
to the R section (RAM).

In comparison, the second method (data initialization at declaration) will be more efficient, as the whole section of data is copied
instead of variables by variables.

int a;
void main(void)
{ a=1;
…

int a=1;
void main(void)
{
…

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 13 of 47

PRELIMINARY

5.1.9 Data Definition - Arrangement and Packing
The declaration of the components in a structure will determine how the components are being stored. Due to the memory alignment,
it is possible to have dummy area within the structure. It is advised to place all similar size variables in the same group.

 a a c
 b b
 c d
 d

Alternatively programmers can set the setting in HEW Options Æ H8 Toolchain Æ C/C++ Æ Other Æ “Group data by alignment”,
and the compiler will “rearrange” to group similar type of variables together.

The similar issues will happen when declaring elements for a structure. In this case, the setting to “compress” the structure is at
Options Æ H8 Toolchain Æ CPU tab Æ “Pack struct, union and class”

 a a b
 b b c
 c

As the structure is packed, integer b will not be aligned. This will improve the RAM size but operational speed will be degraded, as
the access of ‘b’ will take up two cycles.

5.1.10 Global and Local Variables
Local variable is preferred over the global variable in a function. Generally, global variables are stored in the memory, whereas, local
variables are stored in the register. Since register access is faster than the memory access, implementing local variables will improve
speed operation. Moreover, code portability also encourages the use of local variables.

However if there are more local variables than the available registers, the local variables will be temporary stored in the stack.

char a;
int b;
char c;
short d;

char a;
char c;
int b;
short d;

struct S1{char a;
int b;
char c;
}

#pragma pack 1
struct S1{char a;
int b;
char c;
}

2 Bytes 2 Bytes

2 Bytes 2 Bytes

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 14 of 47

PRELIMINARY

5.1.11 Passing Parameter Registers and Working Registers
In a function call, the parameters will be stored in the passing parameter registers (ER0, ER1 and/or ER2), whereas the working
registers (ER3, ER4, ER5) will be used for any data manipulation within the function. In general, the increase in the number of
registers being utilized will improve the operation speed of the modules. However due to the limited number of MCU registers,
process, global allocated register, number of local variables assigned and etc… this increase in number of passing parameter registers
and working registers will not guarantee an improvement. Thus, programmers must be careful when using this feature.

- Do not unnecessary declare any bigger size variables.

- Limit the number of variables (about 6x byte size variables).

HEW allows programmers to have control on the allocated registers.

- To increase the number of passing parameter registers:

- #pragma regparam 2/3 directives

- OptionsÆH8 Toolchain ÆCPU tab Æ “Change number of parameter registers from 2(default) to 3”

- To increase the number of working registers:

- OptionsÆH8 Toolchain ÆC/C++ Tab ÆOther Category Æ“Increase a register for register variable”

5.1.12 Global Register Variables
The declaration of “register” can be used if the variable is accessed very frequently. Operation speed will be greatly improved.
However, there is only limited registers in a MCU. Moreover this usage will also limit the number of working registers for other
processing functions.

Example of identifying frequently accessed variable:

- Generate the project map file at OptionsÆ H8 ToolchainÆ Link/LibraryÆ List Category

- Check for the most frequently [Counts] accessed variables in the map file

- Assign the variables to the registers. Programmers have to match the size.

- Generally ER4 and ER5 can be used. This makes up 8 bytes of data.

- #pragma global_register (global_variable R4)

Note: Global registers cannot be used when a library is specified as an object for inter-module optimization.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 15 of 47

PRELIMINARY

5.1.13 Passing Reference as Parameters
Larger numbers of parameters may be costly due to the number of pushing and popping actions on each function call. It is more
efficient to pass structure reference as parameters to reduce this overhead.

Example:

5.1.14 Return Value
The return value of a function will be stored in a register. If this return data has no intended usage, time and space are wasted in
storing this information. Programmer should define the function as “void” to minimize the extra handling in the function.

5.1.15 Register Save and Restore
It is a usual practice for function to save registers during entry, and restore registers upon exit. However if the caller function saves
and restores all registers, the called functions do not need to save and restore any registers.

Example:

- #pragma noregsave / regsave

- OptionsÆ H8 Toolchain Æ Link/ Library Æ Optimize Category Æ “Reallocate registers”

The above demonstrates the possibility of removing the whole register saving and restoring process.

Another possible optimization method is to improve on the register save & restore process.

The two implementations of saving and restoring registers are:

- PUSH and POP the required registers (Take up larger ROM Space but it is faster)

- Call a runtime routine to save and restore all register (Slow execution but smaller ROM size)

This can be controlled via

- OptionsÆ H8 Toolchain Æ C/C++ Tab Æ Optimize Category Æ “Register”

total (long a, long b, long c, long d);

struct sum{
long a;
long b;
long c;
long d;
}all;

total (&all);

#pragma noregsave (fun1,fun2, fun3)
#pragma regsave (fun)
fun()
{

fun1();
fun2();
fun3();

}

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 16 of 47

PRELIMINARY

5.1.16 Use of Short Addressing to Access Variables
This is to make use of the native instruction to access frequently-used variables. These instructions take lesser ROM space than the
absolute addressing type.

There are three possible settings:

i. OptionsÆ H8 Toolchain Æ C/C++ tab Æ Data Access Æ “@aa [default], @aa:8 or @aa:16”

- This allows the control to limit a C/C++ file, or globally to a project.

- Section $ABS 8/16 must be defined.

ii. OptionsÆ H8 Toolchain Æ Link/ Library Æ Optimize Category Æ “Use short addressing”

- This allows HEW Linker to judge and control the whole projects.

iii. #pragma section $ABS8/16

- Programmers can make use of this directive to control the location (short addressing space/section) of the desired
variables.

Due to the nature of “short addressing mode” (limited space to store the variables), it is not feasible to allocate all variables within
the 8 and 16 bit absolute address space.

Example:

- 8 bit absolute address area (<$ABS8> sections) available in the advanced mode range from H’FF FF00 to H’FF FFFF.

- 16 bit absolute address area (<$ABS16> sections) available in the advanced mode range from H’FF 0000 to H’FF FFFF.

Therefore it is necessary to identify frequently accessed variables, to be placed within the sections. This can be determined in the
map file. Example

…
…
SECTION=B
FILE=C:\… \.xxx.obj 00ffdf20 00ffdf23 4
 _count1 00ffdf20 2 data ,g 3
 _count2 00ffdf22 2 data ,g 9
…
…

*** Variable Accessible with Abs8 ***
SYMBOL SIZE COUNTS OPTIMIZE
…
…
*** Variable Accessible with Abs16 ***
SYMBOL SIZE COUNTS OPTIMIZE
_count3 2 1
_count4 2 2
_count5 2 16
_count6 2 4
…
…

Frequent usage

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 17 of 47

PRELIMINARY

5.1.17 Pointer and Array
A pointer will be more efficient than using an array. This is due to the use of register addressing modes (@Rn, @Rn+, @-Rn).

5.1.18 Better Data Structure and Representation
Proper data structure consideration can improve the program.

Example

- Use computation to regenerate a large junk of data (compression, technique), this will reduce the space usage. However,
the computation process may slow down the operation. (Instead of having a array of [0,0,0,0,0,0,1,1,2,2,2,3,3,3,3…], this
can be replaced with [6, 2, 3, 4…], which signifies 6x’0’, 2x’1’, 3x’2’, 4x’3’…)

5.1.19 Accessing Structure
Structure enables efficient access of variables. The explicit address of the structure is encoded only once, when being loaded into a
register. Thereafter, all members of the structure are referenced in relative register mode.

5.1.20 Array and Structure Initialization
A simple illustration of implementation:

 int a[3][3][3];
 int b[3][3][3];
 ...
 for(i=0;i<3;i++)
 for(j=0;j<3;j++)
 for(k=0;k<3;k++)
 b[i][j][k] = a[i][j][k];
 for(i=0;i<3;i++)
 for(j=0;j<3;j++)
 for(k=0;k<3;k++)
 a[i][j][k] = 0;

 for(x=0;x<100;x++)
 printf("%d\n",(int)(sqrt(x)));

 typedef struct {
 int element[3][3][3];
 } Three3DType;

 Three3DType a,b;
 ...
 b = a;

 memset(a,0,sizeof(a));

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 18 of 47

PRELIMINARY

5.2 Flow Control Handling
5.2.1 Switch
There are two possible techniques in implementing a Switch statement: If–then and Table

This can only be controlled via Option Æ H8 toolchain Æ C/C++ Æ Optimize Category Æ Switch Statement “Auto/ If then/ Table”

The compiler generated assembly code based on

“If-Then” setting “Table” setting:

Table

- Table implementation will be preferred if there are many “cases”. However if the “cases” conditions are not in sequential
number, the table will not be able to be generated.

- Table implementation has same execution speed for all cases.

If-Then

- It has the overall efficiency if there are lesser cases.

- Place cases of high occurrences (or events in needs of fast response) in the earlier order. This will improve the hit rate and
thus the speed of operation.

MOV.W @(-4:16,R6),R0
MOV.B R0H,R0H
BNE L83
CMP.B #1,R0L
BEQ L72
CMP.B #2,R0L
BEQ L73
CMP.B #3,R0L
BEQ L74
CMP.B #55,R0L
BEQ L75
CMP.B #99,R0L
BEQ L76
CMP.B #77,R0L
BEQ L77
BRA L83

MOV.W @(-6:16,R6),R0
SUBS.W #1,R0
MOV.W #5,R5
CMP.W R5,R0
BHI L83
MOV.B @(L84:16,R0),R0L
SUB.B R0H,R0H
ADD.B #LOW L72,R0L
ADDX.B #HIGH L72,R0H
JMP @R0

switch (test)
{
 case 1: P_IO.PDR9.BYTE = 0x11;
 break;
 case 2: P_IO.PDR9.BYTE = 0x22;
 break;
 case 3: P_IO.PDR9.BYTE = 0x44;
 break;
 case 4: P_IO.PDR9.BYTE = 0x11;
 break;
 case 5: P_IO.PDR9.BYTE = 0x22;
 break;
 case 6: P_IO.PDR9.BYTE = 0x44;
 break;
 other: P_IO.PDR9.BYTE = 0x88;
 break;
}

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 19 of 47

PRELIMINARY

5.2.2 Jumps
A sequential execution will be faster than a program flow that has many jumps condition.

Examples:

- Inline function

- “Else clause removal”

5.2.3 Inline Function
The technique will cause the compiler to replace all calls to the function, with a copy of the function’s code. This will eliminate the
runtime overhead associated with the function call. This is most effective if the function is called frequently, but contains only a few
lines of code.

Example:

5.2.4 Function Calls and Addressing Modes
There are numerous methods to reach a location (function calls): absolute, relative and indirect.

The relative addressing mode and indirect mode are more compact (smaller size), as it does not specify the full address (absolute
addressing mode).

Examples:

i. Absolute (JSR @aa:16 – 4 bytes and 8 cycles) and Relative Access (BSR d:8 – 2 bytes and 6 cycles)

o A simple mean to achieve a relative addressing is to place all related functions within a file. (Note a BSR d:8 can
access to address at –128 to 127 ranges).

o Options Æ H8 Toolchain Æ Link/Library Æ Optimizer Category Æ Optimize branches (dealing with BSR and JSR)

ii. Indirect Access (JSR @@aa:8 – 2 bytes & 8 cycles)

o Options Æ H8 Toolchain Æ C/C++ Æ Optimizer Category Æ Function call – “@aa[default] or @@aa:8”

� In this case, a section <$INDIRECT> must be declared within the address 0-0xFF

� If <indirect.h> is specified, all run-time routines to be used are called in the indirect accessing format.

o #pragma indirect

#pragma inline (sum)
…
int sum(int a, int b)
{ return (a+b);
}
…
routine()
{ …

total = sum (x,y);
…
sub_total = sum (cost_a, cost_b)
…

}

#pragma indirect fun
void fun (void);
void main(void){
 fun();
}

Function “fun” called by
“JSR @@$fun”

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 20 of 47

PRELIMINARY

5.2.5 Tail Recursions
Place the function call instruction at the end of the routine to improve operation speed and size.

Provided:

- The calling function does not place its parameter or return value address on the stack

- The function call is followed by the RTS instruction.

5.2.6 Loop Unrolling
If the loop is small, overhead will be higher.

If the loop is larger, the overhead can also be reduced by:

5.2.7 Loop Invariant IF Code Floating
‘IF’ statements that do not change from iteration to iteration may be moved out of the loop

5.2.8 Do-While Statement
The Do-While statement will have 1 comparing iteration lesser than the while loop. This will improve the operation if the loop must
be performed at least once (Loop Flipping).

void Function_A(void)
{
 …
 sub()
}

_Function_A
…
JMP @sub:24
RTS

for (i = 0 ; i < 3; i++)
 a[i] = b[i] + c[i];

 a[0] = b[0] + c[0];
 a[1] = b[1] + c[1];
 a[2] = b[2] + c[2];

for (i = 0 ; i < 3*n; i++)
 a[i] = b[i] + c[i];

for (i = 0 ; i < 3*n; i +=3)
{ a[i+0] = b[i+0] + c[i+0];
 a[i+1] = b[i+1] + c[i+1];
 a[i+2] = b[i+2] + c[i+2];
}

for (i = 0 ; i < i_size; i++)
{ for (j = 0 ; j < j_size; j++)
 {
 if(a[i]>10)

b[j] = VAR + a[i];
 c = a[j] + b[j];

}
}

for (i = 0 ; i < i_size; i++)
{
 if(a[i]>10)
 b[j] = VAR + a[i];
 for (j = 0 ; j < j_size; j++)
 c = a[j] + b[j];
}

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 21 of 47

PRELIMINARY

5.2.9 Loop Hoisting

For the first case, Condition_B will have an overhead of the “if(Condition_A)”.

5.2.10 Common Expression Should be Calculated Once or Earlier
Parameter can be calculated at earlier stages, such as the power up initialization stage instead of actual execution stage. This will
help to speed up the processing.

5.2.11 Else Clause Removal

A jump condition is inevitable in the first case, whereas the second case gives the higher possibility process (Condition_A) to have a
sequential execution. This technique is possible only if Undo “DoThat()” process is possible.

5.2.12 Loop Overhead
The MCU have a conditional branch mechanism that works well when counting down from positive number to zero.

It is easier to detect “Zero” (Branch non zero – single instruction) than a “predefined number” (Compare and perform jump – two
instructions)

for (i = 0 ; i < i_size; i++)
{ if (Condition_A)
 Dothis(i);
 else if (Condition_B)
 Dothat(i);
 else
 Doall(i);
}

if (Condition_A)
{ for (i = 0 ; i < i_size; i++)
 Dothis(i);
}
else if (Condition_B)
{ for (i = 0 ; i < i_size; i++)
 Dothat(i);
}
else
{ for (i = 0 ; i < i_size; i++)
 Doall(i);
}

if (Condition_A)
 DoThis();
else
 DoThat();

Dothat();
if (Condition_A)
{ Undo_DoThat();
 DoThis();
}

for (i=0; i<10;i++)
{
…
}

for (i=10; i>0; i--)
{
…
}

for (i = 0 ; i < end; i++)
{ c = sqrt(a_type, b_type);
 d = c + i;

…
}

c = sqrt(a_type, b_type);

for (i = 0 ; i < end; i++)
{ d = c + i;

…
}

 …
 DEC R1
 BNZ L1
 …

 …
 DEC R1
 CMP 10
 BNE L1
 …

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 22 of 47

PRELIMINARY

5.3 Other Handling
5.3.1 Native Instruction and Data
It is wise to understand the CPU architecture and instruction sets. This will enable a better use of program to achieve a faster
execution and smaller program size.

Example:

1. For H8, since bit manipulation is possible (BSET,BCLR …) ,

Thus usage of if(P_IO.PDR3.BIT.P30) instruction will be more efficient

Than if(P_IO.PDR3.BYTE & 0x01) instruction

2. Although there is a Multiplication instruction/opcode (MUL), it may be better to use the shift instruction instead.

MUL will take up 12 or 20 cycles, whereas SHILL takes up 2 cycles

5.3.2 Hand Coded Assembly
Further optimization may be obtained by coding in assembly language.

There are two methods in HEW:

i. #pragma asm

ii. #pragma inline_asm

 motor_control()
 {

 #pragma asm
 CLRMAC

#pragma endasm
}

#prama inlin_asm(shlu)
extern unsigned int x;
static unsigned int shil(unsigned int a)
{

 SHLL.W R0
 BCC ?L1
 SUB.W R0,R0
?L1: /* Local label starts with ? */

}
void main(void)
{

x = shlu(x) /* Inline expansion is performed */
 /* within the main function */
}

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 23 of 47

PRELIMINARY

5.3.3 Lookup Table and Calculation
In lower operation frequency of MCU, lookup table may be faster than recalculation methods. However, programmers must make
their judgment on the complexity and speed requirement.

Example:

 A function like y = ax + bx2 will already take up significant CPU processing time.

 However, the function y = 2x can be implemented with a shift instruction (2 cycles). Thus this function is preferred to be
implemented with re-calculation method than a lookup table method.

5.3.4 Polling and Interrupt
Interrupt latency may be a bigger overhead than implementing polling method.

5.3.5 Fixed-point and Floating-point Arithmetic
It takes up much processing power to perform floating-point arithmetic in a non-floating point processor. If accuracy is not a
requirement, programmers should use fixed-point calculation instead. Otherwise, the calculation can be re-implemented in a cheaper
mean.

Example:

- 123.45 + 678.89 is equivalent to (12345 + 67889) with a decimal point placed at the correct place.

5.3.6 Standard Library Routines
Most standard library routines are written to cater for all possible conditions. Thus, it may not be efficient for specific operation.

However, if the library function is specifically written for the application, it shall be wise to use it as optimization should be taken
care of.

Example:

- The printf function takes up a huge space as it is written to cater for floating point arithmetic.

- However, HEW can disable this floating-point facility by “#include <no_float.h>”.

- Further optimization is possible if printf is custom written.

- Please refer to Application Note: “Writing a printf function to LCD & serial port”

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 24 of 47

PRELIMINARY

5.3.7 Input and Output Access
The following are some guides on dealing with the worst bound condition - Input and Output access:

- Unnecessary I/O access should be avoided.

- I/O access within a loop should be avoided, unless necessary

- Use unformatted (binary) I/O whenever possible.

- Access data from memory. If possible, data is to be read and stored in memory for processing (non-volatile)

5.3.8 Specify Optimization Type for Each Module
#pragma option can be used to limit and control the optimization regions. It will have the priority over the HEW Option window
setting

5.3.9 Horner’s Rule of Polynomial Evaluation
The rules state that a polynomial can be rewritten as a nested factorization. The reduced arithmetic operations will have better ROM
efficiency and execution speed.

5.3.10 Factorization
The compiler may be able to perform better when the formula

5.3.11 Use Finite Differences to Avoid Multiplies

Ax5 + Bx4 + Cx3 + Dx2 + Ex + F

((((Ax + B) * x + C) * x + D) * x + E) * x + F

Z = X* A + X* B + X* C + X* D

Z = X* (A + B + C + D)

for (i = 0 ; i < 10; i++)
 printf(“ %d\n”, i*10);

for (i = 0 ; i < 100; i+=10)
 printf(“ %d\n”, i);

#pragma option speed // From this point, code will be optimized based on Speed
void function_A(void)
{
…
}
#pragma option size // From this point, code will be optimized based on Size
void function_A(void)
{
…
}

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 25 of 47

PRELIMINARY

5.3.12 Condition Determination Using Substitution Values
The assignment statement (MOV instruction) will affect the CCR Zero flag, and thus enable a more efficient loop control.

5.3.13 Modula

5.3.14 Division and Multiplication

5.3.15 Constant Folding and Propagation
If data is to be calculated during a task, the calculating process may slow down the task execution. These data can be prepared at an
earlier stage:

- At compiling stage Æ as constant data

- At initialization stage

5.3.16 Constant in Shift Operations
For shift operations, if the shift count is a variable, the compiler calls a runtime routine to process the operation. If the shift count is a
constant, the compiler does not call the routine, which give significant speed improvement.

x = y %32 ; x = y &31;

x = y * 8 ;
x= y / 8 ;

x = y <<3;
x = y >>3;

While (*p)
{ *q++ = *p++;
}
*q++ = *p++;

While (*q++ = *p++);

y= 3 * 5 * x;

y = 15 * x;

or

z=15;
…
y = z * x;

int shift=8;

data = data <<shift;

#define SHIFT 8

data = data << SHIFT;

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 26 of 47

PRELIMINARY

5.3.17 Use Formula
Example: (Sum of 1 through 100)

5.3.18 Simplify Condition

5.3.19 Absolute Value

If (a==b && c==d && e==f)

 {…}

If(((a-b) | (c-d) | (e-f)) ==0)

 {…}

if(x>=0 && x<8 && y>=0 &&y<8)

 {...}

if(((unsigned)(x|y))<8)

 {...}

if((x==1) || (x==2) || (x==4) || (x==8)
|| ...)

if(x&(x-1)==0 &&x!=0)

 #define abs(x) (((x)>0)?(x):-(x))

static long abs(long x)
{ long y;
 y = x>>31; /* Not portable */
 return (x^y)-y;
 }

n=100;
for (x=0, y=1; y<=n; y++)

x +=y;

n=100;
x = n* (n >>1); //n2 /2

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 27 of 47

PRELIMINARY

6. How to Optimize – HEW Setting
In this section, HEW optimization techniques will be highlighted. The optimization settings can be applied to the whole project or
individual files.

All related setting for Optimization can be set in the HEW Option Æ H8 Standard Toolchain window.

There are five main areas of interest (Assembly setting is not discussed) for the user:

i. C/C++ - Optimize Category

ii. C/C++ - Other Category

iii. Standard Library

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 28 of 47

PRELIMINARY

iv. Link/ Library - Optimize Category

v. CPU Setting

NOTE: 1. The previous five selections apply globally to all files in the project. Setting for individual file is possible, if
individual file is clicked.

2. This section provides an overview of HEW setting for a single file or whole project optimization. The details
(including example) of each settings are illustrated in HEW Application Note for H8 Toolchain.- “Section 5
Using the Optimization Functions” (Available in Renesas web site - Download ÆCrosstoolÆ Documents.)

3. Some of the settings’ concepts have been explained in the earlier sections.

4. The #pragma directives have a higher priority level than the HEW option window settings.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 29 of 47

PRELIMINARY

6.1 C/C++ - Optimize Category Setting
Two main setting are available:

i. Speed oriented optimization

ii. Size oriented optimization

The setting will select the various optimization techniques:

i. Register

ii. Switch judgment

iii. Shift to multiple

iv. Struct assignment

v. Expression

vi. Loop optimization

vii. Loop unrolling

Other settings are:

i. Inline function: maximum node

ii. Switch statement

iii. Function call

iv. Data access

6.1.1 Register
[Enable] Perform register save and restore by push and pop expansion.

[Disable] Perform register save and restore by using the runtime routine library (if the number of registers to be save and restored is
three or more)

[Remarks] This has no effect for H8S series, as STM/LDM or PUSH/PULL will be used

[Refer to Section] 5.1.15 Register Save and Restore

[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

6.1.2 Shift to Multiple
[Enable] The execution time of shift operation can be enhanced.

[Remarks] Multiple shift instructions can be enhanced by performing some looping operations.

[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 30 of 47

PRELIMINARY

6.1.3 Struct Assignment
[Enable] The execution time of structure assignment expression can be enhanced.

[Remarks] Run-time routines are normally called during access to (bigger size) structure or double type data. This will be removed if
the option is enabled to improve operational speed.

[Speed Improvement] O (Improvement attained)

[Size Reduction] V (Improvements achieved in some programs)

6.1.4 Expression
[Enable] Execution time of the arithmetic operations, comparison expression, and assignment expression are enhanced.

[Remarks] The operations are expanded with codes that do not access run-time routine.

[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

6.1.5 Loop Optimization
[Enable] Induction variable in a loop statement is eliminated and loop is expanded.

[Remarks] This is possible if

- The initial value for the loop is a constant

- The final judgment of the loop is a constant

- The number of repetition for the loop is either a multiple of 3 or an even number.

- No goto labels are included in the loop

[Speed Improvement] O (Improvement attained)

[Size Reduction] V (Improvements achieved in some programs)

6.1.6 Loop Unrolling
[Enable] Induction variable in a loop statement is eliminated and loop is expanded.

[Refer to Section] 5.2.6 Loop Unrolling

[Speed Improvement] O (Improvement attained)

[Size Reduction] V (Improvements achieved in some programs)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 31 of 47

PRELIMINARY

6.1.7 Inline Function
[Enable] Functions called which are within the specified Nodes size will have its function replaced by its code.

[Selection] Maximum Nodes: This selection limits the maximum size of the target function to be inline. Number of nodes signifies
the number of units of compiler internal processing. The larger the size indicates the greater the node numbers. Default is 105 nodes.

[Related Command] #pragma inline

[Refer to Section] 5.2.3 Inline Function

[Remarks] Inline expansion will not be performed if

- Functions including variable parameter

- Functions referencing addresses of parameters.

- Functions in which the type of a real parameter and that of a dummy parameter do not match.

- Functions calling inline expanded function

- Functions that exceed the size limitation of the inline expansion.

[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

6.1.8 Switch Statement
[Enable] The compiler will determine the best method to perform the case statement.

[Selection] Auto[default], “If-Then or “Table”

[Refer to Section] 5.2.1 Switch

[Remarks] Execution speed for all cases in the “Table” implementation will be constant, whereas in the “If-Then” implementation,
execution speed will vary for all cases. Thus the highest hit rate case or timing-critical case should be placed in the early stage.

[Speed Improvement] O (Improvement attained)

[Size Reduction] V (Improvements achieved in some programs)

6.1.9 Function Call
[Selection] @aa[default] or @@aa:8

[Enable] @@aa:8 is selected - Function calls will be done in indirect addressing mode. The storage area for the function call will be
located in <$INDIRECT> section.

[Related Command] #pragma indirect

[Refer to Section] 5.2.4 Function Calls and Addressing Modes

[Remarks] If <indirect.h> is specified, all run-time routines to be used are called in the indirect addressing format.

[Speed Improvement] X (Efficiency reduced)

[Size Reduction] O (Improvement attained)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 32 of 47

PRELIMINARY

6.1.10 Data Access
[Selection] @aa [default], @aa:8 or @aa:16

[Enable] @aa:8 is selected -.Variables will be stored in $ABS8 section and accessed via the 8-bit absolute addressing mode.

(e.g. advanced mode memory range H’FF FF00 - H’FF FFFF for 8 bit absolute address area <$ABS8> sections)

[Enable] @aa:16 is selected - Variables will be stored in $ABS16 section and accessed via 16 bit absolute addressing mode.

(e.g. advanced mode memory range H’FF 0000 - H’FF FFFF for 16-bit absolute address area,).

[Related Command] #pragma abs8/ab16

[Refer to Section] 5.1.16 Use of Short Addressing to Access Variables

[Remarks]

- <$ABS8> section is used to store 8 bit data (char), and <$ABS16> section is used to stored 16 bit data (integer)

- Due to limited memory space, this option may not be feasible to apply to the whole project. Frequently accessed variables
must be identified and allocated.

[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 33 of 47

PRELIMINARY

6.2 C/C++ - Other Category Setting
The available settings in this tab are:

i. Allow comment nest

ii. Check against EC++ language specification

iii. Interrupt handler save/restores MACH & MACL register
if used

iv. Avoid optimizing external symbols treating them as
volatile

v. Treat enum as char if it is in the range of char

vi. Increase a register for register variable

vii. Put common subexpression on a register temporarily

viii. Use EEPMOV in block copy

ix. Group data by alignment

The option related to optimization will be explained as follow:

6.2.1 Avoid Optimizing External Symbols Treating Them as Volatile
[Enable] All external variables will be treated as volatile. Thus there will be no optimization for all these external variables.

[Disable] The compiler will treat the external variables as what the declaration is.

[Recommend] Disable

[Speed Improvement] -

[Size Reduction] -

6.2.2 Treat Enum as Char if it is in the Range of Char
[Enable] The numeration data declared by enum will be treated as char (in byte form) if they are within –128 to 127 ranges.

[Disable] All data are treated as integer (in word [2x bytes] form)

[Recommend] Enable

[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 34 of 47

PRELIMINARY

6.2.3 Increase a register for register variable
[Enable] Four registers [(E)R3 to (E)R6] will be used for variable manipulation.

[Disable] Three registers [(E)R4 to (E)R6] are used.

[Recommend] Enable

[Refer to Section] 5.1.11 Passing Parameter Registers and Working Registers

[Remark]: Disable if complicated expression are used in the program

[Speed Improvement] V (Improvements achieved in some programs)

[Size Reduction] V (Improvements achieved in some programs)

6.2.4 Put Common Subexpression on a Register Temporarily
[Enable] Common subexpression will be eliminated when optimized

[Speed Improvement] -

[Size Reduction] O (Improvement attained)

6.2.5 Use EEPMOV in Block Copy
[Enable] Structure assignment is using “EEPMOV” block move instruction.

[Disable] “MOV” instruction or run time routine are to be used.

[Remarks] If an NMI interrupts occurs during EEPMOV operation, control moves to the next instruction after the interrupt
processing, and therefore, EEPMOV operation cannot be guaranteed. Precautions must be taken against NMI interrupts when this
option is used.

[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

6.2.6 Group Data by Alignment
[Enable] Data of the same type is grouped together.

[Recommend] Enable

[Refer to section] 5.1.9 Data Definition - Arrangement and Packing

[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 35 of 47

PRELIMINARY

6.3 Standard Library Optimize and Other Category Setting

The available settings in these tabs are similar to C/C++ tabs.

Please refer to the previous C/C++ sections for the explanation.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 36 of 47

PRELIMINARY

6.4 CPU setting
The available settings are:

i. Change number of parameter registers from 2(default) to 3

ii. Treat double as float

iii. Pass struct parameter via register

iv. Pass 4-byte parameter/return value via register

v. Use try, throw, and catch of C++

vi. Enable/ Disable runtime type information

vii. Pack struct, union and class

6.4.1 Change Number of Parameter Registers from 2(default) to 3
[Enable] (E)R0 , (E)R1 and (E)R2 are used for parameter passing in a function calls.

[Disable] (E)R0 and (E)R1 are used

[Related Command] #pragma repram 2/3

[Refer to Section] 5.1.11 Passing Parameter Registers and Working Registers

[Remarks] This feature is applied to all files and libraries. It cannot be specified individually to each file.

[Speed Improvement] V (Improvements achieved in some programs)

[Size Reduction] V (Improvements achieved in some programs)

6.4.2 Treat Double as Float
[Enable] Both double and float are 4 bytes in length

[Disable] Treats double as 8 bytes and float as 4 bytes

[Refer to Section] 5.1.5 Float and Double

[Speed Improvement] -

[Size Reduction] -

6.4.3 Pass Struct Parameter via Register
[Enable] Parameters are passed through registers

[Disable] Parameters are passed through memory

[Speed Improvement] V (Improvements achieved in some programs)

[Size Reduction] V (Improvements achieved in some programs)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 37 of 47

PRELIMINARY

6.4.4 Pass 4-byte Parameter/Return Value via Register
 [Enable] Allocates 4 byte parameters to register

[Disable] Allocate 4 byte parameters to memory

[Remarks] The above condition applies to H8/300 only. For other series, 4 byte data is always assigned.

[Speed Improvement] V (Improvements achieved in some programs)

[Size Reduction] V (Improvements achieved in some programs)

6.4.5 Pack Struct, Union and Class
[Enable] Struct, union and class will be packed

[Disable] Struct, union and class will remain as it is declared.

[Refer to Section] 5.1.9 Data Definition - Arrangement and Packing

[Speed Improvement] X (Efficiency reduced)

[Size Reduction] O (Improvement attained)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 38 of 47

PRELIMINARY

6.5 Link/ Library - Optimize Category Setting
HEW has enabled a user-friendly approach in selecting the optimization setting:

i. All

ii. Speed

iii. Safe

iv. Custom

v. None

The above setting determine the optimization techniques used:

i. Unify strings

ii. Eliminate dead code

iii. Use short addressing

iv. Reallocate registers

v. Eliminate same code

vi. Use indirect call/jump

vii. Optimize branches

Eliminated size - Specify the minimum size to unify same code (Used for “eliminate same code”)

Profile - Load a profile generated by Debugger.

 - This dynamic information will enable the inter-module optimization to be performed.

Relation Between Profile Information and Optimization (for H8 C/C++ and assembly)

i. Variable access - Allocate frequently accessed variables in the first stage

ii. Function call - Lowers the optimized order for frequently accessed functions

iii. Branch - Allocate the frequently accessed function, to a nearby location to the calling function.

6.5.1 Unify Strings
[Enable] Unify similar value constants having the const attributes. Constants having the const attributes are:

- Variable defined as const in C program

- Initial value of character string data

- Literal constant

 [Size Reduction] O (Improvement attained)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 39 of 47

PRELIMINARY

6.5.2 Eliminate Dead Code
[Enable] Variables and functions that are not referenced and executed in all application will be eliminated

[Size Reduction] O (Improvement attained)

6.5.3 Use Short Addressing
[Enable] Frequently accessed variables are allocated to the 8/16 bit absolute addressing area.

[Refer to Section] 5.1.16 Use of Short Addressing to Access Variables

[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

6.5.4 Reallocate Registers
[Enable] Function calls relations are investigated so as to reallocate register, and delete redundant register save or restore.

[Refer to Section] 5.1.15 Register Save and Restore

[Remarks] PUSH and POP instructions in a subroutine may be removed, as registers used in the routine are not destroyed.

[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

6.5.5 Eliminate Same Code
[Enable] Create a subroutine for the same instruction.

[Speed Improvement] X (Efficiency reduced)

[Size Reduction] O (Improvement attained)

6.5.6 Use Indirect Call/Jump
[Enable] Frequently accessed functions are called via memory indirect addressing. Memory address is allocated to the range of 0 to
0xFF if there is a space.

[Refer to Solution] 5.2.4 Function Calls and Addressing Modes

 [Size Reduction] O (Improvement attained)

6.5.7 Optimize Branches
[Enable] Optimize branch instruction size according to program allocation information.

[Remarks] Usage of JSR or BSR

[Refer to Solution] 5.2.4 Function Calls and Addressing Modes

 [Size Reduction] O (Improvement attained)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 40 of 47

PRELIMINARY

6.6 Inter Module Optimization
Inter-module optimization can be set in the C/C++, Assembly and Standard Library tabs

This will enable inter –module optimizing information to be generated for the linker to perform a better optimization.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 41 of 47

PRELIMINARY

The optimize items for inter-modules are similar to the Link/Library tab:

i. Unifies constant/literal strings

ii. Delete no-referenced symbols

iii. Short Absolute addressing

iv. Indirect addressing

v. Register save/restore

vi. Unifies same codes

vii. Uses better branch instruction

The exception is that it can have better optimization, as condition for all modules (global) are considered, instead of performing the
adjustment only for one module (local).

A simplified explanation of the inter-module optimization is illustrated as follow:

6.6.1 Unifies Constant / Literal Strings
Same strings, constants are searched and eliminated in modules.

A.c

B.c

C.c

D.c

A.c

B.c

C.c

D.c

ABCD.abs

Optimization on
compiling

Optimization on
compiling

Optimization on compiling

Optimization
 on compiling

Optimization on
Linking

Conventional Optimization Inter-module Optimization

ROM Efficiency And Execution Time

“abcdefg”
#20546
“defg”
#100000

“ABCdefg”
#10546
“defg”
#100000

“abcdefg”
#20546
“defg”
#100000
“ABCdefg”
#10546
“defg”
#100000

≠

≠

=
=

delete
declare _b
declare _d

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 42 of 47

PRELIMINARY

6.6.2 Delete No-referenced Symbols
Deletes variables and functions that are not referenced.

6.6.3 Short Absolute Addressing
Allocate frequently-accessed variables to the area accessible in the 8/16 bit absolute addressing mode.

6.6.4 Indirect Addressing
Allocate addresses of frequently accessed functions to the range 0 to 0xFF if there is space.

reference_a

declare _b;
declare _c;

reference_c

declare _a;
declare _d;

reference_a
reference_c

declare _a;
declare _d;

delete
declare _b
declare _d

main()
{

f();
g();
h();
i();

}

_main:
JSR @_f:24

 JSR @_g:24
 JSR @_h:24
 JSR @_i:24
 RTS

_main:
JSR @_f:24

 JSR @@$_g
 JSR @_h:24

JSR @_i:24
RTS

0x00
 Memory
$_g _g Indirect
 Addressing
0x100

Frequent call for
function -g

int a;
int b;
main()
{
 a=1;
 b=2;
}

_main:
 MOV.W #1,R0
 MOV.W R0, @_a:32
 MOV.B #2, R0L
 MOV.W R0, @_b:32
 RTS

_main:
 MOV.W #1,R0
 MOV.W R0, @_a:16
 MOV.B #2, R0L
 MOV.W R0, @_b:16

RTS

C source After compiling After optlnk

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 43 of 47

PRELIMINARY

6.6.5 Register Save/Restore
Investigates function calls, relocates registers and deletes redundant register save or restore codes.

6.6.6 Unifies Same Codes
Create a subroutine for the same instruction sequence.

6.6.7 Uses Better Branch Instruction
Optimizes branch instruction size according to program allocation information

f1()
{ …
sub();
…
}

_sub:
PUSH.L ER6
PUSH.L ER5

 MOV.L @_a, ER6
 MOV.L @_b, ER5

ADD.L ER5,ER6
MOV.L ER6 @_a
POP.L ER5
POP.L ER6

 RTS

_sub:
deleted
deleted

 MOV.L @_a, ER3
 MOV.L @_b, ER5

ADD.L ER5,ER3
MOV.L ER3 @_a
deleted
deleted
 RTS

f2()
{ …
sub();
…
}

sub(){
{ …
a+=b;
…
}

Use ER6 straddle
sub() call

Use ER4 straddle
sub() call

Transpose ER6 to
ER3 and Delete
register
save/restore

After compiling After optlnk

_f1
…
MOV.W @_a:32,r0
MOV.W @_b:32,R1
ADD.W R1,R0
MOV.L R0, @_a:32
…
RTS

_f2
…
MOV.W @_a:32,r0
MOV.W @_b:32,R1
ADD.W R1,R0
MOV.L R0, @_a:32
…
RTS

_f1
…
JSR @_L
…
RTS

_f2
…
JSR @_L
…
RTS

_L
MOV.W @_a:32,r0
MOV.W @_b:32,R1
ADD.W R1,R0
MOV.L R0, @_a:32
RTS

Same instruction sequence

After compiling After optlnk

_h:
JSR @_f
BSR @_g
…
_g:

_f:
…
…

_h:
BSR @_f
BSR @_g
…
_g:

_f:
…
…

File 1

File 2

File 1

File 2

After compiling After optlnk

Calculate offsets
when linking

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 44 of 47

PRELIMINARY

7. Suggested Optimization Steps
The following optimization steps are suggested as a basic guide:

i. Plan for the project – Focus on the areas which need faster execution and smaller code size

ii. Pay extra optimizing effort in coding these critical areas.

iii. Compile (without optimization turn on)

iv. Check, Test and Qualify the system operations.

v. If not necessary, retain current settings.

vi. Otherwise, optimize for speed or size for the actual requirement.

o Make use of utilities such as HEW performance analyzer and profiler to identify the hot spot.

o Make use of the HEW session – Debug, Release and etc, so as to make comparison between session output

o If ROM or RAM space is insufficient, consider the need to optimize the project as a whole, or purely work on
certain modules.

o If response is slow, consider the need to optimize for speed in the critical routines, instead of the whole project.

vii. After optimization, perform check, test and qualify the whole system operation against the earlier test results.

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 45 of 47

PRELIMINARY

8. Conclusion
There are no fixed rules in optimization.

To achieve good optimization, programmers have to plan and implement optimization early. Other than having a good algorithm and
techniques, programmers must also have a clear understanding of the controller’s architectures and compiler behavior.

This document did not take into the consideration of cache and pipeline. When these topics are involved, programmers will have to
make sure that their program will not create too much cache missed and disruptive pipeline operation.

Optimization can be done either through programming or via HEW optimizer setting. There are some HEW optimizer setting that
can be implemented via the use of #pragam directives or programming. This is provided for better control. With the right
combination of programming techniques and optimizer settings, programmer will be able to perform better optimization.

Reference
- HEW Application Note for H8 Toolchain [Chapter5, 6 & 7] (Renesas)

- HEW C/C++ Compiler, Assembler, Optimizing Linkage Editor manual [Chapter 2, 4, 9 & 10] (Renesas)

- A book on C by Al Kelley Ira Pohl (Addison –Wesley)

- The Practice of Programming by Brain W.Kernighan & Rob Pike (Addison –Wesley)

- Fundamentals of Embedded Software where C and Assembly Meet by Daniel W.Lewis (Prentice Hall)

- Programming Embedded Systems in C and C++ by Michael Barr (O’REILLY)

- Writing Solid Code by Steve Maguire (Microsoft Press)

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 46 of 47

PRELIMINARY

Revision Record

Description
Rev.

Date Page Summary

1.00 March 04 — First edition issued

HEW
Embedded C Programming III (ECProgramIII_opt)

AN0403008/Rev.1.00 March 2004 Page 47 of 47

PRELIMINARY

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

