To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS



10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.




PRELIMINARY

1RENESAS APPLICATION NOTE

HEW
Embedded C Programming Ill - Optimization (ECProgramlll_opt)

Introduction

This application note, Embedded C Programming 111, will cover the various topics on optimization.

Two main areas are elaborated:
- Embedded C Programming Techniques and use of #pragma Directives
- High-performance Embedded Workshop (HEW) Optimizer Setting

The examples used will be based on HEW H8 Toolchain. These concepts will also be applicable to other toolchains and MCU series.
(Note: SH series will have a different set of HEW optimization handling as cache and pipeline issues must be considered)

Target
All

ANO0403008/Rev.1.00 March 2004 Page 1 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

Contents
1. ReCAPITUIALE PArt 1 & 2. ..ooiiiiiiiiiiie ettt ettt et e st e s nnr e e s e e e e nanes 5
2.  Basic Concept of OPtiMIZatiON...........uiiiiiiiiiiiiee e s s e e s e s e e e e e s e e e e e e sanrraeaeean 6
P R B 1= {101 o o T T SO P P PP PPPPPPPPPN 6
2 /=Y 1 T Yo LSRR 6
2.3 BASIC HHUSTIFALION .......eeiiii ettt ettt ettt e e ettt e e e e s e aab ittt e e e e s e abbe e e e e e e e sabbbe e e e annnaneaaanaan 6
2.4 EVAIUALION ..uttiiiiiiieieeeeeeee et ee et e e e et e e e e e e e e et oot e e et e e et e e b e bbb e e bbb e ae s aae e e et e eaeataetaaaaaaaaaeaaeaeaaaabbaarbrrarrarrraae 7
3. Further understanding Of OPtIMIZALION .......uuuviiiiiiiiiiiieeieerie e e 9
1 00 I T T To | o o111 114 = SRR 9
2 = o 18] To leTo] o [0 11 o]0 S UURR T T PO S PP TR PP PPPPR PPN 9
3.3 OPLIMIZE MO SPOL ...ttt e e s b e e e e s sr e e st e e e e s e et e r e e e nnneee s 9
3.4 Confusion to source level deDUGQET ..........uiiiiiiiiiiiiiee e 9
3.5 Dead cOde ElIMINALION ........iiiiiiie ittt e e e sbb e e s bt e e s anbe e e e abbe e e anbeessrneeeaas 9
3.8 TESE & EVAIUALE ... .ottt e ettt e e e e e e sa et e e e e e e aa bt e e e e e e e b ae e e e e e e e antnteeeeannnnaeeaaeeaan 9
V2B ® o) 11 4 1 o] d N - o o o K SRR 10
5.  How to optimize — Programming TECANIQUE .........uuuuiiiiiiiiiiiiiiiieeieee e 11
LR B - 1 = W =Yg T |1 o USSP 11
51,1 RAM USAQE ... iiiiiiiitiiiae e ettt e e e e e et ettt ae e s e e e et et ettt taa s e e e e e e et et ettt a e e e e e e eeeeee e bbb e e as 11
T A D - 1 v W Y 0T U To [P PP PRR PP 11
5.1.3 Use Variables of the Same Type fOr ProCESSING ......uuuviiiiiiiiiiiiiiiiiiiiiiieet et aa e 12
L I A O LYo U1 EY o T 1= To I 1Y o L= PR 12
5.1.5  Float and DOUDIE .......coiiiiiiii ettt ettt 12
5.1.6 Data Declaration - CONSLANT .........c.uueiiiee i e et e e e e e e e et r e e e e s sneeeee e e s e snneeeeeaeesannens 12
5.1.7 Data Declaration - VOIALIE ..........oc.uuiiiiie e 12
5.1.8 Data Initialization at DECIAration ...........c.oouuii i 12
5.1.9 Data Definition - Arrangement and Packing ...........cccoiriiiiiiiiiniii e 13
5.1.10  Global and Local VariabIES ............cou ittt e e e e e e e e 13
5.1.11 Passing Parameter Registers and Working REQISLEIS.........cccovcvviiieeiiiiiiieiee e cciieiee e 14
5.1.12  Global ReQISter VAriables ...........uviiiieii it e e e e et e e e e e s ennrae e e e e s ennnes 14
5.1.13  Passing Reference as Parameters ...........coveeiiiiiiiiiieeiiiiiiiree e e ssiieeee e e e s ssaeaeeeesssnsnnneeeeessnnnnes 15
5.1.14 RETUIN VAIUE ...ttt ettt e e e et e e e e e s e n b e e e e e e e e aabbbeeeaeenbeeeas 15
5.1.15  Register SAve and RESIOIE ..........uvviiii it e e e e e e s e e e e s s be e e e e s e naneees 15
5.1.16  Use of short addressing to access variables...........cccooocuviiiee i 16
5.1.17  POINEI AN AITAY .eoiitiieiiiiie ittt ettt et et e st e et e e s be e e e aenre e e sare e e e nneeeeenes 17
5.1.18 Better Data Structure and RepreSentation ..............uuiuiiiieiiiriiiiiiiiirieeeieeeeeee e e e e e e e 17
5.1.19  ACCESSING STTUCIUIE .....iiiiiieie e ettt e ettt e e e e e s e e e e e st e e e e e s et ae e e e e s e s sasaa e e e e e s saanabaeaeesannnnees 17
5.1.20  Array and Structure INItIaliZation ...........cccveiieeiiiiii e 17

ANO0403008/Rev.1.00 March 2004 Page 2 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

5.2 FIOW CONrOl HANGING. ...eeieeiiieie ettt ettt e s s e se e e s nneee s 18
oI R S 11 (o o TR 18
LN 11 | 1 0] o1 PP PPPPPUPUPR PRI 19
22 B Vo1 10T 18 od 1o o SRS 19
5.2.4 Function Calls and Addressing MOGES..........ccuueiiiiiiiiiiiie et 19
B5.2.5  TAI RECUISIONS ...ttt ettt e e e e rh bbbt e e e e s e aab e et e e e e e e aabbbeeee e e sannbbeeeeasnreeeas 20
LT G T o T o U1 o 11 o RSP 20
5.2.7 Loop invariant IF code floating ...........cooiiciiiiiee i 20
5.2.8  DO-WHhIlE STAIEIMENT ... ..ttt e e e et e e e e e e abe b e e e e e e s annbbeeaeaeeaneeeas 20
L7 S B o T o TN o o T3 11T PSP 21
5.2.10  Common expression shall be calculated once or earlier. .........ccccveeevviiiieei e, 21
5211 EISE ClauSe FEMOVAL ........eeiiiiii et e e e e st e e e e e bee e e e e e eneees 21
5.2.12 [T o @Y 7=T ¢ aT= T Vo F PP PUP P SRR PPRRPRN 21

LG I © 11 1=l o =T o |1 o OSSP 22
5.3.1  Native INSrUCtON AN DALA .........ueviiiiiiiiiiiiie ettt sbe e e 22
5.3.2  Hand coded @SSEMDIY .....coiviiiiiiiiieii e e e e e e e e n e 22
5.3.3 Lookup Table and CalCUlation.............cooiiiiiiiiiii e e e e e e e e e e e e e e e e s eannes 23
IR = o | a T BV aTo I ] (=T U] o) PRSP 23
5.3.5 Fixed-point and floating-point arthmetiC .............c.oooviiiiiiie e 23
5.3.6  Standard Library ROULINES........cccuiiiiiiiiiiiie ettt 23
LR I A 0T o101 A= T To @ 101 101 Aot o7 = P RSR 24
5.3.8  Specify Optimization Type for EACh MOAUIE .............ccoooriiiiiiiee e 24
5.3.9 Horner’'s Rule of Polynomial EVAIUALION .............cooiiiiiiiiieiieceeee et 24
5.3.10 = Tot (0] 172= 11 o] ¢ P PR P TP PRTPP 24
5.3.11  Use Finite Differences to Avoid MUItIPHES...........uviviiiiiieiee e e 24
5.3.12  Condition Determination Using Substitution Values ............cccocciiiieeiiiiiiiiee e 25
LI 750 1 T 1Y o T 1] - R 25
5.3.14  DiviSion & MURIPHCALION........cciiiiriiiie e e e e e e e s e e e e s e nnnees 25
5.3.15  Constant Folding and Propagation..............ceeeiiiiiiiiieii it e e saraee e e 25
5.3.16  Constant in Shift OPEratioNS ..........cceiiiciiiiiee i e e e e e e e e e s sseraeeeeesannnnees 25
B5.3.L7  USE FOMMUIA. ...ttt et e e e ettt e e e e e e s b bt e e e e e e e anbbbeeeaeesrreeas 26
5.3.18  SIMPIifYy CONAILION....ciiiiiiiiiiiiie e e e e e e e e e aaaaaaeeaaaaaesseassasesananrenes 26
5.3.19  ADSOIULE VAIUE ...ttt ettt e et e e e e e e e b 26

6.  HOW to Optimize — HEW SELHNG .....eeiiiiiiieiiiiie ettt et e e e naee s 27

6.1 C/C++ - Optimize Category SEHING . ...c.eeiiiiiie ettt b e e e e eaneeas 29
L 00 R = (= To 151 (=] S T PSP TPP PP PP PPPR 29
6.1.2  ShIft 10 MUIIPIE ...t e ettt e e e e s s nb e e e e e e aabbaeee e nreeeas 29
6.1.3  SHUCT ASSIGNIMENT ...ooiiiiiiiiiie ettt e ettt e e e e e bbbt et e e e s s aaabee e e e e e e anbeeeeeaessaanbbeeaeaeeareeeas 30
L S (o] {111 o] o F T O PPTPPP R PRPPTRPPPR 30
L0 I ST o o o o 11 1 44> 1o o PRSP 30
L I G I Mo To o U 0 7] |1 Vo [P TP OUP PR PPP 30
L O A 01 1T 1= 0] Tod o O PSPPI 31
B.1.8  SWILCH SEAEMENT.....ciiiiiiiiiie ettt seb et e e 31
L0 I T U Tox 1o o T = 1| RSP 31
6.1.10 DAL ACCESS ...ttt e oo e e et e e e e ettt e et e e e e e e e e e e e e e aaaaaaannaanaranne 32

ANO0403008/Rev.1.00 March 2004 Page 3 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.2 C/Ct++ - Other Category SEIING ......coeiiiieiiiiiteiret ettt e e e 33
6.2.1 Avoid optimizing external symbols treating them as volatile ...................ccccee i, 33
6.2.2 Treatenum as charifitisinthe range of char.........ccccccooiii e, 33
6.2.3 Increase a register for register Variable ..o 34
6.2.4 Put common subexpression on a register temMpPOorarily ..........ccccocvveeriieiiie e 34
6.2.5 Use EEPMOV iN BIOCK COPY ...oooiiiiieeiice ettt e e e e e e e e e e e e e e e e e s s e n s s ennnes 34
6.2.6  Group data by aligNMENt ..........coo i a e 34

6.3 Standard Library Optimize and Other Category Setting ..........vvveeiiiiiiiee e 35

(SR A o U IS =Y 1 o PSPPSR 36
6.4.1 Change number of parameter registers from 2(default) to 3........ccccceeeiiiiiiee e, 36
6.4.2  Treat double 8S flOAL..........coiuiiiiie e s 36
6.4.3  Pass Struct parameter VIia FEQISTEI .........ciiuiiie ittt 36
6.4.4 Pass 4-byte parameter/return value Via reQISIEN ..........uuuiiiiiiiiiiiiiiiiiiiee e 37
6.4.5  Pack Struct, UNioN @nd ClAaSS...........oouuiiiiiiii e 37

6.5 Link/ Library - Optimize Category SEttNQ ........coeicuuiiiee i s e s s e e e e s e e e e s enraeeees 38
LR T00 R [ o 11 VA=Y 1T o PP UURUPUPUPRR PR 38
6.5.2  ElMINAte QAU COUE .........uiiiiiiiiiitieiee ettt e e e et e e e e e ab b e e e e e e s aanbb e e e e e s annreeas 39
LT B O LYY g o =T o £ =TS T o PR 39
6.5.4  REIOCALE TEUISEIS.....ceiiiiee ittt ettt et e st e et e rb e e e e nne e 39
6.5.5  ElMINAe SAME COUR ... ..uiiiiiiiie ettt e et e e e e s sttt e e e e e e s sae e e e e e s aanntbeeeeeeeennees 39
6.5.6  USE INAIreCt Call/UMP .....eeiiiiiiie it s e e e e et e e e e s st e e e e e s e snntaaeeaeenrenees 39
LT A O 1 4174 o] =g (o] 1 = SRS 39

6.6 Inter Module OPLIMIZALION ........c.viiiiieie et e e e ne s 40
6.6.1 Unifies Constant / Literal StriNgS ........cooviiiiiiiiiiiicici i e e e e e e e e e e e e e e e e e e e ae e s e e s sannns 41
6.6.2 Delete No-referenced SYMDOIS ........ooiiiiiiiiiiiie e e e 42
6.6.3  ShOrt ADSOIULE AQUIESSING ...eieeeiiiieiiieeee ittt ie e e s e e e e s r e e e s s et e e e e e e e s sseaeeeeeesannrteeeeeeeennsens 42
6.6.4  INAIrECt AAUMESSING ....eiuvvieeiiiiee ittt e re e e s e et e s se et e e sare e e e s e nenes 42
6.6.5  REQISIEr SAVE/IESIOIE ......uviiiiee e i e ittt e e e e e e e e s s e e e e e s et ae e e e e e e s ssataeeeeesasnrtaeeeaeeanrenes 43
6.6.6  UNIfIES SAME COURS ......eeiiiiiiiie ettt e et e sab bt e e sabe e e sbeeeenes 43
6.6.7  Uses better Branch iNSIIUCHION............uiiiiiie e e 43

7. Suggested OPtiMIZAtION STEPS. ....ciiuuiiiiiiiee ittt e et e e sabe e e s ssb e e e e anbeeeeseeeas 44

S TR @0 od 013 o o SRS 45

ELE (] (=] o[ T O TP T PP PUPRPPPPON 45

AN0403008/Rev.1.00 March 2004 Page 4 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

1.

Recapitulate Part 1 & 2

The topics covered in “Embedded C Programming I” are:

Generated C files and sections of HEW.

Effect of C initialization on each variable characteristics and storage areas
Utilization of Stack and Heap.

Usage of preprocessor directives (macro, conditional compilation and etc).
Usage of extended functions (pragma, intrinsic functions and etc).

Usage of available library.

Effect of a function call on the stack and registers.

Management of section by HEW

Comparison of similar operation.

Information on flow of project compilation, linking and debugging.

Suggested programming techniques.

“Embedded C Programming I1” illustrated the software control techniques on:

Peripherals and ports

External memory.

In this third part of Embedded C Programming, optimization is the key topics.

ANO0403008/Rev.1.00 March 2004 Page 5 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

2. Basic Concept of Optimization

2.1 Definition

Optimization is a process of improving efficiency of a program in time (speed) or space (size).

2.2 Methods

Generally, optimization can be achieved by four methods:
- Choice of Compiler
- Compiler Setting
- Programming Algorithm and Techniques

- Rewrite program in assembly

2.3 Basic lllustration

A simple illustration of optimization by speed and size is as follow:

/I Faster Speed /I Smaller Size

main() main()
%XXX ééll_routine();
YYYY e
272777

call_routine();

YYYy call_routine();
22777 ...

. call_routine();
XXXX -
YYYY
777727 }
void call_routine(void)
XXXX {
YYYY XXXX
22777 YYYY

272777

It can be observed that optimization with one method may affect the other.

A general phenomenon is faster operating code will have a bigger code size, whereas smaller code size will have a slower execution
speed. However this may not be always true.

ANO0403008/Rev.1.00 March 2004 Page 6 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

2.4 Evaluation

A program’s optimization level can be evaluated based on the measurement of:

- Total code size,

- Total number of execution cycles (time taken).
These are determined by the basic component of a program, which is the assembly code (Instruction set / Opcode / Mnemonic).
In the MCU manual, these assembly codes characteristic are detailed:

- Instruction length -> Determine Code Size

- Number of execution states > Determine Execution Speed

Example:
Mnemonic Instruction length (bytes) Number of execution states Remarks
MOV.B Rs, Rd 2 2 Register usage has faster
MOV.W Rs, @Rd 2 6 execution
JSR @aa:16 4 8 8-bit absolute address jump
JSR @@aa:8 2 8 take up smaller space

Based on the instruction information, programmer can calculate the size and execution states of a module or project.

However it is almost impossible to make such calculation for large programs. The simpler methods are:

- Codesize -> The number of bytes allocated to each function and section are detailed in the generated MAP file.

Example:

*** Mapping List *** -
SECTION START END  SIZE ALIGN L — | Program Section takes up
$VECTO 00000000 00000003 4 0 / H’31b4 bytes

0000176 00004929 31b4 2
000049aa 000049aa 0 2
000049aa 00006fch 2622 2
00ffe3b2 00ffe3b2 0 2

00ffe3b6 00ffe3b6 0 2
00ffee00 00ffefff 200 2

WOTVWOUTT

l.:.I.LE=C:\ ...\ release\mcu.obj
00003a3a 00003b69 130

_initio 00003a3a 0 none,g | | Enable_usb_irq takes up

1

L96 00003ad0 0 none I 0 / ,

_enable_usb_irq  00003ada 0 none,g 1 H’(3aea-3ada) bytes
0
0

_disable_usb_irq  00003aea 0 none g
_start_wdog 00003afa 0 none.g

ANO0403008/Rev.1.00 March 2004 Page 7 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

- Execution speed > The time taken can be obtained by
e  Manual measurement through a hardware mean (such as using stop watch or scope)
e  Emulator / Simulator run-time counter (In HEW Status window)

e  Emulator / Simulator Trace Window - time stamping function.

Example:
< Slatus Lo ol _Ioj x|
Item Status
Itew IS“‘“S Eonnected To: 6000 HS/3052F Emulator (Emulator PCT Card Driver)
Connected To HE/200HA Simulator CEU HE/3052ZF
C DT HE/200HL Mode g
Exec Mode Stop Cclock source GMHZ
P Status eav Run status Break
[Break Cause Begakpoint Cause of last break PC Break
Execute From ROM Write e
Exec Instructions Event Time Count 00h O0min 00s 000ms O00us O00Ons
Cycles Run Time Count 00h D0min O0s D0Zms 344us 980ns
Target Mode S
| I Target Clock No Clock
AN Mermary A, Platform A Ewerts User Standby Inactive
User NMI Inactive
User Reset Inactive
- - User Wait Inacty
Simulator Status Window Giet systeUoltass ox Emulator Status Window
- Indicating the numbers of onzbosrdyprodamengieode. Mo icati imei
od Ig Ut ' Cvel User Cable not ¢f - Indicating the Run Time in ns
executed Instructions an cles i i i
y (depending on resolution setting)

Session_h Platform 4§ Memory Events

< Trace =k
FTR Cycle | Address | CCR | Malt ‘ Instruction | Access Data | Source | Lahe
-000a 0000000015 ooo400 I-——-— s MOV.L #H'OOFFFFOO,ER7 ER7<-00FFFFO0 _ entry(vect=0] woid PowerON Reset(void) _Powe
-0ooa ooogooooz4 ono40& e ORC.E #H'a0,CCR CCR<-80 get_imask_ccr(l):
-0000. 000000004z 00040s =S T353R @ INITSCT:z4 PC<-0000086E _INTITSCT():
-0ooon 0oo0ooo0nsz 00036E -— Mov. RZ,B-ER7 00FFFEFA<-0000 __IND
4] | i

Simulator Trace Window Emulator Trace Window

- Indicating the cumulative cycles - Indicating cumulative instruction timestamp at a

preset resolution of 125ns

«# Generic Trace
Addreszs

Instruction Timestanp Source Label | &

""" MY, L #H'00FFFEFD,ERT  7al? 0 0000kh0 Juln] T entry (v PowerON Re:
-Qooso ooo40z uli)h 0000h000Rin0002000ns000us250ns
-0oo49 000404 fhil 0000h000Rin0002000ms000us375ns
-00048 000406 HOV. L ERS,@-ER? 0000h000nin0002000ns000u837 5ns
-0oo47 000408 0000h000Rin0002000ms000us500ns
-0oodes 00040a MOV. L ER7,ER6

-0o04s  fffhec
-0o0044  fffhee

0000h000Rin0002000ms001us375ns

ED

ED

ED

ED

ED 0000h000Rin0002000ns000us625ns
WE.

WE. 0000h000Rin0002000ms001us575ns
ED

RD

-0o043  00040c ORC.E #H'80,CCR 0450 0000h000Rin0002000ns002us000ns set_

-0o04dz  00040e T353R [B_ INITSCT:Z4 Sedn 0000h000Rin0002000ns002us125ns _INIT

-0o041 000410 0£36 0000h000Rin0002000ns002us250ny

-0o040  000£36 HOvV. W RZ,[-ER7 6dfz 3 _ INITACT LI

ANO0403008/Rev.1.00 March 2004 Page 8 of 47




PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

3. Further Understanding of Optimization

3.1 Do Not Optimize

It is suggested that unless necessary, optimization shall be omitted. This process should be planned for, and not done at the end
of the development cycle, whereby most scenarios had been tested. This may cause changes to the initial design and introduce
more wastage of time and resources in debugging.

3.2 Bound Conditions
i. 1/10
ii. Memory
iii. CPU
Generally these are the three main bound conditions that will slow the system performance. Excessive activity shall be avoided
on I/O access, as it has the slowest events. There are different types of memory. Access to these memories must be managed

efficiently to take proper utilization. If neither the 1/0 nor Memory is the performance deterrence factor, the CPU processing
must be the main bottleneck.

3.3 Optimize Hot Spot

It is important to identify the objective of the intended improvement. It may be speed or size. For the speed improvement, the
hot spot must be identified. Otherwise time may be wasted on non-critical area.

Pointers:
- In General, 80% of a program’s execution time is spent executing 20% of the code.
- The most redundant area is the initialization code, which is used only once.

- Optimize the hot spot even at the cost of making the other area slower.

3.4 Confusion to Source Level Debugger

C Source level debugging is done with reference to the original source code. Since optimization may change the interpretation
of the original source code, the debugger may not able to relate the assembly code directly to the C source file accurately.

3.5 Dead Code Elimination

This is just an example of how optimization works. The optimizer will remove code that it sees as redundant. Thus,
programmers must define their routines and variables with the correct keyword. Otherwise, useful components may be

eliminated by the optimizer.

3.6 Test and Evaluate
It is important to document and keep all test results. Comparison and evaluation of the results, before and after optimization,
will help to maintain the integrity of the software.

ANO0403008/Rev.1.00 March 2004 Page 9 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

4. Optimization Jargon

The following are list of commonly used optimization terms/ techniques:

Loop unrolling:

Means repeating lines of code inside a loop.

Loop flipping:

Allow the elimination of the initial conditional jump.

Loop invariant:

Code within a loop, which deals with data values that remain constant as the loop
repeats.

Constant folding:

Process of detecting operations on constants, which could be done at compiler time
rather than run time

Constant propagation:

Constants used in an expression are combined, and new ones are generated. Some
implicit conversions between integer and floating-point types are drawn.

Copy propagation:

The use (copy) of similar values.

Strength Reduction:

Replacing expensive calculation with one that takes less time.

Algebraic transformations:

Use of algebraic properties such as commutativity, associativity and distributive.

Induction variable simplification:

Induction variables change linearly with the loop count. The process includes strength
reduction, and simplifies calculations for variables whose value would otherwise be
dependent upon the loop index.

Tail recursions:

Placement of function call at the end of the calling function, to reduce the returning
process.

Dead store elimination:

Eliminate code that cannot be reached or code whose results are not subsequently used.

Inlining:

Replace function calls with actual program code.

Common subexpression elimination:

Parts of the expressions that appear in several places are computed in temporary
variables.

ANO0403008/Rev.1.00

March 2004 Page 10 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

5. How to Optimize — Programming Techniques

The following sections will focus on:
- Programming techniques
- Usage of #pragma directives (for H8 toolchain)
These techniques will enable a better optimization control over each function and module.

However the intelligent HEW optimizer can perform some of these techniques automatically. This will be detailed in section 6,
whereby the controls over the whole project or individual files by HEW will be explained.

5.1 Data Handling

51.1 RAM Usage
Shortage of RAM space is a common concern. The nominal RAM size for most 8-bit MCU is a mere 1 to 4K bytes size.

Three main components of RAM are:
- Stack
- Heap
- CGlobal data

The reduction in one component will enable the increase in the others. Unlike stack and heap, which are dynamic in nature, global
data is fixed in size. Programmers may like to consider the reduction of global data usage, and place more emphasis on local
variables control in stack and registers.

- Stack Depth can be estimated using the HEW Call Walker and Profiler. Please refer to Application Note on “Stack
Analysis using Call Walker”

- Global Data allocation can be viewed in the MAP file (Generated via HEW option - H8 Toolchain = Link/Library >
List)

51.2 Data Type Usage

The use of correct data type is important in a recursive calculation or large array processing. The extra size, which is not required, is
taking up much space and processing time.

Example
- Speed concern:- Byte multiplication - MULXU .B R1L,R2L - take up 12 cycles
- Word multiplication - MULXU.W R1,ER2 - take up 20 cycles
- Size concern: -char data_collect[100];
- long data_collect[100]; -take up 4 times more spaces
Other considerations:
- Programming algorithm

- Instead of accessing external bus for two times, it may be better to read the data as a word (16-bit external data bus), and
process it as a byte.

ANO0403008/Rev.1.00 March 2004 Page 11 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

5.1.3 Use Variables of the Same Type for Processing

Programmers should plan to use the same type of variables for processing. Type conversion must be avoided. Otherwise, precious
cycles will be waste to convert one type to another (Unsigned and signed variables are considered as different types).

5.1.4 Use of Unsigned Type

All variables must be defined as “unsigned” unless mathematical calculation for the signed bit is necessary. The “signed-bit” may
create complication, unwanted failure, slower processing and extra ROM size.

5.15 Float and Double
Maximum value of Float = OX7F7F FFFF

Maximum value of Double =O0x7F7F FFFF FFFF FFFF
To avoid the unnecessary type conversion or confusion, programmers can assign the letter “f” following the numeric value.
x=y+0.2f;

To further limit the use of double, programmers can set the option “Treat double as float” in the HEW Option - H8 Toolchain >
CPU window.

5.1.6 Data Declaration - Constant

The “const” keyword is to define the data as a constant, which will allocate it in the ROM space (section C). Otherwise a RAM space
will also be reserved for this data. This is unnecessary as the constant data is supposed to be read-only.

5.1.7 Data Declaration - Volatile

“Volatile” keyword will forbid the compiler from performing any optimization on the variable. This is usually used on 10 registers
and variables that will be altered by interrupts. This is necessary as the value of these variables can be asynchronously accessed.

5.1.8 Data Initialization at Declaration
Data should be initialized at declaration.

int a; inta=1;
void main(void) | void main(void)
{a=1; {

In the first case, ‘a’ being an uninitialized data (B section) will require the program to perform assignment instructions when main
routines is entered (Taking up of P section). However if data is initialized during declaration, the compiler will treat the data as an
initialized data (D section). These data will have their initial values loaded at the startup stage, whereby D section (ROM) is copied
to the R section (RAM).

In comparison, the second method (data initialization at declaration) will be more efficient, as the whole section of data is copied
instead of variables by variables.

ANO0403008/Rev.1.00 March 2004 Page 12 of 47



LENESANS

PRELIMINARY
HEW

Embedded C Programming Il (ECProgramlll_opt)

5.1.9 Data Definition - Arrangement and Packing

The declaration of the components in a structure will determine how the components are being stored. Due to the memory alignment,
it is possible to have dummy area within the structure. It is advised to place all similar size variables in the same group.

char a; char a;
int b; ——————3pp{ chargc;
charc; int b;

short d; short d;

<+«——2Byls —p “« 2Byes

a | c
b

a |
b

c | d
d

Alternatively programmers can set the setting in HEW Options - H8 Toolchain - C/C++ - Other - “Group data by alignment”,
and the compiler will “rearrange” to group similar type of variables together.

The similar issues will happen when declaring elements for a structure. In this case, the setting to “compress” the structure is at
Options - H8 Toolchain - CPU tab > “Pack struct, union and class”

struct S1{char a; #pragma pack 1
intb; i struct S1{char a;
char c; int b;
} char c;

}

<4+—2Byes ——»p <4+—2Byes ——»p

a | a b
b b c

As the structure is packed, integer b will not be aligned. This will improve the RAM size but operational speed will be degraded, as
the access of ‘b’ will take up two cycles.

5.1.10 Global and Local Variables

Local variable is preferred over the global variable in a function. Generally, global variables are stored in the memory, whereas, local
variables are stored in the register. Since register access is faster than the memory access, implementing local variables will improve
speed operation. Moreover, code portability also encourages the use of local variables.

However if there are more local variables than the available registers, the local variables will be temporary stored in the stack.

ANO0403008/Rev.1.00 March 2004 Page 13 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

5.1.11 Passing Parameter Registers and Working Registers

In a function call, the parameters will be stored in the passing parameter registers (ERO, ER1 and/or ER2), whereas the working
registers (ER3, ER4, ER5) will be used for any data manipulation within the function. In general, the increase in the number of
registers being utilized will improve the operation speed of the modules. However due to the limited number of MCU registers,
process, global allocated register, number of local variables assigned and etc... this increase in number of passing parameter registers
and working registers will not guarantee an improvement. Thus, programmers must be careful when using this feature.

- Do not unnecessary declare any bigger size variables.

- Limit the number of variables (about 6x byte size variables).

HEW allows programmers to have control on the allocated registers.
- Toincrease the number of passing parameter registers:
- #pragma regparam 2/3 directives

- Options>H8 Toolchain >CPU tab - “Change number of parameter registers from 2(default) to 3”

- Toincrease the number of working registers:

- Options>H8 Toolchain - C/C++ Tab > Other Category —=>*“Increase a register for register variable”

5.1.12 Global Register Variables

The declaration of “register” can be used if the variable is accessed very frequently. Operation speed will be greatly improved.
However, there is only limited registers in a MCU. Moreover this usage will also limit the number of working registers for other
processing functions.

Example of identifying frequently accessed variable:
- Generate the project map file at Options=> H8 Toolchain—> Link/Library-> List Category
- Check for the most frequently [Counts] accessed variables in the map file
- Assign the variables to the registers. Programmers have to match the size.
- Generally ER4 and ERS5 can be used. This makes up 8 bytes of data.
- #pragma global_register (global_variable R4)

Note: Global registers cannot be used when a library is specified as an object for inter-module optimization.

ANO0403008/Rev.1.00 March 2004 Page 14 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

5.1.13 Passing Reference as Parameters
Larger numbers of parameters may be costly due to the number of pushing and popping actions on each function call. It is more
efficient to pass structure reference as parameters to reduce this overhead.

Example:

struct sum{
total (long &, long b, long c, long d); | long a;
long b;
long c;
long d;
Jall;

total (&all);

5.1.14 Return Value

The return value of a function will be stored in a register. If this return data has no intended usage, time and space are wasted in
storing this information. Programmer should define the function as “void” to minimize the extra handling in the function.

5.1.15 Register Save and Restore

It is a usual practice for function to save registers during entry, and restore registers upon exit. However if the caller function saves
and restores all registers, the called functions do not need to save and restore any registers.

Example:

- #pragma noregsave / regsave

#pragma noregsave ( funl,fun2, fun3)
#pragma regsave (fun)
fun()
{
funl();
fun2();
fun3();

}
- Options> H8 Toolchain - Link/ Library - Optimize Category = “Reallocate registers”

The above demonstrates the possibility of removing the whole register saving and restoring process.

Another possible optimization method is to improve on the register save & restore process.
The two implementations of saving and restoring registers are:
- PUSH and POP the required registers (Take up larger ROM Space but it is faster)

- Call a runtime routine to save and restore all register (Slow execution but smaller ROM size)

This can be controlled via

- Options—> H8 Toolchain - C/C++ Tab - Optimize Category > “Register”

ANO0403008/Rev.1.00 March 2004 Page 15 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

5.1.16 Use of Short Addressing to Access Variables
This is to make use of the native instruction to access frequently-used variables. These instructions take lesser ROM space than the
absolute addressing type.

There are three possible settings:
i. Options—> H8 Toolchain > C/C++ tab - Data Access > “@aa [default], @aa:8 or @aa:16”
- This allows the control to limit a C/C++ file, or globally to a project.
- Section $ABS 8/16 must be defined.
ii. Options—=> H8 Toolchain - Link/ Library - Optimize Category - “Use short addressing”
- This allows HEW Linker to judge and control the whole projects.
iii. #pragma section $ABS8/16

- Programmers can make use of this directive to control the location (short addressing space/section) of the desired
variables.

Due to the nature of “short addressing mode” (limited space to store the variables), it is not feasible to allocate all variables within
the 8 and 16 bit absolute address space.

Example:
- 8 hit absolute address area (<$ABS8> sections) available in the advanced mode range from H’FF FF0O to H’FF FFFF.
- 16 bit absolute address area (<$ABS16> sections) available in the advanced mode range from H’FF 0000 to H’FF FFFF.

Therefore it is necessary to identify frequently accessed variables, to be placed within the sections. This can be determined in the
map file. Example

SECTION=B

FILE=C:\... \.xxx.0bj 00ffdf20 00ffdf23 4
_countl 00ffdf20 2 data,g 3

_count2 0offdf22 2 data,g 9

*** Variable Accessible with Abs8 ***
SYMBOL SIZE COUNTS OPTIMIZE

Frequent usage

*** Variable Accessible with Abs16 ***

SYMBOL SIZE COUNTS OPTIMIZE
_count3 2 1

_count4 2 2

_counts 2 16

_count6 2 4

ANO0403008/Rev.1.00 March 2004 Page 16 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

5.1.17 Pointer and Array
A pointer will be more efficient than using an array. This is due to the use of register addressing modes (@Rn, @Rn+, @-Rn).

5.1.18 Better Data Structure and Representation
Proper data structure consideration can improve the program.

Example

- Use computation to regenerate a large junk of data (compression, technique), this will reduce the space usage. However,
the computation process may slow down the operation. (Instead of having a array of [0,0,0,0,0,0,1,1,2,2,2,3,3,3,3...], this
can be replaced with [6, 2, 3, 4...], which signifies 6x°0’, 2x’1’, 3x’2’, 4x’3’...)

5.1.19 Accessing Structure

Structure enables efficient access of variables. The explicit address of the structure is encoded only once, when being loaded into a
register. Thereafter, all members of the structure are referenced in relative register mode.

5.1.20  Array and Structure Initialization
A simple illustration of implementation:

int a[3][3][3];

int b[3][3][3]; typedef struct {

int element[3][3][3];
for(i=0;i<3;i++) } Three3DType;

for(j=0;j<3;j++)
for(k=0;k<3;k++)

> Three3DType a,b;
b[iG]IK] = ali[1LKI;

for(i=0;i<3;i++) b=a
for(j=0;j<3;j++)
for(k=0;k<3;k++) memset(a,0,sizeof(a));
afi]i][k] = 0;

for(x=0;x<100;x++)
printf("%d\n",(int)(sqrt(x)));

ANO0403008/Rev.1.00 March 2004 Page 17 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

5.2 Flow Control Handling

5.2.1 Switch
There are two possible techniques in implementing a Switch statement: If-then and Table

This can only be controlled via Option - H8 toolchain - C/C++ - Optimize Category - Switch Statement “Auto/ If then/ Table”

switch (test)
{
case 1: P_10.PDR9.BYTE = 0x11;
break;
case 2: P_10.PDR9.BYTE = 0x22;
break;
case 3: P_10.PDR9.BYTE = 0x44;
break;
case 4: P_IO.PDR9.BYTE = 0x11;
break;
case 5: P_lO.PDR9.BYTE = 0x22;
break;
case 6: P_IO.PDR9.BYTE = 0x44;
break;
other: P_10.PDR9.BYTE = 0x88;
break;
}
The compiler generated assembly code based on
“If-Then” setting “Table” setting:
MOV.W  @(-4:16,R6),R0O MOV.W  @(-6:16,R6),R0
MOV.B ROH,ROH SUBS.W  #1,R0
BNE L83 MOV.W #5,R5
CMP.B #1,ROL CMP.W R5,R0
BEQ L72 BHI L83
CMP.B #2,ROL MOV.B @(L84:16,R0),ROL
BEQ L73 SUB.B ROH,ROH
CMP.B #3,ROL ADD.B  #LOW L72,ROL
BEQ L74 ADDX.B  #HIGH L72,ROH
CMP.B #55,ROL IMP @RO
BEQ L75
CMP.B #99,ROL
BEQ L76
CMP.B #77,ROL
BEQ L77
BRA L83
Table
- Table implementation will be preferred if there are many “cases”. However if the “cases” conditions are not in sequential
number, the table will not be able to be generated.
- Table implementation has same execution speed for all cases.
If-Then

- It has the overall efficiency if there are lesser cases.

- Place cases of high occurrences (or events in needs of fast response) in the earlier order. This will improve the hit rate and
thus the speed of operation.

ANO0403008/Rev.1.00 March 2004 Page 18 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

5.2.2 Jumps

A sequential execution will be faster than a program flow that has many jumps condition.
Examples:
- Inline function

- “Else clause removal”

5.2.3 Inline Function

The technique will cause the compiler to replace all calls to the function, with a copy of the function’s code. This will eliminate the
runtime overhead associated with the function call. This is most effective if the function is called frequently, but contains only a few
lines of code.

Example:

#pragma inline (sum)
int sum(int a, int b)

{ return (a+b);

}
&Jutine()
tlc.).tal =sum (X,y);

sub_total = sum (cost_a, cost_b)

5.24 Function Calls and Addressing Modes
There are numerous methods to reach a location (function calls): absolute, relative and indirect.

The relative addressing mode and indirect mode are more compact (smaller size), as it does not specify the full address (absolute
addressing mode).

Examples:
i. Absolute (JSR @aa:16 — 4 bytes and 8 cycles) and Relative Access (BSR d:8 — 2 bytes and 6 cycles)

o0 Asimple mean to achieve a relative addressing is to place all related functions within a file. (Note a BSR d:8 can
access to address at =128 to 127 ranges).

0 Options = H8 Toolchain - Link/Library - Optimizer Category - Optimize branches (dealing with BSR and JSR)
ii. Indirect Access (JSR @@aa:8 — 2 bytes & 8 cycles)
o0 Options > H8 Toolchain - C/C++ - Optimizer Category - Function call — “@aa[default] or @ @aa:8”
. In this case, a section <$INDIRECT> must be declared within the address 0-OxFF
= If <indirect.h> is specified, all run-time routines to be used are called in the indirect accessing format.

o #pragma indirect

#pragma indirect fun
void fun (void);

id mai id
vol malnﬁj/gz);){‘ Function “fun” called by

} “JSR @@$fun”

ANO0403008/Rev.1.00 March 2004 Page 19 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

5.25 Tail Recursions
Place the function call instruction at the end of the routine to improve operation speed and size.

Provided:
- The calling function does not place its parameter or return value address on the stack

- The function call is followed by the RTS instruction.

void Function_A(void) _Function_A
e | IMP@sub2s
}
5.2.6 Loop Unrolling
If the loop is small, overhead will be higher.
for(i=0;i1<3; i++) a[0] = b[0] + c[O];
a[i] = b[i] + c[il; a[1] = b[1] + c[1];

——»  al2]=b[2] +c[2];

If the loop is larger, the overhead can also be reduced by:

for (i=0;i<3*n; i++) for (i=0;i<3*n; i+=3)

a[i] = b[i] + c[il; { a[i+0] = b[i+0] + c[i+0];
—» a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];

5.2.7 Loop Invariant IF Code Floating
‘IF’ statements that do not change from iteration to iteration may be moved out of the loop

for (i=0;i<i_size; i++) for (i=0;i<i_size; i++)
{ for(j=0;]j<]j_size; j++)
{ if( a[i]>10)
if( a[i]>10) —» b[j] = VAR + a[il;
b[j] = VAR + [i]; for (j=0;]j<]j_size; j++)
¢ =afj] + b[jl; ¢ =a[j] +b[jl;

} }
¥

5.2.8 Do-While Statement
The Do-While statement will have 1 comparing iteration lesser than the while loop. This will improve the operation if the loop must
be performed at least once (Loop Flipping).

ANO0403008/Rev.1.00 March 2004 Page 20 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

5.2.9 Loop Hoisting

if (Condition_A)
for (i=0;i<i_size; i++) { for(i=0;i<i_size; i++)
{ if (Condition_A) Dothis(i);
Dothis(i); }
else if (Condition_B) — P else if (Condition_B)
Dothat(i); { for(i=0;i<i_size; i++)
else Dothat(i);
Doall(i);
else
{ for(i=0;i<i_size; i++)
Doall(i);

For the first case, Condition_B will have an overhead of the “if(Condition_A)”.

5.2.10 Common Expression Should be Calculated Once or Earlier
Parameter can be calculated at earlier stages, such as the power up initialization stage instead of actual execution stage. This will
help to speed up the processing.

for (i=0;i<end; i++) ¢ =sqrt(a_type, b_type);
= sqrt(a_type, b_type); _ _ ,
{ 3 = iq: ?‘ ype. b_type) —— | for (i=0;i<end; i++)
. ’ { d=c+i;
}

5.2.11 Else Clause Removal

if (Condition_A) Dothat();
DoThis(); if (Condition_A)
else — | { Undo_DoThat():
DoThat(); DoThis();
}

A jump condition is inevitable in the first case, whereas the second case gives the higher possibility process (Condition_A) to have a
sequential execution. This technique is possible only if Undo “DoThat()” process is possible.

5.2.12 Loop Overhead
The MCU have a conditional branch mechanism that works well when counting down from positive number to zero.

for (i=0; i<10;i++) for (i=10; i>0; i--)

{ {

DEC R1 —» .. DEC R1

} CMP 10 } BNZ L1
BNE L1

It is easier to detect “Zero” (Branch non zero - single instruction) than a “predefined number” (Compare and perform jump — two
instructions)

ANO0403008/Rev.1.00 March 2004 Page 21 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

5.3 Other Handling

53.1 Native Instruction and Data

It is wise to understand the CPU architecture and instruction sets. This will enable a better use of program to achieve a faster
execution and smaller program size.

Example:
1. For HB8, since bit manipulation is possible (BSET,BCLR ...),
Thus usage of if(P_IO.PDR3.BIT.P30) instruction will be more efficient
Than if(P_IO.PDR3.BYTE & 0x01) instruction

2. Although there is a Multiplication instruction/opcode (MUL), it may be better to use the shift instruction instead.

MUL will take up 12 or 20 cycles, whereas SHILL takes up 2 cycles

5.3.2 Hand Coded Assembly
Further optimization may be obtained by coding in assembly language.

There are two methods in HEW:

i #pragma asm

motor_control()

{

#pragma asm
CLRMAC
#pragma endasm

ii. #pragma inline_asm

#prama inlin_asm(shlu)
extern unsigned int x;
static unsigned int shil(unsigned int a)

SHLL.W RO

BCC ?2L1

SUB.W RO,RO

?L1: /* Local label starts with ? */

void main(void)
{
X = shlu(x) /* Inline expansion is performed */
/* within the main function */

ANO0403008/Rev.1.00 March 2004 Page 22 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

5.3.3 Lookup Table and Calculation

In lower operation frequency of MCU, lookup table may be faster than recalculation methods. However, programmers must make
their judgment on the complexity and speed requirement.

Example:
A function like y = ax + bx?will already take up significant CPU processing time.

However, the function y = 2x can be implemented with a shift instruction (2 cycles). Thus this function is preferred to be
implemented with re-calculation method than a lookup table method.

5.34 Polling and Interrupt
Interrupt latency may be a bigger overhead than implementing polling method.

5.3.5 Fixed-point and Floating-point Arithmetic

It takes up much processing power to perform floating-point arithmetic in a non-floating point processor. If accuracy is not a
requirement, programmers should use fixed-point calculation instead. Otherwise, the calculation can be re-implemented in a cheaper
mean.

Example:

- 123.45 +678.89 is equivalent to (12345 + 67889) with a decimal point placed at the correct place.

5.3.6 Standard Library Routines
Most standard library routines are written to cater for all possible conditions. Thus, it may not be efficient for specific operation.

However, if the library function is specifically written for the application, it shall be wise to use it as optimization should be taken
care of.

Example:
- The printf function takes up a huge space as it is written to cater for floating point arithmetic.
- However, HEW can disable this floating-point facility by “#include <no_float.h>".
- Further optimization is possible if printf is custom written.

- Please refer to Application Note: “Writing a printf function to LCD & serial port”

ANO0403008/Rev.1.00 March 2004 Page 23 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

5.3.7 Input and Output Access
The following are some guides on dealing with the worst bound condition - Input and Output access:

- Unnecessary 1/0 access should be avoided.
- 1/0 access within a loop should be avoided, unless necessary
- Use unformatted (binary) 1/0 whenever possible.

- Access data from memory. If possible, data is to be read and stored in memory for processing (non-volatile)

5.3.8 Specify Optimization Type for Each Module

#pragma option can be used to limit and control the optimization regions. It will have the priority over the HEW Option window
setting

#pragma option speed /I From this point, code will be optimized based on Speed
void function_A(void)

{

#pragma option size // From this point, code will be optimized based on Size
void function_A(void)

{

5.3.9 Horner’s Rule of Polynomial Evaluation

The rules state that a polynomial can be rewritten as a nested factorization. The reduced arithmetic operations will have better ROM
efficiency and execution speed.

AX®+Bx* +Cx®+ Dx2+ Ex + F L B ((AX+B)*x+C)*x+D)*x+E)*x+F

5.3.10 Factorization
The compiler may be able to perform better when the formula

Z=X*A+X*B+X*C+X*D - p{ Z=X*(A+B+C+D)

5.3.11 Use Finite Differences to Avoid Multiplies

for (i=0;i<10; i++) for (i=0;i<100; i+=10)
printf(“ %d\n”, i*10); ——{  printf(“ %d\n”, i);

ANO0403008/Rev.1.00 March 2004 Page 24 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

5.3.12 Condition Determination Using Substitution Values
The assignment statement (MOV instruction) will affect the CCR Zero flag, and thus enable a more efficient loop control.

While (*p)
{ *g++="*p+t; While (*g++ = *p++);
—>
*q++ = *pH
5.3.13 Modula
X =y %32; EE—N X =y &31;

5.3.14 Division and Multiplication

X=y*8,; L pf X=y<<;
x=y/8; X =y >>3;

5.3.15 Constant Folding and Propagation

If data is to be calculated during a task, the calculating process may slow down the task execution. These data can be prepared at an
earlier stage:

- Atcompiling stage - as constant data

- Atinitialization stage

y=15*x;
or

=3*5*y EEE—
y=3%5%x z=15;

5.3.16 Constant in Shift Operations

For shift operations, if the shift count is a variable, the compiler calls a runtime routine to process the operation. If the shift count is a
constant, the compiler does not call the routine, which give significant speed improvement.

int shift=8; #define SHIFT 8

—>
data = data <<shift; data = data << SHIFT;

ANO0403008/Rev.1.00 March 2004 Page 25 of 47



LENESANS

PRELIMINARY

HEW

Embedded C Programming Il (ECProgramlll_opt)

5.3.17

Use Formula

Example: (Sum of 1 through 100)

n=100;
for (x=0, y=1; y<=n; y++)
X +3y;

5.3.18

Simplify Condition

If (a==b && c==d && e==f)
{.}

if( x>=0 && x<8 && y>=0 &&y<8)
{3}

if( (x==1) || (x==2) || (<==4) || (x==8)
)

5.3.19

Absolute Value

n=100;
X =n* (n>>1); /In/2

If(((a-b) [ (c-d) | (e-f)) ==0)

— P {.}

if( ((unsigned)(x|y))<8 )
{3}

if( X&(x-1)==0 &&x!=0)

static long abs(long x)
{ longy;

#define abs(x) (((x)>0)?(x):-(x)) F—->p y =x>>31; /* Not portable */
return (X*y)-y;
3
ANO0403008/Rev.1.00 March 2004 Page 26 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6. How to Optimize — HEW Setting

In this section, HEW optimization techniques will be highlighted. The optimization settings can be applied to the whole project or
individual files.

All related setting for Optimization can be set in the HEW Option - H8 Standard Toolchain window.

There are five main areas of interest (Assembly setting is not discussed) for the user:

i clcw - Optimize Category
Conliguration: C/T++ | Assembly | Link/Library | Standard Libiary | CPU 4 [ ¥
IDebug j‘ Category: | Optimize -
E_%d Profects I™ Optimization
C source file Speed or size : |

{23 Co+ sourcs file (r Speed suboptions s
{0 Assembly source file
B+ Lirkage symbol file

Switch statement
Table b

W] S witch judgement
W] S hift b rultiple

WS truct azsignment
W] E kpression LI

1] [Ffifie furictior

Function call
@aa =

Data access

i e ridelE] @aa =

™ Generate file for inter-module optimization

Optiohs C/C++

-cpu=300L -object="$CONFIGDIR ASFILELEAF].obj" i’
-debug Higt="${COMFIGDIR(FILELEAF) lst"

q I_,I -show=ohiject.allocation expansion, tab=4 -optimize=0 LI

Cancel

ii.  CIC++ - Other Category

Configuration : C/C++ | Assembly | Link Library | Standard Library | CPU- 4|

Dag £ —

2] Al Loaded Projects

Categary :

Mizscellaneous options

&g
= I llow conmmment nest -
C fil
E‘ i C saurce fle [_ICheck against EC++ language specification
dbsct.c
ntermipt handler savesdrestones ar reqis!
[ il handl 4 MACH and MACL regi
. ) [Cl&woid optimizing external symbols treating them a3 volatil =
it
B P d -
User defined optians :
=]
= D Detault Options
-2 Co+ source file
(20 Assembly source file
¥ Lirkage symbal file =l
Options C/C++:
-cpu=300L -regparam=3 -longreg i’
-object="${CONFIGDIR)V$(FILELEAF).obj" -debug
Pl | - (COMFIGDIRNS(FILELEAF) lst" =l
iii. Standard Library
Hitachi H&5_ H8/300 Standard Toolchain 2]
Configuration : /G | dssembly | LinkLibray  Standard Libran | cru 4|
IDEhuQ j' Category
@ Al LEd Projscts ¥ Dptimization
C source file Speed or size IS\ze ariented optimization j
(231 C+ source file I SEEECISUNERIGNSE .
120 Assembly source file V] R egister Sl DCEEERL:

(2] Linkage symbal file lSwitch judgement [eua =

[w]Shift to multiple

Furiction call
] Stiuct assignment & =
[WIE xpression ;I s

[Data access

I | [Filifies firctior
I@aa ‘I

A B 105=] | riodels]

[~ Generate file for inter-module optimization

Options Standard Library

-cpu=300L -regparam=3 -longreg -pack=1 ;I
-output="$({CONFIGDIR)v$(PROJECTNAME) lib"
Pl I _,I -head=runtime hew, stdio, stdlib ;l

Cancel |

ANO0403008/Rev.1.00 March 2004 Page 27 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

iv.  Link/ Library - Optimize Category Hitachi H8S_HB/300 Standard Toolchain 7]
Configuration CiCre| Assembly  LinkiLibrary | Standard Library | CPU- 4| ¥
IDabug :Iv Category : hd
@ %d Projects Show entries for :

C source file IUDIImIZB items j

(20 Co+ source file L - -
Optimize : || Efiineted DanE=]
D ASSEI‘HH}' source file phirize Mone h ITTETED ST2E 11

- Linkage symbal file [ Urity strings

I= | Inelude prafiles

[CJE iminate dead code l—

(U2 short addressing

(R eallocate registers A mdify. |

[JE liminate same code [Eashesize

[ ]Use indirect call/jump Size DxDDDBHﬁ
e DxDUEDEﬁ

CJ0ptimize branches

Options Link/Libramny
noprelink rom D=R nomessage list i’
"$(CONFIGDIRM$PROJECTMAME ) map” shaw
) I_,I symbol reference nooptimize start LI
v.  CPU Settin
g Hitachi H8S H8/300 Standard Toolchain EHE3
Configuration Assemh\yl Lmkr’Llhlawl Standard Library  CPU |S\mu\e Al I 3
IDehug -
3 Al Loaded Projects
@

3 C source file Stack calculation : |Medium -
i dbscte
: hwsetup.c

intprg.c [¥ Change number of parameter registers from 2(default] ta 3

'Tj:tp'g ¢ ™ Tieat double as float
shik.c

SLP o [~ Pass stiuct parameter via register

[ Default Nptions V¥ Pass 4-hyte parameterdretum value via register
(£ C++ source file

(-] Assembly source file
-2 Linkage symbol file I~ Enable/disable mntime type information

™ Use try, thiow and catch of C++

™ Pack struct, union and class

Cancel

NOTE: 1. The previous five selections apply globally to all files in the project. Setting for individual file is possible, if
individual file is clicked.

Hitachi H8S H8/300 Standard Toolchain HE
Configuration C/C++ | Toolchain Dptlnnl
[otus 2] [ S— =
E ? %LSDEEEEI Prcieots ¥ Dptimization
223 Ceoucsfie Speed o size : | Speed ariented optinization =l
[ ~ Speed sub-options
ﬁas:ettsp - L 2 Switch statement :
intpro.c witch judgement Table j'
1esetprg.c hift ta multiple Function call :
E ruct assignment lm
i 5| [WIE wpressinn LI as
] Default Dptions Data access

7 Ik .
[ Cor source fe ' Inline function

Masimum = nodes] @aa had

™ Generate file for inter-module optimization

Dptions C/C++

-cpu=300L -object="${CONFIGDIR\$(FILELEAF).obi" ﬂ
-debug list="${COMFIGD IR WHFILELEAF] It

0| D -show=ohject, allocation expansion tah=4 =l

2. This section provides an overview of HEW setting for a single file or whole project optimization. The details
(including example) of each settings are illustrated in HEW Application Note for H8 Toolchain.- “Section 5
Using the Optimization Functions” (Available in Renesas web site - Download > Crosstool-> Documents.)

3. Some of the settings’ concepts have been explained in the earlier sections.

4. The #pragma directives have a higher priority level than the HEW option window settings.

ANO0403008/Rev.1.00 March 2004 Page 28 of 47



LENESANS

PRELIMINARY
HEW

Embedded C Programming Il (ECProgramlll_opt)

6.1 C/C++ - Optimize Category Setting
Two main setting are available:
. . L Configuration C/T++ | Assembly | Link/Library | Standard Library | CPU | ¥
i. Speed oriented optimization fba =
s Category: | Optimizs v
.. . . R . =- All Loaded Projects a
ii. Size oriented optimization ? = ™" Dpinizatian

C source file

(L NTEEER Size oriented optimization

+-[(] Co+ sounce file - Gpeed suboptions )
(21 Assembly source file Suitch stetement
(23 Linkage symbol file ITab\e j‘
The setting will select the various optimization techniques: Function call
I@aa §2
i. Register S Data agcess
F o T05—= EEtE] I@aa :['
il SWItCh JUdgment ™ Generate filz far inter-madule optimization
- . . Oplions C/C+:
iii. Shift to multiple 30 obect HCONFIGDIRMFILELERF o6 ]
debug ist="${CONFIGDIRNS(FILELEAF) st B
. . -show=object. allocation expansion tab=4 -optimize=0 -
iv. Struct assignment R —
V. Expression
Vi. Loop optimization
Vii. Loop unrolling

Other settings are:

i. Inline function: maximum node
ii. Switch statement
iii. Function call
iv. Data access
6.1.1 Register

[Enable] Perform register save and restore by push and pop expansion.

[Disable] Perform register save and restore by using the runtime routine library (if the number of registers to be save and restored is

three or more)
Remarks] This has no effect for H8S series, as STM/LDM or PUSH/PULL will be used
Refer to Section] 5.1.15 Register Save and Restore

Speed Improvement] O (Improvement attained)

[
[
[
[

Size Reduction] X (Efficiency reduced)

6.1.2 Shift to Multiple
[Enable] The execution time of shift operation can be enhanced.

[Remarks] Multiple shift instructions can be enhanced by performing some looping operations.

[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

ANO0403008/Rev.1.00 March 2004

Page 29 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.1.3 Struct Assignment
[Enable] The execution time of structure assignment expression can be enhanced.

[Remarks] Run-time routines are normally called during access to (bigger size) structure or double type data. This will be removed if
the option is enabled to improve operational speed.

[Speed Improvement] O (Improvement attained)

[Size Reduction] V (Improvements achieved in some programs)

6.1.4 Expression
[Enable] Execution time of the arithmetic operations, comparison expression, and assignment expression are enhanced.

[Remarks] The operations are expanded with codes that do not access run-time routine.
[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

6.1.5 Loop Optimization
[Enable] Induction variable in a loop statement is eliminated and loop is expanded.

[Remarks] This is possible if
- The initial value for the loop is a constant
- The final judgment of the loop is a constant
- The number of repetition for the loop is either a multiple of 3 or an even number.
- No goto labels are included in the loop
[Speed Improvement] O (Improvement attained)

[Size Reduction] V (Improvements achieved in some programs)

6.1.6 Loop Unrolling
[Enable] Induction variable in a loop statement is eliminated and loop is expanded.

[Refer to Section] 5.2.6 Loop Unrolling
[Speed Improvement] O (Improvement attained)

[Size Reduction] V (Improvements achieved in some programs)

ANO0403008/Rev.1.00 March 2004 Page 30 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.1.7 Inline Function
[Enable] Functions called which are within the specified Nodes size will have its function replaced by its code.

[Selection] Maximum Nodes: This selection limits the maximum size of the target function to be inline. Number of nodes signifies
the number of units of compiler internal processing. The larger the size indicates the greater the node numbers. Default is 105 nodes.

[Related Command] #pragma inline
[Refer to Section] 5.2.3 Inline Function
[Remarks] Inline expansion will not be performed if
- Functions including variable parameter
- Functions referencing addresses of parameters.
- Functions in which the type of a real parameter and that of a dummy parameter do not match.
- Functions calling inline expanded function
- Functions that exceed the size limitation of the inline expansion.
[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

6.1.8 Switch Statement
[Enable] The compiler will determine the best method to perform the case statement.

[Selection] Auto[default], “If-Then or “Table”
[Refer to Section] 5.2.1 Switch

[Remarks] Execution speed for all cases in the “Table” implementation will be constant, whereas in the “If-Then” implementation,
execution speed will vary for all cases. Thus the highest hit rate case or timing-critical case should be placed in the early stage.

[Speed Improvement] O (Improvement attained)

[Size Reduction] V (Improvements achieved in some programs)

6.1.9 Function Call
[Selection] @aa[default] or @ @aa:8

[Enable] @@aa:8 is selected - Function calls will be done in indirect addressing mode. The storage area for the function call will be
located in <$INDIRECT> section.

[Related Command] #pragma indirect

[Refer to Section] 5.2.4 Function Calls and Addressing Modes

[Remarks] If <indirect.h> is specified, all run-time routines to be used are called in the indirect addressing format.
[Speed Improvement] X (Efficiency reduced)

[Size Reduction] O (Improvement attained)

ANO0403008/Rev.1.00 March 2004 Page 31 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.1.10 Data Access
[Selection] @aa [default], @aa:8 or @aa:16

[Enable] @aa:8 is selected -.Variables will be stored in $ABS8 section and accessed via the 8-bit absolute addressing mode.
(e.g. advanced mode memory range H’FF FF00 - H’FF FFFF for 8 bit absolute address area <$ABS8> sections)
[Enable] @aa:16 is selected - Variables will be stored in $ABS16 section and accessed via 16 bit absolute addressing mode.
(e.g. advanced mode memory range H’FF 0000 - H’FF FFFF for 16-bit absolute address area,).
[Related Command] #pragma abs8/ab16
[Refer to Section] 5.1.16 Use of Short Addressing to Access Variables
[Remarks]
- <$ABS8> section is used to store 8 bit data (char), and <$ABS16> section is used to stored 16 bit data (integer)

- Due to limited memory space, this option may not be feasible to apply to the whole project. Frequently accessed variables
must be identified and allocated.

[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

ANO0403008/Rev.1.00 March 2004 Page 32 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.2 C/C++ - Other Category Setting
The available settings in this tab are: Hitachi H85,H8/300 Standard Toolchain
. Configuration C/T++ | fssembly | Link/Librar | Standard Libra | cRU- 4|
i. Allow comment nest T . -
ategory =
i. Check against EC++ language specification e Miscelenecus opion::
C source file (EE comrvjvent nest B il
.. . dbscte [ Check against EC++ language specification )
iii. Interrupt handler save/restores MACH & MACL register hoveahap.c [Ciintenrupt handler savestrestorss MACH and MACL [egj_l
. [l&woid optimizing external symbols beating them as wvolatil +
if used inprg.c l 5
resetpro.c
) ) . ) shrk.c Uszer defined options :
iv. Avoid optimizing external symbols treating them as e =
Eraul ptions
V0|ati|e : (L3 Co+ source file
(-1 Assembly souce fle E
gL e s -0 Linkage symbol file ¥
V. Treat enum as char if it is in the range of char
Optiong CAC++ :
H : f H iabl -cpu=300L -iegparam=3 -longreg ﬁl
VI Increase a register for register variable -obiect="${CONFIGDIRKSFILELEAF] obi" -debug
< ]| st SCONFIGDIR R S(FILELEAFL " =l
vii. Put common subexpression on a register temporarily —
viii. Use EEPMOV in block copy
iX. Group data by alignment

The option related to optimization will be explained as follow:

6.2.1 Avoid Optimizing External Symbols Treating Them as Volatile
[Enable] All external variables will be treated as volatile. Thus there will be no optimization for all these external variables.

[Disable] The compiler will treat the external variables as what the declaration is.
[Recommend] Disable
[Speed Improvement] -

[Size Reduction] -

6.2.2 Treat Enum as Char if it is in the Range of Char
[Enable] The numeration data declared by enum will be treated as char (in byte form) if they are within —128 to 127 ranges.

[Disable] All data are treated as integer (in word [2x bytes] form)
[Recommend] Enable
[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

ANO0403008/Rev.1.00 March 2004 Page 33 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.2.3 Increase a register for register variable
[Enable] Four registers [(E)R3 to (E)R6] will be used for variable manipulation.

[Disable] Three registers [(E)R4 to (E)R6] are used.
[Recommend] Enable
[Refer to Section] 5.1.11 Passing Parameter Registers and Working Registers

[Remark]: Disable if complicated expression are used in the program

[Speed Improvement] V (Improvements achieved in some programs)
[Size Reduction] V (Improvements achieved in some programs)
6.2.4 Put Common Subexpression on a Register Temporarily

[Enable] Common subexpression will be eliminated when optimized
[Speed Improvement] -

[Size Reduction] O (Improvement attained)

6.2.5 Use EEPMOV in Block Copy

[Enable] Structure assignment is using “EEPMOV” block move instruction.
[Disable] “MOV” instruction or run time routine are to be used.

[Remarks] If an NMI interrupts occurs during EEPMOV operation, control moves to the next instruction after the interrupt
processing, and therefore, EEPMOV operation cannot be guaranteed. Precautions must be taken against NMI interrupts when this
option is used.

[Speed Improvement] O (Improvement attained)

[Size Reduction] X (Efficiency reduced)

6.2.6 Group Data by Alignment
[Enable] Data of the same type is grouped together.

[Recommend] Enable
[Refer to section] 5.1.9 Data Definition - Arrangement and Packing
[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

ANO0403008/Rev.1.00 March 2004 Page 34 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.3 Standard Library Optimize and Other Category Setting

Hitachi H85 H8/300 Standard Toolchain

The available settings in these tabs are similar to C/C++ tabs. Cadigetan e | Assembly | LinkLbrary  StendardLibisy | ceu 4|
Debug - o
ooy
Please refer to the previous C/C++ sections for the explanation. = E__%L o Prokets F?  Opinization
13 € source e Speed or size : [ Size riented optimization |
(2 T+ source file [T Speedsubroptions

Switch statement

12 Assembly source file
(2 Linkage symbol file

)R egister
witch judgement
ift to multiple
]S truct assignmment lﬁ
IWIE spression LI @aa

Auto 2

Function call

Data access

@aa =

I [t furictior

I rimim 105=4 " ricds{s]

I™ Generate file for inter-module optimization

Options Standard Librar :

-cpu=300L -regparam=3 -longreg -pack=1 ;I
-output="${CONFIGDIA)\${PROJECTNAME] lib"
4 121 -head=runtime, hew,stdio stdlib =l

Cancel

Hitachi H8S H8/300 Standard Toolchain 2] x]

Configuration /G | issembly | Link ALibrany Standardebrawlcpu e

Debug | Category R~ |
E--l@ Al Loaded Projects
7 AL

= Miscellaneous options @

. [ |Check against EC++ language specification -
C fil
% ij‘;::;m: e [ 14wvoid optimizing external symbals treating them as volatil
3 Assembly sourss i | | |18t snum as charif i i nthe range:of char
3 Linkage smbal s [WiIncrease a register for register variable -
4 | »
User defined options
|
Options Standard Library :
-cpu=300L regparam=3 -lohgreq -pack=1 ;I
-output="$[CONFIGDIR):${PROJE CTNAME] b
q _,I -head=runtime.nev. stdio.stdiib ;I

Cancel

ANO0403008/Rev.1.00 March 2004 Page 35 of 47



LENESANS

PRELIMINARY
HEW

Embedded C Programming Il (ECProgramlll_opt)

6.4 CPU setting

The available settings are:
. ) Configuration : Assemhlyl L\nk.v‘Libralyl Standard Library  CPU |5imule Afr
i. Change number of parameter registers from 2(default) t0 3 ' omws =]
.. -3 Al Loaded Projects CPU . [[alelive
ii. Treat double as float ?-n@
143 C source file Stack caleulation : IMed\um -
B - - B dbsete
iii. Pass struct parameter via register hrvschun.c
intprg.c [¥ Change number of parameter registers from 2{defaul) to 3
iv. Pass 4-byte parameter/return value via register e ™ Trest double s foat
SIP.c I~ Pass struct parameter via register
V. Use try th row and Catch Of C++ |1 Detault Dptians ¥ Pass 4-byte parameter/retum value via register
! ! ([ C++ source file B s -
1201 Asssembly source file 6 LY. frow and cateh of L+
Vi. Enable/ Disable runtime type information [ Linkage symbel fle | [ Enable/disable runtime type information
™ Pack struct, union and class
vii. Pack struct, union and class
N — ]|
6.4.1 Change Number of Parameter Registers from 2(default) to 3

[Enable] (E)RO, (E)R1 and (E)R2 are used for parameter passing in a function calls.

[Disable] (E)RO and (E)R1 are used
[Related Command] #pragma repram 2/3

[Refer to Section] 5.1.11 Passing Parameter Registers and Working Registers

[Remarks] This feature is applied to all files and libraries. It cannot be specified individually to each file.

[Speed Improvement] V (Improvements achieved in some programs)

[Size Reduction] V (Improvements achieved in some programs)

6.4.2 Treat Double as Float
[Enable] Both double and float are 4 bytes in length

[Disable] Treats double as 8 bytes and float as 4 bytes
[Refer to Section] 5.1.5 Float and Double
[Speed Improvement] -

[Size Reduction] -

6.4.3 Pass Struct Parameter via Register
[Enable] Parameters are passed through registers

[Disable] Parameters are passed through memory

[Speed Improvement] V (Improvements achieved in some programs)
[Size Reduction] V (Improvements achieved in some programs)
AN0403008/Rev.1.00 March 2004 Page 36 of 47




PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.4.4 Pass 4-byte Parameter/Return Value via Register
[Enable] Allocates 4 byte parameters to register

[Disable] Allocate 4 byte parameters to memory
[Remarks] The above condition applies to H8/300 only. For other series, 4 byte data is always assigned.
[Speed Improvement] V (Improvements achieved in some programs)

[Size Reduction] V (Improvements achieved in some programs)

6.4.5 Pack Struct, Union and Class
[Enable] Struct, union and class will be packed

[Disable] Struct, union and class will remain as it is declared.
[Refer to Section] 5.1.9 Data Definition - Arrangement and Packing
[Speed Improvement] X (Efficiency reduced)

[Size Reduction] O (Improvement attained)

ANO0403008/Rev.1.00 March 2004 Page 37 of 47



LENESANS

PRELIMINARY
HEW

Embedded C Programming Il (ECProgramlll_opt)

6.5 Link/ Library - Optimize Category Setting
HEW has enabled a user-friendly approach in selecting the optimization setting:
i All
' Configuration Ef’CHl Assembly  Link /Libram I Standard L\braryl CPU ﬂ_’l
ii. Speed Debug | Categoy
E--l@ All Loaded Projects Shaw entrics for -
i | | . Safe = @ C souice file IDptirmze iterns j
. E::e:no;;c:oﬂ?ce e Optimize : [None | Elifnimated sizes DxDmEE
. Custom -0 Lirkage symbol fle ||| [J0niy simgs I Include profie
[Elminate dead cade l—
U se shot addiessing
V. None [OReallocate registers M Edi.

The above setting determine the optimization techniques used:

Unify strings
Eliminate dead code

Use short addressing

iv. Reallocate registers
V. Eliminate same code
Vi. Use indirect call/jump
vii. Optimize branches

Eliminated size

Profile

- Load a profile generated by Debugger.

[OEliminate same code Cachie sieei—————
U s indirect call/jump e I gxggggg
[0 ptimize branches

Lz I [Ik[IEIZIJE

Optiohs Link/Library
noprelink ram D=R nomessage list 3
Jo

"${CONFIGDIR]VPROJECTNAME) map” show
spmbol reference nooptimize start

Cancel

- Specify the minimum size to unify same code (Used for “eliminate same code™)

- This dynamic information will enable the inter-module optimization to be performed.

Relation Between Profile Information and Optimization (for H8 C/C++ and assembly)

6.5.1

Variable access
Function call

Branch

Unify Strings

- Allocate frequently accessed variables in the first stage

- Lowers the optimized order for frequently accessed functions

- Allocate the frequently accessed function, to a nearby location to the calling function.

[Enable] Unify similar value constants having the const attributes. Constants having the const attributes are:
- Variable defined as const in C program
- Initial value of character string data
- Literal constant

[Size Reduction] O (Improvement attained)

ANO0403008/Rev.1.00 March 2004 Page 38 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

6.5.2 Eliminate Dead Code
[Enable] Variables and functions that are not referenced and executed in all application will be eliminated

[Size Reduction] O (Improvement attained)

6.5.3 Use Short Addressing
[Enable] Frequently accessed variables are allocated to the 8/16 bit absolute addressing area.

[Refer to Section] 5.1.16 Use of Short Addressing to Access Variables

[Speed Improvement] O (Improvement attained)
[Size Reduction] O (Improvement attained)
6.5.4 Reallocate Registers

[Enable] Function calls relations are investigated so as to reallocate register, and delete redundant register save or restore.
[Refer to Section] 5.1.15 Register Save and Restore

[Remarks] PUSH and POP instructions in a subroutine may be removed, as registers used in the routine are not destroyed.
[Speed Improvement] O (Improvement attained)

[Size Reduction] O (Improvement attained)

6.5.5 Eliminate Same Code
[Enable] Create a subroutine for the same instruction.

[Speed Improvement] X (Efficiency reduced)

[Size Reduction] O (Improvement attained)

6.5.6 Use Indirect Call/Jump

[Enable] Frequently accessed functions are called via memory indirect addressing. Memory address is allocated to the range of 0 to
OxFF if there is a space.

[Refer to Solution] 5.2.4 Function Calls and Addressing Modes

[Size Reduction] O (Improvement attained)

6.5.7 Optimize Branches
[Enable] Optimize branch instruction size according to program allocation information.

[Remarks] Usage of JSR or BSR
[Refer to Solution] 5.2.4 Function Calls and Addressing Modes

[Size Reduction] O (Improvement attained)

ANO0403008/Rev.1.00 March 2004 Page 39 of 47



LENESANS

PRELIMINARY

Embedded C Programming Il (ECProgramlll_opt)

6.6

Inter Module Optimization

Inter-module optimization can be set in the C/C++, Assembly and Standard Library tabs

Hitachi H85.H8/300 Standard Toolchain

Configuration

Diebug 'I

=3 All Loaded Projects
=] F

(23 C source file

(2 G+ source file

(23 Assembly source file
(23 Linkage symbol file

K E3
CiCar IAssemthI Lmk#L\hrawl Standard L\hrawl ey 4]

Category : |Optimize -

™ Optimization
Speed or size

Gpeed|subontions:
W] R egister
Switch judgerment

Switch statement :

[Tabie Debug =

|Dahug

BE

B3 Al Loaded Projects
P

(L C source file

(23 C+ source file

(22 Aszembly source file
(22 Linkage symbol file

Configuration

Category

Hitachi H85 H8/300 Standard Toolchain 7]

4G+ | rssembly | Link/Library  Standard Library | cru 4

= Category: | EETE ~

Debug infarmation

"With debug information hd

[ Generate assembly source file after preprocess

™ Optimize

Output file directary
|$[CDNFIGD\F\]\

Dptions Assembly

, fault of branch displacement size Default hd
\ Generate file for inter-module aptimization

Modty.|

,—
N\

Options Standard Libran :

Generate file for inter-module optimization

Shift tor ml..l|tiD|E [ = Al Laded Projects B (st
¥ Stuct assignment =
e spresion @aa £ € source fe Speed or size | Size oriented optimization
§ . Data access (2 C++ souree file: 5 SpEsEd sulmptions S
itch stat t
el teson o 0 Assembly source A ||| 2R egster e eiemen
BT - Linkage symbal file [w] S witch judgement Auto
enerate file for inter-module optimization hitt to m“_‘IL'DIE Function call
ruct assignment @
: 3a
pliohg CAC++ [WIE «pression LI
r —— —_— - - Dat
Hitachi H85 H8/300 Standard Toolchain K I¥ | Infirve funcion: ;a S50E
A Erimuim: 05 == niodes] aa
] e CiC++ Aasembly | Link/Libray | Standard Library | CPU <[ » N
—

-cpu=300L -regparam=3 -longreg -pack=1 ;I
-output="${CONFIGDIR)$(PROJECTNAME] lib"
-head=rurtime, new.stdio, stdib =l

Cancel

-cpu=300L -deb

-chgincpath -errarpath

ug
-obiject="${CONFIGDIR5$(FILELEAF).obj'* -nolist -nolaga

N

Cancel

This will enable inter —-module optimizing information to be generated for the linker to perform a better optimization.

Auto boot Linker after finish Optimize

Object program

Source Object
Program program
red \x
- Inter-module
— Compiler Optimizer
Y e

Outputs Inter-
module
optimizing
information

et "l
Linkage
Editor

T

Sub Command

Sub Command

Load
Module

ANO0403008/Rev.1.00

March 2004

Page 40 of 47




PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

The optimize items for inter-modules are similar to the Link/Library tab:
i Unifies constant/literal strings
ii. Delete no-referenced symbols

iii. Short Absolute addressing

iv. Indirect addressing

V. Register save/restore

Vi. Unifies same codes

Vii. Uses better branch instruction

The exception is that it can have better optimization, as condition for all modules (global) are considered, instead of performing the
adjustment only for one module (local).

ROM Efficiency And Execution Time

A.c
Optimization
on compiling
B.c
! ~ Ac
Optimization on compiling
C.c A B.c N ABCD.abs
Optimization ol Optimization on
compiling C.c Linking
D.c L
Optimization on D.c
compiling )
Conventional Optimization Inter-module Optimization

A simplified explanation of the inter-module optimization is illustrated as follow:

6.6.1 Unifies Constant / Literal Strings
Same strings, constants are searched and eliminated in modules.

“abcdefg” + “ABCdefg” “abcdefg”

#20546 s #10546 #20546

“defg” _ “defg” “defg”

#100000 B #100000 _—} #100000

= “ABCdefg”

delete #10546
declare _b “defg”
declare _d #100000

ANO0403008/Rev.1.00 March 2004 Page 41 of 47




LENESANS

PRELIMINARY

HEW

Embedded C Programming Il (ECProgramlll_opt)

6.6.2

Delete No-referenced Symbols
Deletes variables and functions that are not referenced.

reference_a

declare _b;
declare _c;

reference_c

e

declare _a;
declare _d;

—>

delete
declare _b
declare _d

reference_a
reference_c

declare _a;
declare _d;

6.6.3

Short Absolute Addressing

Allocate frequently-accessed variables to the area accessible in the 8/16 bit absolute addressing mode.

C source

After compiling

int a;
intb;
main()

a=1;
b=2;

}

_main:
MOV.W #1,R0
MOV.W RO, @_a:32
MOV.B #2, ROL
MOV.W RO, @_hb:32
RTS

After optink

_main:
MOV.W #1,R0
MOV.W RO, @_a:16
MOV.B #2, ROL
MOV.W RO, @_b:16
RTS

6.6.4

Indirect Addressing

Allocate addresses of frequently accessed functions to the range 0 to OXFF if there is space.

main() _main: _main:
JSR @ f24 JSR @ f:24
f(); JSR @_g:24 JSR @@$%_g
a(); JSR @_h:24 H JSR @_h:24
h(); JSR @_i24 JSR @_i24
i0; RTS RTS
} Frequent call for
function -g 0x00
Memory
$.g _g | Indirect
Addressing
0x100
AN0403008/Rev.1.00 March 2004

Page 42 of 47




LENESANS

PRELIMINARY
HEW

Embedded C Programming Il (ECProgramlll_opt)

6.6.5 Register Save/Restore
Investigates function calls, relocates registers and deletes redundant register save or restore codes.
After compiling After optink
f1() Use ERG straddle _sub: sub:
sub() call PUSH.L ER6 deleted
sub(); PUSH.L ER5 deleted
} \ {. MOV.L @_b, ER5 > MOV.L @ b, ER5
a+=h; ADD.L ER5,ER6 ADD.L ER5.ER3
MOV.L ER6 @_a Transpose ER6 to MOV.L ER3@ a
2() } POP.L ER5 ER3 and Delete gl d —
POP.L ER6 register deleted
sub(); RTS save/restore elete
Use ER4 straddle RTS
} sub() call
6.6.6 Unifies Same Codes
Create a subroutine for the same instruction sequence.
After compiling After optink
_f1 _f2 _f1 _f2
MOV.W @ a:32,10 MOV.W @ a:32,10 IR @ L IR @ L
MOV.W @ h:32,R1 MOV.W @_h:32,R1
ADD.W R1,R0 ADD.W R1,R0 RTS RTS /
MOV.L RO, @ a:32 MOV.L RO, @_a:32

RTS

RTS

/

\
>

\ / MOV.W @_a:32,10
Same instruction sequence MOV.W @_b:32,R1
ADD.W R1,R0
MOV.L RO, @_a:32
RTS
6.6.7 Uses Better Branch Instruction

Optimizes branch instruction size according to program allocation information

After compiling After optink

Filel | _h File1 | M
JSR@_f BSR @_f
BSR @_g BSR@_g
Calculate offsets
-9 - when linking

File2 | _© File 2| _f

ANO0403008/Rev.1.00 March 2004 Page 43 of 47




PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

7. Suggested Optimization Steps

The following optimization steps are suggested as a basic guide:

i. Plan for the project — Focus on the areas which need faster execution and smaller code size

ii. Pay extra optimizing effort in coding these critical areas.

iii. Compile (without optimization turn on)

iv. Check, Test and Qualify the system operations.
V. If not necessary, retain current settings.
Vi. Otherwise, optimize for speed or size for the actual requirement.

o0  Make use of utilities such as HEW performance analyzer and profiler to identify the hot spot.

o0 Make use of the HEW session — Debug, Release and etc, so as to make comparison between session output

o IfROM or RAM space is insufficient, consider the need to optimize the project as a whole, or purely work on
certain modules.

o Ifresponse is slow, consider the need to optimize for speed in the critical routines, instead of the whole project.

Vii. After optimization, perform check, test and qualify the whole system operation against the earlier test results.

AN0403008/Rev.1.00 March 2004 Page 44 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

8. Conclusion
There are no fixed rules in optimization.

To achieve good optimization, programmers have to plan and implement optimization early. Other than having a good algorithm and
techniques, programmers must also have a clear understanding of the controller’s architectures and compiler behavior.

This document did not take into the consideration of cache and pipeline. When these topics are involved, programmers will have to
make sure that their program will not create too much cache missed and disruptive pipeline operation.

Optimization can be done either through programming or via HEW optimizer setting. There are some HEW optimizer setting that
can be implemented via the use of #pragam directives or programming. This is provided for better control. With the right
combination of programming techniques and optimizer settings, programmer will be able to perform better optimization.

Reference

- HEW Application Note for H8 Toolchain [Chapter5, 6 & 7] (Renesas)

- HEW C/C++ Compiler, Assembler, Optimizing Linkage Editor manual [Chapter 2, 4, 9 & 10] (Renesas)
- Abook on C by Al Kelley Ira Pohl (Addison —Wesley)

- The Practice of Programming by Brain W.Kernighan & Rob Pike (Addison —Wesley)

- Fundamentals of Embedded Software where C and Assembly Meet by Daniel W.Lewis (Prentice Hall)

- Programming Embedded Systems in C and C++ by Michael Barr (O’REILLY)

- Writing Solid Code by Steve Maguire (Microsoft Press)

ANO0403008/Rev.1.00 March 2004 Page 45 of 47



PRELIMINARY

HEW
u (EN ESAS Embedded C Programming lll (ECProgramIII=opt)

Revision Record

Description
Rev. Date Page Summary

1.00 March 04 — First edition issued

ANO0403008/Rev.1.00 March 2004 Page 46 of 47



PRELIMINARY

LENESANS HEW

Embedded C Programming Il (ECProgramlll_opt)

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

ANO0403008/Rev.1.00 March 2004 Page 47 of 47




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


