REN ESAS Application Note

e? studio
Partner RTOS Aware Debugging for RX

Introduction

Renesas e? studio is a development environment based on the popular Eclipse CDT (C/C++ Development
Tooling). It covers build (editor, compiler and linker control) as well as debug interface. It also supports
integrating the Renesas GitHub FreeRTOS (with loT libraries) demo applications and running them on
Renesas boards.

Partner OS Debugging Plug-in within e? studio can be used during debugging session by clicking Renesas
Views > Partner OS > RTOS Resources. This view displays information on the usage of resources by the
RTOS operation. ltems that can be displayed vary according to the real-time OS.

Objectives

This document introduces the usage of RTOS Resource view in e? studio as follows:
e How to create an RTOS project
e Introduction of RTOS Resource view
e Using the RTOS Resource view with FreeRTOS (Task, Queue, Timer, Stack)

Operating Environment

The operation was confirmed in the following environments.

IDE e? studio 2020-07
e? studio v7.8.0
Toolchains CCRX Compiler v3.0.2
Target devices Renesas RX Family (RX65N-2MB RSK)
Debuggers E2 emulator , E2 emulator Lite(E2 Lite) , E1 emulator
Target OS FreeRTOS
R20AN0586EJ0100 Rev.1.00 Page 1 of 17

Oct.23.20 RENESAS



e2 studio Partner RTOS Aware Debugging for RX

Contents

1.  Create the FreeRTOS project........cooooiiiiiiiii e, 3
2. Introduction of RTOS RESOUICES VIBW ........uuuuiiiii e e e e e e e e e e e ea e 8
2.1 Opening the RTOS RESOUICES VIEW ......ccciiuiiiiiiiiiiieiiiieeeseiteeeseteeaeaesateaesasneeeeasnseeeesansteeesansaeeesasseeesannes 8
WA A = (=Yoo IR (g LT @ RO PRPPP 8
P2 B ©7o 01 (= ¢ B 1 1= o T I SRR 9
D S = Tor 1= 1 {1 T TSR OTPSRRUTRRIN 10
3. Using RTOS Resources view with FreeRTOS ..........ouiiiiiiiiiiiiiiiiiii e 12
K TRt I 1= TG0 -1 o SRR 12
3 O T 1= 0 1= - o USSR 13
R TR T I {0 =T o = | o SO 14
| ¢= Lo Q-1 o J USSR 15
REVISION HISTOMY ...t e e e e e e e e e e e s e bbb e e e e e e e e e e aaae 17
R20AN0586EJ0100 Rev.1.00 Page 2 of 17

Oct.23.20 RENESAS



e2 studio Partner RTOS Aware Debugging for RX
1. Create the FreeRTOS project

To create a new FreeRTOS project, follow the steps below.

1. Launch e? studio.
2. Select [File] — [New] — [C/C++ Project]
3. Select [Renesas RX] — [Renesas CC-RX C/C++ Executable Project]

Q New C/C++ Project L] X

Templates for New C/C++ Project

All GCC for Renesas RX C/C++ Executable Project
CMake FE==~ A C/C++ Executable Project for Renesas RX using the GCC for
Make Renesas RX Toolchain.
R Deb . .
Ri:zz:z R; 19 GCC for Renesas RX C/C++ Library Project
Renesas RE o A C/C++ Library Project for Renesas RX using the GCC for
Renesas RX Toolchain.
Renesas RX
Renesas RZ Renesas CC-RX C/C++ Executable Project
f‘.ﬁ'.‘,'?“ A C/C++ Project for Renesas RX using the Renesas CCRX toolchain.
Renesas CC-RX C/C++ Library Project
o< A C/C++ Library Project for Renesas RX using the Renesas CCRX toolchain.
@ < Back Next > Finish Cancel

Figure 1-1 Select project template
4. Name the project and click [Next].

R20ANO0586EJ0100 Rev.1.00 Page 3 of 17
Oct.23.20 RENESAS




e2 studio Partner RTOS Aware Debugging for RX

5. Specify the following information and click [Finish]:
e Language: C
e Toolchain: Renesas RX
e Toolchain Version: v3.02.00
e Target Board: RSKRX65N-2MB

e Configuration: Tick Create Hardware Debug Configuration and select the emulator (e.g. E2 Lite
(RX))

e RTOS: FreeRTOS (with IoT libraries)

e RTOS Version: v202002.00-rx-1.0.1 (or latest) for e? studio 2020-07 (64-bit), and v201908.00-rx-
0.1.17 for e? studio v7.8 (32-bit); v201908.00-rx-0.1.17 for e? studio 7.7.

If there is a warning message that the FreeRTOS package is not found or to check and
download the latest FreeRTOS package, click [Manage Toolchains...] and follow steps 6 to 9
before clicking [Finish].

a8 0o X

New Renesas CC-RX Executable Project

Select toolchain, device & debug settings

Toolchain Settings

(Language: @ C O C++ )
Toolchain: Renesas CCRX %
Toolchain Version: |v3.02.00 v

Manage Toolchains...

RTOS: FreeRTOS (with loT libraries) %

RTOS Version: v202002.00-rx-1.0.0 e
\_ Manage RTOS Ver5|ons..)

Device Settings Configurations

Target Board: |RSKRX65N-2MB vI Create Hardware Debug Configuration

E2 Lite (RX) v

Target Device: R5F565NEDxFC [ ] Create Debug Configuration

Unlock Devices... RX Simulator o

Endian: | Little v
[] Create Release Configuration
Project Type: Default

@ < Back Next > l Finish I Cancel

Figure 1-2 Select toolchain, device and RTOS

R20ANO0586EJ0100 Rev.1.00 Page 4 of 17
Oct.23.20 RENESAS



e2 studio Partner RTOS Aware Debugging for RX

6. Select “Manage RTOS Versions...” to download Renesas FreeRTOS (with loT libraries) package
from the GitHub.

e N X

New Renesas CC-RX Executable Project

© FreeRTOS package is not found

Toolchain Settings

Language: @ C O C++

Toolchain: Renesas CCRX v

Toolchain Version: v3.02.00 ¥
Manage Toolchains...

RTOS: FreeRTOS (with loT libraries) 7

RTOS Version: g

I Manage RTOS Versions... I

Device Settings Configurations
Target Board: |RSKRX65N-2MB 4 Create Hardware Debug Configuration
E1 (RX) M

Target Device: |R5F565NEDxFC [ Create Debug Configuration

Unlock Devices...

RX Simulator »
Endian: Little R7

[ Create Release Configuration
Project Type: Default

@ < Back Next > Finish Cancel

Figure 1-3 Renesas FreeRTOS (with loT libraries) package needs to be downloaded

R20ANO0586EJ0100 Rev.1.00 Page 5 of 17
Oct.23.20 RENESAS




e2 studio Partner RTOS Aware Debugging for RX

7. The download dialog will be shown. Select the latest FreeRTOS module and click [Download].

e O X
FreeRTOS (with loT libraries) Module Download 'E\Jﬂ
Select RTOS modules for download
Title Rev. Issue date Select All
v g T __ T
FreeRTOS (with loT libraries) v202002.00-rx-1.0.1 2020-08-06 Deselect All
[ ] FreeRTOS (with IoT libraries) 202002.00-r178-1.0.0  2020-08-05
[ ] FreeRTOS (with IoT libraries) v202002.00-rx-1.0.0 2020-07-29
Module Folder Path:
C\Users\ \.eclipse\com.renesas.platform_download\RTOS\ Browse...
Download Cancel

Figure 1-4 Select FreeRTOS module to download

8. Read and click [Agree] to the end-user license agreement. Wait for the download to be completed.

Q End User License Agreement(Sample Code)
This content is subject to the following
agreements:

» Renesas EULA
« Amazon EULA

X

license

I Agree

| Disagree

Figure 1-5 User license agreement

R20ANO0586EJ0100 Rev.1.00
Oct.23.20 RENESAS

Page 6 of 17




e2 studio Partner RTOS Aware Debugging for RX

9. The FreeRTOS source code from Github will be downloaded to
C:\Users\<user_name>\.eclipse\org.eclipse.platform_download\RTOS\<FreeRTOS_version>, and a
new project will be created in the workspace and link to the downloaded source code.

10. To use the RTOS Resources view, compile the project with output debugging information. For CC-
RX, open project properties > [C/C++ Build] > [Settings] > [Tool Settings] > [Compiler] > [Object] and
tick “Outputs debugging information (-debug/-nodebug)”.

Q Properties for RxAfrSample
*|| Settings
Resource
Builders Configuration: HardwareDebug [ Act
~ C/Ct+ Build onfiguration: HardwareDebug [ Active ]
Build Variables
Enviranment % Tool Settings Toolchain Device . Build Steps " Build Artifact & Binary Parsers @ Error Parsers
Loqgging
~ ® Common ${workspace_loc/${l
Stack Analysis & CPU Outputs debugging information (-debug/-nodebug)
. . )
Tool Chain Edi & PIC/PID Section name of program area (-section=P) P
C/C++ General £ Miscellaneous
. Section name of constant area (-section=C) C
MCU ~ & Compiler
Project Natures v (& Source Section name of initialized data area (-section=D) D
Project Reference: ﬂi"wd Section name of uninitialized data area (-section=B) B
2 Object]
Renesas QE — Section name of literal area (-section=L) L
Run/Debug Settir & List _ e

Figure 1-6 Build program with output of debugging information in CC-RX compiler
11. Perform other necessary settings (if any) and build the project.

Note: To connect to AWS, more configuration should be carried out. For further details refer to the
application note r20an0543ejxxxx.

https://www.renesas.com/sg/en/search/keyword-search.html#qg=r20an0543ej

R20ANO0586EJ0100 Rev.1.00 Page 7 of 17
Oct.23.20 RENESAS


https://www.renesas.com/sg/en/search/keyword-search.html#q=r20an0543ej

e2 studio Partner RTOS Aware Debugging for RX

2. Introduction of RTOS Resources view

The RTOS Resources view displays information about the resources (i.e. system information and task/thread

information) used by the real-time OS.

2.1 Opening the RTOS Resources view

It can be opened during the debugging session. Select menu [Renesas Views] > [Partner OS] > [RTOS
Resources]. The view has a [Select OS] box for selecting the real-time OS used in the project.

File Edit Source Refactor Navigate Search Projecthenesas \."iewisun Window Help

# Debug [ test HardwareDeb C/C++ > |Bis|m
(hy w TSRO Y @ vi® S Code Generator > e
4+ Debug = Bkl § =8 (e Debug > =5

¥ [ test HardwareDebug [Renesas GDB +

w3

88 Ffe > (RIOS Resources ] |

v i testx [1] [cores: 0] 89 Pin Configurator >

v o Thread #1 1 (single core) [core o1 Renesas QE >

= PowerON_Reset PC() at rese 92 Smart Configurator > jute
i rx-elf-gdb -re-force-v2 (7.8.2) 93 Solution Toolkit > j1il:
# Renesas GDB server (Host) 94 Tracing >

95 ons
96 * Renesas Software Installer ors

97 -#if defined( GNUC )

Trace Sti
Trace St
Trace Re

. Event Br

| i

Q i®|@C/C++ % Debug

o®F 2

| PC:1/8 OA: 0/4 | %

. =
3 =]

=

Address [A

< > ct Saved Templates
rE Console ! Registers @ Smart Browser [ Debug Shell @ Memory Usage & RTOS Resources @~ D)
v & | @] | H)
Select OS
0OS FreeRTOS L
LI Never show displav the Select OS
OK
< > \ J
Figure 2-1 Open RTOS Resources view
2.2 Selecting the OS
After opening the view, select the real-time OS to be used. Currently, only “FreeRTOS” is supported.
Select “FreeRTOS” from the list box and click [OK].
Note: Please do not select “External” as it is for real-time OS developers.
B Console ! Registers & RTOS Resources ¥ & Smart Browser [ Debug Shell @ Memory Usage O
v &[] ¢ E
Select OS
OS- |FreeRTOS ™
(Deselect)
External
Figure 2-2 Select OS

R20ANO0586EJ0100 Rev.1.00 Page 8 of 17

Oct.23.20 RENESAS




e2 studio Partner RTOS Aware Debugging for RX

2.3 Context menu
The context menu is displayed by right-clicking the mouse on the resource information view.

Real-time Refresh Column >
Real-time Refresh Interval

f} :

Stack Setting

Update information

G

Jump to source
Save File

“; Select OS

T}

Figure 2-3 Context menu

Explanation:

Real-time Refresh Column:

Allows real-time display for the displayed items.
This is not valid while the program is running.
Real-time Refresh Interval:

Specifies interval time for updating of the real-time display. The specifiable range is 500ms to
10000ms.

This is invalid while the program is running.

Stack Setting:

Enables/disables Stack Loading and stack threshold setting for stack alert function.
This is invalid while a program is running.

Update information:

Updates the information.

Jump to source:

Opens an editor view in which the source code of the task/thread or handler is displayed. An editor
view is also opened by double-clicking the task/thread or handler.

This is invalid while the program is running.

Save File:

Saves the data of the current tab in the text file (*.txt).
This item is invalid while the program is running.
Select OS:

Opens the [Select OS] Dialog Box.

This is invalid while the program is running.

R20ANO0586EJ0100 Rev.1.00 Page 9 of 17
Oct.23.20 RENESAS




e2 studio Partner RTOS Aware Debugging for RX

2.4 Stack setting
2.4.1 Enable load stack data and set stack threshold
(1) Open the context menu and select “Stack Setting”.

(2) To load stack data to the RTOS Resource view, tick “Enable loading Stack data” checkbox in the
“Stack Setting” dialog. If this option is not enabled, stack data will not be loaded in the next

debugging session.

& Stack Setting X

[JEnable loading Stack data
Stack Threshold (%) 30.00

4|k

QK Cancel

Figure 2-4 Enable loading stack data

(3) The desired threshold value can be set in the “Stack Threshold (%)” textbox, click [OK] to save the
setting.

Q Stack Setting X

[ Enable loading Stack data
Stack Threshold (%) 30.00

»

1

QK Cancel

Figure 2-5 Set up threshold value

(4) Run then suspend the target project to load stack data. The stack threshold warning will pop up if the
threshold set is met.

There are 2 types of warning popup: Threshold Warning (list of threads which reached stack
threshold value set as above) and Overflow Warning (reached 100%).

Stack Threshold Warning =
ETHER_RECEI (No.1)

Click here to view Stack tab

Figure 2-6 Example of Stack threshold warning popup

R20ANO0586EJ0100 Rev.1.00 Page 10 of 17
Oct.23.20 RENESAS



e2 studio Partner RTOS Aware Debugging for RX

2.4.2 Save stack data

The stack data can be saved by selecting “Save File” from the context menu (or click the “Save File” button
on the toolbar). A “Save As” dialog will be shown for user to enter the file name and location.

= 0

- o @ (5) %

B Console ! Registers & RTOS Resources 22 @ Smart Browser [J Debug Shell @ Memory Usage

Stack Task| Queue| Timer

No. TaskName StartOfStack EndOfStack TopOfStack StackSize StackUsageSize StackUsageRatio )

1 ETHER_RECEI  0x80fbel 0x8103d8  0xB81032c 2040 420 - 20.58%

2 IDLE 0x80006¢ 0x800868  0x800808 2044 96 I 4.69%

3 IP-task 0x80d360  0x80fb58  0x80facO 10232 416 I 4.06%

4 Logging 0x80a1b8 0x80d1b0  0x80d150 12280 96 | 0.78%

5 MAIN_TASK 0x8098a0 0x80a098  0x80a038 2040 96 I 4.70%

6 Tmr Svc 0x8008d8  0x8038d0  0x803864 12280 168 | 1.36%

;

8

9 v
& Run - MAIN TASK (NI -5) OS : FreeRTOS

Figure 2-7 Save File button

R20ANO0586EJ0100 Rev.1.00 Page 11 of 17
Oct.23.20 RENESAS



e2 studio Partner RTOS Aware Debugging for RX

3. Using RTOS Resources view with FreeRTOS

3.1 Task tab
This tab lists all tasks existed in the program with the following information:

& Console ! Registers & RTOS Resources 2 | O Memory Browser % Search [ Memory Usage O Memory ** Call Hierarchy - =

G v @ | M| | Bl %
Stack Task| Queue Timer

lNo. TaskName Base/ActualPriority State EventObject TotalTickCount DeltaTickCount l A
1  ETHER_RECEI 6/6 BLOCKED None 0x0(0.00%) 0x0(0.00%)
2 IDLE 0/0 RUNNING None 0x0(0.00%) 0x0(0.00%)
3 IP-task 5/5 BLOCKED None 0x0(0.00%) 0x0(0.00%)
4 lLogging 0/0 SUSPENDED None 0x0(0.00%) 0x0(0.00%)
5 MAIN_TASK 3/3 BLOCKED None 0x0(0.00%) 0x0(0.00%)
6 Tmr Svc 6/6 SUSPENDED None 0x1(100.00%) 0x0(0.00%)
7 TzCtr 1/1 BLOCKED None 0x0(0.00%) 0x0(0.00%) 9
o

S Run - INIE INO 2) OS : FreeRTOS

Figure 3-1 Task tab
e No.: Row index.
o TaskName: The name assigned to the task upon creation.

o Base/ActualPriority: The base priority used by the priority inheritance mechanism/The actual
priority used by the task.

e State: State of the task which includes “RUNNING”, “READY”, “BLOCKED” and “SUSPENDED”.
¢ EventObject: The name of the queue which causes the task to be blocked.
e TotalTickCount: The total number of tick count for the task to be active.

o DeltaTickCount: The number of tick count for the task to be active since previous suspend event.

Note: To display “TotalTickCount” and “DeltaTickCount”, define configGENERATE_RUN_TIME_STATS as 1
and implement the macros port CONFIGURE TIMER FOR RUN TIME STATS () and
portGET RUN TIME COUNTER VALUE () (in <project>/config files/FreeRTOSConfig.h).

To configure these parameters, refer to FreeRTOS guidelines at https://www.freertos.org/rtos-run-time-
stats.html.

[ *FreeRTOSConfig.h 2 =B
108 /* Event group related definitions. */ ~
109 #define configUSE_EVENT_GROUPS 1
118
111 /* Run time stats gathering definitions. */

112 unsigned long ulGetRunTimeCounterValue( void );
113 i ! i imeStats( void ).

114 #define configGENERATE_RUN_TIME_STATS 1

115 #define portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() vConfigureTimerForRunTimeStats()
116 #define portGET_RUN_TIME_COUNTER_VALUE() ulGetRunTimeCounterValue()

117

118 /¥ Co-routine definitions. */

119 #define configUSE_CO_ROUTINES 0

120 #define configMAX_CO_ROUTINE_PRIORITIES (2)

121 N7

< >

Figure 3-2 Define configGENERATE_RUN_TIME_STATS in FreeRTOSConfig.h

After defining the 2 Run time statistics macros as above, user should implement 2 functions,
vConfigureTimerForRunTimeStats () and ulGetRunTimeCounterValue ().

The figure below shows an implementation with empty functions, user should implement the functions
according to the project specification.

R20ANO0586EJ0100 Rev.1.00 Page 12 of 17
Oct.23.20 RENESAS



https://www.freertos.org/rtos-run-time-stats.html
https://www.freertos.org/rtos-run-time-stats.html

e2 studio Partner RTOS Aware Debugging for RX

W FreeRTOSConf.. 9 aws_demo.c & & RxAfrSample...  ®r bsp_configh  [dresetprg.c  [@mainc 2 =
o0 TPPAITLNEN 1d53KOLALKDUTTEN = UXILMENridskoLdlK,
89 ~
=l2] S /* Pass out the size of the array pointed to by *ppxTimerTaskStackBu
91 * Note that, as the array is necessarily of type StackType_t,
92 * configMINIMAL_STACK_SIZE is specified in words, not bytes. */
93 *pulTimerTaskStackSize = configTIMER_TASK_STACK_DEPTH;
94 }
95 I¥ o oo o oo o o oo oo oo ___ %/
96 (- void vConfigureTimerForRunTimeStats( void ) )
97 {
98 return;
99 }
lee [ H e e e e e e */

101 =unsigned long ulGetRunTimeCounterValue( void )
02 {
e3 return (unsigned long)(1);|
04 \J J
165
1e6 v

Figure 3-3 Implementation of Run Time Statistics functions

3.2 Queue tab
This tab lists all queues/semaphores/mutexes used in the program.

To display queue information, specify configQUEUE REGISTRY SIZE with value greater than 0 in
<project>/config files/FreeRTOSConfig.h.

In addition, the function vQueueAddToRegistry() should be called. Note that this function call is already
implemented in the demo code.

[ FreeRTOSConfig.h # e resetprg.c  ée mainc o tasks.c o FreeRTOS IP.c =
60 #define configUSE_TRACE_FACILITY 1 P
61 #define configUSE_16_BIT_TICKS e
62 #define configIDLE_SHOULD_YIELD 1
63 #define configUSE_CO_ROUTINES e
64 #define configUSE_MUTEXES 1
65 #define configUSE_RECURSIVE MUTEXES 1
66 [#define configQUEUE_REGISTRY_SIZE 10
67 H#detine contigUSE_L _ _ s
68 #define configUSE_COUNTING_SEMAPHORES 1
69 #define configUSE_ALTERNATIVE_API e
70 #define configNUM_THREAD_LOCAL_STORAGE_POINTERS 3 /* FreeRTOS+Fi
71 #define configRECORD_STACK_HIGH_ADDRESS 1
72
73 #define configUSE_DAEMON_TASK_STARTUP_HOOK 1
74
75 #define configCPU_CLOCK_HZ (BSP_ICLK_HZ)

76 #define configPERIPHERAL_CLOCK_HZ (BSP_PCLKB_HZ) o
77 HAALfimA ~AnEi~IICE NIICIIE CETC -1
< >

Figure 3-4 Define configQUEUE_REGISTRY_SIZE in FreeRTOSConfig.h

The queue tab displays the following information:
e No.: Row index.

o Name(Type): The name assigned to the queue upon registration and its type (Queue, Semaphore or
Mutex).

R20ANO0586EJ0100 Rev.1.00 Page 13 of 17
Oct.23.20 RENESAS




e2 studio Partner RTOS Aware Debugging for RX

Address: The address of the queue handle.

MaxLength: The maximum number of items that can be stored in the queue.
ItemSize: Size per item in the queue (in bytes).

CurrentLength: Number of items currently stored in the queue.
#WaitingTx: Number of tasks blocked while waiting to send to the queue.

#WaitingRx: Number of tasks blocked while waiting to receive from the queue.

B Console ! Registers & RTOS Resources © @ Smart Browser [J) Debug Shell < Search @ Memory Usage

= 0

G v @ @] S| EHl G

Stack | Task | Queue| Timer

[ No. Name(Type) Address MaxLength IltemSize Currentlength #WaitingTx #Waitinng] ~

1 NetBufSem(Semaphore) 0x80d350 8 0 8 0 0

2 NetEvnt(Queue) 0x80d288 13 8 0 0 1

3 TmrQ(Queue) 0x804460 5 16 0 0 1

4

5

6 v
% Run - IDIE (NOY-2) OS : FreeRTOS

Figure 3-5 Queue tab

3.3 Timer tab
This tab lists all timers used in the program. The following information is displayed in the timer tab:

B Console i Registers ' RTOS Re... ¥ @ Smart B... [J) Debug S... % Search @ Memory ... = Call Hier...

= 0

v & | @ | EH| 9

Stack | Task | Queue Timer

I No.

Name Period Reload CallbackFn TimerlD | ~

1

L= B B T N

timer 1199464 Off Oxffe3eOba <prvTimerCallback(TimerHandle_t)> 0x228c

Run - ID1E (NOY - OS5 : FreeRTOS

Figure 3-6 Timer tab
No.: Row index.
Name: The name assigned to the software timer upon creation.
Period: The current period of the timer in system ticks.

Reload: Automatic reload Enable / Disable. “On” when auto reload is enabled which resets the timer
each time it expires, “Off” when auto reload is disabled which does nothing when the timer expires.

CallbackFn: Address and <Name> of the callback function which executes each time the timer
ends.

TimerID: The numeric ID of the timer assigned in hexadecimal format when it was created.

R20ANO0586EJ0100 Rev.1.00 Page 14 of 17
Oct.23.20 RENESAS




e2 studio Partner RTOS Aware Debugging for RX
3.4 Stack tab

This tab lists all stacks associated with tasks that existed in the program. The following information is
displayed in the stack tab:

B Console ¥ Registers & RTOS Resources ® @ Smart Browser [ Debug Shell @ Memory Usage volElel e o
Stack| Task Queue Timer

l No. TaskName StartOfStack EndOfStack TopOfStack StackSize StackUsageSize St;ckUsageRatio l ~
1 ETHER RECEI  0x80fbe0 0x8103d8 0x81032c 2040 464 - 22.74%
2 IDLE 0x80006c  0x800868  0x800800 2044 148 I 7.24%
3 IP-task 0x80d360 0x80fb58 0x80faad 10232 1612 - 15.75%
4 Logging 0x80a1b8  0x80d1b0  0x80d120 12280 188 | 1.53%
5 MAIN_TASK 0x8098a0  0x80a098  0x80a02c 2040 136 I 6.66%
6 Tmr Svc 0x8008d8  0x8038d0  0x803858 12280 1204 . 9.80%
7 iot_thread 0x810708  0x814700 0x814400 16376 1236 I 7.54%
8 iot_thread 0x8148e8 0x8158e0  0x815828 4088 212 I 5.18%
9 iot_thread 0x8158f0 0x8168e8 0x816830 4088 212 I 5.18%
10 v
# Run - INIF NO 2 OS : FreeRTOS

Figure 3-7 Stack tab
e No.: Row index.
¢ TaskName: The name assigned to the task upon creation.
o StartOfStack: The address of the start of stack.
o EndOfStack: The address of the end of stack.

o TopOfStack: The address of the top of the stack where it is last written to when the context of the
stack was saved.

e StackSize: Total stack size.
e StackUsageSize: Stack usage at high water mark.

e StackUsageRatio: Percentage of usage at high water mark relative to total stack size.

Note:
(1) To display "EndOfStack” and “StackSize”, define “configRECORD STACK HIGH ADDRESS”as 1in

<project>/config files/FreeRTOSConfig.h file (this is already set for the existing project).

| & FreerTOSConfig.h =7 -
59 #define configMAX_TASK_NAME_LEN (12) A
60 #define configUSE_TRACE_FACILITY 1
61 #define configUSE_16_BIT_TICKS e
62 #define configIDLE_SHOULD_YIELD 1
63 #define configUSE_CO_ROUTINES e
64 #define configUSE_MUTEXES 1
65 #define configUSE_RECURSIVE_MUTEXES 1
66 #define configQUEUE_REGISTRY_SIZE 10
67 #define configUSE_APPLICATION_TASK_TAG e
68 #define configUSE_COUNTING_SEMAPHORES 1
69 #define configUSE_ALTERNATIVE_API e
70 #define configNUM THREAD LOCAL STORAGE POINTERS 3 /* FreeRTOS+F/
> 71 I#define configRECORD_STACK_HIGH_ADDRESS ll
72
73 #define configUSE_DAEMON_TASK_STARTUP_HOOK 1 .
74
< >

Figure 3-8 Define configRECORD_STACK_HIGH_ADDRESS in FreeRTOSConfig.h

R20ANO0586EJ0100 Rev.1.00 Page 15 of 17
Oct.23.20 RENESAS




e2 studio Partner RTOS Aware Debugging for RX

(2) To display “StackUsageSize” and “StackUsageRatio”, define
“‘configRECORD STACK HIGH ADDRESS”as 1in FreeRTOSConfig.h file, and
“tskSTACK FILL BYTE”as 0xA5U in <workspace>/freertos_kernel/task.c file.

Only devices with port STACK GROWTH defined as -1 are supported (in
<workspace>/freertos_kernel/portable/<compiler name>/<processor name=>/portmacro.h).

e

72 /* A

73 * The value used to fill the stack of a task when the task is created

74 * is used purely for checking the high water mark for tasks.

75 */

> 76 |#define tskSTACK FILL BYTE ( exaSu )|

77

78 /* Bits used to recored how a task's stack and TCB were allocated. */

79 #define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB ( (uint8_t ) @)

80 #define tskSTATICALLY_ALLOCATED_STACK_ONLY ( (uint8_t ) 1)

81 #define tskSTATICALLY_ALLOCATED_STACK_AND_TCB ( (uint8_t ) 2)

82

83 /* If any of the following are set then task stacks are filled with a |

84 value so the high water mark can be determined. If none of the follow:

85 set then don't fill the stack so there is no unnecessary dependency on

86 #if( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACIL}

]7 #dafina +ckSFT NFW STACKS TN KNOWN VAILIF 1 v
< >

Figure 3-9 Define tskSTACK_FILL_BYTE in task.c

[ [0 portmacro.h E1’5] ==
70 S /* 32-bit tick type on a 32-bit architecture, so reads of the tick (a
71 not need to be guarded with a critical section. */

72 #define portTICK_TYPE_IS_ATOMIC 1

73 #endif

74 A R */

75

76 /* Hardware specifics. */

77 i portBYTE Al TGNMENT 8 /* Could make four, accordi

> 78 '#de-Fine portSTACK_GROWTH -1 | =

79 efine por — N C ( TickType_t ) 1eee / configT.

80 #define portNOP() nop()

81

82

83 #pragma inline_asm vPortYield

84 =static void vPortYield( void )

!5 ! v
< >

Figure 3-10 Define portSTACK_GROWTH in portmacro.h

R20ANO0586EJ0100 Rev.1.00 Page 16 of 17
Oct.23.20 RENESAS



e2 studio

Partner RTOS Aware Debugging for RX

Revision History

Description
Rev. Date Page Summary
1.00 Oct.20.20 - First release document
R20AN0586EJ0100 Rev.1.00 Page 17 of 17
Oct.23.20 RENESAS




General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LS|, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between Vi. (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LS| is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-
evaluation test for the given product.



Notice

1.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
When using Renesas Electronics products, refer to the latest product information (data sheets, user’'s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. ltis the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
(Note2) “Renesas Electronics product(s)’ means any product developed or manufactured by or for Renesas Electronics.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

(Rev.4.0-1 November 2017)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2020 Renesas Electronics Corporation. All rights reserved.


https://www.renesas.com/
https://www.renesas.com/contact/

	1. Create the FreeRTOS project
	2. Introduction of RTOS Resources view
	2.1 Opening the RTOS Resources view
	2.2 Selecting the OS
	2.3 Context menu
	2.4 Stack setting
	2.4.1 Enable load stack data and set stack threshold
	2.4.2 Save stack data


	3. Using RTOS Resources view with FreeRTOS
	3.1 Task tab
	3.2 Queue tab
	3.3 Timer tab
	3.4 Stack tab

	Revision History
	Corporate Headquarters
	Contact information
	Trademarks

