

RX65N/RX651 Group, RX230/RX231 Group

Difference Between RX65N Group and RX231 Group

Introduction

This application note is intended as a reference for confirming the points of difference between the I/O registers of the RX65N Group and RX231 Group.

Unless specifically otherwise noted, the information in this application note applies to the 176-/177-pin package version of the RX65N Group and the 100-pin package version and chip version B of the RX231 Group. To confirm details of differences in the specifications of the electrical characteristics, usage notes, and setting procedures, refer to the user's manuals of the products in question.

Target Devices

RX65N Group and RX231 Group

Contents

1.	Comparison of Functions of RX65N Group and RX231 Group	3
2.	Comparative Overview of Functions	5
2.1	CPU	5
2.2	Operating Modes	6
2.3	Address Space	7
2.4	Reset	. 10
2.5	Option-Setting Memory	. 11
2.6	Voltage Detection Circuit	. 13
2.7	Clock Generation Circuit	. 16
2.8	Low Power Consumption	. 21
2.9	Battery Backup Function	. 28
2.10	Register Write Protection Function	. 29
2.11	Interrupt Controller	. 30
2.12	2 Buses	. 35
2.13	B DMA Controller	. 39
2.14	Data Transfer Controller	. 41
2.15	Event Link Controller	. 43
2.16	6 I/O Ports	. 45
2.17	Multi-Function Pin Controller	. 47
2.18	3 16-Bit Timer Pulse Unit	. 48
2.19	8-Bit Timer	. 49
2.20	Realtime Clock	. 51
2.21	Watchdog Timer	. 53
2.22	2 Independent Watchdog Timer	. 54

2.23	USB 2.0 Host/Function Module	. 57
2.24	Serial Communications Interface	. 60
2.25	I ² C-bus Interface	. 65
2.26	CAN Module	. 68
2.27	Serial Peripheral Interface	. 75
2.28	CRC Calculator	. 78
2.29	SD Host Interface	. 80
2.30	12-Bit A/D Converter	. 81
2.31	12-Bit D/A Converter	. 91
2.32	Temperature Sensor	. 92
2.33	RAM	. 93
2.34	Flash Memory (Code Flash)	. 94
2.35	Package	. 98
3. (Comparison of Pin Functions	.99
3.1	100-Pin Package	. 99
3.2	64-Pin Package (RX231: WFLGA, RX651: TFBGA)	105
3.3	64-Pin Package (RX231: LFQFP/HWQFN, RX651: LFQFP)	108
4. 1	Notes on Migration	111
4.1	Operating Voltage Range	111
4.1.1	Power Supply Voltage	111
4.1.2	Analog power supply voltage	111
4.2	Notes on Pin Design	111
4.2.1	VCL Pin (External Capacitor)	111
4.2.2	Main clock oscillator	111
4.2.3	USB External Connection Circuit	111
4.2.4	Transition to Boot Mode (FINE Interface)	111
4.3	Notes on Function Settings	112
4.3.1	Changing Option-Setting Memory by Self-Programming	112
4.3.2	Setting Number of Flash Memory Access Wait States	112
4.3.3	Selectable Interrupts	112
4.3.4	Command of Flash Memory Usage	113
4.3.5	Flash Access Window Setting Register (FAW)	113
4.3.6	Software Standby Mode	113
4.3.7	Battery Backup Function	113
5. I	Reference Documents	114
Revis	sion History	116

1. Comparison of Functions of RX65N Group and RX231 Group

A comparison of the functions of the RX65N Group and RX231 Group is provided below. For details of the functions, see section 2, Comparative Overview of Functions and section 5, Reference Documents.

Table 1.1 is a Comparison of Functions of RX65N and RX231.

Table 1.1 Comparison of Functions of RX65N and RX231

		RX65N	RX65N
		Code Flash	Code Flash
Function	DV004	1.0 MB	more than 1.5 MB
CPU	RX231	or less	
Operating Modes			
Address Space			
Reset			
Option-Setting Memory			
Voltage Detection Circuit (LVDAb): RX231, (LVDA): RX65N			
Clock Generation Circuit			
Clock Frequency Accuracy Measurement Circuit (CAC)		0	
Low Power Consumption			
Battery Backup Function			
Register Write Protection Function			
Exception Handling		0	
Interrupt Controller (ICUb): RX231, (ICUB): RX65N			
Buses			
Memory-Protection Unit (MPU)		0	
DMA Controller (DMACA): RX231, (DMACAa): RX65N	¥		
EXDMA Controller (EXDMACa)	× 0*2		
Data Transfer Controller (DTCa): RX231, (DTCb): RX65N		•	
Event Link Controller (ELC)			
I/O Ports			
Multi-Function Pin Controller (MPC)			
Multi-Function Timer Pulse Unit 2 (MTU2a)	0		×
Multi-Function Timer Pulse Unit 3 (MTU3a)	×		C
Port Output Enable 2 (POE2a)	0		×
Port Output Enable 3 (POE3a)	×		0
16-Bit Timer Pulse Unit (TPUa)			
Programmable Pulse Generator (PPG)	×	C)*2
8-Bit Timer (TMR)			
Compare Match Timer (CMT)		0	
Compare Match Timer W (CMTW)	×	(C
Realtime Clock (RTCe): RX231, (RTCd): RX65N			
Low-Power Timer (LPT)	0		×
Watchdog Timer (WDTA)			
Independent Watchdog Timer (IWDTa)		•	
Ethernet Controller (ETHERC)	×	-)*2
DMA Controller for the Ethernet Controller (EDMACa)	×	C)*2
USB 2.0 Host/Function Module (USBd): RX231		•/	
USB 2.0 FS Host/Function Module (USBb): RX65N			

Function		DV224	RX65N Code Flash 1.0 MB	RX65N Code Flash more than
Function		RX231	or less	1.5 MB
Serial Communications Interfa (SCIg, SCIi, SCIh): RX65N	<u>ce (SCIg, SCIh): RX231,</u>		•	
IrDA Interface		0		
<u>I²C-bus Interface (RIICa)</u>		0	· · ·	×
CAN Module (RSCAN): RX23 ²	(CAN): RX65N		•/•/•*2	
Serial Sound Interface (SSI)	<u>; (0/(1): 1//00/1</u>	0		
Serial Peripheral Interface (RS	Pla): RX231 (RSPIc): RX65N	<u> </u>	· · · · ·	×
Quad Serial Peripheral Interfac		×		0
CRC Calculator (CRC): RX231		^		5
SD Host Interface (SDHIa): R>				
SD Slave Interface (SDSI)		×)*2
MultiMediaCard Interface (MM	CIF)	×	-)*2
Parallel Data Capture Unit (PD	,	×		
Boundary Scan	•)	×	_	C
Security function	TSIP-lite	0	×	×
	TSIP	×	×	0
	AESa	O*1	0	O*1
	RNGa	O*1	0	O*1
Capacitive Touch Sensing Unit (CTSU)		0		×
): RX231, (S12ADFa): RX65N			
12-Bit D/A Converter (R12DAA				
Temperature Sensor (TEMPS)	A): RX231, (TEMPS): RX65N	•		
Comparator B (CMPBa)		0		×
Data Operation Circuit (DOC)		0		
RAM				
Standby RAM		×	(C
Flash Memory (Code Flash)				
Flash Memory (Data Flash)		0	×	0
•	Graphic LCD Controller (GLCDC)		×	O*2
2D Drawing Engine (DRW2D)			×	O*2
Package				

Notes: O: Function implemeznted, ×: Function not implemented, •: Differences exist due to added

functionality, ▲: Differences exist due to change in functionality, ■: Differences exist due to removal of functionality.

1. Implemented within Trusted Secure IP (TSIP) module.

2. Not implemented on 64-pin version.

3. Not implemented on 100-pin version.

2. Comparative Overview of Functions

2.1 CPU

Table 2.1 shows a Comparative Listing of CPU Specifications.

Table 2.1 C	comparative Listing	of CPU	Specifications
-------------	---------------------	--------	----------------

Item	RX231	RX65N
CPU	 Maximum operating frequency: 54 MHz 32-bit RX CPU (RXv2) Minimum instruction execution time: One instruction per state (cycle of the system clock) Address space: 4 GB linear Register set of the CPU General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers Basic instructions: 75 Floating-point instructions: 11 DSP instructions: 23 Addressing modes: 11 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits Barrel shifter: 32 bits 	 Maximum operating frequency: 120 MHz 32-bit RX CPU (RXv2) Minimum instruction execution time: One instruction per state (cycle of the system clock) Address space: 4 GB linear Register set of the CPU General purpose: Sixteen 32-bit registers Control: Ten 32-bit registers Accumulator: Two 72-bit registers Basic instructions: 75 Floating-point instructions: 11 DSP instructions: 23 Addressing modes: 11 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32 × 32 → 64 bits On-chip divider: 32 / 32 → 32 bits Barrel shifter: 32 bits
	Memory protection unit (MPU)	Memory protection unit (MPU)
FPU	 Single precision (32-bit) floating-point numeric values Data types and exceptions in conformance with the IEEE 754 standard 	 Single precision (32-bit) floating-point numeric values Data types and exceptions in conformance with the IEEE 754 standard

2.2 Operating Modes

Table 2.2 shows a Comparative Listing of Operating Modes Specifications, and Table 2.3 shows a Comparative Listing of Operating Mode Registers.

Table 2.2	Comparative Listing of Operating Modes Specifications
-----------	---

Item	RX231	RX65N
Operating modes specified by	Single-chip mode	Single-chip mode
mode setting pins	Boot mode (SCI interface)	Boot mode (SCI interface)
	Boot mode (USB interface)	Boot mode (USB interface)
	—	Boot mode (FINE interface)
Operating modes specified by	Single-chip mode	Single-chip mode
register settings	On-chip ROM disabled extended mode	On-chip ROM disabled extended mode
	On-chip ROM enabled extended mode	On-chip ROM enabled extended mode

Table 2.3 Comparative Listing of Operating Mode Registers

Register	Bit	RX231	RX65N
SYSCR1	SBYRAME	_	Standby RAM Enable

2.3 Address Space

Table 2.4 is a Comparative Memory Map of Single-Chip Mode, Table 2.5 is a Comparative Memory Map of On-Chip ROM Enabled Extended Mode, and Table 2.6 is a Comparative Memory Map of On-Chip ROM Disabled Extended Mode.

Start Address	RX231	RX65N
0000 0000h	RAM	On-chip RAM
0001 0000h	Reserved area	
0004 0000h		Reserved area
0008 0000h	Peripheral I/O registers	Peripheral I/O registers
000A 4000h		Standby RAM
000A 6000h		Peripheral I/O registers
0010 0000h	On-chip ROM (E2 data flash)	On-chip ROM (data flash memory)
0010 2000h	Reserved area	
0010 8000h		Reserved area
007E 0000h		FACI command issuing area
007F 0004h		Reserved area
007F C000h	Peripheral I/O registers	Peripheral I/O registers
007F C500h	Reserved area	
007F FC00h	Peripheral I/O registers	
0080 0000h	Reserved area	On-chip expansion RAM
0086 0000h		Reserved area
FE7F 5D00h		On-chip ROM (option-setting memory)
FE7F 5D80h		Reserved area
FE7F 7D70h		On-chip ROM (read only)
FE7F 7DA0h	7	Reserved area
FFE0 0000h		On-chip ROM (code flash memory)
FFF8 0000h	On-chip ROM (program ROM) (read only)	

Table 2.4 Comparative Memory Map of Single-Chip Mode

Start Address	RX231	RX65N
0000 0000h	RAM	On-chip RAM
0001 0000h	Reserved area	
0004 0000h		Reserved area
0008 0000h	Peripheral I/O registers	Peripheral I/O registers
000A 4000h		Standby RAM
000A 6000h		Peripheral I/O registers
0010 0000h	On-chip ROM (E2 data flash)	On-chip ROM (data flash memory)
0010 2000h	Reserved area	
0010 8000h		Reserved area
007E 0000h		FACI command issuing area
007F 0004h		Reserved area
007F C000h	Peripheral I/O registers	Peripheral I/O registers
007F C500h	Reserved area	
007F FC00h	Peripheral I/O registers	
0080 0000h	Reserved area	On-chip expansion RAM
0086 0000h		Reserved area
0100 0000h		CS7 (16 MB)
0200 0000h		CS6 (16 MB)
0300 0000h		CS5 (16 MB)
0400 0000h		CS4 (16 MB)
0500 0000h	CS3 (16 MB)	CS3 (16 MB)
0600 0000h	CS2 (16 MB)	CS2 (16 MB)
0700 0000h	CS1 (16 MB)	CS1 (16 MB)
0800 0000h	Reserved area	SDCS (128 MB)
1000 0000h		Reserved area
FE7F 5D00h	-	On-chip ROM (option-setting memory)
FE7F 5D80h	-	Reserved area
FE7F 7D70h	1	On-chip ROM (read only)
FE7F 7DA0h	1	Reserved area
FFE0 0000h	1	On-chip ROM (code flash memory)
FFF8 0000h	On-chip ROM (program ROM) (read only)	

Table 2.5 Comparative Memory Map of On-Chip ROM Enabled Extended Mode

Note: Areas enclosed in thick-bordered boxes are in the external address space (CS area and SDRAM area).

Start Address	RX231	RX65N
0000 0000h	RAM	On-chip RAM
0001 0000h	Reserved area	
0004 0000h		Reserved area
0008 0000h	Peripheral I/O registers	Peripheral I/O registers
000A 4000h		Standby RAM
000A 6000h		Peripheral I/O registers
0010 0000h	Reserved area	Reserved area
0080 0000h		On-chip expansion RAM
0086 0000h		Reserved area
0100 0000h		CS7 (16 MB)
0200 0000h		CS6 (16 MB)
0300 0000h		CS5 (16 MB)
0400 0000h		CS4 (16 MB)
0500 0000h	CS3 (16 MB)	CS3 (16 MB)
0600 0000h	CS2 (16 MB)	CS2 (16 MB)
0700 0000h	CS1 (16 MB)	CS1 (16 MB)
0800 0000h	Reserved area	SDCS (128 MB)
1000 0000h		Reserved area
FF00 0000h	CS0 (16 MB)	CS0 (16 MB)

Table 2.6 Comparative Memory Map of On-Chip ROM Disabled Extended Mode

Note: Areas enclosed in thick-bordered boxes are in the external address space (CS area and SDRAM area).

2.4 Reset

Table 2.7 shows a Comparative Listing of Reset Specifications, and Table 2.8 shows a Comparative Listing of Reset Registers.

Table 2.7	Comparative Listing of Reset Specifications
-----------	---

Item	RX231	RX65N
Reset Name	RES# pin reset	RES# pin reset
	Power-on reset	Power-on reset
	Voltage monitoring 0 reset	Voltage monitoring 0 reset
	Voltage monitoring 1 reset	Voltage monitoring 1 reset
	Voltage monitoring 2 reset	Voltage monitoring 2 reset
		Deep software standby reset
	Independent watchdog timer reset	Independent watchdog timer reset
	Watchdog timer reset	Watchdog timer reset
	Software reset	Software reset

Table 2.8 Comparative Listing of Reset Registers

Register	Bit	RX231	RX65N
RSTSR0	DPSRSTF	_	Deep Software Standby Reset
			Flag

2.5 Option-Setting Memory

Table 2.9 shows a Comparative Listing of Option-Setting Memory Registers.

Register	Bit	RX231 (OFSM)	RX65N (OFSM)
SPCC		_	Serial Programmer Command Control Register
OSIS			OCD/Serial Programmer ID Setting
0010			Register
OFS0	IWDTTOPS[1:0]	IWDT Timeout Period Select	IWDT Timeout Period Select
		b3 b2	b3 b2
		0 0: 128 cycles (007Fh)	0 0: 1024 cycles (03FFh)
		0 1: 512 cycles (01FFh)	0 1: 4096 cycles (0FFFh)
		1 0: 1024 cycles (03FFh)	1 0: 8192 cycles (1FFFh)
		1 1: 2048 cycles (07FFh)	1 1: 16384 cycles (3FFFh)
	IWDTRSTIRQS	IWDT Reset Interrupt Request	IWDT Reset Interrupt Request
		Select	Select
		0: Non-maskable interrupt request	0: Non-maskable interrupt request
		is enabled	or plain interrupt request is
			enabled
		1: Reset is enabled	1: Reset is enabled
	IWDTSLCSTP	IWDT Sleep Mode Count Stop	IWDT Sleep Mode Count Stop
		Control	Control
		0: Counting stop is disabled	0: Counting stop is disabled
		1: Counting stop is enabled when	1: Counting stop is enabled when
		entering sleep, software	entering sleep, software
		standby, or deep sleep mode	standby, deep software standby,
			or all-module clock stop mode
	WDTRSTIRQS	WDT Reset Interrupt Request	WDT Reset Interrupt Request
		Select	Select
		0: Non-maskable interrupt request	0: Non-maskable interrupt request
		is enabled	or plain interrupt request is enabled
		1: Reset is enabled	1: Reset is enabled
OFS1	VDSEL[1:0]	Voltage Detection 0 Level Select	Voltage Detection 0 Level Select
0131	VDSEL[1.0]	Voltage Delection o Level Select	Voltage Detection o Level Select
		b1 b0	b1 b0
		0 0: 3.84 V is selected	0 0: Reserved
		0 1: 2.82 V is selected	0 1: Selects 2.94 V
		1 0: 2.51 V is selected	1 0: Selects 2.87 V
		1 1: 1.90 V is selected	1 1: Selects 2.80 V
	FASTSTUP	Power-On Fast Startup Time	—
MDE	BANKMD[2:0]	· ·	Bank Mode Select*1
TMEF		—	TM Enable
			TM Enable TM Identification Data Register

Table 2.9 Comparative Listing of Option-Setting Memory Registers

RX65N/RX651 Group, RX230/RX231 Group

Register	Bit	RX231 (OFSM)	RX65N (OFSM)
FAW			Flash Access Window Setting
			Register
ROMCODE			ROM Code Protection Register

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

2.6 Voltage Detection Circuit

Table 2.10 shows a Comparative Listing of Voltage Detection Circuit Specifications, and Table 2.11 shows a Comparative Listing of Voltage Detection Circuit Registers.

		RX231 (LVDAb)		RX65N (LVDA)			
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
VCC monitoring	Monitored voltage	Vdet0	Vdet1	Vdet2	Vdet0	Vdet1	Vdet2
	Detection target	Voltage drops past Vdet0	When voltage rises above or drops below Vdet1	When voltage rises above or drops below Vdet2	Voltage drops past Vdet0	Voltage rises or drops past Vdet1	Voltage rises or drops past Vdet2
				Input voltages to VCC and the CMPA2 pin can be switched using the LVCMPCR.EXV CCINP2 bit			
	Detection voltage	Voltage selectable from four levels using OFS1	Voltage selectable from 14 levels using the LVDLVLR.LVD1 LVL[3:0] bits	Voltage selectable from four levels using the LVDLVLR.LVD2 LVL[1:0] bits	Selectable from among three different levels by using OFS1.VDSEL [1:0] bits	Selectable from among three different levels by using LVDLVLR.LVD1 LVL[3:0] bits	Selectable from among three different levels by using LVDLVLR.LVD2 LVL[3:0] bits
	Monitor flag		LVD1SR.LVD1 MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LVD1 DET flag: Vdet1 passage detection	LVD2SR.LVD2 MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR.LVD2 DET flag: Vdet2 passage detection		LVD1SR.LVD1 MON flag: Monitors whether voltage is higher or lower than Vdet1 LVD1SR.LVD1 DET flag: Vdet1 passage detection	LVD2SR.LVD2 MON flag: Monitors whether voltage is higher or lower than Vdet2 LVD2SR.LVD2 DET flag: Vdet2 passage detection
Voltage detection processing	Reset	Voltage monitoring 0 reset Reset when Vdet0 > VCC CPU restart after specified time with VCC > Vdet0	Voltage monitoring 1 reset Reset when Vdet1 > VCC CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage monitoring 2 reset Reset when Vdet2 > VCC or the CMPA2 pin CPU restart timing selectable: after specified time with VCC or the CMPA2 pin > Vdet2 or after specified time with Vdet2 > VCC or the CMPA2 pin	Voltage monitoring 0 reset Reset when Vdet0 > VCC CPU restart after specified time with VCC > Vdet0	Voltage monitoring 1 reset Reset when Vdet1 > VCC CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC	Voltage monitoring 2 reset Reset when Vdet2 > VCC CPU restart timing selectable: after specified time with VCC > Vdet2 or Vdet2 > VCC

Table 2.10 Comparative Listing of Voltage Detection Circuit Specifications

RX65N/RX651 Group, RX230/RX231 Group

Points of Difference Between RX65N Group and RX231 Group

		RX231 (LVDAb)			RX65N (LVDA)		
Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2	Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
Voltage detection processing	Interrupt	_	Voltage monitoring 1 interrupt Non-maskable or maskable interrupt is selectable Interrupt request issued when Vdet1 > VCC and VCC >	Voltage monitoring 2 interrupt Non-maskable or maskable interrupt is selectable Interrupt request issued when Vdet2 > VCC or the CMPA2 pin		Voltage monitoring 1 interrupt Non-maskable interrupt or maskable interrupt selectable Interrupt request issued when Vdet1 > VCC and VCC >	Voltage monitoring 2 interrupt Non-maskable interrupt or maskable interrupt selectable Interrupt request issued when Vdet2 > VCC and VCC >
			Vdet1 or either	and VCC or the CMPA2 pin > Vdet2 or either		Vdet1 or either	Vdet2 or either
Digital filter	Enable/ disable switching					Available	Available
	Sampling time					1/n LOCO frequency × 2 (n: 2, 4, 8, 16)	1/n LOCO frequency × 2 (n: 2, 4, 8, 16)
Event link fui	nction		Available Vdet1 passage detection event output	Available Vdet2 passage detection event output		Available Output of event signals on detection of Vdet1 crossings	Available Output of event signals on detection of Vdet2 crossings

Table 2.11	Comparative Listing of Voltage Detection Circuit Registers
------------	--

Register	Bit	RX231 (LVDAb)	RX65N (LVDA)
LVD1CR1	LVD1IDTSEL [1:0]	Voltage Monitoring 1 Interrupt ELC Event Generation Condition Select	Voltage Monitoring 1 Interrupt Generation Condition Select
LVD2CR1	LVD2IDTSEL [1:0]	Voltage Monitoring 2 Interrupt ELC Event Generation Condition Select	Voltage Monitoring 2 Interrupt Generation Condition Select
		b1 b0 0 0: When VCC or the CMPA2 pin ≥ Vdet2 (rise) is detected 0 1: When VCC or the CMPA2 pin < Vdet2 (drop) is detected 1 0: When drop and rise are detected 1 1: Setting prohibited	 b1 b0 0 0: When VCC ≥ Vdet2 (rise) is detected 0 1: When VCC < Vdet2 (drop) is detected 1 0: When drop and rise are detected 1 1: Settings prohibited
LVD2SR	LVD2MON	 Voltage Monitoring 2 Signal Monitor Flag 0: VCC or the CMPA2 pin < Vdet2 1: VCC or the CMPA2 pin ≥ Vdet2 or LVD2MON is disabled 	Voltage Monitoring 2 Signal Monitor Flag 0: VCC < Vdet2 1: VCC ≥ Vdet2 or LVD2MON is disabled
LVCMPCR	EXVCCINP2	Voltage Detection 2 Comparison Voltage External Input Select	—

Register	Bit	RX231 (LVDAb)	RX65N (LVDA)
LVDLVLR	LVD1LVL[3:0]	Voltage Detection 1 Level Select	Voltage Detection 1 Level Select
		(Standard voltage during drop in voltage)	(Standard voltage during drop in voltage)
		b3 b0	b3 b0
		0 0 0 0: 4.29 V	
		0 0 0 1: 4.14 V	
		0 0 1 0: 4.02 V	
		0 0 1 1: 3.84 V	
		0 1 0 0: 3.10 V	
		0 1 0 1: 3.00 V	
		0 1 1 0: 2.90 V	
		0 1 1 1: 2.79 V	
		1 0 0 0: 2.68 V	
		1 0 0 1: 2.58 V	1 0 0 1: 2.99 V (Vdet1_1)
		1 0 1 0: 2.48 V	1 0 1 0: 2.92 V (Vdet1_2)
		1 0 1 1: 2.20 V	1 0 1 1: 2.85 V (Vdet1_3)
		1 1 0 0: 1.96 V	
		1 1 0 1: 1.86 V	Cotting on other then also up are
		Settings other than those listed above are prohibited	Settings other than above are prohibited
		The Value after reset is different	promoted
	LVD2LVL[1:0]:	Voltage Detection 2 Level Select	Voltage Detection 2 Level Select
	RX231	(Standard voltage during drop in	(Standard voltage during drop in
	LVD2LVL[3:0]: RX65N	voltage)	voltage)
		b5 b4	b7 b4
		0 0: 4.29 V	1 0 0 1: 2.99 V (Vdet1_1)
		0 1: 4.14 V	1 0 1 0: 2.92 V (Vdet1_2)
		1 0: 4.02 V	1 0 1 1: 2.85 V (Vdet1_3)
		1 1: 3.84 V	Settings other than above are prohibited.
		The Value after reset is different	promotou
LVD1CR0	LVD1DFDIS	—	Voltage Monitoring 1 Digital Filter Disable Mode Select
	LVD1FSAMP [1:0]	-	Sampling Clock Select
LVD2CR0	LVD2DFDIS	-	Voltage Monitoring 2 Digital Filter Disable Mode Select
	LVD2FSAMP [1:0]	-	Sampling Clock Select
	LVD2RN	Voltage Monitoring 2 Reset Negate Select	Voltage Monitoring 2 Reset Negate Select
		 0: Negation follows a stabilization time (tLVD2) after VCC or the CMPA2 pin > Vdet2 is detected. 1: Negation follows a stabilization time (tLVD2) after assertion of the voltage monitoring 2 reset. 	 0: Negation follows a stabilization time (tLVD2) after VCC > Vdet2 is detected. 1: Negation follows a stabilization time (tLVD2) after assertion of the LVD2 reset.

2.7 Clock Generation Circuit

Table 2.12 shows a Comparative Listing of Clock Generation Circuit Specifications, and Table 2.13 shows a Comparative Listing of Clock Generation Circuit Registers.

ltem	RX231	RX65N
Uses	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, ROM, and RAM. Generates the peripheral module clock (PCLKA) to be supplied to the MTU2. 	 Generates the system clock (ICLK) to be supplied to the CPU, DMAC, DTC, code flash memory, and RAM. Generates the peripheral module clock (PCLKA) to be supplied to the ETHERC, EDMAC, RSPI, SCIi, MTU3, and AES.
	 Generates the peripheral module clock (PCLKB) to be supplied to peripheral modules. Generates the peripheral module clock (PCLKD) to be supplied to S12AD. Generates the FlashIF clock (FCLK) 	 Generates the peripheral module clock (PCLKB) to be supplied to peripheral modules. Generates the peripheral module clocks (for analog conversion) (PCLKC: unit 0; PCLKD: unit 1) to be supplied to S12AD. Generates the flash-IF clock (FCLK)
	 to be supplied to the FlashIF. Generates the external bus clock (BCLK) to be supplied to the external bus. 	 to be supplied to the flash interface. Generates the external bus clock (BCLK) to be supplied to the external bus. Generates the SDRAM clock (SDCLK) to be supplied to the SDRAM.
	 Generates the USB clock (UCLK) to be supplied to the USB. Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the CAN clock (CANCLK) to be supplied to the CAN. Generates the RTC-dedicated subclock (RTCSCLK) to be supplied to the RTC. 	 Generates the USB clock (UCLK) to be supplied to the USBb. Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the CAN clock (CANMCLK) to be supplied to the CAN. Generates the RTC sub-clock (RTCSCLK) to be supplied to the RTC. Generates the RTC main clock (RTCMCLK) to be supplied to the RTC.
	 Generates the IWDT-dedicated low-speed clock (IWDTCLK) to be supplied to the IWDT. Generates the SSI clock (SSISCK) to be supplied to the SSI. Generates the LPT clock (LPTCLK) to be supplied to the LPT. 	 Generates the IWDT-dedicated clock (IWDTCLK) to be supplied to the IWDT. Generates the JTAG clock (JTAGTCK) to be supplied to the JTAG.

Item	RX231	RX65N
Operating	ICLK: 54 MHz (max.)	• ICLK: 120 MHz (max.)
frequencies	PCLKA: 54 MHz (max.)	 PCLKA: <u>120 MHz</u> (max.)
	PCLKB: 32 MHz (max.)	PCLKB: 60 MHz (max.)
		PCLKC: 60 MHz (max.)
	PCLKD: 54 MHz (max.)	PCLKD: 60 MHz (max.)
	• FCLK: 1 to 32 MHz (for programming	FCLK: 4 MHz to 60 MHz (when
	and erasing the ROM and E2 data	programming or erasing the code
	flash)	flash memory or data flash memory)*1
	32 MHz (max.) (for reading from the E2 data flash)	60 MHz (max.) (for reading from the Data flash memory)*1
	BCLK: 32 MHz (max.)	• BCLK: 120 MHz (max.)
	BCLK pin output: 16 MHz (max.)	BCLK pin output: 60 MHz (max.)
		SDCLK pin output: 60 MHz (max.)
	UCLK: 48 MHz	• UCLK: 48 MHz (max.)
	CACCLK: Same frequency as each	CACCLK: Same as the clock from
	oscillator	respective oscillators
	CANCLK: 20 MHz (max.)	CANMCLK: 24 MHz (max.)
	RTCSCLK: 32.768 kHz	RTCSCLK: 32.768 kHz
	IWDTCLK: 15 kHz	RTCMCLK: 8 MHz to 16 MHz
		IWDTCLK: 120 kHz
	SSISCK: 20 MHz (max.)	• JTAGTCK: 10 MHz (max.)
	 LPTCLK: The same frequency as that 	
	of the selected oscillator	
Main clock	Resonator frequency:	Resonator frequency:
oscillator	1 to 20 MHz (VCC \ge 2.4 V),	8 MHz to 24 MHz
	1 to 8 MHz (VCC < 2.4 V)	
	External clock input frequency:	External clock input frequency:
	20 MHz (max.)Connectable resonator or additional	 24 MHz (max.) Connectable resonator or additional
	Connectable resonator or additional circuit: ceramic resonator, crystal	Connectable resonator or additional circuit: ceramic resonator, crystal
		resonator
	Connection pins: EXTAL, XTAL	Connection pin: EXTAL, XTAL
	Oscillation stop detection function:	Oscillation stop detection function:
	When a main clock oscillation stop is	When an oscillation stop is detected
	detected, the system clock source is	with the main clock, the system clock
	switched to LOCO and MTU output	source is switched to LOCO, and
	can be forcedly driven to high- impedance.	MTU3 output can be forcedly driven to the high-impedance.
	 Drive capacity switching function 	 Drive capacity switching function
Sub-clock	Resonator frequency: 32.768 kHz	Resonator frequency: 32.768 kHz
oscillator	Connectable resonator or additional	Connectable resonator or additional
	circuit: crystal	circuit: crystal resonator
	Connection pin: XCIN, XCOUT	Connection pin: XCIN, XCOUT
	Drive capacity switching function	Drive capacity switching function

Item	RX231	RX65N
PLL frequency synthesizer	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 to 12.5 MHz Frequency multiplication ratio: Selectable from 4 to 13.5 (increments of 0.5) VCO oscillation frequency: 24 to 54 MHz (VCC ≥ 2.4 V) 	 Input clock source: Main clock, HOCO Input pulse frequency division ratio: Selectable from 1, 2, and 3 Input frequency: 8 MHz to 24 MHz Frequency multiplication ratio: Selectable from 10 to 30 Output clock frequency of the PLL frequency synthesizer: 120 MHz to 240 MHz
USB-dedicated PLL circuit	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4, 6, 8, and 12 MHz Frequency multiplication ratio: Selectable from 4, 6, 8, and 12 VCO oscillation frequency: 48 MHz (VCC ≥ 2.4 V) 	
High-speed on- chip oscillator (HOCO)	Oscillation frequency: 32 and 54 MHz	 Selectable from 16 MHz, 18 MHz, and 20 MHz HOCO power supply control
Low-speed on-chip oscillator (LOCO)	Oscillation frequency: 4 MHz	Oscillation frequency: 240 kHz
IWDT-dedicated on-chip oscillator	Oscillation frequency: 15 kHz	Oscillation frequency: 120 kHz
JTAG external clock input (TCK)		Input clock frequency: 10 MHz (max.)
Control of output on BCLK pin	_	 BCLK clock output or high output is selectable BCLK or BCLK/2 is selectable
Control of output on SDCLK pin	—	SDCLK clock output or high output is selectable
Event link function (output)	_	Detection of stopping of the main clock oscillator
Event link function (input)		Switching of the clock source to the low- speed on-chip oscillator

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

Register	Bit	RX231	RX65N
SCKCR	PCKD[3:0]	Peripheral Module Clock D (PCLKD) Select
		The Value after reset is different.	
	PCKC[3:0]		Peripheral Module Clock C (PCLKC) Select
	PCKB[3:0]	Peripheral Module Clock B (PCLKB) Select
		The Value after reset is different.	
	PCKA[3:0]	Peripheral Module Clock A (PCLKA) Select
		The Value after reset is different.	
	BCK[3:0]	External Bus Clock (BCLK) Select	
		The Value after reset is different.	
	PSTOP0	—	SDCLK Pin Output Control
SCKCR	ICK[3:0]	System Clock (ICLK) Select The Value after reset is different.	
	FCK[3:0]	Flash-IF Clock (FCLK) Select	
		The Value after reset is different.	
ROMWT		—	ROM Wait Cycle Setting Register
SCKCR2		—	System Clock Control Register 2
PLLCR	PLIDIV[1:0]	PLL Input Frequency Division Ratio Select	PLL Input Frequency Division Ratio Select
		b1 b0	b1 b0
		0 0: ×1	0 0: ×1
		0 1: ×1/2	0 1: ×1/2
		1 0: ×1/4	1 0: ×1/3
		1 1: Setting prohibited	1 1: Setting prohibited
	PLLSRCSEL		PLL Clock Source Select
	STC[5:0]	Frequency Multiplication Factor Select	Frequency Multiplication Factor Select
		b13 b8	b13 b8
		0 0 0 1 1 1: ×4	0 1 0 0 1 1: ×10.0
		0 0 1 0 0 0: ×4.5	0 1 0 1 0 0: ×10.5
		0 0 1 0 0 1: ×5	0 1 0 1 0 1: ×11.0
		:	0 1 0 1 1 0: ×11.5
		:	0 1 0 1 1 1: ×12.0
		:	0 1 1 0 0 0: ×12.5
		010010:×9.5	0 1 1 0 0 1: ×13.0
		010011:×10	0 1 1 0 1 0: ×13.5
		0 1 0 1 0 0: ×10.5	0 1 1 0 1 1: ×14.0
		010101:×11 010110:×115	
		010110:×11.5	
		0 1 0 1 1 1: ×12 0 1 1 0 0 0: ×12.5	: 1 1 1 0 0 1: ×29.0
		0 1 1 0 0 0: ×12.5 0 1 1 0 0 1: ×13	1 1 1 0 0 1: ×29.0 1 1 1 0 1 0: ×29.5
		0 1 1 0 1 0: ×13.5	1 1 1 0 1 0: ×29.5 1 1 1 0 1 1: ×30.0
		Settings other than above are	Settings other than above are
		prohibited.	prohibited.
		The Value after reset is different.	P. 91101000.
UPLLCR		USB-dedicated PLL Control	

Table 2.13 Comparative Listing of Clock Generation Circuit Registers

Register	Bit	RX231	RX65N
UPLLCR2		USB-dedicated PLL Control Register 2	
HOCOCR2	HCFRQ[1:0]	HOCO Frequency Setting	HOCO Frequency Setting
		b1 b0	b1 b0
		0 0: 32 MHz	0 0: 16 MHz
		1 1: 54 MHz	0 1: 18 MHz
			1 0: 20 MHz
		Settings other than above are	Settings other than above are
		prohibited.	prohibited.
OSCOVFSR	MOOVF	Main Clock Oscillation Stabilization Flag	Main Clock Oscillation Stabilization Flag
		0: Main clock is stopped	0: MOSTP = 1 (stopping the main clock oscillator) or oscillation of the main clock has not yet become stable
		1: Oscillation is stable and the clock can be used as the system clock	1: Oscillation of the main clock is stable so the clock is available for use as the system clock
	SOOVF	—	Sub-Clock Oscillation Stabilization Flag
	ILCOVF	—	IWDT-Dedicated Clock Oscillation Stabilization Flag
	UPLOVF	USB-Dedicated PLL Clock Oscillation Stabilization Flag	
MOSCWTCR	MSTS[4:0]:	Main Clock Oscillator Wait Time	Main Clock Oscillator Wait Time
	RX231	(b4 to b0)	(b7 to b0)
	MSTS[7:0]: RX65N	The Value after reset is different.	
SOSCWTCR	—	—	Sub-Clock Oscillator Wait Control Register
CKOCR		CLKOUT Output Control Register	—
MOFCR	MOFXIN	—	Main Clock Oscillator Forced Oscillation
	MODRV2 [1:0]	—	Main Clock Oscillator Driving Ability 2 Switching
	MODRV21	Main Clock Oscillator Drive Capability Switch	
HOCOPCR	_	_	High-Speed On-Chip Oscillator Power Supply Control Register
MEMWAIT	—	Memory Wait Cycle Setting Register	_
LOCOTRR	_	Low-Speed On-Chip Oscillator Trimming Register	_
ILOCOTRR	—	IWDT-Dedicated On-Chip Oscillator Trimming Register	_
HOCOTRRn	—	High-Speed On-Chip Oscillator Trimming Register n (n = 0, 3)	—

2.8 Low Power Consumption

Table 2.14 shows a Comparative Listing of Low Power Consumption Specifications, Table 2.15 is a Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode, and Table 2.16 is a Comparative Listing of Low Power Consumption Registers.

ltem	RX231	RX65N	
Reducing power consumption by switching clock signals	The frequency division ratio can be set independently for the system clock (ICLK), high speed peripheral module clock (PCLKA), peripheral module clock (PCLKB), S12AD clock (PCLKD), external bus clock (BCLK), and FlashIF clock (FCLK).	The frequency division ratio is settable independently for the system clock (ICLK), peripheral module clock (PCLKA, PCLKB, PCLKC, PCLKD), external bus clock (BCLK), and flash interface clock (FCLK).	
BCLK output control function	—	BCLK output or high-level output can be selected.	
SDCLK output control function	—	SDCLK output or high-level output can be selected.	
Module-stop function	Each peripheral module can be stopped independently by the module stop control register.	Functions can be stopped independently for each peripheral module.	
Function for transition to low power consumption mode	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.	
Low power consumption modes	 Sleep mode Deep sleep mode Software standby mode 	 Sleep mode All-module clock stop mode Software standby mode Deep software standby mode 	
Function for lower operating power consumption	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. Three operating power control modes are available High-speed operating mode Middle-speed operating mode Low-speed operating mode 	 Power consumption can be reduced in normal operation, sleep mode, and all-module clock stop mode by selecting an appropriate operating power consumption control mode according to the operating frequency and operating voltage range. Three operating power control modes — High-speed operating mode 	
		— Low-speed operating mode 1	

Table 2.14 Comparative Listing of Low Power Consumption Specifications

Low-speed operating mode 2

There is no difference in power consumption when the same conditions (frequency and voltage) are set in low-speed operating modes

1 and 2.

Mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX231	RX65N
Sleep mode	Transition method	Control register + instruction	Control register + instruction
	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state (interrupt processing)	Program execution state (interrupt processing)
	Main clock oscillator	Operation possible	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Operation possible	Operation possible
	Low-speed on-chip oscillator	Operation possible	Operation possible
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Operation possible	Operation possible
	USB-dedicated PLL	Operation possible	—
	CPU	Stopped (retained)	Stopped (retained)
	RAM (0000 0000h to 0000 FFFFh): RX231 RAM, expansion RAM: RX65N	Operation possible (retained)	Operation possible (retained)
	DMAC	Operation possible	—
	DTC	Operation possible	—
	Standby RAM	_	Operation possible (retained)
	Flash memory	Operation	Operation
	USB FS Host/Function module (USBb)	—	Operation possible
	Watchdog timer (WDT: RX231, WDTA: RX65N)	Stopped (retained)	Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	—
	8-bit timer (unit 0, unit 1) (TMR)	—	Operation possible
	Port output enable (POE)	—	Operation possible
	Voltage detection circuit (LVD: RX231, LVDA: RX65N)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Operation possible	Operation possible
	I/O ports	Operation	Operation
	RTCOUT output	Operation possible	_
	CLKOUT output	Operation possible	
	Comparator B	Operation possible	

Table 2.15 Comparison of Procedures for Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

Mode	Entering and Exiting Low Power Consumption Modes and Operating States	RX231	RX65N
Software	Transition method		
standby		Control register + instruction	Control register + instruction
mode	Method of cancellation other than reset	Interrupt	Interrupt
	State after cancellation	Program execution state (interrupt processing)	Program execution state (interrupt processing)
	Main clock oscillator	Stopped	Operation possible
	Sub-clock oscillator	Operation possible	Operation possible
	High-speed on-chip oscillator	Stopped	Stopped
	Low-speed on-chip oscillator	Stopped	Stopped
	IWDT-dedicated on-chip oscillator	Operation possible	Operation possible
	PLL	Stopped	Stopped
	USB-dedicated PLL	Stopped	—
	CPU	Stopped (retained)	Stopped (retained)
	RAM (0000 0000h to 0000 FFFFh): RX231 RAM, expansion RAM: RX65N	Stopped (retained)	Stopped (retained)
	DMAC	Stopped (retained)	—
	DTC	Stopped (retained)	—
	Standby RAM	—	Stopped (retained)
	Flash memory	Stopped (retained)	Stopped (retained)
	USB FS Host/Function module (USBb)	—	Stopped
	Watchdog timer (WDT: RX231, WDTA: RX65N)	Stopped (retained)	Stopped (retained)
	Independent watchdog timer (IWDT)	Operation possible	Operation possible
	Realtime clock (RTC)	Operation possible	Operation possible
	Low-power timer (LPT)	Operation possible	—
	8-bit timer (unit 0, unit 1) (TMR)		Stopped (retained)
	Port output enable (POE)		Stopped (retained)
	Voltage detection circuit (LVD: RX231, LVDA: RX65N)	Operation possible	Operation possible
	Power-on reset circuit	Operation	Operation
	Peripheral modules	Stopped (retained)	Stopped (retained)
	I/O ports	Retained	Retained
	RTCOUT output	Operation possible	—
	CLKOUT output	Operation possible	—
	Comparator B	Operation possible	

Notes: "Operation possible" means that whether the state is operating or stopped is controlled by the control register setting.

"Stopped (retained)" means that internal register values are retained and internal operations are suspended.

"Stopped (undefined)" means that internal register values are undefined and power is not supplied to the internal circuit.

Register	Bit	RX231	RX65N
SBYCR	OPE	Output Port Enable	Output Port Enable
	SSBY	 0: In software standby mode, the address bus and bus control signals are set to the high-impedance state 1: In software standby mode, the address bus and bus control signals retain the output state Software Standby 	 0: In software standby mode or deep software standby mode, the address bus and bus control signals are set to the high- impedance state 1: In software standby mode or deep software standby mode, the address bus and bus control signals retain the output state Software Standby
		 0: Set entry to sleep mode or deep sleep mode after the WAIT instruction is executed 1: Set entry to software standby mode after the WAIT instruction is executed 	 0: Shifts to sleep mode or all- module clock stop mode after the WAIT instruction is executed 1: Shifts to software standby mode after the WAIT instruction is executed
MSTPCRA	MSTPA0	—	Compare Match Timer W (Unit 1) Module Stop
	MSTPA1	_	Compare Match Timer W (Unit 0) Module Stop
	MSTPA9	Multifunction Timer Pulse Unit 2 Module Stop Target module: MTU2 (MTU0 to MTU5)	Multifunction Timer Pulse Unit 3 Module Stop Target module: MTU3 (MTU0 to MTU8)
	MSTPA10	_	Programmable Pulse Generator (Unit 1) Module Stop
	MSTPA11	—	Programmable Pulse Generator (Unit 0) Module Stop
	MSTPA16	—	12-bit A/D Converter (Unit 1) Module Stop
	MSTPA24	—	Module Stop A24
	MSTPA27	—	Module Stop A27
	MSTPA29	—	EXDMA Controller Module Stop
	ACSE	_	All-Module Clock Stop Mode Enable
MSTPCRB	MSTPB0	RCAN0 Module Stop Target module: RCAN0	CAN Module 0 Module Stop Target module: CAN0
	MSTPB1		CAN Module 1 Module Stop
	MSTPB8	1_	Temperature Sensor Module Stop
	MSTPB10	Comparator B Module Stop	
	MSTPB15		Ethernet Controller and Ethernet Controller DMA Controller (Channel 0) Modules Stop
	MSTPB16	—	Serial Peripheral Interface 1 Module Stop
	MSTPB20	—	I ² C Bus Interface 1 Module Stop* ¹

Table 2.16 Comparative Listing of Low Power Consumption Registers	Table 2.16	Comparative Listing of Low Po	ower Consumption Registers
---	------------	-------------------------------	----------------------------

Register	Bit	RX231	RX65N
MSTPCRB	MSTPB22	—	Parallel Data Capture Unit Module
			Stop
	MSTPB24	—	Serial Communication Interface 7
			Module Stop
	MSTPB27		Serial Communication Interface 4
			Module Stop
	MSTPB28	—	Serial Communication Interface 3 Module Stop
	MSTPB29	_	Serial Communication Interface 2 Module Stop
MSTPCRC	MSTPC2		Expansion RAM Module Stop*1
	MSTPC7	<u> </u>	Standby RAM Module Stop
	MSTPC17	<u> </u>	I ² C Bus Interface 2 Module Stop
	MSTPC20	IrDA Module Stop	
	MSTPC22		Serial Peripheral Interface 2 Module Stop
	MSTPC23		Quad Serial Peripheral Interface Module Stop
	MSTPC24		Serial Communications Interface 11 Module Stop
	MSTPC25	—	Serial Communications Interface 10 Module Stop
	MSTPC28	—	2D drawing engine Module Stop*1
	MSTPC29	—	Graphic-LCD controller Module Stop*1
	DSLPE	Deep Sleep Mode Enable	
MSTPCRD	MSTPD0		Module Stop D0
	MSTPD1		Module Stop D1
	MSTPD2		Module Stop D2
	MSTPD3		Module Stop D3
	MSTPD4		Module Stop D4
	MSTPD5		Module Stop D5
	MSTPD6		Module Stop D6
	MSTPD7		Module Stop D7
	MSTPD10	Touch Sensor Control Unit Module Stop	—
	MSTPD13	<u> _</u>	SD Slave Interface Module Stop
	MSTPD15	Serial Sound Interface Module Stop	_
	MSTPD21		MMC Host Interface Module Stop
	MSTPD27	1_	Trusted Secure IP Module Stop*1
	MSTPD31	Security Function	İ

Register	Bit	RX231	RX65N
OPCCR	OPCM[2:0]	Operating Power Control Mode	Operating Power Control Mode
		Select	Select
		b2 b0	b2 b0
		0 0 0: High-speed operating mode 0 1 0: Middle-speed operating mode	0 0 0: High-speed operating mode
			1 1 0: Low-speed operating mode 1
			1 1 1: Low-speed operating mode 2
		Settings other than above are prohibited.	Settings other than above are prohibited.
		The Value after reset is different.	
SOPCCR	—	Sub Operating Power Control Register	—
RSTCKCR	RSTCKSEL [2:0]	Sleep Mode Return Clock Source Select	Sleep Mode Return Clock Source Select
		b2 b0 0 0 0: LOCO is selected	b2 b0
		0 0 1: HOCO is selected	0 0 1: HOCO is selected
		0 1 0: Main clock oscillator is selected	0 1 0: Main clock oscillator is selected
		Settings other than above are prohibited when the RSTCKEN bit is 1.	Settings other than above are prohibited while the RSTCKEN bit is 1.
DPSBYCR			Deep Standby Control Register
DPSIER0		_	Deep Standby Interrupt Enable Register 0
DPSIER1	—	—	Deep Standby Interrupt Enable Register 1
DPSIER2	—	—	Deep Standby Interrupt Enable Register 2
DPSIER3		—	Deep Standby Interrupt Enable Register 3
DPSIFR0		—	Deep Standby Interrupt Flag Register 0
DPSIFR1		—	Deep Standby Interrupt Flag Register 1
DPSIFR2		—	Deep Standby Interrupt Flag Register 2
DPSIFR3			Deep Standby Interrupt Flag Register 3
DPSIEGR0		—	Deep Standby Interrupt Edge Register 0
DPSIEGR1		—	Deep Standby Interrupt Edge Register 1
DPSIEGR2			Deep Standby Interrupt Edge Register 2
DPSIEGR3		—	Deep Standby Interrupt Edge Register 3

Register	Bit	RX231	RX65N
DPSBKRy		_	Deep Standby Backup Register
			(y = 0 to 31)

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

2.9 Battery Backup Function

Table 2.17 shows a Comparative Listing of Battery Backup Function Registers.

Table 2.17 Comparative Listing of Battery Backup Function Registers

Item	RX231	RX65N
VBATTCR	VBATT Control Register	—
VBATTSR	VBATT Status Register	—
VBTLVDICR	VBATT Pin Voltage Drop Detection Interrupt Control Register	

2.10 Register Write Protection Function

Table 2.18 shows a Comparative Listing of Register Write Protection Function Specifications, and Table 2.19 shows a Comparative Listing of Register Write Protection Function Registers.

ltem	RX231	RX65N
PRC0 bit	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, OSTDCR, OSTDSR, CKOCR, UPLLCR, UPLLCR2, BCKCR, HOCOCR2, MEMWAIT, LOCOTRR, ILOCOTRR, HOCOTRR0, HOCOTRR3	Registers related to the clock generation circuit: SCKCR, SCKCR2, SCKCR3, PLLCR, PLLCR2, BCKCR, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, HOCOCR2, OSTDCR, OSTDSR
PRC1 bit	 Register related to the operating modes: SYSCR0, SYSCR1 Registers related to low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR 	 Registers related to the operating modes: SYSCR0, SYSCR1 Registers related to the low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, DPSBYCR, DPSIER0 to DPSIER3, DPSIEGR0 to DPSIEGR3 Registers related to clock generation circuit: MOSCWTCR, SOSCWTCR, MOFCR, HOCOPCR Software reset register: SWRR
PRC2 bit	Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR	—
PRC3 bit	 Registers related to the LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR Registers related to the battery backup function: VBATTCR, VBATTSR, VBTLVDICR 	Registers related to the LVD: LVCMPCR, LVDLVLR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

Tahle 2 18	Comparative Listing of Register Write Protection Function Specifications	
1 able 2.10	comparative Listing of Register write Protection Function Specifications	

Table 2.19 Comparative Listing of Register Write Protection Function Registers

Register	Bit	RX231	RX65N
PRCR	PRC2	Enables writing to the registers related to the low power timer.	
	PRC3	Enables writing to the registers related to the LVD and the battery backup function.	Enables writing to the registers related to the LVD.

2.11 Interrupt Controller

Table 2.20 shows a Comparative Listing of Interrupt Controller Specifications, and Table 2.21 shows a Comparative Listing of Interrupt Controller Registers.

ltem		RX231 (ICUb)	RX65N (ICUB)
Interrupt	Peripheral function interrupts	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection Edge detection or level detection is fixed for each source of connected peripheral modules 	 Interrupts from peripheral modules Interrupt detection: Edge detection/level detection (detection method is fixed for each interrupt source)
			 Group interrupt: Multiple interrupt sources are grouped together and treated as an interrupt source. — Group BE0 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (edge detection) — Group BL0/BL1/BL2 interrupt: Interrupt sources of peripheral modules that use PCLKB as the operating clock (level detection) — Group AL0/AL1 interrupt: Interrupt sources of peripheral modules that use PCLKA as the operating clock (level detection)
			 Software configurable interrupt B: Any of the interrupt sources for peripheral modules that use PCLKB as the operating clock can be assigned to interrupt vector numbers 128 to 207. Software configurable interrupt A: Any of the interrupt sources
			for peripheral modules that use PCLKA as the operating clock can be assigned to interrupt vector numbers 208 to 255.

Table 2.20 Com	nparative Listing o	f Interrupt Controlle	r Specifications
----------------	---------------------	-----------------------	------------------

ltem		RX231 (ICUb)	RX65N (ICUB)
Interrupt	External pin interrupts	 Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Low level/falling edge/rising edge/rising and falling edges. One of these detection methods can be set for each source. Digital filter function: Supported 	 Interrupts from signals input to IRQi pins (i = 0 to 15) Number of sources:16 Interrupt detection method: Detection of low level, falling edge, rising edge, rising and falling edges. One of these detection methods can be set for each source. Digital filter can be used to remove noise.
	Software interrupt	Interrupt generated by writing to a register.One interrupt source	 Interrupt request can be generated by writing to a register. Two interrupt sources
	Event link interrupt	The ELSR8I, ELSR18I or ELSR19I interrupt is generated by an ELC event	
	Interrupt priority level	Specified by registers.	Priority level can be set with interrupt source priority register r (IPRr) (r = 000 to 255).
	Fast interrupt function	Faster interrupt processing of the CPU can be set only for a single interrupt source.	CPU interrupt response time can be reduced. This function can be used for only one interrupt source.
	DTC and DMAC control	The DTC and DMAC can be activated by interrupt sources.	Interrupt sources can be used to start the DTC and DMAC.
	EXDMAC control		 Interrupt selected by software configurable interrupt B source select register 144 or software configurable interrupt A source select register 208 can be used to start EXDMACO. Interrupt selected by software configurable interrupt B source select register 145 or software configurable interrupt A source
Non-	NMI pin	Interrupt from the NMI pin	 select register 209 can be used to start EXDMAC1. Interrupt by the input signal to
maskable interrupts	interrupt	 Interrupt detection: Falling edge/rising edge Digital filter function: Supported 	 Interrupt by the input signal to the NMI pin Interrupt detection: Falling edge/rising edge Digital filter can be used to remove noise.
	Oscillation stop detection interrupt	Interrupt on detection of oscillation having stopped	This interrupt occurs when the main clock oscillator stop is detected.
	WDT underflow/ refresh error interrupt	Interrupt on an underflow of the down counter or occurrence of a refresh error	This interrupt occurs when the watchdog timer (WDT) underflows or a refresh error occurs.

Item		RX231 (ICUb)	RX65N (ICUB)
Non- maskable interrupts	IWDT underflow/ refresh error interrupt	Interrupt on an underflow of the down counter or occurrence of a refresh error	This interrupt occurs when the independent watchdog timer (IWDT) underflows or a refresh error occurs.
	Voltage monitoring 1 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)	Interrupt from voltage detection circuit 1 (LVD1)
	Voltage monitoring 2 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)	Interrupt from voltage detection circuit 2 (LVD2)
	RAM error interrupt		This interrupt occurs when a parity check error is detected in the RAM.
	VBATT voltage monitoring interrupt	Voltage monitoring interrupt of the VBATT	—
Return from low power consumption	Sleep mode	Return is initiated by non-maskable interrupts or any other interrupt source.	Exit sleep mode by any interrupt source.
modes	Deep sleep mode	Return is initiated by non-maskable interrupts or any other interrupt source.	
	All-module clock stop mode		Exit all-module clock stop mode by the NMI pin interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, oscillation stop detection interrupt, USB resume, RTC alarm, RTC period, IWDT, software configurable interrupt 146 to 157).
	Software standby mode	Return is initiated by non-maskable interrupts, IRQ0 to IRQ7 interrupts, or RTC alarm/periodic interrupts.	Exit all-module clock stop mode by the NMI pin interrupt, external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, USB resume, RTC alarm, RTC period, IWDT).
	Deep software standby mode		Exit all-module clock stop mode by the NMI pin interrupt, specific external pin interrupt, or peripheral interrupt (voltage monitoring 1, voltage monitoring 2, USB resume, RTC alarm, RTC period).

Register	Bit	RX231 (ICUb)	RX65N (ICUB)
SWINT2R		—	Software Interrupt 2 Generation Register
DTCERn	—	DTC Transfer Request Enable	DTC Transfer Request Enable
		Register n (n = 027 to 255)	Register n (n = 026 to 255)
IRQCRi		IRQ Control Register i	IRQ Control Register i
		(i = 0 to 7)	(i = 0 to 15)
IRQFLTE1	_	—	IRQ Pin Digital Filter Enable Register 1
IRQFLTC1		_	IRQ Pin Digital Filter Setting Register 1
NMISR	RAMST	—	RAM Error Interrupt Status Flag
	VBATST	VBATT Voltage Monitoring Interrupt Status Flag	—
NMIER	RAMEN		RAM Error Interrupt Enable
	VBATEN	VBATT Voltage Monitoring Interrupt Enable	
NMICLR	VBATCLR	VBAT Clear	—
GRPBE0	—	—	Group BE0 Interrupt Request Register
GRPBL0		—	Group BL0 Interrupt Request Register
GRPBL1		—	Group BL1 Interrupt Request Register
GRPBL2		—	Group BL2 Interrupt Request Register
GRPAL0		—	Group AL0 Interrupt Request Register
GRPAL1		_	Group AL1 Interrupt Request Register
GENBE0		—	Group BE0 Interrupt Request Enable Register
GENBL0		—	Group BL0 Interrupt Request Enable Register
GENBL1		—	Group BL1 Interrupt Request Enable Register
GENBL2		_	Group BL2 Interrupt Request Enable Register
GENAL0		—	Group AL0 Interrupt Request Enable Register
GENAL1	_	—	Group AL1 Interrupt Request Enable Register
GCRBE0	—	—	Group BE0 Interrupt Clear Register
PIBRk	—	—	Software Configurable Interrupt B Request Register k (k = 0h to Ah)
PIARk	_		Software Configurable Interrupt A Request Register k (k = 0h to 5h, Bh)
SLIBXRn		—	Software Configurable Interrupt B Source Select Register Xn (n = 128 to 143)

Register	Bit	RX231 (ICUb)	RX65N (ICUB)
SLIBRn		—	Software Configurable Interrupt B Source Select Register n (n = 144 to 207)
SLIARn	_		Software Configurable Interrupt A Source Select Register n (n = 208 to 255)
SELEXDR		—	EXDMAC Trigger Select Register
SLIPRCR		—	Software Configurable Interrupt Source Select Register Write Protect Register

2.12 Buses

Table 2.22 shows a Comparative Listing of Bus Specifications, Table 2.23 shows a Comparative Listing of External Bus Specifications, and Table 2.24 shows a Comparative Listing of Bus Registers.

Bus Type		RX231	RX65N
CPU buses	Instruction bus	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) Connected to the CPU (for 	 Connected to the CPU (for instructions) Connected to on-chip memory (RAM, expansion RAM*1, code flash memory) Operates in synchronization with the system clock (ICLK) Connected to the CPU (for
		 Connected to the CFO (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK) 	 Connected to the CFO (for operands) Connected to on-chip memory (RAM, expansion RAM*1, code flash memory) Operates in synchronization with the system clock (ICLK)
Memory	Memory bus 1	Connected to RAM	Connected to RAM
buses	Memory bus 2	Connected to ROM	Connected to code flash memory
	Memory bus 3	—	Connected to expansion RAM*1
Internal	Internal main	Connected to the CPU	Connected to the CPU
main buses	bus 1	Operates in synchronization with the system clock (ICLK)	Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	Connected to the DMAC and DTC	 Connected to the DMAC, DTC, EDMAC, SDSI, GLCDC*1, and DRW2D*1
		Connected to on-chip memory (RAM, ROM)	 Connected to on-chip memory (RAM, expansion RAM*1, code flash memory)
		Operates in synchronization with the system clock (ICLK)	Operates in synchronization with the system clock (ICLK)
Internal peripheral buses	Internal peripheral bus 1	 Connected to peripheral modules (DTC, DMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK) 	 Connected to peripheral modules (DTC, DMAC, EXDMAC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK)
	Internal	Connected to peripheral	 (EDMAC operates in synchronization with the BCLK) Connected to peripheral
	peripheral bus 2	 modules (modules other than those connected to internal peripheral buses 1, 3, and 4) Operates in synchronization with 	 modules (modules other than those connected to internal peripheral buses 1, 3, 4, and 5) Operates in synchronization with
		the peripheral-module clock (PCLKB)	the peripheral-module clock (PCLKB)

Table 2.22 Comparative Listing of Bus Specifications

Bus Type		RX231	RX65N
Internal peripheral buses	Internal peripheral bus 3	 Connected to peripheral modules (USB0, CAN, and CTSU) Operates in synchronization with the peripheral-module clock (PCLKB) 	 Connected to peripheral modules (USBb, PDC, and standby RAM) Operates in synchronization with the peripheral-module clock (PCLKB)
	Internal peripheral bus 4	 Connected to peripheral modules (MTU2) Operates in synchronization with the peripheral-module clock 	 Connected to peripheral modules (EDMAC, ETHERC, MTU3, SCIi, RSPI, and AES) Operates in synchronization with the peripheral-module clock
	Internal peripheral bus 5	(PCLKA) Reserved area	 (PCLKA) Connected to peripheral modules (GLCDC, DRW2D)*1 Operates in synchronization with the peripheral-module clock (PCLKA)*1
	Internal peripheral bus 6	 Connected to the flash control module and E2 data flash Operates in synchronization with the FlashIF clock (FCLK) 	 Connected to code flash (in P/E) and data flash memory*1 Operates in synchronization with the FlashIF clock (FCLK)
External bus CS area	CS area	 Connected to the external devices Operates in synchronization with the external-bus clock (BCLK) 	 Connected to the external devices Operates in synchronization with the external-bus clock (BCLK)
	SDRAM area		 Connected to the SDRAM Operates in synchronization with the SDRAM clock (SDCLK)

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

Table 2.23	Comparative Listing of External Bus Specifications	
------------	--	--

Item	RX231	RX65N
External address space	 An external address space is divided into four CS areas (CS0 to CS3) for management. 	An external address space is divided into eight CS areas (CS0 to CS7) and the SDRAM area (SDCS) for management.
	 Chip select signals can be output for each area. Bus width can be set for each area. Separate bus: An 8- or 16-bit bus space is selectable. Address/data multiplexed bus: An 8 or 16-bit bus space is selectable. An endian mode can be specified for each area. 	 Chip select signals can be output for each area. Bus width can be set for each area. Separate bus: An 8- or 16-, or 32-bit*1 bus space is selectable. Address/data multiplexed bus: An 8 or 16-bit bus space is selectable. An endian mode can be specified for each area.

Item	RX231	RX65N
CS area controller	 Recovery cycles can be inserted. Read recovery: Up to 15 cycles Write recovery: Up to 15 cycles Cycle wait function: Wait for up to 31 cycles (page access: up to 7 cycles) Wait control can be used to set up the following. Timing of assertion and negation for chip-select signals (CS0# to CS3#) The timing of assertion of the read signal (RD#) and write signals (WR0#/WR# and WR1#) The timing with which data output starts and ends Write access mode: Single write strobe mode/byte strobe mode Separate bus or address/data multiplexed bus can be set for each 	 Recovery cycles can be inserted. Read recovery: Up to 15 cycles Write recovery: Up to 15 cycles Cycle wait function: Wait for up to 31 cycles (page access: up to 7 cycles) Wait control can be used to set up the following. Timing of assertion and negation for chip-select signals (CS0# to CS7#) The timing of assertion of the read signal (RD#) and write signals (WR0#/WR# and WR1# to WR3#*1) The timing with which data output starts and ends Write access mode: Single write strobe mode/byte strobe mode Separate bus or address/data multiplexed bus can be set for each
SDRAM area controller	area	 area Multiplexing output of row address/column address (8, 9, 10, or 11 bits) Self-refresh and auto-Refresh selectable CAS latency can be specified from one to three cycles
Write buffer function	When write data from the bus master has been written to the write buffer, write access by the bus master is completed.	When write data from the bus master has been written to the write buffer, write access by the bus master is completed.
Frequency	The CS area controller (CSC) operates in synchronization with the external-bus clock (BCLK).	 The CS area controller (CSC) operates in synchronization with the external-bus clock (BCLK)*². The SDRAM area controller (SDRAMC) operates in synchronization with the SDRAM clock (SDCLK).

Notes: 1. Can be used for products with at least 1.5 MB of code flash memory.

2. The BCLK and the SDCLK should be operated with the same frequency when the SDRAM is in use.

Register	Bit	RX231	RX65N
CSnCR		CSn Control Register (n = 0 to 3)	CSn Control Register (n = 0 to 7)
	BSIZE[1:0]	External Bus Width Select	External Bus Width Select
		b5b4	b5b4
		0 0: A 16-bit bus space is selected	0 0: A 16-bit bus space is selected
		0 1: Setting prohibited	0 1: Setting prohibited/
			A 32-bit bus space is
			selected*1
		1 0: An 8-bit bus space is selected	1 0: An 8-bit bus space is selected
		1 1: Setting prohibited	1 1: Setting prohibited
CSnREC		CSn Recovery Cycle Register	CSn Recovery Cycle Register
		(n = 0 to 3)	(n = 0 to 7)
CSnMOD		CSn Mode Register	CSn Mode Register
<u></u>		(n = 0 to 3)	(n = 0 to 7)
CSnWCR1	—	CSn Wait Control Register 1	CSn Wait Control Register 1
00.00000		(n = 0 to 3)	(n = 0 to 7)
CSnWCR2		CSn Wait Control Register 2	CSn Wait Control Register 2
SDCCR		(n = 0 to 3)	(n = 0 to 7)
		— 	SDC Control Register
SDCMOD		<u> </u>	SDC Mode Register
SDAMOD		<u>—</u>	SDRAM Access Mode Register
SDSELF			SDRAM Self-Refresh Control
SDRFCR			Register SDRAM Refresh Control Register
SDRFEN			SDRAM Auto-Refresh Control
SURFEIN			Register
SDICR			SDRAM Initialization Sequence
OBIOIR			Control Register
SDIR			SDRAM Initialization Register
SDADR			SDRAM Address Register
SDTR			SDRAM Timing Register
SDMOD			SDRAM Mode Register
SDSR			SDRAM Status Register
BERSR1	MST[2:0]	Bus Master Code	Bus Master Code
DEROIL			
		b6 b4	b6 b4
		0 0 0: CPU	0 0 0: CPU
		0 0 1: Reserved	0 0 1: Reserved
		0 1 0: Reserved	0 1 0: Reserved
		0 1 1: DTC/DMAC	0 1 1: DTC/DMAC
		1 0 0: Reserved	1 0 0: Reserved
		1 0 1: Reserved	1 0 1: Reserved
		1 1 0: Reserved	1 1 0: Extended bus master
		1 1 1: Reserved	1 1 1: EXDMAC
EBMAPCR			Extended bus master priority control
			register*1

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

2.13 DMA Controller

Table 2.25 shows a Comparative Listing of DMA Controller Specifications, and Table 2.26 shows a Comparative Listing of DMA Controller Registers.

Item		RX231 (DMACA)	RX65N (DMACAa)
Number of channels		4 (DMACm (m = 0 to 3))	8 (DMACm (m = 0 to 7))
Transfer space	ce	512 MB (00000000h to 0FFFFFFFh and F0000000h to FFFFFFFh, excluding reserved areas)	512 MB (00000000h to 0FFFFFFFh and F0000000h to FFFFFFFh, excluding reserved areas)
Maximum transfer data count DMAC request sources		 1M data (Maximum number of transfers in block transfer mode: 1,024 data × 1,024 blocks) Activation source selectable for each channel Software trigger Interrupt requests from peripheral modules or trigger input to external interrupt input pins 	 64 MB (Maximum number of transfers in block transfer mode: 1,024 data × 65,536 blocks) Request source selectable for each channel Software trigger Interrupt requests from peripheral modules or trigger input to external interrupt input pins
Channel prior	rity	Channel 0 > Channel 1 > Channel 2 > Channel 3 (Channel 0: highest)	Channel 0 > Channel 1 > Channel 2 > Channel 3 > Channel 7 (Channel 0: highest)
Transfer	1 data unit	Bit length: 8, 16, 32 bits	Bit length: 8, 16, 32 bits
data	Block size	Number of data: 1 to 1,024	Number of data: 1 to 1,024
Transfer modes	Normal transfer mode	 One data transfer by one DMA transfer request Free running mode (setting in which total number of data transfers is not specified) settable 	 One data transfer by one DMA transfer request Free running mode (setting in which total number of data transfers is not specified) settable
	Repeat transfer mode Block transfer mode	 One data transfer by one DMA transfer request Program returns to the transfer start address on completion of the repeat size of data transfer specified for the transfer source or destination Maximum settable repeat size: 1,024 One block data transfer by one DMA transfer request 	 One data transfer by one DMA transfer request Program returns to the transfer start address on completion of the repeat size of data transfer specified for the transfer source or destination Maximum settable repeat size: 1,024 One block data transfer by one DMA transfer request
		Maximum settable block size: 1,024 data	 Maximum settable block size: 1,024 data

Table 2.25	Comparative Listing of DMA Controller Specifications
------------	---

ltem		RX231 (DMACA)	RX65N (DMACAa)
Selective functions	Extended repeat area function	 Function in which data can be transferred by repeating the address values in the specified range with the upper bit values in the transfer address register fixed Area of 2 bytes to 128 MB separately settable as extended repeat area for transfer source and destination 	 Function in which data can be transferred by repeating the address values in the specified range with the upper bit values in the transfer address register fixed Area of 2 bytes to 128 MB separately settable as extended repeat area for transfer source and destination
Interrupt request	Transfer end interrupt	Generated on completion of transferring data volume specified by the transfer counter.	Generated on completion of transferring data volume specified by the transfer counter.
	Transfer escape end interrupt	Generated when the repeat size of data transfer is completed or the extended repeat area overflows.	Generated when the repeat size of data transfer is completed or the extended repeat area overflows.
Event link function		Event link request is generated after one data transfer (for block, after one block transfer).	An event link request is generated after each data transfer (for block transfer, after each block is transferred).
Power consumption reduction function		Module stop state can be set.	Module-stop state can be set.

Table 2.26 Comparative Listing of DMA Controller Registers

Register	Bit	RX231 (DMACA)	RX65N (DMACAa)
DMCRB	—	DMA Block Transfer Count Register	DMA Block Transfer Count Register
		(b9 to b0)	(b15 to b0)
DMIST	—	—	DMAC74 Interrupt Status Monitor
			Register

2.14 Data Transfer Controller

Table 2.27 shows a Comparative Listing of Data Transfer Controller Specifications, and Table 2.28 shows a Comparative Listing of Data Transfer Controller Registers.

Item	RX231 (DTCa)	RX65N (DTCb)
Transfer modes	 Normal transfer mode A single activation leads to a single data transfer. 	 Normal transfer mode A single transfer request leads to a single data transfer.
	 Repeat transfer mode A single activation leads to a single data transfer. The transfer address is returned to the transfer start address after the number of data transfers corresponding to "repeat size". The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, 1024 bytes. Block transfer mode A single activation leads to the transfer of a single block. The maximum block size is 	 Repeat transfer mode A single transfer request leads to a single data transfer. The transfer address is returned to the transfer start address after the number of data transfers corresponding to "repeat size". The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, 1024 bytes. Block transfer mode A single transfer request leads to the transfer of a single block. The maximum block size is
	256×32 bits = 1024 bytes.	256×32 bits = 1024 bytes.
Transfer	Channel transfer corresponding to the	Channel transfer corresponding to the

	 transfer of a single block. The maximum block size is 256 × 32 bits = 1024 bytes. 	 the transfer of a single block. The maximum block size is 256 × 32 bits = 1024 bytes.
Transfer channels	 Channel transfer corresponding to the interrupt source is possible (transferred by the DTC activation request from the ICU). Multiple data can be transferred on a single activation source (chain transfer). Either "executed when the counter is 0" or "always executed" can be selected for chain transfer. 	 Channel transfer corresponding to the interrupt source is possible (transferred by the DTC activation request from the ICU). Multiple data can be transferred on a single activation source (chain transfer). Either "executed when the counter is 0" or "always executed" can be selected for chain transfer.
Transfer space	 In short-address mode: 16 MB (Areas from 0000 0000h to 007F FFFFh and FF80 0000h to FFFF FFFFh except reserved areas) In full-address mode: 4 GB (Area from 0000 0000h to FFFF FFFFh except reserved areas) 	 In short-address mode: 16 MB (Areas from 0000 0000h to 007F FFFFh and FF80 0000h to FFFF FFFFh except reserved areas) In full-address mode: 4 GB (Area from 0000 0000h to FFFF FFFFh except reserved areas)
Data transfer units	 Single data: 1 byte (8 bits), 1 word (16 bits), 1 longword (32 bits) Single block size: 1 to 256 data 	 Single data: 1 byte (8 bits), 1 word (16 bits), 1 longword (32 bits) Single block size: 1 to 256 data
CPU interrupt requests	 An interrupt request can be generated to the CPU on a DTC activation interrupt. An interrupt request can be generated to the CPU after a single data transfer. An interrupt request can be generated to the CPU after data transfer of specified volume. 	 An interrupt request can be generated to the CPU on a request source for a data transfer. An interrupt request can be generated to the CPU after a single data transfer. An interrupt request can be generated to the CPU after data transfer of specified volume.

ltem	RX231 (DTCa)	RX65N (DTCb)
Event link activation	An event link request is generated after one data transfer (for block, after one block transfer).	An event link request is generated after one data transfer (for block, after one block transfer).
Read skip	Transfer information read skip can be executed.	Reading of the transfer information can be skipped when the same transfer is repeated.
Write-back skip	When "fixed" is selected for transfer source address or transfer destination address, write-back skip is executed.	Write-back of the transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.
Write-back disable		Allows disabling the write-back of transfer information.
Chain transfer	 Multiple types of data transfers can sequentially be executed in response to a single request. Either "performed only when the transfer counter becomes 0" or "every time" can be selected. 	 Multiple types of data transfers can sequentially be executed in response to a single request. Either "performed only when the transfer counter becomes 0" or "every time" can be selected.
Sequence transfer		 A series of complicated transfers can be registered as a sequence. Any sequence can be selected by the transfer data and executed. Only one trigger source can be set at a time. Up to 256 sequences for a single trigger source The data that is initially transferred in response to a transfer request determines a sequence The whole sequence can be executed on a single request, or be suspended in the middle of the sequence and resumed on the next transfer request (division of sequence).
Displacement addition	—	The displacement value can be added to the transfer source address (for each transfer information)
Low power consumption function	Module stop state can be set.	It is possible to specify the module stop state.

Table 2.28 Comparative Listing of Data Transfer Controller Registers

Register	Bit	RX231 (DTCa)	RX65N (DTCb)
MRA	WBDIS		Write-back Disable
MRB	SQEND	—	Sequence Transfer End
	INDX		Index Table Reference
MRC			DTC Mode Register C
DTCIBR			DTC Index Table Base Register
DTCOR			DTC Operation Register
DTCSQE		—	DTC Sequence Transfer Enable Register
DTCDISP		—	DTC Address Displacement Register

2.15 Event Link Controller

Table 2.29 shows a Comparative Listing of Event Link Controller Specifications, Table 2.30 shows a Comparative Listing of Event Link Controller Registers, and Table 2.31 shows Correspondence between the ELSRn Register and the Peripheral Modules.

Table 2.29 Comparative Listing of Event Link Controller Specifications
--

Item	RX231 (ELC)	RX65N (ELC)
Event link function	 63 types of event signals can be directly connected to modules. The operation of timer modules can be selected when an event is input to the timer module. Event link operation is possible for port B and port E. — Single port: An event link can be set for a single bit specified in a port. — Port group: An event link can be set for a group of single bits specified within eight I/O ports. 	 82 event signals can be linked to peripheral modules directly. The operation of peripheral timer modules at event signal input is selectable. Event link operation on port B or port E is supported. Single port: Event link operation can be enabled for a single specified port. Port group: Event link operation can be enabled for multiple specified ports within a group of up to eight ports.
Low power consumption function	Module stop state can be set.	Ability to transition to module stop state.

Table 2.30 Comparative Listing of Event Link Controller Registers

Register	Bit	RX231 (ELC)	RX65N (ELC)
ELSRn	_	Event Link Setting Register n (n = 1 to 4, 7, 8, 10, 12, 14 to 16, 18 to 29)	Event Link Setting Register n (n = 0, 3, 4, 7, 10 to 13, 15, 16, 18 to 28, 33, 35 to 38, 45)
	ELS[7:0]	Event Link Select	Event Link Select
		b7 b0 00000000:	b7 b0 00000000:
		Event output to the corresponding peripheral module is disabled. 00001000 to 01101010: Set the number for the event signal to be linked.	Event output to the corresponding peripheral module is disabled. 00000001 to 10111101: Set the number for the event signal to be linked.
		Settings other than above are prohibited.	Settings other than above are prohibited.
ELOPA	MTU0MD[1:0]		MTU0 Operation Select
	MTU1MD[1:0]	MTU1 Operation Select	—
	MTU2MD[1:0]	MTU2 Operation Select	—
ELOPC	LPTMD[1:0]	LPT Operation Select	_
ELOPD	TMR1MD[1:0]		TMR1 Operation Select
	TMR3MD[1:0]	—	TMR3 Operation Select
ELOPF	_	_	Event Link Option Setting Register F
ELOPH		_	Event Link Option Setting Register H

Register	RX231	RX65N
ELSR0	—	MTU0
ELSR1	MTU1	—
ELSR2	MTU2	—
ELSR3	MTU3	MTU3
ELSR4	MTU4	MTU4
ELSR7	CMT1	CMT1
ELSR8	ICU (LPT dedicated interrupt)	—
ELSR10	TMR0	TMR0
ELSR11		TMR1
ELSR12	TMR2	TMR2
ELSR13		TMR3
ELSR14	CTSU	—
ELSR15	S12AD	S12AD
ELSR16	DA0	DA0
ELSR18	ICU (Interrupt 1)	ICU (Interrupt 1)
ELSR19	ICU (Interrupt 2)	ICU (Interrupt 2)
ELSR20	Output port group 1	Output port group 1
ELSR21	Output port group 2	Output port group 2
ELSR22	Input port group 1	Input port group 1
ELSR23	Input port group 2	Input port group 2
ELSR24	Single port 0	Single port 0
ELSR25	Single port 1	Single port 1
ELSR26	Single port 2	Single port 2
ELSR27	Single port 3	Single port 3
ELSR28	Clock source switching to LOCO	Clock source switching to LOCO
ELSR29	POE	—
ELSR33		CMTW0
ELSR35		TPU0
ELSR36		TPU1
ELSR37		TPU2
ELSR38	—	TPU3
ELSR45		S12AD1

 Table 2.31
 Correspondence between the ELSRn Register and the Peripheral Modules

2.16 I/O Ports

Table 2.32 and Table 2.33 show a Comparative Listing of I/O Ports Specifications for each package, and Table 2.34 shows a Comparative Listing of I/O Port Registers.

Port	RX231 (100-Pin)	RX65N (100-Pin)	
PORT0	P03, P05, P07	P05, P07	
PORT1	P12 to P17	P12 to P17	
PORT2	P20 to P27	P20 to P27	
PORT3	P30 to P37	P30 to P37	
PORT4	P40 to P47	P40 to P47	
PORT5	P50 to P55	P50 to P55	
PORTA	PA0 to PA7	PA0 to PA7	
PORTB	PB0 to PB7	PB0 to PB7	
PORTC	PC0 to PC7	PC0 to PC7	
PORTD	PD0 to PD7	PD0 to PD7	
PORTE	PE0 to PE7	PE0 to PE7	
PORTH	PH0 to PE3	—	
PORTJ	PJ3	PJ3	

Table 2.32	Comparative Listing of I/O Ports (100-Pin) Specifications
------------	---

Table 2.33	Comparative Listing	g of I/O Ports ((64-Pin) S	pecifications

Port	RX231 (64-Pin)	RX651 (64-Pin) ^{*1}
PORT0	P03, P05	P05
PORT1	P14 to P17	P12, P13, P16, P17
PORT2	P26, P27	P26, P27
PORT3	P30, P31, P35 to P37	P30, P31, P34 to P37
PORT4	P40, P44, P46	P40 to P43
PORT5	P54, P55	P53
PORTA	PA0, PA1, PA3, PA4, PA6	PA1, PA2, PA4, PA6, PA7
PORTB	PB0, PB1, PB3, PB5 to PB7	PB5 to PB7
PORTC	PC2 to PC7	PC0, PC1, PC4 to PC7
PORTD	—	PD2 to PD7
PORTE	PE0 to PE5	PE0 to PE2, PE6, PE7
PORTH	PH0 to PH3	—
PORTJ	—	—

Note: 1. The RX65N is not available in 64-pin package versions.

Register	Bit	RX231	RX65N
ODR0	B2, B3	Pm1 Output Type Select	Pm1 Output Type Select
		For pins other than the port PE1 pin	For pins other than the port PE1 pin
		b2 0: CMOS output	b2 0: CMOS output
		1: N-channel open-drain	1: N-channel open-drain
		b3 This bit is read as 0. The write value should be 0.	b3 This bit is read as 0. The write value should be 0.
		PE1	For port PE1 pin
		b3 b2	b3 b2
		0 0: CMOS output	0 0: CMOS output
		0 1: N-channel open-drain	0 1: NMOS open-drain output
		1 0: P-channel open-drain	1 0: PMOS open-drain output
		1 1: Hi-Z	1 1: Setting prohibited
PSRA		Port switching register A	
PSRB		Port switching register B	_
DSCR2		—	Drive Capacity Control Register 2

Table 2.34 Comparative Listing of I/O Port Registers

2.17 Multi-Function Pin Controller

Table 2.35 shows a Comparative Listing of Realtime Clock Registers.

Register	Bit	RX231 (MPC)	RX65N (MPC)
PmnPFS	—	Refer to the user's manual for descriptions of the pin function control	
		registers.	
PFCSS0	—	—	CS Output Pin Select Register 0
PFCSS1	—	—	CS Output Pin Select Register 1
PFBCR0	ADRHMS	—	A16 to A23 Output Enable
	ADRHMS2	—	A18 to A20 Output Enable
	BCLKO	—	BCLK forced output bit
	DH32E	—	D16 to D31 Output Enable*1
	WR32BC32E	—	WR3#/BC3# and WR2#/BC2#
			Output Enable*1
PFBCR1	ALES	—	ALE select bit
	MDSDE	—	SDRAM Pin Enable
	DQM1E	—	DQM1 Enable
	SDCLKE	—	SDCLK Enable
PFBCR2	—	—	External Bus Control Register 2*1
PFBCR3	—	—	External Bus Control Register 3*1
PFENET	—	—	Ethernet Control Register

Table 2.35 Comparative Listing of Multi-Function Pin Controller Registers

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

2.18 16-Bit Timer Pulse Unit

Table 2.36 shows a Comparative Listing of 16-Bit Timer Pulse Unit Specifications.

Item	RX231 (TPUa)	RX65N (TPUa)
Pulse input/output	Maximum 16	Maximum 16
Count clocks	Seven or eight types are provided for each channel.	Seven or eight types are provided for each channel.
Available operations	 Waveform output at compare match Input capture function (noise filters can be set) Counter clear operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match and input capture Synchronous input/output for registers by counter synchronous operation Maximum of 15-phase PWM output by combination with synchronous operation Cascaded operation 	 Waveform output at compare match Input capture function (noise filters can be set) Counter clear operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match and input capture Synchronous input/output for registers by counter synchronous operation Maximum of 15-phase PWM output by combination with synchronous operation Cascaded operation
Buffer operation	Channels 0, 3Automatic transfer of register data	Channels 0 and 3Automatic transfer of register data
Phase coefficient mode	Channels 1, 2, 4, 5	Channels 1, 2, 4, and 5
Interrupt sources	26 sources	26 sources
Generation of trigger		Programmable pulse generator (PPG) output trigger can be generated.
	Conversion start trigger for the A/D converter can be generated.	Conversion start trigger for the A/D converter can be generated.
Event link function (output)		Six types of event signal can be output to the ELC. Compare match A (TPU0 to TPU3) Compare match B (TPU0 to TPU3) Compare match C (TPU0, TPU3) Compare match D (TPU0, TPU3) Overflow (TPU0 to TPU3) Underflow (TPU1, TPU2)
Event link function (input)		 Any of the three operations in response to event input is possible. Starting counts (TPU0 to TPU3) Restarting counts (TPU0 to TPU3) Input capture operation (TPU0 to TPU3)
Low power consumption function	Module stop state can be set.	Ability to transition to module stop state.

Table 2.36	Comparative Listing of 16-Bit Timer Pulse Unit Specific	ations
	Comparative Eleting of the Bit Times Tales offic opeonie	anono

2.19 8-Bit Timer

Table 2.37 shows a Comparative Listing of 8-Bit Timer Specifications, and Table 2.38 shows a Comparative Listing of 8-Bit Timer Registers.

ltem	RX231 (TMR)	RX65N (TMR)	
Count clocks	 Frequency divided clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1,024, PCLK/8,192 External clock 	 Frequency-divided clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1,024, PCLK/8,192 External clock 	
Number of channels	(8 bits × 2 channels) × 2 units	(8 bits × 2 channels) × 2 units	
Compare match	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B) 	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B) 	
Counter clear	Selected by compare match A or B, or an external reset signal.	Selected by compare match A or B, or an external reset signal.	
Timer output	Output pulses with a desired duty cycle or PWM output	Output pulses with a desired duty cycle or PWM output	
Cascading of two channels	 16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits) 	 16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits) 	
	Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches).	Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches).	
Interrupt sources	Compare match A, compare match B, and overflow	Compare match A, compare match B, and overflow	
Event link function (output)	Compare match A, compare match B, and overflow (TMR0, TMR2)	Compare match A, compare match B, and overflow (TMR0 to TMR3)	
Event link function (input)	One of the following three operations proceeds in response to an event reception: (1) Counting start operation (TMR0,	One of the following three operations proceeds in response to an event reception: (1) Counting start operation (TMR0 to	
	TMR2) (2) Event counting operation (TMR0, TMR2)	TMR3) (2) Event counting operation (TMR0 to TMR3)	
	(3) Counting restart operation (TMR0, TMR2)	(3) Counting restart operation (TMR0 to TMR3)	
DTC activation	DTC can be activated by compare match A interrupts or compare match B interrupts.	DTC can be activated by compare match A interrupts or compare match B interrupts.	
A/D conversion start trigger of the A/D converter		Compare match A of TMR0 or TMR2	

Item	RX231 (TMR)	RX65N (TMR)
Capable of generating baud rate clock for SCI	Generates baud rate clock for SCI	Generation of baud rate clock for SCI
Low power consumption function	Module stop state can be set.	Module stop state can be set.

Table 2.38 Comparative Listing of 8-Bit Timer Registers

Register	Bit	RX231 (TMR)	RX65N (TMR)
TCSR	ADTE		A/D Trigger Enable

2.20 Realtime Clock

Table 2.39 shows a Comparative Listing of Realtime Clock Specifications, and Table 2.40 shows a Comparative Listing of Realtime Clock Registers.

Item	RX231 (RTCe)	RX65N (RTCd)
Count modes	Calendar count mode/binary count mode	Calendar count mode/binary count mode
Count source	Sub-clock (XCIN)	Sub-clock (XCIN) or main clock (EXTAL)
Clock and calendar	Calendar count mode	Calendar count mode
functions	 Year, month, date, day-of-week, hour, minute, second are counted, BCD display 12 hours/24 hours mode switching function 30 seconds adjustment function (a number less than 30 is rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute) Automatic adjustment function for leap years Binary count mode Count seconds in 32 bits, binary display 	 Year, month, date, day-of-week, hour, minute, second are counted, BCD display 12 hours/24 hours mode switching function 30 seconds adjustment function (a number less than 30 is rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute) Automatic adjustment function for leap years Binary count mode Count seconds in 32 bits, binary display
	 Common to both modes Start/stop function The sub-second digit is displayed in binary units (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, or 64 Hz). Clock error correction function Clock (1 Hz/64 Hz) output 	 Common to both modes Start/stop function The sub-second digit is displayed in binary units (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, or 64 Hz). Clock error correction function Clock (1 Hz/64 Hz) output
Interrupt	 Alarm interrupt (ALM) As an alarm interrupt condition, selectable which of the below is compared with: — Calendar count mode: Year, month, date, day-of-week, hour, minute, or second can be selected — Binary count mode: Each bit of the 32-bit binary counter Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/256 second can be selected as an interrupt period. 	 Alarm interrupt (ALM) As an alarm interrupt condition, selectable which of the below is compared with: — Calendar count mode: Year, month, date, day-of-week, hour, minute, or second can be selected — Binary count mode: Each bit of the 32-bit binary counter Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, or 1/256 second can be selected as an interrupt period.

Table 2.39	Comparative Listing of Realtime Clock Specifications
------------	--

Item	RX231 (RTCe)	RX65N (RTCd)
Interrupt	Carry interrupt (CUP) An interrupt is generated at either of the following timings: When a corru from the 64 Hz	Carry interrupt (CUP) An interrupt is generated at either of the following timings: When a corrupt from the 64 kiz
	 When a carry from the 64-Hz counter to the second counter is generated. When the 64-Hz counter is changed and the R64CNT register is read at the same time. Recovery from software standby mode can be performed by an alarm interrupt or periodic interrupt 	 When a carry from the 64-Hz counter to the second counter is generated. When the 64-Hz counter is changed and the R64CNT register is read at the same time. Recovery from software standby mode or deep software standby mode can be performed by an alarm interrupt or periodic interrupt
Time-capture function	Times can be captured when the edge of the time capture event input pin is detected. For every event input, month, date, hour, minute, and second are captured or 32- bit binary counter value is captured.	Times can be captured when the edge of the time capture event input pin is detected. For every event input, month, date, hour, minute, and second are captured or 32- bit binary counter value is captured.
Event link function	Periodic event output	Periodic event output

Table 2.40 Comparative Listing of Realtime Clock Registers

Register	Bit	RX231 (RTCe)	RX65N (RTCd)
RCR4	—		RTC Control Register 4
RFRH/RFRL	—		Frequency Register H/L

2.21 Watchdog Timer

Table 2.41 shows a Comparative Listing of Watchdog Timer Specifications, and Table 2.42 shows a Comparative Listing of Watchdog Timer Registers.

Item	RX231 (WDTA)	RX65N (WDTA)
Count source	Peripheral module clock (PCLK)	Peripheral module clock (PCLK)
Clock division ratio	Divide by 4, 64, 128, 512, 2,048, or 8,192	Divide by 4, 64, 128, 512, 2,048, or 8,192
Counter operation	Counting down using a 14-bit down- counter	Counting down using a 14-bit down- counter
Conditions for starting the counter	 Auto-start mode: Counting automatically starts after a reset or after an underflow or refresh error occurs 	Auto-start mode: Counting starts automatically after a reset.
	 Register start mode: Counting is started by refresh operation (writing to the WDTRR register) 	 Register start mode: Counting is started by refreshing the counter (writing 00h and then FFh to the WDTRR register).
Conditions for stopping the counter	 Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error is generated 	 Reset (the down-counter and other registers return to their initial values) Low power consumption state Underflow or refresh error (register start mode only)
Window function	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)
Watchdog timer Reset sources	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	 Down-counter underflows Refreshing outside the refresh- permitted period (refresh error)
Interrupt sources	 Non-maskable interrupt sources Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	 Non-maskable interrupt/interrupt sources Down-counter underflows Refreshing outside the refresh- permitted period (refresh error)
Reading the counter value	The down-counter value can be read by the WDTSR register.	The down-counter value can be read by the WDTSR register.

Table 2.42	Comparative Listing of Watchdog Timer Registers
------------	---

Register	Bit	RX231 (WDTA)	RX65N (WDTA)
WDTRCR	RSTIRQS	Reset Interrupt Request Selection	Reset Interrupt Request Selection
		0: Non-maskable interrupt request output is enabled	0: Non-maskable interrupt request or interrupt request output is enabled
		1: Reset output is enabled	1: Reset output is enabled

2.22 Independent Watchdog Timer

Table 2.43 shows a Comparative Listing of Independent Watchdog Timer Specifications, and Table 2.44 shows a Comparative Listing of Independent Watchdog Timer Registers.

Item	RX231 (IWDTa)	RX65N (IWDTa)
Count source	IWDT-dedicated clock (IWDTCLK)	IWDT-dedicated clock (IWDTCLK)
Clock division ratio	Divide by1, 16, 32, 64, 128, or 256	Divide by 1, 16, 32, 64, 128, or 256
Counter operation	Counting down using a 14-bit down- counter	Counting down using a 14-bit down- counter
Conditions for starting the counter	 Counting automatically starts after a reset (auto-start mode) Counting is started (register start mode) by refreshing the counter (writing 00h and then FFh to the IWDTRR register). 	 Auto-start mode: Counting starts automatically after a reset. Register start mode: Counting is started by refreshing the counter (writing 00h and then FFh to the IWDTRR register).
Conditions for stopping the counter	 Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error is generated Counting restarts (In auto-start mode, counting automatically restarts after a reset or after a non-maskable interrupt request is output. In register start mode, counting restarts after 	 Reset (the down-counter and other registers return to their initial values) Low power consumption state (by means of register setting) Underflow or refresh error (register start mode only)
Window function	refreshing.)Window start and end positions can be specified (refresh-permitted and refresh- specified (refresh-permitted and refresh-	
Watchdog timer Reset sources	 prohibited periods) Down-counter underflows Refreshing outside the refresh- permitted period (refresh error) 	 prohibited periods) Down-counter underflows Refreshing outside the refresh- permitted period (refresh error)
Interrupt sources	 Non-maskable interrupt sources Down-counter underflows When refreshing is done outside the refresh-permitted period (refresh error) 	 Non-maskable interrupt/interrupt sources Down-counter underflows Refreshing outside the refresh- permitted period (refresh error)
Reading the counter value	The down-counter value can be read by the IWDTSR register.	The down-counter value can be read by the IWDTSR register.
Event link function (output)	Down-counter underflow event outputRefresh error event output	Down-counter underflow event outputRefresh error event output
Output signal (internal signal)	 Reset output Interrupt request output Sleep mode count stop control output 	 Reset output Interrupt request output Sleep mode count stop control output

 Table 2.43
 Comparative Listing of Independent Watchdog Timer Specifications

Item	RX231 (IWDTa)	RX65N (IWDTa)
Auto-start mode (controlled by option function select register 0 (OFS0))	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the reset output or interrupt request output (OFS0.IWDTRPES[1:0]bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (OFS0.IWDTSLCSTP bit) 	 Selecting the clock frequency division ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPSS[1:0]bits) Selecting the reset output or interrupt request output (OFS0.IWDTRPES[1:0]bits) Selecting the reset output or interrupt request output (OFS0.IWDTRPES[1:0]bits) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all-module clock stop mode
Register start mode (controlled by the IWDT registers)	 Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the vindow end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (IWDTCSTPR.SLCSTP bit) 	 (OFS0.IWDTSLCSTP bit) Selecting the clock frequency division ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the vindow end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, deep software standby mode, or all-module clock stop mode (IWDTCSTPR.SLCSTP bit)

Register	Bit	RX231 (IWDTa)	RX65N (IWDTa)
IWDTCR	TOPS[1:0]	Timeout Period Select	Timeout Period Select
		b1 b0	b1 b0
		0 0: 128 cycles (007Fh)	0 0: 1024 cycles (03FFh)
		0 1: 512 cycles (01FFh)	0 1: 4096 cycles (0FFFh)
		1 0: 1024 cycles (03FFh)	1 0: 8192 cycles (1FFFh)
		1 1: 2048 cycles (07FFh)	1 1: 16384 cycles (3FFFh)
IWDTRCR	RSTIRQS	Reset Interrupt Request Select	Reset Interrupt Request Select
		0: Non-maskable interrupt request output is enabled.1: Reset output is enabled.	0: Non-maskable interrupt request or interrupt request output is enabled.
			1: Reset output is enabled.
IWDTCSTPR	SLCSTP	Sleep Mode Count Stop Control	Sleep Mode Count Stop Control
		0: Count stop is disabled.	0: Count stop is disabled.
		1: Count is stopped at a transition to sleep mode, software standby mode, or deep sleep mode.	1: Count is stopped at a transition to sleep mode, software standby mode, deep software standby mode, or all-module clock stop mode.

Table 2.44	Comparative Listing of Independent Wat	chdog Timer Registers

2.23 USB 2.0 Host/Function Module

Table 2.45 shows a Comparative Listing of USB 2.0 Host/Function Module Specifications, and Table 2.46 shows a Comparative Listing of USB 2.0 Host/Function Module Registers.

Item	RX231 (USBd)	RX65N (USBb)
Features	 USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated. Host controller, function controller, and On-The-Go (OTG) are supported (one channel) The host controller and the function controller can be switched by software. Self-power mode or bus power mode can be selected. BC 1.2 (Battery Charging Specification Revision 1.2) is supported. 	 USB Device Controller (UDC) and transceiver for USB 2.0 are incorporated. Host controller, function controller, and On-The-Go (OTG) are supported (one channel) The host controller and the function controller can be switched by software. Self-power mode or bus power mode can be selected.
	 When the host controller is selected: Full-speed transfer (12 Mbps) and low-speed transfer (1.5 Mbps) are supported Automatic scheduling for SOF and packet transmissions Programmable intervals for isochronous and interrupt transfers 	 When the host controller is selected: Full-speed transfer (12 Mbps) and low-speed transfer (1.5 Mbps) are supported Automatic scheduling for SOF and packet transmissions Programmable intervals for isochronous and interrupt transfers Multiple peripheral devices can be connected for communication via a one-stage hub.
	 When the function controller is selected: Full-speed transfer (12 Mbps) and low-speed transfer (1.5 Mbps) are supported Control transfer stage control function Device state control function Auto response function for SET_ADDRESS request SOF interpolation function 	 When the function controller is selected: Full-speed transfer (12 Mbps)*1 is supported Control transfer stage control function Device state control function Auto response function for SET_ADDRESS request SOF interpolation function
Communication data transfer types	 Control transfer Bulk transfer Interrupt transfer Isochronous transfer 	 Control transfer Bulk transfer Interrupt transfer Isochronous transfer

 Table 2.45
 Comparative Listing of USB 2.0 Host/Function Module Specifications

ltem	RX231 (USBd)	RX65N (USBb)
Pipe configuration	 Buffer memory for USB communication is provided. Up to 10 pipes can be selected (including the default control pipe). PIPE1 to PIPE9 can be assigned any endpoint number. Transfer conditions that can be set for each pipe: — PIPE0: Control transfer, 64-byte single buffer — PIPE1 and PIPE2: 64-byte double buffer can be specified for bulk transfer 256-byte double buffer for isochronous transfer — PIPE3 to PIPE5: Bulk transfer, 64-byte double buffer — PIPE6 to PIPE9: Interrupt transfer, 64-byte single buffer 	 Buffer memory for USB communication is provided. Up to 10 pipes can be selected (including the default control pipe). PIPE1 to PIPE9 can be assigned any endpoint number. Transfer conditions that can be set for each pipe: — PIPE0: Control transfer, 64-byte single buffer — PIPE1 and PIPE2: 64-byte double buffer can be specified for bulk transfer 256-byte double buffer for isochronous transfer — PIPE3 to PIPE5: Bulk transfer, 64-byte double buffer — PIPE6 to PIPE9: Interrupt transfer, 64-byte single buffer
Other functions	 Reception ending function using transaction count Function that changes the BRDY interrupt event notification timing (BFRE) Function that automatically clears the buffer memory after the data for the pipe specified at the DnFIFO (n = 0, 1) port has been read (DCLRM) NAK setting function for response PID generated by end of transfer (SHTNAK) On-chip pull-up and pull-down resistors of DP/DM 	 Reception ending function using transaction count Function that changes the BRDY interrupt event notification timing (BFRE) Function that automatically clears the buffer memory after the data for the pipe specified at the DnFIFO (n = 0, 1) port has been read (DCLRM) NAK setting function for response PID generated by end of transfer (SHTNAK) On-chip pull-up and pull-down resistors of D+/DM-
Low power consumption function	Module stop state can be set.	Module stop state can be set.

Note: 1. Low-speed transfer (1.5 Mbps) is not supported when Function controller operation is selected.

Register	Bit	RX231 (USBd)	RX65N (USBb)
SYSCFG	DMRPU	D-Line Resistor Control	—
	CNEN	CNEN Single End Receiver	—
		Enable	
SYSSTS0	SOFEA	—	SOF Active Monitor Flag When
			the Host Controller is Selected
DVSTCTR0	RHST[2:0]	USB Bus Reset Status	USB Bus Reset Status Flag
		When the host controller is	When the host controller is
		selected	selected
		b2 b0	b2 b0
		0 0 0: Communication speed not determined (powered state or no connection)	0 0 0: Communication speed not determined (powered state or no connection)
		1 x x: USB bus reset in progress	1 x x: USB bus reset in progress
		0 0 1: Low-speed connection	0 0 1: Low-speed connection
		0 1 0: Full-speed connection	0 1 0: Full-speed connection
		• When the function controller is selected	When the function controller is selected
		b2 b0	b2 b0
		0 0 0: Communication speed not determined	0 0 0: Communication speed not determined
		0 0 1: USB bus reset in progress or low-speed connection	0 0 1: USB bus reset in progress
		0 1 0: USB bus reset in progress	0 1 0: USB bus reset in progress
		or full-speed connection	or full-speed connection
INTENB1	PDDETINTE0	PDDETINT0 Detection Interrupt	—
		Enable	
INTSTS1	PDDETINT0	PDDET0 Detection Interrupt Status	—
DVCHGR		—	Device State Change Register
USBADDR			USB Address Register
PHYSLEW	—	—	PHY Cross Point Adjustment Register
DPUSR0R	—	-	Deep Standby USB Transceiver Control/Pin Monitoring Register
DPUSR1R	—	_	Deep Standby USB Suspend/Resume Interrupt Register
USBMC	<u> </u>	USB Module Control Register	
USBBCCTRL0	<u> </u>	BC Control Register 0	_
JSBBCCTRL0	—	BC Control Register 0	—

Table 2.46	Comparative List	ing of USB 2	2.0 Host/Function	Module Registers
------------	------------------	--------------	-------------------	------------------

2.24 Serial Communications Interface

The RX231 Group has 7 independent serial communications interface channels (SCIg: 6 channels, SCIh: 1 channel).

The RX65N Group has 13 independent serial communications interface channels (SCIg: 10 channels, SCIi: 2 channels, SCIh: 1 channel).

Table 2.47 shows a Comparative Listing of SCIg Specifications, Table 2.48 shows a Comparative Listing of SCIi Specifications, Table 2.49 shows a Comparative Listing of Serial Communications Interface Channel Specifications, and Table 2.50 shows a Comparative Listing of Serial Communications Interface Registers.

Item		RX231 (SClg)	RX65N (SCIg)	
Number of char	nels	6 channels	10 channels	
Serial communi	cation modes	Asynchronous	Asynchronous	
		Clock synchronous	Clock synchronous	
		 Smart card interface 	Smart card interface	
		 Simple I²C bus 	 Simple I²C bus 	
		Simple SPI bus	Simple SPI bus	
Transfer speed		Bit rate specifiable by on-chip	Bit rate specifiable by on-chip	
		baud rate generator.	baud rate generator.	
Full-duplex communication		 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure. 	 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure. 	
Data transfer		Selectable as LSB first or MSB first transfer.	Selectable as LSB first or MSB first transfer.	
Interrupt sources		Transmit end, transmit data empty, receive data full, and receive error, completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	Transmit end, transmit data empty, receive data full, and receive error, completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	
Low power cons	sumption function	Module stop state can be set for each channel.	Module stop state can be set for each channel.	
Asynchronous	Data length	7, 8, or 9 bits	7, 8, or 9 bits	
mode	Transmission stop bits	1 or 2 bits	1 or 2 bits	
	Parity	Even parity, odd parity, or no parity	Even parity, odd parity, or no parity	
	Receive error detection	Parity, overrun, and framing errors	Parity, overrun, and framing errors	
	Hardware flow control	CTSn# and RTSn# pins can be used in controlling transmission/reception.	CTSn# and RTSn# pins can be used in controlling transmission/reception.	
	Start bit detection	Low level or falling edge is selectable.	Low level or falling edge is selectable.	
	Break detection	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.	

Table 2.47 Comparative Listing of SCIg Specifications

Item		RX231 (SClg)	RX65N (SCIg)
Asynchronous mode	Clock source	 An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5 and SCI6). 	 An internal or external clock can be selected. Transfer rate clock input from the TMR can be used (SCI5 and SCI6).
	Double-speed mode	Baud rate generator double-speed mode is selectable.	Baud rate generator double-speed mode is selectable.
	Multi-processor communication function	Serial communication among multiple processors	Serial communication among multiple processors
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	The signal paths from input on the RXDn pins incorporate digital noise filters.
Clock	Data length	8 bits	8 bits
synchronous mode	Receive error detection	Overrun error	Overrun error
	Hardware flow control	CTSn# and RTSn# pins can be used in controlling transmission/ reception.	CTSn# and RTSn# pins can be used in controlling transmission/ reception.
Smart card interface mode	Error processing	An error signal can be automatically transmitted when detecting a parity error during reception	An error signal can be automatically transmitted when detecting a parity error during reception
		Data can be automatically retransmitted when receiving an error signal during transmission	Data can be automatically retransmitted when receiving an error signal during transmission
	Data type	Both direct convention and inverse convention are supported.	Both direct convention and inverse convention are supported.
Simple I ² C mode	Communication format	I ² C bus format	I ² C bus format
	Operating mode	Master (single-master operation only)	Master (single-master operation only)
	Transfer rate	Fast mode is supported.	Fast mode is supported.
	Noise cancellation	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.
Simple SPI	Data length	8 bits	8 bits
mode	Detection of errors	Overrun error	Overrun error
	SS input pin function	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.	Four kinds of settings for clock phase and clock polarity are selectable.
Bit rate modulation function		Correction of outputs from the on- chip baud rate generator can reduce errors.	Correction of outputs from the on- chip baud rate generator can reduce errors.

Item	RX231 (SCIg)	RX65N (SCIg)
Event link function	Error (receive error, error signal detection) event output	Error (receive error, error signal detection) event output
	Receive data full event output	Receive data full event output
	Transmit data empty event output	Transmit data empty event output
	Transmit end event output	Transmit end event output

Table 2.48 Comparative Listing of SCIi Specifications

Item		RX231 (—)	RX65N (SCIi)
Number of channels		_	2 channels
Serial communication modes			 Asynchronous Clock synchronous Smart card interface Simple I²C bus
			Simple SPI bus
Transfer speed		—	Bit rate specifiable by on-chip baud rate generator.
Full-duplex communication			 Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure.
Data transfer		—	Selectable between LSB-first or MSB-first transfer.
Interrupt sources			Transmit end, transmit data empty, receive data full, receive error, receive data ready, and match Completion of generation of start condition, restart condition, or stop condition (simple I ² C mode)
Low power cons	sumption function	—	Module stop state can be set for each channel.
Asynchronous	Data length	—	7, 8, or 9 bits
mode	Transmission stop bits		1 or 2 bits
	Parity		Even parity, odd parity, or no parity
	Receive error detection	—	Parity, overrun, and framing errors
	Hardware flow control		CTSn# and RTSn# pins can be used in controlling transmission/reception.
Transmit/ receive FIFO		_	16-stage FIFOs for transmit and receive buffers
	Data match detection		Compares receive data and comparison data, and generates interrupt when they are matched
	Start bit detection	—	Low level or falling edge is selectable.

Item		RX231 (—)	RX65N (SCIi)
Asynchronous	Break detection	````	When a framing error occurs, a
mode			break can be detected by reading
			the level of the RXDn pin directly
			or reading the SPTR.RXDMON
			flag.
	Clock source	_	An internal or external clock can be selected.
	Double-speed mode		Baud rate generator double-speed mode is selectable.
	Multi-processor		Serial communication among
	communication		multiple processors
	function		
	Noise	—	The signal paths from input on the
	cancellation		RXDn pins incorporate digital
			noise filters.
Clock	Data length		8 bits
synchronous	Receive error		Overrun error
mode	detection		
	Hardware flow	—	CTSn# and RTSn# pins can be
	control		used in controlling transmission/
			reception.
	Transmit/		16-stage FIFOs for transmit and
	receive FIFO		receive buffers
Smart card	Error		An error signal can be
interface mode	processing		automatically transmitted when
			detecting a parity error during
			reception
		_	Data can be automatically
			retransmitted when receiving an
			error signal during transmission
	Data type	—	Both direct convention and
			inverse convention are supported.
Simple I ² C mode	Communication format		I ² C bus format
	Operating	—	Master
	mode		(single-master operation only)
	Transfer speed		Fast mode is supported.
	Noise canceler	_	The signal paths from input on the SSCLn and SSDAn pins
			incorporate digital noise filters,
			and the interval for noise
			cancellation is adjustable.
Simple SPI	Data length		8 bits
mode	Error detection		Overrun error
	SS input pin		Applying the high level to the
	function		SSn# pin can cause the output
			pins to enter the high-impedance
			state.
	Clock settings		Four kinds of settings for clock
			phase and clock polarity are
			selectable.

Item	RX231 (—)	RX65N (SCIi)
Bit rate modulation function	_	Correction of outputs from the on-
		chip baud rate generator can
		reduce errors.

Table 2.49 Comparative Listing of Serial Communications Interface Channel Specifications

Item	RX231 (SCIg, SCIh)	RX65N (SCIg, SCIi, SCIh)
Synchronous mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI0 to SCI12
Clock synchronous mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI0 to SCI12
Smart card interface mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI0 to SCI12
Simple I ² C mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI0 to SCI12
Simple SPI mode	SCI0, SCI1, SCI5, SCI6, SCI8, SCI9, SCI12	SCI0 to SCI12
Extended serial mode	SCI12	SCI12
TMR clock input	SCI5, SCI6, SCI12	SCI5, SCI6, SCI12
Event link function	SCI5	SCI5
Transmit/receive FIFO	—	SCI10, SCI11
Data match detection	—	SCI10, SCI11

Table 2.50 Comparative Listing of Serial Communications Interface Registers

Register	Bit	RX231 (SCIg, SCIh)	RX65N (SCIg, SCIi, SCIh)
FRDR	—		Receive FIFO Data Register
FTDR	—		Transmit FIFO Data Register
SSRFIFO	—		Serial Status Register
FCR	—		FIFO Control Register
FDR	—		FIFO Data Count Register
LSR	—		Line Status Register
CDR	—		Comparison Data Register
DCCR	_		Data Comparison Control Register
SPTR			Serial Port Register

2.25 I²C-bus Interface

Table 2.51 shows a Comparative Listing of I^2C Bus Interface Specifications, and Table 2.52 shows a Comparative Listing of I^2C Bus Interface Registers.

Item	RX231 (RIICa)	RX65N (RIICa)
Number of channels	1 channel	2 channels / 3 channels*1
Communication format	 I²C bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus-free times for the transfer rate 	 I²C bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus-free times for the transfer rate
Transfer speed	Fast-mode is supported (up to 400 kbps)	Fast-mode Plus is supported (up to 1 Mbps)
SCL clock	For master operation, the duty cycle of the SCL clock is selectable in the range from 4% to 96%.	For master operation, the duty cycle of the SCL clock is selectable in the range from 4% to 96%.
Issuing and detection conditions	Start, restart, and stop conditions are generated automatically. Start conditions (including restart conditions) and stop conditions are detectable.	Start, restart, and stop conditions are generated automatically. Start conditions (including restart conditions) and stop conditions are detectable.
Slave addresses	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable. 	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable.
Acknowledgement	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit. For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible. 	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically suspended on detection of a not-acknowledge bit. For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.
Wait function	 In reception, the following periods of waiting can be obtained by holding the SCL clock at the low level: Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer 	 In reception, the following periods of waiting can be obtained by holding the SCL clock at the low level: Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer
SDA output delay function	Timing of the output of transmitted data, including the acknowledge bit, can be delayed.	Timing of the output of transmitted data, including the acknowledge bit, can be delayed.

Table 2.51 Comparative Listing of I²C Bus Interface Specifications

Item	RX231 (RIICa)	RX65N (RIICa)
Arbitration	For multi-master operation	For multi-master operation
	 For multi-master operation Operation to synchronize the SCL clock in cases of conflict with the SCL signal from another master is possible. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the level on the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of a notacknowledge bit due to the internal signal for the SDA line and the level on the SDA line not matching is 	 For multi-master operation Operation to synchronize the SCL clock in cases of conflict with the SCL signal from another master is possible. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the level on the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of a notacknowledge bit due to the internal signal for the SDA line and the level on the SDA line and
	 detectable. Loss of arbitration due to non- matching of internal and line levels for data is detectable in slave transmission. 	 detectable. Loss of arbitration due to non- matching of internal and line levels for data is detectable in slave transmission.
Timeout detection function	The internal timeout function is capable of detecting long-interval stop of the SCL clock.	The internal timeout function is capable of detecting long-interval stop of the SCL clock.
Noise canceler	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.
Interrupt sources	 Four sources Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end 	 Four sources Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end
Low power consumption function	Module stop state can be set.	Module stop state can be set.
RIIC operating modes	Four modes Master transmit mode, master receive mode, slave transmit mode, and slave receive mode	Four modes Master transmit mode, master receive mode, slave transmit mode, and slave receive mode

Item RX231 (RIICa)		RX65N (RIICa)
Event link function	 Four sources (RIIC0): Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) 	 Four sources (RIIC0): Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address)
	Transmit end	 Transmit end

Note: 1. Can be used for products with at least 1.5 MB of code flash memory. However, two channels on 64-pin versions.

Table 2.52	Comparative Listing of I ² C Bus Interface Registers
------------	---

Register	Bit	RX231 (RIICa)	RX65N (RIICa)
ICFER	FMPE		Fast-Mode Plus Enable

2.26 CAN Module

Table 2.53 shows a Comparative Listing of CAN Module Specifications, and Table 2.54 shows a Comparative Listing of CAN Module Registers.

Item	RX231 (RSCAN)	RX65N (CAN)
Number of channels	1 channel	2 channels
Protocol	ISO 11898-1 compliant	ISO 11898-1 compliant (standard and extended frames)
Bit rate	Maximum 1 Mbps	Programmable bit rate up to 1 Mbps (fCAN \ge 8 MHz) fCAN: CAN clock source
Message box	16 message boxes	 32 mailboxes: Two selectable mailbox modes Normal mailbox mode: 32 mailboxes can be configured for either transmission or reception. FIFO mailbox mode: 24 mailboxes can be configured for either transmission or reception. Of the other mailboxes, four FIFO stages can be configured for transmission and four FIFO stages for reception.
Reception	 Receives data frames and remote frames. Selects ID format (standard ID, extended ID, or both IDs) to be received. 	 Data frame and remote frame can be received. Selectable receiving ID format (only standard ID, only extended ID, or both IDs) Programmable one-shot reception function Selectable from overwrite mode (message overwritten) and overrun mode (message discarded) The reception complete interrupt can be individually enabled or disabled for each mailbox.
	 Sets interrupt enable/disable for each FIFO. Mirror function (to receive messages transmitted from the own CAN node) Timestamp function (to record message reception time as a 16-bit timer value) 	
Acceptance filter	Refer to the Reception filter function	 Eight acceptance masks (one mask for every four mailboxes) The mask can be individually enabled or disabled for each mailbox.

Table 2.53	Comparative Listing of CAN Module Specifications
------------	--

Item	RX231 (RSCAN)	RX65N (CAN)
Reception filter	Selects receive messages according	
function	to 16 receive rules.	
	• Sets the number of receive rules (0 to	
	16) for each channel.	
	Acceptance filter processing: Sets ID	
	and mask for each receive rule.	
	DLC filter processing: Sets DLC	
	check value for each receive rule.	
Receive message	Routing function to transfer receive	—
transfer function	messages to arbitrary destinations	
	(can be transferred to up to 2 buffers).	
	Transfer destination: Receive buffer,	
	receive FIFO buffer, and	
	transmit/receive FIFO buffer	
	Label addition function	
	Stores label information together	
	when storing a message in a receive	
	buffer and FIFO buffer.	
Transmission	Transmits data frames and remote	Data frame and remote frame can be transported
	frames.	transmitted.
	 Selects ID format (standard ID, extended ID, or both IDs) to be 	 Selectable transmitting ID format (only standard ID, only extended ID,
	transmitted.	or both IDs)
	One-shot transmission function	 Programmable one-shot transmission
		function
	Selects ID priority transmission or	Selectable from ID priority mode and
	transmit buffer number priority	mailbox number priority mode
	transmission.	
	Transmit abort function (completion	Transmission request can be aborted
	of the abort can be confirmed with	(the completion of abort can be
	the flag)	confirmed with a flag)
	• Sets interrupt enable/disable for each	• The transmission complete interrupt
	transmit buffer and transmit/receive FIFO buffer.	can be individually enabled or
Interval		disabled for each mailbox.
transmission	Sets message transmission interval time (transmit mode of transmit/receive FIFO)	—
function	buffers)	
Transmit history	Stores the history information of	
function	transmitted messages.	
Mode transition for	Selects a method of returning from bus	Mode transition for the recovery from the
bus-off recovery	off state.	bus-off state can be selected:
	ISO 11898-1 compliant	ISO 11898-1 Standards compliant
	Automatic transition to channel halt	Automatic entry to CAN halt mode at
	mode at bus-off entry	bus-off entry
	Automatic transition to channel halt	Automatic entry to CAN halt mode at
	mode at bus-off end	bus-off end
	Transition to channel halt mode by a	Entry to CAN halt mode by a program
	program	Transition into orrest active state by a
	Transition to the error-active state by a program (forcible return from the	 Transition into error-active state by a program
	bus off state)	program
		l

Item	RX231 (RSCAN)	RX65N (CAN)
Error status monitoring	 Monitors CAN protocol errors (stuff error, form error, ACK error, CRC error, bit error, ACK delimiter error, and bus dominant lock). Detects error status transitions (error warning, error passive, bus off entry, and bus off recovery) Reads the error counter. Monitors DLC errors. 	 CAN bus errors (stuff error, form error, ACK error, CRC error, bit error, and ACK delimiter error) can be monitored. Transition to error states can be detected (error-warning, error-passive, bus-off entry, and bus-off recovery). The error counters can be read.
Time stamp function	 Time stamp function using a 16-bit counter Timestamp clock source can be divided 	 Time stamp function using a 16-bit counter The reference clock can be selected from 1-, 2-, 4- and 8-bit time periods.
Interrupt function	 5 sources Global (2 sources) Global receive FIFO interrupt Global error interrupt Channel (3 sources/channel) Channel (3 sources/channel) Channel transmit interrupt Transmit complete interrupt Transmit abort interrupt Transmit/receive FIFO transmit complete interrupt Transmit history interrupt Transmit/receive FIFO receive interrupt Channel error interrupt 	Five types of interrupt sources (reception complete, transmission complete, receive FIFO, transmit FIFO, and error interrupts)
CAN sleep mode		Current consumption can be reduced by stopping the CAN clock.
Software support unit		 Three software support units: Acceptance filter support Mailbox search support (receive mailbox search, transmit mailbox search, and message lost search) Channel search support
CAN clock source	Peripheral module clock (PCLK), CANMCLK	Peripheral module clock (PCLKB) or CANMCLK
Test mode	 Test function for user evaluation Listen-only mode Self-test mode 0 (external loopback) Self-test mode 1 (internal loopback) RAM test (read/write test) 	 Three test modes available for user evaluation Listen-only mode Self-test mode 0 (external loopback) Self-test mode 1 (internal loopback)
Power consumption reducing function	Module stop state can be set.	Module stop state can be set.

Table 2.54	Comparative	Listing of CAN	Module Registers
------------	-------------	----------------	-------------------------

Register	Bit	RX231 (RSCAN)	RX65N (CAN)
CTLR		—	Control Register
BCR		—	Bit Configuration Register
MKRk		—	Mask Register k (k = 0 to 7)
FIDCR0		—	FIFO Received ID Compare
			Registers 0
FIDCR1		—	FIFO Received ID Compare
			Registers 1
MKIVLR	—	—	Mask Invalid Register
MBj		—	Mailbox Register j (j = 0 to 31)
MIER		—	Mailbox Interrupt Enable Register
MCTLj		—	Message Control Register j
			(j = 0 to 31)
RFCR		—	Receive FIFO Control Register
RFPCR	—	—	Receive FIFO Pointer Control
			Register
TFCR			Transmit FIFO Control Register
TFPCR			Transmit FIFO Pointer Control
			Register
STR			Status Register
MSMR		—	Mailbox Search Mode Register
MSSR			Mailbox Search Status Register
CSSR		—	Channel Search Support Register
AFSR	—	—	Acceptance Filter Support Register
EIER			Error Interrupt Enable Register
EIFR		—	Error Interrupt Factor Judge
			Register
RECR		—	Receive Error Count Register
TECR		—	Transmit Error Count Register
ECSR		—	Error Code Store Register
TSR		—	Time Stamp Register
TCR		—	Test Control Register
CFGL	—	Bit Configuration Register L	_
CFGH		Bit Configuration Register H	—
CTRL		Control Register L	—
CTRH		Control Register H	—
STSL		Status Register L	_
STSH		Status Register H	
ERFLL	—	Error Flag Register L	—
ERFLH		Error Flag Register H	—
GCFGL	<u> </u>	Global Configuration Register L	1_
GCFGH	1	Global Configuration Register H	<u> </u>
GCTRL	1	Global Control Register L	<u> </u>
GCTRH	—	Global Control Register H	1_
GSTS		Global Status Register	
GERFLL		Global Error Flag Register	
GTINTSTS	<u> </u>	Global Transmit Interrupt Status	
		Register	
GTSC	—	Timestamp Register	—

Register	Bit	RX231 (RSCAN)	RX65N (CAN)
GAFLCFG		Receive Rule Number Configuration	—
		Register	
GAFLIDLj	_	Receive Rule Entry Register jAL	—
		(j = 0 to 15)	
GAFLIDHj		Receive Rule Entry Register jAH	—
		(j = 0 to 15)	
GAFLMLj		Receive Rule Entry Register jBL	—
		(j = 0 to 15)	
GAFLMHj	—	Receive Rule Entry Register jBH	—
		(j = 0 to 15)	
GAFLPLj		Receive Rule Entry Register jCL	—
		(j = 0 to 15)	
GAFLPHj		Receive Rule Entry Register jCH	—
		(j = 0 to 15)	
RMNB		Receive Buffer Number	—
		Configuration Register	
RMND0		Receive Buffer Receive Complete	—
		Flag Register	
RMIDLn		Receive Buffer Register nAL	—
DMIDUL		(n = 0 to 15)	
RMIDHn		Receive Buffer Register nAH	—
DMTCa		(n = 0 to 15)	
RMTSn		Receive Buffer Register nBL (n = 0 to 15)	
RMPTRn			
RIVIPIRI		Receive Buffer Register nBH (n = 0 to 15)	
RMDF0n		Receive Buffer Register nCL	
RIVIDEULI		(n = 0 to 15)	
RMDF1n		Receive Buffer Register nCH	
		(n = 0 to 15)	
RMDF2n		Receive Buffer Register nDL	
		(n = 0 to 15)	
RMDF3n		Receive Buffer Register nDH	
		(n = 0 to 15)	
RFCCm		Receive FIFO Control Register m	
		(m = 0, 1)	
RFSTSm		Receive FIFO Status Register m	
		(m = 0, 1)	
RFPCTRm		Receive FIFO Pointer Control	—
		Register m (m = 0, 1)	
RFIDLm		Receive FIFO Access Register mAL	—
		(m = 0, 1)	
RFIDHm	_	Receive FIFO Access Register mAH	—
		(m = 0, 1)	
RFTSm		Receive FIFO Access Register mBL	—
		(m = 0, 1)	
RFPTRm		Receive FIFO Access Register mBH	—
		(m = 0, 1)	
RFDF0m	—	Receive FIFO Access Register mCL	—
		(m = 0, 1)	
RFDF1m	—	Receive FIFO Access Register	—
		mCH (m = 0, 1)	

Register	Bit	RX231 (RSCAN)	RX65N (CAN)
RFDF2m	_	Receive FIFO Access Register mDL (m = 0, 1)	
RFDF3m	—	Receive FIFO Access Register mDH (m = 0, 1)	—
CFCCL0		Transmit/Receive FIFO Control Register 0L	—
CFCCH0		Transmit/Receive FIFO Control Register 0H	—
CFSTS0		Transmit/Receive FIFO Status Register 0	—
CFPCTR0	—	Transmit/Receive FIFO Pointer Control Register 0	—
CFIDL0	—	Transmit/Receive FIFO Access Register 0AL	—
CFIDH0	-	Transmit/Receive FIFO Access Register 0AH	
CFTS0	-	Transmit/Receive FIFO Access Register 0BL	
CFPTR0	-	Transmit/Receive FIFO Access Register 0BH	
CFDF00	-	Transmit/Receive FIFO Access Register 0CL	
CFDF10	-	Transmit/Receive FIFO Access Register 0CH	
CFDF20	-	Transmit/Receive FIFO Access Register 0DL	
CFDF30		Transmit/Receive FIFO Access Register 0DH	
RFMSTS	-	Receive FIFO Message Lost Status Register	
CFMSTS	-	Transmit/Receive FIFO Message Lost Status Register	
RFISTS	-	Receive FIFO Interrupt Status Register	
CFISTS	-	Transmit/Receive FIFO Receive Interrupt Status Register	
ТМСр	-	Transmit Buffer Control Register p ($p = 0$ to 3)	
TMSTSp	-	Transmit Buffer Status Register p ($p = 0$ to 3)	
TMTRSTS	—	Transmit Buffer Transmit Request Status Register	—
TMTCSTS	—	Transmit Buffer Transmit Complete Status Register	
TMTASTS	—	Transmit Buffer Transmit Abort Status Register	—
TMIEC	—	Transmit Buffer Interrupt Enable Register	
TMIDLp	—	Transmit Buffer Register pAL ($p = 0$ to 3)	
TMIDHp	—	Transmit Buffer Register pAH ($p = 0$ to 3)	

Register	Bit	RX231 (RSCAN)	RX65N (CAN)
TMPTRp	_	Transmit Buffer Register pBH $(p = 0 \text{ to } 3)$	—
TMDF0p		Transmit Buffer Register pCL $(p = 0 \text{ to } 3)$	_
TMDF1p		Transmit Buffer Register pCH $(p = 0 \text{ to } 3)$	_
TMDF2p	—	Transmit Buffer Register pDL $(p = 0 \text{ to } 3)$	_
TMDF3p	—	Transmit Buffer Register pDH $(p = 0 \text{ to } 3)$	_
THLCC0	_	Transmit History Buffer Control Register	—
THLSTS0	—	Transmit History Buffer Status Register	_
THLACC0	—	Transmit History Buffer Access Register	_
THLPCTR0	—	Transmit History Buffer Pointer Control Register	_
GRWCR		Global RAM Window Control Register	
GTSTCFG	—	Global Test Configuration Register	—
GTSTCTRL		Global Test Control Register	—
GLOCKK		Global Test Protection Unlock Register	_
RPGACCr		RAM Test Register r (r = 0 to 127)	_

2.27 Serial Peripheral Interface

Table 2.55 shows a Comparative Listing of Serial Peripheral Interface Specifications, and Table 2.56 shows a Comparative Listing of Serial Peripheral Interface Registers.

Item	RX231 (RSPIa)	RX65N (RSPIc)
Number of channels	1 channel	3 channels
RSPI transfer functions	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK 	 Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK
Data format	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). 	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). Byte swapping of transmit and receive data is selectable
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK 	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 4 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 4). Width at high level: 2 cycles of PCLK; width at low level: 2 cycles of PCLK
Buffer configuration	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers 	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers
Error detection	 Mode fault error detection Overrun error detection Parity error detection 	 Mode fault error detection Overrun error detection Parity error detection Underrun error detection

Table 2.55	Comparative Listing o	f Serial Peripheral	Interface Specifications
------------	-----------------------	---------------------	--------------------------

Item	RX231 (RSPIa)	RX65N (RSPIc)
SSL control function	Four SSL pins (SSLA0 to SSLA3) for each channel	Four SSL pins (SSLn0 to SSLn3) for each channel
	 In single-master mode, SSLA0 to SSLA3 pins are output. In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or unused. 	 In single-master mode, SSLn0 to SSLn3 pins are output. In multi-master mode: SSLn0 pin for input, and SSLn1 to SSLn3 pins for either output or unused.
	 In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused. 	 In slave mode: SSLn0 pin for input, and SSLn1 to SSLn3 pins for unused.
	Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)	 Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)	 Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	 Controllable wait for next-access SSL output assertion (next-access delay) Range:1 to 8 RSPCK cycles (set in RSPCK-cycle units) 	 Controllable wait for next-access SSL output assertion (next-access delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units)
	Function for changing SSL polarity	Function for changing SSL polarity
Control in master transfer	 A transfer of up to eight commands can be executed sequentially in looped execution. For each command, the following can be set: 	 A transfer of up to eight commands can be executed sequentially in looped execution. For each command, the following can be set:
	SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay	SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay
	• A transfer can be initiated by writing to the transmit buffer.	• A transfer can be initiated by writing to the transmit buffer.
	 MOSI signal value specifiable in SSL negation RSPCK auto-stop function 	 MOSI signal value specifiable in SSL negation RSPCK auto-stop function
Interrupt sources	Receive buffer full interrupt	Receive buffer full interrupt
	 Transmit buffer empty interrupt RSPI error interrupt (mode fault, overrun, or parity error) 	 Transmit buffer empty interrupt RSPI error interrupt (mode fault, overrun, underrun, or parity error)
	RSPI idle interrupt (RSPI idle)	 RSPI idle interrupt (RSPI idle)

Item	RX231 (RSPIa)	RX65N (RSPIc)
Event link function (output)	 The following events can be output to the event link controller. (RSPI0) Receive buffer full signal Transmit buffer empty signal Mode fault, overrun, or parity error signal RSPI idle signal Transmission-completed signal 	 The following events can be output to the event link controller. (RSPI0) Receive buffer full signal Transmit buffer empty signal Mode fault, overrun, underrun, or parity error signal RSPI idle signal Transmission-completed signal
Other functions	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode 	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode
Low power consumption function	Module stop state can be set.	Module stop state can be set.

Table 2.56	Comparative	Listing of Seria	I Peripheral Interf	ace Registers

Register	Bit	RX231 (RSPIa)	RX65N (RSPIc)
SPSR	MODF	Mode Fault Error Flag	Mode Fault Error Flag
		0: No mode fault error occurs	0: Neither a mode fault error nor an underrun error occurs
		1: A mode fault error occurs	1: A mode fault error or an underrun error occurs
	UDRF	—	Underrun Error Flag
SPDR	—	RSPI Data Register	RSPI Data Register
		Accessible size	Accessible size
		• Longwords access (the SPLW bit is 1)	 Longwords access (the SPLW bit is 1 and the SPBYT bit is 0)
		 Words access (the SPLW bit is 0) 	 Words access (the SPLW bit is 0 and the SPBYT bit is 0)
			 Bytes access (the SPBYT bit is 1)
SPDCR	SPBYT		RSPI Byte Access Specification
SPDCR2			RSPI Data Control Register 2

2.28 CRC Calculator

Table 2.57 shows a Comparative Listing of CRC Calculator Specifications, and Table 2.58 shows a Comparative Listing of CRC Calculator Registers.

Item	RX231 (CRC)	RX65N (CRCA)	
Data size	8 bits	8 bits	32 bits
Data for CRC calculation	CRC code generated for any desired data in 8n-bit units (where n is a whole number)	CRC codes are generated for any desired data in 8n- bit units (where n is a whole number)	CRC codes are generated for any desired data in 32n-bit units (where n is a whole number)
CRC processor unit	Operation executed on 8 bits in parallel	8-bit parallel processing	32-bit parallel processing
CRC generating polynomial	One of three generating polynomials selectable: • 8-bit CRC $X^8 + X^2 + X + 1$ • 16-bit CRC $- X^{16} + X^{15} + X^2 + 1$ $- X^{16} + X^{12} + X^5 + 1$	One of five generating polynomials selectable: • 8-bit CRC $X^8 + X^2 + X + 1$ • 16-bit CRC $- X^{16} + X^{15} + X^2 + 1$ $- X^{16} + X^{12} + X^5 + 1$	One of five generating polynomials selectable: • 32-bit CRC — $X^{32} + X^{26} + X^{22} + X^{16}$ $+ X^{12} + X^{11} + X^{10}$ $+ X^8 + X^7 + X^5 + X^4$ $+ X^2 + X + 1$ — $X^{32} + X^{28} + X^{27}$ $+ X^{26} + X^{25} + X^{23}$ $+ X^{22} + X^{20} + X^{19}$ $+ X^{18} + X^{14} + X^{13}$ $+ X^{11} + X^{10} + X^9$ $+ X^8 + X^6 + 1$
CRC calculation switching	The bit order of CRC calculation results can be switched for LSB first or MSB first communication	The order of the bits produc be switched for LSB first or	-
Low power consumption function	Module stop state can be set.	Module stop state can be se	ət.

Table 2.57	Comparative Listing of CRC Calculator Specifications
------------	--

Register	Bit	RX231 (CRC)	RX65N (CRCA)
CRCCR	GPS[1:0]: RX231	CRC Generating Polynomial Switching	CRC Generating Polynomial Switching
	GPS[2:0]:	b1 b0	b2 b0
	RX65N	0 0: No calculation is executed.	0 0 0: No calculation is executed.
		0 1: 8-bit CRC (X ⁸ + X ² + X + 1)	0 0 1: 8-bit CRC (X ⁸ + X2 + X + 1)
		1 0: 16-bit CRC $(X^{16} + X^{15} + X^2 + 1)$	0 1 0: 16-bit CRC $(X^{16} + X^{15} + X^2 + 1)$
		1 1: 16-bit CRC $(X^{16} + X^{12} + X^5 + 1)$	0 1 1: 16-bit CRC $(X^{16} + X^{12} + X^5 + 1)$
			1 0 0: 32-bit CRC $(X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1)$
			1 0 1: 32-bit CRC $(X^{32} + X^{28} + X^{27} + X^{26} + X^{25} + X^{23} + X^{22} + X^{20} + X^{19} + X^{18} + X^{14} + X^{13} + X^{11}$
			$+ X^{10} + X^9 + X^8 + X^6 + 1)$
			1 1 0: No calculation is executed.
			1 1 1: No calculation is executed.
	LMS	CRC Calculation Switching	CRC Calculation Switching
		(b2)	(b6)
CRCDIR	_	CRC Data Input Register	CRC Data Input Register
		Accessible size	Accessible size
			 Longwords access (When 32-bit CRC is selected)
		Bytes access	 Bytes access (When 16-bit or 8-bit CRC is selected)
CRCDOR	_	CRC Data Output Register	CRC Data Output Register
		Accessible size	Accessible size
			 Longwords access (When 32-bit CRC is selected)
		 Words access When an 8-bit CRC is in use, the valid CRC code is obtained in the 	 Words access (When 16-bit CRC is selected) Butos cososa (When 8 bit CRC is
		low-order byte (b7 to b0)	 Bytes access (When 8-bit CRC is selected)

Table 2.58	Comparative Listing of CRC Calculator Registers
------------	--

2.29 SD Host Interface

Table 2.59 shows a Comparative Listing of SD Host Interface Specifications, and Table 2.60 shows a Comparative Listing of SD Host Interface Registers.

Item	RX231 (SDHIa)	RX65N (SDHI)		
SD bus interface	Compatible with SD memory card and SDIO card	 Compatible with SD memory card and SDIO card 		
	Transfer bus mode selectable from 4- bit wide bus mode or 1-bit default bus mode	Transfer bus mode selectable from 4- bit wide bus mode or 1-bit default bus mode		
	Compatible with SD, SDHC, and SDXC formats	Compatible with SD, SDHC, and SDXC formats		
Transfer modes	Supports default speed mode	Selectable from high-speed mode or default speed mode		
SDHI clock	The SDHI clock is generated by dividing peripheral module clock B (PCLKB) by n, where $n = 1, 2, 4, 8, 16, 32, 64, 128, 256, or 512$	The SDHI clock is generated by dividing peripheral module clock B (PCLKB) by n, where n = 1, 2, 4, 8, 16, 32, 64, 128, 256, or 512		
Error check	CRC7 (command/response)	CRC7 (command/response)		
functions	CRC16 (transfer data)	CRC16 (transfer data)		
Interrupt sources	Card access interrupt (CACI)	Card access interrupt (CACI)		
	 SDIO access interrupt (SDACI) 	 SDIO access interrupt (SDACI) 		
	Card detection interrupt (CDETI)	Card detection interrupt (CDETI)		
	SD buffer access interrupt (SBFAI)	SD buffer access interrupt (SBFAI)		
DMA transfer	 DMAC and DTC triggerable by the 	DMAC and DTC triggerable by the		
sources	SBFAI interrupt	SBFAI interrupt		
	 SD buffer is read and write 	 SD buffer is read and write 		
	accessible using the DMAC and DTC	accessible using the DMAC and DTC		
Other functions	Card detection	Card detection		
	Write protection	Write protection		

Table 2.59	Comparative Listing	of SD Host	Interface Specification	ns
		,		

Table 2.60 Comparative Listing of SD Host Interface Registers

Register	Bit	RX231 (SDHIa)	RX65N (SDHI)
SDVER			Version Register

2.30 12-Bit A/D Converter

Table 2.61 shows a Comparative Listing of 12-Bit A/D Converter Specifications, and Table 2.62 shows a Comparative Listing of 12-Bit A/D Converter Registers.

Item	RX231 (S12ADE)	RX65N (S12ADFa)		
Number of units	1 unit	2 units		
Input channels	24 channels	 Unit 0: 8 channels Unit 1: 21 channels + one extended channel 		
Extended analog function A/D conversion	Temperature sensor output, internal reference voltage Successive approximation method	Temperature sensor output, internal reference voltage Successive approximation method		
method				
Resolution	12 bits	12 bits		
Conversion time	0.83 μs per channel (when A/D conversion clock ADCLK = 54 MHz)	 0.48 μs per channel (12-bit conversion mode) 0.45 μs per channel (10-bit conversion mode) 0.42 μs per channel (8-bit conversion mode) (A/D conversion clock: when ADCLK operates at 60 MHz) 		
A/D conversion clock (ADCLK)	Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency ratio should be one of the following. PCLK to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, 8:1	Peripheral module clock PCLK and A/D conversion clock ADCLK can be set so that the frequency ratio should be one of the following. PCLK to ADCLK frequency ratio = 1:1, 2:1, 4:1, 8:1		
	ADCLK is set using the clock generation circuit.	ADCLK is set using the clock generation circuit.		
Data register	 24 registers for analog input, 1 for A/D- converted data duplication in double trigger mode 	 29 registers for analog input (eight for Unit0 and 21 for Unit1), 1 for A/D- converted data duplication in double trigger mode per unit, and 2 for A/D- converted data duplication during extended operation in double trigger mode per unit. 		
	 One register for temperature sensor output One register for internal reference voltage One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion 	 One register for temperature sensor (Unit1) One register for internal reference (Unit1) One register for self-diagnosis per unit The results of A/D conversion are stored in 12-bit A/D data registers. 8-, 10-, and 12-bit accuracy output for the results of A/D conversion 		

Table 2.61	Comparative Listing of 12-Bit	A/D Converter Specifications
------------	-------------------------------	------------------------------

Item	RX231 (S12ADE)	RX65N (S12ADFa)
Data register	 The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register. 	 The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register. Extended operation in double trigger mode (available for specific triggers): A/D-converted analog-input data on one selected channel is stored in the duplication register.
Operating modes	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 24 channels arbitrarily selected. A/D conversion is performed only once on the temperature sensor output. A/D conversion is performed only once on the internal reference voltage. Continuous scan mode: A/D conversion is performed repeatedly on the analog inputs of up to 24 channels arbitrarily selected. 	 Single scan mode: A/D conversion is performed only once on the analog inputs of up to 8 channels (Unit0) / 21 channels (Unit1) arbitrarily selected. A/D conversion is performed only once on the temperature sensor output (Unit1). A/D conversion is performed only once on the internal reference voltage (Unit1). A/D conversion is performed only once on the internal reference voltage (Unit1). A/D conversion is performed only once on the extended analog input (Unit1). Continuous scan mode: A/D conversion is performed repeatedly on the analog input of up to 8 channels (Unit0) / 21 channels (Unit1) arbitrarily selected, temperature sensor output (Unit1), and internal reference voltage (Unit1) of the arbitrarily selected channel. A/D conversion is performed analog input (Unit1).

Item	RX231 (S12ADE)	RX65N (S12ADFa)
Operating modes	 Group scan mode: — Analog inputs of up to 24 channels arbitrarily selected, are divided into group A and group B, and A/D conversion of the analog input selected on a group basis is performed only once. — The conditions for scanning start of group A and group B (synchronous trigger) can be independently selected, thus allowing A/D conversion of group A and group B to be started independently. Group scan mode (when group A is given priority): — If a group A trigger is input during A/D conversion on group B, the A/D conversion on group B is stopped and A/D conversion is performed on group A. — Restart (rescan) of A/D conversion on group B after completion of A/D conversion on group A can be set. 	 Group scan mode: Two (groups A and B) or three (groups A, B, and C) can be selected as the number of the groups to be used. Only the combination of groups A and B can be selected when the number of the groups is two. Analog inputs, temperature sensor output (Unit1), and internal reference voltage (Unit1) that are arbitrarily selected are divided into two groups (group A, B, and C), and A/D conversion of the analog input selected on a group basis is performed only once. The conditions for scanning start of groups A, B, and C (synchronous trigger) can be independently selected, thus allowing A/D conversion of each group to be started independently. Group scan mode (when group priority control selected): If a priority-group trigger is input during scanning of the low-priority group is stopped and scan of the priority group is stopped and scan of the priority group is started. The priority group be set to start either from the beginning of the selected channel or the channel on which A/D conversion is not completed.
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU), the event link controller (ELC), or the 16-bit timer pulse unit (TPU). Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin. 	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU), 8-bit timer (TMR), 16-bit timer pulse unit (TPU), or event link controller (ELC). Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# (Unit0) or ADTRG1# (Unit1) pin (independently for two units).

Item	RX231 (S12ADE)	RX65N (S12ADFa)
Functions	Variable sampling state count	 Channel-dedicated sample-and-hold function (three channels for Unit0 only) Variable sampling state count (settable
	 Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function of A/D data registers Compare function (window A and window B) 16 ring buffers when the compare 	 for each channel) Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection assist function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) 12-/10-/8-bit conversion switching Automatic clear function of A/D data registers Extended analog input Comparison function (windows A and B)
Interrupt sources	 function is used In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI0) can 	 In the modes except double trigger mode and group scan mode, a scan end interrupt request (S12ADI or
	 be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of group A scan, whereas an A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. 	 S12ADI1) can be generated on completion of single scan. In double trigger mode, a scan end interrupt request (S12ADI or S12ADI1) can be generated on completion of double scan. In group scan mode, a scan end interrupt request (S12ADI or S12ADI1) can be generated on completion of a group A scan. On completion of a group B scan a dedicated group B scan a dedicated group B scan end interrupt request (S12GBADI or S12GBADI1) can be generated, and on completion of a group C scan a dedicated group C scan a dedicated group C scan a dedicated.
	 When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) specially for group B can be generated on completion of group B scan. 	 When double trigger mode is selected in group scan mode, an A/D scan end interrupt request (S12ADI or S12ADI1) can be generated on completion of double scan of group A, and the corresponding scan end interrupt request (S12GBADI/S12GCADI or S12GBADI1/S12GCADI1) can be generated on completion of group B and group C scan.

Item	RX231 (S12ADE)	RX65N (S12ADFa)
Interrupt sources	 The S12ADI0 and GBADI interrupts can activate the DMA controller (DMAC) and the data transfer controller (DTC). 	 A compare interrupt request (S12CMPAI, S12CMPAI1, S12CMPBI, or S12CMPBI1) can be generated upon a match with the comparison condition for the digital compare function. The S12ADI/S12ADI1, S12GBADI/S12GBADI1, and S12GCADI/S12GCADI1 interrupts can activate the DMA controller (DMAC) and data transfer controller (DTC).
Event link function	 An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode. An ELC event is generated on completion of all scans. Scan can be started by a trigger output by the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode. 	 An ELC event is generated upon completion of all scans Able to start scanning by a trigger from the ELC
Low power consumption function	Module stop state can be set	Module stop state can be set.

Register	Bit	RX231 (S12ADE)	RX65N (S12ADFa)
ADDBLDRA	—	—	A/D Data Duplication Register A
ADDBLDRB	—	—	A/D Data Duplication Register B
ADRD	—	A/D Self-Diagnosis Data Register	A/D Self-Diagnosis Data Register
		 [Formats] Flush-right format The A/D-converted value is stored in bits 11 to 0. The self- diagnosis status is stored in bits 15 and 14. Bits 13 and 12 are read as 0. 	 [Formats] Flush-right format with setting of 12-bit resolution The A/D-converted value is stored in bits 11 to 0. The self-diagnosis status is stored in bits 15 and 14. Bits 13 and 12 are read as 0. Flush-right format with setting of 10-bit resolution The A/D-converted value is stored in bits 9 to 0. The self-
			diagnosis status is stored in bits 15 and 14. Bits 13 to 10 are read as 0.

Register	Bit	RX231 (S12ADE)	RX65N (S12ADFa)
ADRD		 Flush-left format The A/D-converted value is stored in bits 15 to 4. The self- diagnosis status is stored in bits 1 and 0. Bits 3 and 2 are read as 0. 	 Flush-right format with setting of 8-bit resolution The A/D-converted value is stored in bits 7 to 0. The self- diagnosis status is stored in bits 15 and 14. Bits 13 to 8 are read as 0. Flush-left format with setting of 12-bit resolution The A/D-converted value is stored in bits 15 to 4. The self- diagnosis status is stored in bits 1 and 0. Bits 3 and 2 are read as 0. Flush-left format with setting of 10-bit resolution The A/D-converted value is stored in bits 15 to 6. The self- diagnosis status is stored in bits 1 and 0. Bits 5 to 2 are read as 0. Flush-left format with setting of 8-bit resolution The A/D-converted value is stored in bits 15 to 6. The self- diagnosis status is stored in bits 1 and 0. Bits 5 to 2 are read as 0. Flush-left format with setting of 8-bit resolution The A/D-converted value is stored in bits 15 to 8. The self- diagnosis status is stored in bits 1 and 0. Bits 7 to 2 are read as 0.
ADCSR	ADHSC	A/D Conversion Select	
ADANSA0 (S12AD1)	—	—	A/D Channel Select Register A0
ADANSA1 (S12AD)	—	A/D Channel Select Register A1	—
ADANSA1 (S12AD1)	—	_	A/D Channel Select Register A1
ADANSB0 (S12AD1)		_	A/D Channel Select Register B0
ADANSB1 (S12AD) ADANSB1		A/D Channel Select Register B1	— A/D Channel Select Register B1
(S12AD1)			
ADANSC0 (S12AD)			A/D Channel Select Register C0
ADANSC0 (S12AD1)			A/D Channel Select Register C0
ADANSC1 (S12AD1)	—		A/D Channel Select Register C1
ADADS0 (S12AD1)	—	_	A/D-Converted Value Addition/Average Function Select Register 0
ADADS1 (S12AD)		A/D-Converted Value Addition/Average Function Select Register 1	—

Register	Bit	RX231 (S12ADE)	RX65N (S12ADFa)
ADADS1	—		A/D-Converted Value
(S12AD1)			Addition/Average Function Select
			Register 1
ADCER	ADPRC[1:0]	—	A/D Conversion Resolution Setting
ADEXICR	TSSA	Temperature Sensor Output A/D	Temperature Sensor Output A/D
		Conversion Select	Conversion Select
		This bit selects A/D conversion of	This bit selects A/D conversion of
		the temperature sensor output in	the temperature sensor output for
		signal scan mode.	group A in signal scan mode, sequence scan mode, or group
			scan mode.
		0: A/D conversion of temperature	0: A/D conversion of temperature
		sensor output is not performed.	sensor output is not performed.
		1: A/D conversion of temperature	1: A/D conversion of temperature
		sensor output is performed.	sensor output is performed.
	TSSB	—	Temperature Sensor Output A/D
			Conversion Select
	OCSB	—	Internal Reference Voltage A/D
			Conversion Select
	EXSEL[1:0]	—	Extended Analog Input Select
	EXOEN	—	Extended Analog Output Control
ADGCEXCR		_	A/D Group C Extended Input
			Control Register
ADGCTRGR	—	—	A/D Group C Trigger Select
			Register
ADSSTRn	—	A/D Sampling State Register n	A/D Sampling State Register n
		(n = 0 to 7, L, T, O)	(n = 0 to 15, L, T, O)
ADSHCR	_	—	A/D Sample-and-Hold Circuit Control Register
ADSHMSR			A/D Sample-and-Hold Operating
ADONINISK		_	Mode Select Register
ADELCCR		A/D Event Link Control Register	
ADGSPCR	PGS	Group-A Priority Control Setting	Group Priority Control Setting
	GBRSCN	Group B Restart Setting	Low-Priority Group Restart Setting
	LGRRS	Group D Restart Setting	Restart Channel Select
	GBRP	Group B Single Scan Continuous	Single Scan Continuous Start
	GBRF	Start	Single Scan Continuous Start
ADCMPCR	CMPAB[1:0]	Window A/B Composite Condition	Window A/B Complex Conditions
		Setting	Setting
		b1 b0	b1 b0
		0 0: S12ADWMELC is output when	0 0: Window A comparison
		window A comparison	condition matched OR window
		conditions are met OR window	B comparison condition
		B comparison conditions are	matched
		met. S12ADWUMELC is	
		output in other cases.	

Register	Bit	RX231 (S12ADE)	RX65N (S12ADFa)
ADCMPCR	CMPAB[1:0]	b1 b0	b1 b0
		0 1: S12ADWMELC is output when window A comparison conditions are met EXOR window B comparison conditions are met.	0 1: Window A comparison condition matched EXOR window B comparison condition matched
		 S12ADWUMELC is output in other cases. 1 0: S12ADWMELC is output when window A comparison conditions are met AND window B comparison conditions are met. S12ADWUMELC is output in other cases. 	1 0: Window A comparison condition matched AND window B comparison condition matched
		1 1: Setting prohibited.	1 1: Setting is prohibited
	CMPBE	Compare Window B Operation Enable	Comparison Window B Enable
		0: Compare window B operation is disabled. S12ADWMELC and S12ADWUMELC outputs are disabled.	0: Comparison window B disabled
		1: Compare window B operation is enabled.	1: Comparison window B enabled
	CMPAE	Compare Window A Operation Enable	Comparison Window A Enable
		0: Compare window A operation is disabled.S12ADWMELC and S12ADWUMELC outputs are disabled.	0: Comparison window A disabled
		1: Compare window A operation is enabled.	1: Comparison window A enabled
	CMPBIE	—	Comparison Window B Interrupt Enable
	CMPAIE	—	Comparison Window A Interrupt Enable
ADCMPANSR0 (S12AD1)		—	A/D Comparison Function Window A Channel Select Register 0
ADCMPANSR1 (S12AD)	—	A/D Comparison Function Window A Channel Select Register 1	—
ADCMPANSR1 (S12AD1)	—	—	A/D Comparison Function Window A Channel Select Register 1
ADCMPANSER	CMPSTS	—	Temperature Sensor Output Comparison Select
	CMPTSA	Temperature Sensor Output Compare Select	—
	CMPSOC	—	Internal Reference Voltage Compare Select
	CMPOCA	Internal Reference Voltage Compare Select	—

Register	Bit	RX231 (S12ADE)	RX65N (S12ADFa)	
ADCMPLR0		—	A/D Comparison Function Window	
(S12AD1)			A Comparison Condition Setting	
			Register 0	
ADCMPLR1		A/D Compare Function Window A	—	
(S12AD)		Comparison Condition Setting Register 1		
ADCMPLR1	—	—	A/D Comparison Function Window	
(S12AD1)			A Comparison Condition Setting Register 1	
ADCMPLER	CMPLTS	—	Comparison Window A	
			Temperature Sensor Output Comparison Condition Select	
	CMPLTSA	Compare Window A Temperature	—	
		Sensor Output Comparison Condition Select		
	CMPLOC	—	Comparison Window A Internal	
			Reference Voltage Comparison Condition Select	
	CMPLOCA	Internal Reference Voltage Comparison Condition Select	—	
ADCMPDR0	—	A/D Compare Function Window A Lo		
		The ADCMPDR0 register uses different formats depending on conditions.		
		For details on the conditions, see Us Reference Documents.	ser's Manuals, listed in section 5,	
ADCMPDR1	—	A/D Compare Function Window A Upper-Side Level Setting Register		
		The ADCMPDR1 register uses differ conditions.	rent formats depending on	
		For details on the conditions, see Us Reference Documents.	ser's Manuals, listed in section 5,	
ADCMPSR0 (S12AD1)	—	_	A/D Comparison Function Window A Channel Status Register 0	
ADCMPSR1 (S12AD)	—	A/D Compare Function Window A Channel Status Register 1	—	
ADCMPSR1 (S12AD1)	—		A/D Compare Function Window A Channel Status Register 1	
ADCMPSER	CMPFTS	—	Comparison Window A	
			Temperature Sensor Output Comparison Flag	
	CMPSTTSA	Compare Window A Temperature Sensor Output Compare Flag	—	
	CMPFOC		Comparison Window A Internal Reference Voltage Comparison Flag	
	CMPSTOCA	Compare Window A Internal Reference Voltage Compare Flag		
ADHVREFCNT	—	A/D High-Potential/Low-Potential	—	
		Reference Voltage Control Register		

Register	Bit	RX231 (S12ADE)	RX65N (S12ADFa)
ADCMPBNSR	CMPCHB	Compare Window B Channel	Compare Window B Channel
(S12AD)	[5:0]	Select	Select
		b5 b0	b5 b0
		0 0 0 0 0 0 0: AN000	0 0 0 0 0 0: AN000
		0 0 0 0 0 0 1: AN000	0 0 0 0 0 0 1: AN000
		0 0 0 0 1 0: AN002	0 0 0 0 1 0: AN002
		:	:
		0 0 0 1 1 0: AN006	0 0 0 1 1 0: AN006
		0 0 0 1 1 1: AN007	0 0 0 1 1 1: AN007
		0 1 0 0 0 0: AN016	
		0 1 0 0 0 1: AN017	
		: 0 1 1 0 0 1: AN029	
		0 1 1 1 1 0: AN030	
		0 1 1 1 1 1 : AN031	
		1 0 0 0 0 0: Temperature sensor	
		1 0 0 0 0 1: Internal reference	
		voltage	
		Settings other than above are	Settings other than above are
		prohibited.	prohibited.
ADCMPBNSR (S12AD1)		—	A/D Comparison Function Window B Channel Select Register
ADWINLLB	—	A/D Compare Function Window B Lower-Side Level Setting Register	
		The ADWINLLB register uses different formats depending on the conditions.	
		For details on the conditions, see User's Manuals, listed in section 5, Reference Documents.	
ADWINULB	—	A/D Comparison Function Window B	3 Upper Level Setting Register
		The ADWINULB register uses differed conditions.	ent formats depending on the
		For details on the conditions, see Us Reference Documents.	er's Manuals, listed in section 5,
ADSAM	—		A/D Conversion Time Setting
			Register
ADSAMPR			A/D Conversion Time Setting
			Protection Release Register
ADBUFn		A/D Data Storage Buffer Register n (n = 0 to 15)	—
ADBUFEN		A/D Data Storage Buffer Enable Register	—
ADBUFPTR	1	A/D Data Storage Buffer Pointer	
		Register	

2.31 12-Bit D/A Converter

Table 2.63 shows a Comparative Overview of 12-Bit D/A Converter for specifications, and Table 2.64 shows a Comparative Listing of 12-bit D/A Converter Registers.

Table 2.63	Comparative Overview of 12-Bit D/A Converter
------------	--

ltem	RX231 (R12DAA)	RX65N (R12DA)
Resolution	12 bits	12 bits
Output channel	2 channels	2 channels
Measure against mutual interference between analog modules	Measure against interference between D/A and A/D conversion: D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable input signal output by the the 12-bit A/D converter. Degradation of 12-bit D/A conversion accuracy caused by interference is reduced by controlling the D/A converter inrush current generation timing with the enable signal.	Measure against interference between D/A and A/D conversion: D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable input signal output by the the 12-bit A/D converter (unit 1). Degradation of 12-bit A/D converter (unit 1). Degradation of 12-bit A/D conversion accuracy caused by interference is reduced by controlling the D/A converter inrush current generation timing with the enable signal.
Low power consumption function	Ability to transition to module stop state.	Ability to transition to module stop state.
Event link function (input)	Ability to activate D/A conversion on channel 0 by event signal input	Ability to activate D/A conversion on channel 0 by event signal input
Output buffer amplifier control function	—	Buffered output (gain = 1) or unbuffered output can be selected.

Table 2.64 Comparative Listing of 12-bit D/A Converter Registers

Register	Bit	RX231 (R12DAA)	RX65N (R12DA)
DACR	DAE	—	D/A Enable
DAADUSR	_	_	D/A A/D Synchronous Unit Select Register
DAVREFCR	—	D/A VREF Control Register	—
DAAMPCR	_	_	D/A Output Amplifier Control Register
DAASWCR	_	—	D/A Output Amplifier Stabilization Wait Control Register

2.32 Temperature Sensor

Table 2.65 shows a Comparative Listing of Temperature Sensor Specifications, and Table 2.66 shows a Comparative Listing of Temperature Sensor Registers.

Table 2.65 Comparative Listing of Temperature Sensor Specifications

Item	RX231 (TEMPSA)	RX65N (TEMPS)
Temperature sensor voltage output	The temperature sensor voltage is output to the 12-bit A/D converter.	Temperature sensor outputs a voltage to the 12-bit A/D converter unit 1.
Low power consumption function	—	The module-stop state is selectable.
Temperature sensor calibration data	—	Reference data measured for each chip at factory shipment is stored.

Table 2.66 Comparative Listing of Temperature Sensor Registers

Register	Bit	RX231 (TEMPSA)	RX65N (TEMPS)
TSCR		—	Temperature Sensor Control Register
TSCDRH, TSCDRL (RX231) TSCDR (RX65N)		Temperature Sensor Calibration Data Register (b7 to b0) Bits 3 to 0 in TSCDRH and bits 7 to 0 in TSCDRL hold the temperature sensor calibration data measured for each chip at the time of shipment.	Temperature Sensor Calibration Data Register (b31 to b0) Bits 11 to 0 hold the temperature sensor calibration data measured for each chip at the time of shipment.

2.33 RAM

Table 2.67 shows a Comparative Listing of RAM Specifications, and Table 2.68 shows a Comparative Listing of RAM Registers.

Item	RX231	RX65N
RAM capacity	 32 KB RAM0: 32 KB 64 KB RAM0: 64 KB 	 256 KB / 384 KB*1 RAM0: 256 KB Expansion RAM: 384 KB*1
RAM address	 When the RAM capacity is 32 KB RAM0: 0000 0000h to 0000 7FFFh When the RAM capacity is 64 KB RAM0: 0000 0000h to 0000 FFFFh 	RAM0: 0000 0000h to 0003 FFFFh Expansion RAM: 0080 0000h to 0085 FFFFh* ¹
Access	 Single-cycle access is possible for both reading and writing. On-chip RAM can be enabled or disabled. 	 Single-cycle access is possible for both reading and writing. Enabling or disabling of the RAM is selectable.
Data retention function	—	Not available in deep software standby mode
Low power consumption function	The module stop state is selectable for RAM0.	Transition to the module stop state is separately possible for the RAM and expansion RAM* ¹ .
Error checking function		 Detection of 1-bit errors A non-maskable interrupt or interrupt is generated in response to an error.

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

Table 2.68 Comparative Listing of RAM Registers

Register	Bit	RX231	RX65N
RAMMODE			RAM Operating Mode Control
			Register
RAMSTS	—	—	RAM Error Status Register
RAMECAD		—	RAM Error Address Capture
			Register
RAMPRCR	—	—	RAM Protection Register
EXRAMMODE		—	Expansion RAM Operating Mode
			Control Register*1
EXRAMSTS	—	—	Expansion RAM Error Status
			Register*1
EXRAMECAD			Expansion RAM Error Address
			Capture Register*1
EXRAMPRCR	—		Expansion RAM Protection
			Register*1

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

2.34 Flash Memory (Code Flash)

Table 2.69 shows a Comparative Listing of Flash Memory (Code Flash) Specifications, and Table 2.70 shows a Comparative Listing of Flash Memory Registers.

Item	RX231	RX65N
Memory space	 User area: Up to 512 KB Extra area: Stores the start-up area information, access window information, and unique ID 	User area: Maximum 2 MB*1
ROM cache		 Capacity: 256 Bytes Mapping method: 8-way set associative Replace method: LRU method Line size: 16 bytes
Read cycle	Read mode is for high-speed reading. Reading from a ROM address for reading can be accomplished in one ICLK clock.	 When the cache is hit: One cycle When the cache is missed: One cycle if ICLK ≤ 50 MHz Two cycles if 50 MHz < ICLK ≤ 100 MHz Three cycles if ICLK > 100 MHz
Value after erase	ROM: FFh	ROM: FFh
Programming/era sing method	• The ROM can be programmed and erased by changing the mode of the dedicated sequencer for programming and erasure, and by issuing commands for programming and erasure	 Programming and erasing the code flash memory is handled by the FACI commands specified in the FACI command issuing area (007E 0000h)
	 Programming through transfer by a dedicated flash-memory programmer via a serial interface (serial programming) Programming of flash memory by a user program (self-programming) 	 Programming/erasure through transfer by a dedicated flash-memory programmer via a serial interface (serial programming) Programming/erasure of flash memory by a user program (self-programming)
Security function	Prevents unauthorized modification or reading of data.	Protects against illicit tampering with or reading out of data in flash memory
Protection function	Prevents unintentional programming of the flash memory.	Protects against erroneous programming of the flash memory
Dual bank function*1		 The dual-bank structure makes a safe update possible in cases where programming is suspended. Linear mode: the code flash memory is used as one area Dual mode: the code flash memory is divided into two areas
Trusted Memory (TM) function		 Protects against illicit reading of blocks 8 and 9 in the code flash memory Dual mode: blocks 8, 9, 46, and 47*1
Units of programming and	ROM programming: 8 bytes	Units of programming for the user area: 128 bytes
erasure	ROM erasing: Block units	Units of erasure for the user area: Block units

Table 2.69	Comparative Listing of Flash Memory (Code Flash) Specifications
------------	---

Item	RX231	RX65N
Other functions	Interrupts can be accepted during self- programming	Interrupts can be accepted during self- programming
	In the initial settings of this MCU, an expansion area of the option-setting memory can be set	In the initial settings of this MCU, an expansion area of the option-setting memory can be set
	The startup area of the code flash memory is selectable from blocks 0 to 7, and from blocks 8 to 15.	The startup area of the code flash memory is selectable from blocks 0 and 1.
On-board programming	 Boot mode (SCI) Channel 1 of the serial communications interface (SCI1) is used for asynchronous serial communication. The communication speed is adjusted automatically. Boot mode (USB interface) Channel 0 of the USB 2.0 function (USB0) module is used. A personal computer can be connected using only a USB cable. The flash memory can be rewritable in self-powered or buspowered mode. Boot mode (FINE interface) The FINE is used. Self-programming in single-chip mode mode flash rewrite routine in the user program. 	 Programming/erasure in boot mode (for the SCI interface) The asynchronous serial interface (SCI1) is used. The transfer rate is adjusted automatically. Programming/erasure in boot mode (for the USB interface) USBb is used Dedicated hardware is not required, so direct connection to a PC is possible. Programming/erasure in boot mode (for the FINE interface) FINE is used. Programming/erasure by a routine for code flash memory programming within the user program This allows code flash memory programming without resetting the system
Off-board programming	The user area is rewritable using a flash programmer (serial programmer or parallel programmer) compatible with this MCU.	A flash programmer can be used to program or erase the user area
Unique ID	A 16-byte ID code provided for each MCU	A 16-byte ID code provided for each MCU
ID codes protection	 Connection with the serial programmer can be enabled or disabled using ID codes in boot mode. Connection with the on-chip debugging emulator can be enabled or disabled using ID codes. Connection with the parallel programmer can be enabled or disabled using ROM codes. 	 Connection with the serial programmer can be enabled or disabled using ID codes in boot mode. Connection with the on-chip debugging emulator can be enabled or disabled using ID codes. Connection with the parallel programmer can be enabled or disabled using ROM codes.
Start-up program protection	This function is used to safely rewrite block 0 to block 7. (1 block: 2 KB)	This function is used to safely rewrite block 0. (1 block: 8 KB)

ltem	RX231	RX65N
Area protection	This function enables rewriting only the selected blocks in the user area and disables the other blocks during self-programming.	This function is valid only in the user area of the code flash memory, and provides an access window for specifying the rewritable area. When area protection is enabled, programming and erasure by serial programming or self-programming is prohibited to all other areas.
Background Operation (BGO)	Programs on the ROM can be executed while rewriting the E2 data flash.	 The code flash memory can be read while the code flash memory is being programmed or erased*1. The data flash memory can be read while the code flash memory is being programmed or erased*1. The code flash memory can be read while the data flash memory is being programmed or erased*1.

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

Table 2.70	Comparative Listing of Flash Memory Registers
------------	---

Register	Bit	RX231	RX65N
DFLCTL	—	E2 Data Flash Control Register	—
FENTRYR	FENTRY0	ROM P/E Mode Entry 0	—
	FENTRYC		Code Flash Memory P/E Mode
	FENTRYD	E2 Data Flash P/E Mode Entry	
	FEKEY[7:0]	Key Code	—
	KEY[7:0]	—	Key Code
FPR	—	Protection Unlock Register	
FPSR		Protection Unlock Status Register	—
FPMCR		Flash P/E Mode Control Register	—
FISR		Flash Initial Setting Register	—
FRESETR		Flash Reset Register	—
FASR		Flash Area Select Register	—
FCR		Flash Control Register	—
FEXCR		Flash Extra Area Control Register	—
FSARH	—	Flash Processing Start Address	—
50451		Register H	
FSARL		Flash Processing Start Address Register L	_
FEARH	—	Flash Processing End Address	—
		Register H	
FEARL		Flash Processing End Address Register L	—
FWBn		Flash Write Buffer n Register (n = 0 to 3)	—
FSTATR0		Flash Status Register 0	
FSTATR0		Flash Status Register 1	
FSTATR			Flash Status Register
FEAMH		Flash Error Address Monitor	
		Register H	
FEAML		Flash Error Address Monitor Register L	

Register	Bit	RX231	RX65N
FSCMR		Flash Start-Up Setting Monitor Register	_
FAWSMR		Flash Access Window Start Address Monitor Register	—
FAWEMR	—	Flash Access Window End Address Monitor Register	_
FWEPROR	—	—	Flash P/E Protect Register
FASTAT		—	Flash Access Status Register
FAEINT	—	_	Flash Access Error Interrupt Enable Register
FRDYIE	—	_	Flash Ready Interrupt Enable Register
FSADDR	—	_	FACI Command Start Address Register
FSUINITR	—	_	Flash Sequencer Set-Up Initialization Register
FCMDR		—	FACI Command Register
FAWMON	—	_	Flash Access Window Monitor Register
FCPSR	—	_	Flash Sequencer Processing Switching Register
FPCKAR	—		Flash Sequencer Processing Clock Notification Register
FSUACR		—	Start-Up Area Control Register
ROMCE		—	ROM Cache Enable Register
ROMCIV		—	ROM Cache Invalidate Register
EEPFCLK		_	Data Flash Memory Access Frequency Setting Register*1

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

2.35 Package

As indicated in Table 2.71, there are discrepancies in the package drawing codes and availability of some package types, and this should be borne in mind at the board design stage.

Table 2.71 Package

	Renesas Code	Renesas Code	
Package Type	RX231	RX65N	
100-pin TFLGA (0.55 mm)	0	×	
100-pin TFLGA (0.65 mm)	X	0	
64-pin WFLGA	0	×	
64-pin HWQFN	0	×	
48-pin HWQFN	0	×	
48-pin LFQFP	0	×	

O: Package available (Renesas code omitted); X: Package not available

3. Comparison of Pin Functions

A comparison of pin functions, power supplies, clocks, and system control pins is shown below. Items that apply to one group only are colored blue, while items that are implemented on both groups but with points of difference are colored red. Items are shown in **black** when there are no points of difference in their specifications.

3.1 100-Pin Package

Table 3.1 shows a Comparative Listing of Pin Functions on 100-Pin Package.

100-Pin LFQFP	100-Pin TFLGA	RX231	RX65N
1	A2	VREFH	AVCC1
2	B1	P03/DA0	EMLE
3	C2	VREFL	AVSS1
4	C3	PJ3/MTIOC3C/CTS6#/RTS6#/SS6#	PJ3/EDACK1/MTIOC3C/ET0_EXOUT/C TS6#/RTS6#/CTS0#/RTS0#/SS6#/SS0#
5	C1	VCL	VCL
6	D4	VBATT	VBATT
7	D3	MD/FINED	MD/FINED
8	D1	XCIN	XCIN
9	D2	XCOUT	XCOUT
10	E3	RES#	RES#
11	E1	P37/XTAL	P37/XTAL
12	E2	VSS	VSS
13	F1	P36/EXTAL	P36/EXTAL
14	F2	VCC	VCC
15	F3	P35/NMI	P35/UPSEL/NMI
16	E4	P34/MTIOC0A/TMCI3/POE2#/SCK6/TS 0/IRQ4	P34/TRST#/MTIOC0A/TMCI3/PO12/PO E10#/SCK6/SCK0/ET0_LINKSTA/IRQ4
17	G1	P33/MTIOC0D/TIOCD0/TMRI3/POE3#/ RXD6/SMISO6/SSCL6/TS1/IRQ3	P33/EDREQ1/MTIOC0D/TIOCD0/TMRI 3/P011/P0E4#/P0E11#/RXD6/RXD0/S MIS06/SMIS00/SSCL6/SSCL0/CRX0/I RQ3-DS
18	F4	P32/MTIOC0C/TIOCC0/TMO3/RTCOU T/RTCIC2/TXD6/SMOSI6/SSDA6/USB0 _VBUSEN/IRQ2	P32/MTIOC0C/TIOCC0/TMO3/PO10/RT COUT/RTCIC2/POE0#/POE10#/TXD6/T XD0/SMOSI6/SMOSI0/SSDA6/SSDA0/C TX0/USB0_VBUSEN/IRQ2-DS
19	G2	P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/R TS1#/SS1#/SSISCK0/IRQ1	P31/TMS/MTIOC4D/TMCI2/PO9/RTCIC 1/CTS1#/RTS1#/SS1#/SSLB0-A/IRQ1-D S
20	G3	P30/MTIOC4B/TMRI3/RTCIC0/POE8#/R XD1/SMISO1/SSCL1/AUDIO_MCLK/IR Q0/CMPOB3	P30/TDI/MTIOC4B/TMRI3/P08/RTCIC0/ POE8#/RXD1/SMISO1/SSCL1/MISOB- A/IRQ0-DS
21	G4	P27/CS3#/MTIOC2B/TMCI3/SCK1/SSI WS0/TS2/CVREFB3	P27/TCK/CS7#/MTIOC2B/TMCI3/PO7/S CK1/RSPCKB-A
22	H1	P26/CS2#/MTIOC2A/TMO1/TXD1/SMO SI1/SSDA1/SSIRXD0/TS3/CMPB3	P26/TDO/CS6#/MTIOC2A/TMO1/PO6/T XD1/CTS3#/RTS3#/SMOSI1/SS3#/SSD A1/MOSIB-A

 Table 3.1
 Comparative Listing of Pin Functions on 100-Pin Package

100-Pin LFQFP	100-Pin TFLGA	RX231	RX65N
23	H2	P25/CS1#/MTIOC4C/MTCLKB/TIOCA4/ TS4/ADTRG0#	P25/CS5#/EDACK1/MTIOC4C/MTCLK B/TIOCA4/PO5/RXD3/SMISO3/SSCL3/ ADTRG0#
24	J1	P24/CS0#/MTIOC4A/MTCLKA/TIOCB4/ TMRI1/USB0_VBUSEN/TS5	P24/CS4#/EDREQ1/MTIOC4A/MTCLK A/TIOCB4/TMRI1/PO4/SCK3/USB0_VB USEN
25	K1	P23/MTIOC3D/MTCLKD/TIOCD3/CTS0 #/RTS0#/SS0#/SSISCK0/TS6	P23/EDACK0/MTIOC3D/MTCLKD/TIOC D3/PO3/TXD3/CTS0#/RTS0#/SMOSI3/S S0#/SSDA3
26	K2	P22/MTIOC3B/MTCLKC/TIOCC3/TMO0/ SCK0/USB0_OVRCURB/AUDIO_MCLK/ TS7	P22/EDREQ0/MTIOC3B/MTCLKC/TIOC C3/TMO0/PO2/SCK0/USB0_OVRCURB
27	J2	P21/MTIOC1B/TIOCA3/TMCI0/RXD0/S MISO0/SSCL0/USB0_EXICEN/SSIWS0/ TS8	P21/MTIOC1B/MTIOC4A/TIOCA3/TMCI 0/PO1/RXD0/SMISO0/SSCL0/USB0_EX ICEN/IRQ9/(SCL1)*1
28	K3	P20/MTIOC1A/TIOCB3/TMRI0/TXD0/S MOSI0/SSDA0/USB0_ID/SSIRXD0/TS9	P20/MTIOC1A/TIOCB3/TMRI0/PO0/TX D0/SMOSI0/SSDA0/USB0_ID/IRQ8/(SD A1)*1
29	J3	P17/MTIOC3A/MTIOC3B/TIOCB0/TCLK D/TMO1/POE8#/SCK1/MISOA/SDA/SSI TXD0/IRQ7/CMPOB2	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIO CB0/TCLKD/TMO1/P015/P0E8#/SCK1/ TXD3/SMOSI3/SSDA3/SDA2-DS/IRQ7/ ADTRG1#
30	H3	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLK C/TMO2/RTCOUT/TXD1/SMOSI1/SSDA 1/MOSIA/SCL/USB0_VBUS/USB0_VBU SEN/USB0_OVRCURB/IRQ6/ADTRG0#	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLK C/TMO2/P014/RTCOUT/TXD1/RXD3/S MOSI1/SMISO3/SSDA1/SSCL3/SCL2-D S/USB0_VBUS/USB0_VBUSEN/USB0_ OVRCURB/IRQ6/ADTRG0#
31	H4	P15/MTIOC0B/MTCLKB/TIOCB2/TCLK B/TMCI2/RXD1/SMISO1/SSCL1/CRXD 0/TS12/IRQ5/CMPB2	P15/MTIOC0B/MTCLKB/TIOCB2/TCLK B/TMCI2/PO13/RXD1/SCK3/SMISO1/S SCL1/CRX1-DS/IRQ5
32	K4	P14/MTIOC3A/MTCLKA/TIOCB5/TCLK A/TMRI2/CTS1#/RTS1#/SS1#/CTXD0/U SB0_OVRCURA/TS13/IRQ4/CVREFB2	P14/MTIOC3A/MTCLKA/TIOCB5/TCLK A/TMRI2/P015/CTS1#/RTS1#/SS1#/CT X1/USB0_OVRCURA/IRQ4
33	J4	P13/MTIOC0B/TIOCA5/TMO3/SDA/IRQ 3	P13/MTIOC0B/TIOCA5/TMO3/P013/TX D2/SMOSI2/SSDA2/SDA0[FM+]/IRQ3/A DTRG1#
34	F5	P12/TMCI1/SCL/IRQ2	P12/TMCI1/RXD2/SMISO2/SSCL2/SCL 0[FM+]/IRQ2
35	J6	VCC_USB	VCC_USB
36	K5	USB0_DM	USB0_DM
37	K6	USB0_DP	USB0_DP
38	J5	VSS_USB	VSS_USB
39	H5	P55/WAIT#/MTIOC4D/TMO3/CRXD0/TS 15	P55/WAIT#/EDREQ0/MTIOC4D/TMO3/ CRX1/ET0_EXOUT/IRQ10/(D0[A0/D0]) *1
40	H6	P54/ALE/MTIOC4B/TMCI1/CTXD0/TS16	P54/ALE/EDACK0/MTIOC4B/TMCI1/CT S2#/RTS2#/SS2#/CTX1/ET0_LINKSTA/ (D1[A1/D1])*1
41	G5	P53/BCLK/TS17	P53/BCLK
42	G6	P52/RD#/TS18	P52/RD#/RXD2/SMISO2/SSCL2/SSLB3 -A

100-Pin LFQFP	100-Pin TFLGA	RX231	RX65N
	_		
43	K7	P51/WR1#/BC1#/WAIT#/TS19	P51/WR1#/BC1#/WAIT#/SCK2/SSLB2- A
44	J7	P50/WR0#/WR#/TS20	P50/WR0#/WR#/TXD2/SMOSI2/SSDA2/ SSLB1-A
45	H7	PC7/UB/A23/CS0#/MTIOC3A/MTCLKB/ TMO2/TXD8/SMOSI8/SSDA8/MISOA/C ACREF	PC7/UB/A23/CS0#/MTIOC3A/MTCLKB/ TMO2/TOC0/PO31/CACREF/TXD8/SM OSI8/SSDA8/MISOA-A/ET0_COL/TXD1 0/SMOSI10/SSDA10/IRQ14
46	H8	PC6/A22/CS1#/MTIOC3C/MTCLKA/TM CI2/RXD8/SMISO8/SSCL8/MOSIA/TS22	PC6/A22/CS1#/MTIOC3C/MTCLKA/TM CI2/TIC0/PO30/RXD8/SMISO8/SSCL8/ MOSIA-A/ET0_ETXD3/RXD10/SMISO1 0/SSCL10/IRQ13/(D2[A2/D2])*1
47	K8	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCL KD/TMRI2/SCK8/RSPCKA/TS23	PC5/A21/CS2#/WAIT#/MTIOC3B/MTCL KD/TMRI2/PO29/SCK8/RSPCKA-A/ET0 _ETXD2/SCK10/(D3[A3/D3])*1
48	J8	PC4/A20/CS3#/MTIOC3D/MTCLKC/TM CI1/POE0#/SCK5/CTS8#/RTS8#/SS8#/ SSLA0/SDHI_D1/TSCAP	PC4/A20/CS3#/MTIOC3D/MTCLKC/TM CI1/PO25/POE0#/SCK5/CTS8#/RTS8#/ SS8#/SSLA0-A/ET0_TX_CLK/CTS10#/ RTS10#/SS10#
49	K9	PC3/A19/MTIOC4D/TCLKB/TXD5/SMO SI5/SSDA5/IRTXD5/SDHI_D0/TS27	PC3/A19/MTIOC4D/TCLKB/PO24/TXD 5/SMOSI5/SSDA5/ET0_TX_ER
50	K10	PC2/A18/MTIOC4B/TCLKA/RXD5/SMIS O5/SSCL5/SSLA3/IRRXD5/SDHI_D3/TS 30	PC2/A18/MTIOC4B/TCLKA/PO21/RXD 5/SMISO5/SSCL5/SSLA3-A/ET0_RX_D V
51	J10	PC1/A17/MTIOC3A/TCLKD/SCK5/SSLA 2/TS33	PC1/A17/MTIOC3A/TCLKD/PO18/SCK 5/SSLA2-A/ET0_ERXD2/IRQ12
52	J9	PC0/A16/MTIOC3C/TCLKC/CTS5#/RTS 5#/SS5#/SSLA1/TS35	PC0/A16/MTIOC3C/TCLKC/PO17/CTS5 #/RTS5#/SS5#/SSLA1-A/ET0_ERXD3/I RQ14
53	H10	PB7/A15/MTIOC3B/TIOCB5/TXD9/SMO SI9/SSDA9/SDHI_D2	PB7/A15/MTIOC3B/TIOCB5/PO31/TXD 9/SMOSI9/SSDA9/ET0_CRS/RMII0_CR S_DV/TXD11/SMOSI11/SSDA11/SDSI_ D1-B
54	H9	PB6/A14/MTIOC3D/TIOCA5/RXD9/SMI SO9/SSCL9/SDHI_D1	PB6/A14/MTIOC3D/TIOCA5/PO30/RXD 9/SMISO9/SSCL9/ET0_ETXD1/RMII0_T XD1/RXD11/SMISO11/SSCL11/SDSI_D 0-B
55	G7	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/T MRI1/POE1#/SCK9/USB0_VBUS/SDHI_ CD	PB5/A13/MTIOC2A/MTIOC1B/TIOCB4/T MRI1/PO29/POE4#/SCK9/ET0_ETXD0/ RMII0_TXD0/SCK11/SDSI_CLK-B/(LCD _CLK-B)*1
56	G8	PB4/A12/TIOCA4/CTS9#/RTS9#/SS9#	PB4/A12/TIOCA4/PO28/CTS9#/RTS9#/ SS9#/ET0_TX_EN/RMII0_TXD_EN/CTS 11#/RTS11#/SS11#/SDSI_CMD-B/(LCD _TCON0-B)*1
57	F6	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/ TCLKD/TMO0/POE3#/SCK6/SDHI_WP	PB3/A11/MTIOC0A/MTIOC4A/TIOCD3/ TCLKD/TMO0/PO27/POE11#/SCK6/ET 0_RX_ER/RMII0_RX_ER/SDSI_D3-B/(L CD_TCON1-B)*1
58	F7	PB2/A10/TIOCC3/TCLKC/CTS6#/RTS6 #/SS6#	PB2/A10/TIOCC3/TCLKC/PO26/CTS6#/ RTS6#/SS6#/ET0_RX_CLK/REF50CK0/ SDSI_D2-B/(LCD_TCON2-B)*1

100-Pin LFQFP	100-Pin TFLGA	RX231	RX65N
59	G9	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/T MCI0/TXD6/SMOSI6/SSDA6/SDHI_CL K/IRQ4/CMPOB1	PB1/A9/MTIOC0C/MTIOC4C/TIOCB3/T MCI0/PO25/TXD6/SMOSI6/SSDA6/ET0 _ERXD0/RMII0_RXD0/IRQ4-DS/(LCD_T CON3-B)*1
60	G10	VCC	VCC
61	F8	PB0/A8/MTIC5W/TIOCA3/RXD6/SMISO 6/SSCL6/RSPCKA/SDHI_CMD	PB0/A8/MTIC5W/TIOCA3/PO24/RXD6/ SMISO6/SSCL6/ET0_ERXD1/RMII0_RX D1/IRQ12/(LCD_DATA0-B)*1
62	F10	VSS	VSS
63	F9	PA7/A7/TIOCB2/MISOA	PA7/A7/TIOCB2/PO23/MISOA-B/ET0_ WOL/(LCD_DATA1-B)*1
64	E7	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMC I3/POE2#/CTS5#/RTS5#/SS5#/MOSIA/ SSIWS0	PA6/A6/MTIC5V/MTCLKB/TIOCA2/TMC I3/PO22/POE10#/CTS5#/RTS5#/SS5#/ MOSIA-B/ET0_EXOUT/(LCD_DATA2-B) *1
65	E9	PA5/A5/TIOCB1/RSPCKA	PA5/A5/MTIOC6B/TIOCB1/PO21/RSPC KA-B/ET0_LINKSTA/(LCD_DATA3-B)*1
66	E8	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMR I0/TXD5/SMOSI5/SSDA5/SSLA0/SSITX D0/IRTXD5/IRQ5/CVREFB1	PA4/A4/MTIC5U/MTCLKA/TIOCA1/TMR I0/PO20/TXD5/SMOSI5/SSDA5/SSLA0- B/ET0_MDC/IRQ5-DS/(LCD_DATA4-B) *1
67	E10	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TC LKB/RXD5/SMISO5/SSCL5/SSIRXD0/IR RXD5/IRQ6/CMPB1	PA3/A3/MTIOC0D/MTCLKD/TIOCD0/TC LKB/PO19/RXD5/SMISO5/SSCL5/ET0_ MDIO/IRQ6-DS/(LCD_DATA5-B)*1
68	E6	PA2/A2/RXD5/SMISO5/SSCL5/SSLA3/I RRXD5	PA2/A2/MTIOC7A/PO18/RXD5/SMISO 5/SSCL5/SSLA3-B/(LCD_DATA6-B)*1
69	D9	PA1/A1/MTIOC0B/MTCLKC/TIOCB0/SC K5/SSLA2/SSISCK0	PA1/A1/MTIOC0B/MTCLKC/MTIOC7B/T IOCB0/PO17/SCK5/SSLA2-B/ET0_WO L/IRQ11/(LCD_DATA7-B)*1
70	D10	PA0/A0/BC0#/MTIOC4A/TIOCA0/SSLA 1/CACREF	PA0/A0/BC0#/MTIOC4A/MTIOC6D/TIO CA0/CACREF/PO16/SSLA1-B/ET0_TX_ EN/RMII0_TXD_EN/(LCD_DATA8-B)*1
71	D8	PE7/D15[A15/D15]/IRQ7/AN023	PE7/D15[A15/D15]/MTIOC6A/TOC1/MIS OB-B/MMC_RES#-B/SDHI_WP-B/IRQ7/ AN105/(D7[A7/D7]/LCD_DATA9-B)*1
72	D7	PE6/D14[A14/D14]/IRQ6/AN022	PE6/D14[A14/D14]/MTIOC6C/TIC1/MO SIB-B/MMC_CD-B/SDHI_CD-B/IRQ6/A N104/(D6[A6/D6]/SDHI_CD/LCD_DATA 10-B)*1
73	C9	PE5/D13[A13/D13]/MTIOC4C/MTIOC2 B/IRQ5/AN021/CMPOB0	PE5/D13[A13/D13]/MTIOC4C/MTIOC2 B/ET0_RX_CLK/REF50CK0/RSPCKB- B/IRQ5/AN103/(D5[A5/D5]/LCD_DATA1 1-B)* ¹
74	C10	PE4/D12[A12/D12]/MTIOC4D/MTIOC1 A/AN020/CMPA2/CLKOUT	PE4/D12[A12/D12]/MTIOC4D/MTIOC1 A/PO28/ET0_ERXD2/SSLB0-B/AN102/ (D4[A4/D4]/LCD_DATA12-B)*1
75	B10	PE3/D11[A11/D11]/MTIOC4B/POE8#/C TS12#/RTS12#/SS12#/AUDIO_MCLK/A N019/CLKOUT	PE3/D11[A11/D11]/MTIOC4B/PO26/PO E8#/TOC3/CTS12#/RTS12#/SS12#/ET0 _ERXD3/MMC_D7-B/AN101/(D3[A3/D 3]/LCD_DATA13-B)*1

100-Pin	100-Pin		
LFQFP	TFLGA	RX231	RX65N
76	A10	PE2/D10[A10/D10]/MTIOC4A/RXD12/S MISO12/SSCL12/RXDX12/IRQ7/AN018/ CVREFB0	PE2/D10[A10/D10]/MTIOC4A/PO23/TIC 3/RXD12/SMISO12/SSCL12/RXDX12/S SLB3-B/MMC_D6-B/IRQ7-DS/AN100/(D 2[A2/D2]/LCD_DATA14-B)*1
77	A9	PE1/D9[A9/D9]/MTIOC4C/TXD12/SMOS I12/SSDA12/TXDX12/SIOX12/AN017/C MPB0	PE1/D9[A9/D9]/MTIOC4C/MTIOC3B/PO 18/TXD12/SMOSI12/SSDA12/TXDX12/ SIOX12/SSLB2-B/MMC_D5-B/ANEX1/ (D1[A1/D1]/LCD_DATA15-B)*1
78	A8	PE0/D8[A8/D8]/SCK12/AN016	PE0/D8[A8/D8]/MTIOC3D/SCK12/SSLB 1-B/MMC_D4-B/ANEX0/(D0[A0/D0]/LCD _DATA16-B)*1
79	B9	PD7/D7[A7/D7]/MTIC5U/POE0#/IRQ7/A N031	PD7/D7[A7/D7]/MTIC5U/POE0#/SSLC3/ MMC_D1-B/SDHI_D1-B/QIO1-B/QMI-B/I RQ7/AN107/(SSLC3-A/LCD_DATA17-B) *1
80	B8	PD6/D6[A6/D6]/MTIC5V/POE1#/IRQ6/A N030	PD6/D6[A6/D6]/MTIC5V/MTIOC8A/POE 4#/SSLC2/MMC_D0-B/SDHI_D0-B/QIO 0-B/QMO-B/IRQ6/AN106/(SSLC2-A/LC D_DATA18-B)*1
81	C8	PD5/D5[A5/D5]/MTIC5W/POE2#/IRQ5/A N029	PD5/D5[A5/D5]/MTIC5W/MTIOC8C/PO E10#/SSLC1/MMC_CLK-B/SDHI_CLK- B/QSPCLK-B/IRQ5/AN113/(SSLC1-A/L CD_DATA19-B)*1
82	A7	PD4/D4[A4/D4]/POE3#/IRQ4/AN028	PD4/D4[A4/D4]/MTIOC8B/POE11#/SSL C0/MMC_CMD-B/SDHI_CMD-B/QSSL- B/IRQ4/AN112/(SSLC0-A/LCD_DATA20 -B)*1
83	B7	PD3/D3[A3/D3]/POE8#/IRQ3/AN027	PJ3/D3[A3/D3]/MTIOC8D/POE8#/TOC 2/RSPCKC/MMC_D3-B/SDHI_D3-B/QIO 3-B/IRQ3/AN111/(RSPCKC-A/LCD_DAT A21-B)*1
84	C7	PD2/D2[A2/D2]/MTIOC4D/IRQ2/AN026	PD2/D2[A2/D2]/MTIOC4D/TIC2/CRX0/M ISOC/MMC_D2-B/SDHI_D2-B/QIO2-B/I RQ2/AN110/(MISOC-A/LCD_DATA22- B)*1
85	B6	PD1/D1[A1/D1]/MTIOC4B/IRQ1/AN025	PD1/D1[A1/D1]/MTIOC4B/POE0#/CTX0/ MOSIC/IRQ1/AN109/(MOSIC-A/LCD_D ATA23-B)*1
86	A6	PD0/D0[A0/D0]/IRQ0/AN024	PD0/D0[A0/D0]/POE4#/IRQ0/AN108/ (LCD_EXTCLK-B)*1
87	C6	P47/AN007	P47/IRQ15-DS/AN007
88	D6	P46/AN006	P46/IRQ14-DS/AN006
89	D5	P45/AN005	P45/IRQ13-DS/AN005
90	B5	P44/AN004	P44/IRQ12-DS/AN004
91	A5	P43/AN003	P43/IRQ11-DS/AN003
92	C5	P42/AN002	P42/IRQ10-DS/AN002
93	E5	P41/AN001	P41/IRQ9-DS/AN001
94	A4	VREFLO	VREFL0
95	B4	P40/AN000	P40/IRQ8-DS/AN000
96	C4	VREFH0	VREFH0
97	B3	AVCC0	AVCC0
98	A3	P07/ADTRG0#	P07/IRQ15/ADTRG0#

100-Pin LFQFP	100-Pin TFLGA	RX231	RX65N
99	B2	AVSS0	AVSS0
100	A1	P05/DA1	P05/IRQ13/DA1

Note: 1. Can be used for products with at least 1.5 MB of code flash memory.

3.2 64-Pin Package (RX231: WFLGA, RX651: TFBGA)

Table 3.2 shows a Comparative Listing of Pin Functions on 64-Pin Package (RX231: WFLGA, RX651: TFBGA). Note that the RX65N Group is not available in 64-pin package versions.

64-Pin	RX231 (64-Pin WFLGA)	RX651 (64-Pin TFBGA)		
A1	P05/DA1	AVCC1		
A2	AVCC0	AVSS0		
A3	VREFH0	VREFH0		
A4	VREFL0	VREFL0		
A5	VREFH	PD2/MTIOC4D/TIC2/QIO2-B/SDHI_D2-B/IR Q2/AN110		
A6	VREFL	PD7/MTIC5U/POE0#/QMI-B/QIO1-B/SDHI_ D1-B/IRQ7/AN107		
A7	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/S SCL12/IRQ7/AN018/CVREFB0	PE0/MTIOC3D/SCK12/ANEX0		
A8	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/SS 12#/AUDIO_MCLK/AN019/CLKOUT	PE2/MTIOC4A/TIC3/RXD12/SSCL12/RXDX 12/IRQ7-DS		
B1	VCL	EMLE		
B2	AVSS0	AVSS1		
B3	P40/AN000	AVCC0		
B4	P42/AN002	P42/IRQ10-DS/AN002		
B5	P44/AN004	PD3/MTIOC8D/TOC2/POE8#/QIO3-B/SDHI _D3-B/IRQ3/AN111		
B6	P46/AN006	PD6/MTIC5V/MTIOC8A/POE4#/QMO-B/QIO 0-B/SDHI_D0-B/IRQ6/AN106		
B7	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/SM OSI12/SSDA12/AN017/CMPB0	PE1/MTIOC4C/MTIOC3B/TXD12/SSDA12/T XDX12/SIOX12/ANEX1		
B8	PE4/MTIOC4D/MTIOC1A/AN020/CMPA2/CL KOUT	PE6/MTIOC6C/TIC1/SDHI_CD/IRQ6		
C1	XCIN	VCL		
C2	MD/FINED	VBATT		
C3	P03/DA0	MD/FINED		
C4	P41/AN001	P41/IRQ9-DS/AN001		
C5	P43/AN003	PD4/MTIOC8B/POE11#/QSSL-B/SDHI_CM D-B/IRQ4/AN112		
C6	PE0/SCK12/AN016	PD5/MTIC5W/MTIOC8C/POE10#/QSPCLK- B/SDHI_CLK-B/IRQ5/AN113		
C7	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/CMP OB0	PA1/MTIOC0B/MTCLKC/MTIOC7B/TIOCB0/ SCK5/IRQ11		
C8	PA0/MTIOC4A/TIOCA0/SSLA1/CACREF	PE7/MTIOC6A/TOC1/SDHI_WP/IRQ7		
D1	XCOUT	XCIN		
D2	RES#	XCOUT		
D3	P27/MTIOC2B/TMCI3/SCK1/SSIWS0/TS2/C VREFB3	RES#		
D4	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/TC LKA/CTS1#/RTS1#/SS1#/CTXD0/USB0_OV RCURA/TS13/IRQ4/CVREFB2	P40/IRQ8-DS/AN000		
D5	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/TIOC A2/CTS5#/RTS5#/SS5#/MOSIA/SSIWS0	P43/IRQ11-DS/AN003		

Table 3.2 Comparative Listing of Pin Functions on 64-Pin Package

64-Pin	RX231 (64-Pin WFLGA)	RX651 (64-Pin TFBGA)	
D6	PA4/MTIC5U/MTCLKA/TMRI0/TIOCA1/TXD	PA6/MTIC5V/MTCLKB/TIOCA2/TMCI3/POE	
	5/SMOSI5/SSDA5/SSLA0/SSITXD0/IRTXD	10#/CTS5#/RTS5#/SS5#	
_	5/IRQ5/CVREFB1		
D7	PA1/MTIOC0B/MTCLKC/TIOCB0/SCK5/SSL A2/SSISCK0	PA2/MTIOC7A/RXD5/SMISO5/SSCL5	
D8	PA3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/R	PA4/MTIC5U/MTCLKA/TIOCA1/TMRI0/TXD	
	XD5/SMISO5/SSCL5/SSIRXD0/IRRXD5/IRQ 6/CMPB1	5/SMOSI5/SSDA5/IRQ5-DS	
E1	VSS	XTAL/P37	
E2	VBATT	VSS	
E3	P30/MTIOC4B/TMRI3/POE8#/RTCIC0/RXD	TRST#/P34/MTIOC0A/TMCI3/POE10#/IRQ4	
	1/SMISO1/SSCL1/AUDIO_MCLK/IRQ0/CMP OB3		
E4	P16/MTIOC3C/MTIOC3D/TMO2/TIOCB1/TC	P13/MTIOC0B/TIOCA5/TMO3/TXD2/SSDA	
	LKC/RTCOUT/TXD1/SMOSI1/SSDA1/MOSI	2/SDA0[FM+]/IRQ3/ADTRG1#	
	A/SCL/USB0_VBUS/USB0_VBUSEN/USB0 _OVRCURB/IRQ6/ADTRG0#		
E5	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/SC	BSCANP	
	K5/CTS8#/RTS8#/SS8#/SSLA0/SDHI_D1/T SCAP		
E6	VCC	PA7/TIOCB2	
E7	VSS	VCC	
E8	PB0/MTIC5W/TIOCA3/RXD6/SMISO6/SSCL 6/RSPCKA/SDHI CMD	VSS	
F1	VCC	EXTAL/P36	
F2	UPSEL/P35/NMI	VCC	
F3	P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/RTS1 #/SS1#/SSISCK0/IRQ1	UPSEL/P35/NMI	
F4	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/RSP CKA/USB0_ID/TS23	SCK8/RSP P12/TMCI1/RXD2/SSCL2/SCL0[FM+]/IRQ2	
F5	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/TC LKB/RXD1/SMISO1/SSCL1/CRXD0/TS12/IR Q5/CMPB2		
F6		PB7/MTIOC3B/TIOCB5/TXD9/SSDA9/SSDA 11/TXD11	
	OB1		
F7	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/TI OCB4/SCK9/USB0_VBUS/SDHI_CD	PB6/MTIOC3D/TIOCA5/RXD9/SSCL9/SSCL 11/RXD11	
F8	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/TIO	PB5/MTIOC2A/MTIOC1B/TIOCB4/TMRI1/P	
	CD3/TCLKD/SCK6/SDHI_WP	OE4#/SCK9/SCK11	
G1	EXTAL/P36	TCK/P27/MTIOC2B/TMCI3/SCK1/RSPCKB- A	
G2	P26/MTIOC2A/TMO1/TXD1/SMOSI1/SSDA 1/USB0_VBUSEN/SSIRXD0/TS3/CMPB3	TMS/P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/ RTS1#/SS1#/SSLB0-A/IRQ1-DS	
G3	VCC_USB	TDI/P30/MTIOC4B/TMRI3/RTCIC0/POE8#/ RXD1/SMISO1/SSCL1/MISOB-A/IRQ0-DS	
G4	VSS USB	VCC USB	
G5	UB/PC7/MTIOC3A/MTCLKB/TMO2/TXD8/S	VSS_USB	
	MOSI8/SSDA8/MISOA/CACREF		
G6	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/SMIS 08/SSCL8/MOSIA/USB0_EXICEN/TS22	UB/PC7/MTIOC3A/MTCLKB/TMO2/TOC0/C ACREF/TXD8/SMOSI8/SSDA8/SMOSI10/S SDA10/TXD10/MISOA-A/IRQ14	

64-Pin	RX231 (64-Pin WFLGA)	RX651 (64-Pin TFBGA)
G7	PC3/MTIOC4D/TCLKB/TXD5/SMOSI5/SSD A5/IRTXD5/SDHI_D0/TS27	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/SCK 10/RSPCKA-A
G8	PB6/PC0/MTIOC3D/TIOCA5/RXD9/SMISO 9/SSCL9/SDHI_D1	PC0/MTIOC3C/TCLKC/SSLA1-A/IRQ14
H1	XTAL/P37	TDO/P26/MTIOC2A/TMO1/TXD1/SMOSI1/S SDA1/CTS3#/RTS3#/MOSIB-A
H2	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/TIO CB0/TCLKD/SCK1/MISOA/SDA/SSITXD0/IR Q7/CMPOB2	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIOCB 0/TCLKD/TMO1/POE8#/SCK1/TXD3/SSDA 3/SDA2-DS/IRQ7/ADTRG1#
H3	USB0_DM	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLKC/T MO2/RTCOUT/TXD1/SMOSI1/SSDA1/RXD 3/SSCL3/SCL2-DS/USB0_VBUS/IRQ6/ADT RG0#
H4	USB0_DP	USB0_DM
H5	P55/MTIOC4D/TMO3/CRXD0/TS15	USB0_DP
H6	P54/MTIOC4B/TMCI1/CTXD0/TS16	PC6/MTIOC3C/MTCLKA/TMCI2/TIC0/RXD8/ SMISO8/SSCL8/SMISO10/SSCL10/RXD10/ MOSIA-A/IRQ13
H7	PC2/MTIOC4B/TCLKA/RXD5/SMISO5/SSC L5/SSLA3/IRRXD5/SDHI_D3/TS30	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/CT S8#/RTS8#/SS8#/SS10#/CTS10#/RTS10#/S SLA0-A
H8	PB7/PC1/MTIOC3B/TIOCB5/TXD9/SMOSI9/ SSDA9/SDHI_D2	PC1/MTIOC3A/TCLKD/SSLA2-A/IRQ12

3.3 64-Pin Package (RX231: LFQFP/HWQFN, RX651: LFQFP)

Table 3.3 shows a Comparative Listing of Pin Functions on 64-Pin Package (RX231: LFQFP/HWQFN, RX651: LFQFP). Note that the RX65N Group is not available in 64-pin package versions.

64-Pin	RX231 (64-Pin LFQFP/HWQFN)	RX651 (64-Pin LFQFP)	
1	P03/DA0	AVCC1	
2	VCL	EMLE	
3	MD/FINED	AVSS1	
4	XCIN	VCL	
5	XCOUT	VBATT	
6	RES#	MD/FINED	
7	XTAL/P37	XCIN	
8	VSS	XCOUT	
9	EXTAL/P36	RES#	
10	VCC	XTAL/P37	
11	UPSEL/P35/NMI	VSS	
12	VBATT	EXTAL/P36	
13	P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/RTS 1#/SS1#/SSISCK0/IRQ1	VCC	
14	P30/MTIOC4B/TMRI3/POE8#/RTCIC0/RXD 1/SMISO1/SSCL1/AUDIO_MCLK/IRQ0/CM POB3	UPSEL/P35/NMI	
15	P27/MTIOC2B/TMCI3/SCK1/SSIWS0/TS2/C VREFB3	TRST#/P34/MTIOC0A/TMCI3/POE10#/IRQ4	
16	P26/MTIOC2A/TMO1/TXD1/SMOSI1/SSDA 1/USB0_VBUSEN/SSIRXD0/TS3/CMPB3	TDI/P30/MTIOC4B/TMRI3/RTCIC0/POE8#/ RXD1/SMISO1/SSCL1/MISOB-A/IRQ0-DS	
17	P17/MTIOC3A/MTIOC3B/TMO1/POE8#/TIO CB0/TCLKD/SCK1/MISOA/SDA/SSITXD0/I RQ7/CMPOB2	TMS/P31/MTIOC4D/TMCI2/RTCIC1/CTS1#/ RTS1#/SS1#/SSLB0-A/IRQ1-DS	
18	P16/MTIOC3C/MTIOC3D/TMO2/TIOCB1/TC LKC/RTCOUT/TXD1/SMOSI1/SSDA1/MOSI A/SCL/USB0_VBUS/USB0_VBUSEN/USB0 _OVRCURB/IRQ6/ADTRG0#	TDO/P26/MTIOC2A/TMO1/TXD1/SMOSI1/S SDA1/CTS3#/RTS3#/MOSIB-A	
19	P15/MTIOC0B/MTCLKB/TMCI2/TIOCB2/TC LKB/RXD1/SMISO1/SSCL1/CRXD0/TS12/I RQ5/CMPB2	TCK/P27/MTIOC2B/TMCI3/SCK1/RSPCKB- A	
20	P14/MTIOC3A/MTCLKA/TMRI2/TIOCB5/TC LKA/CTS1#/RTS1#/SS1#/CTXD0/USB0_OV RCURA/TS13/IRQ4/CVREFB2	P17/MTIOC3A/MTIOC3B/MTIOC4B/TIOCBb 0/TCLKD/TMO1/POE8#/SCK1/TXD3/SSDA 3/SDA2-DS/IRQ7/ADTRG1#	
21	VCC_USB	P16/MTIOC3C/MTIOC3D/TIOCB1/TCLKC/T MO2/RTCOUT/TXD1/SMOSI1/SSDA1/RXD 3/SSCL3/SCL2-DS/USB0_VBUS/IRQ6/ADT RG0#	
22	USB0_DM P13/MTIOC0B/TIOCA5/TMO3/ 2/SDA0[FM+]/IRQ3/ADTRG1#		
23	USB0_DP	P12/TMCI1/RXD2/SSCL2/SCL0[FM+]/IRQ2	
24	VSS_USB	VCC_USB	
25	P55/MTIOC4D/TMO3/CRXD0/TS15 USB0_DM		
26	P54/MTIOC4B/TMCI1/CTXD0/TS16 USB0_DP		
27	UB/PC7/MTIOC3A/MTCLKB/TMO2/TXD8/S MOSI8/SSDA8/MISOA/CACREF	VSS_USB	

Table 3.3 Comparative Listing of Pin Functions on 64-Pin Package

64-Pin	RX231 (64-Pin LFQFP/HWQFN)	RX651 (64-Pin LFQFP)	
28	PC6/MTIOC3C/MTCLKA/TMCI2/RXD8/SMI S08/SSCL8/MOSIA/USB0_EXICEN/TS22	P53	
29	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/RSP CKA/USB0_ID/TS23	UB/PC7/MTIOC3A/MTCLKB/TMO2/TOC0/C ACREF/TXD8/SMOSI8/SSDA8/SMOSI10/S SDA10/TXD10/MISOA-A/IRQ14	
30	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/SC K5/CTS8#/RTS8#/SS8#/SSLA0/SDHI_D1/T SCAP	PC6/MTIOC3C/MTCLKA/TMCI2/TIC0/RXD 8/SMISO8/SSCL8/SMISO10/SSCL10/RXD1 0/MOSIA-A/IRQ13	
31	PC3/MTIOC4D/TCLKB/TXD5/SMOSI5/SSD A5/IRTXD5/SDHI_D0/TS27	PC5/MTIOC3B/MTCLKD/TMRI2/SCK8/SCK 10/RSPCKA-A	
32	PC2/MTIOC4B/TCLKA/RXD5/SMISO5/SSC L5/SSLA3/IRRXD5/SDHI_D3/TS30	PC4/MTIOC3D/MTCLKC/TMCI1/POE0#/CT S8#/RTS8#/SS8#/SS10#/CTS10#/RTS10#/ SSLA0-A	
33	PB7/PC1/MTIOC3B/TIOCB5/TXD9/SMOSI9/ SSDA9/SDHI_D2	PC1/MTIOC3A/TCLKD/SSLA2-A/IRQ12	
34	PB6/PC0/MTIOC3D/TIOCA5/RXD9/SMISO 9/SSCL9/SDHI_D1	PC0/MTIOC3C/TCLKC/SSLA1-A/IRQ14	
35	PB5/MTIOC2A/MTIOC1B/TMRI1/POE1#/TI OCB4/SCK9/USB0_VBUS/SDHI_CD	PB7/MTIOC3B/TIOCB5/TXD9/SSDA9/SSDA 11/TXD11	
36	PB3/MTIOC0A/MTIOC4A/TMO0/POE3#/TIO CD3/TCLKD/SCK6/SDHI_WP	PB6/MTIOC3D/TIOCA5/RXD9/SSCL9/SSCL 11/RXD11	
37	PB1/MTIOC0C/MTIOC4C/TMCI0/TIOCB3/T XD6/SMOSI6/SSDA6/SDHI_CLK/IRQ4/CMP OB1	PB5/MTIOC2A/MTIOC1B/TIOCB4/TMRI1/P OE4#/SCK9/SCK11	
38	VCC	VCC	
39	PB0/MTIC5W/TIOCA3/RXD6/SMISO6/SSCL 6/RSPCKA/SDHI_CMD	VSS	
40	VSS	PA7/TIOCB2	
41	PA6/MTIC5V/MTCLKB/TMCI3/POE2#/TIOC A2/CTS5#/RTS5#/SS5#/MOSIA/SSIWS0	PA6/MTIC5V/MTCLKB/TIOCA2/TMCI3/POE 10#/CTS5#/RTS5#/SS5#	
42	PA4/MTIC5U/MTCLKA/TMRI0/TIOCA1/TXD 5/SMOSI5/SSDA5/SSLA0/SSITXD0/IRTXD 5/IRQ5/CVREFB1	PA4/MTIC5U/MTCLKA/TIOCA1/TMRI0/TXD 5/SMOSI5/SSDA5/IRQ5-DS	
43	PA3/MTIOC0D/MTCLKD/TIOCD0/TCLKB/R XD5/SMISO5/SSCL5/SSIRXD0/IRRXD5/IR Q6/CMPB1	PA2/MTIOC7A/RXD5/SMISO5/SSCL5	
44	PA1/MTIOC0B/MTCLKC/TIOCB0/SCK5/SS LA2/SSISCK0	PA1/MTIOC0B/MTCLKC/MTIOC7B/TIOCB0/ SCK5/IRQ11	
45	PA0/MTIOC4A/TIOCA0/SSLA1/CACREF	PE7/MTIOC6A/TOC1/SDHI_WP/IRQ7	
46	PE5/MTIOC4C/MTIOC2B/IRQ5/AN021/CMP OB0	PE6/MTIOC6C/TIC1/SDHI_CD/IRQ6	
47	PE4/MTIOC4D/MTIOC1A/AN020/CMPA2/C LKOUT	PE2/MTIOC4A/TIC3/RXD12/SSCL12/RXDX 12/IRQ7-DS	
48	PE3/MTIOC4B/POE8#/CTS12#/RTS12#/SS 12#/AUDIO_MCLK/AN019/CLKOUT	PE1/MTIOC4C/MTIOC3B/TXD12/SSDA12/T XDX12/SIOX12/ANEX1	
49	PE2/MTIOC4A/RXD12/RXDX12/SMISO12/S SCL12/IRQ7/AN018/CVREFB0	PE0/MTIOC3D/SCK12/ANEX0	
50	PE1/MTIOC4C/TXD12/TXDX12/SIOX12/SM OSI12/SSDA12/AN017/CMPB0	A PD7/MTIC5U/POE0#/QMI-B/QIO1-B/SDHI_ D1-B/IRQ7/AN107	
51	PE0/SCK12/AN016	PD6/MTIC5V/MTIOC8A/POE4#/QMO-B/QIO 0-B/SDHI_D0-B/IRQ6/AN106	
52	VREFL	PD5/MTIC5W/MTIOC8C/POE10#/QSPCLK- B/SDHI_CLK-B/IRQ5/AN113	

64-Pin	RX231 (64-Pin LFQFP/HWQFN)	RX651 (64-Pin LFQFP)
53	P46/AN006	PD4/MTIOC8B/POE11#/QSSL-B/SDHI_CM D-B/IRQ4/AN112
54	VREFH	PD3/MTIOC8D/TOC2/POE8#/QIO3-B/SDHI _D3-B/IRQ3/AN111
55	P44/AN004	PD2/MTIOC4D/TIC2/QIO2-B/SDHI_D2-B/IR Q2/AN110
56	P43/AN003 P43/IRQ11-DS/AN003	
57	P42/AN002 P42/IRQ10-DS/AN002	
58	P41/AN001	P41/IRQ9-DS/AN001
59	VREFL0	VREFL0
60	P40/AN000	P40/IRQ8-DS/AN000
61	VREFH0	VREFH0
62	AVCC0	AVCC0
63	P05/DA1	AVSS0
64	AVSS0	P05/IRQ13/DA1

4. Notes on Migration

4.1 Operating Voltage Range

4.1.1 Power Supply Voltage

The power supply voltage ranges are different between RX231 and RX65N.

Table 4.1 shows a Comparative of Power Supply Voltage Ranges.

Table 4.1 Comparative of Power Supply Voltage Ranges

Item RX231		RX65N
VCC	1.8 V to 5.5 V*1	2.7 V to 3.6 V
AVCC0	1.8 V to 5.5 V*2	Set to the same potential as VCC
AVCC1	None	Set to the same potential as VCC
VREFH0	1.8 V to AVCC0	2.7 V to AVCC0
VREFH	1.8 V to AVCC0	None
VCC_USB	Set to the same potential as VCC	Set to the same potential as VCC
VBATT	1.8 V to 5.5 V	2.0 V to 3.6 V

Notes: 1. When USB is not used.

4.1.2 Analog power supply voltage

On the RX231 Group, AVCC0 and VCC can be supplied independently within the operating voltage range when VCC \ge 2.0V. However, on the RX65N Group, AVCC0 and AVCC1 should be supplied with the same potential as VCC.

4.2 Notes on Pin Design

4.2.1 VCL Pin (External Capacitor)

Connect a smoothing capacitor rated at 0.22 μF to the VCL pin of the RX65N Group for stabilization of the internal power supply.

4.2.2 Main clock oscillator

When connecting an oscillator to EXTAL pin and XTAL pin of RX65N Group, frequency should be in a range of 8 MHz to 24 MHz.

4.2.3 USB External Connection Circuit

The example of USB external connection circuit is different between RX231 Group and RX65N Group.

For details on external connection circuits, see RX65N Group, RX651 Group User's Manual: Hardware, listed in section 5, Reference Documents.

4.2.4 Transition to Boot Mode (FINE Interface)

On the RX65N Group, the chip enters boot mode (FINE interface) when the MD pin is set to the low level at the time of release from the reset state and then the pin is switched to the high level within 20 to 100 msec.

For details on operating modes, see RX65N Group, RX651 Group User's Manual: Hardware, listed in section 5, Reference Documents.

^{2.} AVCC0 and VCC can be set individually within the operating range when VCC \geq 2.0V AVCC0 = VCC when VCC < 2.0V

4.3 Notes on Function Settings

4.3.1 Changing Option-Setting Memory by Self-Programming

Making changes to the option-setting memory by self-programming on the RX65N Group is accomplished by programming the configuration setting area in the option-setting memory using the configuration setting command.

For details on the configuration setting command, see RX65N Group, RX651 Group Flash Memory User's Manual: Hardware Interface, listed in section 5, Reference Documents.

4.3.2 Setting Number of Flash Memory Access Wait States

On the RX65N Group it is necessary to specify the number of access wait states to be used when accessing the flash memory, based on the system clock (ICLK) frequency of the microcontroller. This setting is made to the ROMWT register.

Table 4.2 shows The Number of Flash Memory Access Wait States according to ICLK frequency.

Table 4.2 The Number of Flash Memory Access Wait States

Item	ICLK ≤ 50 MHz	50 MHz < ICLK \leq 100 MHz	100 MHz < ICLK \leq 200 MHz
Wait states	0 to 2	1 or 2	2

Note: For details on register setting and the detail of specifications, see RX65N Group, RX651 Group User's Manual: Hardware, listed in section 5, Reference Documents.

4.3.3 Selectable Interrupts

A selectable interrupt function has been added to the RX65N Group. From among multiple peripheral module interrupt sources, the user may assign one each to interrupt vector numbers 128 to 255.

For details on selectable interrupt function, see RX65N Group, RX651 Group User's Manual: Hardware, listed in section 5, Reference Documents.

4.3.4 Command of Flash Memory Usage

On the RX231 Group, the Flash memory can be programmed and erased by changing the mode of the dedicated sequencer for programming and erasure, and by issuing software commands.

On the RX65N Group, the Flash memory can be programmed and erased by setting the FACI commands specified in the FACI command issuing area to control the FCU.

Table 4.3 shows The Specification Comparison Between Software Commands and FACI Commands.

Table 4.3 The Specification Comparison Between Software Commands and FACI Commands

Item	Software Command (RX231)	FACI Command (RX65N)
Command issuing	—	FACI command issuing area
area		(007E 0000h)
Available	Program	Program
commands	Block erase	Block erase
		Multi-block erase
	All-block erase	
	Blank check	Blank check
	Start-up area information program	
	Access window information program	
		P/E suspend
		P/E resume
		Status clear
		Forced stop
		Configuration setting

4.3.5 Flash Access Window Setting Register (FAW)

On the RX65N Group, once 0 is written to the access window protection bit (FSPR) in flash access window setting register (FAW), the bit can never be restored to 1.

For details, see RX65N Group, RX651 Group User's Manual: Hardware, listed in section 5, Reference Documents.

4.3.6 Software Standby Mode

On the RX65N Group, it is selectable that the main and sub-clock oscillators operate or stop in software standby mode. The main clock oscillator forced oscillation bit (MOFXIN) in main clock oscillator forced oscillation control register (MOFCR) should be 0 to stop the main clock oscillator.

4.3.7 Battery Backup Function

The RX65N Group does not support the VBATT pin voltage drop detection. When the voltage level at the VBATT pin voltage falls below the operation guaranteed voltage, operation of the RTC cannot be guaranteed. The RTC must be initialized to restart power supply after the VBATT pin falls below the operation guaranteed voltage.

5. Reference Documents

User's Manual: Hardware

RX230 Group, RX231 Group User's Manual: Hardware Rev.1.20 (R01UH0496EJ0120) (The latest version can be downloaded from the Renesas Electronics website.)

RX65N Group, RX651 Group User's Manual: Hardware Rev.2.10 (R01UH0590EJ0210) (The latest version can be downloaded from the Renesas Electronics website.)

RX65N Group, RX651 Group Flash Memory User's Manual: Hardware Interface Rev.2.00 (R01UH0602EJ0200)

(The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest information can be downloaded from the Renesas Electronics website.)

Related Technical Updates

This module reflects the content of the following technical updates. None

Revision History

Description			n
Rev.	Date	Page	Summary
1.00	Dec. 1, 2016		First edition issued
2.00	Nov. 6, 2017	All pages	Supports RX65N with at least 1.5 MB of code flash memory
2.10	May 24, 2019	1	Introduction, revised
		3	1, Comparison of Functions of RX65N Group and RX231
			Group, revised
		7	2.3, Address Space, added
			2.3, Table 2.4, Comparative Memory Map of Single-Chip Mode, added
		8	2.3, Table 2.5, Comparative Memory Map of On-Chip ROM Enabled Extended Mode, added
		9	2.3, Table 2.6, Comparative Memory Map of On-Chip ROM Disabled Extended Mode, added
		11	2.5, Table 2.9, Comparative Listing of Option-Setting Memory Registers, revised
		16	2.7, Table 2.12, Comparative Listing of Clock Generation Circuit Specifications, revised
		22	2.8, Table 2.15, Comparison of Procedures for Entering and
			Exiting Low Power Consumption Modes and Operating States in Each Mode, added
		30	2.11, Table 2.20, Comparative Listing of Interrupt Controller Specifications, revised
		33	2.11, Table 2.21, Comparative Listing of Interrupt Controller Registers, revised
		35	2.12, Table 2.22, Comparative Listing of Bus Specifications, revised
		38	2.12, Table 2.24, Comparative Listing of Bus Registers, revised
		41	2.14, Table 2.27, Comparative Listing of Data Transfer Controller Specifications, revised
		43	2.15, Table 2.29, Comparative Listing of Event Link Controller Specifications, revised
		45	2.16, Table 2.33, Comparative Listing of I/O Ports (64-Pin) Specifications, added
		47	2.17, Table 2.35, Comparative Listing of Multi-Function Pin Controller Registers, revised
		53	2.21, Table 2.41, Comparative Listing of Watchdog Timer Specifications, revised
		54	2.22, Table 2.43, Comparative Listing of Independent Watchdog Timer Specifications, revised
		59	2.23, Table 2.46, Comparative Listing of USB 2.0 Host/Function Module Registers, revised
		60	2.24, Table 2.47, Comparative Listing of SCIg Specifications, revised
		62	2.24, Table 2.48, Comparative Listing of SCIi Specifications, revised
		81	2.30, Table 2.61, Comparative Listing of 12-Bit A/D Converter Specifications, revised
		85	2.30, Table 2.62, Comparative Listing of 12-Bit A/D Converter Registers revised

		Description	
Rev.	Date	Page	Summary
2.10	May 24, 2019	91	2.31, Table 2.63, Comparative Overview of 12-Bit D/A Converter, added
			2.31, Table 2.64, Comparative Listing of 12-bit D/A Converter Registers, revised
		92	2.32, Table 2.66, Comparative Listing of Temperature Sensor Registers, revised
		94	2.34, Table 2.69, Comparative Listing of Flash Memory (Code Flash) Specifications, revised
		98	2.35, Package, added
		105	3.2, Table 3.2, Comparative Listing of Pin Functions on 64-Pin Package, added
		108	3.3, Table 3.3, Comparative Listing of Pin Functions on 64-Pin Package, added
		113	4.3.4, Command of Flash Memory Usage, revised
		114	5, Reference Documents, revised

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 "Standard": Computers: office equipment: computers and resourcement equipment: test and measurement equipment: bereasting and visual equipment: bereasting equipment: bereasting equipment: test and measurement equipment: bereasting equi
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.