

Application Note

Static LCD Driver with I2C
Interface

AN-CM-256

Abstract

This application note describes how to create a low power static LCD driver using a GreenPAK IC.

This application note comes complete with design files which can be found in the References
section.

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 2 of 29 © 2022 Renesas Electronics Corporation

Contents

Abstract .. 1

Contents ... 2

Figures .. 2

Tables ... 2

1 Terms and Definitions ... 4

2 References ... 4

3 Introduction.. 5

4 Basics of Liquid Crystal Displays ... 5

5 GreenPAK Design Basic Block Diagram .. 7

6 Design Current Consumption .. 8

7 GreenPAK Device Schematic ... 8

7.1 I2C Interface .. 9

7.2 Output Segment Driver ... 10

7.3 4.3 Internal Oscillator and Backplane Clock Source Control .. 10

7.4 Backplane Clock Output or Segment 15 Output Pin Control .. 11

8 LCD System Prototype ... 11

9 I2C Commands for LCD Control .. 13

9.1 I2C Commands for LCD Test .. 16

10 Test Results ... 16

11 Conclusion and Results Discussion ... 18

Appendix A ... 19

A.1 Source Code ... 19

Revision History .. 29

Figures

Figure 1: Principle Operation of an LCD (source [5]). ... 6
Figure 2: Control Signals for Static LCD Drive .. 6
Figure 3: Basic Block Diagram of GreenPAK Design ... 7
Figure 4: Top View of the GreenPAK Design Schematic .. 9
Figure 5: Close View to I2C Interface Block .. 9
Figure 6: ASM Output Used as Internal Segment Control .. 10
Figure 7: Backplane Clock Source Selection and Oscillator Control .. 10
Figure 8: PIN 20 Operation Control ... 11
Figure 9: Schematic of the System Prototype ... 12
Figure 10: System Prototype Picture. IC1 is on the Left Side and IC2 is on the Right Side 13

Tables

Table 1: Pinout Description for LCD Driver Design ... 8
Table 2: Segments and Device Drivers ... 13

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 3 of 29 © 2022 Renesas Electronics Corporation

Table 3: I2C Command Sequence Description for IC1 ... 14
Table 4: Lookup Table to Write Numbers and Letters on LCD Digit 1 and 2 15
Table 5: I2C Command Sequence Description for IC2 ... 15
Table 6: Lookup Table to Write Numbers and Letters on LCD Digit 3 and 4 15
Table 7: LCD Prototype Display Sequence ... 16
Table 8: Pictures of LCD Display after MCU Commands to GreenPAK Devices 17
Table 9: Current Measurements for Each GreenPAK Device ... 17

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 4 of 29 © 2022 Renesas Electronics Corporation

1 Terms and Definitions

AC Alternate current

ASIC Application specific integrated circuit

ASM Asynchronous state machine

CPLD Complex programmable logic device

DC Direct current

ICs Integrated Circuits

LCD Liquid crystal displays

2 References

For related documents and software, please visit:

https://www.dialog-semiconductor.com/products/greenpak.

Download our free GreenPAK™ Designer software [1] to open the .gp files [2] and view the proposed
circuit design. Use the GreenPAK development tools [3] to freeze the design into your own
customized IC in a matter of minutes. Renesas Electronics provides a complete library of application
notes [4] featuring design examples as well as explanations of features and blocks within the IC.

[1] GreenPAK Designer Software, Software Download and User Guide, Renesas Electronics

[2] AN-CM-256 Static LCD Driver with I2C Interface.gp, GreenPAK Design File, Renesas
Electronics

[3] GreenPAK Development Tools, GreenPAK Development Tools Webpage, Renesas Electronics

[4] GreenPAK Application Notes, GreenPAK Application Notes Webpage, Renesas Electronics

[5] Application Note AN-001 – Basics of LCD Technology, Hitachi

[6] Application Note AN-005 – Display Modes, Hitachi

[7] Application Note AN-1090 Simple I2C IO Controllers with SLG46531V, Renesas Electronics

https://www.dialog-semiconductor.com/products/greenpak
https://www.dialog-semiconductor.com/greenpak-designer-software
https://www.dialog-semiconductor.com/sites/default/files/an-cm-256_static_lcd_driver_with_i2c_interface.docx.gp5.zip
https://www.dialog-semiconductor.com/greenpak-development-tools
https://www.dialog-semiconductor.com/greenpak-application-notes

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 5 of 29 © 2022 Renesas Electronics Corporation

3 Introduction

Liquid Crystal Displays (LCD) are widely used for commercial and industrial applications because of
their good visual properties, low cost and, low power consumption. These properties make the LCD
the standard solution for battery-operated devices, like portable instruments, calculators, watches,
radios, etc.

However, to properly control what the LCD shows, the LCD’s electronic driver must generate
appropriate voltage waveforms to LCD pins. The waveforms should be AC (alternate current) in
nature because DC (direct current) voltages will permanently damage the device. The appropriate
driver would source these signals to LCD at a minimum of power consumption.

Two types of LCDs exist, the Static, with only one backplane and one pin for individual segment
control and, the Multiplexed, with multiple backplanes and multiple segments connected for each pin.

This application note will present the design of one static LCD driver with SLG46537V GreenPAK
device. The designed LCD driver would drive up to 15 LCD’s segments, using a few microamperes of
current from the power supply and offer an I2C interface for control.

In the following sections will be shown:

● basic knowledge information about LCDs;

● the SLG46537V GreenPAK LCD driver design in detail;

● how to drive a seven segment, 4-digit static LCD with two GreenPAK devices;

4 Basics of Liquid Crystal Displays

Liquid Crystal Displays (LCD) is a technology that does not emit light, it only controls how an external
light source passes through. This external light source could be the available ambient light, in the
reflective display type, or the light from a backlight led or lamp, in transmissive display type.

LCDs are constructed with two plates of glass (upper and bottom), a thin layer of liquid crystal (LC)
between them and two light polarizers [5][6].The polarizer is a light filter for the light electromagnetic
field. Only the light components in the right electromagnetic field direction pass through the polarizer,
while the other components are blocked. The liquid crystal is an organic material that rotates the
electromagnetic field of the light 90 degrees or more. However, when an electrical field is applied to
the LC it does not rotate the light anymore. With the addition of transparent electrodes in the upper
and bottom display glass, its possible to control when the light passes through, and when not, with an
external source of the electrical field. Figure 1 below illustrates this operation control. In Figure 1, the
display is dark when there isn’t an electrical field. This is because both polarizers filter the light in the
same direction. If the polarizers are orthogonal, then the display will be dark when the electrical field
is present. This is the most common situation for reflective displays.

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 6 of 29 © 2022 Renesas Electronics Corporation

Figure 1: Principle Operation of an LCD (source [5]).

The minimum electrical field, or voltage, to control the LCD is called the ON threshold. The LC is only
affected by the voltage, and there is hardly any current in LC material. The electrodes in LCD forms a
small capacitance and this is the only load for a driver. This is the reason for an LCD being a low
power device to show visual information.

However, its important to note that the LCD can’t operate with a direct current (DC) voltage source
for too long. The application of a DC voltage will cause chemical reactions in LC material,
permanently damaging it [5]. The solution is to apply an alternate voltage (AC) in LCDs electrodes.

In static LCDs, a backplane electrode is built in one glass and individual LCD’s segments, or pixels,
are put in the other glass. This is one of the simplest LCD types and the one with the best contrast
ratio. However, this type of display usually requires too many pins to control each individual segment.

In general, a driver controller sources a square wave clock signal for the backplane and a clock
signal for the segments in the front plane together. When the backplane clock is in-phase with the
segment clock, the root-mean-square (RMS) voltage between both planes is zero, and the segment
is transparent. Otherwise, if the RMS voltage is higher than LCD ON threshold, the segment
becomes dark. The waveforms for the backplane, on and off segment are shown in Figure 2. As can
be seen in the figure, the ON segment is out-of-phase in relation to the backplane signal. The off
segment is in-phase in relation to the backplane signal. The applied voltage could be between 3 and
5 volts for low cost, low power displays.

The clock signal for LCD’s backplane and segments usually are in the range of 30 to 100 Hz, the
minimum frequency to avoid a visual flicker effect on LCD. Higher frequencies are avoided to reduce
the power consumption of the overall system. The system composed of LCD and drivers would
consume little current, in the order of microamperes. This makes them perfectly suitable for low
power and battery power supply source applications.

Figure 2: Control Signals for Static LCD Drive

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 7 of 29 © 2022 Renesas Electronics Corporation

In the following sections, the design of an LCD static driver with GreenPAK device that can generate
the backplane clock signal and the individual segment clock signal for a commercial LCD is
presented in detail.

5 GreenPAK Design Basic Block Diagram

A block diagram that illustrates the GreenPAK design is shown in Figure 3. The basic blocks of the
design are the I2C interface, the output segment driver, the internal oscillator, and the backplane
clock source selector.

Figure 3: Basic Block Diagram of GreenPAK Design

The I2C interface block controls each individual segment output and the backplane clock source of
the LCD. The I2C interface block is the only system input for segment output control.

When the internal segment control line is set (high level) the respective LCD segment is dark
opaque. When the internal segment control line is reset (low level) the respective LCD segment is
transparent.

Each internal segment control line is connected to an output driver. The output segment driver block
will generate an in-phase clock signal with relationship to the backplane clock for transparent
segments. For dark segments, this signal is out of phase with relationship to backplane clock.

The backplane clock source is selected with I2C interface too. When the internal backplane clock
source is selected, the internal oscillator is turned on. The internal oscillator will generate a clock
frequency of 48Hz. This signal will be used by output segment driver block and is addressed to the
backplane clock output pin (GreenPAK pin 20).

When external backplane clock source is selected, the internal oscillator is turned off. The output
segment driver reference is the external backplane clock input (GreenPAK pin 2). In this case, the
backplane clock output pin could be used as an additional segment control line, the segment OUT15.

More than one GreenPAK device could be used on the same I2C line. To do it, each device must be
programmed with a different I2C address. In this way is possible to extend the number of LCD
segments driven. One device is configured to generate the backplane clock source, driving 14
segments, and the others are configured to use an external backplane clock source. Each additional

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 8 of 29 © 2022 Renesas Electronics Corporation

device could drive more 15 segments in this way. It is possible to connect up to 16 devices on the
same I2C line and then is possible to control up to 239 segments of an LCD.

In this application note, this idea is used to control 29 segments of an LCD with 2 GreenPAK devices.
The device pinout functionality is summarized in Table 1.

Table 1: Pinout Description for LCD Driver Design

PIN Design Function

1 Power Supply

2 Backplane clock input

3 Segment output 1 (SEG_OUT_1)

4 Segment output 2 (SEG_OUT_2)

5 Segment output 3 (SEG_OUT_3)

6 Segment output 4 (SEG_OUT_4)

7 Segment output 5 (SEG_OUT_5)

8 SCL

9 SDA

10 Segment output 6 (SEG_OUT_6)

11 Ground

12 Segment output 7 (SEG_OUT_7)

13 Segment output 8 (SEG_OUT_8)

14 Segment output 9 (SEG_OUT_9)

15 Segment output 10 (SEG_OUT_10)

16 Segment output 11 (SEG_OUT_11)

17 Segment output 12 (SEG_OUT_12)

18 Segment output 13 (SEG_OUT_13)

19 Segment output 14 (SEG_OUT_14)

20 Backplane clock output OR Segment output 15 (SEG_OUT_15)

6 Design Current Consumption

An important concern in this design is the current consumption, that should be as low as possible.
The GreenPAK device estimated quiescent current is 0.75 µA for 3.3 V supply operation and 1.12 µA
for 5 V supply operation. The current consumption of the internal oscillator is 7.6 µA and 8.68 µA for
3.3 V and 5 V power supply operation respectively. It is not expected to have a significant increase in
current consumption from switching losses, because this design operates at a low clock frequency.
The estimated maximum current consumed for this design is lower than 15 µA when the internal
oscillator is on, and 10 µA when the internal oscillator is off. The measured current consumed in both
situations is shown in Section 1610 - Test Results.

7 GreenPAK Device Schematic

The project designed in GreenPAK software is shown in Figure 4. This schematic will be described
using the basic blocks diagrams as the reference.

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 9 of 29 © 2022 Renesas Electronics Corporation

Figure 4: Top View of the GreenPAK Design Schematic

7.1 I2C Interface

I2C interface block is used as the main control block of the device operation control. A close view to
the block connections and configured properties are shown in Figure 5.

Figure 5: Close View to I2C Interface Block

This block is connected to PIN 8 and PIN 9, that are I2C SCL and SDA pins respectively. Inside the
device, the I2C block offers 8 Virtual Inputs. The initial value for each Virtual Input is shown in the
properties window (see Figure 5). Virtual inputs from OUT0 until OUT6 are used as segment control
lines. These control lines correspond to segment output 1 to segment output 7 and are connected to
the segment output driver. Virtual Input OUT7 is used as backplane clock source selector line

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 10 of 29 © 2022 Renesas Electronics Corporation

control, with net name BCKP_SOURCE. This net will be used by other blocks in the design. The I2C
control code is configured with a different value for each IC in the project.

8 more internal segment control lines are available in the Asynchronous State Machine (ASM)
output, as shown in Figure 6 below. Segment output line 8 (SEG_OUT_8 in properties window)
through segment output line 15 (SEG_OUT_15) are controlled by ASM output on state 0. There isn’t
any state transition in ASM block, it is always in state 0. The outputs of ASM are connected to
segment output drivers.

The segment output drivers will generate the output signal of the device.

Figure 6: ASM Output Used as Internal Segment Control

7.2 Output Segment Driver

The output segment driver is essentially a Lookup table (LUT) configured as an XOR logic port. For
each output segment, it must be an XOR port connected to segment control line and to backplane
clock (BCKP_CLOCK). The XOR port is responsible to generate the in-phase and out-of-phase
signal to output segment. When the segment control line is at a high level, the XOR port output will
invert the backplane clock signal and generate an out-of-phase signal to segment pin. The voltage
difference between LCD backplane and LCD segment, in this case, will set the LCD segment as a
dark segment. When the segment control line is at a low level, the XOR port output will follow the
backplane clock signal and then generate an in-phase signal to segment pin. Because no voltage is
applied between the LCD backplane and segment in this case, the segment is transparent to light.

7.3 4.3 Internal Oscillator and Backplane Clock Source Control

The internal oscillator is used when the signal BCKP_CLOCK from I2C interface is set to a high level.
A close view of the clock source control diagram is shown in Figure 7 below.

Figure 7: Backplane Clock Source Selection and Oscillator Control

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 11 of 29 © 2022 Renesas Electronics Corporation

The oscillator is configured as 25 kHz RC frequency, with the highest output divisor available at
oscillator OUT0 (8/64). The entire configuration is seen in the properties window shown in Figure 7.
In this way, the internal oscillator will generate a clock frequency of 48 Hz.

The oscillator is active only when BCKP_SOURCE signal is at a high level together with POR signal.
This control is done by connecting these two signals to the NAND port of the 4-L1 LUT. The output of
the NAND is then connected to the input of the oscillator power down control pin.

Signal BCKP_SOURCE controls the MUX built with 3-L10 LUT. When BCKP_SOURCE signal is at a
low level, the backplane clock source comes from PIN2. When this signal is at a high level the
backplane clock source comes from the internal oscillator.

7.4 Backplane Clock Output or Segment 15 Output Pin Control

Pin 20 in this design has a double function, which depends on the selected backplane clock source.
The operation of this pin is controlled with one 4 input LUT, as shown in Figure 8. With a 4-bit LUT, it
is possible to associate the operation of XOR port with an output MUX. When the BCKP_SOURCE
signal is at a high level, the LUT output will follow the internal oscillator clock. Then pin 20 operates
as a backplane clock output. When BCKP_SOURCE signal is at a low level, the LUT output will be
the XOR operation between SEG_OUT_15, from ASM output, and backplane clock signal. The 4-bit
LUT configuration to do this operation is shown in Figure 8.

Figure 8: PIN 20 Operation Control

8 LCD System Prototype

To demonstrate the use of the GreenPAK design solution, an LCD system prototype was assembled
on a breadboard. For the prototype, a seven segment, 4-digit static LCD is driven by two GreenPAK
devices on DIP board. One device (IC1) uses the internal oscillator to drive LCD backplane, and the
other device (IC2) uses this signal as backplane input reference. Both ICs are controlled over I2C
interface by an STM32F103C8T6 microcontroller (MCU) in a minimum development board.

Figure 9 shows the schematic of the connections between the two GreenPAK ICs, the LCD display,
and the MCU board. In the schematic, the GreenPAK device with U1 (IC1) reference drives LCD digit
one and two (LCD left side). The GreenPAK device with U2 (IC2) reference drives LCD digit three
and four, plus the COL segment (LCD right side). The power supply for both devices comes from the
regulator in the microcontroller development board. Two removable jumpers between the power
supply and VDD pins of each GreenPAK device are added for current measurement with a
multimeter.

A picture of the assembled prototype is shown in Figure 10.

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 12 of 29 © 2022 Renesas Electronics Corporation

Figure 9: Schematic of the System Prototype

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 13 of 29 © 2022 Renesas Electronics Corporation

Figure 10: System Prototype Picture. IC1 is on the Left Side and IC2 is on the Right Side

9 I2C Commands for LCD Control

The two GreenPAK devices on the breadboard are programmed with the same design, except by the
Control Byte value. The control byte of IC1 is 0 (I2C address 0x00), while the I2C control byte is 1
(I2C address 0x10). The connections between display segments and device drivers are summarized
in the table below.

Table 2: Segments and Device Drivers

PIN IO Number Design Function
(U1) Display

Connection

(U2) Display

Connection

1 VDD

2 0
Backplane clock

input
 COM

3 1 Segment output 1 1G 3F

4 2 Segment output 2 1F 3A

5 3 Segment output 3 1A 3B

6 4 Segment output 4 1B 4G

7 5 Segment output 5 2G 4F

8 6 SCL

9 7 SDA

10 8 Segment output 6 2F 4A

11 GND

12 9 Segment output 7 2A 4B

13 10 Segment output 8 2B 4C

14 11 Segment output 9 2C 4D

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 14 of 29 © 2022 Renesas Electronics Corporation

PIN IO Number Design Function
(U1) Display

Connection

(U2) Display

Connection

15 12 Segment output 10 2D 4E

16 13 Segment output 11 2E 3C

17 14 Segment output 12 1C 3D

18 15 Segment output 13 1D 3E

19 16 Segment output 14 1E COL

20 17

Backplane clock

output OR Segment

output 15

COM 3G

The connections were selected in this way to create a clearer schematic and to simplify assembling
the breadboard connections.

The control of the segment’s output is done by I2C write commands to I2C Virtual Inputs and ASM
output registers. As described in the application note AN-1090 Simple I2C IO Controllers with
SLG46531V [7], the I2C write command is structured as follows:

● Start;

● Control byte (R/W bit is 0);

● Word address;

● Data;

● Stop.

All the I2C write commands are made to Word Address 0xF4 (I2C Virtual Inputs) and 0xD0 (ASM
Output for state 0). The commands to write in IC1 and control LCD digit 1 and 2 are summarized in
Table 3. In the command sequence representation, the open bracket “[“denotes the Start signal, and
the close bracket “]” denotes the Stop signal.

Table 3: I2C Command Sequence Description for IC1

I2C Write

command

Description

[0x00, 0xF4, Byte0] Assign a state value to segments 1 to 7. It configures the
backplane oscillator (Most Significant Bit, MSB) too. In IC1 the

MSB is always set. In this way, the IC1 is configured to source

the backplane clock signal. Byte0 value is described below.

[0x00, 0xD0, Byte1] Assign a state value to segments 8 to 15. Byte1 value is

described below.

The two bytes above control segments of LCD digit 1 and digit 2 together. Here, the approach is to
use an individual lookup table (LUT) in software for each digit, considering the segments in both
bytes. The byte values from lookup table should be mixed using a bitwise OR operation, and then
send to the IC. The Table 4 shown the Byte0 and Byte1 value for each numeric value that should be
written in each display digit.

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 15 of 29 © 2022 Renesas Electronics Corporation

Table 4: Lookup Table to Write Numbers and Letters on LCD Digit 1 and 2

Digit 1 Digit 2
Number/letter

Byte0 Byte1 Byte0 Byte1

0x8E 0x70 0xE0 0x0F 0

0x88 0x10 0x80 0x03 1

0x8D 0x60 0xD0 0x0D 2

0x8D 0x30 0xD0 0x07 3

0x8B 0x10 0xB0 0x03 4

0x87 0x30 0xF0 0x06 5

0x87 0x70 0xF0 0x0E 6

0x8C 0x10 0xC0 0x03 7

0x8F 0x70 0xF0 0x0F 8

0x8F 0x10 0xF0 0x03 9

0x8F 0x50 0xF0 0x0B A

0x83 0x70 0xB0 0x0E B

0x86 0x60 0xE0 0x0C C

0x89 0x70 0x90 0x0F D

0x87 0x60 0xF0 0x0C E

0x87 0x40 0xF0 0x08 F

For example, to write in the Digit 1 the number 3, and in the Digit 2 the number 4, Byte0 is 0xBD
(0x8D bitwise OR with 0xB0) and Byte 1 is 0x33 (0x30 bitwise OR with 0x03).

The command to write in IC2 and controls Digit 3 and 4, are described in Table 5.

Table 5: I2C Command Sequence Description for IC2

I2C Write

command

Description

[0x10, 0xF4, Byte0] Assign a state value to segments 1 to 7. It configures the backplane oscillator (Most

Significant Bit, MSB). In IC2 the MSB is always reset. In this way, the IC2 is configured
to use an external source of backplane clock. This configuration enables an additional

segment output to this IC (Segment output 15). Byte0 value is described below.

[0x10, 0xD0, Byte1] Assign a state value to segments 8 to 15. Byte1 value is described below.

The control logic of digits 3 and 4 are like the control of digits 1 and 2. Table 6 shows the LUT for
these two digits.

Table 6: Lookup Table to Write Numbers and Letters on LCD Digit 3 and 4

Digit 3 Digit 4
Number/letter

Byte0 Byte1 Byte0 Byte1

0x07 0x38 0x70 0x07 0

0x04 0x8 0x40 0x01 1

0x06 0xB0 0x68 0x06 2

0x06 0x98 0x68 0x03 3

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 16 of 29 © 2022 Renesas Electronics Corporation

Digit 3 Digit 4
Number/letter

Byte0 Byte1 Byte0 Byte1

0x05 0x88 0x58 0x01 4

0x03 0x98 0x38 0x03 5

0x03 0xB8 0x38 0x07 6

0x06 0x8 0x60 0x01 7

0x07 0xB8 0x78 0x07 8

0x07 0x88 0x78 0x01 9

0x07 0xA8 0x78 0x05 A

0x01 0xB8 0x18 0x07 B

0x03 0x30 0x30 0x06 C

0x04 0xB8 0x48 0x07 D

0x03 0xB0 0x38 0x06 E

0x03 0xA0 0x38 0x04 F

The difference in IC2 is the COL segment. This segment is controlled by Byte1. To set up this
segment dark, a bitwise OR operation between the Byte1 and the value 0x40 should be done.

9.1 I2C Commands for LCD Test

For LCD test a firmware was developed in C language for the MCU board. This firmware will send a
sequence of commands to both ICs on the breadboard. The source code for this firmware is in the
Appendix section. The entire solution was developed using Atollic TrueStudio for STM32 9.0.1 IDE.

The sequence of commands and the respective values shown in the display are summarized in
Table 7 below.

Table 7: LCD Prototype Display Sequence

Display text

(all digits and

COL :)

I2C Write command sequence (4 commands).

88:88 [0x00, 0xF4, 0xFF], [0x00, 0xD0, 0x7F], [0x10, 0xF4, 0xFF], [0x10, 0xD0, 0xFF]

0000 [0x00, 0xF4, 0xEE], [0x00, 0xD0, 0x7F], [0x10, 0xF4, 0x77], [0x10, 0xD0, 0x3F]

1234 [0x00, 0xF4, 0xD8], [0x00, 0xD0, 0x1D], [0x10, 0xF4, 0x5E], [0x10, 0xD0, 0x99]

8765 [0x00, 0xF4, 0xCF], [0x00, 0xD0, 0x73], [0x10, 0xF4, 0x3B], [0x10, 0xD0, 0xBB]

EB9D [0x00, 0xF4, 0xB7], [0x00, 0xD0, 0x6E], [0x10, 0xF4, 0x4F], [0x10, 0xD0, 0x8F]

12:00 [0x00, 0xF4, 0xD8], [0x00, 0xD0, 0x1D], [0x10, 0xF4, 0x77], [0x10, 0xD0, 0x7F]

1200 [0x00, 0xF4, 0xD8], [0x00, 0xD0, 0x1D], [0x10, 0xF4, 0x77], [0x10, 0xD0, 0x3F]

10 Test Results

The prototype test consists of verifying the display values after an MCU command and measuring the
current sink by each IC during operation.

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 17 of 29 © 2022 Renesas Electronics Corporation

Pictures of the LCD for each command value are shown in Table 8 below.

Table 8: Pictures of LCD Display after MCU Commands to GreenPAK Devices

Expected Display text. Display picture

88:88

0000

1234

8765

EB9D

12:00

1200

The current sink for each device was measured with a multimeter, in its lowest current range of
200 µA. Pictures of the measured current for each device, during start-up and normal operation, are
shown in Table 9 below.

Table 9: Current Measurements for Each GreenPAK Device

Picture Measured IC (power supply always at

3,3V)

IC1 current during start-up (internal oscillator
is off and there isn’t any external backplane

clock source)

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 18 of 29 © 2022 Renesas Electronics Corporation

Picture Measured IC (power supply always at

3,3V)

IC1 current in normal operation (internal

oscillator is on and sources the backplane

signal for the LCD display).

IC1 current in normal operation (internal

oscillator is on and sources the backplane

signal for the LCD display).

IC2 current in normal operation (internal

oscillator is off, backplane clock signal

comes from IC1).

11 Conclusion and Results Discussion

The design of a low power static LCD driver with GreenPAK device was presented. This design
clearly shows one of the greatest features of the GreenPAK devices: their low quiescent current.
Because GreenPAK devices are a hardware-based solution, it is possible to work at a low-frequency
operation, in this case, 48 Hz. An MCU based solution will require a higher operation frequency, even
for periodically short periods of time, and then will draw more power. And, comparing GreenPAK
device with a CPLD (Complex Programmable Logic Device), it is clear to see that usually a CPLD
has a quiescent current higher than 20 µA.

It is interesting to note that this design could be easily modified for a better fit in the requirements of a
specific project. A good example is the segment controls pinout. They could easily be changed to
simplify the printed circuit board and the software development at the same time. This is an
interesting feature when the device is compared with an off-the-shelf ASIC (Application Specific
Integrated Circuit). Usually, ASICs are designed to fit on a broad range of applications, and an initial
software routine should be written to properly configure the IC before the operation. A configurable

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 19 of 29 © 2022 Renesas Electronics Corporation

device could be designed to start ready to use after power up. In this way, it’s possible to cut the
software development time for IC initial configuration.

Appendix A

A.1 Source Code

/*

**

 File: stm32f1xx_it.c

 Info: Main Interrupt Service Routines.

**

*/

uint32_t TickCount = 0;

/**

**===

**

** Abstract: This function handles SysTick Handler.**

**===

*/

void SysTick_Handler(void)

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 20 of 29 © 2022 Renesas Electronics Corporation

{

 TickCount++;

}

/*

**

File: main.c

Info: Demo code for static LCD driver with SLG46537V

**

*/

/* Includes */

#include <stddef.h>

#include "stm32f10x.h"

#include "stm32f10x_conf.h"

#include "stm32f1xx_it.h"

// Basic definitions

#define ON_BOARD_LED_PIN GPIO_Pin_13

#define ON_BOARD_LED_PORT GPIOC

#define ON_BOARD_I2C_PORT GPIOB

#define SDA_I2C_PIN GPIO_Pin_7

#define SCL_I2C_PIN GPIO_Pin_6

#define LED_TURN_ON() GPIO_ResetBits(ON_BOARD_LED_PORT, ON_BOARD_LED_PIN)

#define LED_TURN_OFF() GPIO_SetBits(ON_BOARD_LED_PORT, ON_BOARD_LED_PIN)

#define LCD_CONTROL_I2C I2C1

#define I2C_TIMEOUT_VALUE 0xFF000000

#define TRUE 1

#define FALSE 0

#define BCKP_SOURCE_CTRL_BIT_MASK 0x80 // backplane source control bit mask

#define CONTROL_BYTE_IC1 0x00 // I2C address of device IC 1

#define CONTROL_BYTE_IC2 0x10 // I2C address of device IC 2

#define BYTE_0_ADDRESS 0xF4 // byte 0 config word

address

#define BYTE_1_ADDRESS 0xD0 // byte 1 config word

address

/* Test sequence command list to write on display */

const uint8_t TestDisplayCMDList[][4] =

{

 {0xEE, 0x7F, 0x77, 0x3F}, /* write "0000" on display */

 {0xD8, 0x1D, 0x5E, 0x99}, /* write "1234" on display */

 {0xCF, 0x73, 0x3B, 0xBB}, /* write "8765" on display */

 {0xB7, 0x6E, 0x4F, 0x8F}, /* write "EB9D" on display */

 {0xD8, 0x1D, 0x77, 0x7F}, /* write "12:00" on display */

 {0xD8, 0x1D, 0x77, 0x3F} /* write "1200" on display */

};

/* LUT for LCD's Digit1 control */

const uint8_t Digit1ByteLUT[][2] =

{

 0x8E, 0x70, // 0

 0x88, 0x10, // 1

 0x8D, 0x60, // 2

 0x8D, 0x30, // 3

 0x8B, 0x10, // 4

 0x87, 0x30, // 5

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 21 of 29 © 2022 Renesas Electronics Corporation

 0x87, 0x70, // 6

 0x8C, 0x10, // 7

 0x8F, 0x70, // 8

 0x8F, 0x10, // 9

 0x8F, 0x50, // A

 0x83, 0x70, // B

 0x86, 0x60, // C

 0x89, 0x70, // D

 0x87, 0x60, // E

 0x87, 0x40 // F

};

/* LUT for LCD's Digit2 control */

const uint8_t Digit2ByteLUT[][2] =

{

 0xE0, 0x0F, // 0

 0x80, 0x03, // 1

 0xD0, 0x0D, // 2

 0xD0, 0x07, // 3

 0xB0, 0x03, // 4

 0xF0, 0x06, // 5

 0xF0, 0x0E, // 6

 0xC0, 0x03, // 7

 0xF0, 0x0F, // 8

 0xF0, 0x03, // 9

 0xF0, 0x0B, // A

 0xB0, 0x0E, // B

 0xE0, 0x0C, // C

 0x90, 0x0F, // D

 0xF0, 0x0C, // E

 0xF0, 0x08 // F

};

/* LUT for LCD's Digit3 control */

const uint8_t Digit3ByteLUT[][2] =

{

 0x07, 0x38, // 0

 0x04, 0x08, // 1

 0x06, 0xB0, // 2

 0x06, 0x98, // 3

 0x05, 0x88, // 4

 0x03, 0x98, // 5

 0x03, 0xB8, // 6

 0x06, 0x08, // 7

 0x07, 0xB8, // 8

 0x07, 0x88, // 9

 0x07, 0xA8, // A

 0x01, 0xB8, // B

 0x03, 0x30, // C

 0x04, 0xB8, // D

 0x03, 0xB0, // E

 0x03, 0xA0 // F

};

/* LUT for LCD's Digit4 control */

const uint8_t Digit4ByteLUT[][2] =

{

 0x70, 0x07, // 0

 0x40, 0x01, // 1

 0x68, 0x06, // 2

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 22 of 29 © 2022 Renesas Electronics Corporation

 0x68, 0x03, // 3

 0x58, 0x01, // 4

 0x38, 0x03, // 5

 0x38, 0x07, // 6

 0x60, 0x01, // 7

 0x78, 0x07, // 8

 0x78, 0x01, // 9

 0x78, 0x05, // A

 0x18, 0x07, // B

 0x30, 0x06, // C

 0x48, 0x07, // D

 0x38, 0x06, // E

 0x38, 0x04 // F

};

/**

**===

**

** Abstract: DelayMs function wait for a specified delay time.

**

**===

*/

void DelayMs(uint32_t delay_time)

{

 uint32_t ReferenceTick;

 uint32_t ExpectedTickCount;

 ReferenceTick = TickCount;

 ExpectedTickCount = ReferenceTick + delay_time;

 if(ExpectedTickCount < ReferenceTick)

 {

 while(TickCount > ExpectedTickCount)

 {

 }

 return;

 }

 while(TickCount < ExpectedTickCount)

 {

 }

}

/**

**===

**

** Abstract: BoardConfigInit function initialize dev board

**

**===

*/

void BoardConfigInit(void)

{

 GPIO_InitTypeDef GPIO_InitStruct;

 I2C_InitTypeDef I2C_InitStruct;

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 23 of 29 © 2022 Renesas Electronics Corporation

 // Clock PORTC and PORTB Enable

 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC | RCC_APB2Periph_GPIOB, ENABLE);

 // Clock I2C1 Enable

 RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C1, ENABLE);

 // Configure the GPIO pin for the LED (PC13)

 GPIO_InitStruct.GPIO_Pin = ON_BOARD_LED_PIN;

 // Configure Led pin

 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_Out_PP;

 // Set Output Push-Pull

 GPIO_Init(ON_BOARD_LED_PORT, &GPIO_InitStruct);

 // Configure the GPIO pins for the I2C interface (PB6 and PB7)

 GPIO_InitStruct.GPIO_Pin = SDA_I2C_PIN | SCL_I2C_PIN; //

Configure SDA and SCL pins

 GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;

 GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_OD;

 // Set alternate function open drain

 GPIO_Init(ON_BOARD_I2C_PORT, &GPIO_InitStruct);

 // Configure I2C1 peripheral

 I2C_InitStruct.I2C_ClockSpeed = 20000;

 // 100 kHz I2C clock speed

 I2C_InitStruct.I2C_Ack = I2C_Ack_Disable;

 I2C_InitStruct.I2C_AcknowledgedAddress = 0x00;

 I2C_InitStruct.I2C_DutyCycle = I2C_DutyCycle_2;

 I2C_InitStruct.I2C_Mode = I2C_Mode_I2C;

 // Set as I2C interface

 I2C_InitStruct.I2C_OwnAddress1 = 0X00;

 I2C_Init(LCD_CONTROL_I2C, &I2C_InitStruct);

 // set up I2C peripheral

 I2C_Cmd(LCD_CONTROL_I2C, ENABLE);

 // enable I2C

 // ** Configures the SysTick event to fire every 1ms **

 SysTick_Config(SystemCoreClock / 1000);

}

/**

**===

**

** Abstract: I2C_WriteByteCmd is a function to write commands in GreenPAK

** devices. The function receives the ControlByte, Word Adress and the

** data byte.

**===

*/

uint32_t I2C_WriteByteCmd(uint8_t ControlByte, uint8_t ByteAddress, uint8_t ByteData)

{

 uint32_t TimeoutCount; // variable used to timeout

routines

 TimeoutCount = I2C_TIMEOUT_VALUE; // set timeout value

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 24 of 29 © 2022 Renesas Electronics Corporation

 // wait until I2C bus is not busy anymore

 while(I2C_GetFlagStatus(LCD_CONTROL_I2C, I2C_FLAG_BUSY) == SET)

 {

 TimeoutCount--; // decrements timeout

counter

 if(TimeoutCount == 0) // Trigger timeout condition

when

 { // timeout

counter reaches 0, then

 return FALSE; // quit of the function

 }

 }

 TimeoutCount = I2C_TIMEOUT_VALUE; // set timeout value

 // generate start condition

 I2C_GenerateSTART(LCD_CONTROL_I2C, ENABLE);

 // wait until EV5 is triggered -> start condition correctly

 // released on the I2C bus

 while(I2C_CheckEvent(LCD_CONTROL_I2C, I2C_EVENT_MASTER_MODE_SELECT) == ERROR)

 {

 TimeoutCount--; // decrements timeout

counter

 if(TimeoutCount == 0) // Trigger timeout condition

when

 { // timeout

counter reaches 0, then

 return FALSE; // quit of the function

 }

 }

 // send the control byte (I2C address)

 I2C_Send7bitAddress(LCD_CONTROL_I2C, ControlByte, I2C_Direction_Transmitter);

 TimeoutCount = I2C_TIMEOUT_VALUE; // set timeout value

 // wait until EV6 is triggered -> Slave device ACK

 while(I2C_CheckEvent(LCD_CONTROL_I2C,

I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED) == ERROR)

 {

 TimeoutCount--; // decrements timeout

counter

 if(TimeoutCount == 0) // Trigger timeout condition

when

 { // timeout

counter reaches 0, then

 return FALSE; // quit of the function

 }

 }

 TimeoutCount = I2C_TIMEOUT_VALUE; // set timeout value

 // send the word/byte address to CMIC

 I2C_SendData(LCD_CONTROL_I2C, ByteAddress);

 // wait until EV8_2 is triggered -> Data shifted out on I2C bus

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 25 of 29 © 2022 Renesas Electronics Corporation

 while(I2C_CheckEvent(LCD_CONTROL_I2C, I2C_EVENT_MASTER_BYTE_TRANSMITTED) ==

ERROR)

 {

 TimeoutCount--; // decrements timeout

counter

 if(TimeoutCount == 0) // Trigger timeout condition

when

 { // timeout

counter reaches 0, then

 return FALSE; // quit of the function

 }

 }

 TimeoutCount = I2C_TIMEOUT_VALUE; // set timeout value

 // send the byte of data to CMIC

 I2C_SendData(LCD_CONTROL_I2C, ByteData);

 // wait until EV8_2 is triggered -> Data shifted out on I2C bus

 while(I2C_CheckEvent(LCD_CONTROL_I2C, I2C_EVENT_MASTER_BYTE_TRANSMITTED) ==

ERROR)

 {

 TimeoutCount--; // decrements timeout

counter

 if(TimeoutCount == 0) // Trigger timeout condition

when

 { // timeout

counter reaches 0, then

 return FALSE; // quit of the function

 }

 }

 TimeoutCount = I2C_TIMEOUT_VALUE; // set timeout value

 // generate stop condition on bus

 I2C_GenerateSTOP(LCD_CONTROL_I2C, ENABLE);

 return TRUE; // send TRUE when command

finish

}

/**

**===

**

** Abstract: FlashLed -> generate a timed flash on board led

**

**===

*/

void FlashLed(uint32_t Ton, uint32_t Toff)

{

 LED_TURN_ON();

 DelayMs(Ton);

 LED_TURN_OFF();

 DelayMs(Toff);

}

/**

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 26 of 29 © 2022 Renesas Electronics Corporation

**===

**

** Abstract: main program

**

**===

*/

int main(void)

{

 uint8_t Temp;

 uint16_t DisplayValue = 1200;

 uint16_t Result;

 uint8_t Digit1;

 uint8_t Digit2;

 uint8_t Digit3;

 uint8_t Digit4;

 uint8_t TempByte0;

 uint8_t TempByte1;

 BoardConfigInit(); // init board peripherals

 /* flash led signal to advice demo begin */

 FlashLed(3000, 1000); // Hold board led on for 3

seconds

 for(Temp = 0; Temp < 5; Temp++) // short flash led 5 times

 {

 FlashLed(500, 500);

 }

 /*

 * Set all segments in as opaque

 */

 I2C_WriteByteCmd(CONTROL_BYTE_IC1, BYTE_0_ADDRESS, 0xFF);

 I2C_WriteByteCmd(CONTROL_BYTE_IC1, BYTE_1_ADDRESS, 0xFF);

 I2C_WriteByteCmd(CONTROL_BYTE_IC2, BYTE_0_ADDRESS, 0x7F);

 I2C_WriteByteCmd(CONTROL_BYTE_IC2, BYTE_1_ADDRESS, 0xFF);

 /*

 * 3 led flash

 */

 for(Temp = 0; Temp < 3; Temp++)

 {

 FlashLed(250, 500);

 }

 /*

 * Send the list of demo commands to control display behavior

 */

 for(Temp = 0; Temp < (sizeof(TestDisplayCMDList)/sizeof(uint8_t*)); Temp++)

 {

 I2C_WriteByteCmd(CONTROL_BYTE_IC1, BYTE_0_ADDRESS,

TestDisplayCMDList[Temp][0]);

 I2C_WriteByteCmd(CONTROL_BYTE_IC1, BYTE_1_ADDRESS,

TestDisplayCMDList[Temp][1]);

 I2C_WriteByteCmd(CONTROL_BYTE_IC2, BYTE_0_ADDRESS,

TestDisplayCMDList[Temp][2]);

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 27 of 29 © 2022 Renesas Electronics Corporation

 I2C_WriteByteCmd(CONTROL_BYTE_IC2, BYTE_1_ADDRESS,

TestDisplayCMDList[Temp][3]);

 FlashLed(100, 1500);

 }

 /*

 * flashing led fast - finish the code

 */

 while(1)

 {

 Result = DisplayValue / 1000; // get thousand digit

 Digit1 = (uint8_t) Result;

 Result = DisplayValue % 1000; // get hundred digit

 Result /= 100;

 Digit2 = (uint8_t) Result;

 // from digit 1 and 2 values mount byte 0 value

 TempByte0 = Digit1ByteLUT[Digit1][0];

 TempByte0 |= Digit2ByteLUT[Digit2][0];

 // from digit 1 and 2 values mount byte 1 value

 TempByte1 = Digit1ByteLUT[Digit1][1];

 TempByte1 |= Digit2ByteLUT[Digit2][1];

 // write new byte values to IC1 - update display

 I2C_WriteByteCmd(CONTROL_BYTE_IC1, BYTE_0_ADDRESS, TempByte0);

 I2C_WriteByteCmd(CONTROL_BYTE_IC1, BYTE_1_ADDRESS, TempByte1);

 Result = DisplayValue % 100;

 Result /= 10;

 Digit3 = (uint8_t) Result;

 Result = DisplayValue % 10;

 Digit4 = (uint8_t) Result;

 // from digit 3 and 3 values mount byte 0 value

 TempByte0 = Digit3ByteLUT[Digit3][0];

 TempByte0 |= Digit4ByteLUT[Digit4][0];

 // from digit 3 and 4 values mount byte 1 value

 TempByte1 = Digit3ByteLUT[Digit3][1];

 TempByte1 |= Digit4ByteLUT[Digit4][1];

 // write new byte values to IC2 - update display

 I2C_WriteByteCmd(CONTROL_BYTE_IC2, BYTE_0_ADDRESS, TempByte0);

 I2C_WriteByteCmd(CONTROL_BYTE_IC2, BYTE_1_ADDRESS, TempByte1);

 // fast led flash

 FlashLed(250, 250);

 TempByte1 |= 0x40; // set col segment

 // write command to set col segment

 I2C_WriteByteCmd(CONTROL_BYTE_IC2, BYTE_1_ADDRESS, TempByte1);

 // fast led flash

 FlashLed(250, 250);

 // increment display value

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 28 of 29 © 2022 Renesas Electronics Corporation

 DisplayValue++;

 }

}

AN-CM-256

Static LCD Driver with I2C Interface

Application Note Revision 1.0 16-Oct-2018

 29 of 29 © 2022 Renesas Electronics Corporation

Revision History

Revision Date Description

1.0 16-Oct-2018 Initial Version

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

