LENESAS

Application Note

SLG46824/6 MTP Arduino
Programming Example

AN-CM-255

Abstract

In this application note, we use the Arduino MTP Programmer sketch to program an SLG46824/6.
Through analyzing the code, a firmware designer can create a modified version that is compatible
with their unique microcontroller.

This application note comes complete with design files which can be found in the References
section.

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

Contents
N 01 4 = Lo PSP PRURP 1
GO NS e 2
o 0= PSSR 2
1 Terms and DefiNitiONS ...uiiii e st e s e e s e nbe e e e s nbae e e e nreas 3
P = (=T =T o o ST OTPRR 3
I |01 o Yo LU T 40 Y o FS PRSP 4
4 Arduino-GreenPAK CONNECLIONS ..ottt e e e e e et e e e e e e e e snnbeeeeeas 5
5 Exporting GreenPAK NVM Data from a GreenPAK Design File ..., 6
6 USethe ArdUiNO SKELCH ... e e e s e e e e e e e eee s 10
7 Programming Tips and BeSt PraCtiCeSsccoiiiiiiiiiiiiiiiiiiiee ittt 10
7.1 Executing Precise 16-Byte NVM Page Writes or change to Deviations from the valid
COMMANT SITUCTUIE P ..ottt e e e s bbb e e e e e e e e bbb e e e e e e e e sannnbreeeaeeaeas 10
7.2 Transferring NVM Data into the Matrix Configuration RegiSters.........ccccceeeiieiiiiiiiiiiieieeennns 10
7.3 Resetting the I2C Address after an NVM Erase:occceveiiiiiiiiee e 11
T Y g - U= W T =Y o U 17 o o PR SO 11
LS I 0 o] 10 F=3 Lo o I USRS 11
REVISTON HISTOTMY ...ttt ettt e e e a bt e e ek bt e e e sa b et e e e anbe e e e e aabe e e e eneeas 12
Figures
Figure 1. Arduino CONNECTIONSciuueiieiiiiie ettt ettt ettt e e s b bt e s ettt e s ab e e e s aab e e e s nbaeeeeeneeas 5
Figure 2. Simple GreenPAK Design iN @ SLGAB826..........cociiuiiiiiiiiiie et 6
FIGUIE 3. EXPOIT NVM ...ttt ekt e s et e e sk e e e s et e e e snbe e e e e nneas 6
FIQUre 4. SAVE 8S NEX FIlEo et 7
Figure 5. Viewing the NVM Data in NOtEPAU++ ...co..viiiiiiiiiiiiiiie et 7
FIigure 6. Arduing SKEICRuc s 8
Figure 7. Set EEPROM Data.......ccccoiiiiiiiiiiecece e 8
Figure 8. EEPROM Data EQItOr.......ccoooieiceee e s 9
Figure 9. Matrix Registers, NVM, and EEPROM Protection Settingscccoeeeeeiiiiiiiieieiceceeececcceeeens 9
Figure 10. Arduing Serial MONIOTo s 10
Figure 11: ACK Behavior Modification to the Arduino Programmer..........cccoocveeeiiiiieeiniiee e 11
Tables
Table 1: Arduino Uno / GreenPAK CONNECTIONSccoviiiiiiiieieeeeeeiieiee e e e e s st e e e e e e st e eeee e s e annneeeeeeas 5
Application Note Revision 1.1 25-Feb-2019

2 0of 12 © 2022 Renesas Electronics Corporation

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

1 Terms and Definitions

EEPROM Electrically erasable programmable read-only memory
12C Inter-integrated circuit

MTP Multiple-time programmable

NVM Non-volatile memory

OoTP One-time programmable

2 References

For related documents and software, please visit:
GreenPAK™ Programmable Mixed-Signal Products | Renesas

Download our free GreenPAK™ Designer software [1] to open the .gp files [2] and view the proposed
circuit design. Use the GreenPAK development tools [3] to freeze the design into your own
customized IC in a matter of minutes. Renesas Electronics provides a complete library of application
notes [4] featuring design examples as well as explanations of features and blocks within the IC.

[1] GreenPAK Designer Software, Software Download and User Guide, Renesas Electronics

[2] AN-CM-255 SLG46824/6 MTP Arduino Programming Eample.gp, GreenPAK Design File,
Renesas Electronics

[3] GreenPAK Development Tools, GreenPAK Development Tools Webpage, Renesas Electronics
[4] GreenPAK Application Notes, GreenPAK Application Notes Webpage, Renesas Electronics
[5] In-System Programming Guide, GreenPAK User Guides and Manuals, Renesas Electronics

Author: Craig Cary

Application Note Revision 1.1 25-Feb-2019

3of12 © 2022 Renesas Electronics Corporation

https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products
https://www.renesas.com/eu/en/software-tool/go-configure-software-hub
https://www.renesas.com/eu/en/document/scd/cm-255-gp-file?language=en&r=1570646
https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/greenpak-development-process
https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/greenpak-applications?documents-title-filter=287
https://www.renesas.com/eu/en/document/mat/system-programming-guide-slg468246?r=1572991

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

3 Introduction

In this application note, we show how to use the SLG46824/6 Arduino programming sketch to
program an SLG46824/6 GreenPAK Multiple-Time Programmable (MTP) device.

Most GreenPAK devices are One-Time Programmable (OTP), meaning that once their Non-Volatile
Memory bank (NVM) is written, it cannot be overwritten. GreenPAKs with the MTP feature, like the
SLG46824 and SLG46826, have a different type of NVM memory bank that can be programmed
more than once.

We've written an Arduino sketch that allows the user to program an MTP GreenPAK with a few
simple serial monitor commands. In this application note we use an SLG46826 as our GreenPAK
with MTP.

We provide sample code for the Arduino Uno using an open-source platform based on C/C++.
Designers should extrapolate the techniques used in the Arduino code for their specific platform.

For specific information regarding 12C signal specifications, 12C addressing, and memory spaces,
please reference the GreenPAK In-System Programming Guide provided on the SLG46826 product
page. This application note provides a simple implementation of this programming guide.

Application Note Revision 1.1 25-Feb-2019

4 of 12 © 2022 Renesas Electronics Corporation

https://www.arduino.cc/
https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/greenpak-system-programmability/slg46826-greenpak-programmable-mixed-signal-matrix-system-programmability
https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/greenpak-system-programmability/slg46826-greenpak-programmable-mixed-signal-matrix-system-programmability

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

4 Arduino-GreenPAK Connections

To program the NVM of our SLG46826 GreenPAK with our Arduino sketch, we'll first need to connect
four Arduino Uno pins to our GreenPAK. You can connect these pins directly to the GreenPAK
Socket Adapter or to a breakout board with the GreenPAK soldered down.

Table 1: Arduino Uno / GreenPAK Connections

GreenPAK Arduino
VDD (Pin 1) Digital Pin 2
GND (Pin 11) GND
SCL (Pin 8) A5
SDA (Pin 9) A4
To GreenPAK GND To GreenPAK VDD

-
v
-
-
o

x 5u oNo[@[e & o
SCL3.3UGND|[®] ® ® @)
ANALOG _IN
2 2% 'P:.
evceee
[
L
To GreenPAK SDA
To GreenPAK SCL

Figure 1. Arduino Connections

Please note that external I12C pull up resistors are not shown in Figure 1. Please connect a 4.7 kQ
pull up resistor from both SCL and SDA to the Arduino’s 3.3 V output.

Application Note Revision 1.1 25-Feb-2019

5of 12 © 2022 Renesas Electronics Corporation

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

5 Exporting GreenPAK NVM Data from a GreenPAK Design File

We'll put together a very simple GreenPAK design to illustrate how to export the NVM data. The
design below is a simple level shifter where the blue pins on the left are tied to VDD (3.3v), while the
yellow pins on the right are tied to VDD2 (1.8v).

[X=Na]

0
O
£}
o
0

Figure 2. Simple GreenPAK Design in a SLG46826

To export the information from this design, you need to select File — Export — Export NVM, as
shown in Figure 3.

48 [SLG4B826V] - GreenPAKE Designer v.6.12
Edit View Tools Options Help

New Ctri=N 3— Q .
Open Ctrl+=0 =
Clear e | Erase Wire Set Label
Open in current Vertical i | Align Horizontal
B save Ctrl+S
[saveas..

<= Import

» Export NV
= P
,_5 Project Info
1. SLG4AZ42520_GP_r001U_05302017.gp6
2. 5LG4ATA2058_GP_ro02U_11062017.gp6

B Application Motes

Exit program

Figure 3. Export NVM
Application Note Revision 1.1 25-Feb-2019

6 of 12 © 2022 Renesas Electronics Corporation

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

You will then need to select Intel HEX Files (*.hex) as the file type and save the file.

File name: | myMNVM.hex

Save as type: | Intel HEX files (*.hex)
Text files (")

» Hide Folders CSV files (*.csv)

Figure 4. Save as .hex File

Now, you'll need to open the .hex file with a text editor (like Notepad++). To learn more about the
Intel's HEX file format and syntax, check out its Wikipedia page. For this application we’re only
interested in the data portion of the file as shown in Figure 5.

File Edit Search View Encoding Language Settings Tools Macre Run Plugins Window 7 X
8 5 =1 eéﬁlélﬂj ‘ ‘ -] J:Hl % il u1ﬁ1|?3 11 EE2 @3 = “ [e] [|:]EHE: E oav E T
=l myNVMhex 3 |

1 :1000000000000000000000000000000000000000F0

:1000100000000000000000000000000000000000E0

:1000Z00000000000000000000000000000000000D0

:10003000000000000000000000000000000000C4FC

:100040003FFCC21FFC000000000000000000000098

:1000500000000000000000000000000000000000R0

:100060000030300030303030000030303000303080

:100070000000000000000000000000000000000080

:1000800000000000001422300C00000000000000FE

:1000%0000000000000000000000000000000000060

:1000A0000000002000010000000201000002000129

:1000B0O0C0000020100000200010000020100000235

:1000c0000001000002000100000001010000000022

:1DDDDUUUOOOOUUUOOOOUU00000000000000000252D

CWm e W R

o e e e

B L S

:1000E0000000000000000000000000000000000010
:1000F00CG000000000000000000000000000000.
:00000001FF

=

5B

-

Intel HEX binary data length: 713 lines: 17 Ln:1 Col:42 Sel: N/A Unix (LF) UTF-8 INS

Figure 5. Viewing the NVM Data in Notepad++

Highlight and copy the 256 bytes of NVM configuration data located within the HEX file. Each line
that we are copying is 32 characters long, which corresponds to 16 bytes.

Paste the information into the highlighted nvmString[] section of the Arduino sketch as shown in
Figure 6. If you’re using a non-Arduino Microcontroller, you could write a function to parse the
nvmData saved in the GreenPAK .GP&6 file. (If you open a GreenPAK file with a text editor, you’ll see
that we store project information in an easily-accessible XML format.)

Application Note Revision 1.1 25-Feb-2019

7 of 12 © 2022 Renesas Electronics Corporation

https://en.wikipedia.org/wiki/Intel_HEX

AN-CM-255

LENESAS

SLG46824/6 MTP Arduino Programming Example

) SLG46826_Programmer | Arduine 1.8.5 - O be

File Edit Sketch Tools Help

¢stdlib.h>
#include <string.h>

16 0x02
FIG 0x03

de:

count = 05
_t slave_address =
1 device present[1€]

_t data_array[1€][1€] = {1;
Stor: Data in PROGMEM to save on RAM

censt char nvmString0[] PROGMEM = "0LOE00000000SE3FO30000000000000077
const char nvmStringl[] PROGMEM Q4B E
const char nvmString2[] PROGMEM - "0000000000000000000000000000E003" 7
censt char nvmString3[] EPROGMEM

const char nvmStringd[] PROGMEM

conat char TVESTTing5[] PROGMEM E
censt char nvmSTring6[] FROGMEM = "00303000303030300000E530300030307;
const char nvmString7[] PROGMEM = "30303033000000000000880000000000"
conat char nVESTring8[] PROGMEM 1422300C3C

cl

nveStringg[] EROGHEM
const char nvmStringl0[] PROGMEM
conat char NVESTringll[] PROGMEM
censt char nvmStringl2[] PROGMEM

1 G
"00000020000100045026CC0000020001" 7
"000002010000020001000002010000027 7
"00010000020001000000010100000000" 7

char 3[] EROGMEM
TVESTringla[] PROGMEM
const char EROGMEM A

Figure 6. Arduino Sketch

To set the EEPROM data for your GreenPAK design, select the EEPROM block from the
components panel, open its properties panel, and click "Set Data."

File Edit View Tools

H =

New Open

Save | Print
A% RotateLeft 7). Rotate Right
Properties
EEPROM
Data: Set data
L 7] el Apply

8 [SLG46826V] - [greenpak.gpé] - GreenPAKE Designer v.6.12
Options
£

) .

Undo

- [m] x
Help

i

Rules Checker

B2 N

Project Info

&F ¥ © %

Set Wire | Erase Wire Setlabel Erase Label

E S @

Redo Debug I2C Tools

Project Settings Properties | Components | NVM Viewer

Flip Horizontal Fiip ertical I Align Horizontal | Align Vertical

«| components List

Components
¥| PIN 18 (1012)
¥ PIN 19 (1013)
| PIN 20 (1014)
~ Analog Comparators
A CMPOH
ACMP1H
ACMPL
A CMP3L
~ Special Components
PDLY
VREFO
VREF1
POR
0sCo
0sC1
os5C2
v 12C
TEMP SENSOR
BG
| EEPROM
* Combination Function Components
FILTER/EDGE DET
2-bit LUT0/DFF LATCHO
2-bit LUT 1/DFF /LATCH1
2-bit LUT2/DFF LATCH2
2-bit LUT3/PGEM
3-bit LUTO/DFF/LATCH3
3-bit LUT 1/DFF LATCH4
3-bit LUT2/DFF LATCHS
3-bit LUT3/DFFLATCHG
3-bit LUT4/DFF LATCH7
3-bit LUTS/DFF/LATCHS

Show all || Hide all

Application Note

Figure 7. Set EEPROM Data

Revision 1.1 25-Feb-2019

8 of 12 © 2022 Renesas Electronics Corporation

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

Now you can edit each byte in the EEPROM individually with our GUI interface.

4% EEPROM data editor ? *
rL[:;(Control byte Word address Bits Value [hex) Value [dec) =
Onc00 0001011X 00000000 [7:0] 000 o
001 0001011X 00000001 [15:8] 0x00 0
002 0001011X 00000010 [23:18] 0x00 0
003 0001011 00000011 | [31:24] | 000 0
Onc4 0001011X 00000100 [39:32) 000 o
005 0001011X 00000101 [47:40] 000 o
One06 0001011X 00000110 [55:48] 000 o
One07 0001011X 00000111 [63:56] 000 o
003 0001011X 00001000 [71:64] 000 o
009 0001011X 00001001 [79:72) 000 o
ey Oo01011% OO001010 [R7:801 (e 0 b’

OK Cancel

Figure 8. EEPROM Data Editor

Once your EEPROM data is set, you can export it to a HEX file using the same method described
previously for exporting the NVM data. Insert these 256 bytes of EEPROM data into the
eepromsString[] section of the Arduino sketch.

For each custom design, it is important to check the protection settings within the “Security” tab of the
project settings. This tab configures the protection bits for the matrix configuration registers, the
NVM, and the EEPROM. Under certain configurations, uploading the NVM sequence can lock the
SLG46824/6 to its current configuration and remove the MTP functionality of the chip.

¥ Project settings ? X

General Security

NVM Options
Lock status | Unlocked =

PatternID |1

2k MVM Configuration
Protect lock | Disable -
Protect mode | Data is unprotected for read and writeferase -

Emulated EEPROM Write Protection
Write protect Disable -
‘Write protect macrocell bits | Upper quarter of emulated EEPROM is write protected ~

(), Detailed

@ o | oK | Cancel

Figure 9. Matrix Registers, NVM, and EEPROM Protection Settings

Application Note Revision 1.1 25-Feb-2019

9 of 12 © 2022 Renesas Electronics Corporation

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

6 Usethe Arduino Sketch

Upload the sketch to your Arduino and open the serial monitor with a 115200 baud rate. Now you
can use the sketch's MENU prompts to perform several commands:
Read - reads either the device’s NVM data or EEPROM data using the specified slave address
Erase - erases either the device’s NVM data or EEPROM data using the specified slave address

e \Write - Erases and then writes either the device’s NVM data or EEPROM data using the specified
slave address. This command writes the data that is saved in the nvmString[] or eepromString[]
arrays.

e Ping - returns a list of device slave addresses that are connected to the I1°C bus

The results of these commands will be printed to the serial monitor console.

& coma - o ket

i Send

MENU: r = read, & = erase, w = write, p = ping

Autoscrall MNoline ending | | 115200 baud -~ Clear output

Figure 10. Arduino Serial Monitor

7 Programming Tips and Best Practices

Over the course of supporting the SLG46824/6, we’ve documented a few programming tips to help
avoid common pitfalls associated with erasing and writing to the NVM address space. The following
subsections outline this topic in more detail.

7.1 Executing Precise 16-Byte NVM Page Writes:
When writing data to the SLG46824/6’s NVM, there are three techniques to avoid:

e Page writes with less than 16 bytes

e Page writes with more than 16 bytes

e Page writes that don’t begin at the first register within a page (IE: 0x10, 0x20, etc.)

If any of the above techniques are used, the MTP interface will disregard the 12C write to avoid

loading the NVM with incorrect information. We recommend performing an I°C read of the NVM
address space after writing to verify correct data transfer.

7.2 Transferring NVM Data into the Matrix Configuration Registers

When the NVM is written, the matrix configuration registers are not automatically reloaded with the
newly written NVM data. The transfer must be initiated manually by cycling the PAK VDD or by
generating a soft reset using I°C. By setting register <1601> in address 0xC8, the device re-enables
the Power-On Reset (POR) sequence and reloads the register data from the NVM into the registers.

Application Note Revision 1.1 25-Feb-2019

10 of 12 © 2022 Renesas Electronics Corporation

AN-CM-255 RENESAS

SLG46824/6 MTP Arduino Programming Example

7.3 Resetting the I°C Address after an NVM Erase:

When the NVM is erased, the NVM address containing the I12C slave address will be set to 0000.
After the erase, the chip will maintain its current slave address within the configuration registers until
the device is reset as described above. Once the chip has been reset, the I°C slave address must be
set in address OxCA within the configuration registers each time the GreenPAK is power-cycled or
reset. This must be done until the new I2C slave address page has been written in the NVM.

8 Errata Discussion

When writing to the “Page Erase Byte” (Address: OxE3), the SLG46824/6 produces a non-12C
compliant ACK after the “Data” portion of the 12C command. This behavior might be interpreted as a
NACK depending on the implementation of the 12C master.

To accommodate for this behavior, we modified the Arduino programmer by commenting out the
code shown in Figure 11. This section of code checks for an 12C ACK at the end of every 12C
command in the eraseChip() function. This function is used to erase the NVM and EEPROM pages.
Since this section of code is located in a For loop, the “return -1;” line causes the MCU to pre-
maturely exit the function.

1/ if (Wire.endTransmission() == 0) {
/7 Serial.print(F("ack "));

// }

/7 else |

/7 Serial.print(F("nack "));

// return —14

17 }
Wire.endTransmission({);
Figure 11: ACK Behavior Modification to the Arduino Programmer

Despite the presence of a NACK, the NVM and EEPROM erase functions will execute properly. For a
detailed explanation of this behavior, please reference “Issue 2: Non-12C Compliant ACK Behavior
for the NVM and EEPROM Page Erase Byte” in the SLG46824/6 errata document (Revision XC).

9 Conclusion

In this application note we describe the process of using the provided Arduino programmer to upload
custom NVM and EEPROM strings to a GreenPAK IC. The code in the Arduino Sketch is thoroughly
commented, but if you have any questions regarding the sketch, please contact one of our Field
Application Engineers or post your question on our forum. For more in-depth information regarding
MTP programming registers and procedures, please reference In-System Programming Guide.

Application Note Revision 1.1 25-Feb-2019

11 of 12 © 2022 Renesas Electronics Corporation

AN-CM-255

LENESAS

SLG46824/6 MTP Arduino Programming Example

Revision History

Revision Date Description
Modified Arduino script to accommodate for SLG46824/6 (XC
11 25-Feb-2019 Revision) errata. Discussion added in Section 8 of this AN.
1.0 05-Sep-2018 Initial Version
Application Note Revision 1.1 25-Feb-2019

12 of 12 © 2022 Renesas Electronics Corporation

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

