
 

 

  

   

   

   

Application Note 

SLG46824/6 MTP Arduino 
Programming Example 

AN-CM-255 

Abstract 

In this application note, we use the Arduino MTP Programmer sketch to program an SLG46824/6. 
Through analyzing the code, a firmware designer can create a modified version that is compatible 
with their unique microcontroller. 
 
This application note comes complete with design files which can be found in the References 
section. 
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1 Terms and Definitions 

EEPROM Electrically erasable programmable read-only memory 

I2C Inter-integrated circuit 

MTP Multiple-time programmable 

NVM Non-volatile memory 

OTP One-time programmable 

2 References 

For related documents and software, please visit: 

GreenPAK™ Programmable Mixed-Signal Products | Renesas 

Download our free GreenPAK™ Designer software [1] to open the .gp files [2] and view the proposed 
circuit design. Use the GreenPAK development tools [3] to freeze the design into your own 
customized IC in a matter of minutes. Renesas Electronics provides a complete library of application 
notes [4] featuring design examples as well as explanations of features and blocks within the IC. 

[1] GreenPAK Designer Software, Software Download and User Guide, Renesas Electronics 

[2] AN-CM-255 SLG46824/6 MTP Arduino Programming Eample.gp, GreenPAK Design File, 
Renesas Electronics 

[3] GreenPAK Development Tools, GreenPAK Development Tools Webpage, Renesas Electronics 

[4] GreenPAK Application Notes, GreenPAK Application Notes Webpage, Renesas Electronics 

[5] In-System Programming Guide, GreenPAK User Guides and Manuals, Renesas Electronics  

 

 

Author: Craig Cary 

  

https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products
https://www.renesas.com/eu/en/software-tool/go-configure-software-hub
https://www.renesas.com/eu/en/document/scd/cm-255-gp-file?language=en&r=1570646
https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/greenpak-development-process
https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/greenpak-applications?documents-title-filter=287
https://www.renesas.com/eu/en/document/mat/system-programming-guide-slg468246?r=1572991
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3 Introduction 

 

In this application note, we show how to use the SLG46824/6 Arduino programming sketch to 
program an SLG46824/6 GreenPAK Multiple-Time Programmable (MTP) device. 

Most GreenPAK devices are One-Time Programmable (OTP), meaning that once their Non-Volatile 
Memory bank (NVM) is written, it cannot be overwritten. GreenPAKs with the MTP feature, like the 
SLG46824 and SLG46826, have a different type of NVM memory bank that can be programmed 
more than once. 

We’ve written an Arduino sketch that allows the user to program an MTP GreenPAK with a few 
simple serial monitor commands. In this application note we use an SLG46826 as our GreenPAK 
with MTP. 

We provide sample code for the Arduino Uno using an open-source platform based on C/C++. 
Designers should extrapolate the techniques used in the Arduino code for their specific platform. 

For specific information regarding I2C signal specifications, I2C addressing, and memory spaces, 
please reference the GreenPAK In-System Programming Guide provided on the SLG46826 product 
page. This application note provides a simple implementation of this programming guide. 

https://www.arduino.cc/
https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/greenpak-system-programmability/slg46826-greenpak-programmable-mixed-signal-matrix-system-programmability
https://www.renesas.com/eu/en/products/programmable-mixed-signal-asic-ip-products/greenpak-programmable-mixed-signal-products/greenpak-system-programmability/slg46826-greenpak-programmable-mixed-signal-matrix-system-programmability
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4 Arduino-GreenPAK Connections 

To program the NVM of our SLG46826 GreenPAK with our Arduino sketch, we'll first need to connect 
four Arduino Uno pins to our GreenPAK. You can connect these pins directly to the GreenPAK 
Socket Adapter or to a breakout board with the GreenPAK soldered down. 

 

Table 1: Arduino Uno / GreenPAK Connections 

GreenPAK  Arduino 

VDD (Pin 1) Digital Pin 2 

GND (Pin 11) GND 

SCL (Pin 8) A5 

SDA (Pin 9) A4 

 

Figure 1. Arduino Connections 

Please note that external I2C pull up resistors are not shown in Figure 1. Please connect a 4.7 kΩ 
pull up resistor from both SCL and SDA to the Arduino’s 3.3 V output. 



 

 

AN-CM-255  

SLG46824/6 MTP Arduino Programming Example   

Application Note Revision 1.1 25-Feb-2019 

 6 of 12 © 2022 Renesas Electronics Corporation 

5 Exporting GreenPAK NVM Data from a GreenPAK Design File 

We'll put together a very simple GreenPAK design to illustrate how to export the NVM data. The 
design below is a simple level shifter where the blue pins on the left are tied to VDD (3.3v), while the 
yellow pins on the right are tied to VDD2 (1.8v). 

 

Figure 2. Simple GreenPAK Design in a SLG46826 

To export the information from this design, you need to select File → Export → Export NVM, as 
shown in Figure 3. 

 

Figure 3. Export NVM 
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 You will then need to select Intel HEX Files (*.hex) as the file type and save the file. 

 

Figure 4. Save as .hex File 

Now, you'll need to open the .hex file with a text editor (like Notepad++). To learn more about the 
Intel’s HEX file format and syntax, check out its Wikipedia page. For this application we’re only 
interested in the data portion of the file as shown in Figure 5. 

 

Figure 5. Viewing the NVM Data in Notepad++ 

Highlight and copy the 256 bytes of NVM configuration data located within the HEX file. Each line 
that we are copying is 32 characters long, which corresponds to 16 bytes. 

Paste the information into the highlighted nvmString[] section of the Arduino sketch as shown in 
Figure 6. If you’re using a non-Arduino Microcontroller, you could write a function to parse the 
nvmData saved in the GreenPAK .GP6 file. (If you open a GreenPAK file with a text editor, you’ll see 
that we store project information in an easily-accessible XML format.) 

https://en.wikipedia.org/wiki/Intel_HEX
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Figure 6. Arduino Sketch 

To set the EEPROM data for your GreenPAK design, select the EEPROM block from the 
components panel, open its properties panel, and click "Set Data." 

 

Figure 7. Set EEPROM Data 
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Now you can edit each byte in the EEPROM individually with our GUI interface. 

 

Figure 8. EEPROM Data Editor 

Once your EEPROM data is set, you can export it to a HEX file using the same method described 
previously for exporting the NVM data. Insert these 256 bytes of EEPROM data into the 
eepromString[] section of the Arduino sketch. 

For each custom design, it is important to check the protection settings within the “Security” tab of the 
project settings. This tab configures the protection bits for the matrix configuration registers, the 
NVM, and the EEPROM. Under certain configurations, uploading the NVM sequence can lock the 
SLG46824/6 to its current configuration and remove the MTP functionality of the chip.  

 

Figure 9. Matrix Registers, NVM, and EEPROM Protection Settings 
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6 Use the Arduino Sketch 

Upload the sketch to your Arduino and open the serial monitor with a 115200 baud rate. Now you 
can use the sketch's MENU prompts to perform several commands: 

● Read - reads either the device’s NVM data or EEPROM data using the specified slave address 

● Erase - erases either the device’s NVM data or EEPROM data using the specified slave address 

● Write - Erases and then writes either the device’s NVM data or EEPROM data using the specified 
slave address. This command writes the data that is saved in the nvmString[] or eepromString[] 
arrays. 

● Ping - returns a list of device slave addresses that are connected to the I2C bus 

The results of these commands will be printed to the serial monitor console. 

 

Figure 10. Arduino Serial Monitor 

7 Programming Tips and Best Practices 

Over the course of supporting the SLG46824/6, we’ve documented a few programming tips to help 
avoid common pitfalls associated with erasing and writing to the NVM address space. The following 
subsections outline this topic in more detail. 

7.1 Executing Precise 16-Byte NVM Page Writes: 

When writing data to the SLG46824/6’s NVM, there are three techniques to avoid: 

● Page writes with less than 16 bytes 

● Page writes with more than 16 bytes 

● Page writes that don’t begin at the first register within a page (IE: 0x10, 0x20, etc.) 

If any of the above techniques are used, the MTP interface will disregard the I2C write to avoid 
loading the NVM with incorrect information. We recommend performing an I2C read of the NVM 
address space after writing to verify correct data transfer.  

7.2 Transferring NVM Data into the Matrix Configuration Registers 

When the NVM is written, the matrix configuration registers are not automatically reloaded with the 
newly written NVM data. The transfer must be initiated manually by cycling the PAK VDD or by 
generating a soft reset using I2C. By setting register <1601> in address 0xC8, the device re-enables 
the Power-On Reset (POR) sequence and reloads the register data from the NVM into the registers. 
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7.3 Resetting the I2C Address after an NVM Erase: 

When the NVM is erased, the NVM address containing the I2C slave address will be set to 0000. 
After the erase, the chip will maintain its current slave address within the configuration registers until 
the device is reset as described above. Once the chip has been reset, the I2C slave address must be 
set in address 0xCA within the configuration registers each time the GreenPAK is power-cycled or 
reset. This must be done until the new I2C slave address page has been written in the NVM. 

8 Errata Discussion 

When writing to the “Page Erase Byte” (Address: 0xE3), the SLG46824/6 produces a non-I2C 
compliant ACK after the “Data” portion of the I2C command. This behavior might be interpreted as a 
NACK depending on the implementation of the I2C master. 

To accommodate for this behavior, we modified the Arduino programmer by commenting out the 
code shown in Figure 11. This section of code checks for an I2C ACK at the end of every I2C 
command in the eraseChip() function. This function is used to erase the NVM and EEPROM pages. 
Since this section of code is located in a For loop, the “return -1;” line causes the MCU to pre-
maturely exit the function. 

 

Figure 11: ACK Behavior Modification to the Arduino Programmer 

Despite the presence of a NACK, the NVM and EEPROM erase functions will execute properly. For a 
detailed explanation of this behavior, please reference “Issue 2: Non-I2C Compliant ACK Behavior 
for the NVM and EEPROM Page Erase Byte” in the SLG46824/6 errata document (Revision XC). 

9 Conclusion 

In this application note we describe the process of using the provided Arduino programmer to upload 
custom NVM and EEPROM strings to a GreenPAK IC. The code in the Arduino Sketch is thoroughly 
commented, but if you have any questions regarding the sketch, please contact one of our Field 
Application Engineers or post your question on our forum. For more in-depth information regarding 
MTP programming registers and procedures, please reference In-System Programming Guide. 
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Revision History 

Revision Date Description 

1.1 25-Feb-2019 
Modified Arduino script to accommodate for SLG46824/6 (XC 

Revision) errata. Discussion added in Section 8 of this AN. 

1.0 05-Sep-2018 Initial Version 
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