
 APPLICATION NOTE

R01AN3319EJ0120 Rev1.20 Page 1 of 34
Jan 31, 2022

Bluetooth® Low Energy Protocol Stack
Embedded Configuration Sample Program
Introduction
This sample program provides an example implementation of the embedded configuration application. The embedded

configuration application performs two behavior, Bluetooth® Low Energy behavior and application behavior, on
RL78/G1D. The source codes can be used for the basement of your own application.

The developers can know the implementation method of the embedded configuration application by understanding the
sample program. This document provides information needed to understand the sample program details, such as the
sample program usage, structure, functional and detailed design.

There are two types of the sample programs, for Central role and for Peripheral role. The sample program works on
RL78/G1D Evaluation Board and uses BLE protocol stack.

Target Device
RL78/G1D

Rerated Documents
Document Name Document Number

Bluetooth Low Energy Protocol Stack -

 User’s Manual R01UW0095E

API Reference Manual: Basics R01UW0088E

Quick Start Guide R01AN2767E

 Security Library R01AN3777E

RL78/G1D -

 User’s Manual: Evaluation Board R30UZ0048E

R01AN3319EJ0120
Rev1.20

Jan 31, 2022

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 2 of 34
Jan 31, 2022

Contents

1. Introduction .. 4

2. Sample Program Demo .. 5
2.1 Environment .. 5
2.2 Environment Setup ... 6
2.3 Operation ... 8

3. Structure ... 11
3.1 Sample Software Structure .. 11
3.2 File and Directory Structure ... 13

4. Building Sample Program ... 14
4.1 Common Procedure .. 14
4.2 Build Procedure .. 15

4.2.1 e2 studio ... 15
4.2.2 CS+ ... 15

5. Sample Program Internals ... 16
5.1 Sample Control Program .. 16

5.1.1 Connection Configuration .. 16
5.1.2 Central: Multiple Connection Configuration .. 17
5.1.3 Peripheral: SW4 PUSH/RELEASE state notification Interval ... 17
5.1.4 Security Settings ... 17
5.1.5 The number of storable Bonding Information ... 17
5.1.6 Security Settings ... 17

5.2 Console Driver ... 18
5.2.1 Console Input Handling .. 18
5.2.2 API .. 18
5.2.3 Definition .. 19

5.3 Menu Driver ... 20
5.3.1 Menu Structure .. 20
5.3.2 Menu Control ... 20
5.3.3 API .. 20
5.3.4 Structure .. 21

5.4 Sample Custom Service Definition ... 22
5.5 Sample Custom Profile for Server role (SAMS) ... 23

5.5.1 API .. 23
5.5.2 Event .. 24
5.5.3 Definition .. 25

5.6 Sample Custom Profile for Client Role (SAMC) ... 26
5.6.1 API .. 26

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 3 of 34
Jan 31, 2022

5.6.2 Event .. 28
5.6.3 Definition .. 29

5.7 Sequence Chart ... 30

6. Appendix ... 33
6.1 ROM size, RAM size .. 33

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 4 of 34
Jan 31, 2022

1. Introduction
The sample program will provide an example implementation by using Sample Custom Profile, the simple example

profile for this sample program. This sample program includes following implementation.

- The usage of fundamental GAP (Generic Access Profile) API for central and peripheral role

- Establish security by encryption

- The usage of RWKE (Renesas Wireless Kernel Extension) task and message

- Sample Custom Profile definition

- Multiple connections between a central role device and peripheral role devices

- The simple user application like push button switches and LED indicators

The sample program uses two or more RL78/G1D Evaluation Board (hereafter called as Evaluation Board). One board
will be programmed with Hex file for central role (hereafter called simply as Central), and the others will be
programmed with Hex file for peripheral role (hereafter called as Peripheral)

Section 2 guides you the sample program demo environment setup and operation.

Section 3 explains about the sample program internal structure and file/directory structure.

Section 4 explains about installation, working with each development environment such as e2 studio and CS+.

Section 5 explain about the sample program functionality, API and configuration parameters.

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 5 of 34
Jan 31, 2022

2. Sample Program Demo
 The following sub-sections will describe about how to evaluate this sample program. In the next two sub-section, it
shows the environment and its setup procedure, and then next sub-section explains how to operate the demo.

2.1 Environment
Followings shows the environment needed to evaluate this sample program.

- Hardware Environment

- Personal Computer

- PC/ATTM compatible computer

- Processor : at least 1.6GHz

- Main Memory : at least 1Gbyte

- Interface : USB2.0 (for connecting E1 emulator and RL78/G1D Evaluation Board)

- Device

- Two or more RL78/G1D Evaluation Boards (RTK0EN0001D01001BZ)

- USB cable (A type male / mini-B type male)

- Tool

- Renesas On-chip Debugging Emulator E1 (R0E000010KCE00)

- Software Environment

- Windows®7 or later

- e2 studio V4.3.1.001 / RL78 Family C Compiler Package V1 (without IDE) V1.03.00
or Renesas CS+ for CC V4.00.00 / RL78 Family C Compiler Package V1 (without IDE) V1.03.00
or Renesas CS+ for CA, CX V3.02.00 / Renesas CA78K0R V1.72

- Renesas Flash Programmer v3.02.00

- Tera Term V4.89 (You can use any Terminal Software)

- UART-USB Conversion Device Driver

[Note] UART-USB device driver is required to connect an Evaluation Board with a PC. You can
download the driver from “FTDI (Future Technology Devices International) – Drivers” web page.
https://ftdichip.com/drivers/d2xx-drivers/

https://ftdichip.com/drivers/d2xx-drivers/

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 6 of 34
Jan 31, 2022

2.2 Environment Setup
Figure 2-1 shows the environment setup for typical test condition.

Figure 2-1 Environment Setup

Below show the steps for the demo environment setup.

1. Prepare two or more Evaluation boards. Use one Evaluation Board as Central and others as Peripherals. Central can

connect multiple Peripherals concurrently (up to 8, the default is 4. Refer section 5.1.2 for the configuration). The
number of Peripherals depend on your requirement for the multiple connections.

2. Adjust the switch settings of all Evaluation Boards for Central and Peripheral as shown in Table 2-1.

Table 2-1 Evaluation Board Switch Setting for Sample Program Demo

Switch Position Remark
SW7 OFF

Dot side is ON.

SW8 OFF
SW9 OFF
SW10 ON
SW11 OFF
SW12 OFF
SW13 ON

3. Program the Evaluation Boards with pre-compiled Hex file. Write the Hex file for Central to one Evaluation Board,

and write the Hex file for Peripheral to other Evaluation Boards. To build the Hex file, refer section 4 in this
document. Regarding to program the Hex file onto an Evaluation Board, refer “Quick Start Guide (R01AN2767)”
“Section 5 Writing Programs”.
- Hex file for Central:

- ROM_File\cc_rl\Embedded\RL78_G1D_CCE(EMBSMP_Central).hex
- Hex file for Peripheral

- ROM_File\cc_rl\Embedded\RL78_G1D_CCE(EMBSMP_Peripheral).hex

4. Install Terminal Software onto the Personal Computer. For this demonstration, any preferable Terminal Software

can be used. For testing this sample program, the demonstration will use the Teraterm V4.89.

Personal Computer

Central

LED4

SW4

Write LED Control
>>

Terminal Application

USB

USB Cable

Peripheral

LED4
SW4

CN3 CN3

USB

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 7 of 34
Jan 31, 2022

5. Setup the Terminal Software with as shown in Table 2-2.

Table 2-2 Terminal Software Settings

Setting Setting Value
New-line (Receive) LF
New-line (Transmit) CR
Baud rate 4,800 [bps]
Data Length 8 [bit]
Parity none
Stop Bit 1 [bit]
Flow Control none

6. First, connect Central to Personal Computer via USB cable. Then open the installed Terminal Software to connect

with Central. Push the SW5 on Central to reset and then you will see the menu on Terminal Software.
Central must communicate through Terminal Software. Peripheral also must connect to Terminal Software to
display passkey.

7. Now LED1 and LED2 are blinking on all Evaluation Boards. Due to the power saving mode, the blinking can be

stopped or slow down.

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 8 of 34
Jan 31, 2022

2.3 Operation
Blow are the procedures to operate the demo.

1. After booting up, Peripheral automatically starts advertising.

2. On the Terminal Software, the terminal menu is displayed as shown in Figure 2-2. The figure also shows the

terminal menu flow diagram. The menu items are selected by using number keys (0 to 9), and Esc key is used to
exit current menu then move to the upper menu.

Figure 2-2 Terminal Menu Flow

3. Using “Start Scanning (Wait 7.68 sec)” in “Device Select Menu”, Central can start scanning the nearby Peripherals

(This takes 7.68 sec. This is based on RBLE_GAP_Search_Device API). Then a list of Peripherals is shown in
“Device Search Result” menu. To start a connection with one of the Peripheral listed in “Device Search Result”,
select one by pressing respective number key.

4. After establishing the connection, the selected Peripheral can be communicated through “Device Control Menu”.
“Device Control Menu” have Peripheral address and the security status with the peer device. When encryption is
established with the peer device, “:E” sign on the menu. When encryption is not established, “: No Sec” sign on the
menu. The menu has five commands from “0” to “4” as below.
- Write switch_state cccd: In this menu, it can enable or disable the notification of Peripheral. Write 1 for the

enable, write 0 for the disable. The notification is implemented with SW4 PUSH/RELEASE state in
Peripheral. When the notification is enabled, the Peripheral checks its SW4 state either PUSH or RELEASE
for every 500ms interval and send the current state to Central. With respect to the notified SW4 state from
Peripheral, Central changes its LED4 ON/OFF state. See left side of Figure 2-3 for this operation. CCCD is an
abbreviation of Client Characteristic Configuration Descriptor.
This characteristic descriptor has Unauthenticated pairing permission, thus when an access is executed before
pairing established, the access causes Error. When Central receives the error, it starts pairing. Passkey is
displayed on Peripheral terminal software, then a user properly input the passkey to Central terminal software,
pairing established and the communication encrypted. Security information exchanged between Central /

[Device Select Menu]
0. Start Scanning (Wait 7.68 sec)
1. ABCABCABCABC
2. CAFECAFECAFE
3. Not Connected
4. Not Connected

[Device Search Result]
0. 123456789ABC
1. CBA987654321
2. 111222333444
3. 555666777888
...

[Device Control Menu: 123456789ABC: E]
0. Write switch_state cccd
1. Read switch_state cccd
2. Write led_control
3. Read led_control
4. Disconnect

[Write switch_state cccd]
Input 0:Notify OFF, 1:Notify ON

[Write led_control]
Input 0:OFF, 1:ON

0
1~

2
0 (Pairing
finished)

Any

ESC

ESC

ESC

ESC or 4

[Passkey requested]
Input Passkey
>> 123456

ESC

0 (Pairing not
finished)

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 9 of 34
Jan 31, 2022

Peripheral is stored into RL78/G1D Data Flash by bonding feature. This information can be used subsequent
communication.

- Read switch_state cccd: It is used to get the Peripheral’s notification enable/disable setting from Central. “1”

is read when it is enabled, “0” is read when it is disabled.

- Write led_control: In this menu, it does control Peripheral’s LED4 ON/OFF state from Central. Write 1 for
the enable, write 0 for the disable. See right side of Figure 2-3 for this operation.

- Read led_control: It is used to get the Peripheral’s LED4 ON/OFF state from Central. “1” is read when it is

ON, “0” is read when it is OFF.

- Disconnect: Selecting this option will disconnect between Central and the Peripheral. Then back to “Device
Select Menu” in the terminal.

5. The procedures to establish multiple connections between Central and Peripherals are as below.

1. Select “Start Scanning (wait 7.68 sec)” in “Device Select Menu” and establish a connection with a Peripheral.

2. After establishing the connection, “Device Control Menu” is displayed. Then use Esc key to move up to

“Device Select Menu”.

3. Re-select “Start Scanning (wait 7.68 sec)” in “Device Select Menu” to find another Peripheral and establish a
connection with the Peripheral. After this, multiple connections are established.

4. Currently connected Peripherals are displayed in “Device Select Menu”. When a connection is disconnected,

the Peripheral is removed from the “Device Select Menu”.

Note: The number of menu items in “Device Select Menu” except “Start Scanning (Wait 7.68 sec)” is the
maximum number of concurrent connection between one Central and Peripherals. The example of Figure 2-2
shows that Central can establish four connections. Currently two connections have been established and two more
connections can be established.

6. By pushing SW2, security information stored during pairing is deleted. The target of deletion is the information for

non-connecting devices. The security information of connecting devices are not deleted. To delete all security
information, disconnect with all devices and push SW2. When completing the deletion, “Bonding information have
been deleted.” is displayed on the terminal software.

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 10 of 34
Jan 31, 2022

Figure 2-3 Peripheral Device Control

1. Peripheral checks the SW4
state every 500ms interval and
send the state to Central.

2. Central changes the LED 4 state
depends on the received Peripheral’s
SW4 state.

2. Peripheral changes the LED 4 state
depend on the value received from
Central.

1. A user can control Peripheral’s LED4 state via the
menu.

500ms
interval

Receive Peripheral’s SW4 state Control Peripheral’s LED4 state

Central
LED4

SW4

Peripheral
LED4

SW4

Central
LED4

SW4

Peripheral
LED4
SW4

Write LED Control
>>

Terminal Software

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 11 of 34
Jan 31, 2022

3. Structure
This section will explain about sample program structure for both Central and Peripheral as well as delivered file

structure in the package.

3.1 Sample Software Structure

Figure 3-1 shows the software and hardware structure, which have three sections: Sample Program, BLE protocol

stack, and Device. They are painted with Red, Blue and Black respectively. Since Central and Peripheral are associated
with this demo, there are two types of the sample program, one for Central and the other for Peripheral. To enable
security feature, Security Library (R01AN3777) is introduced for both of Central / Peripheral.

Figure 3-1 Software and Hardware Stack

Central

BLE
Protocol Stack

Sample
Control Program
for Central Role

Sample
Custom Profile for

Client Role

RL78/G1D Evaluation Board

Term
inal Softw

are

LED

Peripheral

BLE
Protocol Stack

Sample
Control Program for

Peripheral Role

Sample
Custom Profile for

Server Role
Sample Custom

Service

RL78/G1D Evaluation Board

LED

Push SW

Device
Drivers

Device
Drivers

U
A

R
T

Console
Driver

Security Library Security Library

Push SW

Term
inal Softw

are

U
A

R
T

Central

BLE
Protocol Stack

Sample
Control Program
for Central Role

Sample
Custom Profile for

Client Role

RL78/G1D Evaluation Board

Term
inal Softw

are

LED

Peripheral

BLE
Protocol Stack

Sample
Control Program for

Peripheral Role

Sample
Custom Profile for

Server Role
Sample Custom

Service

RL78/G1D Evaluation Board

LED

Push SW

Device
Drivers

Device
Drivers

U
A

R
T

Console
Driver

Security Library Security Library

Push SW

Term
inal Softw

are

U
A

R
T

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 12 of 34
Jan 31, 2022

For the sample program, the summaries of Central and Peripheral software are described as follows. Both of Central
and Peripherals are implemented as the embedded configuration application.

- Central:

- Sample Control Program for Central executes scanning to discover Peripheral and establishing a connection
with Peripheral. After establishing the connection, it performs as GATT client role.

- Sample Custom Profile for Client role provides APIs to ease of use Sample Custom Service.

- This sample program includes the device drivers for Central, which LED (input/output port) and Console via
UART.

- Peripheral:

- Sample Control Program for Peripheral executes advertising after boot up and connection.

- After establishing a connection, Peripheral performs as Server role and provides Sample Custom Service to
Central.

- Sample Custom Profile for Server role provides APIs to ease of use Sample Custom Service.

- This sample program includes the device driver for Peripheral to support input/output port control for Push
Switch and LED.

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 13 of 34
Jan 31, 2022

3.2 File and Directory Structure
The file and directory structure of the sample program is shown below. The package only includes the source codes or

project files changed / added from BLE protocol stack V1.20 for the sample program.

\---Project_Source
 +---rBLE
 | \---src
 | +---sample_app Sample Control Program
 | | console.c Console Drive
 | | console.h

 | | menu.c Menu Driver
 | | menu.h

 | | rble_sample_app_central.c Sample Program for Central Role
 | | rble_sample_app_central.h

 | | rble_sample_app_peripheral.c Sample Program for Peripheral Role
 | | rble_sample_app_peripheral.h

 | | \---seclib

Security Library
 | | seclib.c

 | | seclib.h

 | | secdb.c

 | | secdb.h

 | \---sample_profile
 | \---sam Sample Custom Profile

 | sam.h

 | samc.c Sample Custom Profile for Client Role
 | samc.h
 | sams.c Sample Custom Profile for Server Role
 | sams.h
 \---renesas
 +---src
 | +---arch
 | | \---rl78 BLE Software main loop
 | | arch_main.c

 | | db_handle.h GATT Service handle definition
 | | ke_conf.c Kernel task definition
 | | prf_config.c GATT Service definition
 | | prf_config.h

 | | prf_sel.h GATT Profile selection
 | \---driver
 | \---uart UART 4800bps Configuration
 | uart.c

 | \---dataflash
Data Flash Library | eel_descriptor_t02.c

 | eel_descriptor_t02.h

 \---tools
 \---project

Project file for CS+ for CC +---CS_CCRL

 | +---BLE_Embedded_for_Peripheral

 | \---BLE_Embedded_for_Central
Project file for CS+ CA,CX +---CubeSuite

 | +---BLE_Embedded_for_Peripheral

 | \---BLE_Embedded_for_Central
Project file for e2 studio +---e2studio

 +---BLE_Embedded_for_Peripheral

 \---BLE_Embedded_for_Central

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 14 of 34
Jan 31, 2022

4. Building Sample Program
This section describes how to build the sample program. Using with one of the following development environment

can build the sample program for demonstration.

- e2 studio V4.3.1.001 / RL78 Family C Compiler Package V1 (without IDE) V1.03.00

- Renesas CS+ for CC V4.00.00 / RL78 Family C Compiler Package V1 (without IDE) V1.03.00

- Renesas CS+ for CA, CX V3.02.00 / Renesas CA78K0R V1.72

4.1 Common Procedure
Followings are the procedures to build the sample program.

1. You need BLE protocol stack and EEPROM emulation library. Download these from Renesas Web page.

- BLE protocol stack

- https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rl78-family

- EEPROM emulation library

- EEPROM Emulation Library Pack02 Package Ver.2.00(for CA78K0R/CC-RL Compiler) for RL78
Family

- https://www.renesas.com/software-tool/data-flash-libraries

NOTE: The link address can be changed without notice.

2. Unzip BLE protocol stack. The path to unzip the package should not include white spaces or multi-byte characters.
This manual uses “\BLE_Software_Ver_X_XX” as the target path.

3. Install EEPROM emulation library. Refer “Quick Start Guide [R01AN2767] section 4.2 Installing EEPROM
Emulation Library” for the procedures.

https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rl78-family
https://www.renesas.com/software-tool/data-flash-libraries

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 15 of 34
Jan 31, 2022

4.2 Build Procedure
This section describes the build procedures of the sample program on each development environment, e2 studio, CS+.

4.2.1 e2 studio
1. Launch e2 studio.

2. Right click on “Project Explorer” and select “Import…” from the dropdown menu.

3. “Import” window is popped up and select “Existing Projects into Workspace” and click “Next >”.

4. Fill “Select root directory:” form with the project directory shown in Table 4-1.

5. Make sure that the project you selected is displayed in “Projects:” and click “Finish”. Then the window is closed.

6. Right click on the project just imported on “Project Explorer” and Select “Build Project” from the dropdown menu.

7. Refer Table 4-1 for the Hex file generate path.

4.2.2 CS+
1. Double click the project file shown in Table 4-1.

2. Right click on “BLE_Emb” in “Project Tree” and select “Build BLE_Emb” from the dropdown menu.

3. Refer Table 4-1 for the Hex file generate path.

Table 4-1 Project file and Hex File Location

e2 studio with CC-RL
Project
Directory

Peripheral: e2studio\BLE_Embedded_for_Peripheral\rBLE_Emb
Central: e2studio\BLE_Embedded_for_Central\rBLE_Emb

Hex File Peripheral: e2studio\BLE_Embedded_for_Peripheral\rBLE_Emb\DefaultBuild\rBLE_Emb_CCRL.hex
Central: e2studio\BLE_Embedded_for_Central\rBLE_Emb\DefaultBuild\rBLE_Emb_CCRL.hex

CS+ with CC-RL
Project File Peripheral: CS_CCRL\BLE_Embedded_for_Peripheral\BLE_Embedded_for_Peripheral.mtpj

Central: CS_CCRL\BLE_Embedded_for_Central\BLE_Embedded_for_Central.mtpj
Hex File Peripheral: CS_CCRL\BLE_Embedded_for_Peripheral\rBLE_Emb\DefaultBuild\rBLE_Emb_CCRL.hex

Central: CS_CCRL\BLE_Embedded_for_Central\rBLE_Emb\DefaultBuild\rBLE_Emb_CCRL.hex
CS+ with CA78K0R
Project File Peripheral: CubeSuite\BLE_Embedded_for_Peripheral\BLE_Embedded_for_Peripheral.mtpj

Central: CubeSuite\BLE_Embedded_for_Central\BLE_Embedded_for_Central.mtpj
Hex Peripheral: CubeSuite\BLE_Embedded_for_Peripheral\BLE_Emb\DefaultBuild\BLE_Emb.hex

Central: CubeSuite\BLE_Embedded_for_Central\BLE_Emb\DefaultBuild\BLE_Emb.hex
 (Base Path: \BLE_Software_Ver_X_XX\RL78_G1D \Project_Source\renesas\tools\project\)

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 16 of 34
Jan 31, 2022

5. Sample Program Internals
This section describes the sample program component behavior, configuration and APIs.

5.1 Sample Control Program
Sample Control Program performs advertising (Peripheral), scanning and establishing a connection (Central) by using

GAP API provided by BLE protocol stack. Regarding the API details and behavior, refer API Reference Manual:
Basics (R01UW0088). And refer section 5.7 in this document for the API calling sequence of the sample program.

Following sub-sections describes about the Sample Control Program configurations.

5.1.1 Connection Configuration
After booting up or disconnection with Central, Peripheral performs advertising. Table 5-1 shows the advertising

setting. This is defined in “rBLE\sample_app\rble_sample_peripheral.c: app_advertise_param”.

Table 5-1 Advertising Configuration

Advertising Type Connectable Undirected Advertising (ADV_IND)

Advertising Interval Min 20 [ms]

Advertising Interval Max 30 [ms]

Advertising Channel Map All Channels (37, 38, 39 [ch])

Advertising Data -

 <<Flags>> (0x01) LE General Discoverable Mode

BR/EDR Not Supported

<<Complete Local Name>> (0x09) “Renesas-BLE”

<<Complete List of 128-bit Service Class UUIDs>> (0x07) Sample Custom Service 128-bit UUID

Scan Response Data none

Central performs scanning to discover the nearby Peripherals. After the scanning, Central displays a list of Peripherals
discovered. This list does not include Peripherals which have no Sample Custom Profile UUID in its Advertising
Packet.

Central establishes a connection with a Peripheral a user selected through the terminal menu. Table 5-2 shows the
configuration of the connection. This is defined in “rBLE\src\sample_app\rble_sample_app_central.c: app_connection”.

Table 5-2 Connection Configuration

Scan Interval 60 [ms]

Scan Window Size 30 [ms]

Initiator Filter Policy none

Minimum Connection Interval 30 [ms]

Maximum Connection Interval 50 [ms]

Connection Latency 0

Link Supervision Timeout 3 [s]

Minimum Connection Event Length 0 [ms]

Maximum Connection Event Length 50 [ms]

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 17 of 34
Jan 31, 2022

5.1.2 Central: Multiple Connection Configuration
Central can connect multiple Peripherals concurrently. The maximum number of the connections is defined by Table

5-3 macro definition. You can change the setting through IDE project setting.

Table 5-3 Macro Definition of the maximum number of connections

Macro Definition Default Setting Setting Range

CFG_CON 4 1~7 (Note)

NOTE: BLE Protocol stack allow to set 1~8 to CFG_CON. With this application, the range is 1~7. This is because the
memory usage limitation.

5.1.3 Peripheral: SW4 PUSH/RELEASE state notification Interval
Peripheral sends SW4 PUSH/RELEASE state every specified interval. The interval configuration is determined by

Table 5-4 macro definition. This is defined in “rBLE\src\sample_app\rble_sample_peripheral.c”

Table 5-4 Macro Definition of SW4 State Notification Interval

Macro Definition Default Configuration

APP_SWITCH_STATE_CHECK_INTERVAL 50 (500ms interval)

5.1.4 Security Settings
Table 5-5 shows the security settings of Central and Peripheral. Refer Security Library (R01AN3777) for the details of

these parameters.

Table 5-5 Security Settings

Security Parameters Central Settings Peripheral Settings

role RBLE_MASTER RBLE_SLAVE

auth_req RBLE_AUTH_REQ_MITM_BOND RBLE_AUTH_REQ_MITM_BOND

iocap RBLE_IO_CAP_KB_ONLY RBLE_IO_CAP_DISPLAY_ONLY

rpa_generate TRUE FALSE

5.1.5 The number of storable Bonding Information
The macro definition shown in Table 5-6 determines the number of storable bonding information into Data Flash. If

you change the number, Data Flash Library also shall be checked. Refer Security Library (R01AN3777) for the detail.

Table 5-6 Macro definition of the number of bonding information

Macro Definition Central Peripheral

CFG_SECLIB_BOND_NUM 4 4

5.1.6 Security Settings
The definition shown in Table 5-7 determines enable or disable security settings, such as encryption or privacy. The

default setting is enable. To disable the setting, delete the definition and remove Security Library files (seclib.c,
secdb.c) from the build target.

Table 5-7 Security settings

Macro Definition

USE_SECLIB

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 18 of 34
Jan 31, 2022

5.2 Console Driver
Console Driver provides following two functionalities. Console Driver uses UART Driver internally.

Console Input: Console Driver receives user input characters to Terminal Software via UART. And send the
characters to the specified task line at a time.

Console Output: Console Driver output characters, such as the sample program log output or the terminal menu to
Terminal Software via UART.

5.2.1 Console Input Handling
Console Driver receives characters from Terminal Software and sends the characters to the specified task line at a

time. A line end with CR/LF character or Esc character. Console Driver stores a character to internal buffer and when it
receives the CR/LR character or Esc character, sends stored characters to the specified task.

The line transmission to the specified task is performed by RWKE messaging functionality. Console Driver sends a
message with CONSOLE_MSG_LINE_IN message ID (Refer section 5.2.3(a)), and the content is described with
CONSOLE_MSG structure explained (Refer section 5.2.3(b)).

5.2.2 API
(a) console_init

void console_init(bool enable_in, ke_task_id_t task_id)

- Initialize Console Driver
Parameters:
 bool enable_in true Use console input

false Not use console input
ke_task_id task_id The task console input notified

(b) console_enable_in

void console_enable_in(void)

- Enable console input disabled by console_disable_in.

- Do not call this API for the console initialized with enable_in as false.

(c) console_disable_in

void console_disable_in(void)

- This API disable console input temporary to avoid the unintentional user
input.

- Esc key can forcibly enable the console input.

(d) Printf

void Printf(const char_t *fmt, ...)

- This API provides the same functionality with printf.

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 19 of 34
Jan 31, 2022

5.2.3 Definition
(a) CONSOLE_MSG_LINE_IN

The message ID of the console input

(b) CONSOLE_MSG

The message content structure. “len” is the length of “buf” array. The size of memory region for CONSOLE_MSG is
determined by the “len”. The sample program calculates the size by “sizeof(CONSOLE_MSG) + len”, and dynamically
allocates the region by ke_msg_alloc API.

#define CONSOLE MSG LINE IN (KE FIRST MSG(TASK CON APPL) + 2)

typedef struct {
uint8_t len; // Message Data Length
char_t buf[1]; // Message Data

} CONSOLE MSG;

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 20 of 34
Jan 31, 2022

5.3 Menu Driver
Menu Driver controls the terminal menu displayed on Terminal Software.

5.3.1 Menu Structure
As shown in Figure 5-1, the menu has hierarchy structure.

- LIST has children (like a directory). A child menu is LIST or ITEM. When user select a LIST, the children are
displayed.

- ITEM has specific behavior (like a file). When a user select an ITEM, it executes a handler bounded to the ITEM.

- SINGLE is a kind of LIST which have only one child menu. When a user select a SINGLE, it executes the child
handler.

- TERMINATOR is the last child of LIST. TERMINATOR is needed due to the implementation purpose.
TERMINATOR never shows to the menu on Terminal Software.

Figure 5-1 Menu Structure

5.3.2 Menu Control
Each menu has index. A user can select the menu by input the index and Enter key. Esc key is used to move up to the

higher menu. During the menu selection, the console input is disabled to avoid unintentional user input.

5.3.3 API
(a) menu_show

void menu_show(MENU *menulist)

- Display the menulist on Terminal Software.
Parameters:
 MENU menulist LIST to display

(b) menu_user_in

int_t menu_user_in(ke_msg_id_t const msgid, void const *param,
 ke_task_id_t const dest_id, ke_task_id_t const src_id)

- A Handler for the console input kernel message.

- Register this handler for CONSOLE_MSG_LINE_IN.

LIST

 |

 +---- LIST

 | +---- ITEM

 | +---- ITEM

 | +---- TERMINATOR

 |

 +---- ITEM

 |

 +---- SINGLE

 | +---- ITEM

 | +---- TERMINATOR

 |

 +---- TERMINATOR

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 21 of 34
Jan 31, 2022

5.3.4 Structure
(a) MENU_TYPE

MENU_TYPE enumeration is the type of menu element.

(b) MENU

MENU structure represents one menu element. Each MENU_TYPE have different member to set.

(c) MENU_HANDLER

The handler executed when a user select ITEM.

(d) MENU_UPDATE_HANDLER

The handler called to dynamically update LIST children. This is called just before displaying the LIST children. The
sample program uses this handler to update the result of nearby Peripheral search.

(e) MENU_CANCEL_HANDLER

This handler called when Esc key is pressed. The sample program uses this handler to cancel passkey input.

typedef enum {
 MENU_TYPE_TERMINATOR,
 MENU_TYPE_LIST,
 MENU_TYPE_SINGLE,
 MENU_TYPE_ITEM,
} MENU_TYPE;

typedef struct MENU_t {
 // for LIST, SINGLE, ITEM
MENU_TYPE type; // Menu Type
char_t title[MENU_TITLE_SIZE]; // Menu Title

// for LIST, SINGLE
struct MENU_t *parent; // Parent menu
struct MENU_t *children; // Children menu
MENU_UPDATE_HANDLER update; // Handler to update LIST children dynamically
MENU_CANCEL_HANDLER cancel; // Handler which is called when Esc key pressed

// for ITEM
MENU_HANDLER handler; // ITEM Handler

} MENU;

typedef void (*MENU HANDLER)(void *arg)

typedef void (*MENU UPDATE HANDLER)(void)

typedef void (*MENU CANCEL HANDLER)(void)

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 22 of 34
Jan 31, 2022

5.4 Sample Custom Service Definition
Peripheral provides Sample Custom Service. Table 5-8 shows the definition of Sample Custom Service.

Table 5-8 Sample Custom Service Definition

Type Value Permission

Sample Custom Service

 Primary Service Declaration (0x2800) 128-bit UUID Read

Switch State Characteristic

 Characteristic Declaration (0x2803) Prop: Notification
Type: 128-bit UUID

Read

Characteristic Value uint8_t Notification

Client Characteristic Configuration Descriptor (0x2902) uint16_t Read, Write

LED Control Characteristic

 Characteristic Declaration (0x2803) Prop: Read, Write
Type: 128-bit UUID

Read

Characteristic Value uint8_t Read, Write

- Switch State Characteristic: This characteristic is used to send Notification of SW PUSH/RELEASE state. Table
5-9 shows field/bit definition of the characteristic. This characteristic has Client Characteristic Configuration
Descriptor to enable/disable Notification.

Table 5-9 Switch State Characteristic Field/Bit Definition

Bit Definition Key Value
0 Switch State 0 RELEASE

1 PUSH
1 to 7 Reserved For Future Use - -

- LED Control Characteristic: This characteristic is used to control LED ON/OFF state. Table 5-10 shows
field/bit definition of this characteristic.

Table 5-10 LED Control Field/Bit Definition

Bit Definition Key Value
0 LED State 0 OFF

1 ON
1 to 7 Reserved For Future Use - -

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 23 of 34
Jan 31, 2022

5.5 Sample Custom Profile for Server role (SAMS)
SAMS provides API, Event and Structure by wrapping GATT API to ease the usage of Sample Custom Service. Refer

section 5.7 for the GATT APIs SAMS internally called.

The prefix “SAMPLE_” means it is defined for the sample program. These definitions cannot be used outside of the
sample program.

5.5.1 API
(a) SAMPLE_Server_Enable

RBLE_STATUS SAMPLE_Server_Enable (uint16_t conhdl, uint8_t con_type,
SAMPLE_SERVER_PARAM *param, SAMPLE_SERVER_EVENT_HANDLER callback)

- This API enables Sample Custom Profile Server Role. The completion of the
API is informed by SAMPLE_SERVER_EVENT_ENABLE_COMP event.

- con_type specifies the SAMS setting value initialization. If con_type is
RBLE_PRF_NORMAL, SAMS setting value is initialized with param. If con_type
is RBLE_PRF_DISCOVERY, it is not initialized.

- param is the SAMS setting value.

- callback is called when SAMS event happen.
Parameters:
 uint16_t conhdl Connection Handle

uint8_t con_type

RBLE_PRF_NORMAL Initialize SAMS
setting value
with param

RBLE_PRF_DISCOVERY Do not initialize
SAMS setting
value

SAMPLE_SERVER_PARAM * param the SAMS setting value
SAMPLE_SERVER_EVENT_HANDLE callback SAMS Event Handler

Return:
 RBLE_OK Success

RBLE_PARAM_ERR Parameter Error
RBLE_STATUS_ERROR Status Error

(b) SAMPLE_Server_Disable

RBLE_STATUS SAMPLE_Server_Disable (uint16_t conhdl)

- This API disables SAMS. The completion of the API is informed by
SAMPLE_SERVER_EVENT_DISABLE_COMP event.

Parameters:
 uint16_t conhdl Connection Handle
Return:
 RBLE_OK Success
 RBLE_PARAM_ERR Parameter Error
 RBLE_STATUS_ERROR Status Error

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 24 of 34
Jan 31, 2022

(c) SAMPLE_Server_Send_Switch_State

RBLE_STATUS SAMPLE_Server_Send_Switch_State (uint16_t conhdl, uint8_t value)

- This API is used to notify the Client of the switch state characteristic
value.

- value is the switch state to notify.
Parameters:
 uint16_t conhdl Connection Handle
 uint8_t value SAMPLE_SWITCH_STATE_ON Switch is PUSH state

SAMPLE_SWITCH_STATE_OFF Switch is RELEASE
state

Return:
 RBLE_OK Success
 RBLE_STATUS_ERROR Status Error

5.5.2 Event
(a) SAMPLE_SERVER_EVENT_ENABLE_COMP

SAMPLE_SERVER_ENABLE_COMP

- The event to inform the completion of SAMS enabling.
Parameters:
 RBLE_STATUS status The result of the Server role enabling

uint16_t conhdl Connection Handle

(b) SAMPLE_SERVER_EVENT_DISABLE_COMP

SAMPLE_SERER_DISABLE_COMP

- The event to inform the completion of SAMS disabling.
Parameters:
 SAMPLE_SERVER_PARM param The SAMS setting value which is used before

the disable
uint16_t conhdl Connection Handle

(c) SAMPLE_SERVER_EVENT_CHG_LED_CONTROL_IND

SAMPLE_SERVER_EVENT_CHG_LED_CONTROL_IND

- The event to inform the change of led_control characteristic value.
Parameters:
 uint8_t value SAMPLE_PRF_LED_CONTROL_ON LED is ON

SAMPLE_PRF_LED_CONTROL_OFF LED is OFF

(d) SAMPLE_SERVER_EVENT_WRITE_CHAR_RESPONSE

SAMPLE_SERVER_EVENT_WRITE_CHAR_RESPONSE

- The event to inform the change of switch sate characteristic value.
Parameters:
 uint16_
t

char_cod
e

SAMPLE_PRF_SWITCH_STATE_CCCD_COD
E

The characteristic
changed

uint16_
t

cccd_val SAMPLE_PRF_STOP_NTFIND Notification/Indicatio
n are disabled

SAMPLE_PRF_START_NTF Notification is
enabled

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 25 of 34
Jan 31, 2022

5.5.3 Definition
(a) SAMPLE_SERVER_EVENT_TYPE

The definition of SAMS event IDs.

(b) SAMPLE_CLIENT_PARAM

The definition of SAMS setting value.

(c) SAMPLE_SERVER_EVENT_HANDLER

The definition of SAMS event handler.

(d) SAMPLE_SERVER_EVENT

The SAMS event structure.

typedef enum {
SAMPLE_SERVER_EVENT_ENABLE_COMP = 0,
SAMPLE_SERVER_EVENT_DISABLE_COMP,
SAMPLE_SERVER_EVENT_CHG_LED_CONTROL_IND,
SAMPLE_SERVER_EVENT_WRITE_CHAR_RESPONSE,

} SAMPLE_SERVER_EVENT_TYPE;

typedef struct {
uint16_t switch_state_cccd; // The value of switch state CCCD

} SAMPLE_CLIENT_PARAM;

typedef void (*SAMPLE_SERVER_EVENT_HANDLER)(SAMPLE_SERVER_EVENT *event);

typedef struct {
SAMPLE_SERVER_EVENT_TYPE type; // Event Type
RBLE_STATUS status; // SAMS execution status
uint16_t conhdl; // The Connection Handle event happened

union {
struct { // SAMPLE_SERVER_EVENT_DISABLE_COMP
SAMPLE_SERVER_PARAM param; // The configuration value of SAMS

} disable_comp;

struct { // SAMPLE_SERVER_EVENT_CHG_LED_CONTROL_IND
uint8_t value; // Updated Led Control Characteristic Value

} change_led_control_ind;

struct { // SAMPLE_SERVER_EVENT_WRITE_CHAR_RESPONSE
uint16_t cccd; // Updated Switch State CCCD

} write_char_resp;
} param;

} SAMPLE_SERVER_EVENT;

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 26 of 34
Jan 31, 2022

5.6 Sample Custom Profile for Client Role (SAMC)
 SAMC provides API, Event and Structure by wrapping GATT API to ease the usage of Sample Custom Service.

Refer section 5.7 for the GATT API SAMC internally called.

The prefix “SAMPLE_” means the definition is defined in Sample Program. These definitions cannot be used outside of
the sample program.

5.6.1 API
(a) SAMPLE_Client_Enable

RBLE_STATUS SAMPLE_Client_Enable (uint16_t conhdl,
SAMPLE_CLIENT_CON_TYPE con_type,
SAMPLE_CLIENT_CONTENT *content, SAMPLE_CLIENT_EVENT_HANDLE callback)

- This API enables SAMC. The completion of the enabling is informed by
SAMPLE_CLIENT_EVENT_ENABLE_COMP.

- When con_type is RBLE_PRF_CON_DISCOVERY, this perform service discovery
procedure. When con_type is RBLE_PRF_CON_NORMAL, this does not perform
service discovery procedure instead uses handles specified by content.

- content is the service attribute information. This is used only when
con_type is RBLE_PRF_CON_NORMAL.

- callback is called SAMC event happen.
Parameters:
 uint16_t conhdl Connection Handle
uint16_t con_type RBLE_PRF_NORMAL perform service

discovery
RBLE_PRF_DISCOVERY do not perform

service discovery
SAMPLE_CLIENT_CONTENT * content service handles
SAMPLE_CLIENT_EVENT_HANDL
E

callback SAMPLE Client Role Event Handler

Return:
 RBLE_OK Success
RBLE_PARAM_ERR Parameter Error
RBLE_STATUS_ERROR Status Error

(b) SAMPLE_Client_Disable

RBLE_STATUS SAMPLE_Client_Disable (uint16_t conhdl)

- This API disables SAMC. The completion of the API is informed by
SAMPLE_CLIENT_EVENT_DISABLE_COMP event.

Parameters:
 uint16_t conhdl connection Handle
Return:
 RBLE_OK Success
 RBLE_STATUS_ERROR Status Error

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 27 of 34
Jan 31, 2022

(c) SAMPLE_Client_Write_Led_Control

RBLE_STATUS SAMPLE_Client_Write_Led_Control (uint8_t value)

- This API write to LED control characteristic value.
Parameters:
 uint8_t value SAMPLE_PRF_LED_CONTROL_ON LED ON

SAMPLE_PRF_LED_CONTROL_OFF LED OFF
Return:
 RBLE_OK Success

RBLE_STATUS_ERROR Status Error

(d) SAMPLE_Client_Write_Char

RBLE_STATUS SAMPLE_Client_Write_Char (uint16_t char_code, uint16_t cfg_val)

- This API writes to Switch State CCCD (Client Characteristic Configuration
Descriptor).

Parameters:
 uint16_t char_code SAMPLE_CLIENT_WR_SWITCH_

STATE_CCCD_CODE
Write target

uint16_t cccd_val RBLE_PRF_STOP_NTFIND Disable
Notification/Indicat
ion

RBLE_PRF_START_NTF Enable Notification
Return:
 RBLE_OK Success

RBLE_STATUS_ERROR Status Error

(e) SAMPLE_Client_Read_Char

RBLE_STATUS SAMPLE_Client_Read_Char (uint16_t conhdl, uint8_t char_code)

- This API reads the characteristic value specified by char_code.
Parameters:
 uint16_t conhdl Connection Handle
uint8_t char_code SAMPLE_CLIENT_RD_LED_CONTROL

_CODE
Read LED
Control
characteristic

SAMPLE_CLIENT_RD_SWITCH_STAT
E_CCCD_CODE

Read Switch
state cccd
characteristic

Return:
 RBLE_OK Success
RBLE_STATUS_ERROR Status Error

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 28 of 34
Jan 31, 2022

5.6.2 Event
(a) SAMPLE_CLIENT_EVENT_ENABLE_COMP

SAMPLE_SERVER_ENABLE_COMP

- The event to inform the completion of SAMC enabling.
Parameters:
 RBLE_STATUS status The result of SAMPLE Client Role enabling

SAMPLE_CLIENT_CONTENT
*

param Sample Custom Service Attribute information

 uint16_t conhdl Connection Handle

(b) SAMPLE_CLIENT_EVENT_DISABLE_COMP

SAMPLE_CLIENT_DISABLE_COMP

- The event to inform the completion of SAMC disabling.
Parameters:
 RBLE_STATUS status The result of SAMPLE Client Role disabling
 uint16_t conhdl Connection Handle

(c) SAMPLE_CLIENT_EVENT_SWITCH_STATE_IND

SAMPLE_CLIENT_EVENT_SWITCH_STATE_IND

- The event to inform the reception of switch state notification.
Parameters:
 uint16_t conhdl Connection Handle

uint8_t value The switch state notified

(d) SAMPLE_CLIENT_EVENT_WRITE_CHAR_RESPONSE

SAMPLE_CLIENT_EVENT_WRITE_CHAR_RESPONSE

- The event to inform the completion of Write command.
Parameters:
 uint16_t conhdl Connection Handle

uint8_t att_code The result of the write command

(e) SAMPLE_CLIENT_EVENT_READ_CHAR_RESPONSE

SAMPLE_CLIENT_EVENT_READ_CHAR_RESPONSE

- The event to inform the completion of Read command.
Parameters:
 uint16_t conhdl Connection Handle

uint8_t att_code The result of the read command
RBLE_GATT_INFO_DATA data read value

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 29 of 34
Jan 31, 2022

5.6.3 Definition
(a) SAMPLE_CLIENT_EVENT_TYPE

The SAMC event IDs.

(b) SAMPLE_CLIENT_EVENT_HANDLE

The SAMC event handler.

(c) SAMPLE_CLIENT_CONTENT

The structure to save Attribute information acquired by discovery.

(d) SAMPLE_CLIENT_EVENT

The SAMC event structure.

typedef enum {
SAMPLE_CLIENT_EVENT_ENABLE_COMP,
SAMPLE_CLIENT_EVENT_DISABLE_COMP,
SAMPLE_CLIENT_EVENT_SWITCH_STATE_IND,
SAMPLE_CLIENT_EVENT_WRITE_CHAR_RESPONSE,
SAMPLE_CLIENT_EVENT_READ_CHAR_RESPONSE,

} SAMPLE_CLIENT_EVENT_TYPE;

typedef void (*SAMPLE_CLIENT_EVENT_HANDLE)(SAMPLE_CLIENT_EVENT *event);

typedef struct {
uint16_t start_hdl; // Service Start Handle
uint16_t end_hdl; // Service End Handle
uint16_t switch_state_char_hdl; // Switch State Characteristic Handle
uint16_t switch_state_val_hdl; // Switch State Value Char Handle
uint16_t switch_state_prop; // Switch State Characteristic Property
uint16_t switch_state_cccd_hdl; // Switch State Characteristic CCCD
uint16_t led_control_char_hdl; // LED Control Characteristic Handle
uint16_t led_control_val_hdl; // LED Control Value Characteristic Handle
uint16_t led_control_prop; // LED Control Characteristic Property

} SAMPLE_CLIENT_CONTENT;

typedef struct {
SAMPLE_CLIENT_EVENT_TYPE type; // Event Type
RBLE_STATUS status; // SAMC execution Result
uint16_t conhdl; // The Connection Handle event happened
union {
struct { // SAMPLE_CLIENT_EVENT_ENABLE_COMP
SAMPLE_CLIENT_CONTENT samc; // SAMC Discovery Result

} enable_comp;
struct { // SAMPLE_CLIENT_EVENT_SWITCH_STATE_IND
uint8_t value; // The value notified

} switch_state_ind;
struct { // SAMPLE_CLIENT_EVENT_READ_CHAR_RESPONSE
uint8_t value; // The result of Read command

} read_char_resp;
} param;

} SAMPLE_CLIENT_EVENT;

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 30 of 34
Jan 31, 2022

5.7 Sequence Chart
・ Booting up to establishing a connection

・ Enabling of Sample Custom Profile

RBLE_GAP_Reset

RBLE_GAP_EVENT_RESET_RESULT
RBLE_GAP_Reset

RBLE_GAP_Broadcast_Enable
RBLE_GAP_EVENT_RESET_RESULT

SAMPLE_Client_Init
RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP

ADV_IND
Menu Select: Start Scanning (wait 7.68 sec)

RBLE_GAP_Device_Search

ADV_IND
RBLE_GAP_EVENT_DEVICE_SEARCH_RESULT_IND

Menu Select: Select a discovered device

RBLE_GAP_Create_Connection
CONNECT_REQ

RBLE_GAP_EVENT_CONNECTION_COMP RBLE_GAP_EVENT_CONNECTION_COMP

Peripheral

Sample Control BLE StackSAMS

Central

BLE Stack Sample ControlSAMC

SAMPLE_Server_Enable SAMPLE_Client_Enable
RBLE_GATT_Enable RBLE_GATT_Enable

SAMPLE_SERVER_EVENT_ENABLE_COMP
RBLE_GATT_Discovery_Service_Request

Read By Group Type Request

Read By Group Type Response
RBLE_GATT_EVENT_DISC_SVC_ALL_CMP

RBLE_GATT_Discovery_Char_Request
Read By Type Request

Read By Type Response
RBLE_GATT_EVENT_DISC_CHAR_ALL_CMP

RBLE_GATT_Discovery_Char_Descriptor_Request
Find Informatin Request

Find Information Response
RBLE_GATT_EVENT_COMPLETE

SAMPLE_CLIENT_EVENT_ENABLE_COMP

Peripheral

Sample Control BLE StackSAMS

Central

BLE Stack Sample ControlSAMC

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 31 of 34
Jan 31, 2022

・ LED4 Control

・ SW4 state Notification

Menu Select: Write led_control = 1
SAMPLE_Client_Write_Led_Control(SAMPLE_LED_ON)

RBLE_GATT_Write_Char_Request(SAMPLE_LED_CONTROL_HANDLE)
Write Request

RBLE_GATT_EVENT_WRITE_CMD_IND

RBLE_GATT_Set_Data

RBLE_GATT_EVENT_SET_DATA_CMP

RBLE_GATT_Write_Response
SAMPLE_SERVER_EVENT_CHG_LED_CONTROL_IND Write Response

LED ON RBLE_GATT_EVENT_WRITE_CHAR_RESP
SAMPLE_CLIENT_EVENT_WRITE_CHAR_RESPONSE

Peripheral

Sample Control BLE StackSAMS

Central

BLE Stack Sample ControlSAMC

Menu Select: Write switch_state cccd = 1
SAMPLE_Client_Write_Char(SAMPLE_SWITCH_STATE_CODE, START_IND)

RBLE_GATT_Write_Char_Request(SAMPLE_SWITCH_STATE_CCCD_CODE)
Write Request

Insufficient Authentication
RBLE_GATT_EVENT_WRITE_CHAR_RESP (error)

SAMPLE_CLIENT_EVENT_WRITE_CHAR_RESPONSE

Pairing
SecLib_SrvcReq_Error_Resp(Insufficient Error)

Pairing Request
SECLIB_EVENT_PAIRING_REQ

SecLib_Pairing_Req_Resp
Pairing Response

SECLIB_EVENT_PASSKEY_IND SECLIB_EVENT_PASSKEY_REQ
Display Passkey Input Passkey displayed on Peripheral

SecLib_Passkey_Req_Resp

SECLIB_EVENT_PAIRING_COMP SECLIB_EVENT_PAIRING_COMP

SAMPLE_Client_Write_Char(SAMPLE_SWITCH_STATE_CODE, START_IND)
RBLE_GATT_Write_Char_Request(SAMPLE_SWITCH_STATE_CCCD_CODE)

Write Request
RBLE_GATT_EVENT_WRITE_CMD_IND

RBLE_GATT_Set_Data

RBLE_GATT_EVENT_SET_DATA_CMP

RBLE_GATT_Write_Response
SAMPLE_SERVER_EVENT_WRITE_CHAR_RESPONSE Write Response

Start 500ms timer RBLE_GATT_EVENT_WRITE_CHAR_RESP
SAMPLE_CLIENT_EVENT_WRITE_CHAR_RESPONSE

500ms timer expired &
Check a buuton state

SAMPLE_Server_Send_Switch_State(SAMPLE_SWITCH_ON)
RBLE_GATT_Notify_Request

Handle Value Notification
RBLE_GATT_EVENT_HANDLE_VALUE_NOTIF

SAMPLE_CLIENT_EVENT_SWITCH_STATE_IND
LED ON

500ms timer expired &
Check a buuton state

SAMPLE_Server_Send_Switch_State(SAMPLE_SWITCH_OFF)
RBLE_GATT_Notify_Request

Handle Value Notification
RBLE_GATT_EVENT_HANDLE_VALUE_NOTIF

SAMPLE_CLIENT_EVENT_SWITCH_STATE_IND
LED OFF

Peripheral

Sample Control
BLE Stack

Security LibrarySAMS

Central

Sample ControlSAMC
BLE Stack

Security Library

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 32 of 34
Jan 31, 2022

・ Connection Disconnection and Disabling Sample Custom Profile

Menu Select: Disconnect
RBLE_GAT_Disconnect

LL_TERMINATE_IND

LL ack
RBLE_GAP_EVENT_DISCONNECT_COMP RBLE_GAP_DISCONNECT_COMP

SAMPLE_Server_Disable SAMPLE_Client_Disable

SAMPLE_SERVER_EVENT_DISABLE_COMP SAMPLE_CLIENT_EVENT_DISABLE_COMP

RBLE_GAP_Broadcast_Enable

RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP
ADV_IND

Peripheral

Sample Control BLE StackSAMS

Central

BLE Stack Sample ControlSAMC

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 33 of 34
Jan 31, 2022

6. Appendix
6.1 ROM size, RAM size
The ROM and RAM size used by the sample software are shown in Figure 6-1. These sizes are measured with the

multiple connection configuration to 4.

Figure 6-1 ROM and RAM size

Compiler Central Peripheral
ROM size RAM size ROM size RAM size

RL78 Family C Compiler Package V1 V1.03.00 160,524 12,739 154,400 7,307
Renesas CA78K0R V1.72 131,719 12,699 127,178 7,219

(in bytes)

Bluetooth® Low Energy Protocol Stack Embedded Configuration Sample Program

R01AN3319EJ0120 Rev1.20 Page 34 of 34
Jan 31, 2022

Website and Support
Renesas Electronics Website

http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

Revision History

Rev. Date
Description
Page Summary

1.00 Jul 14, 2016 - Initial revision
1.10 Oct 10, 2016 5

15
33

2.1 Environment : Add supported development environments
descriptions. Remove Software Library description due to the
duplication with Section 4.1.

Build Procedure : Add IARv2 description.
6.1 ROM size, RAM size : Add IARv2 ROM/RAM size.

1.20 Mar 1, 2017
4
6
8
11
13
17
17
30
33

All changes related to introduction of security feature.
1 Introduction
2.2 Environment Setup
2.3 Operation
3 Structure
3.2 File and Directory Structure
5.1.4 Security Settings
5.1.5 The number of storable Bonding Information
5.7 Sequence Chart
6.1 ROM size, RAM size

1.20 Jan 31, 2022 - Fixed due to the end of IAR support in Bluetooth Low Energy
Protocol Stack.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with

an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
LSI, an associated shoot-through current flows internally, and malfunctions occur due to the
false recognition of the pin state as an input signal become possible. Unused pins should be
handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power reaches
the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not

access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock signal
has stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or by
an external oscillator) while program execution is in progress, wait until the target clock signal is
stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of Microprocessing unit or Microcontroller unit products in the same group

but having a different part number may differ in terms of the internal memory capacity, layout
pattern, and other factors, which can affect the ranges of electrical characteristics, such as
characteristic values, operating margins, immunity to noise, and amount of radiated noise.
When changing to a product with a different part number, implement a system-evaluation test
for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other disputes involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawing, chart, program, algorithm, application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages

incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics products.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (space and undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas

Electronics disclaims any and all liability for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas

Electronics.

6. When using the Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat radiation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions or failure or accident arising out of the use of Renesas Electronics products beyond such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please ensure to implement safety measures to guard them

against the possibility of bodily injury, injury or damage caused by fire, and social damage in the event of failure or malfunction of Renesas Electronics products, such as safety design for hardware and

software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures by your own responsibility as warranty

for your products/system. Because the evaluation of microcomputer software alone is very difficult and not practical, please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please investigate applicable laws and

regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive carefully and sufficiently and use Renesas Electronics products in compliance with all

these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall not use Renesas Electronics products or technologies for (1) any purpose relating to the development, design, manufacture, use, stockpiling, etc., of weapons of mass destruction,

such as nuclear weapons, chemical weapons, or biological weapons, or missiles (including unmanned aerial vehicles (UAVs)) for delivering such weapons, (2) any purpose relating to the development,

design, manufacture, or use of conventional weapons, or (3) any other purpose of disturbing international peace and security, and you shall not sell, export, lease, transfer, or release Renesas Electronics

products or technologies to any third party whether directly or indirectly with knowledge or reason to know that the third party or any other party will engage in the activities described above. When exporting,

selling, transferring, etc., Renesas Electronics products or technologies, you shall comply with any applicable export control laws and regulations promulgated and administered by the governments of the

countries asserting jurisdiction over the parties or transactions.

10. Please acknowledge and agree that you shall bear all the losses and damages which are incurred from the misuse or violation of the terms and conditions described in this document, including this notice,

and hold Renesas Electronics harmless, if such misuse or violation results from your resale or making Renesas Electronics products available any third party.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2017 Renesas Electronics Corporation. All rights reserved.
Colophon 6.0

(Rev.3.0-1 November 2016)

	1. Introduction
	2. Sample Program Demo
	2.1 Environment
	2.2 Environment Setup
	2.3 Operation

	3. Structure
	3.1 Sample Software Structure
	3.2 File and Directory Structure

	4. Building Sample Program
	4.1 Common Procedure
	4.2 Build Procedure
	4.2.1 e2 studio
	4.2.2 CS+

	5. Sample Program Internals
	5.1 Sample Control Program
	5.1.1 Connection Configuration
	5.1.2 Central: Multiple Connection Configuration
	5.1.3 Peripheral: SW4 PUSH/RELEASE state notification Interval
	5.1.4 Security Settings
	5.1.5 The number of storable Bonding Information
	5.1.6 Security Settings

	5.2 Console Driver
	5.2.1 Console Input Handling
	5.2.2 API
	(a) console_init
	(b) console_enable_in
	(c) console_disable_in
	(d) Printf

	5.2.3 Definition
	(a) CONSOLE_MSG_LINE_IN
	(b) CONSOLE_MSG

	5.3 Menu Driver
	5.3.1 Menu Structure
	5.3.2 Menu Control
	5.3.3 API
	(a) menu_show
	(b) menu_user_in

	5.3.4 Structure
	(a) MENU_TYPE
	(b) MENU
	(c) MENU_HANDLER
	(d) MENU_UPDATE_HANDLER
	(e) MENU_CANCEL_HANDLER

	5.4 Sample Custom Service Definition
	5.5 Sample Custom Profile for Server role (SAMS)
	5.5.1 API
	(a) SAMPLE_Server_Enable
	(b) SAMPLE_Server_Disable
	(c) SAMPLE_Server_Send_Switch_State

	5.5.2 Event
	(a) SAMPLE_SERVER_EVENT_ENABLE_COMP
	(b) SAMPLE_SERVER_EVENT_DISABLE_COMP
	(c) SAMPLE_SERVER_EVENT_CHG_LED_CONTROL_IND
	(d) SAMPLE_SERVER_EVENT_WRITE_CHAR_RESPONSE

	5.5.3 Definition
	(a) SAMPLE_SERVER_EVENT_TYPE
	(b) SAMPLE_CLIENT_PARAM
	(c) SAMPLE_SERVER_EVENT_HANDLER
	(d) SAMPLE_SERVER_EVENT

	5.6 Sample Custom Profile for Client Role (SAMC)
	5.6.1 API
	(a) SAMPLE_Client_Enable
	(b) SAMPLE_Client_Disable
	(c) SAMPLE_Client_Write_Led_Control
	(d) SAMPLE_Client_Write_Char
	(e) SAMPLE_Client_Read_Char

	5.6.2 Event
	(a) SAMPLE_CLIENT_EVENT_ENABLE_COMP
	(b) SAMPLE_CLIENT_EVENT_DISABLE_COMP
	(c) SAMPLE_CLIENT_EVENT_SWITCH_STATE_IND
	(d) SAMPLE_CLIENT_EVENT_WRITE_CHAR_RESPONSE
	(e) SAMPLE_CLIENT_EVENT_READ_CHAR_RESPONSE

	5.6.3 Definition
	(a) SAMPLE_CLIENT_EVENT_TYPE
	(b) SAMPLE_CLIENT_EVENT_HANDLE
	(c) SAMPLE_CLIENT_CONTENT
	(d) SAMPLE_CLIENT_EVENT

	5.7 Sequence Chart

	6. Appendix
	6.1 ROM size, RAM size

	Website and Support
	Revision History

