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Bluetooth® Low Energy Protocol Stack 
Virtual UART Application 
Introduction 
This manual describes the software configuration, functions, operation check procedure, and implementation 
details of the Virtual UART Application that uses Bluetooth LE wireless technology. 

The Virtual UART Application runs with Renesas Bluetooth® Low Energy Protocol Stack on a Renesas 
RL78/G1D device as embedded configuration and provides the following functions. 

- Simple AT command function to control and configure Bluetooth LE connection 

- Virtual UART function to send / receive characters or binary data to / from a remote device over 
Bluetooth LE communication 

- A function to select communication with response or without response in Bluetooth LE communication 

 
Target Device 
RL78/G1D 

 
Related Documents 

Document Name Document No. 

Bluetooth® Low Energy Protocol Stack  

 User’s Manual R01UW0095E 

API Reference Manual: Basics R01UW0088E 
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 GUI Tool R01AN2469E 

Bluetooth® Specification  

 Vol 6. Low Energy Controller volume Core_v4.2 
  

  



Bluetooth® Low Energy Protocol Stack Virtual UART Application 

R01AN3130EJ0120  Rev.1.20  Page 2 of 69 
Jan.31.22  

Contents 

1. Overview .................................................................................................................................... 5 
1.1 Application Behavior ................................................................................................................................ 5 

2. Architecture ............................................................................................................................... 6 
2.1 Software Architecture .............................................................................................................................. 6 
2.2 File Composition ...................................................................................................................................... 7 

3. Application Mode ....................................................................................................................... 9 
3.1 mode ........................................................................................................................................................ 9 
3.2 Selection of data communication with response or without response .................................................... 9 
3.3 Selection of data to communicate ......................................................................................................... 10 
3.3.1 Character data transmission and reception ........................................................................................ 10 
3.3.2 Binary data transmission and reception .............................................................................................. 10 

4. Simple AT Command Mode .................................................................................................... 11 
4.1 Details of Simple AT Command ............................................................................................................ 12 
4.1.1 AT-C .................................................................................................................................................... 12 
4.1.2 AT-C=<addr> ....................................................................................................................................... 12 
4.1.3 AT-R .................................................................................................................................................... 12 
4.1.4 AT-AS=<addr> .................................................................................................................................... 13 
4.1.5 AT-AS? ................................................................................................................................................ 13 
4.1.6 AT-AP=<addr> .................................................................................................................................... 13 
4.1.7 AT-AP? ................................................................................................................................................ 14 
4.1.8 AT-DS .................................................................................................................................................. 14 
4.1.9 AT-S? .................................................................................................................................................. 14 
4.1.10 AT-CI=<con_intv> ............................................................................................................................... 15 
4.1.11 AT-CI? ................................................................................................................................................. 15 
4.1.12 ATE0 .................................................................................................................................................... 16 
4.1.13 ATE1 .................................................................................................................................................... 16 

5. Virtual UART Mode .................................................................................................................. 17 
5.1 Virtual UART Profile .............................................................................................................................. 17 
5.1.1 Data communication with response .................................................................................................... 17 
5.1.2 Data communication without response ............................................................................................... 18 
5.2 Buffering of the Send Characters .......................................................................................................... 19 
5.2.1 Data communication with response .................................................................................................... 19 
5.2.2 Data communication without response ............................................................................................... 20 
5.3 Encryption of BLE Connection .............................................................................................................. 20 

6. Power Saving Function ............................................................................................................ 21 
6.1 CPU STOP Mode .................................................................................................................................. 21 
6.2 Changes of Advertising Interval ............................................................................................................ 21 



Bluetooth® Low Energy Protocol Stack Virtual UART Application 

R01AN3130EJ0120  Rev.1.20  Page 3 of 69 
Jan.31.22  

7. Build and Operational Check ................................................................................................... 22 
7.1 Environment .......................................................................................................................................... 22 
7.2 Build Procedure ..................................................................................................................................... 23 
7.2.1 e2 studio (32-bit version/64-bit version) ............................................................................................... 23 
7.2.2 CS+ ..................................................................................................................................................... 23 
7.2.3 BLE Protocol Stack / EEPROM emulation library ............................................................................... 24 
7.3 Preparation for Execution Environment ................................................................................................ 25 
7.4 Usage Example ..................................................................................................................................... 26 
7.4.1 Character data transmission and reception ........................................................................................ 26 
7.4.2 Binary data transmission and reception .............................................................................................. 30 

8. Implementation Details ............................................................................................................ 35 
8.1 Virtual UART Profile .............................................................................................................................. 35 
8.2 Advertising ............................................................................................................................................. 37 
8.3 Connection ............................................................................................................................................ 37 
8.4 Pairing ................................................................................................................................................... 38 
8.5 Virtual UART Function API .................................................................................................................... 39 
8.5.1 Virtual UART Definitions ...................................................................................................................... 39 
8.5.2 Function ............................................................................................................................................... 41 
8.5.2.1 RBLE_VUART_Server_Enable ......................................................................................................... 41 
8.5.2.2 RBLE_VUART_Server_Disable ........................................................................................................ 41 
8.5.2.3 RBLE_VUART_Server_Send_Indication .......................................................................................... 41 
8.5.2.4 RBLE_VUART_Server_Send_Notification ........................................................................................ 42 
8.5.2.5 RBLE_VUART_Client_Enable .......................................................................................................... 42 
8.5.2.6 RBLE_VUART_Client_Disable ......................................................................................................... 42 
8.5.2.7 RBLE_VUART_Client_Send_Chars ................................................................................................. 43 
8.5.2.8 RBLE_VUART_Client_Send_Chars_Noresp .................................................................................... 43 
8.5.3 Event ................................................................................................................................................... 44 
8.5.3.1 RBLE_VUART_EVENT_SERVER_ENABLE_CMP ......................................................................... 44 
8.5.3.2 RBLE_VUART_EVENT_SERVER_WRITE_REQ ............................................................................ 44 
8.5.3.3 RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ ........................................................... 44 
8.5.3.4 RBLE_VUART_EVENT_SERVER_INDICATION_CFM ................................................................... 44 
8.5.3.5 RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP .............................................................. 45 
8.5.3.6 RBLE_VUART_EVENT_CLIENT_ENABLE_CMP ........................................................................... 45 
8.5.3.7 RBLE_VUART_EVENT_CLIENT_INDICATION ............................................................................... 45 
8.5.3.8 RBLE_VUART_EVENT_CLIENT_NOTIFICATION .......................................................................... 45 
8.5.3.9 RBLE_VUART_EVENT_CLIENT_WRITE_RSP ............................................................................... 46 
8.5.3.10 RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP ............................................................... 46 
8.6 Application State Change ...................................................................................................................... 47 
8.7 Application Detailed Sequence ............................................................................................................. 48 
8.7.1 Boot Sequence .................................................................................................................................... 48 



Bluetooth® Low Energy Protocol Stack Virtual UART Application 

R01AN3130EJ0120  Rev.1.20  Page 4 of 69 
Jan.31.22  

8.7.2 Connection Sequence ......................................................................................................................... 49 
8.7.3 Data Transfer Sequence (Write Request/Indication) .......................................................................... 50 
8.7.4 Data Transfer Sequence (Write Command/Notification) ..................................................................... 50 
8.7.5 Disconnection Sequence ..................................................................................................................... 51 
8.8 Macro Settings....................................................................................................................................... 52 
8.8.1 Character data/Binary data transmission and reception setting ......................................................... 52 
8.8.2 Local echo setting ............................................................................................................................... 52 
8.9 Others .................................................................................................................................................... 52 
8.9.1 Caution when implementing the program to connect to the application ............................................. 52 
8.9.2 Read processing of DIP switch that select mode in binary data transmission / reception .................. 53 
8.9.3 Read processing of DIP switch that select whether to respond in data transmission / reception ....... 53 
8.9.4 CFG_CON macro ................................................................................................................................ 53 
8.9.5 Data transmission from the terminal or host microcomputer .............................................................. 54 
8.9.5.1 Example of data transmission during communication with response ............................................... 54 
8.9.5.2 Example of data transmission during communication without response .......................................... 55 

9. Appendix .................................................................................................................................. 56 
9.1 ROM size, RAM size ............................................................................................................................. 56 
9.2 Operational Check by Using the GUI-Tool ............................................................................................ 57 
9.2.1 Preparation .......................................................................................................................................... 57 
9.2.2 Operation ............................................................................................................................................. 58 

Revision History .............................................................................................................................. 69 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of 
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered 
trademarks are the property of their respective owners. 



Bluetooth® Low Energy Protocol Stack Virtual UART Application 

R01AN3130EJ0120  Rev.1.20  Page 5 of 69 
Jan.31.22  

1. Overview 
This manual describes the software configuration, functions, operation check procedure, and implementation 
details of the Virtual UART Application (hereinafter referred to as "application") that uses Bluetooth LE 
wireless technology. 

The application runs with Renesas Bluetooth® Low Energy Protocol Stack (hereinafter referred to as "BLE 
Protocol Stack") on a Renesas RL78/G1D device as embedded configuration and provides the following 
functions. 

- Simple AT command function to control and configure Bluetooth LE connection 

- Virtual UART function to send / receive characters or binary data to / from a remote device over 
Bluetooth LE communication 

 Character data transmission and reception operation 

 Binary data transmission and reception operation 

- A function to select communication with response or without response in Bluetooth LE communication 

 With response: Write Request, Indication 

 Without response: Write Command, Notification 

 

1.1 Application Behavior 
Figure 1-1 shows the application execution environment setup. 

Prepare two RL78/G1D evaluation boards and write the application onto them. Then connect them 
respectively to PC via USB cable. A user operates the application through a terminal software. 

Simple AT command can be used to establish, disconnect and configure Bluetooth LE connection. After 
establishing a Bluetooth LE connection, data typed on the local terminal are sent to a remote device and are 
displayed on the remote terminal. In the contrary, data typed on the remote terminal are sent to the local 
device and are displayed on the local terminal. 

Figure 1-1: Application execution environment 
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2. Architecture 
2.1 Software Architecture 
Figure 2-1 shows software architecture of this application. 

 
Figure 2-1: Software architecture  

 

The software components are listed below. 

Table 2-1: Software components 

Component Description 

Virtual UART Application The application is used for execution of simple AT command and 
transmission of characters or binary data. 

Virtual UART profile is defined to transfer characters. 

Console Driver The driver is used to relay data between a terminal software and 
Virtual UART application by using UART Driver functionality. 

UART Driver The device driver to control UART IP of RL78/G1D. 

BLE Protocol Stack Renesas Bluetooth® Low Energy Protocol Stack. Refer to "Bluetooth® 
Low Energy Protocol Stack User’s manual" (R1UW0095E). 
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2.2 File Composition 
The application is implemented based on BLE software which include BLE Protocol Stack. In this section, 
only files that have modified or added to the BLE software are listed. The modified files are marked with (M) 
and the added files are marked with (A). 

 

r01an3130xx0114-rl78g1d-ble-vuart/   

     ├── Project_Source/   

     │   ├── rBLE/   

     │   │   └── src/   

     │   │       ├── sample_app/   
     │   │       │   ├── r_vuart_app.c (A) ┐ Virtual UART Application  
     │   │       │   ├── r_vuart_app.h (A) │  
     │   │       │   ├── r_vuart_app_param.c (A) ┘ 
     │   │       │   ├── r_vuart_console.c (A) ┐ Console Driver 
     │   │       │   └── r_vuart_console.h (A) ┘ 
     │   │       └── sample_profile/   
     │   │           └── vuart/   
     │   │               ├── vuart.h (A) ┐ Virtual UART Profile  
     │   │               ├── vuartc.c (A) │ 
     │   │               ├── vuartc.h (A) │ 
     │   │               ├── vuarts.c (A) │ 
     │   │               └── vuarts.h (A) ┘ 
     │   └── renesas/   

     │       ├── src/   

     │       │   ├── arch/   

     │       │   │   └── rl78/   

     │       │   │       ├── arch_main.c (M) Modified to enable low power mode  
     │       │   │       ├── db_handle.h (M) ┐ Modified for Virtual UART Profiles  
     │       │   │       ├── ke_conf.c (M) │ 
     │       │   │       ├── prf_config.c (M) │    
     │       │   │       └── prf_config.h (M) ┘ 
     │       │   └── driver/   

     │       │       ├── dataflash/   

     │       │       │   ├── eel_descriptor_t02.c  (M) ┐ Modified to add definitions to  
     │       │       │   └── eel_descriptor_t02.h (M) ┘ access the Data Flash  
     │       │       └── uart/   

     │       │           └── uart.c (M) Modified to enable low power mode 
     │       └── tools/   

     │           └── project/   

     │               ├── CS_CCRL/ (M) ┐ 
     │               ├── CS_CACX/ (M) │Project files for  
     │               └── e2studio/ (M) ┘development environments 
     ├── ROM_File/   

     │   ├── ccrl/  ┐ 
     │   │      ├──RL78_G1D_CCE(VUART_CHAR).hex  │ccrl generated firmware 
     │   │      └──RL78_G1D_CCE(VUART_BIN).hex (A) ┘ 
     │   └── ca78k0r/  ┐ 
     │           ├──RL78_G1D_CE(VUART_CHAR).hex  │ca78k0r generated firmware 
     │           └──RL78_G1D_CE(VUART_BIN).hex (A) ┘ 
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     │   
     └──  Macro/  ┐ 
          ├── teraterm_debug_mode_on.ttl  │ 
          ├── teraterm_debug_mode_off.ttl  │Tera Term macro 
          ├── tt_send_bin_1.ttl  │ 
          └── tt_send_bin_2.ttl (A) ┘ 
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3. Application Mode 
3.1 mode 
The application has two modes as shown in Table 3-1. 

 

Table 3-1: Application mode 

Application Mode Description 

Simple AT Command 
Mode 

This mode is used for execution of the simple AT command to control and 
configure a Bluetooth LE connection. In this mode, characters are never sent 
to the remote device. 

Refer to "4. Simple AT Command Mode" for the detail. 

Virtual UART Mode  This mode is used for transmission of character data or binary data over 
Bluetooth LE communication. In this mode, data typed during the application 
in disconnect state are not sent to the remote device. 

Refer to "5. Virtual UART Mode" for the detail. 

 

3.2 Selection of data communication with response or without response 
When data communication in virtual UART mode, you can select the communication method with or without 
response with the DIP switch on the RL78/G1D evaluation board. 

 

Table 3-2: Setting of with response or without response 

Number Setting Description 

SW6-4 OFF (left side) Data communication with response. 

from a client to a server : Write Request 
from a server to a client : Indication 

 ON (right side) Data communication without response. 

from a client to a server : Write Command 
from a server to a client : Notification 
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3.3 Selection of data to communicate 
In the application, you can select "3.3.1 Character data transmission and reception" or "3.3.2 Binary data 
transmission and reception" in the macro settings. For macro settings, refer to "8.8.1 Character data/Binary 
data transmission and reception setting". 

 

3.3.1 Character data transmission and reception 
In the character data transmission and reception, ASCII printable characters and new-line character can be 
transmitted. 

The application mode shown in Table 3-1 can be switched by entering the escape key (ASCII code: 0x1B) in 
the terminal software. 

For an example of using character data transmission and reception, refer to "7. Build and Operational 
Check"-"7.4.1 Character data transmission and reception". 

 

3.3.2 Binary data transmission and reception 
In the binary data transmission and reception, all data including character data can be transmitted. 

The application mode shown in Table 3-1 can be switched by the DIP switch on the RL78/G1D evaluation 
board. 

For an example of using binary data transmission and reception, refer to "7. Build and Operational Check"-
"7.4.2 Binary data transmission and reception". 

 

Table 3-3: Operation settings for sending and receiving binary data 

Number Setting Description 

SW6-1 OFF (left side) Simple AT Command Mode. 

 ON (right side) Virtual UART Mode. 

Note: In the virtual UART mode for sending and receiving binary data, 
local echo of the data input to the terminal software is prohibited. 
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4. Simple AT Command Mode 
In Simple AT Command Mode, a user can control and configure Bluetooth LE connection by simple AT 
command.  

Table 4-1 shows the simple AT commands that the application supports. 

 

Table 4-1: List of simple AT commands 

Simple AT command Description 

AT-C Create a connection to the address specified by AT-AP=<addr>. 

AT-C=<addr> Create a connection to the address specified by <addr>. 

AT-R When the device is in connect state, disconnect the connection and start 
advertising. When the device is in disconnect state, start advertising. 

AT-AS=<addr> Set <addr> as the public device address of the local device. 

AT-AS? Display the public device address of the local device.  

AT-AP=<addr> Set the address used by AT-C. 

AT-AP? Display the address used by AT-C. 

AT-DS Display the address of devices which support virtual UART profile.  

AT-S? Display the application state. Connect state or Disconnect state.  

AT-CI=<con_intv> Change Connection Interval. 

AT-CI? Display Connection interval setting value. 

ATE0 Disable local echo. 

ATE1 Enable local echo. 
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4.1 Details of Simple AT Command 
4.1.1 AT-C 

Description Create a connection to the address specified by AT-AP=<addr> 

Response OK 

 

Success 

ERROR Failed due to the application is connect state 

CONNECT Connection established 

Command 
Example 

AT-C 

OK 

CONNECT 

 

4.1.2 AT-C=<addr> 
Description Create a connection to the address specified by <addr> 

Response OK Success 

ERROR Failed due to the application is connect state 

CONNECT Connection established 

Command 
Example 

AT-C=CBA987654321     (Set CB:A9:87:65:43:21) 

OK 

CONNECT 

 

4.1.3 AT-R  
Description When the application is in connect state, disconnect the connection and start advertising. 

When the application is in disconnect state, start advertising. 

Response OK Success 

DISCONNECT Disconnected 

Command 
Example 

[Connect state] 

AT-R 

OK 

DISCONNECT 

[Disconnect state] 

AT-R 

OK 
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4.1.4 AT-AS=<addr>  
Description Set <addr> as the local device public device address. The address set by this command is 

preserved over power cycles. 

The address set by this command is reflected after reset. Please reset the system for 
example by pushing the reset button on the board. 

Response OK Success 

ERROR Failed due to the application is connect state 

Command 
Example 

AT-AS=CCCCBBBBAAAA    (Set CC:CC:BB:BB:AA:AA) 

OK 

 

4.1.5 AT-AS? 
Description Display the local device public address.  

Response OK Success 

Command 
Example 

AT-AS? 

-AS: CCCCBBBBAAAA      (The address is CC:CC:BB:BB:AA:AA) 

OK 

 

4.1.6 AT-AP=<addr>  
Description Set <addr> as the public device address used by AT-C. The address set by this command 

is preserved over power cycles.  

Response OK Success 

ERROR Failed due to the application is connect state 

Command 
Example 

AT-AP=CCCCBBBBAAAA     (Set CC:CC:BB:BB:AA:AA) 

OK 

 

  



Bluetooth® Low Energy Protocol Stack Virtual UART Application 

R01AN3130EJ0120  Rev.1.20  Page 14 of 69 
Jan.31.22  

4.1.7 AT-AP?  
Description Display the public device address used by AT-C. 

Response OK Success 

Command 
Example 

AT-AP? 

-AP: CCCCBBBBAAAA     (The address is CC:CC:BB:BB:AA:AA) 

OK 

 

4.1.8 AT-DS  
Description Display the address of the device which support virtual UART profile. 

Whether a device is supporting virtual UART profile is confirmed by checking the 
advertising data includes virtual UART service UUID. 

Response OK Success 

ERROR Failed due to the application is connect state 

Command 
Example 

AT-DS 

-DS: CBA987654321   (The address is CB:A9:87:65:43:21) 

-DS: CCCCBBBBAAAA   (The address is CC:CC:BB:BB:AA:AA)  

OK 

 

4.1.9 AT-S? 
Description Display the local device address connect state. The state is CONNECT or DISCONNECT.  

Response OK Success 

Command 
Example 

[Connect state] 

AT-S? 

CONNECT 

OK 

[Disconnect state] 

AT-S? 

DISCONNECT 

OK 
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4.1.10 AT-CI=<con_intv> 
Description Change Connection Interval.  

Execute this command in Disconnect state, the application retains the con_intv value 
internally, and the value will be used for following connection. This command cannot 
change Connection Interval in Connect state.  

Connection Interval is calculated by following calculation. 

Connection Interval = con_intv * 1.25[ms] 

Ex) When you want to set 20[ms], execute AT-CI=16 

The default value of Connection Interval is 30[ms]. 

Refer Figure 8-3 for Connection Interval Change sequence. After establishing the 
connection, Peripheral device requests Connection Interval parameter update to the 
Central device. Central device can decline the request depending on the restriction that 
Central device have. You can check whether requested Connection Interval is accepted by 
executing “AT-CI?” command. 

Response OK Success 

ERROR 
Failed due to the application is connect state 

The setting value is out of range (Range: 6~3200) 

Command 
Example 

[Disconnect state] 

AT-CI=20 

OK 

AT-CI=3201 

[Connect state] 

AT-CI=20 

ERROR 

 

4.1.11 AT-CI? 
Description When execute this command in Connect state, display Connection Interval of the 

connection. When execute this command in Disconnect state, display the retained 
Connection Interval. 

To compute the actual Connection Interval, multiply the response value by 1.25[ms]. 

Ex) If the response is “-CI: 20”, Connection Interval is 20 * 1.25[ms] = 25[ms]. 

Response OK Success 

Command 
Example 

AT-CI? 

-CI: 20 

OK 
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4.1.12 ATE0 
Description Disable local echo.  

Response OK Success 

Command 
Example 

ATE0 

OK 

 

4.1.13 ATE1 
Description Enable local echo.  

Response OK Success 

Command 
Example 

ATE1 

OK 
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5. Virtual UART Mode 
After establishing Bluetooth LE connection between two devices, a user can exchange data with the remote 
device. 

In the character data transmission and reception, ASCII printable characters and new-line character can be 
transmitted. In the binary data transmission and reception, all data including character data can be transmitted. 

 

5.1 Virtual UART Profile 
Data transfer is enabled by GATT based virtual UART profile. Refer to 8.1. 

The connection initiating device, which is executes AT-C command, works as GATT client and the remote 
device works as GATT server. Below is data transfer details.  

 

5.1.1 Data communication with response 
- To send data from the client to the server, send “Write Request” to the server. The server receives the 

data, and replies “Response” to the client. 

- To send data from the server to the client, send “Indication” to the client. The client receives the data, 
and replies “Confirmation” to the server.  

The data reception by the remote device can be confirmed by waiting for the "Response" or "Confirmation" 
reply from the remote device. 

Figure 5-1 shows the data transfer sequence. 

 
Figure 5-1: Data transfer sequence (with response) 

 

  

Air

Send "Hello"
Write Request

Receive "Hello"
Response

Send "Bye"
Indication
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Local
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GATT
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GATT
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5.1.2 Data communication without response 
- To send data from the client to the server, send “Write Command” to the server. 

- To send data from the server to the client, send “Notification” to the client. 

Figure 5-2 shows the data transfer sequence. 

 

 
Figure 5-2: Data transfer sequence (without response) 
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5.2 Buffering of the Send Characters 
In order to avoid the loss of send data, the application have a send data buffer. 

 

5.2.1 Data communication with response 
To send data within the period between “Write Request” and “Response” or “Indication” and “Confirmation” is 
not possible. So data typed within this period can be lost. 

Virtual UART profile has a buffer and stores data typed within this period. If there are data in the buffer when 
receiving “Response” or “Confirmation” from the remote device, the profile sends it soon. 

Figure 5-3 shows a send data buffering sequence. 

 
Figure 5-3: Send data buffering sequence (with response) 

 

  

Send "He"
Write Request 'He'

Send "ll"
Store characters to the buffer

Send "o"
Store characters to the buffer

Response

Write Request 'llo'

Local
Terminal

GATT
Client

ll …

oll …



Bluetooth® Low Energy Protocol Stack Virtual UART Application 

R01AN3130EJ0120  Rev.1.20  Page 20 of 69 
Jan.31.22  

5.2.2 Data communication without response 
After sending data with Write Command or Notification, use the timer function (ke_timer_set) of RWKE to 
wait for a certain period of time and buffer the data from the terminal software to some extent. Then send it 
after the timer has expired. This prevents the communication efficiency from dropping because it is sent in 
small units (1 byte or 2 bytes) if it is sent every time data is received from the terminal software. It also 
prevents the data entered by the user from being lost. 

Figure 5-4 shows a send data buffering sequence. 

 
Figure 5-4: Send data buffering sequence (without response) 

 
5.3 Encryption of BLE Connection 
To protect the Bluetooth LE connection from such as eavesdropping, the encryption of the Bluetooth LE 
connection is enabled. 

The application does not hold the pairing information, it performs pairing on each connection.  
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6. Power Saving Function 
6.1 CPU STOP Mode 
When 3 seconds have elapsed after the last data transfer, CPU enters STOP mode in order to reduce the 
power consumption. During STOP mode, the blinking of the LED1/LED2 becomes slower or stops. If data 
transfer is occurred when CPU is in STOP mode, CPU returns from STOP mode soon. 

 

6.2 Changes of Advertising Interval 
When 30 seconds has elapsed after advertising started, the application sets a longer advertising interval in 
order to reduce the power consumption. The longer advertising interval is reset by re-enabling advertising 
with connection and disconnection or AT-R. 

The default advertising interval is 30 milliseconds and the longer advertising interval is 3 seconds. 

If you do not want to change the advertising interval, comment out the code below. 

 

r_vuart_app.c, line 60, line1009 

 
 

  

60: #define APP_ADV_LOW_POWER_DURATION (3000) 
 
1009: ke_timer_set(RBLE_APP_ADV_EVT, TASK_CON_APPL, APP_ADV_LOW_POWER_DURATION); 
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7. Build and Operational Check 
7.1 Environment 
Below is the environment to use for application build and operation check. 

- Hardware  

- Host PC 

- PC/AT™ compatible machine 

- Processor Speed : 1.6GHz or higher 

- Main Memory  : 1GB or more 

- Interface  : USB2.0 (Used for E1 and RL78/G1D evaluation board) 

- Device 

- RL78/G1D evaluation board [RTK0EN0001010001BZ] 

 

- Tool  

- Supports the following on-chip debuggers. 
･E1 emulator 
･E2 emulator 
･E2 emulator Lite 

Note: The E1 emulator is used in this application note. We have already discontinued production of 
the E1 emulator due to components of the product having reached their EOL (end of life, i.e. end of 
production). Please click on the following link to confirm the details and our successor products. 
>> Tool News: [Notification] Advance Notice of E1 Emulator Product End of Life (EOL) 

 

- Software  

- Windows® 7 or later 

- Supports the following integrated environments. 
･e2 studio 2020-07 (64-bit version) / RL78 Family C Compiler Package V1 (without IDE) V1.09.00 
･e2 studio V7.8.0 (32-bit version) / RL78 Family C Compiler Package V1 (without IDE) V1.09.00 
･Renesas CS+ for CC V8.04.00 / RL78 Family C Compiler Package V1 (without IDE) V1.09.00 
･Renesas CS+ for CA, CX V4.04.00 / Renesas CA78K0R V1.72 

- Renesas Flash Programmer v3.06.02 

- Tera Term Version 4.105 

- UART-USB conversion device driver 

 

Note: It may be that device driver of UART-USB conversion IC “FT232RL” is requested is in the first 
connection with host. In this case, you can get the device driver from below link. 

FTDI (Future Technology Device International) – Drivers 
https://ftdichip.com/drivers/d2xx-drivers/ 

  

https://www.renesas.com/document/tnn/notification-end-life-eol-notice-e1-emulator
https://ftdichip.com/drivers/d2xx-drivers/
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7.2 Build Procedure 
The application can be built using the following environment. 

Since all the files required for build are included in this application note, there is no need to download the 
BLE protocol stack or EEPROM emulation library. 

- e2 studio 2020-07 (64-bit version) / RL78 Family C Compiler Package V1 (without IDE) V1.09.00 

- e2 studio V7.8.0 (32-bit version) / RL78 Family C Compiler Package V1 (without IDE) V1.09.00 

- Renesas CS+ for CC V8.04.00 / RL78 Family C Compiler Package V1 (without IDE) V1.09.00  

- Renesas CS+ for CA, CX V4.04.00 / Renesas CA78K0R V1.72 

 

Note: Please refer to "8.8 Macro Settings" and set the application before building. 

 

7.2.1 e2 studio (32-bit version/64-bit version) 
1. Launch e2 studio. 

2. Right click on “Project Explorer” and select “Import…” from the dropdown menu. 

3. “Import” window is popped up and select “Existing Projects into Workspace” and click “Next >”. 

4. Fill “Select root directory:” form with the project folder shown in Table 7-1 and make sure that the project 
you selected is displayed in “Projects:” and click “Finish”. Then the window is closed. 

5. Right click on the project just imported on “Project Explorer” and Select “Build Project” from the 
dropdown menu. 

6. Refer Table 7-1 for the Hex file firmware path. 

 

Table 7-1: Project file and Hex file Location (e2 studio) 

e2 studio with CC-RL 
Project Folder \Project_Source\renesas\tools\project\e2studio\BLE_Embedded\rBLE_Emb 
Firmware \Project_Source\renesas\tools\project\e2studio\BLE_Embedded\rBLE_Emb\DefaultBuild\ 

rBLE_Emb_CCRL.hex 
 

7.2.2 CS+ 
1. Double click the project file shown in Table 7-2. 

2. Right click on “BLE_Emb” in “Project Tree” and select “Build BLE_Emb” from the dropdown menu. 

3. Refer Table 7-2 for the Hex file firmware path. 

 

Table 7-2: Project file and Hex file Location (CS+) 

CS+ for CC 
Project File \Project_Source\renesas\tools\project\CS_CCRL\BLE_Embedded\BLE_Embedded.mtpj 

Firmware \Project_Source\renesas\tools\project\CS_CCRL\BLE_Embedded\rBLE_Emb\DefaultBuild\ 
rBLE_Emb_CCRL.hex 

CS+ for CA, CX 
Project File \Project_Source\renesas\tools\project\CS_CACX\BLE_Embedded\BLE_Embedded.mtpj 

Firmware \Project_Source\renesas\tools\project\CS_CACX\BLE_Embedded\BLE_Emb\DefaultBuild\ 
BLE_Emb.hex 
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7.2.3 BLE Protocol Stack / EEPROM emulation library 
The BLE protocol stack and EEPROM emulation library used in this application can be download from the 

Renesas Web page. 

- BLE protocol stack 

- https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rl78-family 

- EEPROM emulation library 

- EEPROM Emulation Library Pack02 Package Ver.2.00(for CA78K0R/CC-RL Compiler) for 
RL78 Family 

- https://www.renesas.com/software-tool/data-flash-libraries 

NOTE: The link address can be changed without notice. 

 

  

https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rl78-family
https://www.renesas.com/software-tool/data-flash-libraries
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7.3 Preparation for Execution Environment 
1. Write the firmware onto two RL78/G1D evaluation boards. Refer to "Bluetooth® Low Energy Protocol 

Stack Quick Guide" (R01AN2767E) Section 5.  
 
You can use the pre-built HEX file included in this application note. This application note uses the  
CC-RL HEX file. 

Table 7-3: Pre-built HEX file 

Function File  

Character data transmission and reception \ROM_File\ccrl\RL78_G1D_CCE(VUART_CHAR).hex 

Binary data transmission and reception \ROM_File\ccrl\RL78_G1D_CCE(VUART_BIN).hex 

 

2. As shown in Figure 1-1, connect both RL78/G1D evaluation boards to PCs respectively. 

3. Launch a terminal software on both PCs and configure them as Table 7-4. This application note uses 
Tera Term as the terminal software. 

Table 7-4: Terminal software configuration 

Setting Value  

New-line Receive LF 

New-line Send CR 

Baud rate 4800 [bps] 

Data length 8 [bit] 

Parity bit none 

Stop bit 1 [bit] 

Flow control none 

 

4. Set the DIP switches on the two RL78/G1D evaluation boards according to Table 7-5. 

Table 7-5: DIP switch setting 

DIP switch Setting 

SW6-1 
OFF (left side: Simple at command mode) 

Note: Used in "7.4.2 Binary data transmission and reception" 

SW6-4 OFF (left side: Data communication with response) 
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7.4 Usage Example 
7.4.1 Character data transmission and reception 
In this example, set device addresses, establish a Bluetooth LE connection, transfer characters and 
disconnect the connection.  

Figure 7-1 shows execution results of the terminal. Figure 7-2 and Figure 7-3 shows the sequence diagram 
of this example usage. The red numbers in figures are corresponding to the numbers in the following 
procedures. 

1. Set local and remote device address. To set the device address use “AT-AS=<addr>” command. For 
example, to set 12:34:56:78:9A:BC, execute “AT-AS=123456789ABC”. To display current device 
address settings, use “AT-AS?”.  
If a device address is 00:00:00:00:00:00 or the local device and the remote device have the same 
addresses, you need to change the device address. In the following example, we assume that you set 
12:34:56:78:9A:BC to the local device address, CB:A9:87:65:43:21 to the remote device address. 

2. When you change a device address by “AT-AS=<addr>” command, you need to reset the device to 
reflect the change by pushing RESET button (SW5) on the board. 

3. Execute “AT-AP=CBA987654321” to set the target device address for a connection. 

4. Execute “AT-C” on the local terminal. This command start the connection to the device which have the 
address CB:A9:87:65:43:21. After the connection established, “CONNECT” response is displayed on 
both of the local and remote terminal. 

5. Type ESC key on the local terminal to switch the application mode to Virtual UART mode. 

6. Set the DIP switch (SW6-4) of the local device to OFF (left side: communication with response). 

7. Type “Hello” to the local terminal. Then “Hello” is displayed on the remote terminal. 

8. Type ESC key on the remote terminal to switch the application mode to Virtual UART mode. 

9. Set the DIP switch (SW6-4) of the remote device to OFF (left side: communication with response). 

10. Type “Bye” on the remote terminal. Then “Bye” is displayed on the local terminal. 

11. Set the DIP switch (SW6-4) of the local device to ON (right side: communication without response). 

12. Type “Hello” to the local terminal. Then “Hello” is displayed on the remote terminal. 

13. Set the DIP switch (SW6-4) of the remote device to ON (right side: communication without response). 

14. Type “Bye” on the remote terminal. Then “Bye” is displayed on the local terminal. 

15. Type ESC key on the local terminal to switch the application mode to AT command mode. 

16. Execute “AT-R” on the local terminal to disconnect the connection. After completing the disconnection, 
“DISCONNECT” response is displayed on both of the local and remote terminal. 
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Figure 7-1: Terminal result 
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Figure 7-2: Example usage sequence of character data transmission and reception (1/2) 
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Figure 7-3: Example usage sequence of character data transmission and reception (2/2) 
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7.4.2 Binary data transmission and reception 
In this example, set device addresses, establish a Bluetooth LE connection, transfer binary data and 
disconnect the connection.  

Also, use the macro function of the terminal when binary data transmission and reception. The macro files to 
be used is shown below. 

Table 7-6: Macro file (\r01an3130xx0114-rl78g1d-ble-vuart\Macro\) 

File name Description 

tt_debug_mode_on.ttl 
Turn on the debug mode of Tera Term. 

The terminal display will be in hexadecimal. 

tt_debug_mode_off.ttl 
Turn off the debug mode of Tera Term. 

The terminal display will be in the initial state. 

tt_send_bin_1.ttl Sends binary data (0x00 0x01 0x02 0x03 0x04). 

tt_send_bin_2.ttl Sends binary data (0xF0 0xF1 0xF2 0xF3 0xF4). 

 

Figure 7-4 shows execution results of the terminal. Figure 7-5 and Figure 7-6 shows the sequence diagram 
of this example usage. The red numbers in figures are corresponding to the numbers in the following 
procedures. 

1. Set the DIP switch (SW6-1) of local and remote device to OFF (left side: Simple AT command mode). 

2. Set local and remote device address. To set the device address use “AT-AS=<addr>” command. For 
example, to set 12:34:56:78:9A:BC, execute “AT-AS=123456789ABC”. To display current device 
address settings, use “AT-AS?”.  
If a device address is 00:00:00:00:00:00 or the local device and the remote device have the same 
addresses, you need to change the device address. In the following example, we assume that you set 
12:34:56:78:9A:BC to the local device address, CB:A9:87:65:43:21 to the remote device address. 

3. When you change a device address by “AT-AS=<addr>” command, you need to reset the device to 
reflect the change by pushing RESET button (SW5) on the board. 

4. Execute “AT-AP=CBA987654321” to set the target device address for a connection. 

5. Execute “AT-C” on the local terminal. This command start the connection to the device which have the 
address CB:A9:87:65:43:21. After the connection established, “CONNECT” response is displayed on 
both of the local and remote terminal. 

6. Set the DIP switch (SW6-1) of local and remote device to ON (right side: Virtual UART mode). 

7. Set the DIP switch (SW6-4) of the local device to OFF (left side: communication with response). 

8. Run the macro on the local and remote device terminals to put the terminal in debug mode. 
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO" 
window is popped up and select the macro file "tt_debug_mode_on.ttl" in Table 7-6. click "Open".  

9. Send binary data from the local device. 
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO" 
window is popped up and select the macro file "tt_send_bin_1.ttl" in Table 7-6. click "Open".  
Then "00 01 02 03 04" is displayed on the remote terminal. 

10. Send binary data from the remote device. 
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO" 
window is popped up and select the macro file "tt_send_bin_2.ttl" in Table 7-6. click "Open".  
Then "F0 F1 F2 F3 F4" is displayed on the remote terminal. 

11. Set the DIP switch (SW6-4) of the local and remote device to ON (right side: communication without 
response). 

12. Send binary data from the local device. 
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO" 
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window is popped up and select the macro file "tt_send_bin_2.ttl" in Table 7-6. click "Open".  
Then "F0 F1 F2 F3 F4" is displayed on the remote terminal. 

13. Send binary data from the remote device. 
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO" 
window is popped up and select the macro file "tt_send_bin_1.ttl" in Table 7-6. click "Open".  
Then "00 01 02 03 04" is displayed on the local terminal. 

14. Run the macro on the local and remote device terminals to put the terminal in initial mode. 
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO" 
window is popped up and select the macro file "tt_debug_mode_off.ttl" in Table 7-6. click "Open". 

15. Set the DIP switch (SW6-1) of local and remote device to OFF (left side: Simple AT command mode). 

16. Execute “AT-R” on the local terminal to disconnect the connection. After completing the disconnection, 
“DISCONNECT” response is displayed on both of the local and remote terminal. 
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Figure 7-4: Terminal result 
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Figure 7-5: Example usage sequence of binary data transmission and reception (1/2) 
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Figure 7-6: Example usage sequence of binary data transmission and reception (2/2)  
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8. Implementation Details 
8.1 Virtual UART Profile 
Table 8-1 and Table 8-2 shows the specification of Virtual UART Profile.  

 

Table 8-1: Virtual UART Profile specification (1/2) 

Attribute Handle Attribute type and the value 

VUART_HDL_SVC 
0x000C 

Type: Primary Service Declaration 

UUID: D68C0001-A21B-11E5-8CB8-0002A5D5C51B 

UUID for virtual UART service 

VUART_HDL_INDICATION_CHAR 
0x000D 

Type: Characteristic Declaration 

UUID: D68C0002-A21B-11E5-8CB8-0002A5D5C51B 

Property: Indicate 

Used for data transfer from the server to the client 

VUART_HDL_INDICATION_VAL 
0x000E 

Type: Indication Value 

By setting data to this characteristic and send Indication, the data 
are sent from the server to the client. Max 20 bytes. 

VUART_HDL_INDICATION_CFG 
0x000F 

Type: Client Characteristic Configuration Descriptor 

Used for Indication enable / disable of the server from the client 

VUART_HDL_WRITE_CHAR 
0x0010 

Type: Characteristic Declaration 

UUID: D68C0003-A21B-11E5-8CB8-0002A5D5C51B 

Property: Write 

Used for data transfer from the client to the server.  

VUART_HDL_WRITE_VAL 
0x0011 

Type: Write Value 

By writing data to this characteristic with “Write Request”, the data 
are sent from the client to the server. Max 20 bytes.  

Note: The hex value of attribute handle can be changed depends on profiles included in the firmware.  
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Table 8-2: Virtual UART Profile specification (2/2) 

Attribute Handle Attribute type and the value 

VUART_HDL_NOTIFICATION_CHAR 
0x0012 

Type: Characteristic Declaration 

UUID: D68C0004-A21B-11E5-8CB8-0002A5D5C51B 

Property: Notify 

Used for data transfer from the server to the client 

VUART_HDL_NOTIFICATION_VAL 
0x00013 

Type: Notification Value 

By setting data to this characteristic and send Notification, the 
data are sent from the server to the client. Max 20 bytes. 

VUART_HDL_NOTIFICATION_CFG 
0x0014 

Type: Client Characteristic Configuration Descriptor 

Used for Notification enable / disable of the server from the 
client 

VUART_HDL_WRITE_NORESP_CHAR 
0x0015 

Type: Characteristic Declaration 

UUID: D68C0005-A21B-11E5-8CB8-0002A5D5C51B 

Property: Write 

Used for data transfer from the client to the server.  

VUART_HDL_WRITE_NORESP_VAL 
0x0016 

Type: Write Value 

By writing data to this characteristic with “Write Command”, the 
data are sent from the client to the server. Max 20 bytes.  

Note: The hex value of attribute handle can be changed depends on profiles included in the firmware.  
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8.2 Advertising 
Table 8-3 shows the default settings of advertising. 

Table 8-3: Advertising specification 

Advertising Type Connectable undirected advertising (ADV_IND) 

Advertising Interval Min Default: 20 [ms], Low Power: 1.5 [s] 

Advertising Interval Max Default: 30 [ms], Low Power: 3 [s] 

Advertising Channel Map All Channels (37, 38, 39 ch) 

Advertising Data - 

 Length of this Data 2 [bytes] 

 Data Type <<Flags>> (0x01) 

 Flags 
LE General Discoverable Mode 

BR/EDR Not Supported 

 Length of this Data 8 [bytes] 

 Data Type <<Complete Local Name>> (0x09) 

 Local Name REL-BLE 

 Length of this Data 17 [bytes] 

 Data Type <<Complete List of 128-bit Service Class UUIDs>> (0x07) 

 UUID D68C0001-A21B-11E5-8CB8-0002A5D5C51B 

 Scan Response Data none 

 

8.3 Connection 
Table 8-4 shows the default settings of connection. 

Table 8-4: Connection specification 

Scan Interval 30 [ms] 

Scan Window Size 30 [ms] 

Initiator Filter Policy Ignore Accept List 

Peer Address Type Public Address 

Peer BD Address Specified by AT-C or AT-AP 

Own Address Type Public Address 

Minimum of Connection Interval 30 [ms] 

Maximum of Connection Interval 30 [ms] 

Connection Latency 0 [ms] 

Link Supervision Timeout 5 [s] 

Minimum CE Length 0 [ms] 

Maximum CE Length 50 [ms] 
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8.4 Pairing 
Table 8-5 shows the pairing default settings. 

 

Table 8-5: Pairing specification 

Bonding Bondable Mode 

Security Mode Unauthenticated pairing with encryption 

Pairing Method Just Works 

IO capability No Input No Output 

OOB flag OOB Data not present 

Authentication Requirements No MITM Bonding 

Encryption key size 128 [bit] 

Initiator key distribution None 

Responder key distribution Encryption key 
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8.5 Virtual UART Function API 
This section describes virtual UART function definitions and APIs. 

 

8.5.1 Virtual UART Definitions 
- Event type enumeration declaration  

typedef enum { 
 // Server Role 
  RBLE_VUART_EVENT_SERVER_ENABLE_CMP = 0x01,  
  RBLE_VUART_EVENT_SERVER_WRITE_REQ, 
  RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ, 
  RBLE_VUART_EVENT_SERVER_INDICATION_CFM, 
  RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP, 
 // Client Role 
  RBLE_VUART_EVENT_CLIENT_ENABLE_CMP = 0x81, 
  RBLE_VUART_EVENT_CLIENT_INDICATION, 
  RBLE_VUART_EVENT_CLIENT_NOTIFICATION, 
  RBLE_VUART_EVENT_CLIENT_WRITE_RSP, 
  RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP, 
} RBLE_VUART_EVENT_TYPE; 

 

- Event callback function declaration  

typedef void (*RBLE_VUART_EVENT_HANDLER)(RBLE_VUART_EVENT *event); 
 

- Event parameter structure 

typedef struct RBLE_VUART_EVENT_t { 
  RBLE_VUART_EVENT_TYPE type;  Virtual UART event type  
  union Event_Vuart_Paramter_u { 
 
    Server role enable completion event 
    struct { 
      RBLE_STATUS status;   Status 
    } server_enable_cmp; 
 
    Server role data receive event (Write Request) 
    struct { 
      RBLE_STATUS status;    Status 
      char value[20];     Received data 
      uint16_t len;     Received data length 
    } server_write_req; 
 
    Server role data receive event (Write Command) 
    struct { 
      RBLE_STATUS status;    Status 
      char value[20];     Received data 
      uint16_t len;     Received data length 
    } server_write_noresp_req; 
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    Server role data send completion event (Indication) 
    struct { 
      RBLE_STATUS status;   Status 
    } server_indicate_cnf; 
 
    Server role data send completion event (Notification) 
    struct { 
      RBLE_STATUS status;   Status 
    } server_notify_cmp; 
 
    Client role enable completion event  
    struct { 
      RBLE_STATUS status;   Status 
    } client_enable_cmp;  
 
    Client role data receive event (Indication) 
    struct { 
      RBLE_STATUS status;   Status 
      char value[20];    Received data 
      uint16_t len;    Received data length  
    } client_indication; 
 
    Client role data receive event (Notification) 
    struct { 
      RBLE_STATUS status;   Status 
      char value[20];    Received data 
      uint16_t len;    Received data length  
    } client_notification; 
 
    Client role data send completion event (Write Request) 
    struct { 
      RBLE_STATUS status;    Status 
    } client_write_rsp; 
 
    Client role data send completion event (Write Command) 
    struct { 
      RBLE_STATUS status;    Status 
    } client_write_norsp; 
  } param; 
} RBLE_VUART_EVENT; 
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8.5.2 Function 
8.5.2.1 RBLE_VUART_Server_Enable 

RBLE_STATUS RBLE_VUART_Server_Enable( 
uint16_t conhdl, RBLE_VUART_EVENT_HANDLER callback) 

This function enables server role of virtual UART function. 

The result is informed by RBLE_VUART_EVENT_SERVER_ENABLE_CMP event.  

Parameters:  

 conhdl Connection handle 

 callback Callback for virtual UART event 

Return:   

 RBLE_OK Success 

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE 

 

8.5.2.2 RBLE_VUART_Server_Disable 
RBLE_STATUS RBLE_VUART_Server_Disable(void) 

This function disables server role of virtual UART function.  

Parameters:  

 - - 

Return:   

 RBLE_OK Success 

 

8.5.2.3 RBLE_VUART_Server_Send_Indication 
RBLE_STATUS RBLE_VUART_Server_Send_Indication( 

const char *chars, uint16_t len) 
This function sends data from the server to the client.  

The data sent by the server are received by the client. After the reception, the client responses with 
Confirmation. The confirmation is informed to the server by 
RBLE_VUART_EVENT_SERVER_INDICATION_CFM event. 

Parameters:  

 chars Received data 

 len Received data length 

Return:   

 RBLE_OK Success 

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE 
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8.5.2.4 RBLE_VUART_Server_Send_Notification 
RBLE_STATUS RBLE_VUART_Server_Send_Notification( 

const char *chars, uint16_t len) 
This function sends data from the server to the client.  

Executing this function will notify the server of RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP. 

Notes: This event does not guarantee the sending. 

Parameters:  

 chars Received data 

 len Received data length 

Return:   

 RBLE_OK Success 

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE 

 
8.5.2.5 RBLE_VUART_Client_Enable 

RBLE_STATUS RBLE_VUART_Client_Enable( 
uint16_t conhdl, RBLE_VUART_EVENT_HANDLER callback) 

This function enables client role of virtual UART function. 

The result is informed by RBLE_VUART_EVENT_CLIENT_ENABLE_CMP event. 

Parameters:  

 conhdl Connection handle 

 callback Callback for virtual UART event 

Return:   

 RBLE_OK Success 

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE 

 

8.5.2.6 RBLE_VUART_Client_Disable 
RBLE_STATUS RBLE_VUART_Client_Disable(void) 

This function disables client role of virtual UART function. 

Parameters:  

 - - 

Return:   

 RBLE_OK Success 
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8.5.2.7 RBLE_VUART_Client_Send_Chars 
RBLE_STATUS RBLE_VUART_Client_Send_Chars( 

const char *chars, uint16_t len) 
This function sends data from the client to the server. 

The data sent by the client are received by server. After the reception, the server responses with 
“Response” to the client. The response is informed to the client by 
RBLE_VUART_EVENT_CLIENT_WRITE_RSP event.  

Parameters:  

 chars Received data 

 len Received data length 

Return:   

 RBLE_OK Success 

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE 

 

8.5.2.8 RBLE_VUART_Client_Send_Chars_Noresp 
RBLE_STATUS RBLE_VUART_Client_Send_Chars_Noresp( 

const char *chars, uint16_t len) 
This function send data from the client to the server. 

Executing this function will notify the server of RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP. 

Notes: This event does not guarantee the sending. 

Parameters:  

 chars Received data 

 len Received data length 

Return:   

 RBLE_OK Success 

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE 
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8.5.3 Event 
This section describes the events defined by virtual UART function.  

 

8.5.3.1 RBLE_VUART_EVENT_SERVER_ENABLE_CMP 
RBLE_VUART_EVENT_SERVER_ENABLE_CMP 

This event informs completion of server role enable.  

Parameters:   

 status server role enable status  

 

8.5.3.2 RBLE_VUART_EVENT_SERVER_WRITE_REQ 
RBLE_VUART_EVENT_SERVER_WRITE_REQ 

This event informs that the server has received the data that the client sent using the 
RBLE_VUART_Client_Send_Chars function.  

Parameters:   

 status The result of receiving data 

 value Received data 

 len Received data length 

 

8.5.3.3 RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ 
RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ 

This event informs that the server has received the data that the client sent using the 
RBLE_VUART_Client_Send_Chars_Noresp function. 

Parameters:   

 status The result of receiving data 

 value Received data 

 len Received data length 

 

8.5.3.4 RBLE_VUART_EVENT_SERVER_INDICATION_CFM 
RBLE_VUART_EVENT_SERVER_INDICATION_CFM 

This event informs the completion of sending the data sent by the server using the 
RBLE_VUART_Server_Send_Indication function. 

Parameters:   

 status The result of data send 
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8.5.3.5 RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP 
RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP 

This event informs that the server has sent data using the RBLE_VUART_Server_Send_Notification 
function. 

Notes: This event does not guarantee the sending. 

Parameters:   

 status The result of data send 

 
8.5.3.6 RBLE_VUART_EVENT_CLIENT_ENABLE_CMP 

RBLE_VUART_EVENT_CLIENT_ENABLE_CMP 
This event informs client role enable completion.  

Parameters:   

 status  

 

8.5.3.7 RBLE_VUART_EVENT_CLIENT_INDICATION 
RBLE_VUART_EVENT_CLIENT_INDICATION  

This event informs that the client has received the data that the server sent using the 
RBLE_VUART_Server_Send_Indication function. 

Parameters:   

 status The result of data receive  

 value Received data 

 len Received data length  

 

8.5.3.8 RBLE_VUART_EVENT_CLIENT_NOTIFICATION 
RBLE_VUART_EVENT_CLIENT_NOTIFICATION  

This event informs that the client has received the data that the server sent using the 
RBLE_VUART_Server_Send_Notification function. 

Parameters:   

 status The result of data receive 

 value Received data 

 len Received data length  
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8.5.3.9 RBLE_VUART_EVENT_CLIENT_WRITE_RSP 
RBLE_VUART_EVENT_CLIENT_WRITE_RSP 

This event informs the completion of sending the data that the client sent using the 
RBLE_VUART_Client_Send_Chars function. 

Parameters:   

 status The result of data sending 

 

8.5.3.10 RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP 
RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP 

This event signals that the client has sent data using the RBLE_VUART_Client_Send_Chars_Noresp 
function. 

Notes: This event does not guarantee the sending. 

Parameters:   

 status The result of data sending 
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8.6 Application State Change 
Figure 8-1 shows the application state transition diagram. The application changes the state depends on 
connection and disconnection event and simple AT command execution. 

 
Figure 8-1: Application state diagram 

 

Table 8-6 shows the application state list. 

  

Table 8-6: Application state list 

Application State Description 

ADVERTISER The application is advertising.  

SCANNER The application is scanning neighbor devices by executing AT-DS command. 
After AT-DS has finished, the application remains in this state.  

INITIATER The application creates a connection to a remote device by executing AT-C. 

CONNECT_CENTRAL Bluetooth LE connection is established as master role. 
CONNECT_CENTRAL is GATT client. 

CONNECT_PERIPHERAL Bluetooth LE connection is established as slave role. 
CONNECT_PERIPHERAL is GATT sever.  
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8.7 Application Detailed Sequence 
This section shows the sequence of boot, connection, character transfer and disconnection. Refer to 
"Bluetooth® Low Energy Protocol Stack API Reference: Basics" (R01UW0088E).  

 

8.7.1 Boot Sequence 
Figure 8-2 shows the boot sequence. 

  
Figure 8-2: Boot Sequence  

 

 

  

　

Power ON

RBLE_Init

RBLE_MODE_ACTIVE

RBLE_GAP_Reset

RBLE_GAP_EVENT_RESET_RESULT

RBLE_GAP_Set_Bonding_Mode

RBLE_GAP_EVENT_SET_BONDING_MODE_COMP

RBLE_GAP_Broadcast_Enable

RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP

Local Device 

VUART Prof BLE StackApplication

ADVERTISER
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8.7.2 Connection Sequence 
Figure 8-3 shows the connection sequence. 

 
Figure 8-3: Connection sequence  

　

Air

AT-C

OK

RBLE_GAP_Broadcast_Disable
RBLE_GAP_EVENT_BROADCAST_DISABLE_COMP

RBLE_GAP_Create_Connection
Connection Established

RBLE_GAP_EVENT_CONNECTION_COMP RBLE_GAP_EVENT_CONNECTION_COMP

RBLE_VUART_Server_Enable
RBLE_GATT_Enable

RBLE_GAP_Start_Bonding

Pairing Request
RBLE_GAP_EVENT_BONDING_REQ_IND

RBLE_GAP_Bonding_Response
Pairing Response

STK Generation by Just Works
Link is encrypted using STK

RBLE_SM_LTK_REQ_IND
RBLE_SM_Ltk_Req_Resp

Distribute LTK
RBLE_SM_KEY_IND

RBLE_GAP_EVENT_BONDING_COMP RBLE_GAP_EVENT_BONDING_COMP

RBLE_SM_Start_Enc
Start Encryption

RBLE_SM_LTK_REQ_FOR_ENC_IND
RBLE_SM_Ltk_Req_Resp

Link is encrypted using LTK
RBLE_SM_ENC_START_IND RBLE_SM_ENC_START_IND

RBLE_VUART_Client_Enable
RBLE_GATT_Enable

RBLE_GATT_Discovery_Service_Request
Read Request

Read Response
RBLE_GATT_EVENT_DISC_SVC_BY_UUID_CMP

RBLE_GATT_EVENT_COMPLETE

RBLE_GATT_Discovery_Char_Request
Read Request

Read Response
RBLE_GATT_EVENT_DISC_CHAR_ALL_128_CMP

RBLE_GATT_EVENT_COMPLETE

RBLE_GATT_Discovery_Char_Descriptor_Request
Read Request

Read Response
RBLE_GATT_EVENT_DISC_CHAR_DESC_CMP

RBLE_GATT_EVENT_COMPLETE

RBLE_GATT_Write_Char_Request
Write Request

RBLE_GATT_EVENT_WRITE_CMD_IND
RBLE_GATT_Write_Response

Write Response RBLE_VUART_SERVER_ENABLE_COMP
RBLE_GATT_WRITE_CHAR_RESP

RBLE_VUART_EVENT_CLIENT_ENABLE_COMP

CONNECT CONNECT
RBLE_GAP_Change_Connection_Param

Parameter Update Request
RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_REQ_IND

RBLE_GAP_Change_Connection_Param
Paramter Update Response

RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_RESPONSE
Connection Parameter Update

RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_COMP RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_COMP

Local Device 

Application VUART Prof BLE StackTerminal

INITIATER

CONNECT_CENTRAL CONNECT_PERIPHERAL

Remote Device 

VUART Prof Application TerminalBLE Stack

ADVERTISER

Establish a BLE connection

(Optional) Perform paring in order to encrypt send chara

Enable Virtual UART Profile (Client)

Search virtual UART service by client

Enable Indication of server from client

ADVERTISER
AT Command Mode

Enable Virtual UART Profile (Server)

Connection Parameter Update
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8.7.3 Data Transfer Sequence (Write Request/Indication) 
Figure 8-4 shows the data transfer sequence. 

 
Figure 8-4: Data transfer sequence (Write Request/Indication) 

 

8.7.4 Data Transfer Sequence (Write Command/Notification) 
Figure 8-5 shows the data transfer sequence. 

 
Figure 8-5: Data transfer sequence (Write Command/Notification) 

 

  

　

Air

Ｈｅｌｌｏ
RBLE_VUART_Client_Send_Chars

RBLE_GATT_Write_Char_Request
Write Request

RBLE_GATT_EVENT_WRITE_CMD_IND
RBLE_GATT_Write_Response

Write Response RBLE_VUART_SERVER_WRITE_REQ
RBLE_GATT_EVENT_WRITE_CHAR_RESP Hello

RBLE_VUART_CLIENT_WRITE_RSP
Bye

RBLE_VUART_Server_Send_Indication
RBLE_GATT_Set_Data

RBLE_GATT_EVENT_SET_DATA_CMP
RBLE_GATT_Indicate_Request

 Indication
RBLE_GATT_EVENT_HANDLE_VALUE_IND

RBLE_VUART_EVENT_CLIENT_INDICATION Confirmation
Bye RBLE_GATT_EVENT_HANDLE_VALUE_CFM

RBLE_VUART_EVENT_SERVER_INDICATION_CFM

Local Device 

Application VUART Prof BLE StackTerminal

CONNECT_CENTRAL
Virtual UART Mode

Remote Device 

VUART Prof Application TerminalBLE Stack

CONNECT_PERIPHERAL
Virtual UART Mode

　

Air

Ｈｅｌｌｏ

RBLE_VUART_Client_Send_Chars_Noresp
RBLE_GATT_Write_Char_Request

ke_timer_set   
Write Command

RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP                    RBLE_GATT_EVENT_WRITE_CMD_IND
                    RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ

Hello

Bye
RBLE_VUART_Server_Send_Notification

RBLE_GATT_Set_Data
RBLE_GATT_EVENT_SET_DATA_CMP

RBLE_GATT_Notify_Request
   ke_timer_set

Notification
RBLE_GATT_EVENT_HANDLE_VALUE_NOTIF                     RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP

RBLE_VUART_EVENT_CLIENT_NOTIFICATION                    
Bye

Local Device 

Application VUART Prof BLE StackTerminal

CONNECT_CENTRAL
Virtual UART Mode

Remote Device 

VUART Prof Application TerminalBLE Stack

CONNECT_PERIPHERAL
Virtual UART Mode
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8.7.5 Disconnection Sequence  
Figure 8-6 shows the disconnection sequence. 

 
Figure 8-6: Disconnection sequence 

 

 

  

　

Air

AT-R
RBLE_GAP_Disconnect

Disconnected
RBLE_GAP_EVENT_DISCONNECT_COMP RBLE_GAP_EVENT_DISCONNECT_COMP

DISCONNECT DISCONNECT

RBLE_VUART_Client_Disable RBLE_VUART_Server_Disable
RBLE_GAP_Broadcast_Enable RBLE_GAP_Broadcast_Enable

RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP

Local Device 

Application VUART Prof BLE StackTerminal

CONNECT_CENTRAL
AT Command Mode

Remote Device 

VUART Prof Application TerminalBLE Stack

ADVERTISER

CONNECT_PERIPHERAL

ADVERTISER
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8.8 Macro Settings 
This section describes macros that set the behavior of this application. 

 

8.8.1 Character data/Binary data transmission and reception setting 
Set the type of data (character data / binary data) to transmit / received in virtual UART mode. The default 
setting is 1 (character data). 

Note: In the case of binary data transmission / reception setting, local echo in virtual UART mode is disabled. 

r_vuart_app.h, line 47-49 

 
 

8.8.2 Local echo setting 
Set the default setting for local echo to "disable local echo". The default setting is 0 (local echo enabled). 

Note: In the case of binary data transmission / reception setting, local echo in virtual UART mode is disabled. 

r_vuart_app.h, line 51-53 

 
 

8.9 Others 
8.9.1 Caution when implementing the program to connect to the application 
As described in 8.7.2, when AT-C command is executed, the following processing are executed in order. 
After these steps have finished successfully the application responses with “CONNECT” message on both of 
the devices. If you implement the program connect to the application also follows these steps. The pairing is 
optional. 

- Establish a BLE connection 

- Perform paring in order to encrypt send characters 

- Search virtual UART service by client 

- Enable Indication of server from client 

 

  

47: #define CFG_VUART_CHAR          (1)  /* Switch between AT mode and VUART mode. */ 
48:                                       /* (0): Binary mode                       */ 
49:                                     /* (1): Character mode (default)          */  

51: #define CFG_DISABLE_LOCAL_ECHO_BY_DEFAULT   (0) /* Disable local echo                    */ 
52:                                                 /* (0): Enable local echo (default)      */ 
53:                                           /* (1): Disable local echo               */  
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8.9.2 Read processing of DIP switch that select mode in binary data transmission / 
reception 

The DIP switch state read processing used by the application to select the mode for binary data transmission 
/ reception is shown below. 

r_vuart_app.c, line 1916-1921 

 
 

8.9.3 Read processing of DIP switch that select whether to respond in data transmission / 
reception 

The DIP switch state read processing used by the application to select whether to respond to data 
transmission / reception is shown below. 

r_vuart_app.c, line 1931-1936 

 
 

8.9.4 CFG_CON macro 
The CFG_CON macro sets the heap memory of the RF section of the RL78/G1D at the same time as setting 
the maximum number of connections. Setting CFG_CON 4 (default) is recommended. 

 

  

1916: BOOL read_dipsw1(void) 
1917: { 
1918:     /* TRUE (1) : AT command mode */ 
1919:     /* FALSE(0) : VUART mode      */ 
1920     return ((BOOL)read1_sfr(P1, 0)); 
1921: } 

1931: BOOL read_dipsw4(void) 
1932: { 
1933:     /* TRUE (1) : with response.    Indication, Write                    */ 
1934:     /* FALSE(0) : without response. Notification, Write without response */ 
1935     return ((BOOL)read1_sfr(P0, 2)); 
1936 } 
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8.9.5 Data transmission from the terminal or host microcomputer 
The maximum size of data transmitted by UART from a PC terminal or host microcomputer should be 20 
bytes. 

Examples of RL78/G1D receiving the data transmitted from the terminal via UART and transmitting it via 
Bluetooth LE communication are shown in 8.9.5.1 and 8.9.5.2. 

The settings of this application are baud rate 4800bps, data length 20 bytes, and connection interval 30ms. 

 

8.9.5.1 Example of data transmission during communication with response 
Figure 8-7 shows an example of Indication transmission as communication with response. 

Indication communication is a communication that combines data transmission by Indication and response 
reception by Confirmation. Data cannot be sent with the next Indication until a Confirmation is received. 

Indication sends the amount of data (2 bytes) received from the terminal in the first Bluetooth LE 
communication. The next Indication cannot be sent until the Confirmation is received, so the remaining data 
(18 bytes) received from the terminal is suspended. When Confirmation is received, the remaining data (18 
bytes) will be sent by Indication at the next Bluetooth LE communication timing. When Confirmation is 
received, the remaining data (18 bytes) will be sent by Indication at the next Bluetooth LE communication 
timing. 

At this time, if data of 21 bytes or more is sent, the packet size (20 bytes) of RL78 / G1D may be exceeded 
and invalid data may be transmitted. When sending data from the terminal, send it in 20 bytes units at 
intervals larger than the time of the connection interval x3 (100ms in this example). 

 

 
Figure 8-7: Data reception from terminal and Indication communication example 
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8.9.5.2 Example of data transmission during communication without response 
Figure 8-8 shows an example of Notification transmission as communication without response. 

Notification communication can be sent data at each timing of Bluetooth LE communication. 

Notification will send the amount of data (2 bytes) received from the terminal in the first Bluetooth LE 
communication. If there is data (15 bytes) received from the terminal before the next Bluetooth LE 
communication timing, it will be sent by Notification. In this way, Notification allows you to send data at 
Bluetooth LE communication timing if there is data to send. 

When sending data from the terminal via UART, send it in 20 bytes units as in response communication. 
Also, if data is sent continuously without any gaps, an error may occur in the UART. The data should be sent 
at an interval larger than the connection interval (50ms in this example). 

 

 
Figure 8-8: Data reception from terminal and Notification communication example 
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9. Appendix 
9.1 ROM size, RAM size 
Table 9-1 and Table 9-2 show the ROM size and RAM size when the virtual UART application is used with 
the BLE protocol stack V1.21. 

Table 9-1: ROM size, RAM size (Character data transmission / reception) 

Compiler ROM size RAM size 
RL78 Family C Compiler Package V1 V1.09.00 127,002 11,535 
Renesas CA78K0R V1.72 155,849 11,609 

 

Table 9-2: ROM size, RAM size (Binary data transmission / reception) 

Compiler ROM size RAM size 
RL78 Family C Compiler Package V1 V1.09.00 126,684 11,535 
Renesas CA78K0R V1.72 155,676 11,609 
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9.2 Operational Check by Using the GUI-Tool 
This section describes the operation check procedure of Virtual UART by using the GUI-Tool (R01AN2469). 

Figure 9-1 shows overview diagram of operational check by using the GUI-Tool. This application operates as 
a Virtual UART server, and the GUI-Tool operates as a Virtual UART client. It is possible to transfer 
characters to each other. 

 
 

Note: GUI-Tool Version 1.12 (R01AN2469XX0112) or later is required in order to check the operation. 

Figure 9-1: Operation check by using the GUI-Tool 

 

Hereafter, the combination of evaluation board (Virtual UART application was written) and terminal software 
is mentioned as “Virtual UART Server”. And the combination of evaluation board (Modem Configuration Hex 
file was written) and the GUI-Tool is mentioned as “Virtual UART Client”. 

 

9.2.1 Preparation 
• Virtual UART Server 

In accordance with the procedures described in the following section, write the firmware onto RL78/G1D 
evaluation board and then launch a terminal software on PC. 
7.2 Build Procedure 
7.3 Preparation for Execution Environment 
This section uses character data transmission / reception (RL78_G1D_CCE(VUART_CHAR).hex). 

 
• Virtual UART Client 

Write a Modem configuration Hex file (any of the build environment) that is included in the package of 
BLE protocol stack onto RL78/G1D evaluation board, then launch the GUI-Tool. 
Notes: 1. In order to access the service on the Virtual UART Server by using the GATT APIs, it does not 

matter the profile type of Hex file to be written. 
 2. Refer to "Bluetooth Low Energy Protocol Stack GUI Tool" (R01AN2469) “6. Utilization” about 

how to launch the GUI-Tool. 
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9.2.2 Operation 
It is possible to transfer characters by operating Virtual UART Server and Virtual UART Client in the following 
procedure. 

1. Discoverable Mode (Virtual UART Server) 
Push the RESET button (SW5) on RL78/G1D evaluation board that operates as Virtual UART Server. 
After the reset, the virtual UART application transitions to discoverable mode automatically, and then start 
the Advertising. 

 
2. Device Discovery (Virtual UART Client) 

Search discoverable mode devices by operating the GUI-Tool. 
(1) Activate [Scanning] tab of [GAP] tab. 
(2) Select “General Discovery” in the Discovery group. 
(3) Press [Discover] button. 

 

Figure 9-2: Device Discovery 

(4) Discoverable mode devices will display in the list of Received Advertising data. 

 

Figure 9-3: Result of Device Discovery 
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3. Connection (Virtual UART Client) 
Initiate connection to Virtual UART Server by operating the GUI-Tool. 
(1) Confirm that the RBLE_GAP_EVENT_DEVICE_SEARCH_COMP event has occurred in the log 

dialog. 

 

Figure 9-4: Confirmation of RBLE_GAP_EVENT_DEVICE_SEARCH_COMP event 

(2) In [Scanning] tab, Double-click onto the target device in the list of Received Advertising data. 

 

Figure 9-5: Select Device 

Tips:  It will be displayed the Advertising data analysis dialog by [Ctrl] key + double-clicking arbitrary row 
in the list of Received Advertising data. 
The device which operates as Virtual UART Server contains “Renesas Virtual UART Service” to 
the <<Complete List of 128-bit Service UUIDs>> 

 

Figure 9-6: Advertising Data Analysis Dialog 
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(3) Activate [Connection] tab of [Peer Device] tab. 
At this time, make sure that the target device address will reflect to “Peer Addr” field in top of [Peer 
Device] tab. 

(4) Initiate a connection to Virtual UART Server by pressing [Connect] button. 

 

Figure 9-7: Initiate Connection 

(5) When a connection is established, the State display in top of [Peer Device] tab is changed to 
“Connected”. 

 

Figure 9-8: Established Connection 
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4. Service Discovery (Virtual UART Client) 
Discover services and characteristics on Virtual UART Server by operating the GUI-Tool. 
- Service Discovery 

Discover all services on Virtual UART Server. 
(1) Activate [Service Discovery] tab of [GATT][Client] tab. 
(2) Select “Discover All Primary Services” in the Discovery Type drop-down list, and press [Discover] 

button. 

 

Figure 9-9: Service Discovery 

(3) Acquired service information is displayed in the list of “Remote GATT Database”. 

 

Figure 9-10: Result of Service Discovery 
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- Characteristic Discovery 
Discover all service characteristics on Virtual UART Server. 
(1) Activate [Characteristic Discovery] tab of [GATT][Client] tab. 
(2) Select “Discover Characteristics of a Service” in the Discovery Type drop-down list, and press 

[Discover] button. 

 

Figure 9-11: Characteristic Discovery 

(3) Acquired characteristic information is displayed in the list of “Remote GATT Database”. 

 

Figure 9-12: Result of Characteristic Discovery 
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- Characteristic Descriptor Discovery 
Discover characteristic descriptors of a characteristic on Virtual UART Server. 
(1) Activate [Characteristic Discovery] tab of [GATT][Client] tab. 
(2) Select “Discover All Characteristic Descriptors” in the Discovery Type drop-down list, and press 

[Discover] button. 

 

Figure 9-13: Characteristic Descriptor Discovery 

(3) Acquired characteristic descriptor information is displayed in the list of “Remote GATT Database”. 

 

Figure 9-14: Result of Characteristic Descriptor Discovery 
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5. Enable Indication (Virtual UART Client) 
Enable character transfer from Virtual UART Server to Virtual UART Client (Indication, Notification) by 
operating the GUI-Tool. 
(1) Activate [Write] tab of [GATT][Client] tab. 
(2) Select “Write Characteristic Descriptors” in the Write Type drop-down list. 
(3) In the list of “Remote GATT Database”, double-click the Client Characteristic Configuration 

Descriptor within “Renesas Virtual UART Indication Characteristic”. 
By double-clicking, the handle value of Client Characteristic Configuration Descriptor will reflect to 
“Handle” field in [Write] tab. 

(4) Enter the value of “0002” (it means that “Indications enabled”) in “Write Data” field. 
(5) By pressing [Write] button, write the characteristic descriptor value to Virtual UART Server.  

 

Figure 9-15: Enable Indication 
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(6) In the list of “Remote GATT Database”, double-click the Client Characteristic Configuration 
Descriptor within “D68C0004-A21B-11E5-8CB8-0002A5D5C51B” (Renesas Virtual UART 
Notification Characteristic). 
By double-clicking, the handle value of Client Characteristic Configuration Descriptor will reflect to 
“Handle” field in [Write] tab. 

(7) Enter the value of “0001” (it means that “Notification enabled”) in “Write Data” field. 
(8) By pressing [Write] button, write the characteristic descriptor value to Virtual UART Server.  

 

Figure 9-16: Enable Notification 

(9) The Parameter Update Request dialog is displayed. Press "Accept". 

 

Figure 9-17: Accept Parameter Update Request 
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(10) Console window is displayed when the response is received from Virtual UART Server. 

 

Figure 9-18: Console Window 
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6. Character Transfer (Virtual UART Server / Virtual UART Client) 
- Character transfer from Virtual UART Server 

(1) Input ESC key on the terminal software in order to switch the application mode to Virtual UART 
mode. 

(2) Type arbitrary characters (e.g. “Hello!”) on the terminal software. 
(3) Input characters are displayed by yellow characters in the console window of Virtual UART Client. 

 

Figure 9-19: Character Transfer (ServerClient) 
 

- Character transfer from Virtual UART Client 
(1) Type arbitrary characters (e.g. “Bye”) on the console window. 
(2) Input characters are displayed in the terminal software of Virtual UART Server. 

 

Figure 9-20: Character Transfer (ClientServer) 
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7. Disconnection (Virtual UART Server / Virtual UART Client) 
- Disconnect from Virtual UART Server 

(1) Input ESC key on the terminal software in order to switch the application mode to Simple AT 
command mode. 

(2) Execute “AT-R” on the terminal software (Disconnect the established connection). 
(3) When the connection is terminated, it will be displayed “DISCONNECT” on the terminal software. 

 

Figure 9-21: Disconnect from Virtual UART Server 
 

- Disconnect from Virtual UART Client 
(1) Activate [Connection] tab of [Peer Device] tab. 
(2) Disconnect the established connection by pressing [Disconnect] button. 
(3) When the connection is terminated, the State display in top of [Peer Device] tab is changed to 

“Standby”. 

 

Figure 9-22: Disconnect from Virtual UART Client 
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General Precautions in the Handling of Microprocessing Unit and Microcontroller 
Unit Products 
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the 
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products. 

1. Precaution against Electrostatic Discharge (ESD) 

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps 

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be 

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. 

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and 

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor 

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices. 
2. Processing at power-on 

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of 

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset 

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins 

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the 

level at which resetting is specified. 
3. Input of signal during power-off state 

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O 

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal 

elements. Follow the guideline for input signal during power-off state as described in your product documentation. 
4. Handling of unused pins 

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are 

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of 

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal 

become possible. 
5. Clock signals 

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program 

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator 

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal 

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable. 
6. Voltage application waveform at input pin 

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL 

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the 

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.). 
7. Prohibition of access to reserved addresses 

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these 

addresses as the correct operation of the LSI is not guaranteed. 
8. Differences between products 

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. 

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms 

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, 

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product. 
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