
 Application Note

R01AN3130EJ0120 Rev.1.20 Page 1 of 69
Jan.31.22

Bluetooth® Low Energy Protocol Stack
Virtual UART Application
Introduction
This manual describes the software configuration, functions, operation check procedure, and implementation
details of the Virtual UART Application that uses Bluetooth LE wireless technology.

The Virtual UART Application runs with Renesas Bluetooth® Low Energy Protocol Stack on a Renesas
RL78/G1D device as embedded configuration and provides the following functions.

- Simple AT command function to control and configure Bluetooth LE connection

- Virtual UART function to send / receive characters or binary data to / from a remote device over
Bluetooth LE communication

- A function to select communication with response or without response in Bluetooth LE communication

Target Device
RL78/G1D

Related Documents

Document Name Document No.

Bluetooth® Low Energy Protocol Stack

 User’s Manual R01UW0095E

API Reference Manual: Basics R01UW0088E

Quick Start Guide R01AN2767E
 GUI Tool R01AN2469E

Bluetooth® Specification

 Vol 6. Low Energy Controller volume Core_v4.2

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 2 of 69
Jan.31.22

Contents

1. Overview .. 5
1.1 Application Behavior .. 5

2. Architecture ... 6
2.1 Software Architecture .. 6
2.2 File Composition .. 7

3. Application Mode ... 9
3.1 mode .. 9
3.2 Selection of data communication with response or without response .. 9
3.3 Selection of data to communicate ... 10
3.3.1 Character data transmission and reception .. 10
3.3.2 Binary data transmission and reception .. 10

4. Simple AT Command Mode .. 11
4.1 Details of Simple AT Command .. 12
4.1.1 AT-C .. 12
4.1.2 AT-C=<addr> ... 12
4.1.3 AT-R .. 12
4.1.4 AT-AS=<addr> .. 13
4.1.5 AT-AS? .. 13
4.1.6 AT-AP=<addr> .. 13
4.1.7 AT-AP? .. 14
4.1.8 AT-DS .. 14
4.1.9 AT-S? .. 14
4.1.10 AT-CI=<con_intv> ... 15
4.1.11 AT-CI? ... 15
4.1.12 ATE0 .. 16
4.1.13 ATE1 .. 16

5. Virtual UART Mode .. 17
5.1 Virtual UART Profile .. 17
5.1.1 Data communication with response .. 17
5.1.2 Data communication without response ... 18
5.2 Buffering of the Send Characters .. 19
5.2.1 Data communication with response .. 19
5.2.2 Data communication without response ... 20
5.3 Encryption of BLE Connection .. 20

6. Power Saving Function .. 21
6.1 CPU STOP Mode .. 21
6.2 Changes of Advertising Interval .. 21

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 3 of 69
Jan.31.22

7. Build and Operational Check ... 22
7.1 Environment .. 22
7.2 Build Procedure ... 23
7.2.1 e2 studio (32-bit version/64-bit version) ... 23
7.2.2 CS+ ... 23
7.2.3 BLE Protocol Stack / EEPROM emulation library ... 24
7.3 Preparation for Execution Environment .. 25
7.4 Usage Example ... 26
7.4.1 Character data transmission and reception .. 26
7.4.2 Binary data transmission and reception .. 30

8. Implementation Details .. 35
8.1 Virtual UART Profile .. 35
8.2 Advertising ... 37
8.3 Connection .. 37
8.4 Pairing ... 38
8.5 Virtual UART Function API .. 39
8.5.1 Virtual UART Definitions .. 39
8.5.2 Function ... 41
8.5.2.1 RBLE_VUART_Server_Enable ... 41
8.5.2.2 RBLE_VUART_Server_Disable .. 41
8.5.2.3 RBLE_VUART_Server_Send_Indication .. 41
8.5.2.4 RBLE_VUART_Server_Send_Notification .. 42
8.5.2.5 RBLE_VUART_Client_Enable .. 42
8.5.2.6 RBLE_VUART_Client_Disable ... 42
8.5.2.7 RBLE_VUART_Client_Send_Chars ... 43
8.5.2.8 RBLE_VUART_Client_Send_Chars_Noresp .. 43
8.5.3 Event ... 44
8.5.3.1 RBLE_VUART_EVENT_SERVER_ENABLE_CMP ... 44
8.5.3.2 RBLE_VUART_EVENT_SERVER_WRITE_REQ .. 44
8.5.3.3 RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ ... 44
8.5.3.4 RBLE_VUART_EVENT_SERVER_INDICATION_CFM ... 44
8.5.3.5 RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP .. 45
8.5.3.6 RBLE_VUART_EVENT_CLIENT_ENABLE_CMP ... 45
8.5.3.7 RBLE_VUART_EVENT_CLIENT_INDICATION ... 45
8.5.3.8 RBLE_VUART_EVENT_CLIENT_NOTIFICATION .. 45
8.5.3.9 RBLE_VUART_EVENT_CLIENT_WRITE_RSP ... 46
8.5.3.10 RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP ... 46
8.6 Application State Change .. 47
8.7 Application Detailed Sequence ... 48
8.7.1 Boot Sequence .. 48

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 4 of 69
Jan.31.22

8.7.2 Connection Sequence ... 49
8.7.3 Data Transfer Sequence (Write Request/Indication) .. 50
8.7.4 Data Transfer Sequence (Write Command/Notification) ... 50
8.7.5 Disconnection Sequence ... 51
8.8 Macro Settings... 52
8.8.1 Character data/Binary data transmission and reception setting ... 52
8.8.2 Local echo setting ... 52
8.9 Others .. 52
8.9.1 Caution when implementing the program to connect to the application ... 52
8.9.2 Read processing of DIP switch that select mode in binary data transmission / reception 53
8.9.3 Read processing of DIP switch that select whether to respond in data transmission / reception 53
8.9.4 CFG_CON macro .. 53
8.9.5 Data transmission from the terminal or host microcomputer .. 54
8.9.5.1 Example of data transmission during communication with response ... 54
8.9.5.2 Example of data transmission during communication without response .. 55

9. Appendix .. 56
9.1 ROM size, RAM size ... 56
9.2 Operational Check by Using the GUI-Tool .. 57
9.2.1 Preparation .. 57
9.2.2 Operation ... 58

Revision History .. 69

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 5 of 69
Jan.31.22

1. Overview
This manual describes the software configuration, functions, operation check procedure, and implementation
details of the Virtual UART Application (hereinafter referred to as "application") that uses Bluetooth LE
wireless technology.

The application runs with Renesas Bluetooth® Low Energy Protocol Stack (hereinafter referred to as "BLE
Protocol Stack") on a Renesas RL78/G1D device as embedded configuration and provides the following
functions.

- Simple AT command function to control and configure Bluetooth LE connection

- Virtual UART function to send / receive characters or binary data to / from a remote device over
Bluetooth LE communication

 Character data transmission and reception operation

 Binary data transmission and reception operation

- A function to select communication with response or without response in Bluetooth LE communication

 With response: Write Request, Indication

 Without response: Write Command, Notification

1.1 Application Behavior
Figure 1-1 shows the application execution environment setup.

Prepare two RL78/G1D evaluation boards and write the application onto them. Then connect them
respectively to PC via USB cable. A user operates the application through a terminal software.

Simple AT command can be used to establish, disconnect and configure Bluetooth LE connection. After
establishing a Bluetooth LE connection, data typed on the local terminal are sent to a remote device and are
displayed on the remote terminal. In the contrary, data typed on the remote terminal are sent to the local
device and are displayed on the local terminal.

Figure 1-1: Application execution environment

Terminal Software Terminal Software

USB Cable

Bluetooth LE
Communication

RL78/G1D
evaluation board

RL78/G1D
evaluation board

USB Cable

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 6 of 69
Jan.31.22

2. Architecture
2.1 Software Architecture
Figure 2-1 shows software architecture of this application.

Figure 2-1: Software architecture

The software components are listed below.

Table 2-1: Software components

Component Description

Virtual UART Application The application is used for execution of simple AT command and
transmission of characters or binary data.

Virtual UART profile is defined to transfer characters.

Console Driver The driver is used to relay data between a terminal software and
Virtual UART application by using UART Driver functionality.

UART Driver The device driver to control UART IP of RL78/G1D.

BLE Protocol Stack Renesas Bluetooth® Low Energy Protocol Stack. Refer to "Bluetooth®
Low Energy Protocol Stack User’s manual" (R1UW0095E).

RF/BB

BLE Protocol Stack

UART

UART Driver

Console Driver

Virtual UART Application

Virtual UART Profile

RL78/G1D

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 7 of 69
Jan.31.22

2.2 File Composition
The application is implemented based on BLE software which include BLE Protocol Stack. In this section,
only files that have modified or added to the BLE software are listed. The modified files are marked with (M)
and the added files are marked with (A).

r01an3130xx0114-rl78g1d-ble-vuart/

 ├── Project_Source/

 │ ├── rBLE/

 │ │ └── src/

 │ │ ├── sample_app/
 │ │ │ ├── r_vuart_app.c (A) ┐ Virtual UART Application
 │ │ │ ├── r_vuart_app.h (A) │
 │ │ │ ├── r_vuart_app_param.c (A) ┘
 │ │ │ ├── r_vuart_console.c (A) ┐ Console Driver
 │ │ │ └── r_vuart_console.h (A) ┘
 │ │ └── sample_profile/
 │ │ └── vuart/
 │ │ ├── vuart.h (A) ┐ Virtual UART Profile
 │ │ ├── vuartc.c (A) │
 │ │ ├── vuartc.h (A) │
 │ │ ├── vuarts.c (A) │
 │ │ └── vuarts.h (A) ┘
 │ └── renesas/

 │ ├── src/

 │ │ ├── arch/

 │ │ │ └── rl78/

 │ │ │ ├── arch_main.c (M) Modified to enable low power mode
 │ │ │ ├── db_handle.h (M) ┐ Modified for Virtual UART Profiles
 │ │ │ ├── ke_conf.c (M) │
 │ │ │ ├── prf_config.c (M) │
 │ │ │ └── prf_config.h (M) ┘
 │ │ └── driver/

 │ │ ├── dataflash/

 │ │ │ ├── eel_descriptor_t02.c (M) ┐ Modified to add definitions to
 │ │ │ └── eel_descriptor_t02.h (M) ┘ access the Data Flash
 │ │ └── uart/

 │ │ └── uart.c (M) Modified to enable low power mode
 │ └── tools/

 │ └── project/

 │ ├── CS_CCRL/ (M) ┐
 │ ├── CS_CACX/ (M) │Project files for
 │ └── e2studio/ (M) ┘development environments
 ├── ROM_File/

 │ ├── ccrl/ ┐
 │ │ ├──RL78_G1D_CCE(VUART_CHAR).hex │ccrl generated firmware
 │ │ └──RL78_G1D_CCE(VUART_BIN).hex (A) ┘
 │ └── ca78k0r/ ┐
 │ ├──RL78_G1D_CE(VUART_CHAR).hex │ca78k0r generated firmware
 │ └──RL78_G1D_CE(VUART_BIN).hex (A) ┘

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 8 of 69
Jan.31.22

 │
 └── Macro/ ┐
 ├── teraterm_debug_mode_on.ttl │
 ├── teraterm_debug_mode_off.ttl │Tera Term macro
 ├── tt_send_bin_1.ttl │
 └── tt_send_bin_2.ttl (A) ┘

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 9 of 69
Jan.31.22

3. Application Mode
3.1 mode
The application has two modes as shown in Table 3-1.

Table 3-1: Application mode

Application Mode Description

Simple AT Command
Mode

This mode is used for execution of the simple AT command to control and
configure a Bluetooth LE connection. In this mode, characters are never sent
to the remote device.

Refer to "4. Simple AT Command Mode" for the detail.

Virtual UART Mode This mode is used for transmission of character data or binary data over
Bluetooth LE communication. In this mode, data typed during the application
in disconnect state are not sent to the remote device.

Refer to "5. Virtual UART Mode" for the detail.

3.2 Selection of data communication with response or without response
When data communication in virtual UART mode, you can select the communication method with or without
response with the DIP switch on the RL78/G1D evaluation board.

Table 3-2: Setting of with response or without response

Number Setting Description

SW6-4 OFF (left side) Data communication with response.

from a client to a server : Write Request
from a server to a client : Indication

 ON (right side) Data communication without response.

from a client to a server : Write Command
from a server to a client : Notification

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 10 of 69
Jan.31.22

3.3 Selection of data to communicate
In the application, you can select "3.3.1 Character data transmission and reception" or "3.3.2 Binary data
transmission and reception" in the macro settings. For macro settings, refer to "8.8.1 Character data/Binary
data transmission and reception setting".

3.3.1 Character data transmission and reception
In the character data transmission and reception, ASCII printable characters and new-line character can be
transmitted.

The application mode shown in Table 3-1 can be switched by entering the escape key (ASCII code: 0x1B) in
the terminal software.

For an example of using character data transmission and reception, refer to "7. Build and Operational
Check"-"7.4.1 Character data transmission and reception".

3.3.2 Binary data transmission and reception
In the binary data transmission and reception, all data including character data can be transmitted.

The application mode shown in Table 3-1 can be switched by the DIP switch on the RL78/G1D evaluation
board.

For an example of using binary data transmission and reception, refer to "7. Build and Operational Check"-
"7.4.2 Binary data transmission and reception".

Table 3-3: Operation settings for sending and receiving binary data

Number Setting Description

SW6-1 OFF (left side) Simple AT Command Mode.

 ON (right side) Virtual UART Mode.

Note: In the virtual UART mode for sending and receiving binary data,
local echo of the data input to the terminal software is prohibited.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 11 of 69
Jan.31.22

4. Simple AT Command Mode
In Simple AT Command Mode, a user can control and configure Bluetooth LE connection by simple AT
command.

Table 4-1 shows the simple AT commands that the application supports.

Table 4-1: List of simple AT commands

Simple AT command Description

AT-C Create a connection to the address specified by AT-AP=<addr>.

AT-C=<addr> Create a connection to the address specified by <addr>.

AT-R When the device is in connect state, disconnect the connection and start
advertising. When the device is in disconnect state, start advertising.

AT-AS=<addr> Set <addr> as the public device address of the local device.

AT-AS? Display the public device address of the local device.

AT-AP=<addr> Set the address used by AT-C.

AT-AP? Display the address used by AT-C.

AT-DS Display the address of devices which support virtual UART profile.

AT-S? Display the application state. Connect state or Disconnect state.

AT-CI=<con_intv> Change Connection Interval.

AT-CI? Display Connection interval setting value.

ATE0 Disable local echo.

ATE1 Enable local echo.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 12 of 69
Jan.31.22

4.1 Details of Simple AT Command
4.1.1 AT-C

Description Create a connection to the address specified by AT-AP=<addr>

Response OK

Success

ERROR Failed due to the application is connect state

CONNECT Connection established

Command
Example

AT-C

OK

CONNECT

4.1.2 AT-C=<addr>
Description Create a connection to the address specified by <addr>

Response OK Success

ERROR Failed due to the application is connect state

CONNECT Connection established

Command
Example

AT-C=CBA987654321 (Set CB:A9:87:65:43:21)

OK

CONNECT

4.1.3 AT-R
Description When the application is in connect state, disconnect the connection and start advertising.

When the application is in disconnect state, start advertising.

Response OK Success

DISCONNECT Disconnected

Command
Example

[Connect state]

AT-R

OK

DISCONNECT

[Disconnect state]

AT-R

OK

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 13 of 69
Jan.31.22

4.1.4 AT-AS=<addr>
Description Set <addr> as the local device public device address. The address set by this command is

preserved over power cycles.

The address set by this command is reflected after reset. Please reset the system for
example by pushing the reset button on the board.

Response OK Success

ERROR Failed due to the application is connect state

Command
Example

AT-AS=CCCCBBBBAAAA (Set CC:CC:BB:BB:AA:AA)

OK

4.1.5 AT-AS?
Description Display the local device public address.

Response OK Success

Command
Example

AT-AS?

-AS: CCCCBBBBAAAA (The address is CC:CC:BB:BB:AA:AA)

OK

4.1.6 AT-AP=<addr>
Description Set <addr> as the public device address used by AT-C. The address set by this command

is preserved over power cycles.

Response OK Success

ERROR Failed due to the application is connect state

Command
Example

AT-AP=CCCCBBBBAAAA (Set CC:CC:BB:BB:AA:AA)

OK

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 14 of 69
Jan.31.22

4.1.7 AT-AP?
Description Display the public device address used by AT-C.

Response OK Success

Command
Example

AT-AP?

-AP: CCCCBBBBAAAA (The address is CC:CC:BB:BB:AA:AA)

OK

4.1.8 AT-DS
Description Display the address of the device which support virtual UART profile.

Whether a device is supporting virtual UART profile is confirmed by checking the
advertising data includes virtual UART service UUID.

Response OK Success

ERROR Failed due to the application is connect state

Command
Example

AT-DS

-DS: CBA987654321 (The address is CB:A9:87:65:43:21)

-DS: CCCCBBBBAAAA (The address is CC:CC:BB:BB:AA:AA)

OK

4.1.9 AT-S?
Description Display the local device address connect state. The state is CONNECT or DISCONNECT.

Response OK Success

Command
Example

[Connect state]

AT-S?

CONNECT

OK

[Disconnect state]

AT-S?

DISCONNECT

OK

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 15 of 69
Jan.31.22

4.1.10 AT-CI=<con_intv>
Description Change Connection Interval.

Execute this command in Disconnect state, the application retains the con_intv value
internally, and the value will be used for following connection. This command cannot
change Connection Interval in Connect state.

Connection Interval is calculated by following calculation.

Connection Interval = con_intv * 1.25[ms]

Ex) When you want to set 20[ms], execute AT-CI=16

The default value of Connection Interval is 30[ms].

Refer Figure 8-3 for Connection Interval Change sequence. After establishing the
connection, Peripheral device requests Connection Interval parameter update to the
Central device. Central device can decline the request depending on the restriction that
Central device have. You can check whether requested Connection Interval is accepted by
executing “AT-CI?” command.

Response OK Success

ERROR
Failed due to the application is connect state

The setting value is out of range (Range: 6~3200)

Command
Example

[Disconnect state]

AT-CI=20

OK

AT-CI=3201

[Connect state]

AT-CI=20

ERROR

4.1.11 AT-CI?
Description When execute this command in Connect state, display Connection Interval of the

connection. When execute this command in Disconnect state, display the retained
Connection Interval.

To compute the actual Connection Interval, multiply the response value by 1.25[ms].

Ex) If the response is “-CI: 20”, Connection Interval is 20 * 1.25[ms] = 25[ms].

Response OK Success

Command
Example

AT-CI?

-CI: 20

OK

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 16 of 69
Jan.31.22

4.1.12 ATE0
Description Disable local echo.

Response OK Success

Command
Example

ATE0

OK

4.1.13 ATE1
Description Enable local echo.

Response OK Success

Command
Example

ATE1

OK

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 17 of 69
Jan.31.22

5. Virtual UART Mode
After establishing Bluetooth LE connection between two devices, a user can exchange data with the remote
device.

In the character data transmission and reception, ASCII printable characters and new-line character can be
transmitted. In the binary data transmission and reception, all data including character data can be transmitted.

5.1 Virtual UART Profile
Data transfer is enabled by GATT based virtual UART profile. Refer to 8.1.

The connection initiating device, which is executes AT-C command, works as GATT client and the remote
device works as GATT server. Below is data transfer details.

5.1.1 Data communication with response
- To send data from the client to the server, send “Write Request” to the server. The server receives the

data, and replies “Response” to the client.

- To send data from the server to the client, send “Indication” to the client. The client receives the data,
and replies “Confirmation” to the server.

The data reception by the remote device can be confirmed by waiting for the "Response" or "Confirmation"
reply from the remote device.

Figure 5-1 shows the data transfer sequence.

Figure 5-1: Data transfer sequence (with response)

Air

Send "Hello"
Write Request

Receive "Hello"
Response

Send "Bye"
Indication

Receive "Bye"
Confirmation

Local
Terminal

GATT
Client

GATT
Server

Remote
Terminal

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 18 of 69
Jan.31.22

5.1.2 Data communication without response
- To send data from the client to the server, send “Write Command” to the server.

- To send data from the server to the client, send “Notification” to the client.

Figure 5-2 shows the data transfer sequence.

Figure 5-2: Data transfer sequence (without response)

Air

Send "Hello"
Write Commad

Receive "Hello"

Send "Bye"
Notification

Receive "Bye"

Local
Terminal

GATT
Client

GATT
Server

Remote
Terminal

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 19 of 69
Jan.31.22

5.2 Buffering of the Send Characters
In order to avoid the loss of send data, the application have a send data buffer.

5.2.1 Data communication with response
To send data within the period between “Write Request” and “Response” or “Indication” and “Confirmation” is
not possible. So data typed within this period can be lost.

Virtual UART profile has a buffer and stores data typed within this period. If there are data in the buffer when
receiving “Response” or “Confirmation” from the remote device, the profile sends it soon.

Figure 5-3 shows a send data buffering sequence.

Figure 5-3: Send data buffering sequence (with response)

Send "He"
Write Request 'He'

Send "ll"
Store characters to the buffer

Send "o"
Store characters to the buffer

Response

Write Request 'llo'

Local
Terminal

GATT
Client

ll …

oll …

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 20 of 69
Jan.31.22

5.2.2 Data communication without response
After sending data with Write Command or Notification, use the timer function (ke_timer_set) of RWKE to
wait for a certain period of time and buffer the data from the terminal software to some extent. Then send it
after the timer has expired. This prevents the communication efficiency from dropping because it is sent in
small units (1 byte or 2 bytes) if it is sent every time data is received from the terminal software. It also
prevents the data entered by the user from being lost.

Figure 5-4 shows a send data buffering sequence.

Figure 5-4: Send data buffering sequence (without response)

5.3 Encryption of BLE Connection
To protect the Bluetooth LE connection from such as eavesdropping, the encryption of the Bluetooth LE
connection is enabled.

The application does not hold the pairing information, it performs pairing on each connection.

Send "He"
Write Command 'He'

 ke_set_timer
Send "ll"

Store characters to the buffer

Send "o"
Store characters to the buffer

Write Command 'llo'

Local
Terminal

GATT
Client

ll …

oll …

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 21 of 69
Jan.31.22

6. Power Saving Function
6.1 CPU STOP Mode
When 3 seconds have elapsed after the last data transfer, CPU enters STOP mode in order to reduce the
power consumption. During STOP mode, the blinking of the LED1/LED2 becomes slower or stops. If data
transfer is occurred when CPU is in STOP mode, CPU returns from STOP mode soon.

6.2 Changes of Advertising Interval
When 30 seconds has elapsed after advertising started, the application sets a longer advertising interval in
order to reduce the power consumption. The longer advertising interval is reset by re-enabling advertising
with connection and disconnection or AT-R.

The default advertising interval is 30 milliseconds and the longer advertising interval is 3 seconds.

If you do not want to change the advertising interval, comment out the code below.

r_vuart_app.c, line 60, line1009

60: #define APP_ADV_LOW_POWER_DURATION (3000)

1009: ke_timer_set(RBLE_APP_ADV_EVT, TASK_CON_APPL, APP_ADV_LOW_POWER_DURATION);

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 22 of 69
Jan.31.22

7. Build and Operational Check
7.1 Environment
Below is the environment to use for application build and operation check.

- Hardware

- Host PC

- PC/AT™ compatible machine

- Processor Speed : 1.6GHz or higher

- Main Memory : 1GB or more

- Interface : USB2.0 (Used for E1 and RL78/G1D evaluation board)

- Device

- RL78/G1D evaluation board [RTK0EN0001010001BZ]

- Tool

- Supports the following on-chip debuggers.
･E1 emulator
･E2 emulator
･E2 emulator Lite

Note: The E1 emulator is used in this application note. We have already discontinued production of
the E1 emulator due to components of the product having reached their EOL (end of life, i.e. end of
production). Please click on the following link to confirm the details and our successor products.
>> Tool News: [Notification] Advance Notice of E1 Emulator Product End of Life (EOL)

- Software

- Windows® 7 or later

- Supports the following integrated environments.
･e2 studio 2020-07 (64-bit version) / RL78 Family C Compiler Package V1 (without IDE) V1.09.00
･e2 studio V7.8.0 (32-bit version) / RL78 Family C Compiler Package V1 (without IDE) V1.09.00
･Renesas CS+ for CC V8.04.00 / RL78 Family C Compiler Package V1 (without IDE) V1.09.00
･Renesas CS+ for CA, CX V4.04.00 / Renesas CA78K0R V1.72

- Renesas Flash Programmer v3.06.02

- Tera Term Version 4.105

- UART-USB conversion device driver

Note: It may be that device driver of UART-USB conversion IC “FT232RL” is requested is in the first
connection with host. In this case, you can get the device driver from below link.

FTDI (Future Technology Device International) – Drivers
https://ftdichip.com/drivers/d2xx-drivers/

https://www.renesas.com/document/tnn/notification-end-life-eol-notice-e1-emulator
https://ftdichip.com/drivers/d2xx-drivers/

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 23 of 69
Jan.31.22

7.2 Build Procedure
The application can be built using the following environment.

Since all the files required for build are included in this application note, there is no need to download the
BLE protocol stack or EEPROM emulation library.

- e2 studio 2020-07 (64-bit version) / RL78 Family C Compiler Package V1 (without IDE) V1.09.00

- e2 studio V7.8.0 (32-bit version) / RL78 Family C Compiler Package V1 (without IDE) V1.09.00

- Renesas CS+ for CC V8.04.00 / RL78 Family C Compiler Package V1 (without IDE) V1.09.00

- Renesas CS+ for CA, CX V4.04.00 / Renesas CA78K0R V1.72

Note: Please refer to "8.8 Macro Settings" and set the application before building.

7.2.1 e2 studio (32-bit version/64-bit version)
1. Launch e2 studio.

2. Right click on “Project Explorer” and select “Import…” from the dropdown menu.

3. “Import” window is popped up and select “Existing Projects into Workspace” and click “Next >”.

4. Fill “Select root directory:” form with the project folder shown in Table 7-1 and make sure that the project
you selected is displayed in “Projects:” and click “Finish”. Then the window is closed.

5. Right click on the project just imported on “Project Explorer” and Select “Build Project” from the
dropdown menu.

6. Refer Table 7-1 for the Hex file firmware path.

Table 7-1: Project file and Hex file Location (e2 studio)

e2 studio with CC-RL
Project Folder \Project_Source\renesas\tools\project\e2studio\BLE_Embedded\rBLE_Emb
Firmware \Project_Source\renesas\tools\project\e2studio\BLE_Embedded\rBLE_Emb\DefaultBuild\

rBLE_Emb_CCRL.hex

7.2.2 CS+
1. Double click the project file shown in Table 7-2.

2. Right click on “BLE_Emb” in “Project Tree” and select “Build BLE_Emb” from the dropdown menu.

3. Refer Table 7-2 for the Hex file firmware path.

Table 7-2: Project file and Hex file Location (CS+)

CS+ for CC
Project File \Project_Source\renesas\tools\project\CS_CCRL\BLE_Embedded\BLE_Embedded.mtpj

Firmware \Project_Source\renesas\tools\project\CS_CCRL\BLE_Embedded\rBLE_Emb\DefaultBuild\
rBLE_Emb_CCRL.hex

CS+ for CA, CX
Project File \Project_Source\renesas\tools\project\CS_CACX\BLE_Embedded\BLE_Embedded.mtpj

Firmware \Project_Source\renesas\tools\project\CS_CACX\BLE_Embedded\BLE_Emb\DefaultBuild\
BLE_Emb.hex

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 24 of 69
Jan.31.22

7.2.3 BLE Protocol Stack / EEPROM emulation library
The BLE protocol stack and EEPROM emulation library used in this application can be download from the

Renesas Web page.

- BLE protocol stack

- https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rl78-family

- EEPROM emulation library

- EEPROM Emulation Library Pack02 Package Ver.2.00(for CA78K0R/CC-RL Compiler) for
RL78 Family

- https://www.renesas.com/software-tool/data-flash-libraries

NOTE: The link address can be changed without notice.

https://www.renesas.com/software-tool/bluetooth-low-energy-protocol-stack-rl78-family
https://www.renesas.com/software-tool/data-flash-libraries

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 25 of 69
Jan.31.22

7.3 Preparation for Execution Environment
1. Write the firmware onto two RL78/G1D evaluation boards. Refer to "Bluetooth® Low Energy Protocol

Stack Quick Guide" (R01AN2767E) Section 5.

You can use the pre-built HEX file included in this application note. This application note uses the
CC-RL HEX file.

Table 7-3: Pre-built HEX file

Function File

Character data transmission and reception \ROM_File\ccrl\RL78_G1D_CCE(VUART_CHAR).hex

Binary data transmission and reception \ROM_File\ccrl\RL78_G1D_CCE(VUART_BIN).hex

2. As shown in Figure 1-1, connect both RL78/G1D evaluation boards to PCs respectively.

3. Launch a terminal software on both PCs and configure them as Table 7-4. This application note uses
Tera Term as the terminal software.

Table 7-4: Terminal software configuration

Setting Value

New-line Receive LF

New-line Send CR

Baud rate 4800 [bps]

Data length 8 [bit]

Parity bit none

Stop bit 1 [bit]

Flow control none

4. Set the DIP switches on the two RL78/G1D evaluation boards according to Table 7-5.

Table 7-5: DIP switch setting

DIP switch Setting

SW6-1
OFF (left side: Simple at command mode)

Note: Used in "7.4.2 Binary data transmission and reception"

SW6-4 OFF (left side: Data communication with response)

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 26 of 69
Jan.31.22

7.4 Usage Example
7.4.1 Character data transmission and reception
In this example, set device addresses, establish a Bluetooth LE connection, transfer characters and
disconnect the connection.

Figure 7-1 shows execution results of the terminal. Figure 7-2 and Figure 7-3 shows the sequence diagram
of this example usage. The red numbers in figures are corresponding to the numbers in the following
procedures.

1. Set local and remote device address. To set the device address use “AT-AS=<addr>” command. For
example, to set 12:34:56:78:9A:BC, execute “AT-AS=123456789ABC”. To display current device
address settings, use “AT-AS?”.
If a device address is 00:00:00:00:00:00 or the local device and the remote device have the same
addresses, you need to change the device address. In the following example, we assume that you set
12:34:56:78:9A:BC to the local device address, CB:A9:87:65:43:21 to the remote device address.

2. When you change a device address by “AT-AS=<addr>” command, you need to reset the device to
reflect the change by pushing RESET button (SW5) on the board.

3. Execute “AT-AP=CBA987654321” to set the target device address for a connection.

4. Execute “AT-C” on the local terminal. This command start the connection to the device which have the
address CB:A9:87:65:43:21. After the connection established, “CONNECT” response is displayed on
both of the local and remote terminal.

5. Type ESC key on the local terminal to switch the application mode to Virtual UART mode.

6. Set the DIP switch (SW6-4) of the local device to OFF (left side: communication with response).

7. Type “Hello” to the local terminal. Then “Hello” is displayed on the remote terminal.

8. Type ESC key on the remote terminal to switch the application mode to Virtual UART mode.

9. Set the DIP switch (SW6-4) of the remote device to OFF (left side: communication with response).

10. Type “Bye” on the remote terminal. Then “Bye” is displayed on the local terminal.

11. Set the DIP switch (SW6-4) of the local device to ON (right side: communication without response).

12. Type “Hello” to the local terminal. Then “Hello” is displayed on the remote terminal.

13. Set the DIP switch (SW6-4) of the remote device to ON (right side: communication without response).

14. Type “Bye” on the remote terminal. Then “Bye” is displayed on the local terminal.

15. Type ESC key on the local terminal to switch the application mode to AT command mode.

16. Execute “AT-R” on the local terminal to disconnect the connection. After completing the disconnection,
“DISCONNECT” response is displayed on both of the local and remote terminal.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 27 of 69
Jan.31.22

Figure 7-1: Terminal result

Terminal of the local device Terminal of the remote device
AT-AS=123456789ABC AT-AS=CBA987654321

OK OK
AT-AP=CBA987654321

CONNECT
OK
AT-C Hello

OK [Virtual UART Mode]
Bye

CONNECT Hello
Bye

[Virtual UART Mode]
Hello DISCONNECT
Bye
Hello
Bye

[AT Command Mode]
AT-R

OK

DISCONNECT

1.

2. Reset this device
3.

4.

5. Press Esc key

1.

2. Reset this device

4.

8. Press Esc key

7.

7.

10.

10.
12.

12.
14.

14.

15. Press Esc key
16.

16.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 28 of 69
Jan.31.22

Figure 7-2: Example usage sequence of character data transmission and reception (1/2)

Air

Power ON Power ON

Advertising

Advertising

AT-AS=123456789ABC AT-AS=CBA987654321

OK OK

Reset Reset

Advertising

Advertising

AT-AP=CBA987654321

OK

Advertising

AT-C Advertising

OK

Establish a Connection

CONNECT CONNECT

Local
Terminal

Local
Device

Remote
Device

Remote
Terminal

Peripheral/GATT ServerCentral/GATT Client

AT Command Mode AT Command Mode

AT Command Mode AT Command Mode

1

2

1

2

3

4 4

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 29 of 69
Jan.31.22

Figure 7-3: Example usage sequence of character data transmission and reception (2/2)

Air

ESC Key

Hello
Write Request

Hello
Response

ESC Key

Bye
Indication

Bye
Confirmation

Hello
Write Command

Hello

Bye
Notification

Bye

ESC Key

AT-R

OK
Disconnect

DISCONNECT DISCONNECT

Advertising

Advertising

Virtual UART Mode

Virtual UART Mode

AT Command Mode

Dip Switch SW6-4=OFF

Dip Switch SW6-4=OFF

Dip Switch SW6-4=ON

Dip Switch SW6-4=ON

Local
Terminal

Local
Device

Remote
Device

Remote
Terminal

Peripheral/GATT ServerCentral/GATT Client

5

6

7 7

8

9

1010

11

12 12

13

14

15

16 16

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 30 of 69
Jan.31.22

7.4.2 Binary data transmission and reception
In this example, set device addresses, establish a Bluetooth LE connection, transfer binary data and
disconnect the connection.

Also, use the macro function of the terminal when binary data transmission and reception. The macro files to
be used is shown below.

Table 7-6: Macro file (\r01an3130xx0114-rl78g1d-ble-vuart\Macro\)

File name Description

tt_debug_mode_on.ttl
Turn on the debug mode of Tera Term.

The terminal display will be in hexadecimal.

tt_debug_mode_off.ttl
Turn off the debug mode of Tera Term.

The terminal display will be in the initial state.

tt_send_bin_1.ttl Sends binary data (0x00 0x01 0x02 0x03 0x04).

tt_send_bin_2.ttl Sends binary data (0xF0 0xF1 0xF2 0xF3 0xF4).

Figure 7-4 shows execution results of the terminal. Figure 7-5 and Figure 7-6 shows the sequence diagram
of this example usage. The red numbers in figures are corresponding to the numbers in the following
procedures.

1. Set the DIP switch (SW6-1) of local and remote device to OFF (left side: Simple AT command mode).

2. Set local and remote device address. To set the device address use “AT-AS=<addr>” command. For
example, to set 12:34:56:78:9A:BC, execute “AT-AS=123456789ABC”. To display current device
address settings, use “AT-AS?”.
If a device address is 00:00:00:00:00:00 or the local device and the remote device have the same
addresses, you need to change the device address. In the following example, we assume that you set
12:34:56:78:9A:BC to the local device address, CB:A9:87:65:43:21 to the remote device address.

3. When you change a device address by “AT-AS=<addr>” command, you need to reset the device to
reflect the change by pushing RESET button (SW5) on the board.

4. Execute “AT-AP=CBA987654321” to set the target device address for a connection.

5. Execute “AT-C” on the local terminal. This command start the connection to the device which have the
address CB:A9:87:65:43:21. After the connection established, “CONNECT” response is displayed on
both of the local and remote terminal.

6. Set the DIP switch (SW6-1) of local and remote device to ON (right side: Virtual UART mode).

7. Set the DIP switch (SW6-4) of the local device to OFF (left side: communication with response).

8. Run the macro on the local and remote device terminals to put the terminal in debug mode.
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO"
window is popped up and select the macro file "tt_debug_mode_on.ttl" in Table 7-6. click "Open".

9. Send binary data from the local device.
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO"
window is popped up and select the macro file "tt_send_bin_1.ttl" in Table 7-6. click "Open".
Then "00 01 02 03 04" is displayed on the remote terminal.

10. Send binary data from the remote device.
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO"
window is popped up and select the macro file "tt_send_bin_2.ttl" in Table 7-6. click "Open".
Then "F0 F1 F2 F3 F4" is displayed on the remote terminal.

11. Set the DIP switch (SW6-4) of the local and remote device to ON (right side: communication without
response).

12. Send binary data from the local device.
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO"

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 31 of 69
Jan.31.22

window is popped up and select the macro file "tt_send_bin_2.ttl" in Table 7-6. click "Open".
Then "F0 F1 F2 F3 F4" is displayed on the remote terminal.

13. Send binary data from the remote device.
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO"
window is popped up and select the macro file "tt_send_bin_1.ttl" in Table 7-6. click "Open".
Then "00 01 02 03 04" is displayed on the local terminal.

14. Run the macro on the local and remote device terminals to put the terminal in initial mode.
Select "Control" from the terminal menu and select "Macro" from the dropdown menu. "MACRO"
window is popped up and select the macro file "tt_debug_mode_off.ttl" in Table 7-6. click "Open".

15. Set the DIP switch (SW6-1) of local and remote device to OFF (left side: Simple AT command mode).

16. Execute “AT-R” on the local terminal to disconnect the connection. After completing the disconnection,
“DISCONNECT” response is displayed on both of the local and remote terminal.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 32 of 69
Jan.31.22

Figure 7-4: Terminal result

Terminal of the local device Terminal of the remote device
AT-AS=123456789ABC AT-AS=CBA987654321

OK OK

AT-AP=CBA987654321 CONNECT
00 01 02 03 04 F0 F1 F2 F3 F4

OK
AT-C

OK
DISCONNECT

CONNECT
F0 F1 F2 F3 F4 00 01 02 03 04 AT-R

OK

DISCONNECT

2. 2.

3. Reset this device 3. Reset this device

4.

5.

5.

9.

10.

12.

13. 16.

16.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 33 of 69
Jan.31.22

Figure 7-5: Example usage sequence of binary data transmission and reception (1/2)

Air

Power ON Power ON

Advertising

Advertising

AT-AS=123456789ABC AT-AS=CBA987654321

OK OK

Reset Reset

Advertising

Advertising

AT-AP=CBA987654321

OK

Advertising

AT-C Advertising

OK

Establish a Connection

CONNECT CONNECT

Local
Terminal

Local
Device

Remote
Device

Remote
Terminal

Peripheral/GATT ServerCentral/GATT Client

AT Command Mode AT Command Mode

AT Command Mode AT Command Mode

2

3

2

3

4

5 5

Dip Switch SW6-1=OFF Dip Switch SW6-1=OFF1 1

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 34 of 69
Jan.31.22

Figure 7-6: Example usage sequence of binary data transmission and reception (2/2)

Air

tt_debug_mode_on.ttl tt_debug_mode_on.ttl

tt_send_bin_1.ttl
Write Request

00 01 02 03 04
Response

tt_send_bin_2.ttl
Indication

F0 F1 F2 F3 F4
Confirmation

tt_send_bin_2.ttl
Write Command

F0 F1 F2 F3 F4

tt_send_bin_1.ttl
Notification

00 01 02 03 04

tt_debug_mode_off.ttl tt_debug_mode_on.ttl

AT-R

OK
Disconnect

DISCONNECT DISCONNECT

Advertising

Advertising

Virtual UART Mode

AT Command Mode

Dip Switch SW6-4=OFF

Dip Switch SW6-4=ON Dip Switch SW6-4=ON

Local
Terminal

Local
Device

Remote
Device

Remote
Terminal

Peripheral/GATT ServerCentral/GATT Client

6

7

9 9

1010

11

12 12

11

13

15

16 16

Dip Switch SW6-1=ON Dip Switch SW6-1=ON

Virtual UART Mode

Dip Switch SW6-4=OFF

6

7

Dip Switch SW6-1=OFF

8 8

14 14

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 35 of 69
Jan.31.22

8. Implementation Details
8.1 Virtual UART Profile
Table 8-1 and Table 8-2 shows the specification of Virtual UART Profile.

Table 8-1: Virtual UART Profile specification (1/2)

Attribute Handle Attribute type and the value

VUART_HDL_SVC
0x000C

Type: Primary Service Declaration

UUID: D68C0001-A21B-11E5-8CB8-0002A5D5C51B

UUID for virtual UART service

VUART_HDL_INDICATION_CHAR
0x000D

Type: Characteristic Declaration

UUID: D68C0002-A21B-11E5-8CB8-0002A5D5C51B

Property: Indicate

Used for data transfer from the server to the client

VUART_HDL_INDICATION_VAL
0x000E

Type: Indication Value

By setting data to this characteristic and send Indication, the data
are sent from the server to the client. Max 20 bytes.

VUART_HDL_INDICATION_CFG
0x000F

Type: Client Characteristic Configuration Descriptor

Used for Indication enable / disable of the server from the client

VUART_HDL_WRITE_CHAR
0x0010

Type: Characteristic Declaration

UUID: D68C0003-A21B-11E5-8CB8-0002A5D5C51B

Property: Write

Used for data transfer from the client to the server.

VUART_HDL_WRITE_VAL
0x0011

Type: Write Value

By writing data to this characteristic with “Write Request”, the data
are sent from the client to the server. Max 20 bytes.

Note: The hex value of attribute handle can be changed depends on profiles included in the firmware.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 36 of 69
Jan.31.22

Table 8-2: Virtual UART Profile specification (2/2)

Attribute Handle Attribute type and the value

VUART_HDL_NOTIFICATION_CHAR
0x0012

Type: Characteristic Declaration

UUID: D68C0004-A21B-11E5-8CB8-0002A5D5C51B

Property: Notify

Used for data transfer from the server to the client

VUART_HDL_NOTIFICATION_VAL
0x00013

Type: Notification Value

By setting data to this characteristic and send Notification, the
data are sent from the server to the client. Max 20 bytes.

VUART_HDL_NOTIFICATION_CFG
0x0014

Type: Client Characteristic Configuration Descriptor

Used for Notification enable / disable of the server from the
client

VUART_HDL_WRITE_NORESP_CHAR
0x0015

Type: Characteristic Declaration

UUID: D68C0005-A21B-11E5-8CB8-0002A5D5C51B

Property: Write

Used for data transfer from the client to the server.

VUART_HDL_WRITE_NORESP_VAL
0x0016

Type: Write Value

By writing data to this characteristic with “Write Command”, the
data are sent from the client to the server. Max 20 bytes.

Note: The hex value of attribute handle can be changed depends on profiles included in the firmware.

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 37 of 69
Jan.31.22

8.2 Advertising
Table 8-3 shows the default settings of advertising.

Table 8-3: Advertising specification

Advertising Type Connectable undirected advertising (ADV_IND)

Advertising Interval Min Default: 20 [ms], Low Power: 1.5 [s]

Advertising Interval Max Default: 30 [ms], Low Power: 3 [s]

Advertising Channel Map All Channels (37, 38, 39 ch)

Advertising Data -

 Length of this Data 2 [bytes]

 Data Type <<Flags>> (0x01)

 Flags
LE General Discoverable Mode

BR/EDR Not Supported

 Length of this Data 8 [bytes]

 Data Type <<Complete Local Name>> (0x09)

 Local Name REL-BLE

 Length of this Data 17 [bytes]

 Data Type <<Complete List of 128-bit Service Class UUIDs>> (0x07)

 UUID D68C0001-A21B-11E5-8CB8-0002A5D5C51B

 Scan Response Data none

8.3 Connection
Table 8-4 shows the default settings of connection.

Table 8-4: Connection specification

Scan Interval 30 [ms]

Scan Window Size 30 [ms]

Initiator Filter Policy Ignore Accept List

Peer Address Type Public Address

Peer BD Address Specified by AT-C or AT-AP

Own Address Type Public Address

Minimum of Connection Interval 30 [ms]

Maximum of Connection Interval 30 [ms]

Connection Latency 0 [ms]

Link Supervision Timeout 5 [s]

Minimum CE Length 0 [ms]

Maximum CE Length 50 [ms]

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 38 of 69
Jan.31.22

8.4 Pairing
Table 8-5 shows the pairing default settings.

Table 8-5: Pairing specification

Bonding Bondable Mode

Security Mode Unauthenticated pairing with encryption

Pairing Method Just Works

IO capability No Input No Output

OOB flag OOB Data not present

Authentication Requirements No MITM Bonding

Encryption key size 128 [bit]

Initiator key distribution None

Responder key distribution Encryption key

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 39 of 69
Jan.31.22

8.5 Virtual UART Function API
This section describes virtual UART function definitions and APIs.

8.5.1 Virtual UART Definitions
- Event type enumeration declaration

typedef enum {
 // Server Role
 RBLE_VUART_EVENT_SERVER_ENABLE_CMP = 0x01,
 RBLE_VUART_EVENT_SERVER_WRITE_REQ,
 RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ,
 RBLE_VUART_EVENT_SERVER_INDICATION_CFM,
 RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP,
 // Client Role
 RBLE_VUART_EVENT_CLIENT_ENABLE_CMP = 0x81,
 RBLE_VUART_EVENT_CLIENT_INDICATION,
 RBLE_VUART_EVENT_CLIENT_NOTIFICATION,
 RBLE_VUART_EVENT_CLIENT_WRITE_RSP,
 RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP,
} RBLE_VUART_EVENT_TYPE;

- Event callback function declaration

typedef void (*RBLE_VUART_EVENT_HANDLER)(RBLE_VUART_EVENT *event);

- Event parameter structure

typedef struct RBLE_VUART_EVENT_t {
 RBLE_VUART_EVENT_TYPE type; Virtual UART event type
 union Event_Vuart_Paramter_u {

 Server role enable completion event
 struct {
 RBLE_STATUS status; Status
 } server_enable_cmp;

 Server role data receive event (Write Request)
 struct {
 RBLE_STATUS status; Status
 char value[20]; Received data
 uint16_t len; Received data length
 } server_write_req;

 Server role data receive event (Write Command)
 struct {
 RBLE_STATUS status; Status
 char value[20]; Received data
 uint16_t len; Received data length
 } server_write_noresp_req;

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 40 of 69
Jan.31.22

 Server role data send completion event (Indication)
 struct {
 RBLE_STATUS status; Status
 } server_indicate_cnf;

 Server role data send completion event (Notification)
 struct {
 RBLE_STATUS status; Status
 } server_notify_cmp;

 Client role enable completion event
 struct {
 RBLE_STATUS status; Status
 } client_enable_cmp;

 Client role data receive event (Indication)
 struct {
 RBLE_STATUS status; Status
 char value[20]; Received data
 uint16_t len; Received data length
 } client_indication;

 Client role data receive event (Notification)
 struct {
 RBLE_STATUS status; Status
 char value[20]; Received data
 uint16_t len; Received data length
 } client_notification;

 Client role data send completion event (Write Request)
 struct {
 RBLE_STATUS status; Status
 } client_write_rsp;

 Client role data send completion event (Write Command)
 struct {
 RBLE_STATUS status; Status
 } client_write_norsp;
 } param;
} RBLE_VUART_EVENT;

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 41 of 69
Jan.31.22

8.5.2 Function
8.5.2.1 RBLE_VUART_Server_Enable

RBLE_STATUS RBLE_VUART_Server_Enable(
uint16_t conhdl, RBLE_VUART_EVENT_HANDLER callback)

This function enables server role of virtual UART function.

The result is informed by RBLE_VUART_EVENT_SERVER_ENABLE_CMP event.

Parameters:

 conhdl Connection handle

 callback Callback for virtual UART event

Return:

 RBLE_OK Success

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE

8.5.2.2 RBLE_VUART_Server_Disable
RBLE_STATUS RBLE_VUART_Server_Disable(void)

This function disables server role of virtual UART function.

Parameters:

 - -

Return:

 RBLE_OK Success

8.5.2.3 RBLE_VUART_Server_Send_Indication
RBLE_STATUS RBLE_VUART_Server_Send_Indication(

const char *chars, uint16_t len)
This function sends data from the server to the client.

The data sent by the server are received by the client. After the reception, the client responses with
Confirmation. The confirmation is informed to the server by
RBLE_VUART_EVENT_SERVER_INDICATION_CFM event.

Parameters:

 chars Received data

 len Received data length

Return:

 RBLE_OK Success

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 42 of 69
Jan.31.22

8.5.2.4 RBLE_VUART_Server_Send_Notification
RBLE_STATUS RBLE_VUART_Server_Send_Notification(

const char *chars, uint16_t len)
This function sends data from the server to the client.

Executing this function will notify the server of RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP.

Notes: This event does not guarantee the sending.

Parameters:

 chars Received data

 len Received data length

Return:

 RBLE_OK Success

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE

8.5.2.5 RBLE_VUART_Client_Enable

RBLE_STATUS RBLE_VUART_Client_Enable(
uint16_t conhdl, RBLE_VUART_EVENT_HANDLER callback)

This function enables client role of virtual UART function.

The result is informed by RBLE_VUART_EVENT_CLIENT_ENABLE_CMP event.

Parameters:

 conhdl Connection handle

 callback Callback for virtual UART event

Return:

 RBLE_OK Success

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE

8.5.2.6 RBLE_VUART_Client_Disable
RBLE_STATUS RBLE_VUART_Client_Disable(void)

This function disables client role of virtual UART function.

Parameters:

 - -

Return:

 RBLE_OK Success

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 43 of 69
Jan.31.22

8.5.2.7 RBLE_VUART_Client_Send_Chars
RBLE_STATUS RBLE_VUART_Client_Send_Chars(

const char *chars, uint16_t len)
This function sends data from the client to the server.

The data sent by the client are received by server. After the reception, the server responses with
“Response” to the client. The response is informed to the client by
RBLE_VUART_EVENT_CLIENT_WRITE_RSP event.

Parameters:

 chars Received data

 len Received data length

Return:

 RBLE_OK Success

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE

8.5.2.8 RBLE_VUART_Client_Send_Chars_Noresp
RBLE_STATUS RBLE_VUART_Client_Send_Chars_Noresp(

const char *chars, uint16_t len)
This function send data from the client to the server.

Executing this function will notify the server of RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP.

Notes: This event does not guarantee the sending.

Parameters:

 chars Received data

 len Received data length

Return:

 RBLE_OK Success

 RBLE_STATUS_ERROR Failed due to rBLE mode is in RBLE_MODE_ACTIVE

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 44 of 69
Jan.31.22

8.5.3 Event
This section describes the events defined by virtual UART function.

8.5.3.1 RBLE_VUART_EVENT_SERVER_ENABLE_CMP
RBLE_VUART_EVENT_SERVER_ENABLE_CMP

This event informs completion of server role enable.

Parameters:

 status server role enable status

8.5.3.2 RBLE_VUART_EVENT_SERVER_WRITE_REQ
RBLE_VUART_EVENT_SERVER_WRITE_REQ

This event informs that the server has received the data that the client sent using the
RBLE_VUART_Client_Send_Chars function.

Parameters:

 status The result of receiving data

 value Received data

 len Received data length

8.5.3.3 RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ
RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ

This event informs that the server has received the data that the client sent using the
RBLE_VUART_Client_Send_Chars_Noresp function.

Parameters:

 status The result of receiving data

 value Received data

 len Received data length

8.5.3.4 RBLE_VUART_EVENT_SERVER_INDICATION_CFM
RBLE_VUART_EVENT_SERVER_INDICATION_CFM

This event informs the completion of sending the data sent by the server using the
RBLE_VUART_Server_Send_Indication function.

Parameters:

 status The result of data send

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 45 of 69
Jan.31.22

8.5.3.5 RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP
RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP

This event informs that the server has sent data using the RBLE_VUART_Server_Send_Notification
function.

Notes: This event does not guarantee the sending.

Parameters:

 status The result of data send

8.5.3.6 RBLE_VUART_EVENT_CLIENT_ENABLE_CMP

RBLE_VUART_EVENT_CLIENT_ENABLE_CMP
This event informs client role enable completion.

Parameters:

 status

8.5.3.7 RBLE_VUART_EVENT_CLIENT_INDICATION
RBLE_VUART_EVENT_CLIENT_INDICATION

This event informs that the client has received the data that the server sent using the
RBLE_VUART_Server_Send_Indication function.

Parameters:

 status The result of data receive

 value Received data

 len Received data length

8.5.3.8 RBLE_VUART_EVENT_CLIENT_NOTIFICATION
RBLE_VUART_EVENT_CLIENT_NOTIFICATION

This event informs that the client has received the data that the server sent using the
RBLE_VUART_Server_Send_Notification function.

Parameters:

 status The result of data receive

 value Received data

 len Received data length

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 46 of 69
Jan.31.22

8.5.3.9 RBLE_VUART_EVENT_CLIENT_WRITE_RSP
RBLE_VUART_EVENT_CLIENT_WRITE_RSP

This event informs the completion of sending the data that the client sent using the
RBLE_VUART_Client_Send_Chars function.

Parameters:

 status The result of data sending

8.5.3.10 RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP
RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP

This event signals that the client has sent data using the RBLE_VUART_Client_Send_Chars_Noresp
function.

Notes: This event does not guarantee the sending.

Parameters:

 status The result of data sending

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 47 of 69
Jan.31.22

8.6 Application State Change
Figure 8-1 shows the application state transition diagram. The application changes the state depends on
connection and disconnection event and simple AT command execution.

Figure 8-1: Application state diagram

Table 8-6 shows the application state list.

Table 8-6: Application state list

Application State Description

ADVERTISER The application is advertising.

SCANNER The application is scanning neighbor devices by executing AT-DS command.
After AT-DS has finished, the application remains in this state.

INITIATER The application creates a connection to a remote device by executing AT-C.

CONNECT_CENTRAL Bluetooth LE connection is established as master role.
CONNECT_CENTRAL is GATT client.

CONNECT_PERIPHERAL Bluetooth LE connection is established as slave role.
CONNECT_PERIPHERAL is GATT sever.

SCANNER INITIATER

ADVERTISER

CONNECT_CENTRALCONNECT_PERIPHERAL

A T-DS

Power O N

C onnected
Event

A T -R or
Disconnected

Event

A T -R or
Disconnected

Event

A T -DS A T-R

A T-C
A T-C

A T-CA T-R

A T-R C onnected
Event

Connect State Disconnect State

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 48 of 69
Jan.31.22

8.7 Application Detailed Sequence
This section shows the sequence of boot, connection, character transfer and disconnection. Refer to
"Bluetooth® Low Energy Protocol Stack API Reference: Basics" (R01UW0088E).

8.7.1 Boot Sequence
Figure 8-2 shows the boot sequence.

Figure 8-2: Boot Sequence

　

Power ON

RBLE_Init

RBLE_MODE_ACTIVE

RBLE_GAP_Reset

RBLE_GAP_EVENT_RESET_RESULT

RBLE_GAP_Set_Bonding_Mode

RBLE_GAP_EVENT_SET_BONDING_MODE_COMP

RBLE_GAP_Broadcast_Enable

RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP

Local Device

VUART Prof BLE StackApplication

ADVERTISER

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 49 of 69
Jan.31.22

8.7.2 Connection Sequence
Figure 8-3 shows the connection sequence.

Figure 8-3: Connection sequence

　

Air

AT-C

OK

RBLE_GAP_Broadcast_Disable
RBLE_GAP_EVENT_BROADCAST_DISABLE_COMP

RBLE_GAP_Create_Connection
Connection Established

RBLE_GAP_EVENT_CONNECTION_COMP RBLE_GAP_EVENT_CONNECTION_COMP

RBLE_VUART_Server_Enable
RBLE_GATT_Enable

RBLE_GAP_Start_Bonding

Pairing Request
RBLE_GAP_EVENT_BONDING_REQ_IND

RBLE_GAP_Bonding_Response
Pairing Response

STK Generation by Just Works
Link is encrypted using STK

RBLE_SM_LTK_REQ_IND
RBLE_SM_Ltk_Req_Resp

Distribute LTK
RBLE_SM_KEY_IND

RBLE_GAP_EVENT_BONDING_COMP RBLE_GAP_EVENT_BONDING_COMP

RBLE_SM_Start_Enc
Start Encryption

RBLE_SM_LTK_REQ_FOR_ENC_IND
RBLE_SM_Ltk_Req_Resp

Link is encrypted using LTK
RBLE_SM_ENC_START_IND RBLE_SM_ENC_START_IND

RBLE_VUART_Client_Enable
RBLE_GATT_Enable

RBLE_GATT_Discovery_Service_Request
Read Request

Read Response
RBLE_GATT_EVENT_DISC_SVC_BY_UUID_CMP

RBLE_GATT_EVENT_COMPLETE

RBLE_GATT_Discovery_Char_Request
Read Request

Read Response
RBLE_GATT_EVENT_DISC_CHAR_ALL_128_CMP

RBLE_GATT_EVENT_COMPLETE

RBLE_GATT_Discovery_Char_Descriptor_Request
Read Request

Read Response
RBLE_GATT_EVENT_DISC_CHAR_DESC_CMP

RBLE_GATT_EVENT_COMPLETE

RBLE_GATT_Write_Char_Request
Write Request

RBLE_GATT_EVENT_WRITE_CMD_IND
RBLE_GATT_Write_Response

Write Response RBLE_VUART_SERVER_ENABLE_COMP
RBLE_GATT_WRITE_CHAR_RESP

RBLE_VUART_EVENT_CLIENT_ENABLE_COMP

CONNECT CONNECT
RBLE_GAP_Change_Connection_Param

Parameter Update Request
RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_REQ_IND

RBLE_GAP_Change_Connection_Param
Paramter Update Response

RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_RESPONSE
Connection Parameter Update

RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_COMP RBLE_GAP_EVENT_CHANGE_CONNECTION_PARAM_COMP

Local Device

Application VUART Prof BLE StackTerminal

INITIATER

CONNECT_CENTRAL CONNECT_PERIPHERAL

Remote Device

VUART Prof Application TerminalBLE Stack

ADVERTISER

Establish a BLE connection

(Optional) Perform paring in order to encrypt send chara

Enable Virtual UART Profile (Client)

Search virtual UART service by client

Enable Indication of server from client

ADVERTISER
AT Command Mode

Enable Virtual UART Profile (Server)

Connection Parameter Update

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 50 of 69
Jan.31.22

8.7.3 Data Transfer Sequence (Write Request/Indication)
Figure 8-4 shows the data transfer sequence.

Figure 8-4: Data transfer sequence (Write Request/Indication)

8.7.4 Data Transfer Sequence (Write Command/Notification)
Figure 8-5 shows the data transfer sequence.

Figure 8-5: Data transfer sequence (Write Command/Notification)

　

Air

Ｈｅｌｌｏ
RBLE_VUART_Client_Send_Chars

RBLE_GATT_Write_Char_Request
Write Request

RBLE_GATT_EVENT_WRITE_CMD_IND
RBLE_GATT_Write_Response

Write Response RBLE_VUART_SERVER_WRITE_REQ
RBLE_GATT_EVENT_WRITE_CHAR_RESP Hello

RBLE_VUART_CLIENT_WRITE_RSP
Bye

RBLE_VUART_Server_Send_Indication
RBLE_GATT_Set_Data

RBLE_GATT_EVENT_SET_DATA_CMP
RBLE_GATT_Indicate_Request

 Indication
RBLE_GATT_EVENT_HANDLE_VALUE_IND

RBLE_VUART_EVENT_CLIENT_INDICATION Confirmation
Bye RBLE_GATT_EVENT_HANDLE_VALUE_CFM

RBLE_VUART_EVENT_SERVER_INDICATION_CFM

Local Device

Application VUART Prof BLE StackTerminal

CONNECT_CENTRAL
Virtual UART Mode

Remote Device

VUART Prof Application TerminalBLE Stack

CONNECT_PERIPHERAL
Virtual UART Mode

　

Air

Ｈｅｌｌｏ

RBLE_VUART_Client_Send_Chars_Noresp
RBLE_GATT_Write_Char_Request

ke_timer_set
Write Command

RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP RBLE_GATT_EVENT_WRITE_CMD_IND
 RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ

Hello

Bye
RBLE_VUART_Server_Send_Notification

RBLE_GATT_Set_Data
RBLE_GATT_EVENT_SET_DATA_CMP

RBLE_GATT_Notify_Request
 ke_timer_set

Notification
RBLE_GATT_EVENT_HANDLE_VALUE_NOTIF RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP

RBLE_VUART_EVENT_CLIENT_NOTIFICATION
Bye

Local Device

Application VUART Prof BLE StackTerminal

CONNECT_CENTRAL
Virtual UART Mode

Remote Device

VUART Prof Application TerminalBLE Stack

CONNECT_PERIPHERAL
Virtual UART Mode

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 51 of 69
Jan.31.22

8.7.5 Disconnection Sequence
Figure 8-6 shows the disconnection sequence.

Figure 8-6: Disconnection sequence

　

Air

AT-R
RBLE_GAP_Disconnect

Disconnected
RBLE_GAP_EVENT_DISCONNECT_COMP RBLE_GAP_EVENT_DISCONNECT_COMP

DISCONNECT DISCONNECT

RBLE_VUART_Client_Disable RBLE_VUART_Server_Disable
RBLE_GAP_Broadcast_Enable RBLE_GAP_Broadcast_Enable

RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP RBLE_GAP_EVENT_BROADCAST_ENABLE_COMP

Local Device

Application VUART Prof BLE StackTerminal

CONNECT_CENTRAL
AT Command Mode

Remote Device

VUART Prof Application TerminalBLE Stack

ADVERTISER

CONNECT_PERIPHERAL

ADVERTISER

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 52 of 69
Jan.31.22

8.8 Macro Settings
This section describes macros that set the behavior of this application.

8.8.1 Character data/Binary data transmission and reception setting
Set the type of data (character data / binary data) to transmit / received in virtual UART mode. The default
setting is 1 (character data).

Note: In the case of binary data transmission / reception setting, local echo in virtual UART mode is disabled.

r_vuart_app.h, line 47-49

8.8.2 Local echo setting
Set the default setting for local echo to "disable local echo". The default setting is 0 (local echo enabled).

Note: In the case of binary data transmission / reception setting, local echo in virtual UART mode is disabled.

r_vuart_app.h, line 51-53

8.9 Others
8.9.1 Caution when implementing the program to connect to the application
As described in 8.7.2, when AT-C command is executed, the following processing are executed in order.
After these steps have finished successfully the application responses with “CONNECT” message on both of
the devices. If you implement the program connect to the application also follows these steps. The pairing is
optional.

- Establish a BLE connection

- Perform paring in order to encrypt send characters

- Search virtual UART service by client

- Enable Indication of server from client

47: #define CFG_VUART_CHAR (1) /* Switch between AT mode and VUART mode. */
48: /* (0): Binary mode */
49: /* (1): Character mode (default) */

51: #define CFG_DISABLE_LOCAL_ECHO_BY_DEFAULT (0) /* Disable local echo */
52: /* (0): Enable local echo (default) */
53: /* (1): Disable local echo */

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 53 of 69
Jan.31.22

8.9.2 Read processing of DIP switch that select mode in binary data transmission /
reception

The DIP switch state read processing used by the application to select the mode for binary data transmission
/ reception is shown below.

r_vuart_app.c, line 1916-1921

8.9.3 Read processing of DIP switch that select whether to respond in data transmission /
reception

The DIP switch state read processing used by the application to select whether to respond to data
transmission / reception is shown below.

r_vuart_app.c, line 1931-1936

8.9.4 CFG_CON macro
The CFG_CON macro sets the heap memory of the RF section of the RL78/G1D at the same time as setting
the maximum number of connections. Setting CFG_CON 4 (default) is recommended.

1916: BOOL read_dipsw1(void)
1917: {
1918: /* TRUE (1) : AT command mode */
1919: /* FALSE(0) : VUART mode */
1920 return ((BOOL)read1_sfr(P1, 0));
1921: }

1931: BOOL read_dipsw4(void)
1932: {
1933: /* TRUE (1) : with response. Indication, Write */
1934: /* FALSE(0) : without response. Notification, Write without response */
1935 return ((BOOL)read1_sfr(P0, 2));
1936 }

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 54 of 69
Jan.31.22

8.9.5 Data transmission from the terminal or host microcomputer
The maximum size of data transmitted by UART from a PC terminal or host microcomputer should be 20
bytes.

Examples of RL78/G1D receiving the data transmitted from the terminal via UART and transmitting it via
Bluetooth LE communication are shown in 8.9.5.1 and 8.9.5.2.

The settings of this application are baud rate 4800bps, data length 20 bytes, and connection interval 30ms.

8.9.5.1 Example of data transmission during communication with response
Figure 8-7 shows an example of Indication transmission as communication with response.

Indication communication is a communication that combines data transmission by Indication and response
reception by Confirmation. Data cannot be sent with the next Indication until a Confirmation is received.

Indication sends the amount of data (2 bytes) received from the terminal in the first Bluetooth LE
communication. The next Indication cannot be sent until the Confirmation is received, so the remaining data
(18 bytes) received from the terminal is suspended. When Confirmation is received, the remaining data (18
bytes) will be sent by Indication at the next Bluetooth LE communication timing. When Confirmation is
received, the remaining data (18 bytes) will be sent by Indication at the next Bluetooth LE communication
timing.

At this time, if data of 21 bytes or more is sent, the packet size (20 bytes) of RL78 / G1D may be exceeded
and invalid data may be transmitted. When sending data from the terminal, send it in 20 bytes units at
intervals larger than the time of the connection interval x3 (100ms in this example).

Figure 8-7: Data reception from terminal and Indication communication example

Transmission time= 41.7ms

30ms

Baudrate = 4800bps, Data length = 20bytes

30ms 30ms30ms

UART

Bluetooth LE

Indication
2bytes

Confirmation

Indication
18bytes Confirmation

Indication
12bytes

Data transmission interval = 100ms

Connection Interval

Tx
Rx

Transmission time= 41.7ms

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 55 of 69
Jan.31.22

8.9.5.2 Example of data transmission during communication without response
Figure 8-8 shows an example of Notification transmission as communication without response.

Notification communication can be sent data at each timing of Bluetooth LE communication.

Notification will send the amount of data (2 bytes) received from the terminal in the first Bluetooth LE
communication. If there is data (15 bytes) received from the terminal before the next Bluetooth LE
communication timing, it will be sent by Notification. In this way, Notification allows you to send data at
Bluetooth LE communication timing if there is data to send.

When sending data from the terminal via UART, send it in 20 bytes units as in response communication.
Also, if data is sent continuously without any gaps, an error may occur in the UART. The data should be sent
at an interval larger than the connection interval (50ms in this example).

Figure 8-8: Data reception from terminal and Notification communication example

Transmission time= 41.7ms

30ms

Baudrate = 4800bps, Data length = 20bytes

30ms 30ms30ms

UART

Bluetooth LE

Notification
2bytes

Data transmission interval = 50ms

Connection Interval

Tx
Rx

Transmission time= 41.7ms

Notification
15bytes

Notification
3+9bytes

Notification
11+1bytes

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 56 of 69
Jan.31.22

9. Appendix
9.1 ROM size, RAM size
Table 9-1 and Table 9-2 show the ROM size and RAM size when the virtual UART application is used with
the BLE protocol stack V1.21.

Table 9-1: ROM size, RAM size (Character data transmission / reception)

Compiler ROM size RAM size
RL78 Family C Compiler Package V1 V1.09.00 127,002 11,535
Renesas CA78K0R V1.72 155,849 11,609

Table 9-2: ROM size, RAM size (Binary data transmission / reception)

Compiler ROM size RAM size
RL78 Family C Compiler Package V1 V1.09.00 126,684 11,535
Renesas CA78K0R V1.72 155,676 11,609

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 57 of 69
Jan.31.22

9.2 Operational Check by Using the GUI-Tool
This section describes the operation check procedure of Virtual UART by using the GUI-Tool (R01AN2469).

Figure 9-1 shows overview diagram of operational check by using the GUI-Tool. This application operates as
a Virtual UART server, and the GUI-Tool operates as a Virtual UART client. It is possible to transfer
characters to each other.

Note: GUI-Tool Version 1.12 (R01AN2469XX0112) or later is required in order to check the operation.

Figure 9-1: Operation check by using the GUI-Tool

Hereafter, the combination of evaluation board (Virtual UART application was written) and terminal software
is mentioned as “Virtual UART Server”. And the combination of evaluation board (Modem Configuration Hex
file was written) and the GUI-Tool is mentioned as “Virtual UART Client”.

9.2.1 Preparation
• Virtual UART Server

In accordance with the procedures described in the following section, write the firmware onto RL78/G1D
evaluation board and then launch a terminal software on PC.
7.2 Build Procedure
7.3 Preparation for Execution Environment
This section uses character data transmission / reception (RL78_G1D_CCE(VUART_CHAR).hex).

• Virtual UART Client

Write a Modem configuration Hex file (any of the build environment) that is included in the package of
BLE protocol stack onto RL78/G1D evaluation board, then launch the GUI-Tool.
Notes: 1. In order to access the service on the Virtual UART Server by using the GATT APIs, it does not

matter the profile type of Hex file to be written.
 2. Refer to "Bluetooth Low Energy Protocol Stack GUI Tool" (R01AN2469) “6. Utilization” about

how to launch the GUI-Tool.

Virtual UART Server Virtual UART Client

GUI-Tool Terminal
S ft

Modem
Configuration

transfer characters

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 58 of 69
Jan.31.22

9.2.2 Operation
It is possible to transfer characters by operating Virtual UART Server and Virtual UART Client in the following
procedure.

1. Discoverable Mode (Virtual UART Server)
Push the RESET button (SW5) on RL78/G1D evaluation board that operates as Virtual UART Server.
After the reset, the virtual UART application transitions to discoverable mode automatically, and then start
the Advertising.

2. Device Discovery (Virtual UART Client)

Search discoverable mode devices by operating the GUI-Tool.
(1) Activate [Scanning] tab of [GAP] tab.
(2) Select “General Discovery” in the Discovery group.
(3) Press [Discover] button.

Figure 9-2: Device Discovery

(4) Discoverable mode devices will display in the list of Received Advertising data.

Figure 9-3: Result of Device Discovery

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 59 of 69
Jan.31.22

3. Connection (Virtual UART Client)
Initiate connection to Virtual UART Server by operating the GUI-Tool.
(1) Confirm that the RBLE_GAP_EVENT_DEVICE_SEARCH_COMP event has occurred in the log

dialog.

Figure 9-4: Confirmation of RBLE_GAP_EVENT_DEVICE_SEARCH_COMP event

(2) In [Scanning] tab, Double-click onto the target device in the list of Received Advertising data.

Figure 9-5: Select Device

Tips: It will be displayed the Advertising data analysis dialog by [Ctrl] key + double-clicking arbitrary row
in the list of Received Advertising data.
The device which operates as Virtual UART Server contains “Renesas Virtual UART Service” to
the <<Complete List of 128-bit Service UUIDs>>

Figure 9-6: Advertising Data Analysis Dialog

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 60 of 69
Jan.31.22

(3) Activate [Connection] tab of [Peer Device] tab.
At this time, make sure that the target device address will reflect to “Peer Addr” field in top of [Peer
Device] tab.

(4) Initiate a connection to Virtual UART Server by pressing [Connect] button.

Figure 9-7: Initiate Connection

(5) When a connection is established, the State display in top of [Peer Device] tab is changed to
“Connected”.

Figure 9-8: Established Connection

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 61 of 69
Jan.31.22

4. Service Discovery (Virtual UART Client)
Discover services and characteristics on Virtual UART Server by operating the GUI-Tool.
- Service Discovery

Discover all services on Virtual UART Server.
(1) Activate [Service Discovery] tab of [GATT][Client] tab.
(2) Select “Discover All Primary Services” in the Discovery Type drop-down list, and press [Discover]

button.

Figure 9-9: Service Discovery

(3) Acquired service information is displayed in the list of “Remote GATT Database”.

Figure 9-10: Result of Service Discovery

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 62 of 69
Jan.31.22

- Characteristic Discovery
Discover all service characteristics on Virtual UART Server.
(1) Activate [Characteristic Discovery] tab of [GATT][Client] tab.
(2) Select “Discover Characteristics of a Service” in the Discovery Type drop-down list, and press

[Discover] button.

Figure 9-11: Characteristic Discovery

(3) Acquired characteristic information is displayed in the list of “Remote GATT Database”.

Figure 9-12: Result of Characteristic Discovery

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 63 of 69
Jan.31.22

- Characteristic Descriptor Discovery
Discover characteristic descriptors of a characteristic on Virtual UART Server.
(1) Activate [Characteristic Discovery] tab of [GATT][Client] tab.
(2) Select “Discover All Characteristic Descriptors” in the Discovery Type drop-down list, and press

[Discover] button.

Figure 9-13: Characteristic Descriptor Discovery

(3) Acquired characteristic descriptor information is displayed in the list of “Remote GATT Database”.

Figure 9-14: Result of Characteristic Descriptor Discovery

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 64 of 69
Jan.31.22

5. Enable Indication (Virtual UART Client)
Enable character transfer from Virtual UART Server to Virtual UART Client (Indication, Notification) by
operating the GUI-Tool.
(1) Activate [Write] tab of [GATT][Client] tab.
(2) Select “Write Characteristic Descriptors” in the Write Type drop-down list.
(3) In the list of “Remote GATT Database”, double-click the Client Characteristic Configuration

Descriptor within “Renesas Virtual UART Indication Characteristic”.
By double-clicking, the handle value of Client Characteristic Configuration Descriptor will reflect to
“Handle” field in [Write] tab.

(4) Enter the value of “0002” (it means that “Indications enabled”) in “Write Data” field.
(5) By pressing [Write] button, write the characteristic descriptor value to Virtual UART Server.

Figure 9-15: Enable Indication

(1)

(2)

(3)

(4)

(5)

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 65 of 69
Jan.31.22

(6) In the list of “Remote GATT Database”, double-click the Client Characteristic Configuration
Descriptor within “D68C0004-A21B-11E5-8CB8-0002A5D5C51B” (Renesas Virtual UART
Notification Characteristic).
By double-clicking, the handle value of Client Characteristic Configuration Descriptor will reflect to
“Handle” field in [Write] tab.

(7) Enter the value of “0001” (it means that “Notification enabled”) in “Write Data” field.
(8) By pressing [Write] button, write the characteristic descriptor value to Virtual UART Server.

Figure 9-16: Enable Notification

(9) The Parameter Update Request dialog is displayed. Press "Accept".

Figure 9-17: Accept Parameter Update Request

(6)

(7)

(8)

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 66 of 69
Jan.31.22

(10) Console window is displayed when the response is received from Virtual UART Server.

Figure 9-18: Console Window

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 67 of 69
Jan.31.22

6. Character Transfer (Virtual UART Server / Virtual UART Client)
- Character transfer from Virtual UART Server

(1) Input ESC key on the terminal software in order to switch the application mode to Virtual UART
mode.

(2) Type arbitrary characters (e.g. “Hello!”) on the terminal software.
(3) Input characters are displayed by yellow characters in the console window of Virtual UART Client.

Figure 9-19: Character Transfer (ServerClient)

- Character transfer from Virtual UART Client
(1) Type arbitrary characters (e.g. “Bye”) on the console window.
(2) Input characters are displayed in the terminal software of Virtual UART Server.

Figure 9-20: Character Transfer (ClientServer)

Virtual UART Server Virtual UART Client

Hello!

Virtual UART Server Virtual UART Client

Bye

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 68 of 69
Jan.31.22

7. Disconnection (Virtual UART Server / Virtual UART Client)
- Disconnect from Virtual UART Server

(1) Input ESC key on the terminal software in order to switch the application mode to Simple AT
command mode.

(2) Execute “AT-R” on the terminal software (Disconnect the established connection).
(3) When the connection is terminated, it will be displayed “DISCONNECT” on the terminal software.

Figure 9-21: Disconnect from Virtual UART Server

- Disconnect from Virtual UART Client
(1) Activate [Connection] tab of [Peer Device] tab.
(2) Disconnect the established connection by pressing [Disconnect] button.
(3) When the connection is terminated, the State display in top of [Peer Device] tab is changed to

“Standby”.

Figure 9-22: Disconnect from Virtual UART Client

Bluetooth® Low Energy Protocol Stack Virtual UART Application

R01AN3130EJ0120 Rev.1.20 Page 69 of 69
Jan.31.22

Revision History

Rev. Date
Description
Page Summary

1.00 Feb 24, 2016 － Initial issue
1.10 Oct 7, 2016 7

11

22

26

37

49

57

2.2 File Composition : Add the file composition for
development environments and firmware.
4 Simple AT Command Mode : Add commands AT-
CI=<con_intv>, AT-CI?, ATE0, ATE1.
7 Build and Operational Check : Add Environment setup and
build procedure descriptions for development environments.
7.4 Usage Example: Add the procedure to set a device
address.
8.3 Connection : Change Connection Interval Default setting
value.
8.7.2 Connection Sequence : Add the procedure for
Connection Interval change.
9.2 Operational Check by Using the GUI-Tool : Newly added.

1.11 Nov 22, 2016 - Revision change (No document update).
1.12 Oct 20, 2017 24 7.2.3 BLE Protocol Stack / EEPROM : Update EEPROM

emulation library download path.
1.13 Jul 12, 2019 - Fix the AT-AS command. (No document update)
1.20 Oct 23, 2020 -

5

7

9

17

21

22

35

56

This is a revised version that supports sending and receiving
binary data and non-response communication (write
command, notification).
1. Overview : Added an overview of sending and receiving
binary data and non-response communication.
2.2 File Composition : Added HEX file for sending and
receiving binary data. Added macro file of Tera Term.
3. Application Mode : Added function explanations for sending
and receiving binary data and non-response communication.
5. Virtual UART Mode : Added explanation of sending and
receiving binary data and communication without response.
6.2 Changes of Advertising Interval : Posted the code to
change the advertising interval.
7. Build and Operational Check : Updated build environment.
Added build procedure and usage example for sending and
receiving binary data and non-response communication.
8. Implementation Details : Added profiles, functions, and
events for sending and receiving binary data and non-
response communication.
9. Appendix : Updated ROM size and RAM size. Updated GUI
tool operation method by supporting non-response
communication.

1.20 Jan 31, 2022 - Fixed due to the end of IAR support in Bluetooth Low Energy
Protocol Stack.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2019 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Application Behavior

	2. Architecture
	2.1 Software Architecture
	2.2 File Composition

	3. Application Mode
	3.1 mode
	3.2 Selection of data communication with response or without response
	3.3 Selection of data to communicate
	3.3.1 Character data transmission and reception
	3.3.2 Binary data transmission and reception

	4. Simple AT Command Mode
	4.1 Details of Simple AT Command
	4.1.1 AT-C
	4.1.2 AT-C=<addr>
	4.1.3 AT-R
	4.1.4 AT-AS=<addr>
	4.1.5 AT-AS?
	4.1.6 AT-AP=<addr>
	4.1.7 AT-AP?
	4.1.8 AT-DS
	4.1.9 AT-S?
	4.1.10 AT-CI=<con_intv>
	4.1.11 AT-CI?
	4.1.12 ATE0
	4.1.13 ATE1

	5. Virtual UART Mode
	5.1 Virtual UART Profile
	5.1.1 Data communication with response
	5.1.2 Data communication without response

	5.2 Buffering of the Send Characters
	5.2.1 Data communication with response
	5.2.2 Data communication without response

	5.3 Encryption of BLE Connection

	6. Power Saving Function
	6.1 CPU STOP Mode
	6.2 Changes of Advertising Interval

	7. Build and Operational Check
	7.1 Environment
	7.2 Build Procedure
	7.2.1 e2 studio (32-bit version/64-bit version)
	7.2.2 CS+
	7.2.3 BLE Protocol Stack / EEPROM emulation library

	7.3 Preparation for Execution Environment
	7.4 Usage Example
	7.4.1 Character data transmission and reception
	7.4.2 Binary data transmission and reception

	8. Implementation Details
	8.1 Virtual UART Profile
	8.2 Advertising
	8.3 Connection
	8.4 Pairing
	8.5 Virtual UART Function API
	8.5.1 Virtual UART Definitions
	8.5.2 Function
	8.5.2.1 RBLE_VUART_Server_Enable
	8.5.2.2 RBLE_VUART_Server_Disable
	8.5.2.3 RBLE_VUART_Server_Send_Indication
	8.5.2.4 RBLE_VUART_Server_Send_Notification
	8.5.2.5 RBLE_VUART_Client_Enable
	8.5.2.6 RBLE_VUART_Client_Disable
	8.5.2.7 RBLE_VUART_Client_Send_Chars
	8.5.2.8 RBLE_VUART_Client_Send_Chars_Noresp

	8.5.3 Event
	8.5.3.1 RBLE_VUART_EVENT_SERVER_ENABLE_CMP
	8.5.3.2 RBLE_VUART_EVENT_SERVER_WRITE_REQ
	8.5.3.3 RBLE_VUART_EVENT_SERVER_WRITE_NORESP_REQ
	8.5.3.4 RBLE_VUART_EVENT_SERVER_INDICATION_CFM
	8.5.3.5 RBLE_VUART_EVENT_SERVER_NOTIFICATION_CMP
	8.5.3.6 RBLE_VUART_EVENT_CLIENT_ENABLE_CMP
	8.5.3.7 RBLE_VUART_EVENT_CLIENT_INDICATION
	8.5.3.8 RBLE_VUART_EVENT_CLIENT_NOTIFICATION
	8.5.3.9 RBLE_VUART_EVENT_CLIENT_WRITE_RSP
	8.5.3.10 RBLE_VUART_EVENT_CLIENT_WRITE_NORSP_CMP

	8.6 Application State Change
	8.7 Application Detailed Sequence
	8.7.1 Boot Sequence
	8.7.2 Connection Sequence
	8.7.3 Data Transfer Sequence (Write Request/Indication)
	8.7.4 Data Transfer Sequence (Write Command/Notification)
	8.7.5 Disconnection Sequence

	8.8 Macro Settings
	8.8.1 Character data/Binary data transmission and reception setting
	8.8.2 Local echo setting

	8.9 Others
	8.9.1 Caution when implementing the program to connect to the application
	8.9.2 Read processing of DIP switch that select mode in binary data transmission / reception
	8.9.3 Read processing of DIP switch that select whether to respond in data transmission / reception
	8.9.4 CFG_CON macro
	8.9.5 Data transmission from the terminal or host microcomputer
	8.9.5.1 Example of data transmission during communication with response
	8.9.5.2 Example of data transmission during communication without response

	9. Appendix
	9.1 ROM size, RAM size
	9.2 Operational Check by Using the GUI-Tool
	9.2.1 Preparation

	Revision History

