
 Application Note

R01AN6459EJ0110 Rev.1.10 Page 1 of 97

Dec.27.22

Bluetooth LE microprocessor / module

Bluetooth Low Energy Profile Developer's Guide

Introduction

This document guides developers of Bluetooth LE profiles for the following devices how to develop profiles
using the Bluetooth LE development tool QE for BLE.

This document is a re-edited version of the following documents integrated.

RA4W1 Group Bluetooth Low Energy Profile Developer's Guide (R01AN5428)

RE01B Group Bluetooth Low Energy Profile Developer's Guide (R01AN5638)

RX23W Group Bluetooth Low Energy Profile Developer's Guide (R01AN4553)

Target Device

⚫ RX23W Group

⚫ RA4W1 Group

⚫ RE01B Group

Related Documents

⚫ Bluetooth Core Specification 【https://www.bluetooth.com】

⚫ Core Specification Supplement 【https://www.bluetooth.com】

⚫ Bluetooth® Security and Privacy Best Practices Guide 【https://www.bluetooth.com】

⚫ RX23W Group User's Manual Hardware Edition (R01UH0823)

⚫ RX23W Group BLE Module Firmware Integration Technology (R01AN4860)

⚫ Bluetooth Low Energy Protocol Stack Basic Package User's Manual (R01UW0205)

⚫ RX23W Group Bluetooth Low Energy Application Developer's Guide (R01AN5504)

⚫ RA4W1 Group User’s Manual: Hardware (R01UH0883)

⚫ RA Flexible Software Package Documentation

⚫ RA4W1 Group BLE Sample Application (R01AN5402)

⚫ RA4W1 Group Bluetooth Low Energy Application Developer’s Guide (R01AN5653)

⚫ RE01B Group User's Manual Hardware Edition (R01UH0903)

⚫ RE01B Group Development Startup Guide Using CMSIS Package (R01AN5310)

⚫ RE01B Group Bluetooth Low Energy Sample Code (Using CMSIS Driver Package) (R01AN5606)

⚫ RE01B Group Bluetooth Low Energy Application Developer's Guide (R01AN5643)

⚫ e2 studio User's Manual Getting Started Guide (R20UT4204)

⚫ QE for BLE [RA, RE, RX] V1.5.0 Release Notes (R20UT5145)

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use
of such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

https://www.bluetooth.com/
https://www.bluetooth.com/
https://www.bluetooth.com/

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 2 of 97

Dec.27.22

Contents

1. Overview ... 4

1.1 Overview of Bluetooth LE Data Communication ... 4

1.2 Bluetooth LE program development environment ... 5

1.2.1 e2 studio ... 5

1.2.2 QE for BLE .. 6

1.2.3 Bluetooth LE communication project ... 8

1.3 Software structure of the profile program .. 9

2. Building a development environment ... 11

2.1 Installing QE for BLE ... 11

2.1.1 How to add QE for BLE to an installed e2 studio ... 11

2.1.2 How to add QE for BLE when installing e2 studio ... 12

2.2 Getting of Bluetooth LE Communication Project ... 13

2.2.1 RX23W .. 13

2.2.2 RA4W1 .. 13

2.2.3 RE01B ... 13

3. Profile development with QE for BLE ... 14

3.1 How to Use QE for BLE ... 14

3.2 Design of the profile... 16

3.2.1 Application role settings .. 17

3.2.2 Adding and configuration service .. 18

3.2.3 Adding and configuration characteristic .. 23

3.2.4 Adding and configuration descriptor .. 26

3.3 Configuration of Peripheral .. 28

3.3.1 Advertising Data .. 28

3.3.2 Scan Response Data .. 30

3.3.3 Advertising Parameter ... 30

3.4 Configuration of Central .. 31

3.4.1 Scan Parameter... 31

3.4.2 Scan Filter Data ... 32

3.4.3 Connection Parameter .. 33

4. Implementation of program .. 34

4.1 Service API Programs (r_ble_xxs.c / r_ble_xxc.c) .. 37

4.1.1 Description of encode/decode functions ... 40

4.1.2 Automatic generation of encode/decode functions ... 42

4.1.3 Implementing the encode-decode function ... 45

4.2 Application Framework (app_main.c) .. 47

4.2.1 Responding to security requirements .. 49

4.2.1.1 When set to Security Level 3... 49

4.2.1.2 When set to Security Level 4... 49

4.2.2 Exchange MTU .. 50

4.2.2.1 Implementation of Client.. 51

4.2.2.2 Implementation of Server .. 51

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 3 of 97

Dec.27.22

4.2.3 Write Operation ... 52

4.2.3.1 Implementation of Client.. 54

4.2.3.2 Implementation of Server .. 56

4.2.4 Write Without Response Operation ... 58

4.2.4.1 Implementation of Client.. 59

4.2.4.2 Implementation of Server .. 60

4.2.5 Read Operation ... 61

4.2.5.1 Implementation of Client.. 63

4.2.5.2 Implementation of Server .. 65

4.2.6 Notify Operation... 66

4.2.6.1 Implementation of Client.. 67

4.2.6.2 Implementation of Server .. 68

4.2.7 Indicate Operation ... 69

4.2.7.1 Implementation of Client.. 70

4.2.7.2 Implementation of Server .. 71

4.3 GATT Database (gatt_db.c / gatt_db.h) .. 73

5. Build and Run program .. 75

5.1 RX23W .. 75

5.1.1 Migrating Profile Data due to Unifying a Plug-in ... 75

5.2 RA4W1 .. 78

5.3 RE01B ... 79

6. Notice .. 80

6.1 Implementation of multiple services .. 80

6.2 Implementation of same service .. 80

6.3 Implementation of secondary service .. 82

6.4 Implementation of discovery operation about included service .. 86

6.5 Guide for Connection Update .. 88

6.6 Settings for connecting two MCUs for data communication ... 89

6.7 When using old version qualifications (QDID:134484) .. 94

6.7.1 QE for BLE generation code change setting ... 94

6.7.2 Get profile common library .. 96

Revision History .. 97

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 4 of 97

Dec.27.22

1. Overview

1.1 Overview of Bluetooth LE Data Communication

In Bluetooth LE communication, Generic Attribute Protocol (GATT) is primarily used. GATT communicates
in a client-server architecture.

The communication protocol of an application that uses GATT Protocol is called a profile. Profiles are
protocols developed for many applications. Profile communication is allowed between devices that supports
same profile. A profile has one or more "Service" that represent the functionality of the application. A service
consists of "Characteristic" that represent data structures and "Descriptor" that add information to the data in
the characteristics.

The server has a GATT database that manages data for the service. Application data is held in the GATT
database as a characteristic of service. The GATT database is accessed by specifying an attribute handle
that indicates where the data is stored.

GATT defines Notify / Indicate operations for sending data from the server to the client and Read / Write
operations for reading and writing the database by the client.

Figure 1.1 Overview of profile communication

Profile communication is established between peer-to-peer connected devices. A connection is established

between a device (peripheral) that performs advertising operations and a device (central) that performs scan
operations and connection operations.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 5 of 97

Dec.27.22

1.2 Bluetooth LE program development environment

Renesas Electronics provides a Bluetooth LE profile development environment to support Bluetooth LE
application development.

Figure 1.2, Figure 1.3 show the profile development environment. QE for BLE creates a program that
realizes GATT profile communication. The generated program runs on the Bluetooth LE communication
project.

Figure 1.2 Profile Development Environment by QE for BLE (RE01B)

Figure 1.3 Profile Development Environment by QE for BLE (RX23W, RA4W1)

Profile development uses e2 studio, QE for BLE, and Bluetooth LE communication project.

1.2.1 e2 studio

The e² studio is an integrated development environment (IDE) for Renesas MCUs. In addition to code
editor, the e² studio offers a rich range of extended functions. The e² studio covers all development
processes, from the downloading of sample code to debugging.

e² studio | Renesas

https://www.renesas.com/jp/en/software-tool/e-studio#overview

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 6 of 97

Dec.27.22

1.2.2 QE for BLE

QE for BLE is a tool to design profiles on the GUI. The designed profiles are generated as source code.
This product is provided as an extension to e2 studio.

The Bluetooth specification defines several services by the Bluetooth SIG, which are referred to in this
document as SIG adopted services. On the other hand, users can create their own services to achieve
features that are not supported by the SIG adopted service. In this document, a service that you define
yourself is called a custom service.

QE for BLE supports the SIG adopted services listed in Table 1.1. Many of these are certified. Table 1.2
also lists the profiles supported by QE for BLE. Specifications of each service is defined by Bluetooth SIG.
Check Web page of Bluetooth SIG (https://www.bluetooth.com) for more information.

Table 1.1 SIG adopted service supported by QE for BLE

Service Name Abbr Version Service Name Abbr Version

Alert Notification Service ANS 1.0 Automation IO Service AIOS 1.0

Battery Service BAS 1.0 Blood Pressure Service BLS 1.1.1

Body Composition Service BCS 1.0 Bond Management Service BMS 1.0.1

Continuous Glucose Monitoring Service CGMS 1.0.2 Current Time Service CTS 1.1

Cycling Power Service CPS 1.1 Cycling Speed and Cadence Service CSCS 1.0

Device Information Service DIS 1.1 Environmental Sensing Service ESS 1.0

Fitness Machine Service FTMS 1.0 Glucose Service GLS 1.0.1

Health Thermometer Service HTS 1.0 Heart Rate Service HRS 1.0

Human Interface Device Service HIDS 1.0 Immediate Alert Service IAS 1.0

Insulin Delivery Service IDS 1.0.1 Link Loss Service LLS 1.0.1

Location and Navigation Service LNS 1.0 Next DST Change Service NDCS 1.0

Object Transfer Service OTS 1.0 Phone Alert Status Service PASS 1.0

Pulse Oximeter Service PLXS 1.0.1 Reconnection Configuration Service RCS 1.0.1

Reference Time Update Service RTUS 1.0 Running Speed and Cadence Service RSCS 1.0

Scan Parameters Service ScPS 1.0 Tx Power Service TPS 1.0

User Data Service UDS 1.1 Weight Scale Service WSS 1.0

GATT Service GATS - GAP Service GAPS -

Note: Object Transfer Service is not qualified by Bluetooth SIG.

https://www.bluetooth.com/

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 7 of 97

Dec.27.22

Table 1.2 Profile supported by QE for BLE

Profile Name [Abbr] Version Services that configure profile

Alert Notification Profile [ANP] 1.0 ANS

Automation IO Profile [AIOP] 1.0 AIOS

Blood Pressure Profile [BLP] 1.1.1 BLS DIS

Continuous Glucose Monitoring Profile [CGMP] 1.0.2 CGMS DIS (BMS)

Cycling Power Profile [CPP] 1.1 CPS (DIS) (BAS)

Cycling Speed and Cadence Profile [CSCP] 1.0 CSCS (DIS)

Environmental Sensing Profile [ESP] 1.0 ESS (DIS) (BAS)

Find Me Profile [FMP] 1.0 IAS

Fitness Machine Profile [FTMP] 1.0 FTMS (DIS) (UDS)

Glucose Profile [GLP] 1.0.1 GLS DIS

Health Thermometer Profile [HTP] 1.0 HTS DIS

Heart Rate Profile [HRP] 1.0 HRS DIS

HID over GATT Profile [HOGP] 1.0 HIDS DIS BAS (ScPS)

Insulin Delivery Profile [IDP] 1.0.1
IDS DIS (BAS) (CTS)

(BMS) (IAS)

Location and Navigation Profile [LNP] 1.0 LNS (DIS) (BAS)

Phone Alert Status Profile [PASP] 1.0 PASS

Proximity Profile [PXP] 1.0.1 IAS (LLS) (TPS)

Pulse Oximeter Profile [PLXP] 1.0.1
PLXS DIS (BAS) (CTS)

(BMS)

Reconnection Configuration Profile [RCP] 1.0.1 RCS (BMS)

Running Speed and Cadence Profile [RSCP] 1.0 RSCS (DIS)

Scan Parameters Profile [ScPP] 1.0 ScPS

Time Profile [TIP] 1.0 CTS (NDCS) (RTUS)

Weight Scale Profile [WSP] 1.0
WSS DIS (BCS) (BAS)

(CTS) (UDS)

Note: Services without () are mandatory services, and services with () are Optional services. If you add a
profile in QE for BLE, only mandatory services are added to profile tree.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 8 of 97

Dec.27.22

1.2.3 Bluetooth LE communication project

The source code generated by QE for BLE runs on the following program. For information on how to
obtain each program, see "2.2 Obtaining Bluetooth LE Communications Projects".

1. Bluetooth LE Protocol Stack

Bluetooth LE Protocol Stack is a program to realize the Bluetooth LE function. The Bluetooth LE
Protocol Stack is provided as a static library. R_BLE_GATTC_XXX API and R_BLE_GATTS_XXX
API are used from profile common library.

2. Profile Common Library

The profile common library are programs that summarizes the common processing part of data
communication by the profile. The common profile section runs on the Bluetooth LE Protocol Stack.

R_BLE_DISC_XXX API, R_BLE_SERVC_XXX API, R_BLE_SERVS_XXX API are provided.

3. Abstraction API

4. The abstraction API is a program for simply implementing procedures related to connection and
security in Bluetooth LE communication. It summarizes the functions often used in Bluetooth LE
communication. R_BLE_ABS_XXX APIs are provided.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 9 of 97

Dec.27.22

1.3 Software structure of the profile program

Figure 1.4, Figure 1.5 show the software configuration of the program that realizes the profile generated by
the code generation function of QE for BLE.

Figure 1.4 Programs generated by QE for BLE (RE01B)

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 10 of 97

Dec.27.22

Figure 1.5 Programs generated by QE for BLE (RX23W, RA4W1)

The profile program generated from QE for BLE uses the profile common library to realize Bluetooth LE
communication. The profile program consists of the following three programs. For details on how to generate
profile programs, please refer to [3 Profile development with QE for BLE].

1. Application Framework

This is a framework for using Bluetooth LE functions and profiles. User applications are implemented
using the service API based on this framework. See "4.2 Application Framework (app_main.c)" for
details.

2. Service API Programs

This is an API program to access the data of services defined in the GATT database. See "4.1
Service API Programs (r_ble_xxs.c / r_ble_xxc.c)" for details.

3. GATT Database Program

This is an implementation of the GATT database that reflects the data structure of the service. See
"4.3 GATT Database (gatt_db.c / gatt_db.h)" for details.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 11 of 97

Dec.27.22

2. Building a development environment

This chapter describes how to install QE for BLE and how to add a Bluetooth LE communication project to
the e2 studio workspace.

2.1 Installing QE for BLE

2.1.1 How to add QE for BLE to an installed e2 studio

QE for BLE can be downloaded from the following pages.

⚫ https://www.renesas.com/qe-ble

Install method is as follows:

1. Activate e2 studio.

2. Select [Renesas Views] → [Renesas Software Installer] menu to open the [Renesas Software Installer]

dialog.

3. Select [Renesas QE] and click the [Next>] button.

4. Check the [QE for BLE [RA, RE, RX]] check box and click the [Finish (F)] button.

5. In the [Install] dialog, make sure that the [Renesas QE for BLE [RA, RE, RX]] check box and the
[Renesas QE for BLE [RA, RE, RX] Utility] check box are checked, and then click [Click the Next>]
button.

6. Confirm that the installation targets are [Renesas QE for BLE [RA, RE, RX]] and [Renesas QE for BLE
[RA, RE, RX] Utility], and then [Next (N)>]. Press the button.

7. After confirming the license, if you agree to the license, select the [I accept the terms of the terms of use
(A)] radio button and click the [Exit (F)] button.

8. If the dialog for selecting a trusted certificate is displayed, check the displayed certificate, and then click
the [OK] button to continue the installation.

9. Restart e2studio.

https://www.renesas.com/qe-ble

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 12 of 97

Dec.27.22

2.1.2 How to add QE for BLE when installing e2 studio

QE for BLE can be installed with e2 studio.

Check QE for BLE [RA, RE, RX] in the “Additional Software” selection screen of the e2 studio installation
wizard.

Figure 2.1 Installing QE for BLE

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 13 of 97

Dec.27.22

2.2 Getting of Bluetooth LE Communication Project

2.2.1 RX23W

For the RX23W, the Bluetooth LE Protocol Stack and abstraction API are provided in FIT format.

Refer to Chapter 4 "BLE FIT Module Project" in the following document to add the Bluetooth LE
communication project to your e2 studio workspace.

⚫ RX23W Group BLE Module Firmware Integration Technology (R01AN4860)

Profile common library is generated from QE for BLE when using QE for BLE 1.60 or later and BLE FIT
module 2.50 or later. BLE FIT module 2.40 or earlier includes the profile common library.

2.2.2 RA4W1

For RA4W1, the Bluetooth LE Protocol Stack and abstraction API are provided as modules of the FSP.

The profile common library is generated from QE for BLE.

Refer to Chapter 2 "How to use demo project" in the following document to add a Bluetooth LE
communication project to your e2 studio workspace.

⚫ RA4W1 Group BLE Sample Application (R01AN5402)

2.2.3 RE01B

For RE01B, the Bluetooth LE Protocol Stack, abstraction API and profile common library are provided as

sample projects in the Application Notes.

Refer to Chapter 4, "Creating Projects" in the following document to add the Bluetooth LE communication
project to your e2 studio workspace.

⚫ RE01B Group Bluetooth Low Energy Sample Code (Using CMSIS Driver Package) (R01AN5606)

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 14 of 97

Dec.27.22

3. Profile development with QE for BLE

This chapter describes how to design QE for BLE profiles. QE for BLE can be used to design GATT
profiles as well as configure GAP roles and parameters for Bluetooth LE.

3.1 How to Use QE for BLE

Launch QE for BLE by selecting [Renesas view]→[Renesas QE]→[R_BLE Custom Profile RA, RE, RX

(QE)] in menu of the e2 studio.

Figure 3.1 Open QE for BLE

Note: If your project contains an older version of QE for BLE, you will be prompted to migrate to the latest
QE for BLE.

⚫ QE for BLE [RA, RE, RX] V1.5.0 release notes

Figure 3.2 Profile updates when using older projects

https://www.renesas.com/document/rln/qe-blerarerx-v150-release-note

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 15 of 97

Dec.27.22

From the project selection field in the upper right, select the project to which you want to add code.

Figure 3.3 Select project

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 16 of 97

Dec.27.22

3.2 Design of the profile

This section describes how to design Bluetooth LE profiles used by applications.

Figure 3.4 QE for BLE configuration screen

The data handled by the profile has a tree structure that consists of services, characteristic, and
descriptors. This profile tree shows the data structure of the entire profile being designed.

When an element in the profile tree is selected, the set items of the selected element are displayed in the
advanced settings area. In the Advanced Settings area, you can design the selected element.

Add/delete an element from the Profile tree from the toolbar. The icons and actions of the toolbars are
shown below.

「 」:Add the selected element.

「 」:This feature deletes selected elements.

「 」「 」:Moves the selected element.

Export/Import button enable you to save/load the services selected in the Profile tree.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 17 of 97

Dec.27.22

3.2.1 Application role settings

This section selects the GAP role to be used by the application. Select the profile [] in the profile tree
and display the profile settings in the detail setting area.

Select the GAP role for the program to be generated. A skeleton program for the role selected here will be
generated. In the case of Peripheral, the program to advertise is generated. Selecting "Central" generates a
program that issues a scan and connection request.

Figure 3.5 Selecting the GAP Role of an Application

The Profile name shown in Table 1.2 is displayed in the Detail Settings area depending on the
combination of services to be added.

Figure 3.6 Confirmation of Profile screen

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 18 of 97

Dec.27.22

3.2.2 Adding and configuration service

With the profile [] selected, press the toolbar [] to add service to the profile.

Figure 3.7 Adding service

Select [New Service] to add custom service, or [Add Service] to SIG adopted service. To create a profile
defined by the Bluetooth SIG, select "Add Profile" and add the required SIG adopted services. If you need
Optional SIG adopted services, add them individually from [Add Service].

Select Service [] in the Profile tree to display the service settings in the Detail Settings area. Figure 3.7
shows the setting items. Table 3.1 shows the descriptions of each setting item.

[Note] GAP Service and GATT Service are mandatory services. Do not delete it.

Figure 3.8 Service configuration items

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 19 of 97

Dec.27.22

Table 3.1 Service configuration

Item Description

Server

[optional]

Set check on this item to generate service program as server. It also adds characteristic and

descriptors to GATT database.

Client

[optional]

Set check on this item to generate service program as client.

Name

[mandatory]

Name of service.

Example)

Custom service

UUID

[mandatory]

UUID of service.

Select 128bit if service is custom service.

Initial value is entered randomly. Modify if needed.

Example)

16bit : 0xe237

128bit : 96FE7990-2C76-89AB-DC49-AB7F123DEF9C

Note: Lack of “0x” or “-” will not affect code generation.

Abbreviation

[mandatory]

Abbreviation of service.

This value is used in file name, function name and variable name. Beware not to conflict with

other services.

Example)

 cs

Description

[optional]

Description of service.

Explain usage if needed. This description will be used as comments in generated program.

Example)

This service used for sending sensor data.

Aux properties

[optional]

AUX properties of service.

Items below can be configured.

Authorization Enable authorization. The setting is invalid when “Client” is

selected.

Use function R_BLE_GAP_AuthorizeDev() to authorize.

Security Level

[mandatory]

Security level required to access services from client devices. The setting is invalid when

“Client” is selected.

Select from below.

Level 1: No Security Client can access services without Pairing and communication will

not be encrypted.

Level 2: Unauthenticated

pairing with Encryption

Client can access services after Pairing without MITM protection

using Just Works method. Communication will be encrypted.

Level 3: Authenticated

pairing with Encryption

Client can access services after Pairing with MITM protection

using Passkey Entry or OOB mechanism. Communication will be

encrypted.

Level 4: Authenticated LE

Secure Connections with

pairing with Encryption

Client can access services after Pairing in LE Secure Connections

method. Communication will be encrypted.

Included

[optional]

Sets Included service.

Select the service to be included from the list.

Error Codes

[optional]

Adds error code of service.

Error code added can be used by function R_BLE_GATTS_SendErrRsp().

Name Name of error code.

Example)

Value not Supported

Code Value of error code. Select from value list.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 20 of 97

Dec.27.22

When a SIG adopted service is added, the changes are restricted. Figure 3.9 shows the service
configuration screen for SIG adopted service. In this state, the items Server, Client, Aux Properties, Security
Level, and Included can be configured.

Use [Customize] button in case creating a custom service based on SIG adopted service.

Figure 3.9 SIG adopted service configuration screen

Setting the "Security Level" is an important setting for protecting data in the GATT database.

• When adding a custom service

When adding a custom service, set the "Security Level" that matches the security level required by the
product to be developed, referring to Table 3.2.

Note: The Bluetooth SIG's published guide (Bluetooth® Security and Privacy Best Practices Guide)

recommends using Security Level 2 or higher for custom profiles.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 21 of 97

Dec.27.22

Table 3.2 Security Level Overview

Security
Mode 1

Encryption

User
authentication

operation
during pairing

IO
Capability
or OOB for

MITM
Protection

Access via
LE Legacy

Pairing

Access via
LE Secure

Connections
Pairing

Feature

Security
Level 1

Optional Optional Optional Acceptance Acceptance

Pairing is optional.
Settings that permit access
to services without
encryption.

Level 2 Required Optional Optional Acceptance Acceptance

Authentication operation is
optional by end users when
pairing.
For products that cannot
implement IO Capability.

Level 3 Required Required Required Acceptance Acceptance

Authentication operation is
required by end users when
pairing so that the pairing
which is not involved the
users can be suppressed.
For products that can
implement IO Capability.

Level 4 Required Required Required Rejection Acceptance

Authentication operation is
required by end users when
pairing so that the pairing
whichthat is not involved the
users can be suppressed.
Since LE Legacy Pairing is
rejected, it will strengthen
measures against
communication
eavesdropping.
For products that can
implement IO Capability and
accepts access from only
more secure clients.
(Access from devices that do
not support LE Secure
Connections is rejected.)

• When adding SIG standard service

Table 3.3 shows a list of Security Levels that require additional settings when using the SIG standard
profiles provided by QE for BLE. Security Level is not set in the SIG standard service provided by QE for
BLE, so it is required to set Security Level after adding the required services in the profile to be used.

Add the services required by the SIG standard profile by referring to Table 1.2, and set the Security Level
of all added services to the level required by your product among the levels shown in Table 3.3. For
example, if the Security Level of the IDP required by the product is determined to be '3', and set the Security
Level of IDS and accompanying services (IAS, CTS, BAS, etc.) to '3'. The higher the Security Level value,
the better the security. Refer to Table 3.2 for the security level required by the product.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 22 of 97

Dec.27.22

Table 3.3 List of Security Levels that require additional setting when using the SIG standard profile

Profile Specification Security Level Remarks

Alert Notification Profile (ANP) 1.0 2 or 3

Automation IO Profile (AIOP) 1.0 2 or higher

Blood Pressure Profile (BLP) 1.1.1 2 or 3

Continuous Glucose Monitoring Profile (CGMP)
1.0.2

2 or 3
Bond Management Service (BMS) must check
"Authorization" in "Aux Properties".

Cycling Power Profile (CPP) 1.1 1, 2 or 3

Cycling Speed and Cadence Profile (CSCP) 1.0 1, 2 or 3

Environmental Sensing Profile (ESP) 1.0 2 or higher
Environmental Sensing Service (ESS) must check
"Authorization" in "Aux Properties".

Find Me Profile (FMP) 1.0 2 or 3

Fitness Machine Profile (FTMP) 1.0 2 or higher

Glucose Profile (GLP) 1.0.1 2 or 3

Health Thermometer Profile (HTP) 1.0 2 or 3

Heart Rate Profile (HRP) 1.0 2 or 3

HID over GATT Profile (HOGP) 1.0 2 or 3

Insulin Delivery Profile (IDP) 1.0.1 3 or 4

Insulin Delivery Service (IDS) must check
"Authorization" in "Aux Properties".
Bond Management Service (BMS) must check
"Authorization" in "Aux Properties".

Location and Navigation Profile (LNP) 1.0 1, 2 or 3

Phone Alert Status Profile (PASP) 1.0 2 or 3

Proximity Profile (PXP) 1.0.1 2 or 3

Pulse Oximeter Profile (PLXP) 1.0.1 2 or higher

Reconnection Configuration Profile (RCP) 1.0.1 1 or higher
Bond Management Service (BMS) must check
“Authorization” in “Aux Properties”.

Running Speed and Cadence Profile (RSCP) 1.0 1, 2 or 3

Time Profile (TIP) 1.0 2 or 3

Weight Scale Profile (WSP) 1.0 2 or higher

Note: The Security Levels listed in Table 3.3 include the requirements formulated prior to Bluetooth LE

4.1(LE Secure Connections function not supported). The Bluetooth SIG's published guide (Bluetooth®

Security and Privacy Best Practices Guide) recommends support for Security Level 4 or LE Secure

Connections Pairing with Security Levels 2,3 unless there are restrictions on the remote device side.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 23 of 97

Dec.27.22

3.2.3 Adding and configuration characteristic

Press [] on the toolbar with service [] selected to add a character list to the service.

Figure 3.10 Add characteristic

To add a custom characteristic, select [New characteristic]. To add a SIG adopted characteristic, select
[Add characteristic].

When you select characteristic [] in [Profile Tree], characteristic configuration screen (Figure 3.11) will
be shown in [Detail Settings Screen]. Table 3.4 Characteristic configuration Table 3.4 and Table 3.5
describes each item on the configuration screen.

Figure 3.11 Characteristic configuration screen

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 24 of 97

Dec.27.22

Table 3.4 Characteristic configuration

Item Description

Name

[mandatory]

Name of characteristic.

Example)

 Custom Characteristic

UUID

[mandatory]

UUID of characteristic.

Select 128bit if service is custom characteristic.

Initial value is entered randomly. Modify if needed.

Example)

16bit: 0xe237

128bit: 96FE7990-2C76-89AB-DC49-AB7F123DEF9C

Note: Lack of “0x” or “-” will not affect code generation.

Abbreviation

[mandatory]

Abbreviation of characteristic.

This value is used in function name and variable name. Beware not to conflict with other

characteristics.

Example)

 cc

Description

[optional]

Description of Characteristic.

Explain usage if needed. This description will be used as comment of generated program.

Example)

 This Characteristic is used for sending sensor data

Properties

[mandatory]

Properties of characteristic which defines operation on Bluetooth LE communication.

API and events will be generated for each item checked.

[Broadcast] and [ReliableWrite] won’t generate API and events due to its method. Client

Characteristic Configuration Descriptor will be added if [Notify] or [Indicate] is selected.

Items below can be configured.

Read Enable Read operation.

Write Enable Write operation.

WriteWithoutResponse Enable Write Without Response operation.

Notify Enable Notify operation.

Indicate Enable Indicate operation.

ReliableWrite Enable Reliable Write operation.

Broadcast Enable Broadcast operation.

Aux Properties

[optional]

AUX properties of characteristic.

Items below can be configured.

Const Value will not be able to change.

Peer Specific Value will be kept individually for each connection.

Variable Length Value length will be variable.

Authorization Enable authorization.

Use function R_BLE_GAP_AuthorizeDev() to authorize.

Disable Disable attribute.

DBSize

[mandatory]

Size of characteristic. Unit of value is byte.

Size set in Field will be calculated automatically.

If Field with [st_ble_seq_data_t] is set, put maximum size of data.

Value

[optional]

Initial value of characteristic.

If you want to enter a number, enter it separated by 8bit digit.

If you want to enter string, you can easily enter it by enclosing it in “”.

Example)

 For numbers: 0x12, 0x34, 56,78

 For string: “example”

Field

[mandatory]

Set value field used in application.

Refer Table 3.5 for configuration.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 25 of 97

Dec.27.22

Table 3.5 Field configuration

Item Description

New Field

Add new field.

Items below can be configured

Name

[mandatory]

Name of field.

Example)

 field_name

Format/Value

[mandatory]

Format of field.

Value can be selected from below.

bool Boolean type

char char type

uint8_t unsigned 8bit data type

uint16_t unsigned 16bit data type

uint32_t unsigned 32bit data type

int8_t signed 8bit data type

int16_t signed 16bit data type

int32_t signed 32bit data type

st_ble_ieee_11073_float_t IEEE-11073 32bit FLOAT type

st_ble_ieee_11073_sfloat_

t

IEEE-11073 16bit SFLOAT type

st_ble_date_time_t Structure for setting date and time

information.

st_ble_dev_addr_t Structure for setting Bluetooth LE

address data.

st_ble_seq_data_t Structure for variable length data.

Select this when only one field is set,

and length is set more than 2.

struct Structure type.

Select this when selecting [Add Field].

Length

[mandatory]

Data length of field.

Abbreviation

[optional]

Abbreviation of field.

Description

[optional]

Description of field.

Explain usage if needed

Value Initial value for each field.

Value set here will apply to [Value] of descriptor.

Add Field Adds a new Field inside the selected Field.

Use it if you configure data that has hierarchy.

The Format/Value of the selected Field is set to [struct].

Added Field can be configured same items explained in [New Field].

Add Enumeration Defines enumeration usable for selected field.

Items below can be configured.

Name

[mandatory]

Name of enumeration.

Example)

 enable

Format/Value

[mandatory]

Value code of enumeration.

Example)

 0x01

Description

[optional]

Description of enumeration.

Delete Delete selected field.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 26 of 97

Dec.27.22

3.2.4 Adding and configuration descriptor

Press [] on the toolbar with character list [] selected to add a descriptor to the characteristic.

To add a custom descriptor, select [Add New Descriptor]. To add a SIG adopted descriptors, select
[Add Descriptor].

Figure 3.12 Adding descriptor

Selecting the Descriptor [] in the Profile tree displays the descriptor settings in the Detail Settings area.
Figure 3.13 shows the setting items. Table 3.4 shows the explanation of each setting item.

Figure 3.13 Descriptor configuration screen

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 27 of 97

Dec.27.22

Table 3.6 Descriptor configuration

Item Description

Name

[mandatory]

Name of descriptor.

Example)

 Custom Descriptor

UUID

[mandatory]

UUID of descriptor.

Select 128bit if service is custom descriptor.

Initial value is entered randomly. Modify if needed.

Example)

16bit: 0xe237

128bit: 96FE7990-2C76-89AB-DC49-AB7F123DEF9C

Note: Lack of “0x” or “-” will not affect code generation.

Abbreviation

[mandatory]

Abbreviation of descriptor.

This value is used in function name and variable name. Beware not to conflict with other

descriptors.

Example)

 cd

Description

[optional]

Description of descriptor.

Explain usage if needed. This description will be used as comment of generated program.

Example)

 This descriptor is used for sending sensor data

Properties

[mandatory]

Properties of descriptor which defines operation on Bluetooth LE communication.

API and events will be generated for each item checked.

Items below can be configured

Read Enable Read operation.

Write Enable Write operation.

Aux Properties

[optional]

AUX properties of descriptor.

Items below can be configured.

Const Value will not be able to change.

Peer Specific Value will be kept individually for each connection.

Variable Length Value length will be variable.

Authorization Enable authorization.

Use function R_BLE_GAP_AuthorizeDev() to authorize.

Disable Disable attribute.

DBSize

[mandatory]

Size of descriptor. Unit of value is byte.

Size set in Field will be calculated automatically.

If Field with [st_ble_seq_data_t] is set, put maximum size of data.

Value

[optional]

Initial value of descriptor.

If you want to enter a number, enter it separated by 8bit digit.

If you want to enter string, you can easily enter it by enclosing it in “”.

Example)

 For numbers: 0x12, 0x34, 56,78

 For string: “example”

Field

[mandatory]

Set value field used in application. Refer Table 3.5 for configuration.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 28 of 97

Dec.27.22

3.3 Configuration of Peripheral

In [Peripheral] tab, you can configure parameters for GAP peripheral role. Parameters set in this tab are
used in application framework when you select [Peripheral] in [Profile] tab.

In this tab, you can configure following settings.

Table 3.7 Configurable items in Peripheral

Item Description

Advertising Data You can configure Advertising data that will be sent in Advertising event.

Scan Response Data You can configure Scan response data that will be sent in Advertising event.

Advertising Parameter You can set parameters for Advertising operation.

Figure3.14 Peripheral parameter configuration screen

3.3.1 Advertising Data

Advertising Data can be configured by this section. The Data type that are checked will be added as
advertising data.

User can also input data value by selecting each data type. Data type that user can select is listed in Table
3.8. Maximum size of Advertising data is 31 bytes, so add data which will not exceed this size. Configure
[3.3.2 Scan Response Data] for additional data. Refer [Core Specification Supplement
<https://www.bluetooth.com>] for detail about Advertising data.

https://www.bluetooth.com/

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 29 of 97

Dec.27.22

Table 3.8 List of Selectable Data Type

Data type name Description

Flags

This data describes flag of advertising data.

Including this data type is necessary for connectable Advertising.

This data type can’t be selected for scan response data.

Select discoverable mode and check for additional information.

LE Limited Discoverable Mode Device will be discoverable for certain period.

LE General Discoverable Mode Device will be discoverable all the time.

Non-Discoverable Mode Device will not be discovered.

BR/EDR Not Supported Check if only Bluetooth LE function is supported.

Simultaneous LE and BR/EDR to

same Device Capable (Controller)

Check if function as Controller roll of Bluetooth LE and

BR/EDR can be operated at same time.

Simultaneous LE and BR/EDR to

same Device Capable (Host)

Check if function as Host roll of Bluetooth LE and

BR/EDR can be operated at same time.

Service Class UUIDs
This data shows the list of services device offers. You can select services that will be added

to the list. Services those are added in Profile tab can be selected.

Local Name

This data type describes name of advertising device.

Select local name type and input the name.

Local name can be selected from the below.

Short local name This type describes shortened device name. Use this

type when device name is long and extends the size

advertising data

Complete local name This type describes complete device name.

TX Power Level This data type describes TX power of advertising device.

Slave Connection

Interval Range

This data type describes connection interval that is recommended from advertising device.

Input both MAX/MIN of connection interval.

Service Solicitation

UUIDs

This data type shows the list of service that advertising device requires.

You can select services that will be added to the list.

Services those are added in Profile tab can be selected.

Service Data

This data type describes data of service.

Value of this data type consists of service UUID and service Data.

ex)

Service UUID [0x1234] Service Data [0x56, 0x78, 0x9a, 0xbc]

→Input data [123456789abc]

Public Target Address

This data type describes Public BD Address of device that are target of advertising data.

ex)

Public BD Address [0x12:0x34:0x56:0x78:0x9a:0xbc]

→Input data [12345678]

Random Target

Address

This data type describes Random BD Address of device that are target of advertising data.

ex)

Random BD Address [0x12:0x34:0x56:0x78:0x9a:0xbc]

→Input data [12345678]

Appearance

This data type describes appearance of Advertising device.

The value of each appearance is listed in Assigned Numbers page in Bluetooth SIG.

https://www.bluetooth.com

Advertising Interval
This data type describes advertising interval of advertising event.

The value input in this item will not be used as the advertising parameter.

Manufacturer Specific

Data

This data type describes data that manufacturer specifies by their own.

Value of this data type consists of company ID and specific data.

ex)

Company ID [0x1234] Specific Data [0x56, 0x78, 0x9a, 0xbc]

→Input data [341256789abc]

https://www.bluetooth.com/

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 30 of 97

Dec.27.22

3.3.2 Scan Response Data

Scan response data can be configured. The data type that are checked will be added as scan response
data.

User can also input data value by selecting each data type. Data type that user can select is listed in Table
3.8.

3.3.3 Advertising Parameter

You can configure parameters used for Advertising operation. Table 3.9 lists the parameters that can be
set.

Note: If you have difficulty connecting with the default settings, decrease the [Advertising Interval]
parameter.

Table 3.9 Configurable items of Advertising operation

Item Description

Fast

You can configure timing information of advertising event.

This parameter will be configurable if [Enable Fast Advertising] is checked.

If not checked, parameter will be ignored.

You can set following items.

Advertising Interval Set Advertising Interval.

Advertising period Set Advertising Period.

Parameters set in [Fast] will be used for this period.

Slow

You can configure timing information of advertising event.

If [Enable Fast Advertising] is checked, this parameter will be used after Fast Advertising

period. If not checked, this parameter will be used from the beginning of advertising

operation.

You can set following items.

Advertising Interval Set Advertising Interval.

Advertising period Set Advertising Period.

This parameter will be configurable if [Set Advertising Period] is

checked.

If you want to send Advertising only for certain period, set this

parameter.

Advertising channel
You can select Advertising channel that will be used in Advertising.

Advertising event will be sent in all channels that is selected.

Address type

You can select address type that will be used in advertising.

Address type can be selected from below.

Public address Public address will be used in advertising event.

Random Address Random address will be used in advertising event.

Device static address will be used as BD address.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 31 of 97

Dec.27.22

3.4 Configuration of Central

In [Central] tab, you can configure parameters for GAP central role. Parameters set in this tab are used in
application framework when you select [Central] in [Profile] tab.

In this tab, you can configure following settings.

Table 3.10 Configurable items of Central

Item Description

Scan Parameter You can set parameters for scan operation such as Scan Interval.

Scan Filter Data You can configure Scan Filter Data that will be used during Scan operation.

Connection Parameter You can set parameters for connection such as Advertising Interval.

Parameter set here will be used in Connection Request.

Figure 3.15 Central parameter configuration screen

3.4.1 Scan Parameter

You can configure parameters that will be used in scan operation. Table 3.10 lists the parameters that can
be set.

Note: If you have difficulty connecting with the default settings, decrease the [Scan Interval] and increase
the [Scan Window].

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 32 of 97

Dec.27.22

Table 3.11 Configurable items of Scan Parameter

Item Description

Fast

You can configure timing information of scan operation.

This parameter will be configurable if [Enable Fast Scan] is checked.

If not checked, parameter will be ignored.

You can set following items.

Scan Window Set Scan Window.

Scan Interval Set scan Interval.

Scan Period Set scan Period.

Parameters set in [Fast] will be used for this period.

Slow

You can configure timing information of scan operation.

If [Enable Fast Scan] is checked, this parameter will be used after Fast scan period.

If not checked, this parameter will be used from the beginning.

You can set following items.

Scan Window Set Scan Window.

Scan Interval Set scan Interval.

Scan Period Set scan Period.

This parameter will be configurable if [Set Scan Period] is

checked.

If you want to operate scan only for certain period, set this

parameter.

Scan type

You can select scan type.

Scan type can be selected from below.

Passive Scanning Passive scan will operate as scan operation.

Active Scanning Active scan will operate as scan operation.

Device filter

You can select device filter that will be used in scan operation.

Device filter can be selected from below.

Allow all Scan operation well accept all advertising and scan response

PDUs except directed advertising PDUs not addressed to local

device.

Allow directed advertising Scan operation will accept all advertising and scan response

PDUs except directed advertising PDUs whose target address

is identity address but doesn't address local device. However,

directed advertising PDUs whose target address is the local

resolvable private address are accepted.

Filter duplicates

You can select filter duplicate parameter that will be used in scan operation.

Filter duplicates can be selected from below.

Disable Duplicate filter will be disabled.

Enabled Duplicate filter will be enabled. If you check [Reset for each

period], duplicate filter will reset for each scan period.

3.4.2 Scan Filter Data

Filter data for scan operation can be configured by this section. Only advertising event which has data that
matches filter data will be notified to the application framework.

The data type which is checked will be used as filter data. User can also input data value by selecting data
type. Data type that user can select is listed in Table 3.8.

Note: Only one data type can be selected as Scan Filter Data

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 33 of 97

Dec.27.22

3.4.3 Connection Parameter

You can configure parameter used for connection event. This parameter will be used in connection
request.

Table 3.12 Configurable item of connection

Item Description

Parameter

You can configure connection parameter.

Parameter set here will be sent with connection request and used after connection

established.

You can set following items.

Connection Interval Set connection interval.

Connection Latency Set peripheral latency.

Connection Supervision

Timeout

Set supervision timeout.

Connection cancel

You can configure connection cancel parameter.

You can set following items.

Connection Timeout Set connection timeout.

If peripheral device doesn’t respond to connection request for

connection timeout, connection will be canceled.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 34 of 97

Dec.27.22

4. Implementation of program

This chapter describes how to implement a user application based on source code generated from
QE for BLE.

Table 4.1 shows the programs generated from QE for BLE.

Table 4.1 Programs generated by QE for BLE

Program file name description

Application

Framework

app_main.c A framework for user applications and profiles.

Skeleton program that is the basis of application/profile development.

GATT

Database

Program

gatt_db.c

gatt_db.h

GATT database program

Data structure of service which is checked on [server] in QE for BLE is

defined.

Service

API

Program

r_ble_[abbreviation][s or c].c

r_ble_[abbreviation][s or c].h

Profile API program

API program for accessing and notifying profile data. File is generated

for each service that configure profile. Each file name is determined

based on the [abbreviation], [server], and [client] set in QE for BLE.

[abbreviation][s] is the server program, [abbreviation][c] is the client

program.

Example)

 [abbreviation]=[sig], [server]: r_ble_sigs.c, r_ble_sigs.h

[abbreviation]=[cus], [client]: r_ble_cusc.c, r_ble_cusc.h

Profile

Common

Library

profile_cmn

discovery

This is a program for the common part of the profile.

It is generated for the RA4W1, RX23W environment.

This chapter provides an example implementation of a custom service with the following profile: XX
service, YYY characteristic, and ZZZ descriptor are added.

Figure 4.1 Characteristic used in description

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 35 of 97

Dec.27.22

Table 4.2 Profile used in description

Service abbreviation Role

GAP Service gap Server

Client

GATT Service gat Server

Client

prof dev XX Service xx Server

Client

Characteristic name abbreviation Property

prof dev YYY Characteristic yyy Read

Write

WriteWithoutResponse

Notify

Indication

Descriptor name abbreviation Property

Client Configuration Characteristic Descriptor cli cnfg Read

Write

prof dev ZZZ Descriptor zzz Read

Write

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 36 of 97

Dec.27.22

Figure 4.2 shows an example of code generated by QE for BLE. Each program is generated in the
following folder.

⚫ [project name]/qe_gen/ble

Figure 4.2 Source Code example generated by QE for BLE

QE for BLE provides user code protection during code generation. Code added within the code block
shown below will be retained after code generation. When implementing it in each program, implement it
between these comments.

Figure 4.3 User code blocking comment

/* Start user code for XXXX. Do not edit comment generated here */

Implement user code here

/* End user code. Do not edit comment generated here */

Service API Programs

Service API Program of SIG adopted
service

Service API Program of custom service

Profile Common Library

Application Framework

GATT Database Program

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 37 of 97

Dec.27.22

4.1 Service API Programs (r_ble_xxs.c / r_ble_xxc.c)

The service API program is a program that simplifies data communication by profiles.

This section describes the details of the generated API and how to implement the encode/decode
functions required to use the API.

Each service will generate the functions in Table 4.3, regardless of its role. In the table, [xx] is the string
set to the [abbreviation] of the service in QE for BLE, and [S or C] is set to “S” if the service is a server or “C”
if it is a client.

Table 4.3 API defined in each service API program

API Description

R_BLE_[service][S or C]_Init Initialization function for the service. Register the service in profile

common library. Calling this function is necessary before using service

API program. The result of the GATT operation is notified to the callback

function registered with this function.

The Service API program provides an API for GATT operation. The API corresponding to the GATT
operation is generated according to the [Property] selected in QE for BLE.

Table 4.4 GATT Operation API generated in client role

Function Name Description

R_BLE_XXC_WriteYyy

R_BLE_XXC_WriteYyyZzz

The GATT database is written from the client side.

A response is returned from the server upon completion of the
write.

Generated when the Write property of QE for BLE is enabled.

R_BLE_XXC_ReadYyyZzz Reads the server's GATT database.

Generated when the Read property of QE for BLE is enabled.

R_BLE_XXC_WritewithoutRespYyy The GATT database is written from the client side.

No response is returned from the server upon completion of the
write.

Generated when the Write Without Response property of QE for
BLE is enabled.

R_BLE_XXC_ServDiscCb Used to receive and retain the results of service discovery by the
discovery library in the profile common library.

R_BLE_XXC_GetServAttrHdl Obtains a service-discovered attribute handle.

Table 4.5 GATT Operation API generated in server role

Function Name Description

R_BLE_XXS_NotifyYyy Sends data from the server to the client.

This is generated when the Notify property of QE for BLE is enabled.

The GATT database is not written with this operation.

R_BLE_XXS_IndicateYyy Sends data from the server to the client.

Receives acknowledgement of receipt from the client.

This is generated when the Indicate property of QE for BLE is enabled.

The GATT database is not written with this operation.

R_BLE_XXS_SetYyy

R_BLE_XXS_SetYyyZzz

Sets a value in the GATT database.

Generated when one of QE for BLE's Read, Write, or Write Without
Response properties is enabled.

R_BLE_XXS_GetYyy

R_BLE_XXS_GetYyyZzz

Retrieves a value into the GATT database.

Generated when the Read, Write, or Write Without Response properties
is enabled in QE for BLE.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 38 of 97

Dec.27.22

Events during GATT operation are notified to the callback function registered in R_BLE_XX [S / C] _Init.

The events notified to the server side are shown in Table 4.6, and the events notified to the client are shown

in Table 4.7.

Table 4.6 Event that occurred server

Event Description

BLE_XXS_EVENT_Yyy_WRITE_REQ Occurs when a GATT database write request is received by the

Write operation.

BLE_XXS_EVENT_Yyy_WRITE_COMP

BLE_XXS_EVENT_Yyy_Zzz_WRITE_COMP

Occurs when writing to the GATT database by the Write operation is

complete.

BLE_XXS_EVENT_WRITE_CMD Occurs when a GATT database write by Write Without Response is

received.

BLE_XXS_EVENT_Yyy_READ_REQ Occurs when a GATT database read request is received by the

Read operation.

BLE_XXS_EVENT_Yyy_HDL_VAL_CNF Occurs when a confirmation packet for Indicate operation is

received.

Table 4.7 Event that occurred client

Event Description

BLE_XXS_EVENT_Yyy_WRITE_RSP

BLE_XXS_EVENT_Yyy_Zzz_WRITE_RSP

Occurs when a response to a write request is received for a Write

operation.

BLE_XXC_EVENT_Yyy_READ_RSP

BLE_XXC_EVENT_Yyy_Zzz_READ_RSP

Occurs when the read result of the Read operation is received.

BLE_XXC_EVENT_Yyy_HDL_VAL_NTF It occurs when data is received by the Notify operation.

BLE_XXC_EVENT_Yyy_HDL_VAL_IND It occurs when data is received by the Indicate operation.

In the service API program, characters and descriptors are represented by data types that reflect the QE
for BLE Field settings. The characteristic and descriptor data types can be seen in the characteristic

definition structure as shown in Figure 4.4

Figure 4.4 Application data type reference notified to the event (in r_ble_xx [c/s].c)

/* prof dev yyy Characteristic characteristic definition */
static const st_ble_servc_char_info_t gs_yyy_char = {
 .uuid_128 = BLE_XXXC_YYY_UUID,
 .uuid_type = BLE_GATT_128_BIT_UUID_FORMAT,
 .app_size = sizeof(st_ble_xxc_yyy_t),
 .db_size = BLE_XXC_YYY_LEN,
 .char_idx = BLE_XXC_YYY_IDX,
 .p_attr_hdls = gs_yyy_char_ranges,
 .decode = (ble_servc_attr_decode_t)decode_st_ble_xxc_yyy_t,
 .encode = (ble_servc_attr_encode_t)encode_st_ble_xxc_yyy_t,
 .num_of_descs = ARRAY_SIZE(gspp_yyy_descs),
 .pp_descs = gspp_yyy_descs,
};

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 39 of 97

Dec.27.22

If there are multiple elements set [Fields] in the QE for BLE, the characteristic or descriptor structure is
defined. It is defined in the header file as shown in Figure 4.5.

Figure 4.5 Characteristic application data structure (r_ble_xx[c/s].h)

Encode / decode functions convert the application data contained in the radio packet PDU and this
structure to each other.

/***//**
 * @brief prof dev yyy Characteristic value structure.
***/
typedef struct {
 uint16_t field_1; /**< field_1 */
 uint16_t field_2; /**< field_2 */
} st_ble_xxc_yyy_t;

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 40 of 97

Dec.27.22

4.1.1 Description of encode/decode functions

The application layer handles characteristic and descriptor value in accordance with the format specified
by the [Fields] of QE for BLE. On the other hand, in the GATT database and Bluetooth LE Protocol Stack,
these formats are treated as an 8-bit data array.

The profile common library uses the encode / decode function for each characteristic to convert the data
structure for the application and the 8-bit array data for the GATT database.

Figure 4.6 shows the feature of encode/decode function.

Application

API Program

encode function decode function

GATT Database

BLE Protocol Stack

Characteristic / Descriptor value is reprensented as BYTE DATA ARRAY
e.g.)

uint8_t gatt_value[6];

Characteristic/Descriptor value is represented as VARIABLE or STRUCTURE
e.g.)

struct {
uint32_t field1;
uint16_t field2;

} app_value;

Figure 4.6 Feature of encode/decode function

The encode function is used by the profile common library when API to send characteristic or descriptor
value or to change characteristic or descriptor value of own GATT Database is called. Also, the decode
function is used by the profile common library before callback function to notify characteristic or descriptor
value received.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 41 of 97

Dec.27.22

Figure 4.7 shows a use-case of the encode/decode function that GATT Client writes new Characteristic
value to peer GATT Server. The encode function is used by API Program of the client side and then the
decode function is used by API Program of the server side.

GATT Client Application

API Program

BLE Protocol Stack

GATT Server Application

API Program

decode function

BLE Protocol Stack

VARIABLE or STRUCTURE of
Characteristic value

BYTE DATA ARRAY of
Characteristic value

encode function

VARIABLE or STRUCTURE of
Characteristic value

BYTE DATA ARRAY of
Characteristic value

Calling API to write Charasteristic value Callback function is called and Write event is notified

Figure 4.7 Use-Case of the encode/decode Function writing Characteristic value

Similarly, Figure 4.8 shows a use-case of the encode/decode function that GATT Server notifies new
Characteristic value to peer GATT Client. The encode function is used by API Program of the server side
and then the decode function is used by API Program of the client side.

GATT Client Application

API Program

BLE Protocol Stack

GATT Server Application

API Program

encode function

BLE Protocol Stack

VARIABLE or STRUCTURE of
Characteristic value

BYTE DATA ARRAY of
Characteristic value

decode function

VARIABLE or STRUCTURE of
Characteristic value

BYTE DATA ARRAY of
Characteristic value

Callback function is called and Notify event is notified Calling API to notify Charasteristic value

Figure 4.8 Use-Case of the encode/decode Function notifying Characteristic value

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 42 of 97

Dec.27.22

4.1.2 Automatic generation of encode/decode functions

Encode/decode functions are automatically generated by QE for BLE Utility 1.60 or later. This section
describes the generated encode/decode functions. The encode/decode function encodes/decodes the data
type set in the field so that it has the number of bytes shown in Table 4.8

Table 4.8 Structure and number of bytes that can be set in QE for BLE

Deta Type Number of bytes

bool, char, uint8_t, int8_t 1

uint16_t, int16_t 2

uint32_t, int32_t 4

st_ble_ieee11073_sfloat_t 2

st_ble_ieee11073_float_t 3

st_ble_dev_addr_t 7

st_ble_date_time_t 7

If “st_ble_seq_data_t” is contained in a field with multiple data types, an empty encode/decode function is
generated for that characteristic/descriptor.

Figure 4.9 shows examples of fields and byte sequences. Pack each field into the transmission data in
order from the top.

Figure 4.9 Descriptive fields and bytes of the generated encode/decode function

The generated encode functions are shown in Figure 4.10. If Length is set to a value greater than 1, the
“for statement” will pack it into the transmission data.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 43 of 97

Dec.27.22

Figure 4.10 Example for generated encode function

Figure 4.11 shows the generated decode function.

static ble_status_t encode_st_ble_xxc_prof_t(
const st_ble_xxc_prof_t *p_app_value,
st_ble_gatt_value_t *p_gatt_value)

{
 /* Start user code for characteristic value encode function. */
 /* End user code. Do not edit comment generated here */
#ifndef BLE_XXC_DISABLE_ENCODE_DECODE

 uint32_t pos = 0;

 BT_PACK_LE_2_BYTE(&p_gatt_value->p_value[pos],&p_app_value->field_1);
 pos += 2;

 for (uint32_t i=0;i<3;i++)
 {
 BT_PACK_LE_4_BYTE(&p_gatt_value->p_value[pos],&p_app_value->field_2[i]);
 pos += 4;
 }

 pos += ble_pack_st_ble_ieee11073_sfloat_t(

&p_gatt_value->p_value[pos],
&p_app_value->field_3);

 pos += ble_pack_st_ble_xxc_prof_field_4_t(

&p_gatt_value->p_value[pos],
&p_app_value->field_4);

 p_gatt_value->value_len = (uint16_t)pos;
#endif /* BLE_XXC_DISABLE_ENCODE_DECODE */

 return BLE_SUCCESS;
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 44 of 97

Dec.27.22

Figure 4.11 Example for generated decode function

These encode/decode functions can be disabled by defining the following macros in the user code block
as shown in Figure 4.12.

If you disable it, refer to Chapter 4.1.3 and implement the encode/decode function.

Figure 4.12 Disabling generated encode/decode functions

static ble_status_t decode_st_ble_xxc_prof_t(
st_ble_xxc_prof_t *p_app_value,
const st_ble_gatt_value_t *p_gatt_value)

{
 /* Start user code for New Characteristic value decode function. */
 /* End user code. Do not edit comment generated here */
#ifndef BLE_XXC_DISABLE_ENCODE_DECODE

 uint32_t pos = 0;

 BT_UNPACK_LE_2_BYTE(&p_app_value->field_1,&p_gatt_value->p_value[pos]);
 pos += 2;

 for (uint32_t i=0;i<3;i++)
 {
 BT_UNPACK_LE_4_BYTE(&p_app_value->field_2[i],&p_gatt_value->p_value[pos]);
 pos += 4;
 }

 pos += ble_unpack_st_ble_ieee11073_sfloat_t(

&p_app_value->field_3,
&p_gatt_value->p_value[pos]);

 pos += ble_unpack_st_ble_xxc_prof_field_4_t(

&p_app_value->field_4,
&p_gatt_value->p_value[pos]);

#endif /* BLE_XXC_DISABLE_ENCODE_DECODE */

 return BLE_SUCCESS;
}

/* Start user code for function prototype declarations and global variables. Do not
edit comment generated here */
#define BLE_XXC_DISABLE_ENCODE_DECODE
/* End user code. Do not edit comment generated here */

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 45 of 97

Dec.27.22

4.1.3 Implementing the encode-decode function

Using for versions earlier than QE for BLE Utility 1.60 or when the automatically generated encode/decode
function is disabled, implement the encode/decode function corresponding to each data structure. Therefore,
implementation of the encode/decode function for each data structure is needed. For basic data structures
such as uint8_t type and commonly used data structures such as ieee11073 SFLOAT type, you can
implement encode/decode function by calling appropriate encode/decode macros and functions. Table 4.9
describes the list of provided encode/decode macros and functions.

Table 4.9 encode/decode macro or function

Type of Field encode decode

char

uint8_t

int8_t

BT_PACK_LE_1_BYTE(*dst, *src) BT_UNPACK_LE_1_BYTE(*dst, *src)

uint16_t

int16_t

BT_PACK_LE_2_BYTE(*dst, *src) BT_UNPACK_LE_2_BYTE(*dst, *src)

uint32_t

int32_t

BT_PACK_LE_4_BYTE(*dst, *src) BT_UNPACK_LE_4_BYTE(*dst, *src)

st_ble_ieee11073_sfloat_t pack_st_ble_ieee11073_sfloat_t(*p_dst,

*p_src)

unpack_st_ble_ieee11073_sfloat_t(*p_dst,

*p_src)

st_ble_date_time_t pack_st_ble_date_time_t(*p_dst, *p_src) unpack_st_ble_date_time_t(*p_dst, *p_src)

Figure 4.13 shows implementation of a encode function for characteristic which has field shown in Figure
4.14. In this encode function, encode macros and functions provided in Table 4.9 are used.

Figure 4.13 Example of implementing encode function

static ble_status_t decode_st_ble_xxxc_yyy_t(st_ble_xxxc_yyy_t *p_app_value, const
st_ble_gatt_value_t *p_gatt_value)
{
 /* Start user code for profile dev yyy Characteristic characteristic value decode
function. Do not edit comment generated here */
 uint32_t pos = 0;
 BT_UNPACK_LE_16_BYTE(&p_app_value->field_1, p_gatt_value->p_value[pos]);
 pos += 2;

 BT_UNPACK_LE_16_BYTE(&p_app_value->field_2, p_gatt_value->p_value[pos]);
 pos +=2;
 /* End user code. Do not edit comment generated here */
 return BLE_SUCCESS;
}

static ble_status_t encode_st_ble_xxc_yyy_t(const st_ble_xxc_yyy_t *p_app_value,
st_ble_gatt_value_t *p_gatt_value)
{
 /* Start user code for profile dev yyy Characteristic characteristic value encode
function. Do not edit comment generated here */
 uint32_t pos = 0;
 BT_PACK_LE_16_BYTE(&p_gatt_value->p_value[pos],p_app_value->field_1);
 pos += 2;

 BT_PACK_LE_16_BYTE(&p_gatt_value->p_value[pos],p_app_value->field_2);
 pos += 2;
 /* End user code. Do not edit comment generated here */
 return BLE_SUCCESS;
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 46 of 97

Dec.27.22

Figure 4.14 Example of field

For the SIG adopted service, the encode/decode functions are already implemented. Therefore, this step
is unnecessary. Also, if [Fields] has only one of the following types, it is not necessary to implement the
encode/decode function.

uint8_t, uint16_t, uint32_t, int8_t, int16_t, int32_t,

st_ble_seq_data_t, st_ble_ieee11073_sfloat, st_ble_date_time_t

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 47 of 97

Dec.27.22

4.2 Application Framework (app_main.c)

In app_main.c, a program that realizes Bluetooth LE communication according to the role of the
application is pre-implemented.

Figure 4.15 shows the sequence chart when app_main.c generated by each role is executed. In this case,
the central device is the GATT client, and the peripheral device is the GATT server.

Figure 4.15 Behavior of the program implemented in app_main.c

Central
(GATT Client)

Peripheral
(GATT Server)

Power ON

Stack ON

BLE_GAP_EVENT_STACK_ON BLE_GAP_EVENT_STACK_ON

Advertising using device
name (RBLE_DEV)

Advertising

Scan with filtering using
device name (RBLE_DEV)

BLE_GAP_EVENT_ADV_REPT_IND

BLE_GAP_EVENT_CONN_IND
BLE_GAP_EVENT_CONN_IND

BLE_GAP_EVENT_DATA_LEN CHG

BLE_GAP_EVENT_DATA_LEN CHG

Start service discovery for
designed profile

BLE_GATTC_CONN_IND

Complete discovery

disc_comp_cb

QE for BLE code-generation

Power ON

Stack ON

Connection request

Connection established

BLE Protocol Stack
automation process

Response service
discovery

Connection response

Request changing maximum packet length

Response changing maximum packet length

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 48 of 97

Dec.27.22

When service discovery is complete, you will be notified of disc_comp_cb. The client can perform profile
communication after calling this callback function.

app_main.c is an application skeleton program that contains a profile configured with QE for BLE. By
adding processing to the function defined on the source code, data communication by profile is realized.

Here, we will explain how to implement profile data communication using a service API program, using a
typical GATT operation as an example. If you want to implement other Bluetooth LE features, refer to the
“Application Developer's Guide”.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 49 of 97

Dec.27.22

4.2.1 Responding to security requirements

If you set the service Security Level 3 or higher in section 3.2.2, you need to change the pairing
parameters to perform data communication.

4.2.1.1 When set to Security Level 3

Requires user interaction and MITM protection during pairing. To achieve these, the device must have
input/output capabilities. Change the io capability to match your device's capabilities.

In the RX23W environment, change the pairing parameters in app_main.c.

Figure 4.16 Change of pairing parameter in app_main.c (RX23W)

In RA4W1 environment, pairing parameters can be set from RA Configurator as shown in Figure 4.17

Figure 4.17 Change pairing parameters with RA Configurator (RA4W1)

Please see the following documents for details.

Table 4.10 Reference Documents

MCU Documents Chapter

RX23W RX23W Group Bluetooth Low Energy Application Developer’s Guide

(R01AN5504)

9.1 Paring

RA4W1 RA4W1 Group Bluetooth Low Energy Application Developer’s Guide

(R01AN5653)

8.1 Pairing

4.2.1.2 When set to Security Level 4

After performing the settings in section 4.2.1.1, the remote device must support LE Secure Connection.

RX23W, RE01B, and RA4W1 all support LE Secure Connection, but if the remote device does not support
LE Secure Connection, access to the GATT database will not be permitted.

/* Pairing parameters */
static st_ble_abs_pairing_param_t gs_abs_pairing_param =
{
 .iocap = BLE_GAP_IOCAP_NOINPUT_NOOUTPUT,
 .mitm = BLE_GAP_SEC_MITM_BEST_EFFORT,
 .sec_conn_only = BLE_GAP_SC_BEST_EFFORT,
 .loc_key_dist = BLE_GAP_KEY_DIST_ENCKEY,
 .rem_key_dist = 0,
 .max_key_size = 16,
};

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 50 of 97

Dec.27.22

4.2.2 Exchange MTU

MTU is the maximum data length that can be sent and received in one GATT operation. The MTU when
connected is 23 bytes. The MTU can be changed from the client only once during the connection.

Notify and Write Without Response operations that do not require confirmation of receipt from the peer
device can efficiently and continuously send data but cannot send data larger than the MTU-3 byte. One
solution for efficient data transmission is to change the MTU so that the characteristic size is MTU-3 bytes or
less.

The MTU size supported depends on the device. The Bluetooth LE Protocol Stack supports up to 247
bytes. The MTU is set to the smaller of the MTUs supported by each other's devices.

The sequence chart of MTU exchange is shown. The red text is the function call, and the blue text is the
application notification event.

Figure 4.18 The sequence chart of MTU exchange

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 51 of 97

Dec.27.22

4.2.2.1 Implementation of Client

The MTU can be changed from the client. The API for exchanging MTUs is defined in the Bluetooth LE
Protocol Stack.

Figure 4.19 MTU exchange API

For example, you can implement service discovery efficiently by implementing it in the event callback
gattc_cb of the GATT Client API as shown in Figure 4.14. The maximum MTU size supported by the device
can be set on the Bluetooth LE Protocol Stack config screen.

Figure 4.20 Implementation example of MTU exchange

4.2.2.2 Implementation of Server

The server sends the supported MTU to the client in the BLE_GATTS_EVENT_EX_MTU_REQ event.

This process is implemented in the R_BLE_SERVS_GattsCb function of the profile_cmn / r_ble_servs_if.c
file in the profile common library.

No additional implementation is required.

Figure 4.21 Implementation of MTU exchange processing in r_ble_servs_if.c file

ble_status_t R_BLE_GATTC_ReqExMtu(uint16_t conn_hdl, uint16_t mtu);

static void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
 R_BLE_SERVC_GattcCb(type, result, p_data);
 switch(type)
 {
 case BLE_GATTC_EVENT_CONN_IND:
 {
 uint16_t mtu = 247;
 R_BLE_GATTC_ReqExMtu(p_data->conn_hdl, mtu);
 } break;

 case BLE_GATTC_EVENT_EX_MTU_RSP:
 {
 /* Start discovery operation after mtu exchanged */
 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries,

 ARRAY_SIZE(gs_disc_entries), disc_comp_cb);
 } break;

void R_BLE_SERVS_GattsCb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t *p_data)
{
 static uint16_t s_write_long_attr_hdl = BLE_GATT_INVALID_ATTR_HDL_VAL;

 switch (type)
 {
 case BLE_GATTS_EVENT_CONN_IND:
 case BLE_GATTS_EVENT_DISCONN_IND:
 break;

 case BLE_GATTS_EVENT_EX_MTU_REQ:
 {
 R_BLE_GATTS_RspExMtu(p_data->conn_hdl, BLE_PRF_MTU_SIZE);
 }
 break;

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 52 of 97

Dec.27.22

4.2.3 Write Operation

The Write operation sends data from the client to the server and writes the value to the GATT database.
The server responds to writes request. The client can send the data while confirming that the transmission to
the server is complete.

The Write operation API performs Write Long operation if the data length to be sent is greater than MTU-3,
and Write operation if it is MTU-3 or less.

Figure 4.16 shows the sequence chart for the Write operation. The red text is the function call, and the
blue text is the application notification event.

Figure 4.22 sequence chart for the Write operation

In the Write Long operation, the client divides the data to be sent to the server into pieces of a size that
can be sent at once. After that, write all the data to the GATT database after transmission. The server stores
the received data in the Prepare Write Queue. Figure 4.23 shows the sequence chart for Write Long
operation. Functions are called in red, and events notified by the application are in blue.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 53 of 97

Dec.27.22

Figure 4.23 sequence chart for the Write Long operation

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 54 of 97

Dec.27.22

4.2.3.1 Implementation of Client

Write Operation API

The Write operation starts from the client. For the Write operation, use the Write Operation API
implemented in the service API program. The arguments are the connection handle and the data sent to the
target characteristic.

Figure 4.24 Definition of Write operation API in service API program (r_ble_xxc.h)

Whether to perform Write operation or Write Long operation is determined by the data length set by the
encode function of the characteristic passed as an argument.

Table 4.11 Relationship between transmission data length, MTU and operation performed

Relations between data length and MTU Executing Operation

data_length <= MTU-3 Write Operation

data_length > MTU-3 Write Long Operation

The transmission data length of the write operation API is set by the p_gatt_value->value_len value
(highlighted in yellow) of the characteristic encode function shown in Figure 4.25. When designing a
characteristic that is not intended for Write Long operation, design so that this setting value does not exceed
MTU-3.

Figure 4.25 Setting the transmission data length using the encode function

The Write operation API cannot be called consecutively. It can be called again after receiving the
BLE_XXC_EVENT_YYY_WRITE_RSP event.

ble_status_t R_BLE_XXC_WriteYyy(uint16_t conn_hdl, const st_ble_xxc_yy_t *p_value);

ble_status_t R_BLE_XXC_WriteYyyZzz(uint16_t conn_hdl, const st_ble_xxc_yy_t *p_value);

static ble_status_t encode_st_ble_xxs_yyy_t
(const st_ble_xxs_yyy_t *p_app_value, st_ble_gatt_value_t *p_gatt_value)

{
 uint32_t pos = 0;

 BT_PACK_LE_16_BYTE(&p_gatt_value->p_value[pos], &p_app_value->field_1);

pos += 2;

BT_PACK_LE_16_BYTE(&p_gatt_value->p_value[pos], &p_app_value->field_2);
pos += 2;

p_gatt_value->value_len = pos;

 return BLE_SUCCESS;
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 55 of 97

Dec.27.22

BLE_XXC_EVENT_YYY_WRITE_RSP Event

The client receives the result of the Write operation from the server.

When the GATT database is written, the result variable is notified with BLE_SUCCESS. If the server sends
an Error Response, the result variable will be notified of the error code.

Figure 4.26 Implementation example of the event in Write operation

static void xxc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_XXC_EVENT_YYY_WRITE_RSP:
 {
 if(result == BLE_SUCCESS)
 {
 /* GATT Database value in server is written. */
 }
 else
 {
 /* Error Response (0x30XX) or BLE_ERR_RSP_TIMEOUT (0x0011) */
 }

 } break;
}

}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 56 of 97

Dec.27.22

4.2.3.2 Implementation of Server

Setting the Prepare Write Queue

If you design a characteristic whose data length exceeds MTU min -3 bytes (20 bytes), it may be written to
the GATT database by Write Long operation.

When accepting a Write Long operation from the client, prepare a temporary area (Prepare Write Queue) to
hold the divided data. Write Long operation is supported by registering this Prepare Write Queue in Bluetooth
LE Protocol Stack.

Prepare Write Queue processing is already added to app_main.c. QE for BLE code generation is set to hold
14 Prepare Write Requests for a 245-byte buffer when the number of simultaneous connections is 1.

Change the macro definition shown in Figure 4.27 according to your application.

Figure 4.27 Setting the Prepare Write Queue

If there is no possibility of using the Write Long operation, this processing can be disabled by defining the
macro as shown in Figure 4.28.

If a Prepare Write Request is received without the Prepare Write Queue being registered, an error
response is automatically sent from the Bluetooth LE Protocol Stack.

Figure 4.28 Disabling the Prepare Write Queue

BLE_XXS_EVENT_YYY_WRITE_REQ Event

The write data sent by the client by the write operation is notified to the
BLE_XXS_EVENT_YY_WRITE_REQ event on the server. You can see the value written by casting to a
characteristic structure.

If the application evaluates the notified write data and does not accept the write to the GATT database, call
the R_BLE_GATTS_SendErrRsp function. Calling this function sends an error response to the client and
does not write it to the GATT database.

/* Queue for Prepare Write Operation. Change if needed. */
#define BLE_GATTS_QUEUE_ELEMENTS_SIZE (14)
#define BLE_GATTS_QUEUE_BUFFER_LEN (245)
#define BLE_GATTS_QUEUE_NUM (1)

#define BLE_APP_PREPARE_WRITE_DISABLE (1)

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 57 of 97

Dec.27.22

BLE_XXS_EVENT_YYY_WRITE_COMP Event

 If the R_BLE_GATTS_SendErrRsp function is not called in the WRITE_REQ event, the Bluetooth LE
Protocol Stack sends a write response to the client to write the value to the GATT database. The value of the
GATT database after the write is completed is notified to the BLE_XXS_EVENT_YY_WRITE_COMP event.
The server Write operation is complete with this event.

These events are notified to the xxs_cb function in app_main.c. Add application processing to this function.
The implementation example is shown below. You can get the written value if the result variable is
BLE_SUCCESS.

Figure 4.29 Implementation example of the event at the time of Write operation of the server

static void xxs_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_XXS_EVENT_YYY_WRITE_REQ:
 {
 if(BLE_SUCCESS == result)
 {
 /* Write Request Data*/
 st_ble_xxs_yyy_t *event_data = (st_ble_xxs_yyy_t*)p_data->p_param;

 if(event_data->field_1 != 0x01)
 {
 /* Application can send Error Response */
 uint16_t error_code = 0x3081;
 R_BLE_GATTS_SendErrRsp(error_code);
 }
 }
 } break;

 case BLE_XXS_EVENT_YYY_WRITE_COMP:
 {
 if(BLE_SUCCESS == result)
 {
 /* Cast Application data*/
 st_ble_xxs_yyy_t *event_data = (st_ble_xxs_yyy_t *)p_data->p_param;

 /* Implement process in Write Complete */
 /* Application can execute next write operation */
 }
 } break;
 }
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 58 of 97

Dec.27.22

4.2.4 Write Without Response Operation

The Write Without Response operation writes a value from the client to the server to the GATT database.
The server does not respond to writes to the GATT database. This is useful for sending data from the client
to the server at high speed. Write Without Response cannot send data larger than MTU-3 bytes.

The sequence chart when the Write Without Response operation is performed is shown. The red text is
the function call, and the blue text is the application notification event.

Figure 4.30 Sequence chart during Write Without Response operation

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 59 of 97

Dec.27.22

4.2.4.1 Implementation of Client

Write Without Response Operation API

 The Write Without Response operation starts from the client. Use the Write Without Response operation
API implemented in the service API program. Write Without Response operation is defined only
characteristic.

The arguments are the connection handle and the characteristic value to write to.

Figure 4.31 Definition of Write Without Response operation API in the service API program
(r_ble_xxc.h)

No events are notified to the client since the API call.

ble_status_t R_BLE_XXC_WriteWithoutResponseYyy
(uint16_t conn_hdl, const st_ble_xxc_yy_t *p_value);

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 60 of 97

Dec.27.22

4.2.4.2 Implementation of Server

BLE_XXS_EVENT_YYY_WRITE_CMD event

The data of the Write Without Response operation sent by the client is notified to the
BLE_XXS_EVENT_YY_WRITE_CMD event of the server. You can see the value written by casting to a
characteristic structure. You can get the written value if the result variable is BLE_SUCCESS.

Figure 4.32 Implementation example receiving event of Write Without Response of server

The value is written to the GATT database after this event processing is complete.

static void xxs_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_XXS_EVENT_YYY_WRITE_CMD:
 {

if(BLE_SUCCESS == result)
{

/* Cast Application data*/
st_ble_xxs_yyy_t *event_data = (st_ble_xxs_yyy_t *)p_data->p_param;

/* Implement process in Write Without Response */
/* The GATT database value is not written when this event is notified. */

 }
 } break;

}
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 61 of 97

Dec.27.22

4.2.5 Read Operation

In the Read operation, the client reads the data in the GATT database. The server can also reject read
requests.

The Read operation API performs Read operation when the data size of the GATT database is (MTU - 1)
or less. If the data size of the GATT database is larger than MTU-1, read long operation is performed.

Figure 4.33 shows the sequence chart when the Read operation is performed. The red text is the function
call, and the blue text is the application notification event.

Figure 4.33 Sequence chart in Read operation

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 62 of 97

Dec.27.22

In the Read Long operation, the server sends to the client in units of the size of the characteristic data that
can be sent at one time.

The server application generates read request events as many times as the size of the characteristic to be
read / (MTU -1) (rounded up).

Figure 4.34 shows the sequence chart during Read Long operation. Functions are called in red, and
events notified by the application are in blue.

Figure 4.34 Sequence chart in Read Long operation

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 63 of 97

Dec.27.22

4.2.5.1 Implementation of Client

Read Operation API

The Read operation starts from the client. Use the Read behavior API implemented in the service API
program. It is implemented for each characteristic and descriptor.

The only argument is the connection handle.

Figure 4.35 Definition of Read operation API in service API program (r_ble_xxc.h)

Whether to perform Read operation or Read Long operation is determined by the characteristic
db_size passed as an argument. Table 4.12 shows the relationship between the MTU and the
operations performed.

Table 4.12 Relationship between db_size and MTU and actions performed

Relation between dbsize and MTU Executing Operation

dbsize <= MTU-1 Read Operation

dbsize > MTU-1 Read Long Operation

For the db_size of the characteristic, refer to the db_size (highlighted in yellow) value registered in the
characteristic definition structure in the r_ble_xxc.c file as shown in Figure 4.36.

Figure 4.36 Characteristic definition structure in r_ble_xxc.c file

ble_status_t R_BLE_XXC_ReadYyy(uint16_t conn_hdl);
ble_status_t R_BLE_XXC_ReadYyyZzz(uint16_t conn_hdl);

static const st_ble_servc_char_info_t gs_yyy_char = {
 .uuid_128 = BLE_XXC_YYY_UUID,
 .uuid_type = BLE_GATT_128_BIT_UUID_FORMAT,
 .app_size = sizeof(st_ble_xxc_yyy_t),
 .db_size = BLE_XXC_YYY_LEN,
 .char_idx = BLE_XXC_YYY_IDX,
 .p_attr_hdls = gs_yyy_char_ranges,
 .decode = (ble_servc_attr_decode_t)decode_st_ble_xxc_yyy_t,
 .encode = (ble_servc_attr_encode_t)encode_st_ble_xxc_yyy_t,
 .num_of_descs = ARRAY_SIZE(gspp_yyy_descs),
 .pp_descs = gspp_yyy_descs,
};

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 64 of 97

Dec.27.22

BLE_XXC_EVENT_YYY_READ_RSP Event

 The result of reading the data by the Read operation is notified to the
BLE_XXC_YYY_EVENT_READ_RSP event. You can see the read value by casting it to a characteristic
structure.

When an error response is received from the server, if the dynamic allocation of memory fails in the profile
common library, or if the return value of the decode function is not BLE_SUCCESS, the error content is
notified to the result variable.

Figure 4.37 Implementation example of the event at the time of Read operation of the client

static void xxc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_XXC_EVENT_YYY_READ_RSP:
 {

If (result == BLE_SUCCESS)
{

 st_ble_xxc_yyy_t *event_data = (st_ble_xxc_yyy_t *)p_data->p_param;

 /*Implement application process. */

 }
 } break;

}
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 65 of 97

Dec.27.22

4.2.5.2 Implementation of Server

BLE_XXS_EVENT_YYY_READ_REQ Event

 Notified when a read is received from the client to the GATT database by Read operation. The value of
the GATT database after event processing is sent to the client.

If you want to pass arbitrary data to the client read, update the GATT database with this event. Use the
R_BLE_XXS_SetYyy function to update the GATT database.

Figure 4.38 How to update the GATT database

On the other hand, if it does not accept reads from the client, it calls the R_BLE_GATTS_SendErrRsp
function and sends an Error Response.

Figure 4.39 Implementation example of the event in Read operation

static void xxs_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)
{

 switch(type)
 {
 case BLE_XXS_EVENT_YYY_READ_REQ:
 {
 st_ble_xxs_yy_t new_value;

 R_BLE_XXS_SetYyy(&new_value);

} break;
}

}

static void xxs_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)
{

 switch(type)
 {
 case BLE_XXS_EVENT_YYY_READ_REQ:
 {

bool is_readable = false;

 /* Application does not read GATT Database */
 if (!is_readable)
 {

/* Application can send Error Response */
 uint16_t error_code = 0x3081;
 R_BLE_GATTS_SendErrRsp(error_code);
 }

} break;
}

}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 66 of 97

Dec.27.22

4.2.6 Notify Operation

The Notify operation sends data from the server to the client.

To do the Notify operation, the client enables the Notify operation Client Configuration Characteristic
Descriptor (CCCD).

The Notify operation cannot send data larger than MTU-3 bytes.

The sequence chart when performing the Notify operation is shown. The red text is the function call, and
the blue text is the application notification event.

Figure 4.40 Sequence chart of Notify operation

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 67 of 97

Dec.27.22

4.2.6.1 Implementation of Client

Write to CCCD

First, write to CCCD. CCCD is represented by a 16-bit bit field. Write 0x0001 to CCCD to enable the Notify
operation. It is macro-defined in the Bluetooth LE Protocol Stack with
BLE_GATTS_CLI_CNFG_NOTIFICATION.

Figure 4.41 Write operation API to CCCD and implementation example in service API program
(r_ble_xxs.h)

BLE_XXC_EVENT_YYY_HDL_VAL_NTF Event

 When the client enables the Notify operation, the Notify operation sends data at any time on the server.
The data is notified to BLE_XXC_EVENT_YYY_HDL_VAL_NTF.

You can see the received value by casting it to a characteristic structure.

Figure 4.42 Implementation example of the event when Notify of the client is operated

Function definition
ble_status_t R_BLE_XXXC_WriteYyyCliCnfg(uint16_t conn_hdl, const uint16_t *p_value)

Example of implementation
uint16_t cccd = BLE_GATTS_CLI_CNFG_NOTIFICATION;
R_BLE_XXXC_WriteYyyCliCnfg(conn_hdl, &cccd);

static void xxc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{

switch(type)
{

case BLE_XXC_EVENT_YYY_HDL_VAL_NTF:
{

if(BLE_SUCCESS == result)
{

st_ble_xxc_yyy_t *event_data = (st_ble_xxc_yyy_t)p_data->p_param;
 /*Implement application process. */

}
} break;

}
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 68 of 97

Dec.27.22

4.2.6.2 Implementation of Server

BLE_XXS_EVENT_YYY_CLI_CNFG_WRITE_COMP Event

This event occurs after the client has finished writing to CCCD. You will be notified of what was written to
the CCCD.

In the following implementation example, the Notify setting of CCCD is confirmed and the data is sent to
the client using the Notify operation API described later.

Figure 4.43 Start of Notify in CCCD write completion event

Notify Operation API

Notify operation can be sent from the server whenever CCCD Notify is enabled. The API that operates
Notify is as follows. Notify operation is defined only for characteristic.

The arguments are the connection handle and the value of the characteristic to be notified.

Figure 4.44 Notify operation API definition in service API program (r_ble_xxs.h)

If Notify of CCCD is not enabled, the return value will be BLE_ERR_INVALID_OPERATION (0x0009) and
data will not be sent by Notify.

No events are notified to the server since the API call.

static void xxs_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)
{

 switch(type)
 {
 case BLE_XXS_EVENT_YYY_CLI_CNFG_WRITE_COMP:
 {

uint16_t cccd = *(uint16_t *)p_data->p_param;

if((cccd & BLE_GATTS_CLI_CNFG_NOTIFICATION) == BLE_GATTS_CLI_CNFG_NOTIFICATION)
{

st_ble_xxs_yyy_t notify_value;
 R_BLE_XXS_NotifyYyy(p_data->conn_hdl, ¬ify_value);

}
 } break;

}
}

ble_status_t R_BLE_XXS_NotifyYyy(uint16_t conn_hdl, const st_ble_xxs_yyy_t *p_value);

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 69 of 97

Dec.27.22

4.2.7 Indicate Operation

The Indicate operation sends data from the server to the client. The Indicate operation sends a Handle
Value Confirmation from the client to the server telling you that the data has been received. This is useful
when you want to confirm the data transmission from the server to the client.

To perform the Indicate operation, the client enables the Indicate operation in the characteristic Client
Configuration Characteristic Descriptor (CCCD).

The Indicate operation cannot send data larger than MTU-3 bytes.

The sequence chart in Indicate operation is shown. The red text is the function call, and the blue text is the
application notification event.

Figure 4.45 Sequence char in indicate operation

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 70 of 97

Dec.27.22

4.2.7.1 Implementation of Client

Write to CCCD

First, write to CCCD. CCCD is represented by a 16-bit bit field. Write 0x0002 to CCCD to enable the
Indicate operation. It is macro-defined in the Bluetooth LE Protocol Stack with
BLE_GATTS_CLI_CNFG_INDICATION.

Figure 4.46 Write operation API to CCCD and implementation example in service API program
(r_ble_xxs.h)

BLE_XXS_EVENT_YYY_HDL_VAL_IND Event

 When the client enables the Indicate operation, the data is sent by the Indicate operation at any time on
the server. The data is notified to BLE_XXS_EVENT_YYY_HDL_VAL_IND.

You can see the received value by casting it to a characteristic structure.

Figure 4.47 Implementation example of event in Indicate operation

The Bluetooth LE Protocol Stack automatically responds to the Handle Value Confirmation of the receipt
confirmation.

Function definition
ble_status_t R_BLE_XXXC_WriteYyyCliCnfg(uint16_t conn_hdl, const uint16_t *p_value)

implementation example
uint16_t cccd = BLE_GATTS_CLI_CNFG_INDICATION;
R_BLE_XXXC_WriteYyyCliCnfg(conn_hdl, &cccd);

static void xxc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{

switch(type)
{

case BLE_XXC_EVENT_YYY_HDL_VAL_IND:
{

if(BLE_SUCCESS == result)
{

st_ble_xxc_yyy_t *event_data = (st_ble_xxc_yyy_t)p_data->p_param;
 /*Implement application process. */

}
} break;

}
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 71 of 97

Dec.27.22

4.2.7.2 Implementation of Server

BLE_XXS_EVENT_YYY_CLI_CNFG_WRITE_COMP Event

This event occurs after the client has finished writing to CCCD. You will be notified of what was written to
the CCCD.

In the following implementation example, the Indicate setting of CCCD is confirmed and the data is sent to
the client using the Indicate operation API described later.

Figure 4.48 Start of Indicate in CCCD write completion event

Indicate Operation API

Indicate operations can be sent from the server when CCCD Indication bit is enabled. The API for Indicate
operation is as follows. Indicate operation is defined only for characteristic.

The arguments are the connection handle and the characteristic value of the Indicate target.

If CCCD Indicate is not enabled, the return value will be BLE_ERR_INVALID_OPERATION (0x0009) and
data will not be sent by Indicate.

Figure 4.49 Definition of Indicate operation API in service API program (r_ble_xxc.h)

The Indicate operation API cannot be called consecutively. It can be called again after receiving the
BLE_XXS_EVENT_YYY_HDL_VAL_CNF event.

BLE_XXS_EVENT_YYY_HDL_VAL_CNF Event

When the Indicate operation sends data from the server to the client, the client sends the confirmation
packet to the server. This event is announced as a BLE_XXS_EVENT_YYY_HDL_VAL_CNF event.

This receipt allows the server to confirm that the data has arrived at the client.

static void xxs_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)
{

 switch(type)
 {
 case BLE_XXS_EVENT_YYY_CLI_CNFG_WRITE_COMP:
 {

uint16_t cccd = *(uint16_t *)p_data->p_param;

if((cccd & BLE_GATTS_CLI_CNFG_INDICATION) == BLE_GATTS_CLI_CNFG_ INDICATION)
{

st_ble_xxs_yyy_t notify_value;
 R_BLE_XXS_IndicateYyy(p_data->conn_hdl, ¬ify_value);

}
 } break;

}
}

ble_status_t R_BLE_XXS_IndicateYyy(uint16_t conn_hdl, const st_ble_xxs_yyy_t
*p_value);

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 72 of 97

Dec.27.22

Figure 4.50Implementation example of the event in Indicate operation

static void xxc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{

switch(type)
{

case BLE_XXC_EVENT_YYY_HDL_VAL_IND:
{

if(BLE_SUCCESS == result)
{

st_ble_xxc_yyy_t *event_data = (st_ble_xxc_yyy_t)p_data->p_param;
 /*Implement application process. */

}
} break;

}
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 73 of 97

Dec.27.22

4.3 GATT Database (gatt_db.c / gatt_db.h)

It implements a GATT database consisting of services used as [Server]. No need to change.

The gatt_db.h file expands the size of attribute value and the attribute handle of the characteristic and
descriptor in macro format.

Figure 4.51 GATT database macro definition

typedef enum
{
 BLE_INVALID_ATTR_HDL = 0x0000,
 BLE_GAPS_DECL_HDL = 0x0001,
 BLE_GAPS_DEV_NAME_DECL_HDL = 0x0002,
 BLE_GAPS_DEV_NAME_VAL_HDL = 0x0003,
 BLE_GAPS_APPEARANCE_DECL_HDL = 0x0004,
 BLE_GAPS_APPEARANCE_VAL_HDL = 0x0005,
 BLE_GAPS_PER_PREF_CONN_PARAM_DECL_HDL = 0x0006,
 BLE_GAPS_PER_PREF_CONN_PARAM_VAL_HDL = 0x0007,
 BLE_GAPS_CENT_ADDR_RSLV_DECL_HDL = 0x0008,
 BLE_GAPS_CENT_ADDR_RSLV_VAL_HDL = 0x0009,
 BLE_GAPS_RSLV_PRIV_ADDR_ONLY_DECL_HDL = 0x000A,
 BLE_GAPS_RSLV_PRIV_ADDR_ONLY_VAL_HDL = 0x000B,
 BLE_GATS_DECL_HDL = 0x000C,
 BLE_GATS_SERV_CHGED_DECL_HDL = 0x000D,
 BLE_GATS_SERV_CHGED_VAL_HDL = 0x000E,
 BLE_GATS_SERV_CHGED_CLI_CNFG_DESC_HDL = 0x000F,
 BLE_XXS_DECL_HDL = 0x0010,
 BLE_XXS_YYY_DECL_HDL = 0x0011,
 BLE_XXS_YYY_VAL_HDL = 0x0012,
 BLE_XXS_YYY_CLI_CNFG_DESC_HDL = 0x0013,
 BLE_XXS_YYY_ZZZ_DESC_HDL = 0x0014,
} e_ble_attr_hdl_t;

#define BLE_GAPS_DEV_NAME_LEN (128)
#define BLE_GAPS_APPEARANCE_LEN (2)
#define BLE_GAPS_PER_PREF_CONN_PARAM_LEN (8)
#define BLE_GAPS_CENT_ADDR_RSLV_LEN (1)
#define BLE_GAPS_RSLV_PRIV_ADDR_ONLY_LEN (1)
#define BLE_GATS_SERV_CHGED_LEN (4)
#define BLE_GATS_SERV_CHGED_CLI_CNFG_LEN (2)
#define BLE_XXS_YYY_LEN (4)
#define BLE_XXS_YYY_CLI_CNFG_LEN (2)
#define BLE_XXS_YYY_ZZZ_LEN (2)

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 74 of 97

Dec.27.22

The gatt_db.c file implements the GATT database according to the specifications of the Bluetooth LE
Protocol Stack. In addition, the service list of the profile designed by QE for BLE is displayed in comment
format as a GATT database that implements it.

Figure 4.52 GATT database structure comment example in gatt_db.c file

/**
 * GATT DATABASE QUICK REFERENCE TABLE:
 * Abbreviations used for PROPERTIES:
 * BC = Broadcast
 * RD = Read
 * WW = Write Without Response
 * WR = Write
 * NT = Notification
 * IN = Indication
 * RW = Reliable Write
 *
 * HANDLE | ATT_TYPE | PROPERTIES | ATT_VALUE | DEFINITION
 * ==
 * GAP Service
 * ==
 * 0x0001 | 0x28,0x00 | RD | 0x00,0x18 | GAP Service Declaration
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0002 | 0x28,0x03 | RD | 0x0A,0x03,0x00,0x00,0x2A | Device Name characteristic…
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0003 | 0x00,0x2A | RD,WR | 0x00,0x00,0x00,0x00,0x00... | Device Name characteristic …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0004 | 0x28,0x03 | RD | 0x02,0x05,0x00,0x01,0x2A | Appearance characteristic …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0005 | 0x01,0x2A | RD | 0x00,0x00 | Appearance characteristic …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0006 | 0x28,0x03 | RD | 0x02,0x07,0x00,0x04,0x2A | Peripheral Preferred …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0007 | 0x04,0x2A | RD | 0x00,0x00,0x00,0x00,0x00,0x00... | Peripheral Preferred …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0008 | 0x28,0x03 | RD | 0x02,0x09,0x00,0xA6,0x2A | Central Address Resolution …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0009 | 0xA6,0x2A | RD | 0x00 | Central Address Resolution …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x000A | 0x28,0x03 | RD | 0x02,0x0B,0x00,0xC9,0x2A | Resolvable Private Address …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x000B | 0xC9,0x2A | RD | 0x00 | Resolvable Private Address …
 * ==
 * GATT Service
 * ==
 * 0x000C | 0x28,0x00 | RD | 0x01,0x18 | GATT Service Declaration
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x000D | 0x28,0x03 | RD | 0x20,0x0E,0x00,0x05,0x2A | Service Changed …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x000E | 0x05,0x2A | IN | 0x00,0x00,0x00,0x00 | Service Changed …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x000F | 0x02,0x29 | RD,WR | 0x00,0x00 | Client Characteristic …
 * ==
 * prof dev xx Service
 * ==
 * 0x0010 | 0x28,0x00 | RD | 0x50,0x44,0x02,0xb7,0xaf,0xf8... | prof dev xx Service …
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0011 | 0x28,0x03 | RD | 0x3E,0x12,0x00,0x2d,0x1f,0x35... | prof dev yyy char…
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0012 | 0x2d,0x1f,0x35... | RD,WW,WR... | 0x00,0x00,0x00,0x00 | prof dev yyy char value…
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0013 | 0x02,0x29 | RD,WR | 0x00,0x00 | Client Characteristic…
 * -------+-------------------+-------------+----------------------------------+---------------
 * 0x0014 | 0xb9,0xfd,0x08... | RD,WR | 0x00,0x00 | prof dev zzz Descriptor …
 * ==

 */

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 75 of 97

Dec.27.22

5. Build and Run program

This chapter describes the points to note when building the code generated from QE for BLE for each
MCU.

To build and debug the project in e2 studio, refer to "e2 studio User's Manual Getting Started Guide
(R20UT4204)".

5.1 RX23W

If you create a new project, the code generated from QE for BLE can be executed without changing the
settings.

If you create a new project with a combination of BLE FIT module version 2.50 or later and QE for BLE
version 1.50 or earlier, the profile common part will not be added to the project. Please refer to the following
site and update QE for BLE to the latest environment.

https://www.renesas.com/qe-ble

File contention may occur when developing based on a sample project in the BLE FIT module version 2.30
or earlier.

If the following folders exist in the project, delete them.

⚫ src/smc_gen/Config_BLE_PROFILE

⚫ src/smc_gen/r_ble_qe_utility

5.1.1 Migrating Profile Data due to Unifying a Plug-in

If Figure 5.1 is displayed in the procedure in Section 3.1, perform data migration as described in this
section.

Figure 5.1 Request for migration of QE for BLE

Performs smart configurator data migration, component removal and code generation. Data migration is
automatic. Follow the instructions in the profile migration dialog that pops up to remove the component.

https://www.renesas.com/qe-ble

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 76 of 97

Dec.27.22

Figure 5.2 Component removal procedure

The migration is complete when the message below is displayed.

Figure 5.3 Migration complete message

Uninstall of plug-ins for RX family QE for BLE[RX] V1.0.0 or V1.1.0 is not used, so please uninstall it.

1. Select [Help -> About e2 studio] to open the [About e2 studio] dialog box.

2. Click the [Installation Details] button to open the [e2 studio Installation Details] dialog box.

3. Select [Renesas QE for BLE[RX]] displayed on the [Installed Software] tabbed page and click the
[Uninstall…] button to open the [Uninstall] dialog box.

4. Check the displayed information and click the [Finish] button. When prompted to restart e2 studio,
restart it.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 77 of 97

Dec.27.22

Notes

⚫ Do not add the component deleted by Smart Configurator again.

⚫ If the following dialog is displayed when migrate the profile data, overwrite the profile data code-
generated by [R_BLE Custom Profile RA, RE, RX (QE)] with the profile data code-generated by
Smart Configurator.

Figure 5.4 Overwrite confirmation dialog

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 78 of 97

Dec.27.22

5.2 RA4W1

If you want to run the code generated from QE for BLE, run app_main function in the hal_entry.c file. An
implementation example is shown below.

Figure 5.5 Calling app_main function in hal_entry.c

If you are developing a profile based on a project that uses FreeRTOS or AzureRTOS, the following build
error may occur when building the code generated from QE for BLE.

⚫ Error [Pe020]: identifier "g_ble_abs0_ctrl" is undefined.

⚫ Error [Pe020]: identifier "g_ble_abs0_cfg" is undefined.

This is since the external reference declaration of the setting variable of the abstraction API module is not
made.

These declarations are written in the task header files that the Bluetooth LE Protocol Stack contains. In the
sample project it is “ble_core_task”.

Include this header file in the app_main.c file.

Figure 5.6 Example of inclusion of header file for Bluetooth LE task (for sample project)

extern void app_main(void);

void hal_entry(void) {

/* TODO: add your own code here */
 app_main();
}

#include "ble_core_task.h"

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 79 of 97

Dec.27.22

5.3 RE01B

If you use the code generated from QE for BLE based on the Bluetooth LE communication project, you
can run it without changing the settings.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 80 of 97

Dec.27.22

6. Notice

6.1 Implementation of multiple services

When implementing multiple services, take care of the characteristic and descriptor code sizes contained
in the service. If the code size exceeds the RAM/ROM size of target device, it cannot be compiled.

6.2 Implementation of same service

If you add multiple same SIG adopted services to a profile, QE for BLE cannot correctly generate
programs due to problem such as conflicts of file name. Therefore, if you want to implement multiple same
services, you need to add only one service as SIG adopted service and add the others as custom service on
QE for BLE. For example, assume that you want to implement 2 Human Interface Device Service (HIDS),
which is SIG adopted service.

First, you need to add 2 HIDS as SIG adopted service in QE for BLE. Change 1 of these HIDS from SIG
adopted service to custom service. To change from SIG adopted service to custom service, click the
customize button on the service setting screen. You need to make the following changes to the service that
you changed to the custom service:

1. Change [UUID] of service so that service UUID matches between the same service. If you want to treat

the custom service as SIG adopted service, set [UUID] to 16bit and change the value.

2. Change [abbreviation] of service so that it does not conflict with other services. This is to prevent conflicts

on file name, function name, and variable name because [abbreviation] is used for them. Similarly, set

[abbreviation] of characteristic and descriptor to string which do not conflict with others.

Setting on QE for BLE is over. Figure6.1 shows how to configure multiple SIG adopted services on
QE for BLE.

Figure6.1 Configure multiple service on QE for BLE

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 81 of 97

Dec.27.22

Because the program generated from custom services are skeleton program, it is necessary to implement
the actual state of process. Program generated from SIG standard services has same mechanism and is
implemented according to the defined specification, so refer this program to implement skeleton program of
custom service. The parts that must be implemented vary from service to service, but in many cases,
following implementation is needed:

1. Implements encode/decode function. Since the structure of the characteristic or descriptor remains the

same, you can port many parts of implementation. Beware of differences in function name and variable

name.

2. Implements callback function in service. This is used when you want to automatically return error for

invalid value written or automatically return certain value for specific value written. Implementation is

needed according to functionality of each service.

In addition, if the profile has at least one service selected as a [client] except the GAP service, discovery
operation program using discovery library is implemented in file app_main.c. Among them, the array
gs_disc_entries[] defines UUID and discovery callback function for each service included in profile. To
discover services those have same service UUID, you need to add element idx which is index number for
them. The following is example of implementing a program with 2 HIDS.

Figure6.2 Example of implementing 2 HIDSs

/* Human Interface Device Service UUID */
static uint8_t HIDC_UUID[] = { 0x12, 0x18 }; //HIDS specific service UUID
/* Human Interface Device Service2 UUID */
static uint8_t HID2C_UUID[] = { 0x12, 0x18 }; //Same service UUID

/* Service discovery parameters */
static st_ble_disc_entry_t gs_disc_entries[] = {
 {
 .p_uuid = HIDC_UUID,
 .uuid_type = BLE_GATT_16_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_HIDC_ServDiscCb,
 /* Add member [idx] */

.idx = 0, /* Set index number if service UUID is same */
 },
 {
 .p_uuid = HID2C_UUID,
 .uuid_type = BLE_GATT_16_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_HID2C_ServDiscCb,

/* Add member [idx] */
.idx = 1, /* Set index number if service UUID is same */

 },
};

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 82 of 97

Dec.27.22

6.3 Implementation of secondary service

QE for BLE treats all services as primary services. Therefore, if you want to use secondary service, you
need to modify the generated program. How to change program is different on the server side and client
side.

Server Side

QE for BLE generates GATT database which stores information of services which have check in [server].
Since QE for BLE treats all services as primary service, generated GATT database defines all services as
primary service. You need to modify service information defined in GATT database.

Change the array gs_gatt_type_table[] defined in file gatt_db.c. In this array, following 2 point needs to be
changed:

1. Add definition for secondary service. Refer to the other elements of the array and create element that has

[UUID_Offset] is 2 and correct attribute handles of secondary services.

2. Change element which defines [Primary Service Declaration]. Change it to specify the correct attribute

handle.

The following is the example of implementation on array gs_gatt_type_table[].

Figure6.3 GATT database of secondary service (1)

static const st_ble_gatts_db_uuid_cfg_t gs_gatt_type_table[] =
{
 /* 0 : Primary Service Declaration */
 {
 /* UUID Offset */
 0,
 /* First Occurrence for type */

/* Change this value to proper handle */
 0x000C,
 /* Last Occurrence for type */

/* Change this value to proper handle */
 0x0026,
 },

/* Add from here */

 /* 2 : Secondary Service Declaration */
 {
 /* UUID Offset */
 /* set 2 for this value */
 2,
 /* First Occurrence for type */

/* Change this value to proper handle */
 0x0010,
 /* Last Occurrence for type */

/* Change this value to proper handle */
 0x0000,
 },
/* Add until here */

}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 83 of 97

Dec.27.22

Also, change array gs_gatt_db_attr_table[]. n this array, following 2 point needs to be changed:

1. Change [UUID_Offset] section of service declaration which you want to change to secondary service.

[UUID_offset] determines attribute type of data. In [UUID_Offset], 0 stands for primary service and 2

stands for secondary service. Set 2 for [UUID_Offset].

2. change element [Next Attribute Type Index] to indicate correct attribute handle. [Next Attribute Type

Index] holds attribute handle of next data which has same attribute type. If modified data was the last

data with same attribute type, enter 0x0000 for [Next Attribute Type Index].

The example of implementation on array gs_gatt_type_table[] is shown on Figure6.4.

Note: Make sure that the service which you changed to secondary service is included from at least one
primary service.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 84 of 97

Dec.27.22

Figure6.4 GATT database of secondary service (2)

static const st_ble_gatts_db_attr_cfg_t gs_gatt_db_attr_table[] =
{
/* Handle: 0x000C */

 /* GATT Service: Primary Service Declaration */
 {
 /* Properties */
 BLE_GATT_DB_READ,
 /* Auxiliary Properties */
 BLE_GATT_DB_FIXED_LENGTH_PROPERTY,
 /* Value Size */
 2,

 /* Next Attribute Type Index */
 /* change this value to handle of next primary service declaration */

 0x0026, /* 0x0010 → 0x0026 */

 /* UUID Offset */
 0,
 /* Value */
 (uint8_t *)(gs_gatt_const_uuid_arr + 20),
 },

/* Example: Secondary Service Declaration */
/* Handle: 0x0010 */
/* Human Interface Device Service: Primary Service Declaration */
{

/* Properties */
BLE_GATT_DB_READ,
/* Auxiliary Properties */
BLE_GATT_DB_FIXED_LENGTH_PROPERTY,

 /* Value Size */
 2,

 /* Next Attribute Type Index */

/* Change this value to proper handle */
 /* Last secondary service declared: 0x0000 */
 /* Not last secondary service declared: handle of next secondary service declaration */

 0x0000, /* 0x0026 → 0x0000 */

 /* UUID Offset */
 /* Change this value to proper Attribute type */
 /* Primary service declaration: 0 */
 /* Secondary service declaration: 2 */

 2, /* 0 → 2 */

 /* Value */
 (uint8_t *)(gs_gatt_const_uuid_arr + 26),
 },

 /* Handle: 0x0026 */
 /* Human Interface Device Service2: Primary Service Declaration */

}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 85 of 97

Dec.27.22

Client Side

If the profile has at least one service selected as a [client] except the GAP service, QE for BLE generate
the code to perform the discovery operation. Generated program performs discovery operation only to
primary service using Discovery Library provided by BLE Protocol Stack. When you need to discovery
secondary service, perform discovery operation as the included service because secondary service is
included from other primary service, refer to [6.4 Implementation of discovery operation about included
service]. When you perform secondary service discovery operation to debug, call
R_BLE_GATTC_DiscAllSecondServ() in GATT Client API provided by BLE Protocol Stack.

For more information about GATT Client API, refer the [R_BLE API document (r_ble_api_spec.chm)] that
is included in BLE FIT module.

Table 6.1 Documentation for GATT Client API

MCU Documents

RX23W "R_BLE API document (r_ble_api_spec.chm)" attached to the BLE FIT module

RA4W1 “RA Flexible Software Package Documentation”.

RE01B "R_BLE API document (r_ble_api_spec.chm)" attached to "Bluetooth Low Energy sample
code (R01AN5606)"

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 86 of 97

Dec.27.22

6.4 Implementation of discovery operation about included service

Specifying included service

If the profile has at least one service selected as a [client] except the GAP service, QE for BLE generate
the code to perform the discovery operation. Generated program performs discovery operation only to
primary service using Discovery Library provided by BLE Protocol Stack.

If service has specific service as an included service, you need to confirm its structure to perform
discovery operation to specific service. Discovery library provide feature to perform discovery operation
confirming this structure. Discovery library perform discovery operation to attribute handle range that
included service declaration has if included service entries are registered in discovery entry of parent service.
Modify the variable gs_disc_entries in the app_main.c as the following, in order to register included service
entries to discovery entry of parent service.

Figure 6.5 Code generated by QE for BLE

Figure 6.6 code modified to discover included service

/*PRIMARY service entry */
static st_ble_disc_entry_t gs_disc_entries[] =
{
 {
 /*Weight Scale service disc entry */
 .p_uuid = (uint8_t *)BLE_WSC_UUID,
 .uuid_type = BLE_GATT_16_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_WSC_ServDiscCb,
 },
 { /*Body Composition service disc entry */
 .p_uuid = (uint8_t *)BLE_BCC_UUID,
 .uuid_type = BLE_GATT_16_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_BCC_ServDiscCb,
 },
};

/*Add INCLUDE service entry*/
static st_ble_disc_entry_t gs_disc_wsc_inc_entries[] =
{
{/*Body Composition service disc entry AS A INCLUDE SERVICE IN WSS*/
 .p_uuid = (uint8_t *)BLE_BCC_UUID,
 .uuid_type = BLE_GATT_16_BIT_UUID_FORMAT,

.serv_cb = R_BLE_BCC_ServDiscCb,
 .num_of_inc_servs = 0,
 },
};

/*PRIMARY service entry */
static st_ble_disc_entry_t gs_disc_entries[] =
{
/*Weight Scale service disc entry as a primary service*/
 {
 .p_uuid = (uint8_t *)BLE_WSC_UUID,
 .uuid_type = BLE_GATT_16_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_WSC_ServDiscCb,

 /* Register include service entry*/
 .inc_servs = gs_disc_wsc_inc_entries,
 .num_of_inc_servs = 1

 },
};

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 87 of 97

Dec.27.22

Store Attribute handle of included service

Discovered attribute handle of included service will be passed to parent service API program. But parent
service API program don’t store attribute handle of included service. Therefore, in case Service YYY is
discovered as included service that Service XXX has, you can’t get range of its attribute handle by calling
service YYY’s API R_BLE_YYY_GetServAttrhdl().

If service YYY’s range of attribute handle is needed, modify service XXX’s API program (r_ble_xxx.c) so
that the notification that service YYY is discovered as a include service is delivered to service YYY’s
discovery callback function.

The following show example in case Service XXX have 16bit UUID and have service YYY as included
service. Take care the data type is different in 128bit UUID and in 16bit UUID.

Figure6.7 Discovery of included service

#include <string.h>
#include "r_ble_XXX.h"
#include "profile_cmn/r_ble_servc_if.h"

/* ADD : including discovery library and include service yyy */
#include "discovery/r_ble_disc.h"
#include "r_ble_yyy.h"

void R_BLE_XXX_ServDiscCb(uint16_t conn_hdl, uint8_t serv_idx, uint16_t type, void *p_param)
{

/* ADD : */
uint16_t YYY_UUID = 0x0000;
if (type == BLE_DISC_INC_SERV_FOUND)
{

st_disc_inc_serv_param_t * evt_param =
(st_disc_inc_serv_param_t *)p_param;

 if (evt_param->uuid_type == BLE_GATT_16_BIT_UUID_FORMAT)
 {
 if (YYY_UUID == evt_param->value.inc_serv_16.service.uuid_16)

{
 st_disc_serv_param_t serv_param = {
 .uuid_type = BLE_GATT_16_BIT_UUID_FORMAT,
 .value.serv_16.range = evt_param->value.inc_serv_16.service.range,
 .value.serv_16.uuid_16 = evt_param->value.inc_serv_16.service.uuid_16,

};
R_BLE_YYY_ServDiscCb(

conn_hdl, /* Connection handle */
0, /* idx */
BLE_DISC_PRIM_SERV_FOUND, /* Notify as a primary service */
&serv_param); /* Service handle information */

}
 }
 }
/* Generated code */
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 88 of 97

Dec.27.22

6.5 Guide for Connection Update

In Bluetooth LE communication, you can change the communication frequency during communication by
connection update.

Connection update can be performed by using function [R_BLE_GAP_UpdConn]. To change frequency of
communication, change the following parameters.

1. Connection Interval

➢ Sets frequency of communication. user can set maximum value and minimum value. Value is

calculated by (set value)×1.25ms.

➢ variable: conn_intv_min, conn_intv_max

2. Peripheral latency

➢ Ignores communications by the number of value set. If set to 5, communication until the 6th

reception will be ignored after first reception.

➢ variable: conn_latency

3. Supervision Timeout

➢ Connection will be disconnected after the time set here. If user want to reduce the frequency of

communication, this value needs to be changed accordingly. Value is calculated by (set value)×

10ms.

➢ variable: sup_to

Figure 6.8 shows the example of implementing connection update function in function disc_comp_cb.

Figure 6.8 Example of using Connection Update function

The connection parameter is changed by the connection update when the requested device accepts it. For
information on changing connection parameters by connecting update, refer to "Update Connection
Parameters" in the application developer guide.

static void disc_comp_cb(uint16_t conn_hdl)
{

st_ble_gap_conn_param_t conn_param = {
.conn_intv_min = 0x0100,
.conn_intv_max = 0x0100,
.conn_latency = 0x0010,
.sup_to = 0x0200,
.min_ce_length = 0xFFFF,
.max_ce_length = 0xFFFF,

 };
 R_BLE_GAP_UpdConn(conn_hdl, BLE_GAP_CONN_UPD_MODE_REQ, 0x00, conn_param);
/* End user code. Do not edit comment generated here */
 return;
}

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 89 of 97

Dec.27.22

6.6 Settings for connecting two MCUs for data communication

An example of profile design when connecting two projects for data communication using the QE for BLE
application framework is shown below.

To connect and communicate between two projects, the following settings are required.

⚫ The advertisement data must include scan filter data.

⚫ Supporting the same profile

This chapter shows a design example when connecting two projects using the following projects.

⚫ Central (GATT client): prof_dev_central

⚫ Peripheral (GATT server): prof_dev_peripheral

Set the GAP roles on the Profile tab of QE for BLE to Central and Peripheral, respectively.

Figure 6.9 Example for setting GAP role

Next, set the profile for data communication. Add the same service using the service import / export
function. This time, the central role will be the client and the peripheral role will be the server. Make sure the
UUIDs of the services you use match.

Figure 6.10 Example for setting profile

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 90 of 97

Dec.27.22

Finally, set the Advertise Data and Scan Filter Data respectively. Central makes a connection when it
receives an advertisement with the data specified in Scan Filter Data. By matching this value, you can
connect two projects. The setting example when "Local Name" is used for Advertise Data is shown.

For peripheral roles, set Advertise Data from the Peripheral tab.

Figure 6.11 Example for setting advertising data

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 91 of 97

Dec.27.22

For central roles, set Scan Filter Data from the Central tab. Check the data same to the one set in
Advertise Data of the peripheral and set the value.

Figure 6.12 Example for setting Scan Filter Data

This completes the settings required to connect the two projects.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 92 of 97

Dec.27.22

If you cannot connect after the above settings, review the advertisement interval and scan interval.

In the initial setting of QE for BLE, the Advertising operation and scan operation use the "Slow" setting.
This setting consumes less power but makes device detection more difficult. If your application wants a quick
connection, use the "Fast" setting.

The following is an example of setting "Fast" for the peripheral role. Set the "Advertising Parameter". If you
want to use the "Fast" setting, check "Enable Fast Advertising". With this setting, advertisement packets are
sent every 30 msec for 30 seconds from startup.

Figure 6.13 Setting example when using the "Fast" setting for Advertise operation

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 93 of 97

Dec.27.22

Here is an example of setting "Fast" for the central role. Set the "Scan Parameter". If you want to use the
"Fast" setting, check "Enable Fast Scan". With this setting, the Scan Window for 30msec is opened every
60msec for 30 seconds from the start, and the Scan operation is executed.

Figure 6.14 Setting example when using the "Fast" setting for scanning operation

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 94 of 97

Dec.27.22

6.7 When using old version qualifications (QDID:134484)

A service API program with "QDID: 1992482" qualifications is generated from QE for BLE Utility 1.60. If
you want to continue developing using the previous qualification s(QDID:134484), follow the two steps
below. *The qualifications (QDID:134484) cannot be newly registered as a Bluetooth qualified product after
February 1, 2023. If the product under development is a derivative of an already qualified product, additional
registration of the product is possible until January 31, 2024. After February 1, 2024, only existing certified
products can be sold.

⚫ QE for BLE generation code change setting

⚫ Get profile common library (RX23W only)

6.7.1 QE for BLE generation code change setting

Change the QE for BLE settings when developing using the previous authentication information.

Open "Preferences" from "Window" in the e2 studio menu bar.

Figure 6.15 How to open QE for BLE options

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 95 of 97

Dec.27.22

Select "Renesas" → "Renesas QE" → "QE for BLE" from the list on the left, and check "Use the old QE

for BLE [RA, RE, RX] Utility."

Figure 6.16 Settings screen that uses the old version of the service API program

If you generate code from QE for BLE after applying the settings, the old version of the service API
program will be generated.

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 96 of 97

Dec.27.22

6.7.2 Get profile common library

This procedure is performed when using BLE FIT Module 2.50 or later in the RX23W environment. If you
use BLE FIT 2.50 or later and use an older version, the profile common library is not generated from
QE for BLE, so you need to add the profile common library to the project.

Please use one of the following methods.

⚫ Add profile common library generated from QE for BLE.

⚫ Restore the profile common library included in BLE FIT 2.40 from the trash folder.

Added profile common library generated from QE for BLE

Uncheck "Use the old QE for BLE[RA,RE,RX]" in section 6.7.1 and generate the code, and copy the
generated folder below to the project path.

⚫ qe_gen/discovery

⚫ qe_gen/profile_cmn

After that, execute Section 6.7.1 again and set so that the old version of the service API program is
generated.

Restore the profile common library included in BLE FIT 2.40 from the trash folder.

Copy the following folder of BLE FIT 2.40 in trash to the project path.

⚫ src/smc_gen/r_ble_rx23w/src/discovery

⚫ src/smc_gen/r_ble_rx23w/src/profile_cmn

Figure 6.17 Restore from trash folder

Bluetooth LE microprocessor / module Bluetooth Low Energy Profile Developer's Guide

R01AN6459EJ0110 Rev.1.10 Page 97 of 97

Dec.27.22

Revision History

Rev. Date

Description

Page Summary

1.00 Jun.30.22 — First edition issued.

1.10 Dec.27.22 5 Specified that profile common library is generated from QE for BLE in

RX23W environment.

6 Updated profiles/services version information supported by QE for

BLE.

20 Added security requirements for Custom and SIG standard

profiles/services.

42 Added explanation about automatic generation function of

encode/decode function.

49 Added implementation method when security requirements are set.

52, 61 Added description of Write Long operation and Read Long operation.

75 Added that there is no profile common library when combining BLE

FIT 2.50 and QE for BLE Utility 1.50.

94 Added 6.7 When using old version qualifications (QDID:134484).

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas

Electronics Corporation. All trademarks and registered trademarks are

the property of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Overview of Bluetooth LE Data Communication
	1.2 Bluetooth LE program development environment
	1.2.1 e2 studio
	1.2.2 QE for BLE
	1.2.3 Bluetooth LE communication project

	1.3 Software structure of the profile program

	2. Building a development environment
	2.1 Installing QE for BLE
	2.1.1 How to add QE for BLE to an installed e2 studio
	2.1.2 How to add QE for BLE when installing e2 studio

	2.2 Getting of Bluetooth LE Communication Project
	2.2.1 RX23W
	2.2.2 RA4W1
	2.2.3 RE01B

	3. Profile development with QE for BLE
	3.1 How to Use QE for BLE
	3.2 Design of the profile
	3.2.1 Application role settings
	3.2.2 Adding and configuration service
	3.2.3 Adding and configuration characteristic
	3.2.4 Adding and configuration descriptor

	3.3 Configuration of Peripheral
	3.3.1 Advertising Data
	3.3.2 Scan Response Data
	3.3.3 Advertising Parameter

	3.4 Configuration of Central
	3.4.1 Scan Parameter
	3.4.2 Scan Filter Data
	3.4.3 Connection Parameter

	4. Implementation of program
	4.1 Service API Programs (r_ble_xxs.c / r_ble_xxc.c)
	4.1.1 Description of encode/decode functions
	4.1.2 Automatic generation of encode/decode functions
	4.1.3 Implementing the encode-decode function

	4.2 Application Framework (app_main.c)
	4.2.1 Responding to security requirements
	4.2.1.1 When set to Security Level 3
	4.2.1.2 When set to Security Level 4

	4.2.2 Exchange MTU
	4.2.2.1 Implementation of Client
	4.2.2.2 Implementation of Server

	4.2.3 Write Operation
	4.2.3.1 Implementation of Client
	4.2.3.2 Implementation of Server

	4.2.4 Write Without Response Operation
	4.2.4.1 Implementation of Client
	4.2.4.2 Implementation of Server

	4.2.5 Read Operation
	4.2.5.1 Implementation of Client
	4.2.5.2 Implementation of Server

	4.2.6 Notify Operation
	4.2.6.1 Implementation of Client
	4.2.6.2 Implementation of Server

	4.2.7 Indicate Operation
	4.2.7.1 Implementation of Client
	4.2.7.2 Implementation of Server

	4.3 GATT Database (gatt_db.c / gatt_db.h)

	5. Build and Run program
	5.1 RX23W
	5.1.1 Migrating Profile Data due to Unifying a Plug-in

	5.2 RA4W1
	5.3 RE01B

	6. Notice
	6.1 Implementation of multiple services
	6.2 Implementation of same service
	6.3 Implementation of secondary service
	6.4 Implementation of discovery operation about included service
	6.5 Guide for Connection Update
	6.6 Settings for connecting two MCUs for data communication
	6.7 When using old version qualifications (QDID:134484)
	6.7.1 QE for BLE generation code change setting
	6.7.2 Get profile common library

	Revision History

