To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS APPLICATION NOTE

H8/300H Tiny Series
Application Examples for Reading from/Writing to Serial EEPROM

Introduction

This application note gives examples of reading from/writing to two-wire serial (I*C bus) EEPROM via the on-chip I°C
module 2 (I°C) of the H8/3694 or H8/3687.

Target Device

H8/3694, H8/3687

Contents
(S o 1= Tor) or=1 o] o SRR 2
B = 1 TS o 1= Tor 1 Tor=1 (o] o - SRR 3
3. EEPROM Basic SPeCifiCatiONSooi it a e 3
4. SoOftware SPECIfICAtIONS.cce it e e e e e e e e e e e e e e e e e e e aaaeas 4
5. FIOWCR@AIT. ...t 31
6. Program LiStINGooieiiiiiiiiii et 51

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 1 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

1. Specifications
This application is for the H8/3694 and H8/3687.
From now on in this text, the H8/3694 is used as a representative target product name.

This application note introduces specific application examples for reading from/writing to two-wire serial (I°C bus)
EEPROM using the on-chip I°C module 2 (IIC2) of the H8/3694 (here, the H8/3694 is assumed as the master, and
EEPROM as a slave).

Please make use of this application note as a reference in addition to the hardware manual for programming with the
I°C module 2 (IIC2).

The sample programs for this application note are written in C language.

The functions in the sample programs are those typically required for using I°C module 2 (IIC2) and have been created
for versatile use; so they can be reused as service modules.

It is assumed that the serial (I*C bus) EEPROM in this application requires its memory address to be specified in two
bytes.

The operation of this application has been confirmed with the EEPROM products shown in table 1.1.1.

Since a standard bus format is employed, it is considered that this application may run with other I°C bus-compliant
products.

Figure 1.1.1 shows the operating environment (connection diagram) for this application.

Table 1.1.1 Operation-Confirmed EEPROM Products with This Application

No. Operation-Confirmed Products Manufacturer Capacity [byte] Page Size [byte]
1 H8/3694N on-chip EEPROM RENESAS 512 8
2 H8/3687N on-chip EEPROM RENESAS 512 8
3 HN58X2432| RENESAS 4,096 32
4 HN58X24641 RENESAS 8,192 32
Data Vee
H8/3694 SD sb EEPROM
(Master device) sC sC (Slave device)
Clock 2kQ
(Reference)
* SD
sc

Figure 1.1.1 Operating Environment for this Application (Connection Diagram)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 2 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

2. Bus Specifications

1. On-chip I’C bus interface 2 (IIC2)
The on-chip I°C bus interface (IIC2) of the H8/3694 conforms to the I°C bus (inter IC bus) interface method
propounded by Philips, and embeds sub-set functions.
For details, refer to I°C Bus Interface 2 (IIC2) section in the Hardware Manual.

2. I°C bus interface of EEPROM
For the I>C bus interface of EEPROM, refer to the Hardware Manual of the EEPROM.

3. Bus mode
This application performs communications through the I’C bus with the configuration of one master device
(H8/3694), on which this application program runs, and one slave device (EEPROM) (see figure 1.1.1).
Among transmission/reception modes of the I°C bus interface 2, only the master transmission/reception mode is
used in this application.

3. EEPROM Basic Specifications

For the I’C bus interface specifications of the on-chip EEPROM of the H8/3694N, refer to the Hardware Manual of the
product.

According to the I°C bus interface specifications, there are following four types of standard specifications (read/write
specifications) for accessing to EEPROM having an I’C bus interface.

This application note describes operations of the four types of basic specifications (read/write specifications) through
functionalization with versatility.

1. Read specifications
A. Random read (1-byte read)
Data is read out from a given address.
B. Sequential read (N-byte read)
N-byte data is sequentially read out starting from a given address.

2. Write specifications
A. Byte write (1-byte write)
Data is written to a given address.
B. Page write (N-byte write)
One page of (N-byte) data is sequentially written to starting from a given address.
In writing, after confirming the completion of the writing operation by acknowledgement polling, the next data
write is performed.

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 3 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

4. Software Specifications
4.1 Software Specifications
The software specifications of this application are described below.

411 Basic functions

The basic functions listed in table 4.1.1 have been provided for reading from/writing to serial EEPROM via the I°C bus
interface 2 (IIC2) embedded in the H8/3694.

Table 4.1.1 Basic Functions for Read/Write Access to Serial EEPROM

No. Function Function Name

1 1-byte write Master_byte_write(Device_id, Addr, Data)

2 1-byte read Master_read_byte_random(Device_id, Addr)

3 1-page write (N-byte write) Master_page_write(Device_id, Addr, Length, *buff_ptr)

4 Sequential read (N-byte read) Master_read_sequential(Device_id, Addr, Length, *buff_ptr)

41.2 Functional policy of this application

To perform data communications via the I*C bus interface 2 (IIC2), processing is done through reading/writing of flags
and data in the internal registers by software.

In this application, read/write processing of flags and data of internal registers is grouped into functional units and
made into functions for each functional unit to describe the operation of the I°C bus interface 2 (IIC2).

413 Slave address of the EEPROM
The slave address (7 bits) of the EEPROM to be connected as a slave device is assigned to be 0xa0 (upper 7 bits are

used). For details, see table 4.1.2.
Table 4.1.2 Slave Address (7 Bits) Assignment of the EEPROM to be Connected

Bit Bit Name Setting
Device code D3

Device code D2

Device code D1

Device code DO

Slave address code A2

Slave address code A1

= |INwWw(hfO|[O|N
oO|lOo|CO(O|=~|O|—~

Slave address code A0
Note: Bit 0 is used as a R/W code.

41.4 Transfer method

Data transfer through the I°C bus is carried out by performing communications while confirming the transfer through
an acknowledgement for every one-byte transmission/reception.

Alternatively, transfer processing can be performed using interrupts. For details, see table 4.1.4 and the Hardware
Manual of the target product.

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 4 of 81

‘ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

41.5 Timeout processing for individual control flags

In the control of I’C bus interface 2 (IIC2), it is necessary to check individual control flags repeatedly until they
become active.

In this application, a timeout function is added as part of control flag checking functionality.

When the flag check count exceeds the limit value, it is regarded that a timeout error has occurred, so that the process
exits from the flag check loop and error processing is performed.

When returning to the upper function, a timeout error code should be returned.
For details on the timeout limit counter value and error code, see table 4.3.2, Constants 2. and 3. .

In the checking of respective control flags, the minimum time for the flag becoming active is determined by the internal
logic.

The minimum time until a timeout occurs for each flag is shown in table 4.1.3 for reference. When performing timeout
processing, the limit count (retry count) values should be set referring to these minimum times as a guide and then be
adjusted.

Note that the minimum time is a value when the transfer clock does not go rusty. When the transfer clock dulls, the
value may be larger. Therefore, a margin should be taken according to the environment for use.

In this application, the values shown in table 4.3.2, Constants 2., are used as assumed values for explanation.

Table 4.1.3 Minimum Time till Timeout of Each Processing (when transfer clock does not dull)

Target Control Flag Name where Minimum Time till Timeout
No. Control Flag Check Timeout Processing is Required (Transfer Clock Count)
1 Timeout of bus busy check IIC2.ICCR2.BIT.BBSY 2
2 Timeout of ACK check IIC2.ICIER.BIT.ACKBR 21
3 Timeout of TEND check IIC2.ICSR.BIT.TEND 21
4 Timeout of RDRF check [IC2.ICSR.BIT.RDRF 21
5 Timeout of STOP check IIC2.ICSR.BIT.STOP 2

Note: One transfer clock cycle = (1/transfer clock frequency) [time](When transfer clock frequency = 400 kHz, one
transfer clock cycle = 2.5 ps)

41.6 Main processing

To present usage examples of basic functions, a simple main processing that uses the four basic functions (see table
4.1.1) have been created.

The following processing 1. and 2. are performed in the main processing.
Note that it is assumed that the on-chip EEPROM of the H8/3694N is used as a slave device.

1. Test data (the lower 8 bits of an EEPROM address) is written to EEPROM by using "1-byte write" function (byte
write); the data that has been written is then read by "1-byte read" function (byte read), and the write/read operation
is checked by verification. This processing is repeated for all addresses in a 512-byte area in the EEPROM. The
result of the processing is output to port 1 (P12, P11, and P10).

2. To all addresses in a 512-byte area of EEPROM, test data (the lower 8 bits of the EEPROM address + 1) is written
using "1-page write" function; the block of data that has been written is then read by using "sequential read"
function, and the write/read operations are checked by verification. The result of the processing is output to port 1
(P12, P11, and P10).

For details on main processing, see the module configuration diagram, flowchart, and program.

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 5 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

41.7 Language used in this application
In this application, C language is used for programming.

The program-developing processes from the source program creation to the object code generation is carried out by
using the integrated development environment HEW2 (product of Renesas Technology Corp.).

41.8 Representation of I°C bus transmission/reception formats

In this application note, the IC bus transmission/reception formats are described using the representation shown in
figure 4.1.1.

Applicable EEPROM types are those for which the memory address is specified in two bytes.

(1) Transmission/Reception Format for Byte Write

0: WRITE
| First byte l | Second byte | Third byte | Fourth byte | Transfer frame
[s | SLA [rw| A | ADRS U [A] ADRS L [A] DATA [ar] P |
| | | | | | | | | | | |
717 7 EMEN 8 1] 8 1] 8 7171 17| Transfer bit length
(2) Transmission/Reception Format for Byte Read (Current Address Read)
1: READ Set the bus to master reception mode
| First byte l Second byte | Third byte | Fourth byte | Transfer frame
[s | SLA [rw| A | DATA [A] DATA [A] DATA [a]Pr]
] e] o] o] e] .
R 7 ET A 8 R 8 (N 8 [71 71717 Transfer bit length
[Legends]
S: Start condition
SLA: Slave address (7 bits) of the EEPROM
R/W: Transmission/reception (1: read, 0: write)
A Acknowledgement (SDA LOW)
A: No acknowledgement (SDA HI)

ADRS U: Upper 8 bits of an EEPROM memory address
ADRS L: Lower 8 bits of an EEPROM memory address
DATA: Data (for transmission/reception)

P: Stop condition

*: For details on the slave address, see table 4.1.2

Figure 4.1.1 Representation of I’C Bus Transmission/Reception Format

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 6 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

41.9 Functions of control flags and registers used in this application
Table 4.1.4 summarizes the functions of the control flags and registers used in this application.

Table 4.1.4 Functions of Control Flags and Registers

No. Control Flag/Register Name

Description

1 ICDRR

Receive data register
When read, the next reception is performed (the clock output is started).

2 RDRF Receive data register full
This flag is set when data is placed in ICDRR after completion of reception.
If the receive-data-full interrupt is enabled (RIE = 1), an RXI interrupt is
generated.

4 RCVD Receive disable
0: Enables subsequent reception operation. (When ICDDR is read, clock for

subsequent reception is output.)
1: Disables subsequent reception operation. (When ICDDR is read, clock for
subsequent reception is not output.)

RCVD should be set prior to reading of ICDRR.

5 ACKBT Transmission acknowledgement
Sets the acknowledgment to be transmitted in reception mode.
0: ACK
1: NOT ACK
ACKBT should be set prior to reading of ICDRR.

6 ICDRT Transmit data register
Data transmission is started when data is written to this register and the data
is transferred to the shift register (ICDRS).
Sequential transmission is possible by writing the subsequent data to ICDRT
during data

7 TEND Transmit end
This flag is set on the rising edge of the ninth clock of SCL when TDRE = 1.
When TDRE = 1, transmission has been completed and acknowledgement is
being received.
The TEND flag can be used if data should be transferred while confirming the
acknowledgement. (TEND is used in this application.)
After transmission of a slave address or final data, completion of
transmission can be securely detected by using the TEND flag. If the
transmit-end interrupt is enabled (TEIE = 1), a TEl interrupt is generated.

8 TDRE Transmit data empty
This flag is set when data is transferred from ICDRT to ICDRS.
The TDRE flag can be used when data transfer is done without confirming
the acknowledgement.
(Detection of an acknowledgement error in this case can be performed by
means of NACK receive interrupts (NACKI).
If the transmit data empty interrupt is enabled (TIE = 1), a TXI interrupt is
generated.

9 ACKBR Reception acknowledgement

In transmission mode, an acknowledgement from a receiving device is stored
to this bit.

0: ACK,

1: NOT ACK

REJ06B0135-0100Z/Rev.1.00

September 2003 Page 7 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

4.1.10 Basic Flow of the EEPROM Write/Read Processing
The basic flow of EEPROM write/read processing via the I’C bus interface 2 (IIC2) are described below with reference

to the examples: 1. byte write and 2. sequential read.

Since these flows are only for describing the basic flow of processing, they might not be consistent with the sample
application program at some minor points. Thus, please use this flow in addition to the Hardware Manual as a

reference for dealing with the flags and registers.

1. Standard write processing flow for EEPROM (Byte write)

(Basic flow of byte write)

Check 12C bus condition and
wait until bus becomes available.
|
| Set master transmission mode. |
!
| Issue start condition. |
!

Transmit EEPROM slave address
in write mode.

Acknowledgement:

Transmit upper 8 bits
of memory address

Acknowledgement:

Transmit lower 8 bits
of memory address.

Acknowledgement:

Transmit data to be written.

Acknowledgement:
1 (NOT ACK

No

Issue stop condition and wait
until stop condition is met

| Set slave reception mode. |
|
(End)

Exit with an error.

Wait until BBSY =0

Set MST=1and TRS = 1
Set BBSY =1 and SCP =0

Set slave address in ICDRT
and wait until TEND = 1

Read ACKBR.
If ACKBR = 1, exit with an error.

Set memory address (upper 8 bits)
in ICDRT and wait until TEND = 1

Read ACKBR.
If ACKBR = 1, exit with an error.

Set memory address (lower 8 bits)
in ICDRT and wait until TEND = 1

Read ACKBR.
If ACKBR = 1, exit with an error.

Set data to be written in ICDRT
and wait until TEND = 1

Read ACKBR.
If ACKBR = 1, exit with an error.

Set TEND = 0.

Set STOP = 0.

Set BBSY =0 and SCP =0.
Wait until STOP = 1.

Set MST =0and TRS = 0.
Set TDRE = 0.

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 8 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

2. Standard read processing flow for EEPROM (Sequential read)

Prepare for subsequent
data reception.

(Basic flow of sequential read)

Check 12C bus condition, and
wait until bus becomes available.
|
| Set master transmission mode. |
!
| Issue start condition. |
1
Transmit EEPROM slave address

in write mode.

Acknowledgement:

Transmit upper 8 bits
of memory address

Acknowledgement:

Transmit lower 8 bits
of memory address.

Acknowledgement:

Re-issue start condition.

Transmit EEPROM slave addresd
in read mode.

Acknowledgement:

After receiving data,
set acknowledgement (ACK = 0)
to be transmitted.

I
Enable sequential reception.
(When ICDRR is read
with this setting, clock is output
and subsequent reception
is started.)

Wait until BBSY =0

Set MST=1and TRS = 1.
Set BBSY =1 and SCP = 0.

Set EEPROM slave address
in ICDRT and wait until TEND = 1.

Read ACKBR.
If ACKBR = 1, exit with an error.

Set memory address (upper 8 bits)
in ICDRT and wait until TEND = 1.

Read ACKBR.
If ACKBR = 1, exit with an error.

Set memory address (lower 8 bits)
to ICDRT and wait until TEND = 1

Read ACKBR.
If ACKBR = 1, exit with an error.

SetBBSY=1,SCP=0

Set EEPROM slave address
to ICDRT and wait until TEND = 1

Read ACKBR.
If ACKBR = 1, exit with an error.

Set TEND = 0.
Set MST =1 and TRS = 0.
Set TDRE = 0.

Set ACKBT =0.

Set RCVD = 0.

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 9 of 81

H8/300H Tiny Series

u {E N ESAS Application Examples for Reading /Writing

Start data reception.

Read ICDRR to start reception.
(Dummy read; this data is invalid)

Store received data into buffer.

®
! Wait for 1-byte reception completion.

1-byte E Read ICDRR to start subsequent reception.

reception ! (This is the first received data)

operation ! |

1 Repeat reception operations of (A)
1 until the data two-byte before the final data is received.

JRp—

Reception of data one byte
before the final data

Set the acknowledgement value (NOT ACK=1)
that is transmitted for reception of final data.

Disable sequential reception for receiving final data.
(When ICDRR is read with this setting, clock is output

and subsequent reception starts.

After this final reception, clock output is disabled.)

» Perform sequential reception operation of (A). '
Leccccecece s s e e e e e e e e e e e e e e e e e e e

Final data reception

2
O Exit with an error

Enable sequential reception.
(When ICDRR is read with this setting, clock is output
and subsequent reception starts.)

| Issue stop condition and wait for stop condition to be metl

|Set slave reception mode. |

|
()

When ICDRR is read, clock is output
and subsequent reception starts
(when RCVD = 0).

Wait until RDRF = 1.

(When RDRF = 1, ACKBT value has already

been automatically output as an acknowledgement
When ICDRR is read, clock is output

and subsequent reception starts
(when RCVD = 0).

Set ACKBT = 1 (NOT ACK)
for receiving final data.

Set RCVD = 1 for receiving final data.

Since RCVD is set to 1, clock output is disabled
at the time when the final data is read from ICDRR.

Set RCVD = 0.

Set STOP = 0.
Set BBSY =0 and SCP = 0.
Wait until STOP = 1.

SetMST=0and TRS =0

REJ06B0135-0100Z/Rev.1.00 September 2003

Page 10 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

4.2

Function list

The functions created for this application and their functionalities are shown in tables 4.2.1 to 4.2.5.

Table 4.2.1 1IC2 Main Function

No. Function Name Description

0 Main(void) Functions No. 1 to No. 4 are called to show their
usage examples.

1 Master_byte write(Device_id, Addr, Data) 1-byte write

2 Master_read_byte_random(Device_id, Addr) 1-byte read

3 Master_page_write(Device_id, Addr, Length, *buff_ptr) 1-page write (N-byte write)

4 Master_read_sequential(Device_id, Addr, Length, *buff_ptr) Sequential read (N-byte read)

Table 4.2.2 1IC2 Sub Function

No. Function Name Description
5 Master_address_set(Device_id, Addr) Transmits slave address and memory address.
6 Check_bus_condition(void) Checks bus condition.
7 Send_start_condition(void) Issues start condition.
8 Send_stop_condition(void) Issues stop condition.
9 Send_byte_data(Byte_data) Transmits 1-byte data.
10 Receive_byte data(void) Receives 1-byte data.
11 Receive_byte data_fin(void) Receives final 1-byte data
12 Receive_byte data_many(Length, *buff_ptr) Receives byte data sequentially
(for read byte length).
13 Set_slave_read_mode(Device_id) Transmits slave address (read mode).
14 Set_slave_write_mode(Device_id) Transmits slave address (write mode).
15 Set_receive_mode(Ackbt_flag, Rcvd_flag) Sets ACKBT and RCVD flags.

Table 4.2.3 1IC2 Initialization Function

No. Function Name Description

16 Init_iic2 (void) Initializes 1IC2 I/F.

17 Set_iic_bus_mode(MLS, WAIT, BC210) Sets master device bus mode.

18 Set_iic_mode(MODE) Sets master device transmission/reception
mode.

19 Set_iic_rate(RATE) Sets master device transfer rate.

20 Set_iic2_if_enable(ICE) Sets IIC2 I/F module operation status.

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 11 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

Table 4.2.4 EEPROM Initialization Function (Controls IIC Bus through Port Processing and
Initializes EEPROM)

No. Function Name Description

21 Init_eeprom(void) Initializes EEPROM bus condition.

22 12¢_start (void) Issues start condition to IIC device. (port processing)

23 12¢c_stop (void) Issues stop condition to 1IC device. (port processing)

24 12c_set (Scl, Sda) Outputs SCL and SDA to IIC device. (port processing)

25 12c_bytesend (Tx_data) Transmits byte data to IIC device. (port processing)

26 12¢c_bitsend (Tx_data, Ckbit) Transmits bit data to IIC device. (port processing)

27 12¢c_send (Bit_data) Transmits bit data synchronized with a clock from 1IC port. (port processing)
28 12c_ackek (void) Obtains acknowledgements from IIC device. (port processing)

29 12c_sda_in (void) Sets SDA (P56) of IIC port as input and SCL (P57) as output.

30 12c_sda_out (Data) Sets SDA (P56) and SCL (P57) of lIC port as output and outputs data.
31 Wait_timer (Wait_cnt) Wait for the specified time (countdown until the wait count reaches 0).

Note: The EEPROM initialization functions are used to forcibly bring the SDA bus of EEPROM into input mode when
the SDA bus of EEPROM still remains in output mode (this might be caused when, for example, communication
is halted during data reception from EEPROM) and reception processing from the master device cannot be
performed. These functions are only for reference and do not have direct relation to the main function.

Table 4.2.5 Initialization (Startup) Function

No Function Name Description

32 INIT(void) Initialization (startup) routine (created in INIT.SRC file)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 12 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

4.3

Global variables and constants

Tables 4.3.1 and 4.3.2 show the global variable and constants (defined using #define directives) used in this application

program.

Table 4.3.1 Global Variable

No. Variable Name Type Size Application

1 eeprom_buf unsigned char 513 EEPROM read/write data
storage buffer

Table 4.3.2 Constants

1. Device code definition

No. Variable Name Type Size Application

1 DEVICE_CODE unsigned char 0xa0 EEPROM device code: 1010
(D3, D2, D1, DO)

2 SLAVE_ADRS unsigned char ~ 0x00 Slave address code: 000
(A2, A1, AO)

3 RW_CODE_W unsigned char 0x00 R/W code: 0 (data write)

4 RW_CODE_R unsigned char 0x01 R/W code: 1 (data read)

5 DEVICE_ADDRESS WORD_W unsigned char See right. Slave address (for writing)

(DEVICE_CODE | SLAVE_ADRS
IRW_CODE_W)

6 DEVICE_ADDRESS_WORD_R

unsigned char

See right.
(DEVICE_CODE | SLAVE_ADRS |
RW_CODE_R)

Slave address (for reading)

Note:

For slave address, see table 4.1.2.

2. Definition of timeout limit counts (number of times for terminating respective flag check processings: assumed

value)
No. Variable Name Type Size Application
1 TIMEOUT_LIMIT_BBSY unsigned char 1000 Bus busy check timeout limit
2 TIMEOUT_LIMIT_ACK unsigned char 1000 ACK check timeout limit
3 TIMEOUT_LIMIT_TEND unsigned char 1000 TEND check timeout limit
4 TIMEOUT_LIMIT_RDRF unsigned char 1000 RDRF check timeout limit
5 TIMEOUT_LIMIT_STOP unsigned char 1000 STOP check timeout limit
3. Definition of error codes
No. Variable Name Type Size Application
1 IMEOUT_ERR_BUS_BUSY unsigned char 200 Bus busy timeout error
2 TIMEOUT_ERR_ACK unsigned char 201 Acknowledgement polling timeout error
3 TIMEOUT_ERR_TEND unsigned char 202 Transmit end timeout error
4 TIMEOUT_ERR_RDRF unsigned char 203 Receive end timeout error
5 TIMEOUT_ERR_STOP unsigned char 204 Stop condition issue timeout error
6 ERR_ACK unsigned char 205 Acknowledgement error
REJ06B0135-0100Z/Rev.1.00 September 2003 Page 13 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

4. Other definition

No. Variable Name Type Size Application

1 ™ unsigned char 100 (assumed value) Wait count for the wait timer (Used for clock
output of EEPROM initialization function)

44 Section definitions

Table 4.4.1 shows section (memory allocation address) definitions of this application program.

Table 4.4.1 Section Definitions

Allocated Address Section name Allocated as
H'0000 C Vector area
H'1000 P Program area
H'FB80 B RAM area
REJ06B0135-0100Z/Rev.1.00 September 2003 Page 14 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

4.5 Description of Functions

Description of the major functions are provided in sections 4.5.1 through 4.5.7.

The major functions described are listed in table 4.5.1. (Section numbers 4.5.1 through 4.5.7 correspond to the major function
numbers in this table.)

Table 4.5.1 Major Functions Described in This Section

No. Function Name Description

1 Master_byte write(Device_id, Addr, Data) 1-byte write

2 Master_read_byte_random(Device_id, Addr) 1-byte read

3 Master_page_write(Device_id, Addr, Length, *buff_ptr) 1-page write

4 Master_read_sequential(Device_id, Addr, Length, *buff_ptr) Sequential read

5 Master_address_set (Device_id, Addr) Transmission of slave address and memory
address

6 Receive_byte data_many (Length, *buff_ptr) Sequential data reception

7 Init_eeprom(void) Initialization of EEPROM bus condition

4.5.1 1-byte write
1.Function Name
Master byte write(Device id, Addr, Data)
1-byte write
2. Argument
A. Entry
(1) Device_id (unsigned char) ; Slave address code: 0 to 7 (A2, Al, A0)
(2) Addr (unsigned short) ; Memory address (2 bytes)
(3) Data (unsigned char) ; Write data (1 byte)
B. Return
(1) Err_code (unsigned char); Error code
0: Normal termination
2: Second byte acknowledgement error (upper 8 bits of memory address)
3: Third byte acknowledgement error (lower 8 bits of memory address)
4: Fourth byte acknowledgement error (data)
TIMEOUT ERR BUS BUSY: Bus busy timeout error
TIMEOUT ERR ACK: Acknowledgement polling timeout error
TIMEOUT ERR STOP: Stop condition detection timeout error
Note: The transmit end timeout error is returned as 2 to 4 of Err_code.

3. Processing
Transmits to the slave device the slave address (1 byte), memory address (2 bytes), and write data (1 byte)
according to the transmission/reception format, and writes the write data to the memory address.
4. Functions used
(1) Master address_set(Device id, Addr); Transmits slave address and memory address.
(2) Send byte data(Data); Transmits data.
(3) Send_stop_condition(); Issues stop condition.
(4) Set_iic_mode(0); Sets slave reception mode.

Transmission format

| | First byte | Second byte | Third byte | Fourth byte |
[s | SLA [w]A] ADRS U [A] ADRS L [A | DATA [A]r]
\ Y A Y AW—/
(1) Master_address_set (2) Send_byte_data (3) Send_stop_condition

(4) Set_iic_mode(0)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 15 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

4.5.2 1-byte read
1. Function Name
Master read byte random(Device id, Addr)
1-byte read
2. Arguments
A. Entry
(1) Device_id (unsigned char) ; slave address code: 0 to 7 (A2,A1,A0)
(2) Addr (unsigned short) ; memory address (2 bytes)
B Return
(1) Err_code (unsigned char); error code (upper 8 bits)
0: Normal termination
2: Second byte acknowledgement error (upper 8 bits of memory address)
3: Third byte acknowledgement error (lower 8§ bits of memory address)
ERR_ACK: Slave address (read) acknowledgement error
TIMEOUT ERR BUS BUSY: Bus busy timeout error
TIMEOUT ERR_ACK: Acknowledgement polling timeout error
TIMEOUT ERR RDREF: Receive end timeout error
TIMEOUT ERR STOP: Stop condition detection timeout error
Note: The transmit end timeout error is returned as 2 to 3 of Err_code.

(2) Data (unsigned char) ;received data (lower 8 bits)
3. Processing
Transmits to the slave device the slave address (1 byte) and memory address (2 bytes) according to the
transmission/reception format, retransmits the slave address (1 byte) in read mode, and reads the data (1 byte) from
the memory address in master reception mode.

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 16 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

4. Functions used
(1) Master address_set(Device id, Addr); Transmits slave address and memory address.
(2) Set_slave_read _mode(Device_id); Retransmits slave address in read mode.
(3) Set_iic_mode(2); Sets master reception mode.
(4) Set_receive_mode(1, 1); Sets reception mode (ACKBT =1, RCVD = 1).
(5) Receive _byte data(); Receives data
(6) Receive _byte data_fin(); Gets the finally received data.
(7) Send_stop_condition(); Issues stop condition.
(8) Set_iic_mode(0); Sets slave reception mode.

Transmission format

|] First byte | Second byte | Third byte |
[s] SLA [w]a] ADRS U [A] ADRS L [A]

v

(1) Master_address_set

|] Fourth byte | Fifth byte |]
[s | SLA [w]a] DATA [A]P]

A v A —
(2) Set_slave_read_mode (5) Receive_byte_data (7) Send_stop_condition
(6) Receive_byte_data_fin (8) Set_iic_mode(0)

(3) Set_iic_mode(2)
(4) Set_receive_mode(1, 1)
(4) Since this is the 1-byte reception for the final byte,
set ACKBT = 1 (Nack is output in the subsequent reception)
and RCVD = 1 (the subsequent clock output is disabled.
(5) Since this is a dummy read for starting reception operation (receive clock output),
the received data should be regarded as invalid.

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 17 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

4.5.3 1-page write (N-byte write)

1.

Function Name
Master page write(Device id, Addr, Length, *buff ptr)
1-page write (N-byte write)
Arguments
A. Entry
(1) Device_id (unsigned char); Slave address code: 0 to 7 (A2, A1, A0)
(2) Addr (unsigned short); Write start memory address (2 bytes)
(3) Length (unsigned char); Write byte length N (specify within 1 page)
(4) *buff ptr (unsigned char); First address of the write data storage buffer
B. Return
(1) Err_code (unsigned char); error code
0: Normal termination
2: Second byte acknowledgement error (upper 8 bits of memory address)
3: Third byte acknowledgement error (lower 8§ bits of memory address)
4 to 131 (number of transmitted bytes + 3): Transmission acknowledgement error for the fourth and
following bytes (data)
TIMEOUT ERR BUS BUSY: Bus busy timeout error
TIMEOUT ERR ACK: Acknowledgement polling timeout error
TIMEOUT ERR STOP: Stop condition detection timeout error

Note: The transmit end timeout error is returned as 2 to 131 of Err_code.

3.

Processing

Transmits to the slave device the slave address (1 byte) and memory address (2 bytes) according to the

transmission/reception format; after that, sequentially transmits the write data of the size specified by Length (N

bytes), and writes the data through page writing.

— Write start memory address (Addr) and write byte length (Length) should be set so that the write addresses fall
within a page during writing process.
When the address exceeds the range of a page, the write address pointer for EEPROM is rollovers, and
overwriting occurs from the first address of the page.

— Write data of the size specified by Length (N bytes) should be written in advance to the write data storage
buffer, from its first address + 1 to the first address + N. (The location at the first address of the buffer is not
used.)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 18 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

4. Functions used
(1) Master_address_set(Device id, Addr); Transmits slave address and memory address.
(2) Send_byte data(Data); Transmits data.
(3) Send_stop_condition(); Issues stop condition.
(4) Set_iic_mode(0); Sets slave reception mode.

Transmission format

First byte
| | First byte | Second byte | Third byte | of the write data |
[s | SLA [w]Aa] ADRS U [A] ADRS L [A] DATA [A] -~
(1) Master_address_set (2) Send_byte_data
| (N - 1)th byte | Nth byte | |
...... >| DATA |A| DATA |A|P|
Y A Y H—j
(2) Send_byte_data (2) Send_byte_data (3) Send_stop_condition
(4) Set_iic_mode(0)
Write data storage buffer
eeprom_buf[0] ----------------------mmmmmmooo oo > eeprom_buf[N]
buff_ptr buff ptr | . buff_ptr buff_ptr
+0 +1 +(N-1) +N

T]

Not used (N - 1)th write data
First write data
Nth write data

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 19 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

454 Sequential read (N-byte read)
1. Function Name
Master read sequential(Device id, Addr, Length, *buff ptr)
Sequential read (N-byte read)
2. Arguments
A. Entry
(1) Device id (unsigned char) ; Slave address code: 0 to 7 (A2, Al, A0)
(2) Addr (unsigned short) ; Read start memory address (2 bytes)
(3) Length (unsigned short) ; Read byte length N (more than 2 bytes)
(4) *buff ptr (unsigned char) ; First address of the read data storage buffer
B. Return
(a) Err_code (unsigned char); error code
0: Normal termination
2: Second byte acknowledgement error (upper 8 bits of memory address)
3: Third byte acknowledgement error (lower 8§ bits of memory address)
ERR_ACK: Slave address (read) acknowledgement error
TIMEOUT ERR BUS BUSY: Bus busy timeout error
TIMEOUT ERR ACK: Acknowledgement polling timeout error
TIMEOUT ERR RDREF: Data receive end timeout error
TIMEOUT ERR_STOP: Stop condition detection timeout error
3. Processing
Transmits to the slave device the slave address (1 byte) and memory address (2 bytes) according to the
transmission/reception format; after that, retransmits the slave address (1 byte) in read mode, and sequentially reads
data (N bytes) from the memory address in master reception mode.
— The read data is sequentially stored in the read data storage buffer from its first address.
In the location at the first address of the buffer, dummy data which has been read upon starting reception is
stored. Therefore, valid received data is stored to the addresses from (first address of the buffer + 1) to (first
address of the buffer + N).

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 20 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

4. Functions used
(1) Master_address_set(Device id, Addr; Transmits slave address and memory address.
(2) Set_slave read mode(Device id); Retransmits slave address in read mode.
(3) Set_iic_mode(2); Sets master reception mode.
(4) Set_receive_mode(0, 0); Sets reception mode (ACKBT = 0, RCVD = 0).
(5) Receive byte data many(Length, buff ptr); Receives data (N bytes).
(6) Send_stop_condition(); Issues stop condition.
(7) Set_iic_mode(0); Sets slave reception mode.

Transmission format

First byte | Second byte | Third byte |

[s] SLA [w]al] ADRS U [A] ADRS L [A]

J

v

(1) Master_address_set

Reception starts

| | Fourth byte | First byte |
[s] SLA [r]A] DATA [A] - -
(2) Set_slave_read_mode [(5) Receive_byte_data_many

(3) Set_iic_mode(2)
(4) Set_receive_mode(0, 0)

| (N - 1)th byte | Nth byte | |

------ - | DATA [A] DATA [A]P]
A —

N-byte data reception using the function (5) (6) Send_stop_condition
(7) Set_iic_mode(0)
Read data storage buffer
eeprom_buf[0] ---------------------mmmommoomooe > eeprom_buf[N]
buff_ptr buff ptr | . buff_ptr buff_ptr
+0 +1 +(N- 1) +N
. -
First read data (N - 1)th read data

Nth read data
Dummy data read
upon starting reception
(Not used)

(4) To carry out sequential reception, set ACKBT = 0 (Ack is output in the subsequent reception)
and RCVD = 0 (clock output for the subsequent reception is enabled).

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 21 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

4.5.5 Transmits slave address and memory address
1. Function Name
Master address_set (Device id, Addr)
Transmits slave address and memory address
2. Arguments
A. Entry
(1) Device_id (unsigned char); Slave address code: 0 to 7 (A2, A1, A0)
(2) Addr (unsigned short) ; Memory address (2 bytes)
B. Return
(1) Err_code (unsigned char); error code
0: Normal termination
2: Second byte acknowledgement error (upper 8 bits of memory address)
3: Third byte acknowledgement error (lower 8§ bits of memory address)
TIMEOUT ERR BUS BUSY: Bus busy timeout error
TIMEOUT ERR_ACK: Acknowledgement polling timeout error
3. Processing
Transmits to the slave device the slave address (1 byte) and memory address (2 byte) according to the
transmission/reception format.
4. Functions used
(1) Check bus_condition(); Checks bus condition.
(2) Set_slave write_mode(Device id); Transmits slave address (write mode).
(3) Send_byte data(Data); Transmits data.

Transmission format

| | First byte | Second byte | Third byte |
[s | SLA [w] Al ADRS U [A] ADRS L [a]
‘ (2) Set_slave_write_mode (3) Send_byte_data (3) Send_byte_data

(1) Check_bus_condition

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 22 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

4.5.6 Sequential data reception (for N bytes)

1. Function Name
Receive byte data many (Length, *buff ptr)
Sequential data reception (for N bytes)
2. Arguments
A. Entry
(1) Length (unsigned short); Read byte length N (2 bytes or more)
(2) *buff ptr (unsigned char); First address of read data storage buffer
Since dummy data, which is read upon start of reception, is stored to the first address (buff ptr), valid data of
the size specified by Length is stored to (buff ptr + 1) and following addresses.
B. Return
(1) Err_code (unsigned char); error code
0: Normal termination
TIMEOUT ERR RDREF: Data receive end timeout error
3. Processing
Reads data (N bytes) from the slave device sequentially according to the transmission/reception format.
— The read data is sequentially stored in the read data storage buffer from its first address.
In the location at the first address of the buffer, dummy data which has been read upon starting reception is
stored. Therefore, valid received data is stored to the addresses from (first address of the buffer + 1) to (first
address of the buffer + N).
4. Functions used
(1) Receive byte data(); Receives 1-byte data.
(2) Set_receive_mode(1, 1); Sets reception mode (ACKBT =1, RCVD =1).
(3) Receive byte data fin(); Receives final 1-byte data.

Transmission format

| Reception starts. | Second byte |

First byte
| DATA [A] DATA [A] ----mmmememeee- -
(1) Receive_byte_data (1) Receive_byte_data (1) Receive_byte_data
Final data reception
(N - 1)th byte | Nth byte |
------------------- - | DATA [A | DATA [A]
(1) Receive_byte_data 1) Receive_byte_data\ (3) Receive_byte_data_fin

(2) Set_receive_mode(1, 1)

(1) The first data read (first byte) is dummy read for starting reception operation (receive clock output).
This invalid received data is stored in eeprombuf[0].

(2) Since this is the final reception for the N-th byte,
set ACKBT = 1 (Nack is output in the subsequent reception) and RCVD = 1
(the subsequent clock output is disabled).

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 23 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

4.5.7 Initializes EEPROM bus condition

1. Function Name
Init_eeprom(void)
Initializes EEPROM bus condition
2. Arguments
A. Entry
None; None
B. Return
None; None
3. Processing
Forcibly initializes EEPROM bus condition by first issuing start condition according to the transmission/reception
format via a port, transmitting dummy slave address (0xff), then issuing stop condition.
(This initialization processing is used to forcibly set the SDA bus of the EEPROM in input mode when reception
processing from the master device cannot be performed because of the SDA bus of the EEPROM still remaining in
output mode due to communication disconnection during data reception from EEPROM.)
4. Functions used
(1) Set_iic2_if enable (0); Sets IIC2 I/F module to a halt state.; (SCL/SDA pin to port function)
(2) 12¢_start () ; Issues start condition to the IIC device (port processing).
(3) I2¢_bytesend (Tx_data); Transmits byte data to the IIC device (port processing).
(4) 12¢_ackcek (); Obtains acknowledgement from the IIC device (port processing).
(5) 12¢_stop (); Issues stop condition to the IIC device (port processing).
(6) Wait_timer (); Waits for the specified time (countdown until the wait count reaches 0).

Transmission format

| | First byte | | o
(1) Set_iic2_if_enable (0)
o7 (2) 12c_start
| S | SLA | w | A | P | (3) 12c_bytesend
v A A (4) 12c_ackck
) (3) @ ®) (5) 12¢_stop
(1) (3) Oxff: Transmits dummy slave address

4.6 Program Files

Table 4.6.1 shows the program files involved in this application.

Table 4.6.1 Program Files Involved in This Application

No. Function Name Description

1 H8_3694_|IC2.H Register map definitions

2 INIT.SRC Initialization routine (start up)
3 eeprom.c Main routine

4 iic2_eeprom.c Processing functions

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 24 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

4.7 Module configuration diagram

Module configuration of this application program is shown in section 4.7 1. through 7. .

In the following module configuration diagrams, a function is represented as a box (figure 4.7.1) and the hierarchical

structure of functions is depicted.

The function numbers correspond to the item numbers in the function lists (table 4.2.1 through 4.2.4). A function
number containing a dot indicates that there is any functions called in that function.

Function name

Function No.
0.0

Brief description of processing

Figure 4.7.1 Representation of a Function

1. Main ()

Main ()

| 0.0

Perform main processing

(usage example of 1IC2 main function)

INIT () [32 |

Initialization processing
(start up)

Init_eeprom ()

Initialize EEPROM bus condition

Init_iic2 ()

Initialize 11IC2 I/F

Master_byte_write ()

| 1.0

Perform 1-byte write

Master_read_byte_random () |L

Perform 1-byte read

Master_page_write ()

| 3.0

Perform 1-page write (N-byte write)

Master_read_sequentia () |L

Perform sequential read (N-byte read)

2. Init iic2 ()

Init_iic2 ()

Initialize IIC2 I/F

Set_iic_rate ()

Set_iic_bus_mode ()

| 17 Set_iic2_if_enable () |L

Set master device transfer rate

Set master device bus mode Set [IC2 I/F module operation status

REJ06B0135-0100Z/Rev.1.00

September 2003 Page 25 of 81

H8/300H Tiny Series
Application Examples for Reading /Writing

LENESANS

3. Master byte write ()

Master_byte_write ()

| 1.0

Perform 1-byte write

Master_address_set ()

| 5.0

Transmit slave address
and memory address

Check_bus_condition (')

[¢ |

Set_slave_write_mode ()

Send_byte_data ()

R

Check bus condition

Transmit slave address
(write mode)

Transmit 1-byte data

Set_iic_mode ()

| 18

Send_start_condition ()

Send_byte_data ()

Lo

Set master device
transmission/reception mode

Issue start condition

Transmit 1-byte data

Send_byte_data ()

[o

Send_stop_condition ()

Set_iic_mode ()

[18

Transmit 1-byte data

Issue stop condition

Set master device
transmission/reception mode

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 26 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

4. Master read byte random ()

Master_read_byte_rondom () |L

Perform 1-byte read

Master_address_set () |L

Transmit slave address
and memory address

Check_bus_condition (') |L Set_slave_write_mode () 140 Send_byte_data () |L

Transmit slave address
(write mode)

Set_iic_mode () |1_8 Send_start_condition () L Send_byte_data () L

Set master device
transmission/reception mode

Check bus condition Transmit 1-byte data

Issue start conditions Transmit 1-byte data

Set_iic_mode () |L Set_receive_mode () |L Set_slave_read_mode () 130

Set ma_ste_r device) Set ACKBT and RCVD flags Transmit slave address
transmission/reception mode (read mode)

Receive_byte_data () |L Receive_byte_data_fin () |L

Receive 1-byte data Receive final 1-byte data

Send_stop_condition () |;

Issue stop condition

Set_iic_mode () |L Send_start_condition () L Send_byte_data () |;

Set master device
transmission/reception mode

Issue start condition Transmit 1-byte data

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 27 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

5. Master page write()

| 3.0

Master_page_write ()

Perform 1-page write (N-byte write)

| 5.0

Master_address_set ()

Transmit slave address
and memory address

Check_bus_condition (')

[¢ |

Set_slave_write_mode ()

Send_byte_data ()

Check bus condition

Transmit slave address

(write mode)

Transmit 1-byte data

Set_iic_mode ()

| 18

L7

Send_start_condition ()

Send_byte_data ()

Lo

Set master device
transmission/reception mode

Issue start condition

Transmit 1-byte data

Send_byte_data ()

[o

L&

Send_stop_condition ()

Set_iic_mode ()

[18

Transmit 1-byte data

Issue stop condition

Set master device
transmission/reception mode

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 28 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

6. Master read sequential ()

Master_read_sequential () |L

Perform sequential read (N-byte read)

| 5.0

Master_address_set ()

Transmit slave address
and memory address

Check_bus_condition (')

[s

Set_slave_write_mode () 140

[o

Send_byte_data ()

Check bus condition

Transmit slave address
(write mode)

Transmit 1-byte data

Set_iic_mode ()

| 18

Send_start_condition ()

[o

Send_byte_data ()

Set master device
transmission/reception mode

Issue start condition

Transmit 1-byte data

Set_iic_mode ()

[18

| 15

Set_receive_mode ()

Set_slave_read_mode ()

Set master device
transmission/reception mode

Set ACKBT and RCVD flags

Transmit slave address
(read mode)

Set_iic_mode ()

| 18

L7

Send_start_condition ()

[o

Send_byte_data ()

Set master device
transmission/reception mode

Issue start condition

Transmit 1-byte data

Receive_byte_data_many ()

12.0

[s

Send_stop_condition ()

Receive byte data sequentially
(for read byte length)

Issue stop condition

Receive_byte_data ()

| 10

| 15

Set_receive_mode ()

Receive_byte_data_fin () |L

Receive 1-byte data

Set ACKBT and RCVD flags

Receive final 1-byte data

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 29 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

7. Init eeprom ()

Init_eeprom (') 21.0

Initialize EEPROM bus condition

Set_iic2_if_enable () [2 | Wait_timer () HEE
Set 1IC2 I/F module operation status Wait for the specified time
|
12¢_start () 220 12c_stop () 230
Issue start condition to 1IC device Issue stop condition to IIC device
(port processing) (port processing)
I |
12¢_sda_out () IL 12c_set () IL
Set SDA(P56) and SCL(P57) of IIC port Output SCL and SDA to IIC device
as output and output data (port processing)

12¢_sda_out () [30 | 12¢_set () [24 |

Set SDA (P56) and SCL (P57) of IIC port Output SCL and SDA to IIC device

as output and output data (port processing)
I |
12¢_ackek () 280 12c_bytesend () 250
Obtain acknowledgement from 1IC device Transmit byte data to IIC device
(port processing) (port processing)

[
12¢_sda_out () [30 | 12¢_bitsend () [2 |

Output SCL and SDA to IIC device Transmit bit data to 1IC device
(port processing) (port processing)
12c_send () | 27

Transmit bit data from [IC port
synchronized with a clock (port processing

[
Wait_timer () |L 12¢_set () |2_4

Wait for the specified time Output SCL and SDA to IIC device
(port processing)

12¢_sda_in () [2 12c_set () EZ Wait_timer () I
Set SDA (P56) as input and SCL (P57) Output SCL gnd SDA to IIC device Wait for the specified time
as output of 1IC port (port processing)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 30 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

5. Flowchart

Flowcharts of this application program are shown in [0] to [21] and [32].

Note that the numbers [0] to [21] and [32] correspond to function number shown in section 4.2, Function Lists (tables
4.2.1t04.2.5).

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 31 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[0] Main () Function: Main processing

(Main())
|

Initialize port settings

(set P10, P11, and P12 as output).
I

Initialize EEPROM bus condition.

Init_eeprom();

Initialize 11C2 I/F.
Init_iic2();

I
EEPROM slave address code = 0x00
Memory start address = 0x000
Memory end address = 0x200
Clear the process result output port.

|
Memory address = memory start address.

Set the H8/3694N's
on-chip EEPROM

slave address code (0)
and the memory address
range (512 bytes).

Write data
= lower 8 bits of memory address.

| *
Perform 1-byte write to EEPROM.
Master_byte_write ();

Yes

Error code: error?

Output error code form port 1

(write error = 1).
Perform 1-byte read from EEPROM. T

Master_read_byte_random ();

Yes

Error code: error?

Output error code from port 1
(read error = 2).

Output error code from port 1

(verification error = 3).
Increment memory address by one. T

Does write data match with
read data?

©

Set the slave address

Does memory address match with
the memory end address?

EEPROM slave address code = 0x00 code (0) of H8/3694N's
Memory start address = 0x000 on-chip EEPROM and
Memory end address = 0x200 the memory address

| range (512 bytes).
Sequentially set data for page writing

in the entire data buffer area of EEPROM. Set the page size (8 bytes)
(write data of H8/3694N's
= lower 8 bits of memory address + 1) on-chip EEPROM.

| 1-page size to be written = 0x08 |
1

| Memory address = memory start address. |

Note: * Usage examples of 1-byte write (Master_byte_write) and 1-byte read (Master_read_byte_random)
Writes the lower 8-bit value of address to the corresponding EEPROM address (0x000 to 0x1ff), reads it, and verifies.
If an error occurs, output an error code from the process result output ports (P10, P11, and P12).

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 32 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

®

Perform 1-page write to EEPROM. Read written data from EEPROM
Master_page_write (); data buffer, and perform writing
page-by-page.

Yes 1

Output error code from port 1
(page write error = 4).
Update memory address T

(add 1-page size to be written).

Error code: error?

Does memory address match
with memory end address?

Set 0 to all data buffer area of EEPROM.

I
Sequential read data size
= (memory end address - memory start
address)

| *

Perform sequential read from EEPROM.
Master_read_sequential ();

Yes

Error code: error? |
QOutput error code from port 1
(sequential read error = 5).

Read data from all data buffer area of L
EEPROM, and compare to written data.

Does written data match with No

read data?

Output error code from port 1 Output error code from port 1
(normal termination: no error = 0). (sequential read verify error = 6).
L

Perform infinite loop
(main () process end).

Note: * Usage examples of page write (Master_page_write) and sequential read (Master_read_sequential)
Perform page write the value of lower 8 bits of the address + 1 to EEPROM addresses (0x000 to 0x1ff), perform sequential read, and verify.
If an error occurs, error code corresponding to processing is output from process result output ports (P10, P11, and P12).

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 33 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[1] Master _byte write () Function: 1-byte write

(Master_byte_write())

Transmit slave address and
memory address in write mode.
Master_address_set ();

Yes

Error code: error?

Transmit data.
Send_byte_data ();

Yes

Error code: error?

Set error code
(fourth byte acknowledgement error:
error code = 4)

Set error code
(normal termination: error code = 0). |

Issue stop condition.
Send_stop_condition ();

Yes

Error code: error?

Set error code

(Stop condition detection timeout error:
error code = TIMEOUT_ERR_STOP)
Set slave reception mode. |

Set_iic_mode(0);

No

Clear TEND.
Clear TDRE.

I
| Return error code. |

(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 34 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

[2] Master read byte random ()

Function: 1-byte read

(

Master_read_byte_random ())
I

Transmit slave address and
memory address in write mode.
Master_address_set ();

Yes

Error code: error?

Retransmit slave address in read mode.
Set_slave_read_mode ();

Yes

Error code: error?

Set master reception mode

Set error code
(acknowledgement error: error code

Set_iic_mode(2);

Clear TEND.
Clear TDRE.

| 1
Set subsequent (final) reception mode
(ACKBT,RCVD)
Set_receive_mode (1, 1);

| *2

Read data
(start reception operation).
Receive_byte data ();

Yes
Error code: error?

= ERR_ACK)
|

Read data

Set error code
(receive end timeout error:
error code = TIMEOUT_ERR_RDRF).

(obtain finally received data).
Receive_byte_data_fin ();

Issue stop condition.
Send_stop_condition ();

Yes
Error code: error?

Clear RCVD

Set error code
(stop condition detection timeout error:
error code = TIMEOUT_ERR_STOP).

(set subsequent reception operation
to be continuous).
I

Set slave reception.
Set_iic_mode (0);

Return received data
(normal termination).

(

RETURN (1) (normal termination))

Notes 1. Set ACKBT = 1 (output Nack upon subsequent reception) and
RCVD = 1 (subsequent receive clock output is disabled)
because of 1-byte reception (final reception).

2. The received data is invalid since this is dummy read for starting
reception operation (receive clock output).

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 35 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

D

Issue stop condition.
Send_stop_condition ();

Yes

Error code: error?

Set error code
(stop condition detection timeout error:
error code = TIMEOUT_ERR_STOP)

@_

No

Clear RCVD
(set subsequent reception operation
to be continuous).
I
Set slave reception mode.
Set_iic_mode(0);
I
Return error code.
(Exit with an error.)

(RETURN (2) (error termination))

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 36 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

[3] Master page write () Function: 1-page write

(Master_page_write ())
I

Transmit slave address and
memory address in write mode.
Master_address_set ();

Yes
Error code: error?

Increment start address of write data
storage buffer of argument (buff_ptr) by 1.

|

|
Obtain 1-byte data from address pointed
by buff_ptr.

Increment buff_ptr by 1.
1

Transmit data.
Send_byte_data ();

Yes

Error code: error?

Set error code

(acknowledgement error in the bytes
following fourth byte: error code
= 3 + number of times of data transmission).

Does 1-page data
transmission end?

Set error code
(normal termination: error code = 0.)

Issue stop condition.
Send_stop_condition ();

Yes
Error code: error? 1

Set error code
No (stop condition detection timeout error:
error code = TIMEOUT_ERR_STOP).

Set slave reception mode.
Set_iic_mode(0);
I

Clear TEND.
Clear TDRE..

I
| Return error code. |

(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 37 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

[4] Master read sequential ()

Function: sequential read

(Master_read_sequential()

Transmit slave address and
memory address in write mode.
Master_address_set ();

Error code: error?

Yes

Set_slave_read_mode ();

Retransmit slave address in read mode.

Error code: error?

Yes

Set error code
(acknowledgement error:

Set master reception mode
Set_iic_mode(2);

error code = ERR_ACK)

Clear TEND.
Clear TDRE.

Set subsequent reception mode
(ACKBT, RCVD).
Set_receive_mode (0, 0);

Receive data with a size to be received,
and store in buffer.
Receive_byte_data_many ();

Error code: error?

No

Yes

Set error code
(receive end timeout error:
error code = TIMEOUT_ERR_RDRF)

Issue stop condition.
Send_stop_condition ();

Error code: error?

No

Yes

Set error code
(stop condition detection timeout error:
error code = TIMEOUT_ERR_STOP)

Clear RCVD
(set subsequent reception operation
to be continuous).

Set slave reception mode.
Set_iic_mode(0);

| Return error code.

(Master_read_sequential()

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 38 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

[5] Master_address_set () Function: Transmit slave address and memory address

(Master_address_set ())
I

Check bus condition and
wait until bus condition becomes available
Check_bus_condition ();

Yes
Error code: error?

Set error code
(Bus busy timeout error:
error code = TIMEOUT_ERR_BUS_BUSY)

Clear timeout counter for
acknowledgement polling.
Time_out_count =0

Transmit slave address in write mode.
Set_slave_write_mode ();

Yes

Transmission acknowledgement:
0 (exist)?

Increment timeout counter by 1
Time_out_count + +

Does timeout counter
exceed limitation?

Retransmit slave address by
acknowledgement polling.

Set error code
(acknowledgement timeout error:
error code = TIMEOUT_ERR_ACK)

Transmit upper 8 bits of memory address.
Send_byte_data ();

Yes
Error code: error?

Set error code

(second byte acknowledgement error:
Transmit lower 8 bits of memory address. error code = 2).

Send_byte_data (); |

Yes
Error code: error?

Set error code

(third byte acknowledgement error:

Set error code error code = 3).

(normal termination: no error
error code = 0).

| Return error code. |

|
(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 39 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

[6] Check bus_condition ()

Function: Check IIC bus condition and wait until bus becomes available

(

Check_bus._condition ())

Clear timeout counter for checking stop
condition detection flag.
Time_out_count =0

Read bus busy flag.
Bbsy_flag = 1IC2.ICCR2.BIT.BBSY

Bus busy flag: 0 Yes

(bus free?)

Time_out_count + +

ncrement timeout counter by 1.

Does timeout counter

Set error code
(normal termination; n

0 error: error code = 0)

exceed limitation?

Set error code
(stop condition detection timeout error:

error code = TIMEOUT_ERR_BUS_BUSY)

Return error code. |

RETURN)

[7] Send_start_condition ()

Function: Issue start condition

(Send_start_condition ())

I
Issue start condition (BBSY =1, SCP = 0).

C RETURN

)

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 40 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

[8] Send_stop_condition ()

Function: Issue stop condition

(Send_stop_condition ()

Clear stop condition detection flag for
detecting stop condition satisfaction.
IIC2.ICSR.BIT.STOP =0

Issue stop condition (BBSY =0, SCP = 0).
IIC2.ICCR2.BYTE = 0x3D

Clear timeout counter for checking stop
condition detection flag.
Time_out_count =0

Stop condition detection flag:
1 (stop condition satisfied)?

No

Yes

Increment timeout counter by 1.
Time_out_count + +

Does timeout counter
exceed limitation?

Set error code
(stop condition detection timeout error:
error code = TIMEOUT_ERR_STOP)

Set error code
(normal termination; no error:
error code = value of stop condition

detection flag).
|

Return error code.

(RETURN

REJ06B0135-0100Z/Rev.1.00

September 2003 Page 41 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[9] Send _byte data () Function: Perform 1-byte data transmission

(Send_byte_data ())

Write data to be transmitted to transmission
data register and transmit data.
IIC2.ICDRT = Byte_data

Clear timeout counter for checking
transmit end flag.
Time_out_count =0

Transmit end flag: 1 Yes
(transmission end)?
No
Increment timeout counter by 1. Read transmission acknowledgement flag.
Time_out_count + + Ackbr_flag = IIC2.ICIER.BIT.ACKBR
Does timeout counter
exceed limitation?
Set error code
(receive end timeout error:
error code = TIMEOUT_ERR_TEND).
|
Return error code Return transmission acknowledgement
(error termination). flag value (normal termination).
| |
(RETURN (error termination)) (RETURN (normal termination))

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 42 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[10] Receive byte data () Function: 1-byte data reception

(Receive_byte_data ())

Clear timeout counter for checking
receive end flag.
Time_out_count =0

Read receive data register to obtain
received data

(start next reception operation).
Data = IIC2.ICDRR

Receive end flag: 1 Yes

(data exists)?

No

Increment timeout counter by 1.
Time_out_count + +

Does timeout counter
exceed limitation?

Set error code
(receive end timeout error:
error code = TIMEOUT_ERR_RDREF).

Return error code (error termination). Return received data (normal termination).

(RETURN (error termination)) (RETURN (normal termination))

[11] Receive byte data fin () Function: Perform final 1-byte data reception

(Receive_byte_data_fin ())

Read receive data register to obtain received data
(next reception operation does not performed).
Data = IIC2.ICDRR

Return received data (normal termination).

(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 43 of 81

H8/300H Tiny Series
Application Examples for Reading /Writing

LENESANS

[12] Receive byte data many () (1)

Function: Receive byte data sequentially

(Receive_byte_data_many ())
|

Increment read byte length (Length)
of argument by 1

Y
Is final read data? °s
(Nth byte)
No
Is read data one byte Yes

before the final data |
N - 1)th byte)?

The first data read is Set next (final) reception mode

dummy read for starting
reception operation
(receive clock output)

No (ACKBT, RCVD)

Set_receive_mode (1, 1);

This invalid received data
is stored in eeprombuf[0].

Since the next is the final reception (N-th byte),
set ACKBT =1

(output Nack upon subsequent reception)

and RCVD =1

(disable subsequent receive clock output)

Read data
(start reception operation)
Receive_byte_data ();

Yes

Error code: error?

Set error code
(receive end timeout error:
error code = TIMEOUT_ERR_RDRF)

Store read data to read data storage buffer

T Read data

(obtain final received data)
Increment read data storage address Receive_byte_data_fin ();
by 1 buff_ptr++ T

Decrement read byte length (Length) by 1

Store read data in read data storage buffer

Set error code
(normal termination: no error
error code = 0)

Return error code

(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 44 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

[13] Set_slave read mode () Function: Transmit slave address (read mode)

(Set_slave_read_mode ())

Set master transmission mode
Set_iic_mode (3);

Issue start condition
Send_start_condition ();

Generate slave address (read)

Transmit slave address to obtain
transmission acknowledgement
Send_byte_data ();

Return transmission acknowledgement

(RETURN)

[14] Set_slave write mode() Function: Transmit slave address (write mode)

(Set_slave_ write_mode ())

Set master transmission mode
Set_iic_mode (3);

Issue start condition
Send_start_condition ();

Generate slave address (write)

Transmit slave address to obtain
transmission acknowledgement
Send_byte_data ();

Return transmission acknowledgement

(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 45 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[15] Set_receive_mode () Function: Set ACKBT and RCVD flags for receiving data
(Set_receive_mode)
(Ackbt_flag, Rcvd_flag)
|
Set ACKBT

IIC2.ICIER.BIT.ACKBT = Ackbt_flag
I

Set RCVD
1IC2.ICCR1.BIT.RCVD = Revd_flag

(RETURN)

Note (1) Settings prior to sequential reception:

Set ACKBT = 0 (output Ack upon subsequent reception)

and RCVD = 0 (enable subsequent receive clock output),

and read data.

(2) Settings before receiving data one byte before the final data ((N - 1)th byte):

Set ACKBT = 1 (output Nack upon subsequent reception)

and RCVD = 1 (disable subsequent receive clock output),

and read data.

[16] Init_iic2 () Function: Initialize IIC2 I/F

(Init_iic2 ())
I
Set IIC transfer rate to ¢/40

(¢ = 16 MHz, 400 kHz)
Set_iic_rate (1);

Set IIC bus mode to: MSB first,
no wait insertion,

and number of bits: 9 bits
Set_iic_bus_mode (0,0,0);

Set 1IC2 I/F module operation status
to transfer operation enabled status
(SCL/SDA: bus driving status)
Set_iic2_if_enable (1);

(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 46 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

[17] Set_iic_bus mode () Function: Set master device bus mode (MLS, WAIT, BC210)

Set_iic_bus_mode
(Bus_mode_MLS, Bus_mode_WAIT,
Bus_mode_BC210)

Set MSB first/LSB first (0,1)
to MLS bit position
(bit 7 of bus_mode_MLS)

Set wait insertion specification (0,1)
to WAIT bit position
(bit 6 of Bus_mode_WAIT)

Set number of transfer data bits (0 to 7)
to BC210 bit position
(bits 2, 1, 0 of Bus_mode_ BC210)

Set bit information of bus_mode_MLS,
Bus_mode_WAIT, Bus_mode_WAIT

to variable (bus_mode) for setting bus mode,
and set to |IC bus mode register
(IC2.ICMR.BYTE)

Set write protection to BC210 bits
(bits 2, 1, 0) in 1IC bus mode register
(IC2.ICMR.BYTE) (BCWP = 1)

(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 47 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[18] Set_iic_mode () Function: Set master device transmission/reception mode (MST, TRS)

(Set_iic_mode (lic_mode))

1IC mode (lic_mode): 0?7

Yes

Set slave reception mode
(MST=0, TRS =0)
lic_mode =0

I
Yes
1IC mode (lic_mode): 1? |

Set slave transmission mode
No (MST=0,TRS =1)
lic_mode = 0x10

Yes l
11IC mode (lic_mode): 2?7 |

Set master reception mode
No (MST =1, TRS = 0)
lic_mode = 0x20

Yes l
11IC mode (lic_mode): 3? |

Set master transmission mode
No (MST =1, TRS = 1)
lic_mode = 0x30

Set slave reception mode T
(MST =0, TRS =0)
lic_mode =0

Set variable value (iic_mode)

which set transmission/reception mode
to bit position (MST, TRS; bits 5, 4)

in the IIC bus control register 1

(IIC2.ICCR1.BYTE) |= lic_mode
|
(RETURN)
[19] Set _iic_rate () Function: Set master device transfer rate (CKS3, 2, 1, 0)

(Set_iic_rate (lic_rate))

Set variable value (lic_rate)

which set transfer rate to bit position
(CKS321; bits 3, 2, 1, 0)

in the 11C bus control register 1
(IIC2.ICCR1.BYTE)

(RETURN)

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 48 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

[20] Set iic2 if enable ()

Function: Set the IIC2 I/F module's operation status bit (ICE)

(Set_iic2_if_enable (Ice)

Ice mode (Ice): 1?

Yes

Set the module in a halt state.
(SCL/SDA: port function)
Ice = 0x00 (ICE = 0)

Set the module in a transfer operation
enabled state. (SCL/SDA: bus driving state)
Ice = 0x80 (ICE = 1)

Set variable value (Ice) for setting
transmission/reception mode to the bit
position (ICE; bit 7) in the IIC bus control
register 1 (IIC2.ICCR1.BYTE)

(

RETURN

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 49 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

[21] Init_eeprom ()

Function: Initialize EEPROM bus condition

(Init_eeprom ()

)

and output

P57 (SCL) = 1, P56 (SDA) = 1
PDRS5 = OxFF

PCR5 = OxFF

Set P57 (SCL), P56 (SDA) as output,

(SCL/SDA pin: port function)
Set_iic2_if_enable (0);

Set 1IC2 I/F module to a halt state.

Issue start condition
12c_start ();

Wait for the specified time
Wait_timer (TM);

Transmit dummy slave address
12¢_bytesend (0xff);

12c_ackek();

Obtain transmission acknowledgement

Issue stop condition
12c_stop ();

Wait for the specified time
Wait_timer (TM);

(RETURN

[32] INIT()

Function: Initialization (start up)

INIT)

Set stack pointer
H'FF80 « R7

H'80 « CCR

Set interrupt mask bit to disable interrupt

Jump to main function Main()

Note: Source code of INIT () is in INIT.SRC

Subsequently, main function Main() is authorized for

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 50 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

6. Program Listing

Program list of this application program is shown in section 6, [1] to [4].

]k Kk kK Kk Kk kKK ok K Kk ok ok Kk ok ko ok Kk kK Kk ok ok Kk ok ok Kk ok Kk ok ok ko ok ko ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok Kk ok ok Kk ok ok ok ko ko

/* H8/3694, H8/3687 IIC2 Include File

] Kk kK Kk kR KK ok kKK ok Kk ok ok Kk ok ok ko ok Kk ok Kk ok ok Kk ok ok Kk ok Kk ok ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK Kok ok Kk k ko

struct st_iic2 {

union {

unsigned char BYTE;

struct {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

char
char
char
char
char
char
char

char

} BIT;
} ICCR1;

union {

unsigned char BYTE;

struct {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

char
char
char
char
char
char
char

char

} BIT;
} ICCR2;

union {

unsigned char BYTE;

struct {
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned

char
char
char
char
char
char

char

} BIT;
} ICMR;

RCVD:

MST

TRS
CKS3:

CKS2:

CKS1:

e e i

CKSO:

BBSY
sCp
SDAO
SDAOP
SCLO

IICRST:

MLS
WAIT

BCwWP
BC2
BC1
BCO

e I =

Ver 1.1

/*
/*
/*
/*
/*
/%
/%
/*
/%
/%
/*
/%
/%
/*
/*
/*
/*
/%
/%
/*
/%
/%
/*
/%
/%
/*
/*
/*
/*
/*
/%
/*
/%
/%
/*
/%
/%
/*
/*

struct IIC
ICCR1

Byte Access
Bit Access
ICE

RCVD

MST

TRS

CKS3

CKS2

CKs1

CKSO

ICCR2

Byte Access
Bit Access
BBSY

SCp

SDAO

SDAOP

SCLO

IICRST

ICMR

Byte Access
Bit Access
MLS

WAIT

BCwWP
BC2
BC1
BCO

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 51 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

union {

unsigned char BYTE;

struct {
unsigned char TIE
unsigned char TEIE
unsigned char RIE
unsigned char NAKIE
unsigned char STIE
unsigned char ACKE
unsigned char ACKBR
unsigned char ACKBT
} BIT;

} ICIER;

union {

unsigned char BYTE;

struct {
unsigned char TDRE
unsigned char TEND
unsigned char RDRF
unsigned char NACKF

unsigned char STOP

unsigned char AL _OVE :1;

unsigned char AAS
unsigned char ADZ
} BIT;
} ICSR;
union {

unsigned char BYTE;

struct {
unsigned char SVAX:
unsigned char FS
} BIT;
} SAR;
unsigned char ICDRT;
unsigned char ICDRR;

}i

#define IIC2 (*(volatile struct st_iic2

i

11z

*)0xF748)

/*
/*
/*
/*
/%
/%
/*
/%
/%
/*
/%
/%
/*
/*
/*
/*
/%
/%
/*
/%
/%
/*
/%
/%
/*
/*
/*
/*
/*
/%
/*
/%
/*
/*
/*
/*

/*

ICIER

Byte Access
Bit Access
TIE

TEIE

RIE

NAKIE

STIE

ACKE

ACKBR
ACKBT

ICSR

Byte Access
Bit Access
TDRE

TEND

RDRF
NACKF

STOP
AL/OVE

AAS

ADZ

SAR

Byte Access
Bit Access
SVA6-0

FS

ICDRT
ICDRR

IIC2 Address

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 52 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[2] File name: INIT.SRC Function: Initialization (start up)

7 RRE R KKK KKK KKK KKK KKK KK KK KKK K KK KKK Ko KKK KKK K KK Kok R KK Kk R KK Kok R KK Kk R KK Kok R KK Kok R Rk Rk ko KK Rk ko Rk Rk R Rk K Rk K K

P * H8/3694, HB8/3687 IIC2 APPLICATION NOTE STARTUP ROUTINE Ver 1.1 *

3 R Kk kK Kk ok Kk ok KKk Kk ok ok Kk ok ok ko ok Kk ok K Kk ok Kk ok ok Kk ok ok ok ok ko ok ko ok ko ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok sk Kok ok ok Kk ok ok Kk ok ok ok K
EXPORT INIT

IMPORT main

SECTION P, CODE
_INIT:

MOV.W #H'FF80,R7

LDC.B #B'10000000, CCR

JMP @_main

.END
/* ,,, ,*/
/* H8/3694, H8/3687 on-chip I2Cbus interface 2 (IIC2) Application note */
/* Application examples for reading from/writing to serial EEPROM (main program) */
/* */
/* 1. Target EEPROM: EEPROM for which memory address is specified in two bytes */
/* 2. Operation confirmed products: */
/* (1) H8/3687N,H8/3694N(512B) with on-chip EEPROM (manufactured by RENESAS TECHNOLOGY) */
/* (2) HN58X24321I (4kB),HN58X2464I (8kB) EEPROM (manufactured by RENESAS TECHNOLOGY) */
/* */
/* Ver 1.1 2003.5.9 */
/* */
/* Copyright (C) RENESAS TECHNOLOGY 2003 */
/* ,,, ,*/

] K kK Kk kK KK kK KK ok K Kk ok ok Kk ok ok ok ok Kok ok Kok ok ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok K ko ok ok ko ko

/* Header Definition */

[R KKK KK KKK KK KKK KK KK KKK KKK KK K KKK K KK KK KKK K KKK K KKK K KKK KK KKK K K KKK K KKK K KKK K KKK K KK K KK K K K K K kR K K kK K K XKk K XKk K Xk K

#include <machine.h>

] Kk kK K ok KK kK KK ok K Kk ok ok Kk ok ok ok ok kK ok Kk ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok Kk ok ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ok Kk ok ok ok k ko

/* Function Prototype declarations */

[KR KKK KK KK KKK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KK KKK KKK KK KKK KKK K K KKK K KKK K KKK K XK K KK K KK K KK K K KR o K K kK K XKk K XKk K Xk ko

extern void INIT(void);

extern unsigned short Master_read byte random(unsigned char Device_id, unsigned short Addr);

extern unsigned char Master_read_sequential (unsigned char Device_ id, unsigned short Addr, unsigned short Length, unsigned char
*buff ptr);

extern unsigned char Master_byte write(unsigned char Device_ id, unsigned short Addr, unsigned char Data);

extern unsigned char Master_page_write(unsigned char Device_ id, unsigned short Addr, unsigned char Length, unsigned char

*buff ptr);

extern void Init_eeprom(void);

void main (void);

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 53 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[3] File name: eeprom.c (2) Function: Main processing

[KKK KK KKK KK KK KKK KK KKK KKK KK KKK KK K KKK KK KKK KKK K KKK K KKK K KKK K K KKK K KKK K KKK K KK K KK K KK K KK K K KR K K kR K XK K XKk K Xk K

/* Vector address definition */

6 Kk kK Kk Kk kKK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok Kk ok Kk ok Kk ok ok ko ok Kk ok ok ok ko ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok ok Kk ko

#pragma section /* VECTOR SECTOIN SET */
void (*const VEC_TBL1[]) (void) = { /* 0x00 - 0xOf */
INIT, /* reset vector (address 0): */

/* call initialization function */

}i

#ifdef _ cplusplus
extern "C" {
#endif

void abort (void);
#ifdef _ cplusplus
}

#endif

] Kk kK Kk Kk kKK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok ok ko ko

/* RAM allocated section definition */

] Kk kK Kk Kk kK KK ok K Kk ok ok Kk ok ok ok ok kK ok Kk ok ok Kk ok ok Kk ok Kk ok ok ko ok ko ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok ko ok ko ok ok ok k ko

#pragma section /* section:B */
unsigned char eeprom_buf[513]; /* Definition of EEPROM data storage buffer */
/* (512 bytes) */
/* Buffer size is reserved as number of data bytes */
/* to be stored + 1 */

] Kk kK Kk K Kk Kk ok K Kk ok kK ko ok ko ok kK ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok Kk ok ok ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok Kok ok K ko ko

/* ROM allocated section definition */

] K kK Kk kK KK kK KK ok K Kk ok ok Kk ok ok ok ok Kok ok Kok ok ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok K ko ok ok ko ko

#pragma section /* section:P */

] K kK K kK KK kK KK ok Kk ok ok Kk ok ok ok ok kK ok ok Kk ok ek Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK Kk ok ok ko ko

/* Main program */

[KKK KK KK KKK KKK KK KKK KK KKK KK KKK KK KKK KK KKK K KK KKK KKK K KKK K K KKK K KKK K KK KK K KK K K KKK K KK K KK K KK K K kR K K kK R K XKk K XKk K Xk K

#pragma option nooptimize

/* ,,, ,*/
/* Process result output port address definition */
K */
#define PCR1 (* (volatile unsigned char *)0xFFE4) /* Port control register 1 */
#define PDRI1 (* (volatile unsigned char *)0xFFD4) /* Port data register 1 */
/* ,,, ,*/
/* IIC2 port address definition */

#define PCR5 (* (volatile unsigned char *)0xFFE8) /* Port control register 5 */

#define PDRS (* (volatile unsigned char *)0xFFD8) /* Port data register 5 */

void main (void) {

unsigned char Device id;
unsigned short Address;
unsigned short Address_start;

unsigned short Address_end;

unsigned short Rezult_code;
unsigned char Err_code;
unsigned char Data_w;
unsigned char Data_r;

unsigned short Length;

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 54 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

PDR1 = 0x00; /* Portl = 0 */
PCR1 = 0x07; /* Set P10, P11, P12 as output */
/* (used for process result output) */
Init_eeprom(); /* Initialize EEPROM bus condition */
Init_iic2(); /* Initialize IIC2 I/F */
/* */
/* Usage examples of l-byet write (Master byte write) andl-byte read (Master read byte random) */
/* - - - - - */
/* Write lower 8-bit value of address to EEPROM address (0x000 to 0x1ff), read, and verify */
/* When an error occurs, output error code corresponding to process from process result output port (P10, P11, P12) */
/* */
Device_id = 0x00; /* Set EEPROM slave address code: 0 (A2,Al,A0) */
Address_start = 0x000; /* Set EEPROM memory start address */
Address_end = 0x200; /* Set EEPROM memory end address */
PDR1 = 0x00; /* Clear process result output port */
for (Address = Address_start; Address < Address_end; Address++) {
Data_w = (unsigned char) (Address & O0xO00FF); /* Obtain lower 8-bit value of address */
Err_code = Master_byte write (Device id, Address, Data_w); /* Perform l-byte write to EEPROM */
if (Err_code != 0){ /* Check error code, and if an error occurs, */
PDR1 = 0x01; /* set error code (write error = 1), and */
goto Exit_err; /* exit with an error */
}
Rezult_code = Master_read_byte_random (Device_id, Address); /* Perform l-byte read from EEPROM */
Err_code = Rezult code >> 8; /* Obtain error code (upper 8 bits) */
Data_r = (unsigned char) (Rezult_code & 0xO00FF); /* Obtain read data (lower 8 bits) */
if (Err_code != 0)({ /* Check error code, and if an error occurs, */
PDR1 = 0x02; /* set error code (read error = 2), and */
goto Exit_err; /* exit with an error */
}
if (Data_w != Data_r) { /* Compare write data to read data, */
/* and if an error occurs, */
PDR1 = 0x03; /* set error code (verify error = 3), and */
goto Exit_err; /* exit with an error */
} /* */
}
/* */
/* Usage examples of page write (Master page write) and sequential read (Master read sequential) */
/* - - - - */
/* Perform page write to EEPROM address (0x000 to Ox1ff) lower 8-bit value of address, perform sequential read, and verify. */
/* If an error occurs, output error code corresponding to process from process result output ports (P10, P11, P12). */
/* */
Device_id = 0x00; /* Set EEPROM slave address code: 0 (A2, Al, AO) */
Address_start = 0x000; /* Set EEPROM memory start address */
Address_end = 0x200; /* Set EEPROM memory end address */
K */
/* Set data to be performed page writing to EEPROM data buffer */
K */
for (Address = Address_start; Address < Address_end; Address++) {
Data_w = (unsigned char) ((Address + 1) & O0xO00FF); /* Obtain lower 8-bit value of address */
eeprom_buf[Address+1l] = Data_w; /* Store lower 8 bits of address */
/* to EEPROM data buffer */

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 55 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

/* ,,, ,*/
/* Perform page write from data buffer to EEPROM */
2 */
Length = 0x08; /* Set l-page size to be written */

/* (3687N, 3694N; 8 bytes/page) */

/* Length = 0x20; */ /* Set l-page size to be written */

/* (HN58X2432I, HN58X2464I; 32 bytes/page) */

for (Address = Address_start; Address < Address_end; Address+= Length) {
/* Perform writing all pages */

Err_code = Masteripageiwrite(Deviceiid, Address, Length, (eeprom buf+Address));

/* Perform writing 1 page to EEPROM */

if (Err_code != 0){ /* Check error code, and if an error occurs, */
PDR1 = 0x04; /* set error code (page write error = 4), and */

goto Exit_err; /* exit with an error. */

for (Address = Address_start; Address < Address_end; Address++) {

eeprom_buf [Address+1l] = 0;

Length = Address_end - Address_start; /* Set data size to be performed sequential reading */

Err_code = Master_read_sequential (Device_id, Address_start, Length, eeprom buf);

/* Perform sequential read for data size */
/* from EEPROM to data buffer */
if (Err_code != 0){ /* Check error code, and if an error occurs, */
PDR1 = 0x05; /* set error code (sequential read error = 5), and */
goto Exit_err; /* exit with an error. */
}
for (Address = Address_start; Address < Address_end; Address++) {
Data_w = (unsigned char) ((Address + 1) & O0xO00FF); /* Obtain written data (lower 8 bits of address) */
Data_r = eeprom buf [Address+1]; /* Obtain sequentially read data from data buffer */
if (DPata_w != Data_r){ /* Compare written data to read data, */
/* and if an error occurs, set error code */
PDR1 = 0x06; /* (sequential verify error = 6), and */
goto Exit err; /* exit with an error. */
}
}
PDR1 = 0x00; /* Normal termination: set normal termination code */
/* to process result output port */
K */
/* Exit test */
/* ,,, ,*/
Exit err: /* Exit test */
while (1) /* Stop program */
i /* */

#pragma option

void abort (void) {

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 56 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

[4] File name: iic2_eeprom.c (1)

Function: Sub processing (function group)

/* ,,, ,*/
/* H8/3694, H8/3687 on-chip I2C bus interface 2 (IIC2) Application note */
/* Application examples for reading from/writing to serial EEPROM (sub program) */
/* */
/* 1. Target EEPROM: EEPROM which specifies memory address in two bytes */
/* 2. Operation confirmed product types: */
/* (1) H8/3687N,H8/3694N(512B) on-chip EEPROM (manufactured by RENESAS TECHNOLOGY) */
/* (2) HN58X2432I (4kB), HN58X2464I(8kB) EEPROM (manufactured by RENESAS TECHNOLOGY) */
/* ver 1.1 2003.5.9 */
/* */
/* Copyright (C) RENESAS TECHNOLOGY 2003 */
K */

[R KKK KK KK KKK KK KKK KKK KK K KKK K KKK K KKK K KK KKK KKK K KK KKK KKK K KKK K K KKK K KKK K KKK K XK K KK K KK K KK K K kR K K kK K K XK K XK Rk K Xk Kk

/* Header definition */

R RS S S
#include <machine.h>

#include "H8_ 3694 TIIC2.h" /* Definition file of IIC2 module register map */

[K KKK K KKK KK KK KKK KKK KK K KKK KKK KK K KKK K KKK K KKK KK KK KKK K K KKK K KKK K KKK K KKK K XK K KK K KK K KK K K kR K K kKR K KKk K XKk K Xk K

/* EEPROM device code definition */

] K kK Kk kK KKk kKK ok K Kk ok ok Kk ok ok ok ok Kk ok Kk ok ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok K ko ok K kK ko

#define DEVICE_CODE 0xal /* EEPROM device code: 1010(D3,D2,D1,D0) */
#define SLAVE_ADRS 0x00 /* Slave address code: 000 (A2,Al,A0) */
#define RW_CODE_W 0x00 /* R/W code: 0 (data write) */
#define RW_CODE_R 0x01 /* R/W code: 1 (data read) */
#define DEVICE_ADDRESS_WORD_WL[|(DEVICE_CODE | SLAVE_ADRS | RW_CODE_W) /* Slave address (for writing) */
#define DEVICE_ADDRESS_WORD_RL/(DEVICE_CODE | SLAVE_ADRS | RW_CODE_R) /* Slave address (for reading) */

] K kK Kk kK KK kK KK ok K Kk ok ok Kk ok ok ok ok Kok ok Kok ok ok Kk ok ok Kk ok ok Kk ok kK ko ok ko ok ko ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok ok ok ok K ko ok ok ko ko

/* Timeout limit count value definition */

[R KKK KK KKK KK KKK KK KK KKK KKK KK K KKK K KK KK KKK K KKK K KKK K KKK KK KKK K K KKK K KKK K KKK K KKK K KK K KK K K K K K kR K K kK K K XKk K XKk K Xk K

#define TIMEOUT LIMIT BBSY 1000 /* Timeout limit for bus busy check */
#define TIMEOUT LIMIT ACK 1000 /* Timeout limit for ACK check */
#define TIMEOUT LIMIT TEND 1000 /* Timeout limit for TEND check */
#define TIMEOUT LIMIT RDRF 1000 /* Timeout limit for RDRF check */
#define TIMEOUT LIMIT STOP 1000 /* Timeout limit for STOP check */

] Kk K Kk K KK kR KKk K Kk ok ok Kk ok ok ok ko ok Kk ok Kk ok ok Kk ok Kk ok ok Kk ok ok ko ok ok ko ok ok ko ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok kK ko ok Kk ok ok ok ko ko

/* Error code definition */

[R KKK KK KK KKK KKK KK KKK KK K KKK KKK KK K KKK K KKK K KKK K KK KK KKK KK KKK K K KKK K KKK K KKK K KK K K KK K KK K KK K K kK K K kKR K XKk K XKk K Xk K

#define TIMEOUT_ ERR_BUS_BUSY 200 /* Error code: Bus busy timeout */
#define TIMEOUT_ ERR_ACK 201 /* Error code: Acknowledgement polling timeout */
#define TIMEOUT ERR_TEND 202 /* Error code: Transmit end timeout */
#define TIMEOUT_ ERR_RDRF 203 /* Error code: Receive end timeout */
#define TIMEOUT_ERR_STOP 204 /* Error code: Stop condition issue timeout */
#define ERR_ACK 205 /* Error code: Acknowledgement error */

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 57 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

[R KKK KK KKK KK KKK KK KK KKK KKK KK KKK KK K KKK K KKK K KKK K KKK K KKK K K KKK K KKK K KK K K KKK K XK K K KK K KK K KK K K KR K K kKR K K XK K XK Rk K Xk Kk

/* Port address definition */
R e
#define PCR5 (* (volatile unsigned char *)0xFFE8) /* Port control register 5 */
#define PDR5S (* (volatile unsigned char *)0xFFD8) /* Port data register 5 */

[R KKKKK K KKK K KK KKK KK KKK KKK KK KKK KK K KKK K KKK K KK KKK KKK KKK K KKK K K KKK K KK KK K KKK K XK K KK K KK K KK K K kR K K kK K KKk K XK Rk K Xk K

/* Other constant definition */

] Kk kK Kk kK Kk kKK ok Kk ok ok Kk ok ok ok ok kKo ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ko ok ko ok ko ok ok ko ok kK ok ok Kk ok ok Kk ok ok Kk ok ok kK ko ok K ko ok ok kK ko

#define T™ 100 /* Wait for the specified time wait counts */

] Kk kK Kk kK Kk kK KK ok Kk ok ok Kk ok ok ok ok Kk ok Kk ok Kk ok ok Kk ok ok Kk ok ko ok ko ok ok ok ok ok Kok ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok Kk ok ok ok Kk ok ok ko ko

/* Prototype declaration for functions to be used */
R R e
unsigned char Check_bus_condition (void);

unsigned char Master_ address_set (unsigned char Device_id, unsigned short Addr);

unsigned short Master read byte random (unsigned char Device_id, unsigned short Addr);

unsigned char Master_read_sequential (unsigned char Device_id, unsigned short Addr, unsigned short Length, unsigned char
*buff ptr);

unsigned char Master_byte write (unsigned char Device_ id, unsigned short Addr, unsigned char Data);

unsigned char Master_ page_write (unsigned char Device_ id, unsigned short Addr, unsigned char Length, unsigned char *buff ptr);
unsigned char Send byte data (unsigned char Byte data);

void Send_start_condition (void);

void Set_iic _bus_mode (unsigned char Bus_mode MLS, unsigned char Bus_mode WAIT, unsigned char Bus_mode BC210);

void Set_iic_mode (unsigned char Iic_mode);

void Set_iic_rate (unsigned char Tic_rate);

unsigned char Send_stop_condition (void);

void Set_iic2 if enable (unsigned char Ice);

unsigned char Set_slave_read mode (unsigned char Device_id);

unsigned char Set_slave write mode (unsigned char Device_id);

unsigned short Receive byte data (void);

void Set_receive mode (unsigned char Ackbt_ flag, unsigned char Rcvd flag);

unsigned char Receive byte data many (unsigned short Length, unsigned char *buff ptr);

unsigned short Receive byte data fin (void);

void Init_eeprom (void);

void I2c_start (void);

void I2c_stop (void);

void I2c_set (unsigned char Scl , unsigned char Sda);

void I2c_bytesend (unsigned char Tx data);

void I2c_bitsend (unsigned char Tx_data , unsigned char Ckbit);
void I2c_send (unsigned char Bit_data);

unsigned char I2c_ackck (void);

void I2c_sda_in (void);

void I2c_sda_out (unsigned char Data);

void Wait timer (unsigned short Wait cnt);

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 58 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

/* */
/* Check IIC bus condition, and wait until bus becomes available */
/* */
/* Entry: None ; None */
/* Return: Bbsy_ flag (unsigned char); Bus condition flag */
/* 0: Bus free */
/* 1: Bus busy */
/* TIMEOUT_ERR_BUS_BUSY: Timeout */
/* */
/* */

unsigned char Check_bus_condition (void){

unsigned char Bbsy flag;

unsigned short Time_ out_count;

Time_out_count = 0; /* Clear timeout counter */
while (1) { /* */
Bbsy flag = IIC2.ICCR2.BIT.BBSY; /* Read BBSY to obtain bus condition */
if (Bbsy flag== 0){ /* Wait until bus condition becomes available */
break;
}
Time_out_count++; /* Check timeout */
if (Time_out_count > TIMEOUT_LIMIT_ BBSY) { /* If timeout occurs, */
Bbsy flag = (unsigned char) TIMEOUT_ERR BUS_BUSY; /* set bus condition code = TIMEOUT ERR_BUS_BUSY */
break; /* and exit */
} /* */
} /* Wait until bus condition becomes available */
return(Bbsy flag); /* Return bus condition code */

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 59 of 81

ENESAS

H8/300H Tiny Series
Application Examples for Reading /Writing

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

unsigned char

Transmit slave address and memory address to IIC device

Entry: Device_id (unsigned char) ; Slave address code: 0 to 7 (A2,
Addr (unsigned short) ; Memory address
Return: Err_code (unsigned char) ; 7 Error code

0: Normal termination

Al,

AQ)

2: Second byte transmission acknowledgement error (upper 8 bits of memory address)

3: Third byte transmission acknowledgement error (lower 8 bits of memory address

TIMEOUT ERR_BUS BUSY: Bus busy timeout
TIMEOUT ERR_ACK: Acknowledgement polling timeout

Note: Transmit end timeout error is returned as 2 to 3 of Err_code.

unsigned char Bbsy flag;
unsigned char Ack flag;
unsigned char Addr_msb;
unsigned char Addr_lsb;

unsigned char Err_code;
unsigned short Time_out_count;

Bbsy flag = Check bus_condition();

if (Bbsy_flag != 0){
Err_code = (unsigned char) TIMEOUT_ _ERR_BUS_BUSY;

goto Exit_err;

Time_out_count = 0;

while (1) {

Ack_flag = Set_slave write mode (Device_ id);

if (Ack_flag ==) |

break;

Time_out_count++;
if (Time_out_count > TIMEOUT_LIMIT_ACK) {
Err_code = (unsigned char) TIMEOUT ERR_ACK;

goto Exit_err;

while (1) {
Addr_msb = (unsigned char) (Addr >> 8);
Ack_flag = Send byte data(Addr_msb);

if (Ack_flag != 0) {

Err _code = 2;

break;

/*
/*
/%
/*
/*
/%

/%
/*
/%

/*
/*
/*
/*
/%
/%
/*

/*
/*
/%
/*
/%
/%
/*

Master_address_set (unsigned char Device_id, unsigned short Addr) {

Check bus condition

and wait until bus becomes available
If bus busy timeout occurs,

set error code = TIMEOUT ERR BUS_BUSY

and exit

Clear timeout counter

Transmit slave address (write)

(Transmit first byte)

Check acknowledgement timeout
If timeout occurs,
set error code = TIMEOUT ERR ACK

and exit

Perform acknowledgement polling

until acknowledgement is obtained

Obtain upper (MSB) address

Transmit upper (MSB) memory address
(second byte) and check acknowledgements
If the acknowledgement value is 1,
acknowledgement error occurs

Set error code (second byte: error)

and exit

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 60 of 81

RE N E S AS H8/300H Tiny Series

Application Examples for Reading /Writing

Addr_1lsb = (unsigned char) (Addr & 0x00ff); /* Obtain lower (LSB) address */
Ack_flag = Send byte data(Addr_lsb); /* Transmit lower (LSB) memory address (third byte) */
/* and check acknowledgement */
if (Ack_flag != 0) { /* If the acknowledgement value is 1, */
/* acknowledgement error occurs */
Err _code = 3; /* Set error code (third byte: error) */
break; /* and exit */

}
Err code = 0; /* Since this is normal termination, */
/* clear error code */
break; /* Exit */

}
Exit_err:

return(Err _code); /* Return error code */

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 61 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/* */
/* Random address read (byte read) from IIC device */
/* */
/* Entry: Device_id (unsigned char); Slave address code: 0 to 7 (A2, Al, AO) */
/* Addr (unsigned short) ; Memory address */
/* Return: Normal termination : Data_s (unsigned short) ; Received data (lower 8 bits)![] */
/* Error termination Err_code_s (unsigned short) ; Error code (upper 8 bits) */
/* */
/* Error code; */
/* 0: Normal termination */
/* 2: Second byte transmission acknowledgement error (upper 8 bits of memory address) */
/* 3: Third byte transmission acknowledgement error (lower 8 bits of memory address) */
/* ERR_ACK: Slave address (read) acknowledgement error */
/* TIMEOUT_ERR_BUS_BUSY: Bus busy timeout error */
/* TIMEOUT_ERR_ACK: Acknowledgement polling timeout error */
/* TIMEOUT ERR_RDRF: Receive end timeout error */
/* TIMEOUT_ERR_STOP: Stop condition detection timeout error */
/* Note: Transmit end timeout error is returned as 2 to 3 of Err code. */
/* - */
/* */
unsigned short Master read byte random (unsigned char Device id, unsigned short Addr){
unsigned char Ack flag;
unsigned char Stop_ flag;
unsigned char Data;
unsigned short Data_s;
unsigned char Err_code;
unsigned short Err_code_s;
Err_code = Master_ address_set (Deviceiid, Addr) ; /* Transmit slave address and memroy address */
/* in write mode */
if (Err_code 0) { /* If an error occurs, abort processing, */
/* and issue stop condition */
goto Exit_err; /* Perform error processing */
} /* */
Ack_flag = Set_slave_read mode (Device id); /* Retransmit slave address in read mode */
if (Ack_flag != 0){ /* If there is no acknowledgement, */
/* abort processing, and issue stop condition */
Err_code = ERR_ACK ; /* Set acknowledgement error code */
goto Exit_err; /* Perform error processing */
}
Set_iic_mode(2); /* Set master reception mode (MST = 1, TRS = 0) */
IIC2.ICSR.BIT.TEND = 0; /* Clear TEND */
IIC2.ICSR.BIT.TDRE = 0; /* Clear TDRE */
Set_receive mode (1, 1); /* Set subsequent reception mode (ACKBT, RCVD). */
/* ACKBT=1 (because of only l-byte reception, */
/* set the acknowledgement value to No (ACK = 1) */
/* as final data.) */

/* RCVD =1 (disable subsequent reception operation) */

REJ06B0135-0100Z/Rev.1.00

September 2003 Page 62 of 81

’ z H8/300H Tiny Series
u E N ESAS Application Examples for Reading /Writing

Data_s = Receive byte data (); /* Read data (start reception operation) */
if ((Data_s & 0xff00) != 0){ /* 1f an error occurs */
/* (when upper 8 bits are not 0), */

/* abort processing and issue stop condition */

Err_code = (unsigned char)TIMEOUT ERR _RDRF; /* Set receive end timeout error code */

goto Exit_err; /* Perform error processing */

} /* */
Data_s = Receive byte data fin (); [/* Read data (obtain final received data) */
Stop_flag = Send_stop_condition(); /* Issue stop condition (BBSY = 0, SCP = 0) */
if (Stop_flag != 1){ /* If an error occurs, abort processing */
/* and issue stop condition */

Err_code = (unsigned char)TIMEOUT ERR_STOP; /* Set stop condition detection timeout error code */

goto Exit_err 2; /* Perform error processing */

} /* */
IIC2.ICCR1.BIT.RCVD = 0; /* Clear RCVD(set subsequent reception operation as */
/* to be continuous) */

Set_iic_mode (0); /* Set slave reception mode (MST = 0, TRS = 0) */
return (Data s); /* Normal termination; return received data */
/* (lower 8 bits: data, */

/* upper 8 bits: error code = 0) */

Exit_err:

Stop_flag = Send_stop_condition(); /* Issue stop condition (BBSY = 0, SCP = 0) */
if (stop_flag != 1){ /* If an error occurs, set error code */
Err_code = (unsigned char)TIMEOUT ERR_STOP; /* Set stop condition detection timeout error code */

Exit_err 2:

IIC2.ICCR1.BIT.RCVD = 0; /* Clear RCVD(set subsequent reception operation */
/* as to be continuous) */
Set_iic_mode (0); /* Set slave reception mode (MST = 0, TRS = 0) */
Err_code_s = ((unsigned short) Err code << 8); /* Shift error code to upper 8 bits */
return (Err_code_ s); /* Error termination; return error code */
/* (upper 8 bits) */

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 63 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/*

/* Sequential address read from IIC device

/*

/* Entry: Device_id (unsigned char) ; Slave address code: 0 to 7 (A2, Al, A0
/* Addr (unsigned short) ; Read start memory address

/* Length (unsigned short) ; Length of read bytes (more than 2 bytes
/* *buff ptr (unsigned char) ; Read data storage buffer start address
/* Return: Err_code (unsigned char) ; Error code

/* 0: Normal termination

/* 2: Second byte acknowledgement error (upper 8 bits of memory address

/* 3: Third byte acknowledgement error (lower 8 bits of memory address

/* ERR_ACK: Slave address (read) acknowledgement error

/* TIMEOUT ERR_BUS_BUSY: Bus busy timeout error

/* TIMEOUT ERR_ACK: Acknowledgement polling timeout error

/* TIMEOUT ERR_RDRF: Data receive end timeout error

/* TIMEOUT ERR_STOP: Stop condition detection timeout error

/* Note: Transmit end timeout error is returned as 2 to 3 of Err_code.

/*

/*

unsigned char Master read_sequential

*buff ptr){
unsigned char Ack flag;
unsigned char Stop_ flag;

unsigned char Err_code;

Err code = Master address set (Device id, Addr); /*
_ _ - i P

if (Err code != 0){ /*
_ .

goto Exit err; /*

} /*
Ack_flag = Set_slave_read mode (Device_id); /*
if (Ack flag != 0){ /*
— .

Err code = ERR_ACK ; /*

goto Exit err; /*

} /*
Set_iic mode(2); /*
IIC2.ICSR.BIT.TEND = 0; /*
IIC2.ICSR.BIT.TDRE = 0; /*
Set_receive mode (0, 0); /*
/*

/*

/*

/*

(unsigned char Device_id, unsigned short Addr, unsigned short Length, unsigned char

Transmit slave address and memory address
in write mode

If an error occurs, abort processing,
and issue stop condition

Perform error processing

Retransmit slave address in read mode

If there is no acknowledgement, abort

and issue stop condition

Set acknowledgement error code

Perform error processing

Set master reception mode (MST = 1, TRS = 0)
Clear TEND

Clear TDRE

Set subsequent reception mode

(ACKBT = 0, RCVD = 0)

ACKBT = 0 (set acknowledgement (ACK = 0))

RCVD = 0 (set subsequent reception operation

as to be continuous)

processing

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/
*/

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 64 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

Err_code = Receive byte data many(Length, buff ptr); /* Receive data with a size to be received */
/* and store it in buffer */

if (Err_code != 0)({ /* If an error occurs, abort processing */
/* and issue stop condition */

Err_code = (unsigned char)TIMEOUT ERR _RDRF; /* Set receive end timeout error code */

} /* */

Exit _err:

Stop_flag = Send_stop_condition(); /* Issue stop condition (BBSY = 0, SCP = 0) */
if (Stop_flag != 1){ /* 1f an error occurs, */
Err_code = (unsigned char)TIMEOUT ERR_STOP; /* set stop condition detection timeout error code */

} /* */
IIC2.ICCR1.BIT.RCVD = 0; /* Clear RCVD (set subsequent reception operation */
/* as to be continuous) */

Set_iic_mode (0); /* MST = 0, TRS = 0 (set slave reception mode) */
return (Err_code); /* Return error code */
/* (in normal operation, error code = 0) */

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 65 of 81

=<EN

ESAS

H8/300H Tiny Series
Application Examples for Reading /Writing

/*

/* Byte data write to IIC device (byte write)

/*

/* Entry: Device_id (unsigned char) ; Slave address code: 0 to 7 (A2,Al,AQ)
/* Addr (unsigned short) ; Memory address

/* Data (unsigned char) ; Write data

/* Return: Err_code (unsigned char) ; Error code

/* 0: Normal termination

/* 2: Second byte acknowledgement error (upper 8 bits of memory address
/* 3: Third byte acknowledgement error (lower 8 bits of memory address
/* 4: Fourth byte acknowledgement error (data)

/* TIMEOUT ERR_BUS_BUSY: Bus busy timeout error

/* TIMEOUT_ERR_ACK: Acknowledgement polling timeout error

/* TIMEOUT ERR_STOP: Stop condition detection timeout error

/* Note: Transmit end timeout error is returned as 2 to 3 of Err code.

/* -

/%

unsigned char Mas
unsigned char
unsigned char

unsigned char

ter_byte write

Ack flag;
Err_code;

Stop_flag;

while (1) {
Err_code = Master_ address_set(Device_id, Addr);
if (Err_code != 0)({
break;
}
Ack_flag = Send _byte_data(Data);
if (Ack_flag != 0) {
Err_code = 4;
break;
}
Err _code = 0;
break;

Stop_flag = S
if (stop_flag
Err_code

Set_iic_mode (

IIC2.ICSR.BIT
IIC2.ICSR.BIT

return(Err_c

end_stop_condition();
= 1){

= (unsigned char)TIMEOUT_ERR_STOP;

0);
.TEND = 0;
.TDRE = 0;
ode);

/*
/%
/%
/*
/%
/%

/*
/%
/*
/%
/%

/%
/*

/*
/%
/*
/*

/%

/%
/%

/%

(unsigned char Device_id, unsigned short Addr, unsigned char Data) {

Transmit slave address
and memory address in write mode
If an error occurs, abort processing

and issue stop condition

Transmit data

If the acknowledgement value is 1,
an acknowledgement error occurs
error) and

Set error code (fourth byte:

issue stop condition

Because of normal termination, clear error code,

and issue stop condition

Issue stop condition (BBSY=0, SCP=0)
If an error occurs,

set stop condition detection timeout error code

MST=0, TRS=0 (set slave reception mode)

Clear TEND

Clear TDRE

Return error code

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

*/

*/
*/

*/

REJ06B0135-01

00Z/Rev.1.00

September 2003

Page 66 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

*/

*/

*/

*/

*/
*/

/*
/* Page data write to IIC device (page write)
/*
/* Entry: Device_id (unsigned char) ; Slave address code: 0 to 7 (A2,Al,A0)
/* Addr (unsigned short) ; write start memory address
/* Length (unsigned char) ; Write byte length (within 1 page)
/* buff ptr (unsigned char) ; Written data storage buffer start address
/* Return: Err_code (unsigned char) ; Error code
/* 0: Normal termination
/* 2: Second byte acknowledgement error (upper 8 bits of address
/* 2: Second byte acknowledgement error (upper 8 bits of address
/* 4 to 131 (transmitted byte length + 3):
/* Transmission acknowledgement error in the bytes following fourth byte (data)
/* TIMEOUT_ERR_BUS_BUSY: Bus busy timeout error
/* TIMEOUT_ERR_ACK: Acknowledgement polling timeout error
/* TIMEOUT_ERR_STOP: Stop condition detection timeout error
/* Note: Transmit end timeout error is retuned as 2 to 131 of Err_code.
/*
/*
unsigned char Master page write (unsigned char Device_id, unsigned short Addr, unsigned char Length, unsigned char *buff ptr)({
unsigned char Ack_flag;
unsigned char Err_code;
unsigned char Data;
unsigned char Cnt;
unsigned char Stop_flag;
Err_code = Master_address_set (Device_id, Addr); /* Transmit slave address and memory address
/* in write mode
if (Err_code != 0){ /* If an error occurs, abort processing
/* and issue stop condition
goto Exit_err; /* Error termination
}
buff ptr++; /* Increment written data storage address
/* by 1 to set head of data by 1
for (Cnt = 1; Cnt <= Length; Cnt++) { /* Transmit data equaling the size
/* of the written byte length value
Data = *buff ptr; /* Obtain written data
/* from written data storage address
buff ptr++; /* Increment written data storage address
Ack_flag = Send byte data(Data); /* Transmit data
if (Ack_flag != 0) { /* 1f the acknowledgement value is not 0,
/* acknowledgement error occurs
Err_code = 3 + Cnt; /* Set error code (following fourth byte: error)
goto Exit_err; /* Error termination;
/*abort processing and issue stop condition
} /* [Error code is 3 + transmitted data length
}
Err_code = 0; /* Because of normal termination, clear error code
Exit_err:
Stop_flag = Send_stop_condition(); /* Issue stop condition (BBSY=0, SCP=0)
if (Stop_flag != 1){ /* If an error occurs,
Err_code = (unsigned char)TIMEOUT_ERR_STOP; /* set stop condition detection timeout error code
} /*
Set_iic_mode(0); /* MST=0, TRS=0 (set slave reception mode)
IIC2.ICSR.BIT.TEND = 0; /* Clear TEND
IIC2.ICSR.BIT.TDRE = 0; /* Clear TDRE
return(Err_code); /* Return error code

*/

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 67 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/* */
/* Transmit data (1 byte) to IIC device */
/* */
/* Entry: Byte data (unsigned char) Transmitted data */
/* Return: Ackbr_flag (unsigned char) Acknowledgement flag */
/* 0: Normal termination */
/* 1: Abnormal termination */
/* TIMEOUT_ERR_TEND: Transmit end timeout */
/* */
/* */
unsigned char Send byte data (unsigned char Byte data){
unsigned char Tend flag;
unsigned char Ackbr_flag;
unsigned short Time_out_count;
IIC2.ICDRT = Byte data; /* Transmit data */
Time_out_count = 0; /* Clear timeout count */
while (1) { /* */
Tend_flag = IIC2.ICSR.BIT.TEND; /* Check TEND and */
if (Tend_flag ==) { /* wait for transmission completion */
break; /* */
} /* */
Time_out_count++; /* Check transmit end timeout */
if (Time_out_count > TIMEOUT_LIMIT_TEND) {0 /* If timeout occurs, */
Ackbr_flag = (unsigned char) TIMEOUT_ ERR_TEND; /* set Ackbr_flag = TIMEOUT_ERR_TEND and */
goto Exit err; /* exit */
} /* */
}
Ackbr_flag = IIC2.ICIER.BIT.ACKBR; /* When transmission completed, */
/* obtain acknowledgement */
Exit _err:
return(Ackbr flag); /* Return acknowledgement */
}
/* */
/* Issue start condition to IIC device */
/* */
/* Entry: None ; None */
/* Return: None ; None */
/* */
/* */
void Send start condition (void) {
IIC2.ICCR2.BYTE = 0xBD; /* Issue start condition (BBSY=1, SCP=0) */

REJ06B0135-0100Z/Rev.1.00

September 2003 Page 68 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/* */
/* Issue stop condition to IIC device */
/* */
/* Entry: None ; None */
/* Return: Stop_flag (unsigned char); Stop condition detection flag */
/* 1: Stop condition detected */
/* TIMEOUT ERR_STOP: Stop condition detection timeout (stop condition not detected) */
/* */
/* */
unsigned char Send_stop_condition (void){
unsigned char Stop_flag;
unsigned short Time_out_count;
IIC2.ICSR.BIT.STOP = 0; /* Clear STOP */
IIC2.ICCR2.BYTE = 0x3D; /* Issue stop condition (BBSY=0, SCP=0) */
Time_out_count = 0; /* Clear timeout counter */
while (1) { /* */
Stop_flag = IIC2.ICSR.BIT.STOP; /* Check stop condition detection flag, and */
if (Stop_flag == 1){ /* wait until stop condition is met */
break; /* */
} /* */
Time_out_count++; /* Check stop condition detection timeout */
if (Time_out_count > TIMEOUT_LIMIT_STOP) { /* 1f timeout occurs, */
Stop_flag = (unsigned char)TIMEOUT ERR STOP; /* set stop_flag = TIMEOUT ERR_STOP, and */
goto Exit err; /* exit */
} /* */
}
Exit_err:
return (Stop_flag); /* Return stop condition detection flag */
}
/* */
/* Retransmit slave address (read) to IIC device and set read mode */
/* */
/* Entry: Device_id (unsigned char) ; Slave address code: 0 to 7 (A2,Al,A0) */
/* Return: Ack_flag (unsigned char) ; Reception acknowledgement flag */
/* 0: Normal, 1: Error */
/* */
/* */
unsigned char Set_slave_read mode (unsigned char Device_id) ({
unsigned char Slave_address;
unsigned char Ack_flag;
Set_iic_mode(3); /* Set master transmission mode (MST=1, TRS=1) */
Send_start_condition(); /* Issue start condition (BBSY=1, SCP=0) */
Slave_address = (unsigned char)DEVICE ADDRESS WORD R | (Device_id << 1);
/* Generate slave address (read) */
Ack_flag = Send _byte data(Slave_address); /* Transmit slave address */
/* and obtain transmission acknowledgement */
return(Ack flag); /* Return reception acknowledgement */

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 69 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/* */
/* Retransmit slave address (read) to IIC device, and set write mode */
/* */
/* Entry: Device_id (unsigned char) ; Slave address code: 0 to 7 (A2,Al,AQ) */
/* Return: Ack_flag (unsigned char) ; Receive acknowledgement flag */
/* 0: Normal, 1l: Error */
/* */
/* */
unsigned char Set_slave write mode (unsigned char Device id){

unsigned char Slave_address;

unsigned char Ack flag;

Set_iic_mode(3); /* Set master transmission mode (MST=1, TRS=1) */

Send_start_condition(); /* Issue start condition (BBSY=1, SCP=0) */

Slave_address = (unsigned char)DEVICE_ADDRESS WORD W | (Device_id << 1)

/* Generate slave address (write) */

Ack_flag = Send byte data(Slave_address); /* Transmit slave address */

return(Ack flag); /* Return reception acknowledgement */
}
/* */
/* Receive data from IIC device (start reception operation simultaneously with data read) */
/* Start reception operation and perform RDRF check */
/* */
/* Entry: None ; None */
/* Return: Err_code_s (unsigned short) ; Error code (upper 8 bits) */
/* Data s (unsigned short) ; Received data (lower 8 bits) */
/* - */
/* Error code; */
/* 0: Normal termination */
/* TIMEOUT ERR_RDRF:Receive end timeout error */
/* */
/* */
unsigned short Receive byte data (void){

unsigned char Rdrf flag;

unsigned char Data;

unsigned short Data_s;

unsigned short Err_code_s;

unsigned short Time_out_count;

Time_out_count = 0; /* Clear timeout counter */

Data = IIC2.ICDRR; /* Read data */

while (1) {
Rdrf_ flag = IIC2.ICSR.BIT.RDRF;
if (Rdrf_flag == 1){
break;

Time_out_count++;
if (Time_out_count > TIMEOUT_LIMIT_RDRF) {
Err_code_s =

(unsigned short) TIMEOUT_ ERR RDRF;

goto Exit_err;

/* (start subsequent reception when ICDRR is read) */

/* */
/* */
/* Wait for all data */
/* */
/* */
/* Check receive end timeout */
/* If timeout occurs, */
/* set Err code = TIMEOUT_ERR RDRF and */
/* exit */
/* */
/* Normal termination */

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 70 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

Data_s = (unsigned short) Data; /* Extend data to 2 bytes */

return (Data_s); /* Return data */
Exit _err: /* Error termination */

Err_code_s = (Err_code_s << 8); /* Shift error code to upper 8 bits */

return (Err_code_ s); /* Return error code */

/* (set upper 8 bits as error code) */}

/* */
/* Receive data from IIC device (read final data) Since subsequent reception operation is not performed */
/* because of it is final data, RDRF check is not performed */
/* */
/* Entry: None ; None */
/* Return: Data_s (unsigned short); Received data (lower 8 bits) */
/* (upper 8 bits are 0)

*/
/* */
/* */
unsigned short Receive byte data fin (void){

unsigned char Data;

unsigned short Data_s;

Data = IIC2.ICDRR; /* Read final data */

Data_s = (unsigned short) Data; /* Extend data to 2 bytes */

return(Data_s); /* Return read data */
}
/* */
/* Set ACKBT and RCVD flags for receiving data */
/* */
/* Entry: Ackbt flag (unsigned char) ; Flag to be set as ACKBT (0,1) */
/* Rcvd_flag (unsigned char) ; Flag to be set as RCVD (0,1) */
/* Entry: None ; None */
/* */
/* */
void Set_receive mode (unsigned char Ackbt_flag, unsigned char Rcvd_flag) {

IIC2.ICIER.BIT.ACKBT = Ackbt_flag; /* Set ACKBT */

IIC2.ICCRL1.BIT.RCVD = Rcvd flag; /* Set RCVD */

REJ06B0135-0100Z/Rev.1.00

September 2003 Page 71 of 81

ENESAS

H8/300H Tiny Series
Application Examples for Reading /Writing

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Receive byte data from IIC device sequentially(for read byte length)

(buff ptr),

Entry: Length (unsigned short) ; Read byte length (more than 2 bytes
*buff ptr (unsigned char) ; Read data storage buffer start address
Since dummy data upon starting reception is stored in the start address
valid data is stored with a size specified by Length from (buff ptr + 1)
Return: Err_code (unsigned char) ; Error code

0: Normal termination
TIMEOUT ERR_RDRF:Receive end timeout error

/*

unsigned char

Receive byte data_many

unsigned char Err_code;

unsigned short Data_s;

(unsigned short Length, unsigned char *buff ptr)({

unsigned char Data;
Length++; /* Since the data first received is dummy data
/* (invalid), actual received size must be
/* incremented by 1.
while(Length > 1) { /* Receive data equalling the size
/* of data byte length value to be received
if (Length) { /* Check whether the received data is one byte
/* before the final data
Setireceiveimode (1, 1); /* Set subsequent reception mode (ACBT=1,RCVD=1)
/* Set ACKBT (for receiving final data,
/* set the acknowledgement value to No (ACK=1)
/* Set RCVD
/* (disable subsequent reception operation)
}
Data_s = Receive byte data (); /* Read received data (start reception operation)
if ((Data_s & 0xff00) != 0){ /* If an error occurs, abort processing,
/* and issue stop condition
Err_code = (unsigned char) TIMEOUT_ ERR RDRF; /* Set receive end timeout error code
goto Exit_err; /* Perform error processing
}
Data = (unsigned char) (Data_s & 0x00ff); /* Obtain lower 8 bits of received data
buff ptr = Data; / Store received data in buffer
buff ptr++; /* Increment storage buffer address
Length--; /* Decrement received data length
}
Data_s = Receive byte data_ fin (); /* Read received data (obtain final received data)
Data = (unsigned char) (Data_s & 0x00ff); /* Obtain lower 8 bits of received data
buff ptr = Data; / Store received data in buffer
Err_code = 0; /* Normal termination; set error code as 0
Exit _err:
return (Err_code); /* Return error code
}
/%
/* Initialize IIC2 I/F
/%
/* Entry: None ; None
/* Return: None ; None
/*
/%
void Init_iic2 (void)({
Set_iic_rate (1); /* Set IIC transfer rate as ®/40 (& = 16MHz, 400 kHz)
Set_iic_bus_mode (0,0,0); /* 1IC bus mode as MSB first, no wait insertion,
/* and,bit length:9 bits
Set_1iic2 if enable (1); /* Set IIC2 I/F module to a transfer operation
/* enabled state (SCL/SDA: bus driving status)

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/

*/

*/
*/

*/

*/

*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 72 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

/* */
/* Set master device bus mode (MLS, WAIT, BC210) */
/* */
/* Entry: Bus_mode MLS (unsigned char) ; MSB first/LSB first */
/* 0(MLS=0): MSB first (When IIC is used, set to 0) */
/* 1(MLS=1): LSB first */
/* Bus_mode WAIT (unsigned char) ; Wait insertion specification */
/* 0 (WAIT=0): Not insert wait */
/* 1(WAIT=1): Insert wait */
/* Bus_mode BC210 (unsigned char) ; Transfer data bit length specification */
/* 0(BC210=000) : 9-bit mode */
/* 1(BC210=001) : 2-bit mode */
/* 2(BC210=010) : 3-bit mode */
/* 3(BC210=011): 4-bit mode */
/* 4 (BC210=100) : 5-bit mode */
/* 5(BC210=101): 6-bit mode */
/* 6(BC210=110) : 7-bit mode */
/* 7(BC210=111): 8-bit mode */
/* Return: None ; None */
/* Note: Call as SCL = 1, except for setting the transfer data bit length to 0. */
/* */
/* */

void Set_iic bus_mode (unsigned char Bus_mode MLS, unsigned char Bus_mode WAIT, unsigned char Bus_mode BC210) {

unsigned char bus_mode;

Bus_mode MLS &= 0x01; /* t MSB first/LSB first to MLS */
if (Bus_mode MLS == 1) { /* */
Bus_mode MLS = 0x80; /* MLS = bit7 */
} /* */
Bus_mode WAIT &= 0x01; /* Set wait insertion specification as WAIT */
if (Bus_mode WAIT == 1){ /* */
Bus_mode WAIT = 0x40; /* WAIT = bité6 */
} /* */
Bus_mode BC210 &= 0x03; /* Set transfer data bit length as BC210 */
bus_mode = 0; /* Generate bus mode setting value */
bus_mode = (Bus_mode MLS | Bus_mode WAIT | Bus_mode_ BC210); /* */
IIC2.ICMR.BYTE = bus_mode; /* Set bus mode to register */
IIC2.ICMR.BYTE = (bus_mode | 0x08); /* Set write protect for BC210 (BCWP=1) */

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 73 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

Set master device transmission/reception mode (MST, TRS)

Entry: Iic_mode (unsigned char) ; Transmission/reception mode
0 (MST=0, TRS=0): Slave reception mode
1(MST=0, TRS=1): Slave transmission mode
2 (MST=1, TRS=0): Master reception mode
3(MST=1, TRS=1): Master transmission mode
Return: None ; None

/*

void

}
/*

Set_iic_mode (unsigned char Tic_mode) {

Iic_mode &= 0x03;

switch (Iic_mode) {
case 0: Iic_mode = 0;
break;
case 1: Iic_mode = 0x10;
break;
case 2: Iic_mode = 0x20;
break;
case 3: Iic_mode = 0x30;
break;
default: Iic_mode = 0;

IIC2.ICCRL1.BYTE = ((IIC2.ICCRL.BYTE & Oxcf) | Iic_mode);

/* Mask argument range between 0 and 3

/* Generate data to be set

/* MST=0, TRS=0
/* MST=0, TRS=1
/* MST=1, TRS=0
/* MST=1, TRS=1
/* MST=0, TRS=0

/* Set transmission/reception mode to register

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

Set master device transfer rate (CKS3, 2, 1, 0)
Entry: Tic_rate
0 (CKS3210=0000) :
1(CKS3210=0001) :

2 (CKS3210=0010) :
3(CKS3210=0011) :

4 (CKS3210=0100) :
5(CKS3210=0101) :

6 (CKS3210=0110) :
7(CKS3210=0111) :

8 (CKS3210=1000) :

9 (CKS3210=1001) :

10 (CKS3210=1010) :
1(CKS3210=1011):

12 (CKS3210=1100) :
13(CKS3210=1101) :

4 (CKS3210=1110) :
15(CKS3210=1111) :

(unsigned char)
clock;®/28 mode
clock;®/40 mode

; Transfer rate

clock;®/48 mode
clock;®/64 mode
clock;®/80 mode
clock;®/100 mode
clock;®/112 mode
clock;®/128 mode
clock;®/56 mode
clock;®/80 mode
clock;®/96 mode
clock;®/128 mode
clock;®/160 mode
clock;®/200 mode
clock;®/224 mode
clock;®/256 mode

Return: None ; None

void

Set_iic_rate (unsigned char Tic_rate)({

Iic_rate &= 0x0f;

IIC2.ICCR1.BYTE = ((IIC2.ICCR1.BYTE & 0xf0)| Iic_rate);

/* et master device transfer rate as CKS3210

/* Set transfer rate to register

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/

*/

*/

*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 74 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/* */
/* Set IIC2 I/F module operation status (ICE) */
/* */
/* Entry: 1Ice (unsigned char) ; Operation status */
/* 0 (ICE=0): Halt state (SCL/SDA: port function) */
/* 1 (ICE=1): Transfer-operation-enabled state (SCL/SDA: bus driving status) */
/* Return: None ; None */
/* */
/* */
void Set_iic2 if enable (unsigned char Ice)({
Ice &= 0x01;
if (Ice ==) { /* Check Ice, and */
Ice = 0x80; /* 1: Set ICE (7th bit) */
telse({
Ice = 0x00; /* 0: Reset ICE (7th bit */
}
IIC2.ICCR1.BYTE = ((IIC2.ICCR1.BYTE & Ox7f) | Ice); /* Set operation status to register */
}
/* */
/* Initialize EEPROM bus condition */
/* */
/* Issue start condition using port, transmit dummy slave address (0xff), and issue a stop condition */
/* to forcibly initialize the EEPROM bus condition */
/* (This initialization process is used for forcibly making EEPROM SDA bus input state */
/* when reception processing from the master device cannot be performed since EEPROM */
/* SDA bus still remains in output status due to communication termination during receiving data from EEPROM) */
/* Entry: None ; None */
/* Return: None ; None */
/* */
/* */
void 1Init_eeprom (void){
unsigned char Ack flg;
PDR5 = OxFF; /* Set P57 (SCL), P56 (SDA) as output and */
PCR5 = OxFF; /* output P57 (SCL) = 1, P56 (SDA) =1 */
Set_iic2 if enable (0); /* Set IIC2 I/F module in a halt state */
/* (SCL/SDApin: port function) */
I2c_start (); /* Issue start condition */
Wait_timer (TM); /* Wait tiemr */
I2c_bytesend (Oxff); /* Transmit dummy slave address, and */
Ack_flg = I2c_ackck(); /* then obtain acknowledgement */
I2c_stop (); /* Issue stop condition */
Wait_timer (TM); /* Wait for the specified time */

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 75 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

/* */
/* Issue start condition to IIC device (through port processing) */
/* */
/* Entry: None ; None */
/* Return: None ; None */
/* */
/* */
void TI2c_start (void)({
I2c_sda_out(0xCO); /* Set P57 (SCL), P56 (SDA) as output, */
/* and output P57 (SCL) = 1, P56 (SDA) =1 */
I2c_set (1,1); /* Set SCL = 1, SDA = 1 and output from port */
I2c_set (1,0); /* Set SCL = 1, SDA = 0 and output from port */
I2c_set (0,0); /* Set SCL = 0, SDA = 0 and output from port */
}
/* */
/* Issue stop condition to IIC device (through port processing) */
/* */
/* Entry: None ; None */
/* Return: None ; None */
/* */
/* */
void I2c_stop (void)({
I2c_sda_out (0x00); /* Set P57 (SCL), P56 (SDA) as output, */
/* and output P57 (SCL) = 0, P56 (SDA) = 0 */
I2c_set (0,0); /* Set SCL = 0, SDA = 0 and output from port */
I2c_set (1,0); /* Set SCL = 1, SDA = 0 and output from port */
I2c_set (1,1); /* Set SCL = 1, SDA = 1 and output from port */
}
/* */
/* Output SCL, SDA to IIC device (through port processing) */
/* */
/* Entry: Scl (unsigned char) ; Clock (SCL) output value */
/* 0: SCL(P57) = 0, 1: SCL(P57) =1 */
/* Sda (unsigned char) ; Data (SDA) output value */
/* 0: SDA(P56) = 0, 1: SDA(P56) =1 */
/* Return: None ; None */
/* */
/* */
void TI2c_set (unsigned char Scl , unsigned char Sda) {
unsigned char Data;
Data = 0; /* Initialize data to output */
/* to P57 (SCL), P56 (SDA) */
if (Scl ==) { /* If SCL 1, set P57 =1 */
Data = 0x80; /* */
} /* */
if (sda == 1){ /* If SDA = 1, set P56 =1 */
Data |= 0x40; /* */
} /* */
PDR5 = ((PDR5 & O0x3F) | Data); /* Output data to P57 (SCL), P56 (SDA) */

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 76 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/* */
/* Transmit byte data to IIC device (through port processing) */
/* */
/* Entry: Tx_data (unsigned char) ; Byte data to be transmitted */
/* Return: None ; None */
/* */
/* */
void TI2c_bytesend (unsigned char Tx data) {
unsigned char Ckbit;
I2c_sda_out (0x00); /* Set P57 (SCL), P56 (SDA) as output, */
/* and output P57 (SCL) = 0, P56 (SDA) = 0 */
for (Ckbit = 0x80; Ckbit > 0; Ckbit >>= 1){ /* Transmit 8-bit data */
I2c_bitsend (Tx data , Ckbit); /* from MSB sequentially */
} /* */
}
/* */
/* Transmit bit data to IIC device (through port processing) */
/* */
/* Entry: Tx_data (unsigned char) ; Byte data to be transmitted */
/* Ckbit (unsigned char) ; Bit position of bit data to be transmitted (value setting 1 to bit position) */
/* Return: None ; None */
/* */
/* */
void I2c_bitsend (unsigned char Tx data , unsigned char Ckbit) {
unsigned char Bit_data;
Bit_data = (Tx_data & Ckbit); /* Obtain bit information */
/* from a bit position to be transmitted */
if (Bit_data != 0){ /* Check bit information, and generate bit data */
Bit _data = 1; /* Bit data = 1, */
} /* */
else { /* */
Bit_data = 0; /* Bit data = 0, */
} /* */
I2c_send (Bit_data); /* Transmit generated bit data */
}
/* */
/* Transmit bit data from IIC port synchronized with a clock (through port processing) */
/* */
/* Entry: Bit_data (unsigned char) ; Bit data to be transmitted */
/* Return: None ; None */
/* */
/* */
void TI2c_send (unsigned char Bit_data)({
I2c_set (0,Bit_data); /* Output SCL = 0, SDA = bit_dat from port */
Wait_timer (TM); /* Wait for the specified time */
I2c_set (1,Bit_data); /* Output SCL = 1, SDA = bit_dat from port */
Wait_timer (TM); /* Wait for the specified time */
I2c_set (0,Bit_data); /* Output SCL = 0, SDA = bit_dat from port */
Wait_timer (TM); /* Wait for the specified time */

REJ06B0135-0100Z/Rev.1.00

September 2003 Page 77 of 81

LENESANS

H8/300H Tiny Series
Application Examples for Reading /Writing

/* */
/* Obtain acknowledgement from IIC device (through port processing) */
/* (read data at ninth clock) */
/* */
/* Entry: Bit_data (unsigned char) ; Bit data to be transmitted */
/* Return: Ack_flag (unsigned char) ; Acknowledgement */
/* 0: Normal, 1: Error */
/* */
/* */

unsigned char I2c_ackck (void){

unsigned char Ack flag;

I2c_sda_in();

/* Set P57 (SCL) as output and P56 (SDA) as input */

I2c_set (0,0); /* Output SCL = 0, SDA = 1 from port */
Wait_timer (TM); /* Wait tiemr */
I2c_set (1,0); /* Output SCL = 1, SDA = from port */
Wait_timer (TM); /* Wait for the specified time */
Ack_flag = PDR5 & 0x40; /* Obtain acknowledgement (SDA: P56) */
Wait_timer (TM); /* Wait for the specified time */
I2c_set (0,0); /* Output SCL = 0, SDA = 1 from port */
Wait_timer (TM); /* Wait for the specified time */
if (Ack_flag != 0){ /* If the acknowledgement value */
/* (SDA: P56) is 1, set 1 */
Ack_flag = 1; /* */
} /* */
return (Ack flag); /* Return acknowledgement */

}
/* */
/* Set SDA (P56) as input, and SCL (P57) as output of IIC port */
/* */
/* Entry: None ; None */
/* Return: None ; None */
/* */
/* */

void I2c_sda_in (void){

PCR5 = 0x80;

/* Set SDA (P56)as input, andSCL (P57) as output */

/* */
/* Set SDA (P56), SCL (P57) of IIC port as output, and output data */
/* */
/* Entry: Data (unsigned char) ; Output data SCL, bit 6 = SDA) */
/* Return: None ; None */
/* */
/* */
void I2c_sda_out (unsigned char Data) {
PDR5 = Data; /* Set Data to PDR5 */
PCR5 = 0xCO; /* Set P57 (SCL), P56 (SDA) as output, */
/* and output Data */

REJ06B0135-0100Z/Rev.1.00

September 2003 Page 78 of 81

’ z H8/300H Tiny Series
. E N ESAS Application Examples for Reading /Writing

/* */
/* Wait for the specified time (decrement wait counts until the count becomes 0) */
/* */
/* Entry: Wait_cnt (unsigned char) ; Wait counts */
/* Return: None ; None */
/* */
/* */

void Wait_timer (unsigned short Wait_cnt) {

unsigned short cnt;

for (cnt = 0; cnt < Wait_cnt; cnt ++){

}

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 79 of 81

LENESANS

H8/300H Tiny Series

Application Examples for Reading /Writing

Revision Record

Description

Rev. Date Page

Summary

1.00 Sep.29.03 —

First edition issued

REJ06B0135-0100Z/Rev.1.00

September 2003

Page 80 of 81

RE N ESAS H8/300H Tiny Series

Application Examples for Reading /Writing

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

REJ06B0135-0100Z/Rev.1.00 September 2003 Page 81 of 81

	Cover
	1. Specifications
	2. Bus Specifications
	3. EEPROM Basic Specifications
	4. Software Specifications
	5. Flowchart
	6. Program Listing

