

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers

APPLICATION NOTE

AN1144
Rev 0.00

Jun 20, 2005
This application note describes the routines for the control of
an X9408 or X9418 digitally controllable potentiometer. The
X9408, X9418 devices have a variety of different instructions
that provide flexibility to the designer. Additionally, the
nonvolatile nature of the device allows for stored wiper
positions that can be retrieved after power cycles.

The following code implements all of the available X9408,
X9418 instructions using a standard bi-directional bus
protocol. Although the subroutines occupy about 300 bytes of
program memory, designers who won't need to implement all
of the instructions can shorten the code by removing any
unnecessary routines. However, this will necessitate the
reassembly of the code.

For those instructions which program the nonvolatile data
registers (XFR_WCR, GXFR_WCR, & WRITE_DR),
acknowledge polling has been implemented to determine an
early completion of the internal write cycle. Although this is
automatically handled by the routines, a word or two
regarding the procedure should be informative. After issuing a
start condition, the master sends a slave address and
receives an acknowledge. It then issues an instruction byte to
the X9408, X9418 and again receives an acknowledge. If
necessary, it now transmits the data byte and receives a final
acknowledge. The master must then initiate a stop condition
which will cause the X9408, X9418 to begin an internal write
cycle. The X9408, X9418 pins go to high impedance until this
internal cycle is complete. The master can now begin

acknowledge polling by successively sending start conditions
followed by "dummy" instructions. When the X9408, X9418
finally answers with an acknowledge, the internal write cycle
has been completed. The master must then initiate a stop
condition. After the next start condition, the X9408, X9418 is
ready to receive further instructions.

In the code listing, an assumption was made that the code
executes upon a reset of the microcontroller. That is, the code
is loaded into low memory, however this can be changed with
an ORG assembler directive. Simple MAIN program routines
are included in the code listing. These can be modified for
different device addresses, different registers and different
DCPs within the device.

In this listing, the commands cause an X9408, X9418 (at
A3A2A1A0 = 1100 to be accessed.) The listing also includes
some instructions that are specific to the Cygnal 80C51
processor. These should be examined and modified, as
needed, for the specific 80C51 in the system. The commands
issued in the “Main” section of the code are simple
assignment and call sequences.

In Figure 1, a representative hardware connection between
the X9408 and an 8051 family microcontroller is shown. The
pull-up resistors on the SDA and SCL lines are determined by
the total capacitance of all of the devices connected to the
bus, which is about 18pF.

+5V

-5V

U1

80C51

21
22
23
24
25
26
27
28

17

16

29
30

11

10

31

19
18

9

39
38
37
36
35
34
33
32

1
2
3
4
5
6
7
8

12
13

14
15

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

RD

WR

PSEN
ALE/P

TXD

RXD

EA/VP

X1
X2

RST

P0.0
P0.1
P0.2
P0.3
P0.4
P0.5
P0.6
P0.7

P1.0
P1.1
P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

INT0
INT1

T0
T1

U2

X940
8

19

15
14
16

22
21
23

1
24

17
7

18
5
8

20

3
4
2

10
11
9

13
VSS

VH2
VW2
VL2

VH3
VW3
VL3

VCC
V+

SCL
SDA

A3
A2
A1
A0

VH0
VW0
VL0

VH1
VW1
VL1

V-

R1
10K

R2
10K

FIGURE 1. CONNECTING THE X9408 TO AN 80C51 MICROCONTROLLER
AN1144 Rev 0.00 Page 1 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
80C51 MICROCONTROLLER ROUTINES FOR MANIPULATING AN X9408
;---
;
; 80C51 MICROCONTROLLER ROUTINES FOR MANIPULATING AN X9408
; QUAD EEPOT
;
; (C) INTERSIL INC. 2002
; CEM
;
; FILE NAME : X9408_8051.TXT
; TARGET MCU: Cygnal C8051F000
; DESCRIPTION:
;
; This code provides basic 80C51 code for commmunicating with and
; controlling the X9408 quad digital potentiometer. In this listing
; is code that implements all of the available X9408 instructions.
; The X9408 communicates via a 2-wire bus that is similar, but a little
; different from the I2C bus. This code is very generic and can be
; simplified and shortened by removing any unnecessary routines.
;
; For those instructions which program the nonvolatile data registers
; (XFR_WCR, GFXR_WCR, and WRITE_DR) this program provides acknowledge
; polling to determine early completion of the internal write cycle.
; Although this is handled automatically by the routines, some background
; might be helpful.
;
; After issuing a start condition, the master sends a slave address
; and receives and acknowledge (ACK). The master then sends an instruction
; byte to the X9408 and again receives an ACK. If necessary, the master sends
; a data byte and receives a final ACK. The master then initiates a stop
; condition to signal the X9408 to begin an internal nonvolatile write
; cycle. When the write cycle begins, the I/O pins go to a high impedance state
; and remain in this state until the nonvolatile write is complete.
;
; Immediately following the stop condition, the master can begin acknowledge
; polling by successively sending start conditions, followed by "dummy"
; instructions. When the X9408 finally answers with an acknowledge, the
; internal write cycle is completed. The master then issues a stop
; condition. After the next start condition, the X9408 is ready to receive
; further instructions.
;
; This code give the flexibility to communicate with up to 16 different X9408
; devices on the same bus. It does this by using a register, named "ADDR_BYTE".
; This register is loaded with the specific slave address and address of the
; desired X9408 device. The register can be saved if there is only one X9408
; on the bus, by making ADDR_BYTE a constant.
;
; An 80C51 register is used to identify the particular X9408 register or DCP, or both,
; are used for a particular operation. There are various constants available for
; easy selection of the WCR and DR combination. The contents of the register
; is appended to the specific instruction in the "instr_gen' routine.
;
; A register is used as a counter for keeping track of the number of bits sent
; in each byte.

; A register is used for the increment/decrement instruction to specify up or
; down movement of the wiper. For each command, the master loads the "PULSES"
; register with a direction bit and 6 bits of count. If the MSB is a 1
; the wiper increments the specified number of tap positions. If the MSB
; is a 0 the wiper decrements the specified number of tap positions.
;
; A register is used to hold the specific command being executed. This allows
; the instruction to be built up and sent to the X9408.
;
; In the MAIN section are sample main code segments showing how to use the
; various subroutines.
;
; This code was tested on a Cygnal 80C51 microcontroller, using the Cygnal
; tools. The specific routines required to set up the Cygnal processor
AN1144 Rev 0.00 Page 2 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
; are identified and are probably not needed for other standard 8051 devices.
; Since each 8051 may have specific requirements that are not handled in this
; code, the programmer is advised to check the setup needs of the specific
; 80C51 derivation that is being used.
;
;---
; I/O Definition
;---

SCL bit p1.0 ; 80C51 pin used AS SCL
SDA bit p1.1 ; 80C51 pin used AS SDA

;---
; Register Definition
;---

$include (c8051f000.inc); Include regsiter definition file (Cygnal).

TEMP equ r1 ; Scratch register
COUNT equ r2 ; Loop counting register
PULSES equ r3 ; Bits -> DIR 0 ###### (#=pulses = 0 to 64)
COMMAND equ r4 ; Instruction (I.E. 0,4,8,12,16,...)
ID equ r5 ; Bits -> 0 0 0 0 R1 R0 P1 P0
ADDR_BYTE equ r6 ; Bits -> 0 1 0 1 A3 A2 A1 A0
DATA_BYTE equ r7 ; Bits -> CM DW D5 D4 D3 D2 D1 D0

;---
; Constant Definition
;---

SLAVE_ADR0 equ 050h
SLAVE_ADR1 equ 051h
SLAVE_ADR2 equ 052h
SLAVE_ADR3 equ 053h
SLAVE_ADR4 equ 054h
SLAVE_ADR5 equ 055h
SLAVE_ADR6 equ 056h
SLAVE_ADR7 equ 057h
SLAVE_ADR8 equ 058h
SLAVE_ADR9 equ 059h
SLAVE_ADR10 equ 05Ah
SLAVE_ADR11 equ 05Bh
SLAVE_ADR12 equ 05Ch
SLAVE_ADR13 equ 05Dh
SLAVE_ADR14 equ 05Eh
SLAVE_ADR15 equ 05Fh
;
WCR_0 equ 00h
WCR_1 equ 01h
WCR_2 equ 02h
WCR_3 equ 03h
;
DR_0 equ 00h
DR_1 equ 04h
DR_2 equ 08h
DR_3 equ 0Ch
;
DCP0_R0 equ 00h
DCP0_R1 equ 04h
DCP0_R2 equ 08h
DCP0_R3 equ 0Ch
;
DCP1_R0 equ 01h
DCP1_R1 equ 05h
DCP1_R2 equ 09h
DCP1_R3 equ 0Dh
;
DCP2_R0 equ 02h
DCP2_R1 equ 06h
DCP2_R2 equ 0Ah
AN1144 Rev 0.00 Page 3 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
DCP2_R3 equ 0Eh
;
DCP3_R0 equ 03h
DCP3_R1 equ 07h
DCP3_R2 equ 0Bh
DCP3_R3 equ 0Fh
;

READWCR equ 0
WRITEWCR equ 4
READDR equ 8
WRITEDR equ 12
XFRDR equ 16
XFRWCR equ 20
GXFRDR equ 24
GXFRWCR equ 28
INCDECWIPER equ 32

;---
; INTERNAL RAM
;---

STACK_TOP equ 060H ; Stack top

;---
; RESET and INTERRUPT VECTORS
;---

 cseg AT 0
 ljmp main ; Locate a jump to the start of code at

;---
; CODE SEGMENT
;---

Code_Seg segment CODE

 rseg Code_Seg Switch to this code segment.
 using Specify register bank for the following
 program code.

;---
;
; NAME: execute
; FUNCTION: Determines which X9408 instruction is issued,
; then executes
; INPUTS: COMMAND
; OUTPUTS: none
; CALLS: read_wcr, read_dr, write_wcr, write_dr, xfr_dr,
; xfr_wcr, gxfr_dr, gxfr_wcr, inc_wiper
; AFFECTED: DPTR, A
;
;---

execute:
mov dptr,#first ; Get Base Address
mov a,COMMAND ; Jump Offset
jmp @a+dptr ; Jump to instruction handler

first:

call read_wcr ; COMMAND #0
ret
call write_wcr ; COMMAND #4
ret
call read_dr ; COMMAND #8
ret
call write_dr ; COMMAND #12
ret
call xfr_dr ; COMMAND #16
ret
AN1144 Rev 0.00 Page 4 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
call xfr_wcr ; COMMAND #20
ret
call gxfr_dr ; COMMAND #24
ret
call gxfr_wcr ; COMMAND #28
ret
call inc_wiper ; COMMAND #32
ret

;---
;
; The following routines handle each X9408 instruction.
; These are called by the "execute" routine.
;
; read_wcrReads a WCR and returns its value in DATA_BYTE
; write_wcrWrites the value in DATA_BYTE to a WCR
; read_drReads a Data Register and returns its value in DATA_BYTE
; write_drWrites the value in DATA_BYTE to a data register
; xfr_drTransfers the value in a data register to its WCR
; xfr_wcrTransfers the value in a WCR to one of its data registers
; gxfr_drGlobal transfer of data registers to WCRs
; gxfr_wcrGlobal transfer of WCRs to Data Registers
; inc_wiperSingle Step Increment/Decrement of wiper position for WCR
;
; FUNCTION: Appends bits R1, R0, P1, P0 to the appropriate
; Instruction code and passes the instruction byte to the
; Instruction Generator.
; INPUTS: ID
; OUTPUTS: NONE
; CALLS: instr_gen
; AFFECTED: ID,A,DPTR
;
;---

read_wcr:
mov a,ID ; Get bits x x P1 P0
orl a,#090h ; Append to read WCR instruction code
mov ID,a ; Save the result
mov dptr,#case1 ; Jump to the base addr for this instruciton
call instr_gen
ret

write_wcr:
mov a,ID ; Get bits x x P1 P0
orl a,#0A0h ; Append to Write WCR instruction code
mov ID,a ; Save the result
mov dptr,#case2 ; Jump to the base addr for this instruction
call instr_gen
ret

read_dr:
mov a,ID ; Get bits R1 R0 P1 P0
orl a,#0B0h ; Append to Read DR instruction code
mov ID,a ; Save the result
mov dptr,#case1 ; Jump to the base addr for this instruction
call instr_gen
ret

write_dr:
mov a,ID ; Get bits R1 R0 P1 P0
orl a,#0C0h ; Append to Write DR instruction code
mov ID, a ; Save the result
mov dptr,#case3 ; Jump to the base addr for this instruction
call instr_gen
ret

xfr_dr:
mov a,ID ; Get bits R1 R0 P1 P0
orl a,#0D0h ; Append to the XFR DR instruction code
mov ID, a ; Save the result
AN1144 Rev 0.00 Page 5 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
mov dptr,#case4 ; Jump to the addr for this instruction
call instr_gen
ret

xfr_wcr:
mov a,ID ; Get bits R1 R0 P1 P0
orl a,#0E0h ; Append to the XFR WCR instruction code
mov ID, a ; Save the result
mov dptr,#case5 ; Jump to the addr for this instruction
call instr_gen
ret

gxfr_dr:
mov a,ID ; Get bits R1 R0 x x
orl a,#010h ; Append to the GXFR DR instruction code
mov ID, a ; Save the result
mov dptr,#case4 ; Jump to the addr for this instruction
call instr_gen
ret

gxfr_wcr:
mov a,ID ; Get bits R1 R0 x x
orl a,#080h ; Append to the GXFR WCR instruction code
mov ID, a ; Save the result
mov dptr,#case5 ; Jump to the addr for this instruction
call instr_gen
ret

inc_wiper:
mov a,ID ; Get bits x x P1 P0
orl a,#020h ; Append to the Incr Wiper instruction code
mov ID,a ; Save the result
mov dptr,#case6 ; Jump to the addr for this instruction
call instr_gen
ret

;---
;
; NAME: instr_gen (Instruction generator)
; FUNCTION: Issues appropriate I2C protocol for each X9408 instruction
; INPUTS: ADDR_BYTE, ID, PULSES, DPTR, DATA_BYTE
; OUTPUTS: DATA_BYTE
; CALLS: start_cond, stop_cond, send_byte, send_bit, get_byte, polling
; AFFECTED: DATA_BYTE, A, COUNT
;
;---

instr_gen:

call start_cond ; Issue an I2C start condition
mov a,ADDR_BYTE ; Send X9408 slave/address byte
call send_byte
jc stop_gen ; if NACK, end...
mov a,ID ; Send X9408 instruction byte
call send_byte
jc stop_gen ; if NACK, end...
clr a ; Reset offset before jump
jmp @a +dptr ; Jump to various instruction cases

case6:
mov a,PULSES ; A <- Bits DIR X D5 D4 D3 D2 D1 D0
anl a,#00111111b ; A <- Bits 0 0 D5 D4 D3 D2 D1 D0
mov COUNT, a ; Save as the number of pulses
mov a,PULSES
anl a,#10000000b ; A <- Bits DIR 0 0 0 0 0 0 0

wiper_lp:
call send_bit ; Send the bit (a single pulse)
djnz COUNT,wiper_lp ; Continue until all pulses are sent

case4:
AN1144 Rev 0.00 Page 6 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
jmp stop_gen ; If program gets here, then it is done

case2:
mov a,DATA_BYTE ; Send X9408 data byte
call send_byte
jmp stop_gen

case1:
call get_byte ; Receive X9408 Data Byte
jmp stop_gen

case3:
mov a,DATA_BYTE ; Send X9408 Data Byte
call send_byte
call stop_cond ; Issue a stop condition
call polling ; Begin Acknowledge Polling
jmp stop_gen

case5:
call stop_cond ; Issue a stop condition
call polling ; Begin Acknowledge Polling

stop_gen:
call stop_cond ; I2C Transmission Over!
ret

;---
;
; NAME: send_byte
; FUNCTION: Sends 8 bits (from MSB to LSB) to SDA and reads 1 bit from SDA
; INPUTS: A
; OUTPUTS: NONE
; CALLS: send_bit, get_bit
; AFFECTED: COUNT, TEMP, A
;
;---

send_byte:
mov COUNT,#8 ; Set loop for 8 repetitions
mov TEMP,a ; store as shifted byte (no shift)

bit_loop:
mov a,TEMP ; Retrieve last saved shifted byte
anl a,#10000000b ; Mask for MSB (Most Significant Bit)
call send_bit ; Place this bit on SDA

next_bit:
mov a,TEMP ; Retrieve last saved shifted byte
rl a ; Rotate all bits 1 position left
mov TEMP,a ; Store this updated shifted byte
djnz COUNT,bit_loop
setb SDA ; let SDA go high after 8th bit
call clock ; When all 8 bits done, read SDA line

; (ACKnowledge pulse)
ret

;---
;
; NAME: send_bit
; FUNCTION: Places a bit on SDA and initiates a clock pulse on SCL
; INPUTS: A
; OUTPUTS: NONE
; CALLS: clock
; AFFECTED: SDA
;
;---

send_bit:
clr SDA ; Pull SDA Low
jz sent_zero ; Should SDA really be LOW?
AN1144 Rev 0.00 Page 7 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
setb SDA ; If Not, pull SDA HIGH

sent_zero:
call clock ; Initiate a clock pulse
ret

;---
;
; NAME: clock
; FUNCTION: Issues a LOW-HIGH-LOW clock pulse of sufficient duration
; & reads SDA during the high phase, just in case its needed
; INPUTS: NONE
; OUTPUTS: C
; CALLS: NONE
; AFFECTED: SCL, C
;
;---
clock:

nop ; Let SDA Set-up
setb SCL ; Pull SCL HIGH and hold
nop
nop
nop
mov c,SDA ; Move SDA bit into carry flag
clr SCL ; Pull SCL LOW
ret

;---
;
; NAME: get_byte
; FUNCTION: Receives 8 bits from SDA (MSB to LSB) and sends 1 bit to SDA
; INPUTS: NONE
; OUTPUTS: DATA_BYTE
; CALLS: clock, send_bit
; AFFECTED: COUNT, SDA, A, DATA_BYTE
;
;---

get_byte:
setb SDA ; Receiver shouldn't drive SDA low
mov COUNT,#8 ; Set Loop count to 8 repetitions

get_loop:
call clock ; Clock in the current bit
rlc a ; Reconstruct byte using left shifts
djnz COUNT,get_loop
mov DATA_BYTE,a ; Store retrieved Byte for user
clr a ; A <- LOW (Sending a 0)
call send_bit ; Send an acknowledge
ret

;---
;
; NAME: start_cond (Start Condition)
; FUNCTION: Issues an I2C bus start condition
; INPUTS: NONE
; OUTPUTS: NONE
; CALLS: NONE
; AFFECTED: SDA, SCL
;
;---

start_cond:

setb SDA ; Pull SDA HIGH and allow set-up
setb SCL ; Pull SCL HIGH and hold
nop
nop
nop
nop
clr SDA ;Pull SDA LOW (SCL=HIGH) and hold
AN1144 Rev 0.00 Page 8 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
nop
nop
nop
nop
clr SCL ;Complete clock pulse

 ret

;---
;
; NAME: stop_cond (Stop condition)
; FUNCTION: Issues an I2C bus stop condition
; INPUTS: NONE
; OUTPUTS: NONE
; CALLS: NONE
; AFFECTED: SDA, SCL
;
;---

stop_cond:

clr SDA ; Pull SDA LOW and hold
setb SCL ; Pull SCL HIGH and hold
nop
nop
nop
nop
setb SDA ; Pull SDA HIGH (SCL=HIGH)
ret

;---
;
; NAME: ack_send (Send Acknowledge)
; FUNCTION: Sends an acknowledge bit to complete SDA line data reads
; INPUTS: NONE
; OUTPUTS: NONE
; CALLS: send_bit
; AFFECTED: A
;
;---

ack_send:
clr a ; A <- LOW (Sending a 0)
call SEND_BIT ; Send the bit!
ret

;---
;
; NAME: polling (Acknowledge polling for XFR_WCR, WRITE_DR, GXFR_WCR)
; FUNCTION: Sends dummy commands to X9408 during an internal write cycle
; so that the end of the cycle is marked by an acknowledge
; INPUTS: ADDR_BYTE
; OUTPUTS: NONE
; CALLS: start_cond, send_byte
; AFFECTED: C
;
;---

polling:
call START_COND ; Re-establish I2C protocol
mov a,ADDR_BYTE ; Attempt to send a dummy command

again:
call SEND_BYTE
jc POLLING ; If C=1, then there was no ACK

ret

;---
;
; PUT MAIN PROGRAM HERE...
;

AN1144 Rev 0.00 Page 9 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
; Below are sample main programs calling the various command routines
;
;---

main:

mov SP, #STACK_TOP; Initialize stack pointer

;--
;
; The following section is required for the Cygnal processor. This could
; change for different versions of the 80C51.
;
; Disable the WDT. (IRQs not enabled at this point.)
; If interrupts were enabled, they would need to be explicitly disabled
; so that the 2nd move to WDTCN occurs no more than four clock
; cycles after the first move to WDTCN.

clr EA ; Disable interupts

mov WDTCN, #0DEh; Cygnal processor specific
mov WDTCN, #0ADh; Cygnal processor specific

; Enable the Port I/O Crossbar

mov XBR2, #40h ; Cygnal processor specific (enable weak pull ups)

mov PRT1CF, #00h ; Cygnal processor specific
; Set no ports as push-pull (this processor
; operates from 3.3V, but the X9408 operates from
; 5V, so the 8051 outputs must be pulled up to 5V
; with external resistors.)

;---
;
; The following are sample code segments for use in the main program...
; The potentiometer was A0-A3 pins were set to address 0Ch.
;
;---

write_2_wcr:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #WCR_2 ; Specify WCR for DCP#2
mov COMMAND, #WRITEWCR; Write to WCR
mov DATA_BYTE, #43; Set wiper position to tap 43
call execute

read_from_wcr:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #WCR_2 ; Specify WCR for DCP#2
mov COMMAND, #READWCR; Read WCR
call execute ; WCR value is in DATA_BYTE

write_2_dr:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #DCP2_R1; Specify DR#1 for DCP#2
mov COMMAND, #WRITEDR; Write to DR
mov DATA_BYTE, #21; Set data value to 21
call execute

read_from_dr:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #DCP2_R1; Specify DR#1 for DCP#2
mov COMMAND, #READDR; Read DR
call execute ; DR value is in DATA_BYTE

mov_dr_2_wcr:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #DCP2_R1; Specify DR#1 to WCR of DCP#2
mov COMMAND, #XFRDR; Transfer DR to WCR
AN1144 Rev 0.00 Page 10 of 12
Jun 20, 2005

Interfacing the X9408, X9418 XDCP to 8051 Microcontrollers
call execute

mov_wcr_2_dr:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #DCP2_R1; Specify WCR to DR#1 of DCP#2
mov COMMAND, #XFRWCR; Transfer WCRto DR
call execute

global_dr_2_wcr:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #DR_1 ; Specify DR#1 to WCR
mov COMMAND, #GXFRDR; Transfer DR to WCR
call execute

global_wcr_2_dr:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #DR_1 ; Specify WCR to DR#1 of DCP#2
mov COMMAND, #GXFRWCR; Transfer WCRto DR
call execute

decr_wiper:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #WCR_2 ; Select DCP#2
mov PULSES, #0Fh; Decrement DCP#2 for 16 pulses
mov COMMAND, #INCDECWIPER; INC wiper
call execute

incr_wiper:
mov ADDR_BYTE, #SLAVE_ADR12; Load Slave address byte
mov ID, #WCR_2 ; Select DCP#2
mov PULSES, #8Fh; Increment DCP#2 for 16 pulses
mov COMMAND, #INCDECWIPER; DEC wiper
call execute

END
AN1144 Rev 0.00 Page 11 of 12
Jun 20, 2005

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

SALES OFFICES

© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0

(Rev.4.0-1 November 2017)

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

