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Introduction
Integrating A/D converters have two characteristics in 
common. First, as the name implies, their output represents 
the integral or average of an input voltage over a fixed period 
of time. Compared with techniques which require that the 
input is “frozen” with a sample-and-hold, the integrating 
converter will give repeatable results in the presence of high 
frequency noise (relative to the measurement period). A 
second and equally important characteristic is that they use 
time to quantize the answer, resulting in extremely small 
nonlinearity errors and no possibility of missing output 
codes. Furthermore, the integrating converter has very good 
rejection of frequencies whose periods are an integral 
multiple of the measurement period. This feature can be 
used to advantage in reducing line frequency noise, for 
example in laboratory instruments (Figure 1).

In addition, a competitive instrument-quality product should 
have the following features:

1. Single Reference Voltage. This is strictly a convenience to 
the user; but since many designs are available with single 
references that contribute negligible error, products 
requiring dual references are rapidly becoming obsolete.

2. Auto-Zero. This eliminates one trim-pot and a 
troublesome calibration step. Furthermore, it allows the 
manufacturer to use op amps with up to 10mV offset 
while still achieving system offsets of only a few 
microvolts.

3. High Input Impedance. Recently developed monolithic 
FET technology allows input impedances of 1000M and 
leakages of a few pico amps to be achieved fairly readily.

The unique characteristics of the integrating converter have 
made it the natural choice for panel meters and digital 

voltmeter applications. For this reason, overall usage of 
integrating converters exceeds the combined total of all 
other conversion methods. Furthermore, the availability of 
low cost one chip converters will encourage digitizing at the 
sensor in applications such as process control. This 
represents a radical departure from traditional data logging 
techniques which in the past have relied heavily on the 
transmission of analog signals. The availability of one chip 
microprocessor system (with ROM and RAM on chip) will 
give a further boost to the ‘conversion at the sensor’ concept 
by facilitating local data processing. The advantage of local 
processing is that only essential data, such as significant 
changes or danger signals, will be transmitted to the central 
processor.

The Dual Slope Technique - Theory and 
Practice
The most popular integrating converter is the “dual-slope” 
type, the basic operating principles of which will be 
described briefly. However, most of the comments relating to 
linearity, noise rejection, auto-zero capability, etc., apply to 
the whole family of integrating designs including charge 
balancing, triple ramps, and the 101 other techniques that 
have appeared in the literature. A simplified dual-slope 
converter is shown in Figure 2.

The conversion takes place in three distinct phases 
(Figure 3).

FIGURE 1. NORMAL MODE REJECTION OF DUAL-SLOPE 
CONVERTER AS A FUNCTION OF FREQUENCY

N
M

R
 (

d
B

)

f

30

20

10

0
0.1T 1T 10T

T = MEASUREMENT PERIOD
f = INPUT FREQUENCY

FIGURE 2. SIMPLIFIED DUAL-SLOPE CONVERTER

CONTROL LOGIC
AND CLOCK

VREF

INTEGRATION CAP.

COMP
AMP

-
+

VIN
AN017 Rev 0.00 Page 1 of 6
Feb 1999



 
The Integrating A/D Converter

(ICL7135)
Phase 1, Auto-Zero.  During auto-zero, the errors in the 
analog components (buffer offset voltages, etc.) will be 
automatically nulled out by grounding the input and closing a 
feedback loop such that error information is stored on an “auto-
zero” capacitor.

Phase 2, Signal Integrate. The input signal is integrated for a 
fixed number of clock pulses. For a 31/2-digit converter, 1,000 
pulses is the usual count; for a 41/2-digit converter, 10,000 is 
typical. On completion of the integration period, the voltage V 
in Figure 3 is directly proportional to the input signal.

Phase 3, Reference Integrate. At the beginning of this phase, 
the integrator input is switched from VIN to VREF. The polarity 
of the reference is determined during Phase 2 such that the 
integrator discharges back towards zero. The number of clock 
pulses counted between the beginning of this cycle and the 
time when the integrator output passes through zero is a digital 
measure of the magnitude of VIN.

The beauty of the dual slope technique is that the theoretical 
accuracy depends only on the absolute value of the reference 
and the equality of the individual clock pulses within a given 
conversion cycle. The latter can easily be held to 1 part in 106, 
so in practical terms the only critical component is the 
reference. Changes in the value of other components such as 
the integration capacitor or the comparator input offset voltage 
have no effect, provided they don’t change during an individual 
conversion cycle. This is in contrast to Successive 
Approximation converters which rely on matching a whole 
string of resistor values for quantization.

In a very real sense the designer is presented with a near 
perfect system; his job is to avoid introducing additional error 
sources in turning this textbook circuit into a real piece of 
hardware.

From the foregoing discussion, it might be assumed that 
designing a high performance dual-slope converter is as easy 
as falling off the proverbial log. This is not true, however, 
because in a practical circuit a host of pitfalls must be avoided. 
These include the non-ideal characteristics of FET switches 
and capacitors, and the switching delay in the zero crossing 
detector.

Analyzing the Errors
At this point it is instructive to perform a detailed error analysis 
of a representative dual slope circuit, Intersil’s ICL7135. This is 
a 41/2-digit design, as shown in Figure 4. The error analysis 
which follows relates to this chip - however, the principles 
behind the analysis apply to most integrating converters.

The analog section of the converter is shown in Figure 5. 
Typical values are shown for 120kHz clock and 3 
measurements/second. Each measurement is divided into 
three parts. In part 1, the auto-zero FET switches 1, 2 and 3 
are closed for 10,000 clock pulses. The reference capacitor is 
charged to VREF and the auto-zero capacitor is charged to the 
voltage that makes dV/dt of the integrator equal to zero. In 
each instance the capacitors are charged for 20 or more time 
constants such that the voltage across them is only limited by 
noise.

In the second phase, signal integrate, switches 1, 2 and 3 are 
opened and switch 4 is closed for 10,000 clock pulses. The 
integrator capacitor will ramp up at a rate that is proportional to 
VIN. In the final phase, de-integrate, switch 4 is opened and, 
depending on the polarity of the input signal, switch 5 or 6 is 
closed. In either case the integrator will ramp down at a rate 
that is proportional to VREF. The amount of time, or number of 
clock pulses, required to bring the integrator back to its auto-
zero value is 10,000

.

Of course, this is a description of the “ideal” cycle. Errors from 
this ideal cycle are caused by:

1. Capacitor droop due to leakage.

2. Capacitor voltage change due to charge “suck-out” (the 
reverse of charge injection) when the switches turn off.

3. Nonlinearity of buffer and integrator.

4. High-frequency limitations of buffer, integrator and 
comparator.

5. Integrating capacitor nonlinearity (dielectric absorption).

6. Charge lost by CREF in charging CSTRAY.

Each of these errors will be analyzed for its error contribution to 
the converter.

FIGURE 3. THE THREE PHASES OF DUAL-SLOPE
CONVERSION
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Capacitor Droop Due to Leakage

Typical leakage (IDOFF) of the switches at normal operating 
voltage is 1pA each and 2pA at each input of the buffer and 
integrator op amps. In terms of offset voltage caused by 
capacitor droop, the effect of the auto-zero and reference 
capacitors is differential, i.e., there is no offset if they droop an 
equal amount. A conservative typical effect of droop on offset 
would be 2pA discharging 1F for 83ms (10,000 clock 
periods), which amounts to an averaged equivalent of 083V 
referred to the input. The effect of the droop on rollover error 
(difference between equal positive and negative voltages near 
full scale) is slightly different. For a negative input voltage, 
switch 5 is closed for the de-integrate cycle. Thus the 
reference capacitor and auto-zero capacitor operate 
differentially for the entire measurement cycle. For a positive 
voltage, switch 6 is closed and the differential compensation of 
the reference capacitor is lost during de-integrate. A typical 
contribution to rollover error is 3pA discharging 1F capacitor 
for 166ms, equivalent to 0.249V when averaged. These 
numbers are certainly insignificant for room temperature 

leakages but even at 100oC the contributions should be only 
15V and 45V respectively. A rollover error of 45V is less 
than 0.5 counts on this 20,000 count instrument.

Charge “Suck-Out” When the Switches Turn-Off

There is no problem in charging the capacitors to the correct 
value when the switches are on. The problem is getting the 
switches off without changing this value. As the gate is driven 
off, the gate-to-drain capacitance of the switch injects a charge 
on the reference or auto-zero capacitor, changing its value. 
The net charge injection of switch 3 turning off can be 
measured indirectly by noting the offset resulting by using a 
0.01F auto-zero capacitor instead of 1.0F. For this condition 
the offset is typically 250V, and since the signal ramp is a 
straight line instead of a parabola the main error is due to 
charge injection rather than leakage. This given a net injected 
charge of 2.5pC or an equivalent Cgd of 0.16pF. The effect of 
switches 1, 2, 4, 5 and 6 are more complicated since they 
depend on timing and some switches are going on while others 
are going off. A substitution of an 0.01F capacitor for 
reference capacitor gives less than 100V offset error. Thus, a 
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conservative typical offset error for a 1.0F capacitor is 2.5V. 
There is no contribution to rollover error (independent of 
offset). Also this value does not change significantly with 
temperature.

Nonlinearity of Buffer and Integrator

In this converter, since the signal and reference are injected at 
the same point, the gain of the buffer and integrator are not of 
first-order importance in determining accuracy. This means 
that the buffer can have a very poor CMRR over the input 
range and still contribute zero error as long as it is constant, 
i.e., offset changes linearly with common mode voltage. The 
first error term is the nonlinear component of CMRR. Careful 
measurement of CMRR on 30 buffers indicated rollover errors 
from 5V to 30V. The contribution of integrator nonlinearity is 
less than 1V in each case.

High Frequency Limitations of Amplifiers

For a zero input signal, the buffer output will switch from zero 
to VREF (1.0V) in 0.5s with an approximately linear response. 
The net result is to lose 0.25s of de-integrate period. For a 
120kHz clock, this is 3% of a clock pulse or 3V. This is not an 
offset error since the delay is equal for both positive and 
negative references. The net result is the converter would 
switch from 0 to 1 at 97V instead of 100V in the ideal case.

A much larger source of delay is the comparator which 
contributes 3s. At first glance, this sounds absolutely 
ridiculous compared to the few tens of nanoseconds delay of 
modern IC comparators. However, they are specified with 2 to 
10mV of overdrive. By the time the ICL7135 comparator gets 
10mV of overdrive, the integrator will have been through zero-
crossing or 20 clock pulses! Actually, the comparator has a 
300MHz gain-bandwidth product which is comparable to the 
best ICs. The problem is that it must operate on 30V of 
overdrive instead of 10mV. Again, this delay causes no offset 
error but means the converter switches from 0 to 1 at 60V, 
from 1 to 2 at 160V, etc. Most users consider this switching at 
approximately 1/2 LSB more desirable than the “so-called 
ideal” case of switching at 100V. If it is important that 
switching occur at 100V, the comparator delay may be 
compensated by including a small value resistor (20) in 
series with the integration capacitor. (Further details of this 
technique are given on page 5 under the heading “Maximum 
Clock Frequency”.) The integrator time delay is less than 
200ns and contributes no measurable error.

Integrating Capacitor Dielectric Absorption

Any integrating A/D assumes that the voltage change across 
the capacitor is exactly proportional to the integral of the 
current into it. Actually, a very small percentage of this charge 
is “used up” in rearranging charges within the capacitor and 
does not appear as a voltage across the capacitor. This is 
dielectric absorption. Probably the most accurate means of 
measuring dielectric absorption is to use it in a dual-slope A/D 
converter with VIN VREF . In this mode, the instrument should 
read 1.0000 independent of other component values. In very 

careful measurements where zero-crossings were observed in 
order to extrapolate a fifth digit and all delay errors were 
calculated out, polypropylene capacitors gave the best results. 
Their equivalent readings were 0.99998. In the same test 
polycarbonate capacitors typically read 0.9992, polystyrene 
0.9997. Thus, polypropylene is an excellent choice since they 
are not expensive and their increased temperature coefficient 
is of no consequence in this circuit. The dielectric absorption of 
the reference and auto-zero capacitors are only important at 
power-on or when the circuit is recovering from an overload. 
Thus, smaller or cheaper capacitors can be used if very 
accurate readings are not required for the first few seconds of 
recovery.

Charge Lost by CREF in Charging CSTRAY
In addition to leakage and switching charge injection, the 
reference capacitor has a third method of losing charge and, 
therefore, voltage. It must charge CSTRAY as it swings from 0 
to VIN to VREF (Figure 5). However, CSTRAY only causes an 
error for positive inputs. To see why, let’s look firstly at the 
sequence of events which occurs for negative inputs. During 
auto-zero CREF and CSTRAY are both charged through the 
switches. When the negative signal is applied, CREF and 
CSTRAY are in series and act as a capacitance divider. For 
CSTRAY = 15pF, the divider ratio is 0.999985. When the 
positive reference is applied through switch #5, the same 
divider operates. As mentioned previously, a constant gain 
network contributes no error and, thus, negative inputs are 
measured exactly.

For positive inputs, the divider operates as before when 
switching from auto-zero to VIN, but the negative reference is 
applied by closing switch #6. The reference capacitor is not 
used, and therefore the equivalent divider network is 1.0000 
instead of 0.999985. At full scale, this 15V/V error gives a 
30V rollover error with the negative reading being 30V too 
low. Of course for smaller CSTRAY, the error is proportionally 
less.

Summary

Error analysis of the circuit using typical values shows four 
types of errors. They are (1) an offset error of 2.5V due to 
charge injection, (2) a full scale rollover error of 30V due to 
CSTRAY, (3) a full scale rollover error of 5 to 30V due to buffer 
nonlinearity and (4) a delay error of 40V for the first count. 
These numbers are in good agreement with actual results 
observed for the lCL7135. Due to peak-to-peak noise of 20V 
around zero, it is possible only to say that any offsets are less 
than 10V. Also, the observed rollover error is typically 1/2 
count (50V) with the negative reading larger than the positive. 
Finally, the transition from a reading of 0000 to 0001 occurs at 
50V.

These figures illustrate the very high performance which can 
be expected from a well designed dual-slope circuit - 
performance figures which can be achieved with no tricky 
‘tweaking’ of component values. Furthermore, the circuit 
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includes desirable convenience features such as auto-zero, 
auto-polarity and a single reference.

Maximum Clock Frequency
Because of the 3s delay in the comparator, the maximum 
recommended clock frequency is 160kHz. In the error analysis 
it was shown that under these conditions half of the first 
reference integrate period is lost in delay. This means that the 
meter reading will change from 0 to 1 at 50V, from 1 to 2 at 
150V, etc. As was noted earlier, most users consider this 
transition at midpoint to be desirable. However, if the clock 
frequency is increased appreciably above 160kHz, the 
instrument will flash 1 on noise peaks even when the input is 
shorted.

The clock frequency may be extended above 160kHz, 
however, by using a low value resistor in series with the 
integration capacitor. The effect of the resistor is to introduce a 
small pedestal voltage on to the integrator output at the 
beginning of the reference integrate phase (Figure 6). By 
careful selection of the ratio between this resistor and the 
integrating resistor (a few tens of ohms in the recommended 
circuit), the comparator delay can be compensated and the 
maximum clock frequency extended by approximately a factor 
of 3. At higher frequencies, ringing and second order breaks 
will cause significant nonlinearities in the first few counts of the 
instrument.

Noise
The peak-to-peak noise around zero is approximately 20V 
(peak-to-peak value not exceeded 95% of the time). Near full 
scale, this value increases to approximately 40V.

Since much of the noise originates in the auto-zero loop, some 
improvement in noise can be achieved by putting gain in the 
buffer. A gain of about 5X is optimum. Too much gain will 
cause the auto-zero switch to misbehave, because the 
amplified VOS of the buffer will exceed the switch operating 
range.
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