
Application Note

78K0R/Fx3

16-Bit Single-Chip Microcontroller

Flash Memory Self Programming

Document No. U19672EE1V2AN00

Date published May 2009

© NEC Electronics 2009

Printed in Germany

Legal Notes

• The information contained in this document is being issued in
advance of the production cycle for the product. The parameters
for the product may change before final production or NEC
Electronics Corporation, at its own discretion, may withdraw the
product prior to its production.

• No part of this document may be copied or reproduced in any form
or by any means without the prior written consent of NEC
Electronics. NEC Electronics assumes no responsibility for any
errors that may appear in this document.

• NEC Electronics does not assume any liability for infringement of
patents, copyrights or other intellectual property rights of third
parties by or arising from the use of NEC Electronics products listed
in this document or any other liability arising from the use of such
products. No license, express, implied or otherwise, is granted under
any patents, copyrights or other intellectual property rights of NEC
Electronics or others.

• Descriptions of circuits, software and other related information in this
document are provided for illustrative purposes in semiconductor
product operation and application examples. The incorporation of
these circuits, software and information in the design of a customer's
equipment shall be done under the full responsibility of the customer.
NEC Electronics assumes no responsibility for any losses incurred
by customers or third parties arising from the use of these circuits,
software and information.

• While NEC Electronics endeavors to enhance the quality, reliability
and safety of NEC Electronics products, customers agree and
acknowledge that the possibility of defects thereof cannot be
eliminated entirely. To minimize risks of damage to property or injury
(including death) to persons arising from defects in NEC Electronics
products, customers must incorporate sufficient safety measures in
their design, such as redundancy, fire-containment and anti-failure
features.

• NEC Electronics products are classified into the following three
quality grades: "Standard", "Special", and "Specific". The "Specific"
quality grade applies only to NEC Electronics products developed
based on a customer-designated "quality assurance program" for a
specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below.
Customers must check the quality grade of each NEC Electronics
products before using it in a particular application.
"Standard": Computers, office equipment, communications
equipment, test and measurement equipment, audio and visual
equipment, home electronic appliances, machine tools, personal
electronic equipment and industrial robots.
"Special": Transportation equipment (automobiles, trains, ships,
etc.), traffic control systems, anti-disaster systems, anti-crime
systems, safety equipment and medical equipment (not specifically
designed for life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters,
nuclear reactor control systems, life support systems and medical
equipment for life support, etc.

2 Application Note U19672EE1V2AN00

The quality grade of NEC Electronics products is "Standard" unless otherwise
expressly specified in NEC Electronics data sheets or data books, etc. If
customers wish to use NEC Electronics products in applications not intended by
NEC Electronics, they must contact an NEC Electronics sales representative in
advance to determine NEC Electronics' willingness to support a given application.

(Note)
(1) "NEC Electronics" as used in this statement means NEC Electronics
Corporation and also includes its majority-owned subsidiaries.
(2) "NEC Electronics products" means any product developed or manufactured
by or for NEC Electronics (as defined above).

Application Note U19672EE1V2AN00 3

Regional Information

Some information contained in this document may vary from country to country. Before
using any NEC product in your application, please contact the NEC office in your country
to obtain a list of authorized representatives anddistributors. They will verify:

• Device availability
• Ordering information
• Product release schedule
• Availability of related technical literature
• Development environment specifications (for example, specifications for

third-party tools and components, host computers, power plugs, AC
supply voltages, and so forth)

• Network requirements

In addition, trademarks, registered trademarks, export restrictions, and otherlegal
issues may also vary from country to country.

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668, Japan
Tel: 044 4355111
http://www.necel.com/

[America]

[Europe]

[Asia & Oceania]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554,
U.S.A.
Tel: 408 5886000
http://www.am.necel.com/

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211 65030
http://www.eu.necel.com/

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908 691133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01 30675800

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 6387200

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02 667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven,
The Netherlands
Tel: 040 2654010

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27
ZhiChunLu Haidian District,
Beijing 100083, P.R.China
Tel: 010 82351155
http://www.cn.necel.com/

NEC Electronics Shanghai Ltd.
Room 2511-2512, Bank of China
Tower,
200 Yincheng Road Central,
Pudong New Area,
Shanghai 200120, P.R. China
Tel: 021 58885400
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
12/F., Cityplaza 4,
12 Taikoo Wan Road, Hong Kong
Tel: 2886 9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R.O.C.
Tel: 02 27192377

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253 8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku, Seoul,
135-080, Korea Tel: 02-558-3737
http://www.kr.necel.com/

4 Application Note U19672EE1V2AN00

Table of Contents

Chapter 1 General Information . 7

1.1 Overview . 7

1.2 Work Flow . 9

1.3 Memory organization . 11

Chapter 2 Programming Environment . 12

2.1 Hardware Environment . 12

2.2 Software Envronment . 12
2.2.1 Stack and data-buffer . 13

Chapter 3 Interrupt servicing . 15

3.1 Interrupt response time and suspension delay . 21

3.2 Restrictions during interrupt servicing . 21

Chapter 4 Boot-swapping . 22

Chapter 5 Library for NEC Compiler . 26

5.1 Library function prototypes . 26

5.2 Library explanation . 27
5.2.1 FSL_Open . 28
5.2.2 FSL_Close . 30
5.2.3 FSL_Init . 31
5.2.4 FSL_Init_cont . 32
5.2.5 FSL_ModeCheck . 33
5.2.6 FSL_BlankCheck . 34
5.2.7 FSL_Erase . 35
5.2.8 FSL_IVerify . 36
5.2.9 FSL_Write . 37
5.2.10 FSL_EEPROMWrite . 39
5.2.11 FSL_GetSecurityFlags . 41
5.2.12 FSL_GetActiveBootCluster . 43
5.2.13 FSL_GetBlockEndAddress . 44
5.2.14 FSL_GetFlashShieldWindow . 46
5.2.15 FSL_SetFlashShieldWindow . 48
5.2.16 FSL_SetXXX and FSL_InvertBootFlag . 50
5.2.17 FSL_SwapBootCluster . 52
5.2.18 FSL_ForceReset . 53
5.2.19 FSL_SetInterruptMode . 54
5.2.20 FSL_SwapActiveBootCluster . 55

5.3 Sample linker file . 56

5.4 How to integrate the library into an application . 57

Chapter 6 Library for IAR Compiler . 58

6.1 Library function prototypes . 58

6.2 Library explanation . 59
6.2.1 FSL_Open . 60
6.2.2 FSL_Close . 62
6.2.3 FSL_Init . 63

Application Note U19672EE1V2AN00 5

6.2.4 FSL_Init_cont . 64
6.2.5 FSL_ModeCheck . 65
6.2.6 FSL_BlankCheck . 66
6.2.7 FSL_Erase . 67
6.2.8 FSL_IVerify . 68
6.2.9 FSL_Write . 69
6.2.10 FSL_EEPROMWrite . 71
6.2.11 FSL_GetSecurityFlags . 73
6.2.12 FSL_GetActiveBootCluster . 75
6.2.13 FSL_GetBlockEndAddress . 76
6.2.14 FSL_GetFlashShieldWindow . 78
6.2.15 FSL_SetFlashShieldWindow . 80
6.2.16 FSL_SetXXX and FSL_InvertBootFlag . 82
6.2.17 FSL_SwapBootCluster . 84
6.2.18 FSL_ForceReset . 85
6.2.19 FSL_SetInterruptMode . 86

6.3 Sample linker file . 87

6.4 How to integrate the library into an application . 89

Chapter 7 Sample code . 90

Chapter 8 Programming Characteristics . 91

8.1 Suspend and response timings of interrupts . 91
8.1.1 Interrupt response timings . 92
8.1.2 Interrupt suspension timings . 93

8.2 Operation time . 94

6 Application Note U19672EE1V2AN00

Chapter 1 General Information

1.1 Overview

The series products are equipped with an internal firmware, which allows to
rewrite the flash memory without the use of an external programmer. In addition
to this internal firmware NEC provides the socalled self-programming library. This
library offers an easy-to-use interface to the internal firmware functionality. By
calling the self-programming library functions from user program, the contents of
the flash memory can easily be rewritten in the field.

Figure 1-1 Flash Access

Caution - In the series products, the self-programming library rewrites the
contents of the flash memory by using the CPU, its registers and the
internal RAM. Thus the user program cannot be executed while the
self programming library is in process.

- The self programming library uses the CPU (register bank 3). Use of
some RAM areas are prohibited when using the self-programming.
For detailed information please refer to the device Users Manual.

Operation Modes There are three operation modes during self-programming.

Mode Description

Normal Mode
- execute user application
- after RESET operation starts in this mode

Mode A1 - After FSL_XXX function call

Mode A2
- used by the firmware only to perform the

command
- not visible to the user

Application Note U19672EE1V2AN00 7

Figure 1-2 Operation Modes

Chapter 1 General Information

8 Application Note U19672EE1V2AN00

1.2 Work Flow

The self-programming library can be used by an user program written in either C-
or assembly language.

The following flowchart illustrates a sample procedure of rewriting the flash
memory by using the self programming library.

Figure 1-3 Flow of self-programming (rewriting contents of flash memory)

General Information Chapter 1

Application Note U19672EE1V2AN00 9

Flow Explanation 1. Call the function FSL_Open.
- Preservation and configuration of the interrupt controller for self-
programming. (optional)
- Set FLMD0 to HIGH.
- any other customizable preparation measures(i.e. activation of the
communication channel)

2. Call the function FSL_Init to initialize the self-programming
environment.

3. Call the mode check function FSL_ModeCheck to examine the
FLMD0 voltage level.

4. Call the block blank check function FSL_BlankCheck to prove if the
specified block is blank.

5. Call the block erase function FSL_Erase to erase the data of a
specified block.

6. Fill the data buffer with data has to be written into the flash.
7. Call the word write function FSL_Write to update 1 to 64 words (each

word equals 4 bytes) of data to a specified address.
8. Call the block verify function FSL_IVerify to verify a specified block

(internal verification).
9. Postprocessing, call the close function FSL_Close.

- Set FLMD0 is LOW.
- Retrieve preserved interrupt masks. (optional)
- any other customizable post-processing measures(i.e. deactivation
of the communication channel)

Chapter 1 General Information

10 Application Note U19672EE1V2AN00

1.3 Memory organization

The flash memory of all devices is divided into blocks of 1KByte. Each block can
be erased/verified and blankchecked individually. The following table shows the
start- and end-addresses of each block.

General Information Chapter 1

Application Note U19672EE1V2AN00 11

Chapter 2 Programming Environment

This chapter explains the necessary hardware and software environment which
is used to rewrite flash memory by using the self-programming library.

2.1 Hardware Environment

In the series devices, there is a FLMD0 pin controlling flash memory operation
mode. To protect the flash memory against unwanted overwriting during normal
operation the FLMD0 pin has to be set to LOW level at that time. To be able to
update flash memory content the FLMD0 pin should be set to HIGH level.

If the FLMD0 pin is low during self-programming, the firmware can still be
executed, but the circuit for rewriting flash memory does not operate. In such a
case the self-programming function returns an error code but the content of the
flash remains untouched.

FLMD0 controlled via
internal pull-down/up

resistor

The FLMD0 level can be controlled internally via the BECTL register. When using
BECTL for FLMD0 level control, leaving the FLMD0 pin open is recommended.

There are two predefined macros(FSL_FLMD0_LOW and FSL_FLMD0_HIGH)
using the BECTL register, which can be found in the fsl_user.h.

The self programming open function FSL_Open can switch the FLMD0 pin to high
or low, by changing the value of BECTL register vai the macros.

The following is an example circuit that allows to control the voltage level at the
FLMD0 pin externally by using a dedicated general purpose I/O port pin. Please
refer to the device Users Manual for detailed information.

2.2 Software Envronment

The self-programming library allocates its code inside the user area and
consumes up to about 1097 bytes of the program memory. The self programming
library itself uses CPU's register bank 3, work area in form of entry RAM,
application stack and so called data buffer for data exchange with the firmware.

The following table lists the required software resources.

12 Application Note U19672EE1V2AN00

Item Description

CPU Register Bank 3 cannot be used by the application

User RAM Some RAM areas are prohibited. Please refer to the
device users manual for detailed information.

Stack
additional 62 bytes max.
Note
Use the same stack as for the user program

Data buffer

• 62 - 256 bytes: if function
SwapBootCluster is used

• 7 - 256 bytes: if function
FSL_SwapBootCluster is not used

Self-programming data
(FSL_DATA)

NEC Compiler: 19 bytes internal data + user part(8 bytes
+ data buffer size)
IAR COMPILER: 10 bytes internal data + user part(8
bytes + data buffer size)

Self-programming library

xxx-989 bytes + user part (8 - 160 bytes)
Note
Code size of the self-programming library varies
depending on ther configuration(Please refer to the
following table).

Caution • The self-programming operation is not guaranteed if the user
manipulates the above resources. Do not manipulate these
resources during a self programming session.

• The user must release the above resources before calling the self
programming library.

Table 2-1 Code size of the library depends on the user configuration (without user part)

IAR V4.xx
(near model)

IAR V4.xx
(far model)

NEC V2.xx
(all models)

Max. code size 924 bytes 979 bytes 989 bytes

Max. code size (without GetInfo,
SetInfo, FSL_ForceReset and
FSL_SwapBootCluster)

488 bytes 539 bytes 507 bytes

Max. code size (without GetInfo,
SetInfo and FSL_SwapBootCluster)

--> FSL_InvertBootFlag,
FSL_ForceReset and
FSL_GetActiveBootCluster included

630 bytes 687 bytes 654 bytes

User part:
FSL_Open and FSL_Close

8 bytes - 112
bytes

8 bytes - 160
bytes

8 bytes - 112
bytes

Note *** The Linker excludes this functions automatically, if they are not referenced by
the application.

2.2.1 Stack and data-buffer

Stack The stack is used to store data and instruction pointers during self-programming.
Please refer to the table above "Software Resources" for the location restrictions
of the stack during self-programming.

Programming Environment Chapter 2

Application Note U19672EE1V2AN00 13

Table 2-2 Stack consumption of each function

Function
Stack consumption of each
function in bytes (max.)

NEC IAR(near) IAR(far)

FSL_Init 56 58 58

FSL_Init_cont 56 58 58

FSL_ModeCheck 0 0 0

FSL_BlankCheck 50 52 52

FSL_Erase 54 56 56

FSL_IVerify 50 52 52

FSL_Write 52 52 52

FSL_EEPROMWrite 52 52 52

FSL_GetSecurityFlags 52 52 50

FSL_GetActiveBootCluster 52 52 50

FSL_GetBlockEndAddr 52 52 50

FSL_GetFlashShieldWindow 52 52 52

FSL_InvertBootFlag 58 56 56

FSL_SetFlashShieldWindow 56 56 56

FSL_SetChipEraseProtectFlag 58 56 56

FSL_SetBlockEraseProtectFlag 58 56 56

FSL_SetWriteProtectFlag 58 56 56

FSL_SetBootClusterProtectFlag 58 56 56

FSL_SwapBootCluster 50 50 50

FSL_SwapActiveBootCluster (NEC only) 64 - -

FSL_ForceReset 0 0 0

FSL_SetInterruptMode 26 26 26

Data Buffer The data buffer is used for data-exchange between the firmware and the self-
programming library.

Note Data to be written to the flash memory must be appropriately set and processed
before the word write/SetInfo function is called. The length of the data buffer
depends on the user configuration as shown below.

• min. 62 bytes: if function FSL_SwapBootCluster is used
• min. 7 bytes: if function FSL_SwapBootCluster is not used

Chapter 2 Programming Environment

14 Application Note U19672EE1V2AN00

Chapter 3 Interrupt servicing

Some FSL functions can be interrupted by an interrupt during the execution. The
non-masked interrupts will be checked, whether an interrupt was generated. The
following table list the functions, which supports interrupt acknowledgement.

Function name Interrupt Acknowledgement

FSL_Open

Acknowledged

FSL_Close

FSL_Init

FSL_Init_cont

FSL_ModeCheck

FSL_BlankCheck

FSL_Erase

FSL_IVerify

FSL_Write

FSL_EEPROMWrite

FSL_GetSecurityFlags

Not acknowledged
FSL_GetActiveBootCluster

FSL_GetBlockEndAddr

FSL_GetFlashShieldWindow

FSL_InvertBootFlag

Acknowledged

FSL_SetChipEraseProtectFlag

FSL_SetBlockEraseProtectFlag

FSL_SetWriteProtectFlag

FSL_SetBootClusterProtectFlag

FSL_SetFlashShieldWindow

FSL_SwapBootCluster

Not acknowledgedFSL_ForceReset

FSL_SetInterruptMode

FSL_SwapActiveBootCluster (only for
NEC Compiler)

Acknowledged

Application Note U19672EE1V2AN00 15

Self-programming
without interrupt

processing

The following figure illustrates the processing flow without interrupts.

Figure 3-1 Flow of Processing without Interrupt

As shown in the figure above the PSW.IE bit must be cleared for execution without
interrupts.

Chapter 3 Interrupt servicing

16 Application Note U19672EE1V2AN00

Interrupt handling

Interrupts will be handled in two different ways. If the FSL function was
interrupted, the user has a possibility to make a decision (inside ISR), whether to
leave the FSL function with 0x1F return value or to continue until it is finished.

Self-programming
with interrupt

processing only

The following figure illustrates an interrupted FSL function where the ISR decides
to continue the function.

Figure 3-2 Flow of Processing in Case of Interrupt (Mode 0)

As you can see in the figure above, the FSL function will be interrupted by a non-
masked interrupt and the ISR will be processed. After ISR processing the FSL will
continue the function and will not return to the user application with 0x1F. The
other case is, if the user wants to leave the FSL_XXX function as fast as possible.
In that case the function FSL_SetInterruptMode must be called inside the ISR.
After ISR processing the function will leave the function with 0x1F interrupted
status.

Interrupt servicing Chapter 3

Application Note U19672EE1V2AN00 17

Self-programming
with interrupt

processing followed
by subsequent

command
suspension

The following figure illustrates an interrupted FSL function where the ISR decides
to leave the function.

Figure 3-3 Flow of Processing in Case of Interrupt (Mode 1)

In this case, user application should recall the function to resume the processing
until the FSL function is finished.

Chapter 3 Interrupt servicing

18 Application Note U19672EE1V2AN00

Figure 3-4 FSL Function Process with Resuming Mechanism

The following code-sample shows a suggestion on how to handle interruptions.

 do
{
 my_status_u08 = FSL_BlankCheck (block_u16);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

The following table shows how to resume (continue) self-programming
commands interrupted and suspended by an interrupt service. The most of them
are continued by re-calling the same function with unchanged parameters as long
the function returns the value 0x1F. Exception is the self-programming
initialization that requires a different function to be continued. Please refer to the
table below for details:

Table 3-1 Resume/Restart process for interrupted self-programming functions

Function name Resume method

FSL_Init
Call FSL_Init_cont (not FSL_Init) when it returns the status 0x1F
(FSL_ERR_INTERRUPTION)

FSL_Init_cont
Re-call FSL_Init_cont as long it returns the status 0x1F
(FSL_ERR_INTERRUPTION)

FSL_BlankCheck
Re-call FSL_BlankCheck(..) as long it returns the status 0x1F
(FSL_ERR_INTERRUPTION)

FSL_Erase
Re-call FSL_Erase(..) as long it returns the status 0x1F
(FSL_ERR_INTERRUPTION)

FSL_Write
Re-call FSL_Write(..) as long it returns the status 0x1F
(FSL_ERR_INTERRUPTION)

FSL_IVerify
Re-call FSL_IVerify(..) as long it returns the status 0x1F
(FSL_ERR_INTERRUPTION)

FSL_EEPROMWrite
Re-call FSL_EEPROMWrite(..) as long it returns the status 0x1F
(FSL_ERR_INTERRUPTION)

FSL_SetChipEraseProt
ectFlag

Re-call FSL_SetChipEraseProtectFlag(..) as long it returns the
status 0x1F(FSL_ERR_INTERRUPTION)

FSL_SetBlockErasePro
tectFlag

Re-call FSL_SetBlockEraseProtectFlag(..) as long it returns the
status 0x1F(FSL_ERR_INTERRUPTION)

FSL_SetWriteProtectFl
ag

Re-call FSL_SetWriteProtectFlag(..) as long it returns the status
0x1F(FSL_ERR_INTERRUPTION)

FSL_SetBootClusterPr
otectFlag

Re-call FSL_SetBootClusterProtectFlag(..) as long it returns the
status 0x1F(FSL_ERR_INTERRUPTION)

FSL_SetFlashShieldWi
ndow

Re-call FSL_SetFlashShieldWindow(..) as long it returns the
status 0x1F(FSL_ERR_INTERRUPTION)

Interrupt servicing Chapter 3

Application Note U19672EE1V2AN00 19

Function name Resume method

FSL_InvertBootFlag
Re-call FSL_InvertBootFlag(..) as long it returns the status 0x1F
(FSL_ERR_INTERRUPTION)

FSL_SwapActiveBoot
Cluster (only for NEC
Compiler)

Re-call FSL_SwapActiveBootCluster(..) as long it returns the
status 0x1F(FSL_ERR_INTERRUPTION)

Chapter 3 Interrupt servicing

20 Application Note U19672EE1V2AN00

3.1 Interrupt response time and suspension delay

Please refer to the chapter "Programming Characteristics" for timing
descriptions.

3.2 Restrictions during interrupt servicing

The following described restrictions are related to interrupt servicing during self-
programming.

• If the function FSL_SetInterruptMode() was called (e.g. inside ISR)
before starting any interruptable FSL_xxx() function, the function
FSL_xxx() will return immediately the status
FSL_ERR_INTERRUPTION. Please recall the FSL_xxx() function to
continue.
Exceptions:
• This restriction is not valid if the FSL_xxx() function was

called in DI (disable interrupts) mode.
• This restriction is not valid for called FSL_GetXXX,

FSL_InitXXX, FSL_ModeCheck, FSL_SwapBootCluster and
FSL_ForceReset function

• Do not use register bank 3 during interrupt servicing, because self-
programming uses register bank 3.

• The self-programming library uses different register banks during
execution. To use a specific register bank for interrupt servicing,
switch to the bank to be used.

• Save and restore registers used for interrupt servicing during
interrupt servicing.

• Do not execute any other self-programming library function as long
the currently executed but suspended function returns the status
0x1F. The only one exception is the function FSL_Init() that can be
called at any time.

• Do not change any parameter of the self-programming library
function (address, block-number,) being executed as long its
returned status is 0x1F.

• Do not erase RAM areas used by self-programming. Please refer to
the chapter "software environment" for detailed information.

• The data buffer used by the FSL_Init, FSL_Write/
FSL_EEPROMWrite, FSL_GetXXX and FSL_SetXXX functions
should not be rewritten during ISR.

Interrupt servicing Chapter 3

Application Note U19672EE1V2AN00 21

Chapter 4 Boot-swapping

Reason for
Bootswapping

A permanent data loss may occur when rewritting the vector table, the basic
functions of the program, or the self-programming area, due to one of the
following reasons:

• a temporary power failure
• an externally generated reset

The user program is thus not able to be restarted through reset. Likewise the
rewrite process can no longer be performed. This potential risk can be avoided
by using a boot swap functionality.

Boot swap Function The boot swap function FSL_InvertBootFlag replaces the current boot area, boot
cluster 0Note, with the boot swap target area, boot cluster 1Note.

Before swapping, user program should write the new boot program into boot
cluster 1. And then swap the two boot cluster and force a hardware reset. The
device will then be restarting from boot cluster 1.

As a result, even if a power failure occurs while the boot program area is
being rewritten, the program runs correctly because after reset the circuit
starts from boot cluster 1. After that, boot cluster 0 can be erased or written
as required.

Note Boot cluster 0 (0000H to 1FFFH): Original boot program area
Boot cluster 1 (2000H to 3FFFH): Boot swap target area

Figure 4-1 Summary of Boot Swapping Flow

Caution • To rewrite the flash memory by using a programmer (such as
the PG-FP5) after boot swapping, follow the procedure below.
1. Chip erase
2. PV (program, verify) or EPV (erase, program, and verify)
(Unless step 1 is performed, data may not be correctly written.)

• After successfully execution of the FSL_InvertBootFlag function
it is not allowed to execute any FSL_Setxxx function till
hardware reset is occurred.

22 Application Note U19672EE1V2AN00

Figure 4-2 Flow of Boot Swapping

Caution FSL_ForceReset function generates a software reset(please refer to the device
Users Manual for detailed information).

Boot-swapping Chapter 4

Application Note U19672EE1V2AN00 23

<1> Preprocessing

The following preprocess of boot swapping is performed.

- Set up software environment
- Set up hardware environment
- Initialize entry RAM
- Check FLMD0 voltage level

<2> Erasing blocks 8 to 15

Call the erase function FSL_Erase to erase blocks 8 to 15.

Note The erase function erases only a block at a time. Call it once for each block.

Figure 4-3 Erasing Boot Cluster 1

Chapter 4 Boot-swapping

24 Application Note U19672EE1V2AN00

<3> Writing new program to boot cluster 1

Use the FSL_Write function to write the new bootloader (2000H to 3FFFH).

Note The write function writes data in word units (256 bytes max.).

Figure 4-4 Writing New Program to Boot Cluster 1

<4> Verifying Blocks 8 to 15

Call the verify function FSL_IVerify to verify Blocks 8 to 15.

Note The verify function verifies only a block at a time. Call it once for each block.

<5> Checks the new bootloader.

E.g. CRC check on the new bootloader.

<6> Setting of boot swap bit

Call the function FSL_InvertBootFlag. The inactive boot cluster with new
bootloader becomes active after hardware reset.

<7> Force of reset

Call the FSL_ForceReset function. New bootloader is active after reset.

Boot-swapping Chapter 4

Application Note U19672EE1V2AN00 25

Chapter 5 Library for NEC Compiler

This chapter describes the details on the self-programming library for the NEC
Compiler. The library will be delivered in pre-compiled supporting all Compiler
memory models.

• fsl.lib : all memory models supported

5.1 Library function prototypes

The flash self-programming library consists of the following functions.

Table 5-1 Self-programming Library - function prototypes

Function prototype Outline

void FSL_Open(void) Opens a flash self programming session.

void FSL_Close(void) Closes a flash self programming session.

fsl_u08 FSL_Init(fsl_u08* data_buffer_pu08)
Initialization of the self-programming
environment.

fsl_u08 FSL_Init_cont(fsl_u08* data_buffer_pu08)
Continue initialization of the entry RAM
after interrupted FSL_Init function.

fsl_u08 FSL_ModeCheck(void) Checks FLMD0 voltage level.

fsl_u08 FSL_BlankCheck(fsl_u16 block_u16) Checks if specified block is empty.

fsl_u08 FSL_Erase(fsl_u16 block_u16) Erases a specified block.

fsl_u08 FSL_IVerify(fsl_u16 block_u16)
Verifies a specified block (internal
verification).

fsl_u08 FSL_Write(fsl_u32 s_address_u32, fsl_u08 word_count_u08)
Writes up to 64 words (each word equals
4 bytes) to a specified address.

fsl_u08 FSL_EEPROMWrite(fsl_u32 s_address_u32, fsl_u08
word_count_u08)

Blankcheck,writes and verify up to 64
words to a specified address.

fsl_u08 FSL_GetSecurityFlags(fsl_u16 *destination_pu16) Reads the security information.

fsl_u08 FSL_GetActiveBootCluster(fsl_u08 *destination_pu08)
Reads the current value of the boot flag in
extra area.

fsl_u08 FSL_GetBlockEndAddr(fsl_u32 *destination_pu32, fsl_u16
block_u16)

Puts the last address of the specified
block into destination_addr_H and
destination_addr_L

fsl_u08 FSL_GetFlashShieldWindow(fsl_u16* start_block_pu16, fsl_u16*
end_block_pu16)

Read the flash shield window from the
extra area into start_block_pu16
end_block_pu16.

fsl_u08 FSL_InvertBootFlag(void)
Inverts the current value of the boot flag
in the extra area.

fsl_u08 FSL_SetFlashShieldWindow(fsl_u16 start_block_u16, fsl_u16
end_block_u16)

Sets the falsh shield window.

fsl_u08 FSL_SetChipEraseProtectFlag(void)
Sets the chip-erase-protection flag in the
extra area.

fsl_u08 FSL_SetBlockEraseProtectFlag(void)
Sets the block-erase-protection flag in
the extra area.

26 Application Note U19672EE1V2AN00

Function prototype Outline

fsl_u08 FSL_SetWriteProtectFlag(void)
Sets the write-protection flag in the extra
area.

fsl_u08 FSL_SetBootClusterProtectFlag(void)
Sets the bootcluster-update-protection
flag in the extra area.

fsl_u08 FSL_SwapBootCluster(void)
This functions swaps the boot cluster 0
and 1 physically. After reset the boot
cluster is active regarding the boot flag.

void FSL_ForceReset(void) Generate software reset.

void FSL_SetInterruptMode(void)
This function forces the FSL to return to
the user as fast as possible.

fsl_u08 FSL_SwapActiveBootCluster(void)
Inverts the security boot flag and swaps
physically boot cluster 0 and boot cluster
1.

5.2 Library explanation

Each self-programming function is explained in the following format.

Flash self-programming Function name

Outline Outlines the self-programming function.

Function prototype Shows the C-Compiler function prototype of the current function.

Note In this manual, the data type name is defined as followed.

Definition Data Type

fsl_u08 unsigned char

fsl_u16 unsigned int

fsl_u32 unsigned long int

Argument Indicates the argument of the self-programming function.

Return Value Indicates the return value from the self-programming function.

Register status after
calling

Indicates the status of registers after the self-programming function is called.

Call example Indicates an example of calling the self-programming function from a user
program written in C language.

Flow Indicates the program flow of the self-programming function.

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 27

5.2.1 FSL_Open

Outline This function offers an standardized but configurable way to open a self-
programming session. If required, the interrupt controller can be backed-up and
reprogrammed for flash update period only. Additional applications specific code
can be added here if necessary for opening the flash update process.The FLMD0
will be switched to HIGH level according to macro definition FSL_FLMD0_HIGH.

Note • Call this function at the beginning of the self-programming
operation.

• User may customize this function in the source files fsl_user.h and
fsl_user.c, do a few more preprocesses, so as to adapt personal
requirements.

Function prototype void FSL_Open (void)

Pre-condition None

Argument None

Return value None

Flow The following figure shows the flow of the self-programming open function.

Figure 5-1 Flow of self-programming Open Function

Chapter 5 Library for NEC Compiler

28 Application Note U19672EE1V2AN00

Note The preset interrupt mask flags are defined in the FSL user-configurable source
file fsl_user.h

#define FSL_MK0L_MASK 0xFF /* all interrupts disabled */
#define FSL_MK0H_MASK 0xFF /* all interrupts disabled */
#define FSL_MK1L_MASK 0xFF /* all interrupts disabled */
#define FSL_MK1H_MASK 0xFF /* all interrupts disabled */
#define FSL_MK2L_MASK 0xFF /* all interrupts disabled */
#define FSL_MK2H_MASK 0xFF /* all interrupts disabled */
#define FSL_MK3L_MASK 0xFF /* all interrupts disabled */
#define FSL_MK3H_MASK 0xFF /* all interrupts disabled */
/*For the correct settings please refer to the chapter "Interrupt Functions"
of the corresponding device user's manual.*/

Interrupt backup If backup of interrupt mask flags is not necessary, user may comment out the
following line.

 #define FSL_INT_BACKUP

FLMD0 port setting
example

Following example shows the macro definition for the FLMD0 control.

/* FLMD0 control bit */
#define FSL_FLMD0_HIGH {BECTL.7 = 1;}
#define FSL_FLMD0_LOW {BECTL.7 = 0;}

/* FSL_Open(); */
FSL_FLMD0_HIGH;

Frequency definition The user must define the used frequency via the FSL_SYSTEM_FREQUENCY
pre-processor symbol name in fsl_user.h

/* frequency described in Hz */
#define FSL_SYSTEM_FREQUENCY 20000000

Voltage mode for
self-programming

The self-programming library supports two voltage modes for self-programming:
• Normal voltage mode
• Low voltage mode

This two modes can be swtiched via the FSL_LOW_VOLTAGE_MODE pre-
processor symbol. If this symbol is defined the self-programming will be executed
in low voltage mode.

/* Low voltage mode is activated */
#define FSL_LOW_VOLTAGE_MODE

Note For detailed information regarding low-voltage mode please refer to the
device users manuel.

Data buffer size
definition

The user should define the size of the data buffer via the following pre-processor
symbol:

/* Data buffer size */
#define FSL_DATA_BUFFER_SIZE 256

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 29

5.2.2 FSL_Close

Outline This function offers an standardized but configurable way to close a self-
programming session. If reprogrammned in FSL_Open(), the interrupt controller
will be restored automatically. Additional applications specific code can be added
here if necessary for closing the flash update process. The FLMD0 will be
switched to LOW level according to macro definition FSL_FLMD0_LOW.

Note • Call this function at the end of the self-programming operation.
• User may customize this function in the source files fsl_user.h and

fsl_user.c.

Function prototype void FSL_Close (void)

Pre-condition None

Argument None

Return value None

Flow The following figure shows the flow of the self-programming end function.

Figure 5-2 Flow of self-programming End Function

Chapter 5 Library for NEC Compiler

30 Application Note U19672EE1V2AN00

5.2.3 FSL_Init

Outline This function Initializes internal self-programming environment. After initialization
the start address of the data-buffer is registered for self-programming.

Function prototype fsl_u08 FSL_Init (fsl_u08* data_buffer_pu08)

Pre-condition • The function FSL_Open() was successfully called.
• The constant FSL_SYSTEM_FREQUENCY has to be adapted

according to the used system frequency.
• The constant FSL_LOW_VOLTAGE_MODE has to be adapted.
• The data_buffer_pu08 must be located inside internal RAM.

Note This frequency value will not be checked by the FSL, whether it is in the valid
range.

Argument

Argument C Language

First address of data bufferNote fsl_u08* data_buffer_pu08

Argument Assembler

First address of data bufferNote AX (low word of address)

Note For details on data buffer, please refer to the chapter "Software Environment".

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H
Normal completion
- Initialisation completed

05H Parameter error, frequency outside range

1FH
Initialization interrupted by user interrupt. To resume the intialization the
FSL_Init_cont function must be called.

OTHER Error

Register status after
calling

C = return value, AX, ES and RB3 = destroyed

Call example

/* Operation without interrupts */

extern fsl_u08 fsl_data_buffer[FSL_DATA_BUFFER_SIZE]; /* see fsl_user.c */

my_status_u08 = FSL_Init((fsl_u08*)&fsl_data_buffer);

if(my_status_u08 != 0x00) my_error_handler();

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 31

5.2.4 FSL_Init_cont

Outline This function resumes the interrupted FSL_Init function. After initialization the start
address of the data-buffer is registered for self-programming.

Function prototype fsl_u08 FSL_Init_cont (fsl_u08* data_buffer_pu08)

Pre-condition • The function FSL_Open() was successfully called and FSL_Init was
interrupted.

• The constant FSL_SYSTEM_FREQUENCY has to be adapted
according to the used system frequency.

• The constant FSL_LOW_VOLTAGE_MODE has to be adapted.
• The data_buffer_pu08 must be located inside internal RAM.

Note This frequency value will not be checked by the FSL, whether it is in the valid
range.

Argument

Argument C Language

First address of data bufferNote fsl_u08* data_buffer_pu08

Argument Assembler

First address of data bufferNote AX (low word of address)

Note For details on data buffer, please refer to the chapter "Software Environment".

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H
Normal completion
- Initialisation completed

05H Parameter error, frequency outside range

1FH
Initialization interrupted by user interrupt. To resume the intialization the
FSL_Init_cont function must be called.

OTHER Error

Register status after
calling

C = return value, AX, ES and RB3 = destroyed

Call example

 /* Operation without interrupts */
 extern fsl_u08 fsl_data_buffer[FSL_DATA_BUFFER_SIZE]; /* see fsl_user.c */
 my_status_u08 = FSL_Init((fsl_u08*)&fsl_data_buffer);
 while(my_status_u08 == 0x1F)
 {
 my_status_u08 = FSL_Init_cont((fsl_u08*)&fsl_data_buffer);
 }
 if(my_status_u08 != 0x00) my_error_handler();

Chapter 5 Library for NEC Compiler

32 Application Note U19672EE1V2AN00

5.2.5 FSL_ModeCheck

Outline This function checks the voltage level at FLMD0 pin, ensuring the hardware
requirement of self-programming.

For details on FLMD0 and hardware requirement, please refer tothe chapter
"Hardware Environment".

Note Call this function after calling the self-programming open function FSL_Open to
check the voltage level of the FLMD0 pin.

Caution If the FLMD0 pin is at low level, operations such as erasing and writing the flash
memory cannot be performed. To manipulate the flash memory by self-
programming, it is necessary to call this function and confirm, that the FLMD0
pin is at high level.

Function prototype fsl_u08 FSL_ModeCheck (void)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument None

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H
Normal completion
-FLMD0 pin is at high level.

01H
Abnormal termination
-FLMD0 pin is at low level.

Register status after
calling

C = return value

Call example

my_status_u08 = FSL_ModeCheck();
if(my_status_u08 != 0x00) my_error_handler();

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 33

5.2.6 FSL_BlankCheck

Outline This function checks if a specified block is blank (erased).

Note • If the block is not blank, it should be erased and blank checked
again.

• Because only one block is checked at a time, call this function once
for each block.

Function-prototype fsl_u08 FSL_BlankCheck (fsl_u16 block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C Language

block number to be checked fsl_u16 block_u16

Argument Assembly

block number to be checked AX

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H
Normal completion
Specified block is blank (erase operation is completed).

05H
Parameter error
Specified block number is outside the allowed range.

1BH
Black check error
Specified block is not blank (erase operation is not completed).

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

C = return value, AX, ES and RB3 destroyed

Call example

 my_block_u16 = 0x001F;

do
{
 my_status_u08 = FSL_BlankCheck(my_block_u16);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

// exit if error occurs
if (my_status_u08 != FSL_OK) my_error_handler(....)

Chapter 5 Library for NEC Compiler

34 Application Note U19672EE1V2AN00

5.2.7 FSL_Erase

Outline This function erases a specified block.

Note Because only one block is erased at a time, call this function once for each block.

Function prototype fsl_u08 FSL_Erase (fsl_u16 block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C Language

block number to be erased fsl_u16 block_u16

Argument Assembly

block number to be checked AX

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
Specified block number is outside the allowed range.

10H
Protect error
Specified block is included in the boot area and rewriting the boot area is
disabled or block is outside the flash shield window.

1AH
Erase error
An error occurred during this function in process.

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

C = return value, AX, ES and RB3 destroyed

Call example

 my_block_u16 = 0x001F;

do
{
 my_status_u08 = FSL_Erase(my_block_u16);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

// exit if error occurs
if (my_status_u08 != FSL_OK) my_error_handler(....)

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 35

5.2.8 FSL_IVerify

Outline This function verifies (internal verification) a specified block.

Note • Because only one block is verified at a time, call this function once
for each block.

• This internal verification is a function to check if written data in the
flash memory is at a sufficient voltage level.

• It is different from a logical verification that just compares data.

Caution After writing data, verify (internal verification) the block including the range in
which the data has been written. If verification is not executed, the written data
is not guaranteed.

Function prototype fsl_u08 FSL_IVerify (fsl_u16 block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C language

the to-verify block number fsl_u16 block_u16

Argument Assembly

block number to be checked AX

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
Specified block number is outside the allowed range.

1BH
Verify (internal verify) error
An error occurs during this function is in process.

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

C = return value, AX, ES and RB3 destroyed

Call example

 my_block_u16 = 0x001F;

do
{
 my_status_u08 = FSL_IVerify(my_block_u16);
} while (my_status_u08 == FSL_ERR_INTERRUPTION);

if (my_status_u08 != FSL_OK) my_error_handler(....)

Chapter 5 Library for NEC Compiler

36 Application Note U19672EE1V2AN00

5.2.9 FSL_Write

Outline This function writes the specified number of words (each word consists of 4 bytes)
to a specified address.

Note • Set a RAM area as a data buffer, containing the data to be written
and call this function.

• Data of up to 256 bytes (i.e. 64 words) can be written at one time.
• Call this function as many times as required to write data of more

than 256 bytes.

Caution • After writing data, execute verification (internal verification) of the
block including the range in which the data has been written. If
verification is not executed, the written data is not guaranteed.

• It is not allowed to overwrite data in flash memory.
• Only blank flash cells can be used for the write.

Function prototype fsl_u08 FSL_Write (fsl_u32 s_address_u32, fsl_u08 word_count_u08)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init. Data buffer was filled with data, which will be
written into the flash.

Argument

Argument C language

starting address of the data to be
writtenNote fsl_u32 s_address_u32

Number of the data to be written (1 to
64)

fsl_u08 word_count_u08

Argument C language

starting address of the data to be
writtenNote

AX = HIGH(address)
BC = LOW(address)

Number of the data to be written (1 to
64)

over stack

Note • s_address_u32 is a physical address(e.g. 1FC00H)
• (s_address_u32 + (Number of data to be written x 4 bytes)) must

not straddle over the end address of a single block.
• s_address_u32 must be a multiple of 4
• Most significant byte (MSB) of the s_address_u32 has to be 0x00

In other words, only 0x00abcdef is a valid flash address.
• word_count*4 has to be less or equal than the size of data buffer.

The firmware does not check this.

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 37

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H

Parameter error
- Start address is not a multiple of 1 word (4 bytes).
- The number of data to be written is 0.
- The number of data to be written exceeds 64 words.
- Write end address (Start address + (Number of data to be

written x 4 bytes)) exceeds the flash memory area.

10H
Protect error
Specified range includes the boot area and rewriting the boot area is
disabled or address is outside the flash shield window.

1CH
Write error
Data is verified but does not match after this function operation is
completed or FLMD0 pin is low.

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

C = return value, AX, BC, ES and RB3 destroyed

Call example

 // prepare data and write it into the data buffer for the writing process
..........
..........

my_address_u32 = 0x0001FC00; // set address for write procedure
my_write_count_u08 = 0x02; // set word count

do
{
 my_status_u08 = FSL_Write(my_address_u32, my_write_count_u08);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

// exit if error occurs
if (my_status_u08 != FSL_OK) my_error_handler(....)

Chapter 5 Library for NEC Compiler

38 Application Note U19672EE1V2AN00

5.2.10 FSL_EEPROMWrite

Outline This function writes the specified number of words (each word equals 4 bytes) to
a specified address.

Different to FSL_Write, blank check will be performed, before "writing" n words.
After "writing" n words internal verify is performed.

Note • Set a RAM area as a data buffer containing the data to be written
and call this function.

• Data of up to 256 bytes (i.e. 64 words) can be written at one time.
• Call this function as many times as required to write data of more

than 256 bytes.

Caution • It is not allowed to overwrite data in flash memory.
• Only blank flash cells can be used for the write.

Function prototype fsl_u08 FSL_EEPROMWrite (fsl_u32 s_address_u32, fsl_u08 word_count_u08)

Pre-condition The self-programming environment was successfully opened by the functions
FSL_Open and FSL_Init.

Argument

Argument C language

starting address of the data to be
writtenNote fsl_u32 s_address_u32

Number of the data to be written (1 to
64)

fsl_u08 word_count_u08

Argument C language

starting address of the data to be
writtenNote

AX = HIGH(address)
BC = LOW(address)

Number of the data to be written (1 to
64)

over stack

Note • (s_address_u32 + (Number of data to be written x 4 bytes)) must
not straddle over the end address of a single block.

• s_address_u32 must be a multiple of 4
• Most significant byte (MSB) of the s_address_u32 has to be 0x00

In other words, only 0x00abcdef is a valid flash address.
• word_count*4 has to be smaller than the size of data buffer.

The firmware does not check this.

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 39

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H

Parameter error
- Start address is not a multiple of 1 word (4 bytes).
- The number of data to be written is 0.
- The number of data to be written exceeds 64 words.
- Write end address (Start address + (Number of data to be

written x 4 bytes)) exceeds the flash memory area.

10H
Protect error
Specified range includes the boot area and rewriting the boot area is
disabled or address is outside the flash shield window.

1CH
Write error
Data is verified but does not match after this function operation is
completed or FLMD0 pin is low..

1DH
Verify error
Data is verified but does not match after it has been written.

1EH
Blank error
Write area is not a blank area.

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

C = return value, AX, BC, ES and RB3 destroyed

 // prepare data and write it into the data buffer for the writing process
..........
..........

my_address_u32 = 0x0001FC00; // set address for write procedure
my_write_count_u08 = 0x02; // set word count

do
{
 my_status_u08 = FSL_EEPROMWrite(my_address_u32, my_write_count_u08);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

// exit if error occurs
if (my_status_u08 != FSL_OK) my_error_handler(....)

Chapter 5 Library for NEC Compiler

40 Application Note U19672EE1V2AN00

5.2.11 FSL_GetSecurityFlags

Outline This function reads the security (write-/erase-protection) information from the
extra area.

Figure 5-3 Security Information Structure

Function prototype fsl_u08 FSL_GetSecurityFlags (fsl_u16 *destination_pu16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.
The destination_pu16 must be located inside internal RAM.

Argument

Argument C language

Storage address of the security
information

fsl_u16 *destination_pu16

Argument Assembly

Storage address of the security
information

AX (low word of address)

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 41

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H Parameter error

Change in the destination address.

Security flag will be written in the destination address.

Meaning of each bit of security flag.
Bit 0: Chip erase protection (0: Enabled, 1: Disabled)
Bit 1: Block erase protection (0: Enabled, 1: Disabled)
Bit 2: Write protection (0: Enabled, 1: Disabled)
Bit 4: Boot area overwrite protection (0: Enabled, 1: Disabled)
Bits 3, 5, 6 and 7 are always 1.
Bits 8...15 = 03H -> last block of the boot-area

Register status after
calling

C = return value, AX, BC, data_buffer[0], data_buffer[1] and RB3 = destroyed

Call example

/* extern variable declaration(see fsl_user.c) */
extern fsl_u08 fsl_data_buffer[FSL_DATA_BUFFER_SIZE];

/* get security informations */
my_status_u08 = FSL_GetSecurityFlags ((fsl_u16*)&my_security_dest_u16);

if(my_status_u08 != 0x00)
 my_error_handler();

if(my_security_dest_u16 & 0x0001){ myPrintFkt("Chip erase protection disabled!"); }
else{ myPrintFkt("Chip erase protection enabled!"); }

Chapter 5 Library for NEC Compiler

42 Application Note U19672EE1V2AN00

5.2.12 FSL_GetActiveBootCluster

Outline This function reads the current value of the boot flag in extra area.

Function prototype fsl_u08 FSL_GetActiveBootCluster (fsl_u08 *destination_pu08)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init. The destination_pu08 must be located inside
internal RAM.

Argument

Argument C language

Destination address of the boot swap
info

fsl_u08 *destination_pu08

Argument Assembly

Storage address of the security
information

AX

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H Parameter error

Changes in the destination address.

Boot flag will be written in the destination address.

00H: Boot area is not swapped.
01H: Boot area is swapped.

Register status after
calling

C = return value, AX, data_buffer[0] and RB3 = destroyed

Call example

/* extern variable declaration(see fsl_user.c) */
extern fsl_u08 fsl_data_buffer[FSL_DATA_BUFFER_SIZE];

/* get boot-swap flag */
my_status_u08 = FSL_GetActiveBootCluster((fsl_u08*)&my_bootflag_dest_u08);

if(my_status_u08 != 0x00)
 my_error_handler();

if(my_bootflag_dest_u08){ myPrintFkt("Boot area is swapped!"); }
else{ myPrintFkt("Boot area is not swapped!"); }

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 43

5.2.13 FSL_GetBlockEndAddress

Outline This function puts the last address of the specified block into *destination_pu32.

Note This function may be used to secure the write function FSL_Write. If write
operation exceeds the end address of a block, the written data is not guaranteed.
Use this function to check whether the (write address + word number * 4) exceeds
the end address of a block before calling the write function.

Function prototype fsl_u08 FSL_GetBlockEndAddr ((fsl_u32*) destination_pu32, fsl_u16 block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init. The destination_pu32 must be located inside
internal RAM.

Argument

Argument C language

Destination address of the block end
address info

fsl_u32 *destination_pu32

Block number the end-address is
asked for

fsl_u16 block_u16

Argument Assembly

Destination address of the block end
address info

AX (low word of address)

Block number the end-address is
asked for

over stack

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H Parameter error

Changes in the destination address.

Block end address will be written in the destination address.

Example

If 6CH is given as block number, 367FFH will be written to the destination address.

Register status after
calling

C = return value, AX, ES, data_buffer[0], data_buffer[1] and RB3 = destroyed

Chapter 5 Library for NEC Compiler

44 Application Note U19672EE1V2AN00

Call example

/* extern variable declaration(see fsl_user.c) */
extern fsl_u08 fsl_data_buffer[DATA_BUFFER_SIZE];

fsl_u32 my_address_u32;
fsl_u16 my_block_u16 = 0x001F;

/* get end adress of the block */
my_status_u08 = FSL_GetBlockEndAddr((fsl_u32*)&my_address_u32, my_block_u16);

if(my_status_u08 != 0x00)
 my_error_handler();

/* ####### ANALYSE my_address_u32 ####### */

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 45

5.2.14 FSL_GetFlashShieldWindow

Outline This function reads the stored flash shield window. The flash shield window is a
mechanism to protect the flash content against unwanted overwrite or erase
defines. It can be reprogrammed by the application at any time by using the
finction FSL_SetFlashShieldWindow.

Example:

Flash shield window start block is 0x60
Flash shield window end block is 0x63

This configuration of the flash shield window prohibits the user to write e.g. into
the block …..0x5E,0x5F,0x64,0x65…..

Function prototype fsl_u08 FSL_GetFlashShieldWindow(fsl_u16* start_block_pu16, fsl_u16*
end_block_pu16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init. The start_block_pu16 and end_block_pu16
must be located inside internal RAM.

Argument

Argument C language

Destination address for the start block
of the flash shield window

fsl_u16* start_block_pu16

Destination address for the end block
of the flash shield window

fsl_u16* end_block_pu16

Argument Assembly

Destination address for the start block
of the flash shield window

AX (low word of address)

Destination address for the end block
of the flash shield window

over stack

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H Parameter error

Register status after
calling

C = return value, AX, data_buffer[0] to data_buffer[3] and RB3 = destroyed

Call example

/* extern variable declaration(see fsl_user.c) */
extern fsl_u08 fsl_data_buffer[DATA_BUFFER_SIZE];

fsl_u32 my_address_u32;
fsl_u16 my_block_u16 = 0x001F;
/* read flash shield window */
my_status_u08 = FSL_GetBlockEndAddr((fsl_u16*)&myFSW_start, (fsl_u16*)&myFSW_end

Chapter 5 Library for NEC Compiler

46 Application Note U19672EE1V2AN00

if(my_status_u08 != 0x00)
 my_error_handler();

/* ####### ANALYSE flash shield window ####### */

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 47

5.2.15 FSL_SetFlashShieldWindow

Outline This function sets the new flash shield window. The flash shield window is a
mechanism to protect the flash content against unwanted overwrite or erase
defines.

Example:

Flash shield window start block is 0x60
Flash shield window end block is 0x63

This configuration of the flash shield window prohibits the user to write e.g. into
the block …..0x5E,0x5F,0x64,0x65…..

Function prototype fsl_u08 FSL_SetFlashShieldWindow(fsl_u16 start_block_u16, fsl_u16
end_block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C language

Start block for the flash shield window fsl_u16 start_block_u16

End block for the flash shield window fsl_u16 end_block_u16

Argument Assembly

Start block for the flash shield window AX

End block for the flash shield window over stack

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
- Internal error

10H

Protection error
- Attempt is made to enable a flag that has already been

disabled.
- Attempt is made to change the boot area swap flag while

rewriting of the boot area is disabled.

1AH
Erase error
An erase error occurs while this function is in process.

1BH
Internal verify error
A verify error occurs while this function is in process.

1CH
Write error
A write error occurs while this function is in process.

1FH Interrupted by user interrupt.

Register status after
calling

C = return value, AX, ES, data_buffer[0] to data_buffer[4] and RB3 =
destroyed

Chapter 5 Library for NEC Compiler

48 Application Note U19672EE1V2AN00

Call example

fsl_u16 myFSW_start = 0x0002;
fsl_u16 myFSW_end = 0x0004;

/* set flash shield window */
my_status_u08 = FSL_SetFlashShieldWindow(myFSW_start, myFSW_end);

if(my_status_u08 != 0x00)
 my_error_handler();

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 49

5.2.16 FSL_SetXXX and FSL_InvertBootFlag

Outline The self-programming library has 5 functions for setting security bits . Each
dedicated function sets a corresponding security flag in the extra area.

These functions are listed below.

Funtion name Outline

invert boot flag function Inverts the current value of the boot flag*.

set chip-erase-protection function Sets the chip-erase-protection flag*.

set block-erase-protection function Sets the block-erase-protection flag*.

set write-protection function Sets the write-protection flag*.

set boot-cluster-protection function Sets the bootcluster-update-protection flag*.

* This flag is stored in the flash extra area.

Caution 1. Chip-erase protection and boot-cluster protection cannot be
reset by programmer.

2. After successfully execution of the FSL_InvertBootFlag function
it is not allowed to execute any FSL_Setxxx function till
hardware reset is occurred.

3. After RESET the other boot-cluster is activated. Please ensure a
valid boot-loader inside the area, before calling the function.

4. Each security flag can be written by the application only once until
next reset.

5. Block-erase protection and write protection can be reset by
programmer.

Figure 5-4 Extra Area

Chapter 5 Library for NEC Compiler

50 Application Note U19672EE1V2AN00

Function prototypes

Function name Function prototype

invert boot flag function fsl_u08 FSL_InvertBootFlag(void)

set chip-erase-
protection function

fsl_u08 FSL_SetChipEraseProtectFlag(void)

set block-erase-
protection function

fsl_u08 FSL_SetBlockEraseProtectFlag(void)

set write-protection
function

fsl_u08 FSL_SetWriteProtectFlag(void)

set boot-cluster-
protection function

fsl_u08 FSL_SetBootClusterProtectFlag(void)

Argument None

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
- Internal error

10H

Protection error
- Attempt is made to enable a flag that has already been

disabled.
- Attempt is made to change the boot area swap flag while

rewriting of the boot area is disabled.

1AH
Erase error
An erase error occurs while this function is in process.

1BH
Internal verify error
A verify error occurs while this function is in process.

1CH
Write error
A write error occurs while this function is in process.

1FH Interrupted by user interrupt.

Register status after
calling

C = return value, data_buffer[0] to data_buffer[4], RB3 destroyed

Call example

my_status_u08 = FSL_SetBlockEraseProtectFlag();

if(my_status_u08 != 0x00)
 my_error_handler();

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 51

5.2.17 FSL_SwapBootCluster

Outline This function performs the physically swap of the bootclusters(0 and 1) without
touching the boot flag. After the physically swap the PC (program counter) will be
set regarding the reset vector from the boot cluster 1.

Note 1. After the execution of this function boot cluster 1 is located from
the address 0x0000 to 0x1FFF and PSW.IE bit is cleared! After
reset the boot clusters will be switch regarding the boot swap
flag.

2. After successfully execution of the FSL_SwapBootCluster
function it is not allowed to execute any FSL_Setxxx function till
hardware reset is occurred.

Function prototype fsl_u08 FSL_SwapBootCluster(void)

Pre-condition None

Argument None

Return value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

10H Protection error

Register status after
calling

ES, CS, RB3, data_buffer[0] to data_buffer[61] = destroyed

Chapter 5 Library for NEC Compiler

52 Application Note U19672EE1V2AN00

5.2.18 FSL_ForceReset

Outline This function generates a software reset. For detailed information please refer to
the device Users Manual.

Function prototype void FSL_ForceReset(void)

Pre-condition None

Argument None

Return value None

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 53

5.2.19 FSL_SetInterruptMode

Outline This function forces the interrupted FSL function to leave as fast as possible to
the user application. Usage is only inside ISRs permitted.

Caution:
If FSL_SetInterruptMode function was called before execution of any other
FSL_XXX function, the FSL_XXX function may with 0x1F (interrupted status),
also if no interrupt is occured.

Figure 5-6 Force self-programming function to leave to the user application

Function prototype void FSL_SetInterruptMode(void)

Pre-condition Interrupt is occured.

Argument None

Return value None

Chapter 5 Library for NEC Compiler

54 Application Note U19672EE1V2AN00

5.2.20 FSL_SwapActiveBootCluster

Outline This function inverts the current value of the boot flag within the extra area and
swaps the bootcluster 0 and 1 physically.

Caution After execution of this function the boot clusters are swapped.

Function prototype fsl_u08 FSL_SwapActiveBootCluster(void)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument -

Return Value The status is stored in C register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
- Internal error

10H

Protection error
- Attempt is made to enable a flag that has already been

disabled.
- Attempt is made to change the boot area swap flag while

rewriting of the boot area is disabled.

1AH
Erase error
An erase error occurs while this function is in process.

1BH
Internal verify error
A verify error occurs while this function is in process.

1CH
Write error
A write error occurs while this function is in process.

1FH Interrupted by user interrupt.

Register status after
calling

C = return value, data_buffer[0] to data_buffer[4] , RB3 = destroyed

Call example

/* swap bootcluster */
my_status_u08 = FSL_SwapActiveBootCluster();

if(my_status_u08 != 0x00)
 my_error_handler();

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 55

5.3 Sample linker file

The self-programming library uses three segments for data, code and constants
allocation:

• FSL_CODE(code)
This segment contains the library functions and must be located
within the common area (for secure bootloader updates within the
first 8KByte).

• FSL_DATA(data)
Internal data of the library will be located inside this segment.

• FSL_CNST(constants)
Constants for the library will be located inside this segment.

• FSL_UCOD(code)
Within this segment the user part ("fsl_user.c") will be located. Be
sure to locate this segment within internal flash.

• FSL_UDAT
This segment contains the user defined variables like fsl_data_buffer

Listed below is a sample linker file(for uPD78F1845) for the self-programming
library.

; ---
; Redefined default code segment ROM
; ---
MEMORY ROM:(4000H,3BFFFH)

; ---
; Define new memory entry for boot cluster 0
; ---
MEMORY BCL0:(0000H, 2000H)

; ---
; Define new memory entry for boot cluster 1
; ---
MEMORY BCL1:(2000H, 2000H)

; ---
; Merge user code segment FSL_UCOD segment to BCL0 memory area
; ---
MERGE FSL_UCOD:=BCL0

; ---
; Merge user code segment FSL_UDAT segment data within RAM
; ---
MERGE FSL_UDAT:=RAM

; ---
; Merge library code segment FSL_CODE to BCL0 memory area
; ---
MERGE FSL_CODE:=BCL0

; ---
; Merge library constants segment FSL_CNST to BCL0 memory area
; ---
MERGE FSL_CNST:=BCL0

; ---
; Merge library data segment FSL data within RAM
; ---
MERGE FSL_DATA:=RAM

Chapter 5 Library for NEC Compiler

56 Application Note U19672EE1V2AN00

5.4 How to integrate the library into an application

1. copy all the files into your project subdirectory

2. add all fsl*.* files into your project (workbench or make-file)

3. adapt project specific files as follows:
• fsl_user.h:

- adapt the system frequency expressed in [Hz]
- choose low-voltage/normal write
- adapt the size of data-buffer you want to use for data
exchange between firmware and application
- define the interrupt scenario (enable interrupts that should be
active during selfprogramming)
- define the back-up functionality during selfprogramming
whether required or not

• fsl_user.c:
- adapt FSL_Open() and FSL_Close() due to your requirements

• fsl.inc(only for assembler projects):
- comment out the functions which will not be used.

4. adapt the *.dr file due to your requirements (at least segments
FSL_CODE, FSL_CNST, FSL_DATA, FSL_UCOD and FSL_UDAT
should be defined)

5. re-compile the project

Library for NEC Compiler Chapter 5

Application Note U19672EE1V2AN00 57

Chapter 6 Library for IAR Compiler

This chapter describes the details on the self-programming library for the IAR
Compiler (Version V4.XX). The library will be delivered in pre-compiled form for
different data models (far model and near model).

• fsl_near.r26 : near data model
• fsl_far.r26 : far data model

Note: These libraries are independent from the code model.

6.1 Library function prototypes

The flash self-programming library consists of the following functions.

Table 6-1 Self-programming Library - function prototypes

Function prototype Outline

void FSL_Open(void) Opens a flash self programming session.

void FSL_Close(void) Closes a flash self programming session.

fsl_u08 FSL_Init(fsl_u08* data_buffer_pu08)
Initialization of the self-programming
environment.

fsl_u08 FSL_Init_cont(fsl_u08* data_buffer_pu08)
Continue initialization of the entry RAM
after interrupted FSL_Init function.

fsl_u08 FSL_ModeCheck(void) Checks FLMD0 voltage level.

fsl_u08 FSL_BlankCheck(fsl_u16 block_u16) Checks if specified block is empty.

fsl_u08 FSL_Erase(fsl_u16 block_u16) Erases a specified block.

fsl_u08 FSL_IVerify(fsl_u16 block_u16)
Verifies a specified block (internal
verification).

fsl_u08 FSL_Write(fsl_u32 s_address_u32, fsl_u08 word_count_u08)
Writes up to 64 words (each word equals
4 bytes) to a specified address.

fsl_u08 FSL_EEPROMWrite(fsl_u32 s_address_u32, fsl_u08
word_count_u08)

Blankcheck,writes and verify up to 64
words to a specified address.

fsl_u08 FSL_GetSecurityFlags(fsl_u16 *destination_pu16) Reads the security information.

fsl_u08 FSL_GetActiveBootCluster(fsl_u08 *destination_pu08)
Reads the current value of the boot flag in
extra area.

fsl_u08 FSL_GetBlockEndAddr(fsl_u32 *destination_pu32, fsl_u16
block_u16)

Puts the last address of the specified
block into destination_addr_H and
destination_addr_L

fsl_u08 FSL_GetFlashShieldWindow(fsl_u16* start_block_pu16, fsl_u16*
end_block_pu16)

Read the flash shield window from the
extra area into start_block_pu16
end_block_pu16.

fsl_u08 FSL_InvertBootFlag(void)
Inverts the current value of the boot flag
in the extra area.

fsl_u08 FSL_SetFlashShieldWindow(fsl_u16 start_block_u16, fsl_u16
end_block_u16)

Sets the falsh shield window.

fsl_u08 FSL_SetChipEraseProtectFlag(void)
Sets the chip-erase-protection flag in the
extra area.

58 Application Note U19672EE1V2AN00

Function prototype Outline

fsl_u08 FSL_SetBlockEraseProtectFlag(void)
Sets the block-erase-protection flag in
the extra area.

fsl_u08 FSL_SetWriteProtectFlag(void)
Sets the write-protection flag in the extra
area.

fsl_u08 FSL_SetBootClusterProtectFlag(void)
Sets the bootcluster-update-protection
flag in the extra area.

fsl_u08 FSL_SwapBootCluster(void)
This functions swaps the boot cluster 0
and 1 physically. After reset the boot
cluster is active regarding the boot flag.

void FSL_ForceReset(void) Generate software reset.

void FSL_SetInterruptMode(void)
This function forces the FSL to return to
the user as fast as possible.

6.2 Library explanation

Each self-programming function is explained in the following format.

Flash self-programming Function name

Outline Outlines the self-programming function.

Function prototype Shows the C-Compiler function prototype of the current function.

Note In this manual, the data type name is defined as followed.

Definition Data Type

fsl_u08 unsigned char

fsl_u16 unsigned int

fsl_u32 unsigned long int

Argument Indicates the argument of the self-programming function.

Return Value Indicates the return value from the self-programming function.

Register status after
calling

Indicates the status of registers after the self-programming function is called.

Call example Indicates an example of calling the self-programming function from a user
program written in C language.

Flow Indicates the program flow of the self-programming function.

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 59

6.2.1 FSL_Open

Outline This function offers an standardized but configurable way to open a self-
programming session. If required, the interrupt controller can be backed-up and
reprogrammed for flash update period only. Additional applications specific code
can be added here if necessary for opening the flash update process.The FLMD0
will be switched to HIGH level according to macro definition FSL_FLMD0_HIGH.

Note • Call this function at the beginning of the self-programming
operation.

• User may customize this function in the source files fsl_user.h and
fsl_user.c, do a few more preprocesses, so as to adapt personal
requirements.

Function prototype void FSL_Open (void)

Pre-condition None

Argument None

Return value None

Flow The following figure shows the flow of the self-programming open function.

Figure 6-1 Flow of self-programming Open Function

Chapter 6 Library for IAR Compiler

60 Application Note U19672EE1V2AN00

Note The preset interrupt mask flags are defined in the FSL user-configurable source
file fsl_user.h

#define FSL_MK0L_MASK 0xFF /* all interrupts disabled */
#define FSL_MK0H_MASK 0xFF /* all interrupts disabled */
#define FSL_MK1L_MASK 0xFF /* all interrupts disabled */
#define FSL_MK1H_MASK 0xFF /* all interrupts disabled */
#define FSL_MK2L_MASK 0xFF /* all interrupts disabled */
#define FSL_MK2H_MASK 0xFF /* all interrupts disabled */
#define FSL_MK3L_MASK 0xFF /* all interrupts disabled */
#define FSL_MK3H_MASK 0xFF /* all interrupts disabled */
/*For the correct settings please refer to the chapter "Interrupt Functions"
of the corresponding device user's manual.*/

Interrupt backup If backup of interrupt mask flags is not necessary, user may comment out the
following line.

 #define FSL_INT_BACKUP

FLMD0 port setting
example

Following example shows the macro definition for the FLMD0 control.

/* FLMD0 control bit */
#define FSL_FLMD0_HIGH {BECTL_bit.no7 = 1;}
#define FSL_FLMD0_LOW {BECTL_bit.no7 = 0;}

/* FSL_Open(); */
FSL_FLMD0_HIGH;

Frequency definition The user must define the used frequency via the FSL_SYSTEM_FREQUENCY
pre-processor symbol name in fsl_user.h

/* frequency described in Hz */
#define FSL_SYSTEM_FREQUENCY 20000000

Voltage mode for
self-programming

The self-programming library supports two voltage modes for self-programming:
• Normal voltage mode
• Low voltage mode

This two modes can be swtiched via the FSL_LOW_VOLTAGE_MODE pre-
processor symbol. If this symbol is defined the self-programming will be executed
in low voltage mode.

/* Low voltage mode is activated */
#define FSL_LOW_VOLTAGE_MODE

Note For detailed information regarding low-voltage mode please refer to the
device users manuel.

Data buffer size
definition

The user should define the size of the data buffer via the following pre-processor
symbol:

/* Data buffer size */
#define FSL_DATA_BUFFER_SIZE 256

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 61

6.2.2 FSL_Close

Outline This function offers an standardized but configurable way to close a self-
programming session. If reprogrammned in FSL_Open(), the interrupt controller
will be restored automatically. Additional applications specific code can be added
here if necessary for closing the flash update process. The FLMD0 will be
switched to LOW level according to macro definition FSL_FLMD0_LOW.

Note • Call this function at the end of the self-programming operation.
• User may customize this function in the source files fsl_user.h and

fsl_user.c.

Function prototype void FSL_Close (void)

Pre-condition None

Argument None

Return value None

Flow The following figure shows the flow of the self-programming end function.

Figure 6-2 Flow of self-programming End Function

Chapter 6 Library for IAR Compiler

62 Application Note U19672EE1V2AN00

6.2.3 FSL_Init

Outline This function Initializes internal self-programming environment. After initialization
the start address of the data-buffer is registered for self-programming.

Function prototype fsl_u08 FSL_Init (fsl_u08* data_buffer_pu08)

Pre-condition • The function FSL_Open() was successfully called.
• The constant FSL_SYSTEM_FREQUENCY has to be adapted

according to the used system frequency.
• The constant FSL_LOW_VOLTAGE_MODE has to be adapted.

Note This frequency value will not be checked by the FSL, whether it is in the valid
range.

Argument

Argument C Language

First address of data bufferNote fsl_u08* data_buffer_pu08

Argument Assembler

First address of data bufferNote

Data model near:
AX
Data model far:
[SP+0] = LOW(LWRD(data_buffer_addr))
[SP+1] = HIGH(LWRD(data_buffer_addr))
[SP+2] = LOW(HWRD(data_buffer_addr))
[SP+3] = HIGH(HWRD(data_buffer_addr))

Note For details on data buffer, please refer to the chapter "Software Environment".

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H
Normal completion
- Initialisation completed

05H Parameter error, frequency outside range

1FH
Initialization interrupted by user interrupt. To resume the intialization the
FSL_Init_cont function must be called.

OTHER Error

Register status after
calling

A = return value, X, ES, data_buffer[0] and RB3= destroyed

Call example

/* Operation without interrupts */

extern fsl_u08 fsl_data_buffer[FSL_DATA_BUFFER_SIZE]; /* see fsl_user.c */

my_status_u08 = FSL_Init((fsl_u08*)&fsl_data_buffer);

if(my_status_u08 != 0x00) my_error_handler();

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 63

6.2.4 FSL_Init_cont

Outline This function resumes the interrupted FSL_Init function. After initialization the start
address of the data-buffer is registered for self-programming.

Function prototype fsl_u08 FSL_Init_cont (fsl_u08* data_buffer_pu08)

Pre-condition • The function FSL_Open() was successfully called and FSL_Init was
interrupted.

• The constant FSL_SYSTEM_FREQUENCY has to be adapted
according to the used system frequency.

• The constant FSL_LOW_VOLTAGE_MODE has to be adapted.

Note This frequency value will not be checked by the FSL, whether it is in the valid
range.

Argument

Argument C Language

First address of data bufferNote fsl_u08* data_buffer_pu08

Argument Assembler

First address of data bufferNote

Data model near:
AX
Data model far:
[SP+0] = LOW(LWRD(data_buffer_addr))
[SP+1] = HIGH(LWRD(data_buffer_addr))
[SP+2] = LOW(HWRD(data_buffer_addr))
[SP+3] = HIGH(HWRD(data_buffer_addr))

Note For details on data buffer, please refer to the chapter "Software Environment".

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H
Normal completion
- Initialisation completed

05H Parameter error, frequency outside range

1FH
Initialization interrupted by user interrupt. To resume the intialization the
FSL_Init_cont function must be called.

OTHER Error

Register status after
calling

A = return value, X, ES, data_buffer[0] and RB3= destroyed

Call example

 /* Operation without interrupts */
 extern fsl_u08 fsl_data_buffer[FSL_DATA_BUFFER_SIZE]; /* see fsl_user.c */
 my_status_u08 = FSL_Init((fsl_u08*)&fsl_data_buffer);
 while(my_status_u08 == 0x1F)
 {
 my_status_u08 = FSL_Init_cont((fsl_u08*)&fsl_data_buffer);
 }

Chapter 6 Library for IAR Compiler

64 Application Note U19672EE1V2AN00

 if(my_status_u08 != 0x00) my_error_handler();

6.2.5 FSL_ModeCheck

Outline This function checks the voltage level at FLMD0 pin, ensuring the hardware
requirement of self-programming.

For details on FLMD0 and hardware requirement, please refer tothe chapter
"Hardware Environment".

Note Call this function after calling the self-programming open function FSL_Open to
check the voltage level of the FLMD0 pin.

Caution If the FLMD0 pin is at low level, operations such as erasing and writing the flash
memory cannot be performed. To manipulate the flash memory by self-
programming, it is necessary to call this function and confirm, that the FLMD0
pin is at high level.

Function prototype fsl_u08 FSL_ModeCheck (void)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument None

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H
Normal completion
-FLMD0 pin is at high level.

01H
Abnormal termination
-FLMD0 pin is at low level.

Register status after
calling

A = return value

Call example

my_status_u08 = FSL_ModeCheck();
if(my_status_u08 != 0x00) my_error_handler();

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 65

6.2.6 FSL_BlankCheck

Outline This function checks if a specified block is blank (erased).

Note • If the block is not blank, it should be erased and blank checked
again.

• Because only one block is checked at a time, call this function once
for each block.

Function-prototype fsl_u08 FSL_BlankCheck (fsl_u16 block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C Language

block number to be checked fsl_u16 block_u16

Argument Assembly

block number to be checked

Data model near:
AX
Data model far:
AX

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H
Normal completion
Specified block is blank (erase operation is completed).

05H
Parameter error
Specified block number is outside the allowed range.

1BH
Black check error
Specified block is not blank (erase operation is not completed).

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

A = return value, ES and RB3 destroyed

Call example

 my_block_u16 = 0x001F;

do
{
 my_status_u08 = FSL_BlankCheck(my_block_u16);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

// exit if error occurs
if (my_status_u08 != FSL_OK) my_error_handler(....)

Chapter 6 Library for IAR Compiler

66 Application Note U19672EE1V2AN00

6.2.7 FSL_Erase

Outline This function erases a specified block.

Note Because only one block is erased at a time, call this function once for each block.

Function prototype fsl_u08 FSL_Erase (fsl_u16 block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C Language

block number to be erased fsl_u16 block_u16

Argument Assembly

block number to be checked

Data model near:
AX
Data model far:
AX

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
Specified block number is outside the allowed range.

10H
Protect error
Specified block is included in the boot area and rewriting the boot area is
disabled or block is outside the flash shield window.

1AH
Erase error
An error occurred during this function in process.

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

A = return value, ES and RB3 destroyed

Call example

 my_block_u16 = 0x001F;

do
{
 my_status_u08 = FSL_Erase(my_block_u16);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

// exit if error occurs
if (my_status_u08 != FSL_OK) my_error_handler(....)

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 67

6.2.8 FSL_IVerify

Outline This function verifies (internal verification) a specified block.

Note • Because only one block is verified at a time, call this function once
for each block.

• This internal verification is a function to check if written data in the
flash memory is at a sufficient voltage level.

• It is different from a logical verification that just compares data.

Caution After writing data, verify (internal verification) the block including the range in
which the data has been written. If verification is not executed, the written data
is not guaranteed.

Function prototype fsl_u08 FSL_IVerify (fsl_u16 block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C language

the to-verify block number fsl_u16 block_u16

Argument Assembly

block number to be checked

Data model near:
AX
Data model far:
AX

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
Specified block number is outside the allowed range.

1BH
Verify (internal verify) error
An error occurs during this function is in process.

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

A = return value, ES and RB3 destroyed

Call example

 my_block_u16 = 0x001F;

do
{
 my_status_u08 = FSL_IVerify(my_block_u16);
} while (my_status_u08 == FSL_ERR_INTERRUPTION);

if (my_status_u08 != FSL_OK) my_error_handler(....)

Chapter 6 Library for IAR Compiler

68 Application Note U19672EE1V2AN00

6.2.9 FSL_Write

Outline This function writes the specified number of words (each word consists of 4 bytes)
to a specified address.

Note • Set a RAM area as a data buffer, containing the data to be written
and call this function.

• Data of up to 256 bytes (i.e. 64 words) can be written at one time.
• Call this function as many times as required to write data of more

than 256 bytes.

Caution • After writing data, execute verification (internal verification) of the
block including the range in which the data has been written. If
verification is not executed, the written data is not guaranteed.

• It is not allowed to overwrite data in flash memory.
• Only blank flash cells can be used for the write.

Function prototype fsl_u08 FSL_Write (fsl_u32 s_address_u32, fsl_u08 word_count_u08)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init. Data buffer was filled with data, which will be
written into the flash.

Argument

Argument C language

starting address of the data to be
writtenNote fsl_u32 s_address_u32

Number of the data to be written (1 to
64)

fsl_u08 word_count_u08

Argument C language

starting address of the data to be
writtenNote

Data model near:
AX = HIGH(address)
BC = LOW(address)
Data model far:
AX = HIGH(address)
BC = LOW(address

Number of the data to be written (1 to
64)

Data model near:
D
Data model far:
D

Note • s_address_u32 is a physical address(e.g. 1FC00H)
• (s_address_u32 + (Number of data to be written x 4 bytes)) must

not straddle over the end address of a single block.
• s_address_u32 must be a multiple of 4
• Most significant byte (MSB) of the s_address_u32 has to be 0x00

In other words, only 0x00abcdef is a valid flash address.
• word_count*4 has to be less or equal than the size of data buffer.

The firmware does not check this.

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 69

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H

Parameter error
- Start address is not a multiple of 1 word (4 bytes).
- The number of data to be written is 0.
- The number of data to be written exceeds 64 words.
- Write end address (Start address + (Number of data to be

written x 4 bytes)) exceeds the flash memory area.

10H
Protect error
Specified range includes the boot area and rewriting the boot area is
disabled or address is outside the flash shield window.

1CH
Write error
Data is verified but does not match after this function operation is
completed or FLMD0 pin is low.

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

A = return value; X, B, C, D, ES and RB3 destroyed

Call example

 // prepare data and write it into the data buffer for the writing process
..........
..........

my_address_u32 = 0x0001FC00; // set address for write procedure
my_write_count_u08 = 0x02; // set word count

do
{
 my_status_u08 = FSL_Write(my_address_u32, my_write_count_u08);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

// exit if error occurs
if (my_status_u08 != FSL_OK) my_error_handler(....)

Chapter 6 Library for IAR Compiler

70 Application Note U19672EE1V2AN00

6.2.10 FSL_EEPROMWrite

Outline This function writes the specified number of words (each word equals 4 bytes) to
a specified address.

Different to FSL_Write, blank check will be performed, before "writing" n words.
After "writing" n words internal verify is performed.

Note • Set a RAM area as a data buffer containing the data to be written
and call this function.

• Data of up to 256 bytes (i.e. 64 words) can be written at one time.
• Call this function as many times as required to write data of more

than 256 bytes.

Caution • It is not allowed to overwrite data in flash memory.
• Only blank flash cells can be used for the write.

Function prototype fsl_u08 FSL_EEPROMWrite (fsl_u32 s_address_u32, fsl_u08 word_count_u08)

Pre-condition The self-programming environment was successfully opened by the functions
FSL_Open and FSL_Init.

Argument

Argument C language

starting address of the data to be
writtenNote fsl_u32 s_address_u32

Number of the data to be written (1 to
64)

fsl_u08 word_count_u08

Argument C language

starting address of the data to be
writtenNote

Data model near:
AX = HIGH(address)
BC = LOW(address)
Data model far:
AX = HIGH(address)
BC = LOW(address

Number of the data to be written (1 to
64)

Data model near:
D
Data model far:
D

Note • (s_address_u32 + (Number of data to be written x 4 bytes)) must
not straddle over the end address of a single block.

• s_address_u32 must be a multiple of 4
• Most significant byte (MSB) of the s_address_u32 has to be 0x00

In other words, only 0x00abcdef is a valid flash address.
• word_count*4 has to be smaller than the size of data buffer.

The firmware does not check this.

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 71

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H

Parameter error
- Start address is not a multiple of 1 word (4 bytes).
- The number of data to be written is 0.
- The number of data to be written exceeds 64 words.
- Write end address (Start address + (Number of data to be

written x 4 bytes)) exceeds the flash memory area.

10H
Protect error
Specified range includes the boot area and rewriting the boot area is
disabled or address is outside the flash shield window.

1CH
Write error
Data is verified but does not match after this function operation is
completed or FLMD0 pin is low..

1DH
Verify error
Data is verified but does not match after it has been written.

1EH
Blank error
Write area is not a blank area.

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

A = return value; X, B, C , D, ES and RB3 destroyed

 // prepare data and write it into the data buffer for the writing process
..........
..........

my_address_u32 = 0x0001FC00; // set address for write procedure
my_write_count_u08 = 0x02; // set word count

do
{
 my_status_u08 = FSL_EEPROMWrite(my_address_u32, my_write_count_u08);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

} while (my_status_u08 == FSL_ERR_INTERRUPTION);

// exit if error occurs
if (my_status_u08 != FSL_OK) my_error_handler(....)

Chapter 6 Library for IAR Compiler

72 Application Note U19672EE1V2AN00

6.2.11 FSL_GetSecurityFlags

Outline This function reads the security (write-/erase-protection) information from the
extra area.

Figure 6-3 Security Information Structure

Function prototype fsl_u08 FSL_GetSecurityFlags (fsl_u16 *destination_pu16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C language

Storage address of the security
information

fsl_u16 *destination_pu16

Argument Assembly

Storage address of the security
information

Data model near:
AX
Data model far:
[SP+0] = LOW(LWRD(dest_address))
[SP+1] = HIGH(LWRD(dest_address))
[SP+2] = LOW(HWRD(dest_address))
[SP+3] = HIGH(HWRD(dest_address))

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 73

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H Parameter error

Change in the destination address.

Security flag will be written in the destination address.

Meaning of each bit of security flag.
Bit 0: Chip erase protection (0: Enabled, 1: Disabled)
Bit 1: Block erase protection (0: Enabled, 1: Disabled)
Bit 2: Write protection (0: Enabled, 1: Disabled)
Bit 4: Boot area overwrite protection (0: Enabled, 1: Disabled)
Bits 3, 5, 6 and 7 are always 1.
Bits 8...15 = 03H -> last block of the boot-area

Register status after
calling

A = return value, X, data_buffer[0], data_buffer[1] and RB3= destroyed

Call example

/* extern variable declaration(see fsl_user.c) */
extern fsl_u08 fsl_data_buffer[FSL_DATA_BUFFER_SIZE];

/* get security informations */
my_status_u08 = FSL_GetSecurityFlags ((fsl_u16*)&my_security_dest_u16);

if(my_status_u08 != 0x00)
 my_error_handler();

if(my_security_dest_u16 & 0x0001){ myPrintFkt("Chip erase protection disabled!"); }
else{ myPrintFkt("Chip erase protection enabled!"); }

Chapter 6 Library for IAR Compiler

74 Application Note U19672EE1V2AN00

6.2.12 FSL_GetActiveBootCluster

Outline This function reads the current value of the boot flag in extra area.

Function prototype fsl_u08 FSL_GetActiveBootCluster (fsl_u08 *destination_pu08)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C language

Destination address of the boot swap
info

fsl_u08 *destination_pu08

Argument Assembly

Storage address of the security
information

Data model near:
AX
Data model far:
[SP+0] = LOW(LWRD(dest_address))
[SP+1] = HIGH(LWRD(dest_address))
[SP+2] = LOW(HWRD(dest_address))
[SP+3] = HIGH(HWRD(dest_address))

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H Parameter error

Changes in the destination address.

Boot flag will be written in the destination address.

00H: Boot area is not swapped.
01H: Boot area is swapped.

Register status after
calling

A = return value, X, data_buffer[0] and RB3 = destroyed

Call example

/* extern variable declaration(see fsl_user.c) */
extern fsl_u08 fsl_data_buffer[FSL_DATA_BUFFER_SIZE];

/* get boot-swap flag */
my_status_u08 = FSL_GetActiveBootCluster((fsl_u08*)&my_bootflag_dest_u08);

if(my_status_u08 != 0x00)
 my_error_handler();

if(my_bootflag_dest_u08){ myPrintFkt("Boot area is swapped!"); }
else{ myPrintFkt("Boot area is not swapped!"); }

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 75

6.2.13 FSL_GetBlockEndAddress

Outline This function puts the last address of the specified block into *destination_pu32.

Note This function may be used to secure the write function FSL_Write. If write
operation exceeds the end address of a block, the written data is not guaranteed.
Use this function to check whether the (write address + word number * 4) exceeds
the end address of a block before calling the write function.

Function prototype fsl_u08 FSL_GetBlockEndAddr ((fsl_u32*) destination_pu32, fsl_u16 block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C language

Destination address of the block end
address info

fsl_u32 *destination_pu32

Block number the end-address is
asked for

fsl_u16 block_u16

Argument Assembly

Destination address of the block end
address info

Data model near:
AX
Data model far:
[SP+0] = LOW(LWRD(dest_addr))
[SP+1] = HIGH(LWRD(dest_addr))
[SP+2] = LOW(HWRD(dest_addr))
[SP+3] = HIGH(HWRD(dest_addr))

Block number the end-address is
asked for

Data model near:
BC
Data model far:
AX

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H Parameter error

Changes in the destination address.

Block end address will be written in the destination address.

Example

If 6CH is given as block number, 367FFH will be written to the destination address.

Register status after
calling

A = return value, X, B, C, ES, data_buffer[0] to data_buffer[3] and RB3 =
destroyed

Chapter 6 Library for IAR Compiler

76 Application Note U19672EE1V2AN00

Call example

/* extern variable declaration(see fsl_user.c) */
extern fsl_u08 fsl_data_buffer[DATA_BUFFER_SIZE];

fsl_u32 my_address_u32;
fsl_u16 my_block_u16 = 0x001F;

/* get end adress of the block */
my_status_u08 = FSL_GetBlockEndAddr((fsl_u32*)&my_address_u32, my_block_u16);

if(my_status_u08 != 0x00)
 my_error_handler();

/* ####### ANALYSE my_address_u32 ####### */

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 77

6.2.14 FSL_GetFlashShieldWindow

Outline This function reads the stored flash shield window. The flash shield window is a
mechanism to protect the flash content against unwanted overwrite or erase
defines. It can be reprogrammed by the application at any time by using the
finction FSL_SetFlashShieldWindow.

Example:

Flash shield window start block is 0x60
Flash shield window end block is 0x63

This configuration of the flash shield window prohibits the user to write e.g. into
the block …..0x5E,0x5F,0x64,0x65…..

Function prototype fsl_u08 FSL_GetFlashShieldWindow(fsl_u16* start_block_pu16, fsl_u16*
end_block_pu16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C language

Destination address for the start block
of the flash shield window

fsl_u16* start_block_pu16

Destination address for the end block
of the flash shield window

fsl_u16* end_block_pu16

Argument Assembly

Destination address for the start block
of the flash shield window

Data model near:
AX
Data model far:
[SP+0] = LOW(LWRD(FSW_start_block))
[SP+1] = HIGH(LWRD(FSW_start_block))
[SP+2] = LOW(HWRD(FSW_start_block))
[SP+3] = HIGH(HWRD(FSW_start_block))

Destination address for the end block
of the flash shield window

Data model near:
BC
Data model far:
[SP+4] = LOW(LWRD(FSW_end_block))
[SP+5] = HIGH(LWRD(FSW_end_block))
[SP+6] = LOW(HWRD(FSW_end_block))
[SP+7] = HIGH(HWRD(FSW_end_block))

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H Parameter error

Register status after
calling

A = return value, X, B, C, data_buffer[0] to data_buffer[3] and RB3 = destroyed

Chapter 6 Library for IAR Compiler

78 Application Note U19672EE1V2AN00

Call example

/* extern variable declaration(see fsl_user.c) */
extern fsl_u08 fsl_data_buffer[DATA_BUFFER_SIZE];

fsl_u32 my_address_u32;
fsl_u16 my_block_u16 = 0x001F;
/* read flash shield window */
my_status_u08 = FSL_GetBlockEndAddr((fsl_u16*)&myFSW_start, (fsl_u16*)&myFSW_end

if(my_status_u08 != 0x00)
 my_error_handler();

/* ####### ANALYSE flash shield window ####### */

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 79

6.2.15 FSL_SetFlashShieldWindow

Outline This function sets the new flash shield window. The flash shield window is a
mechanism to protect the flash content against unwanted overwrite or erase
defines.

Example:

Flash shield window start block is 0x60
Flash shield window end block is 0x63

This configuration of the flash shield window prohibits the user to write e.g. into
the block …..0x5E,0x5F,0x64,0x65…..

Function prototype fsl_u08 FSL_SetFlashShieldWindow(fsl_u16 start_block_u16, fsl_u16
end_block_u16)

Pre-condition The flash self-programming environment was successfully opened by the
functions FSL_Open and FSL_Init.

Argument

Argument C language

Start block for the flash shield window fsl_u16 start_block_u16

End block for the flash shield window fsl_u16 end_block_u16

Argument Assembly

Start block for the flash shield window

Data model near:
AX
Data model far:
AX

End block for the flash shield window

Data model near:
BC
Data model far:
BC

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
- Internal error

10H

Protection error
- Attempt is made to enable a flag that has already been

disabled.
- Attempt is made to change the boot area swap flag while

rewriting of the boot area is disabled.

1AH
Erase error
An erase error occurs while this function is in process.

1BH
Internal verify error
A verify error occurs while this function is in process.

1CH
Write error
A write error occurs while this function is in process.

Chapter 6 Library for IAR Compiler

80 Application Note U19672EE1V2AN00

Status Explanation

1FH
Process interrupted.
A user interrupt occurs while this function is in process.

Register status after
calling

A = return value, X, B, C, ES, data_buffer[0] to data_buffer[4] and RB3=
destroyed

Call example

fsl_u16 myFSW_start = 0x0002;
fsl_u16 myFSW_end = 0x0004;

/* set flash shield window */
my_status_u08 = FSL_SetFlashShieldWindow(myFSW_start, myFSW_end);

if(my_status_u08 != 0x00)
 my_error_handler();

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 81

6.2.16 FSL_SetXXX and FSL_InvertBootFlag

Outline The self-programming library has 5 functions for setting security bits . Each
dedicated function sets a corresponding security flag in the extra area.

These functions are listed below.

Funtion name Outline

invert boot flag function Inverts the current value of the boot flag*.

set chip-erase-protection function Sets the chip-erase-protection flag*.

set block-erase-protection function Sets the block-erase-protection flag*.

set write-protection function Sets the write-protection flag*.

set boot-cluster-protection function Sets the bootcluster-update-protection flag*.

* This flag is stored in the flash extra area.

Caution 1. Chip-erase protection and boot-cluster protection cannot be
reset by programmer.

2. After successfully execution of the FSL_InvertBootFlag function
it is not allowed to execute any FSL_Setxxx function till
hardware reset is occurred.

3. After RESET the other boot-cluster is activated. Please ensure a
valid boot-loader inside the area, before calling the function.

4. Each security flag can be written by the application only once until
next reset.

5. Block-erase protection and write protection can be reset by
programmer.

Figure 6-4 Extra Area

Chapter 6 Library for IAR Compiler

82 Application Note U19672EE1V2AN00

Function prototypes

Function name Function prototype

invert boot flag function fsl_u08 FSL_InvertBootFlag(void)

set chip-erase-
protection function

fsl_u08 FSL_SetChipEraseProtectFlag(void)

set block-erase-
protection function

fsl_u08 FSL_SetBlockEraseProtectFlag(void)

set write-protection
function

fsl_u08 FSL_SetWriteProtectFlag(void)

set boot-cluster-
protection function

fsl_u08 FSL_SetBootClusterProtectFlag(void)

Argument None

Return Value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

05H
Parameter error
- Internal error

10H

Protection error
- Attempt is made to enable a flag that has already been

disabled.
- Attempt is made to change the boot area swap flag while

rewriting of the boot area is disabled.

1AH
Erase error
An erase error occurs while this function is in process.

1BH
Internal verify error
A verify error occurs while this function is in process.

1CH
Write error
A write error occurs while this function is in process.

1FH Interrupted by user interrupt

Register status after
calling

A = return value, data_buffer[0] to data_buffer[4], RB3 destroyed

Call example

my_status_u08 = FSL_SetBlockEraseProtectFlag();

if(my_status_u08 != 0x00)
 my_error_handler();

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 83

6.2.17 FSL_SwapBootCluster

Outline This function performs the physically swap of the bootclusters(0 and 1) without
touching the boot flag. After the physically swap the PC (program counter) will be
set regarding the reset vector from the boot cluster 1.

Note 1. After the execution of this function boot cluster 1 is located from
the address 0x0000 to 0x1FFF and PSW.IE bit is cleared! After
reset the boot clusters will be switch regarding the boot swap
flag.

2. After successfully execution of the FSL_SwapBootCluster
function it is not allowed to execute any FSL_Setxxx function till
hardware reset is occurred.

Function prototype fsl_u08 FSL_SwapBootCluster(void)

Pre-condition None

Argument None

Return value The status is stored in A register in assembly language, and returned in the
fsl_u08 type variable in C language.

Status Explanation

00H Normal completion

10H Protection error

Register status after
calling

ES, CS, RB3, data_buffer[0] to data_buffer[61] = destroyed

Chapter 6 Library for IAR Compiler

84 Application Note U19672EE1V2AN00

6.2.18 FSL_ForceReset

Outline This function generates a software reset. For detailed information please refer to
the device Users Manual.

Function prototype void FSL_ForceReset(void)

Pre-condition None

Argument None

Return value None

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 85

6.2.19 FSL_SetInterruptMode

Outline This function forces the interrupted FSL function to leave as fast as possible to
the user application. Usage is only inside ISRs permitted.

Caution:
If FSL_SetInterruptMode function was called before execution of any other
FSL_XXX function, the FSL_XXX function may with 0x1F (interrupted status),
also if no interrupt is occured.

Figure 6-6 Force self-programming function to leave to the user application

Function prototype void FSL_SetInterruptMode(void)

Pre-condition Interrupt is occured.

Argument None

Return value None

Chapter 6 Library for IAR Compiler

86 Application Note U19672EE1V2AN00

6.3 Sample linker file

The self-programming library uses three segments for data, code and constants
allocation:

• FSL_CODE(code)
This segment contains the library functions and must be located
within the common area (for secure bootloader updates within the
first 8KByte).

• FSL_DATA(data)
Internal data of the library will be located inside this segment.

• FSL_CNST(constants)
Constants for the library will be located inside this segment.

• FSL_UCOD(code)
Within this segment the user part ("fsl_user.c") will be located. Be
sure to locate this segment within internal flash.

• FSL_UDAT
This segment contains the user defined variables like fsl_data_buffer

Listed below is a sample linker file(for uPD78F1845) for the self-programming
library.

//---
// Define CPU
//---
-c78000

//---
// Size of the stack.
// Remove comment and modify number if used from command line.
//---
//-D_CSTACK_SIZE=80

//---
// Allocate the read only segments that are mapped to ROM.
//---
// Interrupt vector segment.
//---

-Z(CODE)INTVEC=00000-0007F

//---
// CALLT vector segment.
//---
 -Z(CODE)CLTVEC=00080-000BF

//---
// OPTION BYTES segment.
//---

-Z(CODE)OPTBYTE=000C0-000C3

//---
// SECURITY_ID segment.
//---
-Z(CODE)SECUID=000C4-000CD

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 87

 //---
// Reserved ROM area for Minicube Firmware: 000D0-00383
//---

//---
// FAR far data segments.
// The FAR_I and FAR_ID segments must start at the same offset
// in a 64 Kb page.
//---
-Z(FARCONST)FAR_ID=06FFF-3FFFF
-Z(FARDATA)FAR_I=FFA00-FFEDF

// FSL
// ============
-Z(CODE)FSL_CODE=0100-0FFE
-Z(CONST)FSL_CNST=0100-0FFE
-Z(CODE)FSL_UCOD=0100-0FFE

//---
// Startup, Runtime-library, Near, Interrupt
// and CALLT functions code segment.
//---

-Z(CODE)RCODE,CODE=02000-3FFFF

//---
// Far functions code segment.
//---
-Z(CODE)XCODE=[02000-3FFFF]/10000

//---
// Data initializer segments.'
//---
-Z(CONST)NEAR_ID=[02000-3FFFF]/10000
-Z(CONST)SADDR_ID=[02000-3FFFF]/10000
-Z(CONST)DIFUNCT=[02000-3FFFF]/10000

//---
// Constant segments
//---
-Z(CONST)NEAR_CONST=_NEAR_CONST_LOCATION_START-_NEAR_CONST_LOCATION_END
-P(CONST)FAR_CONST=[02000-7FFF]/10000
-Z(CONST)SWITCH=02000-07FFF
-Z(CONST)FSWITCH=[02000-7FFF]/10000

//---
// Allocate the read/write segments that are mapped to RAM.
//---
//---
// Short address data and workseg segments.
//---
-Z(DATA)WRKSEG=FFE20-FFEDF
-Z(DATA)SADDR_I,SADDR_Z,SADDR_N=FFE20-FFEDF

//---
// Near data segments.
//---

-Z(DATA)NEAR_I,NEAR_Z,NEAR_N,DS_DBF,FSL_DATA,FSL_UDAT=FFA00-FFEDF

//---
// Far data segments.
//---
-Z(FARDATA)FAR_Z=FFA00-FFEDF
-P(DATA)FAR_N=[FFA00-FFEDF]/10000

Chapter 6 Library for IAR Compiler

88 Application Note U19672EE1V2AN00

//---
// Heap segments.
//---
-Z(DATA)NEAR_HEAP+_NEAR_HEAP_SIZE=FFA00-FFEDF
-Z(DATA)FAR_HEAP+_FAR_HEAP_SIZE=[FFA00-FFEDF]/10000

//---
// Stack segment.
//---
-Z(DATA)CSTACK+_CSTACK_SIZE=FFA00-FFEDF

6.4 How to integrate the library into an application

1. copy all the files into your project subdirectory

2. add all fsl*.* files into your project (workbench or make-file)
NOTE: Only one FSL library file (*.r26) must be included.
(for data model near -> fsl_near.r26 or data model far -> fsl_far.r26)

3. adapt project specific files as follows:
• fsl_user.h:

- adapt the system frequency expressed in [Hz]
- adapt the voltage mode
- adapt the size of data-buffer you want to use for data
exchange between firmware and application
- define the interrupt scenario (enable interrupts that should be
active during self-programming)
- define the back-up functionality during selfprogramming
whether required or not

• fsl_user.c:
- adapt FSL_Open() and FSL_Close() due to your requirements

4. adapt the *.XCL file due to your requirements (at least segments
FSL_UCOD, FSL_UDAT, FSL_CODE, FSL_CNST and FSL_DATA
should be defined)

5. re-compile the project

Library for IAR Compiler Chapter 6

Application Note U19672EE1V2AN00 89

Chapter 7 Sample code

The following example shows the typically call and interrupt handling sequence
of the self-programming library.

// ==
// execute the selected command
// ==
 FSL_Open();

 if (FSL_ModeCheck() != FSL_OK) My_Error_Handler(....);

 my_status_u08 = FSL_Init(&my_data_buffer);

 while (my_status_u08 == FSL_ERR_INTERRUPTION);
 {
 my_status_u08 = FSL_Init_cont(&my_data_buffer);
 }

 // check block by block if blank
 for (my_block_u16 = 0; my_block_u16 <= 0x1F; my_block_u16++)
 {
 // blank-check current block as long as not completed or error occurs
 // --
 do
 {
 my_status_u08 = FSL_BlankCheck(my_block_u16);

 // in case of FSL_ERR_INTERRUPTION is returned here,
 // the corresponding ISR is already executed !!!

 } while (my_status_u08 == FSL_ERR_INTERRUPTION);

 // exit if error occurs
 if (my_status_u08 != FSL_OK) My_Error_Handler(....);
 }
 FSL_Close();
// ==

// ==
// handling of the FSL_SetInterruptMode function inside interrupts
// ==

#pragma vector = INTSRE3_vect
__interrupt void isr_sre3(void)
{
 // store received data into receive buffer

 if(receive_buffer_full)
 {

 FSL_SetInterruptMode();
 }
}

90 Application Note U19672EE1V2AN00

Chapter 8 Programming Characteristics

This chapter includes the timing informations of each function depending on the
user configuration.

8.1 Suspend and response timings of interrupts

Unlike the case for an ordinary interrupt, an interrupt generated during
selfprogramming is handled via post-interrupt servicing in the firmware (i.e. setting
0x1F as return value of a self-programming function). Consequently, the response
time is longer than that of an ordinary interrupt. There are to different cases
regarding the interrupt response time:

1. Interrupt response time from the occured interrupt to interrupt
servicing

2. The time where the user call the function FSL_SetInterruptMode
inside the ISR till return to the application with 0x1F status.

The following figure illustrates the two cases:

In general the timing characteristics depends on the user configuration. Following
registers affect the self-programming timings:

• Regulator mode control register (RMC)
• Operation speed mode control register (OSMC -- FLPC and FSEL)

Application Note U19672EE1V2AN00 91

8.1.1 Interrupt response timings

This chapter describes the tresponse time. The time from generated interrupt to ISR
execution.

Table 8-1 FSEL=1

Function Interrupt disable period (max)

FSL_Init Interrupts will be handeled immediately

FSL_Init_cont Interrupts will be handeled immediately

FSL_Mode Check Interrupts will be handeled immediately

FSL_Blank Check 940/fclk + 69us

FSL_Erase 1592/fclk + 118 us

FSL_IVerify 1065/fclk + 69us

FSL_Write 1168/fclk + 96us

FSL_EEPROMWrite 1178/fclk + 96us

FSL_GetSecurityFlags

Interrupts are disabled
FSL_GetActiveBootCluster

FSL_GetBlockEndAddr

FSL_GetFlashShieldWindow

FSL_InvertBootFlag 119121/fclk + 4175us

FSL_SetFlashShieldWindow 119121/fclk + 4175us

FSL_SetChipEraseProtectFlag 119121/fclk + 4175us

FSL_SetBlockEraseProtectFlag 119121/fclk + 4175us

FSL_SetWriteProtectFlag 119121/fclk + 4175us

FSL_SetBootClusterProtectFlag 119121/fclk + 4175us

FSL_SwapBootCluster Interrupts are disabled

FSL_SwapActiveBootCluster (NEC only) 119121/fclk + 4175us

FSL_ForceReset Interrupts will be handeled immediately

FSL_SetInterruptMode Interrupts are disabled

Table 8-2 FSEL=0

Function Interrupt disable period (max)

FSL_Init Interrupts will be handeled immediately

FSL_Init_cont Interrupts will be handeled immediately

FSL_Mode Check Interrupts will be handeled immediately

FSL_Blank Check 915/fclk + 33us

FSL_Erase 1566/fclk + 86us

FSL_IVerify 1040/fclk + 86us

FSL_Write 1143/fclk + 64us

FSL_EEPROMWrite 1152/fclk + 64us

FSL_GetSecurityFlags

Interrupts are disabled
FSL_GetActiveBootCluster

FSL_GetBlockEndAddr

FSL_GetFlashShieldWindow

Chapter 8 Programming Characteristics

92 Application Note U19672EE1V2AN00

Function Interrupt disable period (max)

FSL_InvertBootFlag 119095/fclk + 4143us

FSL_SetFlashShieldWindow 119095/fclk + 4143us

FSL_SetChipEraseProtectFlag 119095/fclk + 4143us

FSL_SetBlockEraseProtectFlag 119095/fclk + 4143us

FSL_SetWriteProtectFlag 119095/fclk + 4143us

FSL_SetBootClusterProtectFlag 119095/fclk + 4143us

FSL_SwapBootCluster Interrupts are disabled

FSL_SwapActiveBootCluster (NEC only) 119095/fclk + 4143us

FSL_ForceReset Interrupts will be handeled immediately

FSL_SetInterruptMode Interrupts are disabled

8.1.2 Interrupt suspension timings

This chapter describes the tsuspension time. The time from called
FSL_SetInterruptMode() function inside ISR to the application.

Table 8-3 FSEL=1

Function Interrupt disable period (max)

FSL_Init 8139/fclk + 0us

FSL_Init_cont 160/fclk + 0us

FSL_Mode Check not affected

FSL_Blank Check 1180/fclk + 65us

FSL_Erase 1739/fclk + 118 us

FSL_IVerify 1288/fclk + 69us

FSL_Write 1320/fclk + 96us

FSL_EEPROMWrite 1396/fclk + 96us

FSL_GetSecurityFlags

Interrupts are disabled
FSL_GetActiveBootCluster

FSL_GetBlockEndAddr

FSL_GetFlashShieldWindow

FSL_InvertBootFlag 119534/fclk + 4175us

FSL_SetFlashShieldWindow 119534/fclk + 4175us

FSL_SetChipEraseProtectFlag 119534/fclk + 4175us

FSL_SetBlockEraseProtectFlag 119534/fclk + 4175us

FSL_SetWriteProtectFlag 119534/fclk + 4175us

FSL_SetBootClusterProtectFlag 119534/fclk + 4175us

FSL_SwapBootCluster Interrupts are disabled

FSL_SwapActiveBootCluster (NEC only) 119534/fclk + 4175us

FSL_ForceReset not affected

FSL_SetInterruptMode Interrupts are disabled

Programming Characteristics Chapter 8

Application Note U19672EE1V2AN00 93

Table 8-4 FSEL=0

Function Interrupt disable period (max)

FSL_Init(2MHz-6MHz) 7220/fclk

FSL_Init(7MHz-10MHz) 6140/fclk

FSL_Init_cont 160/fclk

FSL_Mode Check not affected

FSL_Blank Check 1155/fclk + 33us

FSL_Erase 1714/fclk + 86us

FSL_IVerify 1263/fclk + 36us

FSL_Write 1295/fclk + 64us

FSL_EEPROMWrite 1371/fclk + 64us

FSL_GetSecurityFlags

Interrupts are disabled
FSL_GetActiveBootCluster

FSL_GetBlockEndAddr

FSL_GetFlashShieldWindow

FSL_InvertBootFlag 119508/fclk + 4143us

FSL_SetFlashShieldWindow 119508/fclk + 4143us

FSL_SetChipEraseProtectFlag 119508/fclk + 4143us

FSL_SetBlockEraseProtectFlag 119508/fclk + 4143us

FSL_SetWriteProtectFlag 119508/fclk + 4143us

FSL_SetBootClusterProtectFlag 119508/fclk + 4143us

FSL_SwapBootCluster Interrupts are disabled

FSL_SwapActiveBootCluster (NEC only) 119508/fclk + 4143us

FSL_ForceReset not affected

FSL_SetInterruptMode Interrupts are disabled

8.2 Operation time

The following tables describe the execution time of each function depending on
the user configuration.

Table 8-5 FSEL=1

Function
Operation time

Min. Max.

FSL_Init 11524/fclk + 0us 17291/fclk + 0us

FSL_Init_cont 311/fclk +0us 9273/fclk + 0us

FSL_Mode Check 9/fclk +0us 15/fclk +0us

FSL_Blank Check 33729/fclk + 34us 50600/fclk + 65us

FSL_Erase 39159/fclk + 8102us 988980/fclk + 241349us

FSL_IVerify 71671/fclk + 1260us 107512/fclk + 1905us

FSL_Write
(6304+384 x W)/fclk
+ (60+30 x W)us

(9503+3936 x W)/fclk
+ (118+455 x W)us

FSL_EEPROMWrite
(10868+772 x W)/fclk
+ (127+35 x W)us

(16360+4518 x W)/fclk
+ (243+462 x W)us

Chapter 8 Programming Characteristics

94 Application Note U19672EE1V2AN00

Function
Operation time

Min. Max.

FSL_GetSecurityFlags 2598/fclk + 36us 3900/fclk + 68us

FSL_GetActiveBootCluster 334/fclk + 0us 502/fclk + 0us

FSL_GetBlockEndAddr 436/fclk + 0us 656/fclk + 0us

FSL_GetFlashShieldWindow 2624/fclk + 36us 3944/fclk+ 68us

FSL_InvertBootFlag 7733/fclk + 108us 2170925/fclk+488013us

FSL_SetFlashShieldWindow 5245/fclk + 72us 2167187/fclk+487946us

FSL_SetChipEraseProtectFlag 7722/fclk + 108us 2170908/fclk+488013us

FSL_SetBlockEraseProtectFlag 7722/fclk + 108us 2170908/fclk+488013us

FSL_SetWriteProtectFlag 7722/fclk + 108us 2170908/fclk+488013us

FSL_SetBootClusterProtectFlag 7722/fclk + 108us 2170908/fclk+488013us

FSL_SwapBootCluster 3156/fclk + 36us 4743/fclk + 68us

FSL_SwapActiveBootCluster
(NEC only)

10325/fclk + 144us 2174822/fclk+488080us

FSL_ForceReset Non-relevance Non-relevance

FSL_SetInterruptMode 58/fclk+ 0us 88/fclk+ 0us

W: words to be written

Table 8-6 FSEL=0

Function
Operation time

Min. Max.

FSL_Init
(fclk=2MHz-6MHz)

10910/fclk + 0us 16371/fclk + 0us

FSL_Init
(fclk=7MHz-xMHz)

11524/fclk + 0us 17291/fclk + 0us

FSL_Init_cont 311/fclk +0us 9273/fclk + 0us

FSL_Mode Check 9/fclk +0us 15/fclk +0us

FSL_Blank Check 33714/fclk + 21us 50574/fclk + 33us

FSL_Erase 39128/fclk + 8076us 988930/fclk + 241286us

FSL_IVerify 71656/fclk + 1248us 107487/fclk + 1872us

FSL_Write
(6273+384 x W)/fclk
+ (35+30 x W)us

(9453+3936 x W)/fclk
+ (53+455 x W)us

FSL_EEPROMWrite
(10808+772 x W)/fclk
+ (76+35 x W)us

(16259+4518 x W)/fclk
+ (114+462 x W)us

FSL_GetSecurityFlags 2583/fclk + 23us 3875/fclk + 35us

FSL_GetActiveBootCluster 334/fclk + 0us 502/fclk + 0us

FSL_GetBlockEndAddr 436/fclk + 0us 656/fclk + 0us

FSL_GetFlashShieldWindow 2609/fclk + 23us 3918/fclk + 35us

FSL_InvertBootFlag 7688/fclk + 69us
2170724/fclk +
487756us

FSL_SetFlashShieldWindow 5215/fclk+ 46us 2167011/fclk+ 487721us

FSL_SetChipEraseProtectFlag 7676/fclk + 69us
2170707/fclk +
487756us

FSL_SetBlockEraseProtectFlag 7676/fclk + 69us
2170707/fclk +
487756us

Programming Characteristics Chapter 8

Application Note U19672EE1V2AN00 95

Function
Operation time

Min. Max.

FSL_SetWriteProtectFlag 7676/fclk + 69us
2170707/fclk +
487756us

FSL_SetBootClusterProtectFlag 7676/fclk + 69us
2170707/fclk +
487756us

FSL_SwapBootCluster 3140/fclk + 23us 4718/fclk + 35us

FSL_SwapActiveBootCluster
(NEC only)

10264/fclk + 92us
2174595/fclk +
487791us

FSL_ForceReset Non-relevance Non-relevance

FSL_SetInterruptMode 58/fclk+ 0us 88/fclk+ 0us

W: words to be written

Chapter 8 Programming Characteristics

96 Application Note U19672EE1V2AN00

Revision History

All changes of this document revision are related to the library version (NEC: V1.01
and IAR: V1.01). All the characteristics like ROM/RAM consumption, execution
time are changed according to the actual library version. The previous version of
this document is U19672EE1V1AN00.

Chapter Page Description

2 13 Stack consumption changed

6 60 Sample reagrding FSL_MK3x_MASK added

6 73 Prototype of FSL_GetSecurityFlags fixed.

8 94 Operation timings changed

Application Note U19672EE1V2AN00 97

	1 General Information
	1.1 Overview
	1.2 Work Flow
	1.3 Memory organization

	2 Programming Environment
	2.1 Hardware Environment
	2.2 Software Envronment
	2.2.1 Stack and data-buffer

	3 Interrupt servicing
	3.1 Interrupt response time and suspension delay
	3.2 Restrictions during interrupt servicing

	4 Boot-swapping
	5 Library for NEC Compiler
	5.1 Library function prototypes
	5.2 Library explanation
	5.2.1 FSL_Open
	5.2.2 FSL_Close
	5.2.3 FSL_Init
	5.2.4 FSL_Init_cont
	5.2.5 FSL_ModeCheck
	5.2.6 FSL_BlankCheck
	5.2.7 FSL_Erase
	5.2.8 FSL_IVerify
	5.2.9 FSL_Write
	5.2.10 FSL_EEPROMWrite
	5.2.11 FSL_GetSecurityFlags
	5.2.12 FSL_GetActiveBootCluster
	5.2.13 FSL_GetBlockEndAddress
	5.2.14 FSL_GetFlashShieldWindow
	5.2.15 FSL_SetFlashShieldWindow
	5.2.16 FSL_SetXXX and FSL_InvertBootFlag
	5.2.17 FSL_SwapBootCluster
	5.2.18 FSL_ForceReset
	5.2.19 FSL_SetInterruptMode
	5.2.20 FSL_SwapActiveBootCluster

	5.3 Sample linker file
	5.4 How to integrate the library into an application

	6 Library for IAR Compiler
	6.1 Library function prototypes
	6.2 Library explanation
	6.2.1 FSL_Open
	6.2.2 FSL_Close
	6.2.3 FSL_Init
	6.2.4 FSL_Init_cont
	6.2.5 FSL_ModeCheck
	6.2.6 FSL_BlankCheck
	6.2.7 FSL_Erase
	6.2.8 FSL_IVerify
	6.2.9 FSL_Write
	6.2.10 FSL_EEPROMWrite
	6.2.11 FSL_GetSecurityFlags
	6.2.12 FSL_GetActiveBootCluster
	6.2.13 FSL_GetBlockEndAddress
	6.2.14 FSL_GetFlashShieldWindow
	6.2.15 FSL_SetFlashShieldWindow
	6.2.16 FSL_SetXXX and FSL_InvertBootFlag
	6.2.17 FSL_SwapBootCluster
	6.2.18 FSL_ForceReset
	6.2.19 FSL_SetInterruptMode

	6.3 Sample linker file
	6.4 How to integrate the library into an application

	7 Sample code
	8 Programming Characteristics
	8.1 Suspend and response timings of interrupts
	8.1.1 Interrupt response timings
	8.1.2 Interrupt suspension timings

	8.2 Operation time

	Revision History
	Index

