Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Application Note

78K/0 Series

8-bit Single-chip Microcontrollers

Basics (II)

 $\mu \text{PD78044F Subseries} \\ \mu \text{PD78044H Subseries} \\ \mu \text{PD780208 Subseries} \\ \mu \text{PD780228 Subseries} \\ \mu \text{PD78028 Subseries}$

Document No. U10121EJ3V0AN00 (3rd edition) Date Published August 1997 J

© NEC Corporation 1993 Printed in Japan

SUMMARY OF CONTENTS

CHAPTER 1	OVERVIEW	1
CHAPTER 2	SOFTWARE BASICS	15
CHAPTER 3	SYSTEM CLOCK SWITCHING APPLICATION	37
CHAPTER 4	WATCHDOG TIMER APPLICATION	51
CHAPTER 5	16-BIT TIMER/EVENT COUNTER APPLICATION	59
CHAPTER 6	8-BIT TIMER/EVENT COUNTER APPLICATION	101
CHAPTER 7	WATCH TIMER APPLICATION	117
CHAPTER 8	SERIAL INTERFACE APPLICATION	127
CHAPTER 9	A/D CONVERTER APPLICATION	215
CHAPTER 10	APPLICATIONS OF FIP CONTROLLER/DRIVER	249
CHAPTER 11	APPLICATIONS OF 6-BIT UP/DOWN COUNTER	275
APPENDIX A	SPD CHART DESCRIPTION	281
APPENDIX B	REVISION HISTORY	289

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

FIP is a trademark of NEC Corporation. EEPROM and IEBus are trademarks of NEC Corporation. The export of these products from Japan is regulated by the Japanese government. The export of some or all of these products may be prohibited without governmental license. To export or re-export some or all of these products from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- · Device availability
- · Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK

Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99 NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH Scandinavia Office Taeby, Sweden Tel: 08-63 80 820

Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A. Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

Major Changes

Page	Description
Throughout	The following products have been added as applicable products: μ PD78044F, μ PD78044H, and μ PD780228 subseries, μ PD780206, and μ PD780208
	The following subseries have been dropped as applicable products: μ PD78024 and μ PD78044A subseries
P.37, 38 P.39, 40 P.53, 54 P.128, 129 P.216, 217 P.258, 260	The following register formats and tables are described separately according to the products: Tables 3-1 and 3-2 , Figures 3-1 , 3-2 , 4-2 , 4-3 , 8-1 , 8-2 , 9-1 , 9-2 , 10-7 , and 10-8
P.1	The following subseries have been added in Section 1.1 . µPD78075B, µPD78075BY, µPD780018, µPD780018Y, µPD780058, µPD780058Y, µPD78058F, µPD78058FY, µPD780034, µPD780034Y, µPD780024, µPD780024Y, µPD78014H, µPD780964, µPD780924, µPD780228, µPD78044H, µPD78044F, µPD780308, µPD780308Y, µPD78064B, µPD78098B, µPD780973, µPD780805 subseries, and µPD78P0914
P.40	Table 3-3 has been added.
P.53	Note 2 and Caution 2 have been added to Figure 4-2.
P.55	Figure 4-4 has been added.
P.63	A Caution has been added to Figure 5-5.
P.127	Table 8-2 has been added.
P.130	Note 4 and a Caution have been added to Figure 8-3.
P.139	A Caution has been added to Figure 8-9.
P.141	Section 8.1 The μ PD6252 has been defined as a product for maintenance purposes only.
P.219	Figure 9-4 has been added.

The mark ***** shows major revised points.

[MEMO]

PREFACE

• Hardware

*

The following application notes are supported.

Document name	Document No.		Document No. Applicable subseries		Applicable subseries	Description	
	Japanese	English					
78K/0 Series Application Note, Basics (I)	IEA-715	IEA-1288	μΡD78002, 78002Υ μΡD78014, 78014Υ μΡD78018F, 78018FY	Describes basic functions of 78K/0 Series products, using program examples.			
78K/0 Series Application Note, Basics (II)	U10121J	This manual	μPD78044F μPD78044H μPD780208 μPD780228				
78K/0 Series Application Note, Basics (III)	IEA-767	U10182E	μPD78054, 78054Y μPD78064, 78064Y μPD78078, 78078Y μPD78083 μPD78098				
78K/0 Series Application Note, Floating-Point Operation Program	IEA-718	IEA-1289	All subseries of 78K/0 Series $\begin{bmatrix} Except \text{ for } \mu PD78002 \text{ and} \\ \mu PD78002Y \text{ subseries} \end{bmatrix}$	Describes the floating-point operation application programs of 78K/0 Series products.			
μPD78014 Series Application Note, Electronic Notes	IEA-744	IEA-1301	μPD78014 Only the μPD78014 and μPD78P014 are applicable.	Describes the functions and configuration of electronic notes, using μ PD78014 subseries products as examples.			

Caution In this application note, the application examples and program listings are written for the main system clock operating at 4.19 MHz. They are not for the main system clock operating at 5.0 MHz.

Reading this note This application note is for 78K/0 Series products, but each subseries has different functions. Each subseries is described in the chapters listed in the following table. Sample applications for each subseries are given in those chapters indicated by circles.

Subseries	μPD78044F	μPD78044H	μPD780208	μPD780228
Chapter 1 Overview	0	0	0	0
Chapter 2 Software Basics	0	0	0	0
Chapter 3 System Clock Switching Application	0	0	0	0
Chapter 4 Watchdog Timer Application	0	0	0	0
Chapter 5 16-bit Timer/Event Counter Application	0	0	0	-
Chapter 6 8-bit Timer/Event Counter Application	0	0	0	-
Chapter 7 Watch Timer Application	0	0	0	-
Chapter 8 Serial Interface Application	0	0	0	-
Chapter 9 A/D Converter Application	0	0	0	0
Chapter 10 Applications of FIP Controller/Driver	0	0	0	0
Chapter 11 Applications of 6-bit Up/Down Counter	0	-	-	-

Legend	Significance of the	: The left side is high-order data and
	data description	the right side is low-order data.
	Active-low description	: xxx (line above pin and signal names)
	Note	: Explanation of the note attached to the text.
	Caution	: Contents that should be read carefully
	Remark	: Supplemental explanation of the text
	Number descriptions	: Binary numbers xxxx or xxxxB
		Decimal numbers xxxx
		Hexadecimal numbers xxxxH

Application area • Consumer product field

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

• Common documents

Desument some	Document number		
Document name	Japanese	English	
78K/0 Series Application Note, Basics (II)	U10121J	This manual	
78K/0 Series User's Manual, Instruction	U12326J	IEU-1372	
78K/0 Series Instruction Set	U10904J	-	
78K/0 Series Instruction Table	U10903J	-	

- Documents for $\mu\text{PD78044F}$ subseries

Decument name	Document number		
Document name	Japanese	English	
μPD78042F, 78043F, 78044F, 78045F Data Sheet	U10700J	U10700E	
μPD78P048A Data Sheet	U10611J	U10611E	
μPD78044F Subseries User's Manual	U10908J	U10908E	
μPD78044A, 78044F Subseries Special Function Register Table	U10701J	-	

* • Documents for μ PD78044H subseries

Decument nome	Document number		
	Japanese	English	
μPD78044H, 78045H, 78046H Data Sheet	U10865J	U10865E	
μPD78P048B Data Sheet	To be created	To be created	
μPD78044H Subseries User's Manual	U11756J	U11756E	

- Documents for $\mu\text{PD780208}$ subseries

Decument nome	Document number		
	Japanese	English	
μPD780204, 780205, 780206, 780208 Data Sheet	U10436J	U10436E	
μPD78P0208 Data Sheet	U11295J	U11295E	
μPD780208 Subseries User's Manual	U11302J	U11302E	
μPD780208 Subseries Special Function Register Table	U10997J	-	

* • Documents for μPD780228 subseries

Desument nome	Document number		
Document name	Japanese	English	
μPD780226, 780228 Data Sheet	U11797J	U11797E	
μPD78F0228 Preliminary Product Information	U11971J	U11971E	
µPD780228 Subseries User's Manual	U12012J	U12012E	

The above documents may be revised without notice. Use the latest versions when you design an application system.

[MEMO]

CONTENTS

CHAPTER 1	OVE	RVIEW	1
	1.1	78K/0 SERIES PRODUCT DEVELOPMENT	1
	1.2	78K/0 SERIES FEATURES	3
CHAPTER 2	SOF	TWARE BASICS	15
	2.1		15
	2.1		10
	2.2		10
	2.3		24
	2.4		24
	2.5		20
	2.0	BINARY MULTIPLICATION (16 BITS x 16 BITS)	20
	2.7	BINARY DIVISION (32 BITS/16 BITS)	20
	2.0		00
CHAPTER 3	SYS	TEM CLOCK SWITCHING APPLICATION	37
	3.1	SWITCHING PCC AFTER RESET	46
	3.2	SWITCHING DURING POWER ON/OFF	47
CHAPTER 4	WAT	CHDOG TIMER APPLICATION	51
	4 1	SETTING THE WATCHDOG TIMER MODE	56
	4.2	INTERVAL TIMER MODE SETTING	58
CHAPTER 5	16-B	IT TIMER/EVENT COUNTER APPLICATION	59
	5.1	INTERVAL TIMER SETTING	65
	5.2	PWM OUTPUT	67
	5.3	REMOTE CONTROL RECEPTION	69
		5.3.1 Remote Control Reception by a Counter Clear	72
		5.3.2 Remote Control Reception by PWM Output and Free Running	86

CHAPTER 6	PTER 6 8-BIT TIMER/EVENT COUNTER APPLICATION						
	6.1	SETTING THE INTERVAL TIMER 1	106				
		6.1.1 Setting an 8-Bit Timer 1	107				
		6.1.2 Setting the 16-Bit Timer 1	109				
	6.2	MUSICAL SCALE GENERATION 1	111				
CHAPTER 7	WAT	CH TIMER APPLICATION 1	117				
	7.1	WATCH AND LED DISPLAY PROGRAM 1	119				
	SED		127				
			1 4 1				
	0.1	INTERFACING WITH EEPROM ¹ ^(μPD6252)	141				
	8.2	INTEREACING WITH THE OSD I SI (uPD6451A)	143				
	0.2 8 3	SBI MODE INTERFACE	158				
	0.5	8.3.1 Application as a Master CPU 1	160				
		8.3.2 Application as a Slave CPU	169				
	8.4	3-WIRE SERIAL I/O MODE INTERFACE	173				
		8.4.1 Application as a Master CPU 1	174				
		8.4.2 Application as a Slave CPU 1	178				
	8.5	HALF-DUPLEX ASYNCHRONOUS COMMUNICATION 1	182				
		8.5.1 Half-Duplex Asynchronous Communication of the 3-Wire Mode	182				
		8.5.2 Half-Duplex Asynchronous Communication in the SBI Mode 1	197				
CHAPTER 9	A/D	CONVERTER APPLICATION	215				
	9.1	LEVEL METER 2	220				
	9.2	THERMOMETER 2	229				
	9.3	ANALOG KEY INPUT 2	239				
	9.4	4-CHANNEL INPUT A/D CONVERSION 2	245				
CHAPTER 10	APP	LICATIONS OF FIP CONTROLLER/DRIVER 2	249				
	10.1	12-DIGIT DISPLAY FOR FIP AND KEY INPUT	262				
		10.1.1 12-Digit FIP Display 2	263				
		10.1.2 Key Input	266				
		10.1.3 Description of Package 2	268				
		10.1.4 Example of Use 2	270				
		10.1.5 SPD Chart 2	272				
		10.1.6 Program Listing 2	273				

CHAPTER 11	APPLICATIONS OF 6-BIT UP/DOWN COUNTER	275
	11.1 1-SECOND COUNTER	277
APPENDIX A	SPD CHART DESCRIPTION	281
APPENDIX B	REVISION HISTORY	289

LIST OF FIGURES (1/4)

Figure No.	Title	Page
1-1.	Block Diagram of the μPD78044F Subseries	4
1-2.	Block Diagram of the μPD78044H Subseries	7
1-3.	Block Diagram of the μ PD780208 Subseries	10
1-4.	Block Diagram of the $\mu\text{PD780228}$ Subseries	13
2-1.	Data Exchange	15
2-2.	Data Comparison	16
2-3.	Decimal Addition	17
2-4.	Decimal Subtraction	24
2-5.	Binary-to-Decimal Conversion	26
2-6.	Bit Operation	28
2-7.	Binary Multiplication	29
2-8.	Binary Division	33
3-1.	Format of the Processor Clock Control Register	20
2.2	(µPD78044F, µPD78044F, and µPD780208 Subseries)	39
5-2. 2.2	Format of the Display Mode Degister (μ PD78044E and μ PD78044H Subscript)	40
5-5. 2-4	Format of the Display Mode Register 0 (µPD76044F and µPD76044F Subseries)	41
3-4. 2 E	Format of the Display Mode Register 1 (μ PD780208 Subseries)	42
3-0. 2 G	Format of the Display Mode Register 1 (μ PD76044F and μ PD76044F Subseries)	44
3-0. 2 7	CDL Clock Switching offer \overline{DESET} (uPD780206 Subscripts)	40
3-7. 2.0	Example of the System Clock Switching Circuit	40
3-0. 3-9.	System Clock Switching during Power On and Off (µPD78044F Subseries)	47 48
4-1.	Format of Timer Clock Selection Register 2	50
4-2.	(μPD78044F, μPD78044F, and μPD780208 Subseries) Format of the Watchdog Timer Mode Register (μPD78044F, μPD78044H, and μPD780208 Subseries)	52
4-3.	Format of the Watchdog Timer Mode Register (µPD780228 Subseries)	54
4-4.	Format of the Watchdog Timer Clock Selection Register	
	(Only for the $\mu PD780228$ Subseries)	55
4-5.	Count Timing of the Watchdog Timer	58
5-1.	Format of Timer Clock Selection Register 0	60
5-2.	Format of the 16-Bit Timer Mode Control Register	61

LIST OF FIGURES (2/4)

Figure No.	Title	Page
5-3.	Format of the 16-Bit Timer Output Control Register	62
5-4.	Format of the Port Mode Register 3	63
5-5.	Format of the External Interrupt Mode Register	63
5-6.	Format of the Sampling Clock Selection Register	64
5-7.	Example of the Remote Control Receiving Circuit	69
5-8.	IC Output Signal for Remote Control Transmission	70
5-9.	Output Signal of the Receiving Preamplifier	71
5-10.	Sampling the Remote Control Signal	72
6-1.	Format of Timer Clock Selection Register 1	102
6-2.	Format of the 8-Bit Timer Mode Control Register	103
6-3.	Format of the 8-Bit Timer Output Control Register	104
6-4.	Format of Port Mode Register 3	105
6-5.	Count Timing of an 8-Bit Timer	106
6-6.	Musical Scale Generation Circuit	111
6-7.	Timer Output and Interval	111
7-1.	Format of Timer Clock Selection Register 2	117
7-2.	Format of the Watch Timer Mode Control Register	118
7-3.	Schematic of Watch Data	119
7-4.	LED Display Timing	120
7-5.	Example Circuit of the Watch Timer	120
8-1.	Format of Timer Clock Selection Register 3	400
0.0	(µPD/8044F and µPD/80208 Subseries)	128
8-2.	Format of Timer Clock Selection Register 3 (µPD/8044H Subseries)	129
0-3.	(Only for the uPD78044F and uPD780208 Subseries)	130
8-4.	Format of the Serial Operating Mode Register 1	100
	(μPD78044F and μPD780208 Subseries)	132
8-5.	Format of the Serial Operating Mode Register 1 (μ PD78044H Subseries)	133
8-6.	Format of the Interrupt Timing Setting Register (Only for the μPD78044F and μD780208 Subseries)	134
8-7.	Format of the Serial Bus Interface Control Register	
	(Only for the $\mu PD78044F$ and $\mu PD780208$ Subseries)	135
8-8.	Format of the Automatic Data Transmit/Receive Control Register (Only for the μ PD78044F and μ PD780208 Subseries)	137

LIST OF FIGURES (3/4)

Figure No.	Title						
8-9.	Format of the Automatic Data Transmit/Receive Interval Setting Register						
	(Only for the μ PD78044F and μ PD780208 Subseries)	. 138					
8-10.	μPD6252 Pin Configuration	. 141					
8-11.	μPD6252 Connection Example	. 143					
8-12.	μPD6252 Communication Format	. 145					
8-13.	Connection Example with μPD6451A	. 153					
8-14.	μPD6451A Communication Format	. 153					
8-15.	Connection Example of the SBI Mode	. 158					
8-16.	SBI Mode Communication Format	. 159					
8-17.	Timed Out ACK Signal	. 160					
8-18.	Bus Line Test	. 160					
8-19.	Connection Example of the 3-Wire Serial I/O Mode	. 173					
8-20.	Communication Format of the 3-Wire Serial I/O Mode	. 173					
8-21.	Busy Signal Output	. 178					
8-22.	System Structure (3-Wire Mode)	. 182					
8-23.	3-Wire Mode Transmission Format	. 183					
8-24.	3-Wire Mode Reception Format	. 184					
8-25.	System Structure (SBI Mode)	. 197					
8-26.	SBI Mode Transmission Format	. 198					
8-27.	SBI Mode Reception Format	. 199					
9-1.	Format of the A/D Converter Mode Register	216					
9-2	Format of the A/D Converter Mode Register (uPD780228 Subseries)	217					
9-3	Format of the A/D Converter Input Selection Register	. 217					
0 0.	(μPD78044F, μPD78044H, and μPD780208 Subseries)	. 218					
9-4.	Format of the Analog Input Channel Specification Register						
	(Only for the μPD780228 Subseries)	. 219					
9-5.	Level Meter Circuit Example	. 220					
9-6.	A/D Conversion Result and LED Display	. 220					
9-7.	Conceptual Diagram of the Peak Hold	. 221					
9-8.	Thermometer Circuit Example	. 229					
9-9.	Temperature and Output Characteristics	. 230					
9-10.	Analog Key Input Circuit Example	. 240					
9-11.	Timing Chart in the 4-Channel Scanning Mode	. 245					

LIST OF FIGURES (4/4)

Figure No.	Title	Page
10-1.	Format of Display Mode Register 0 (μ PD78044F and μ PD78044H Subseries)	. 251
10-2.	Format of Display Mode Register 0 (μPD780208 Subseries)	. 252
10-3.	Format of Display Mode Register 0 (µPD780228 Subseries)	. 254
10-4.	Format of Display Mode Register 1 (μ PD78044F and μ PD78044H Subseries)	. 255
10-5.	Format of Display Mode Register 1 (µPD780208 Subseries)	. 256
10-6.	Format of Display Mode Register 1 (µPD780228 Subseries)	. 257
10-7.	Format of Display Mode Register 2 (µPD780208 Subseries)	. 258
10-8.	Format of Display Mode Register 2 (µPD780228 Subseries)	. 260
10-9.	FIP Controller Operation Timing	. 261
10-10.	Configuration of 12-Digit FIP Display and Key Input	. 262
10-11.	Pin Layout for 9-Segment Display	. 264
10-12.	Relationship between Contents of Display Data Memory and Segment Output	. 265
10-13.	Display Example	. 266
10-14.	Key Interrupt Timing Chart	. 267
10-15.	Compensating for Chattering	. 268
11-1.	Block Diagram of 6-Bit Up/Down Counter	. 275
11-2.	Format of 6-Bit Up/Down Counter Control Register	. 276

LIST OF TABLES

Table No.	Title	Page
1-1.	Function Overview of the μ PD78044F Subseries	. 5
1-2.	Function Overview of the μ PD78044H Subseries	. 8
1-3.	Function Overview of the μ PD780208 Subseries	. 11
1-4.	Function Overview of the μ PD780228 Subseries	. 14
3-1.	Maximum Time Required to Change the CPU Clock	
	(μPD78044F, μPD78044H, and μPD780208 Subseries)	. 37
3-2.	Maximum Time Required to Change the CPU Clock (µPD780228 Subseries)	. 38
3-3.	Relationship between the CPU Clock and Minimum Instruction Execution Time	. 40
5-1.	Valid Time for Input Signal	. 72
5-2.	Valid Time of the Input Signal	. 86
6-1.	Musical Scale and Frequencies	. 112
8-1.	Available Serial Interface Channels in Each Subseries	. 127
8-2.	Serial Interface Registers	. 127
8-3.	Description of µPD6252 Pins	. 142
8-4.	μPD6252 Command List	. 144
8-5.	SBI Mode Signal List	. 159
9-1.	A/D Conversion Values and Temperatures	. 231
9-2.	Input Voltages and Key Codes	. 239
9-3.	Resistances of R1 to R15	. 240
10-1.	Differences between μ PD78044F, μ PD78044H, μ PD780208, and μ PD780228 Subseries	. 250
A-1.	Comparison of SPD Symbols and Flowcharts	. 281

CHAPTER 1 OVERVIEW

* 1.1 78K/0 SERIES PRODUCT DEVELOPMENT

The 78K/0 series products were developed as shown below. The subseries names are indicated in frames.

			Products currently being mass-produced				
			/, Products under development				
		Lised for control	Y subseries products are compatible with the I ² C bus.				
(78K/0 Series	100-pin 100-pin 100-pin 80-pin 80-pin 80-pin 64-pin	μPD78075B μPD78075B μPD78075BY, μPD78078 μPD78078Y μPD78078Y μPD78070A μPD78070AY , μPD78078 μPD780018AY, , μPD780058 μPD780058Y , μPD78058F μPD78058FY , μPD78054 μPD78054Y , μPD780034 , μPD78034Y,	EMI noise-reduced versions of the μ PD78078 A timer has been added to the μ PD78054 to enhance its external interface functions. ROM-less versions of the μ PD78078 The serial I/O of the μ PD78078Y has been enhanced by limiting its functions Serial I/O of the μ PD78054 has been enhanced. EMI noise-reduced versions of the μ PD78054 EMI noise-reduced versions of the μ PD78054 A UART and D/A converter have been added to the μ PD78014 to enhance its I/O. The A/D converter of the μ PD780024 has been enhanced.				
	64-pin 64-pin 64-pin 64-pin 64-pin 42-/44-pin	64-pin /μPD780024 /μPD780024Y, 64-pin /μPD78014H/ 64-pin /μPD78018F//μPD78018FY/ 64-pin /μPD78014 /μPD78014Y/ 64-pin /μPD780001 / 64-pin /μPD78002 /μPD78002Y / 42-/44-pin /μPD78083 /	The serial I/O of the μ PD78018F has been enhanced. EMI noise-reduced version of the μ PD78018F. EMI noise-reduced version of the μ PD78018F Low-voltage (1.8 V) versions of the μ PD78014. ROM and RAM variations have been enhanced. An A/D converter and 16-bit timer have been added to the μ PD78002. An A/D converter has been added to the μ PD78002. Basic subseries for control This product includes a UART and can operate at a low voltage (1.8 V).				
	64-pin 64-pin	For inverter control /µPD780964 / /µPD780924 /	An A/D converter of the μ PD780924 has been enhanced. This product includes an inverter control circuit and UART. EMI noise-reduced version.				
	100-pin 100-pin 80-pin 80-pin	For FIP™ driving /µPD780208 /µPD780228 /µPD78044H /µPD78044F	The I/O and the FIP controller/driver of the μ PD78044F have been enhanced. Total indication output pins: 53 The I/O and the FIP controller/driver of the μ PD78044H have been enhanced. Total indication output pins: 48 N-ch open-drain I/O pins have been added to the μ PD78044F. Total indication output pins: 34 Basic subseries for FIP driving. Total indication output pins: 34				
	100-pin 100-pin 100-pin	For LCD driving /µPD780308 //µPD780308Y/ /µPD78064B / /µPD78064 //µPD78064Y /	SIO of the μ PD78064 has been enhanced. ROM and RAM have been extended. EMI noise-reduced version of the μ PD78064 Basic subseries for LCD driving. These products include a UART.				
	80-pin 80-pin	Compatible with IEBus™ /µPD78098B/ /µPD78098	EMI noise-reduced version of the μ PD78098 An IEBus controller has been added to the μ PD78054.				
	— 80-pin	For meter control	This product includes a controller/driver for driving car meters.				
	64-pin	For LV ,'μPD78P0914,'	This product includes the PWM output, LV digital code decoder, and Hsync counter.				

The table below shows the main differences between subseries.

\square	Function	ROM		Tin	ner		8-bit	10-bit	8-bit	Sorial interface	1/0	Minimum	External
Subs	eries name	capacity	8-bit	16-bit	Watch	WDT	A/D	A/D	D/A	Senar interface	1/0	V _{DD}	expansion
	μPD78075B	32K-40 K	4 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	88 pins	1.8 V	о
	μPD78078	48K-60K											
	μPD78070A	-									61 pins	2.7 V	
	μPD780058	24K-60K	2 ch						2 ch	3ch (time-multiplexing UART: 1ch)	68 pins	1.8 V	
	μPD78058F	48K-60K								3 ch (UART: 1 ch)	69 pins	2.7 V	
	μPD78054	16K-60K										2.0 V	
ontro	μPD780034	8K-32K					-	8 ch	-	3 ch (UART: 1 ch, time-	51 pins	1.8 V	
or c	μPD780024						8 ch	-		multiplexing 3-wire: 1ch)			
	μPD78014H									2 ch	53 pins		
	μPD78018F	8K-60K											
	μPD78014	8K-32K										2.7 V	
	μPD780001	8K		-	-					1 ch	39 pins		-
	μPD78002	8K-16K			1 ch		-				53 pins		о
	μPD78083				-		8 ch			1 ch (UART: 1 ch)	33 pins	1.8 V	-
nverter ol	μPD780964	8K-32K	3 ch	Note	-	1 ch	-	8 ch	-	2 ch (UART: 2 ch)	47 pins	2.7 V	о
For ir contre	μPD780924						8 ch	-					
/ing	μPD780208	32K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	2 ch	74 pins	2.7 V	-
driv	μPD780228	48K-60K	3 ch	-	-					1 ch	72 pins	4.5 V	
	μPD78044H	32K-48K	2 ch	1 ch	1 ch						68 pins	2.7 V	
For	μPD78044F	16K-40K								2 ch			
driving	μPD780308	48K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	-	3ch (time-multiplexing UART: 1ch)	57 pins	2.0 V	-
LCD	μPD78064B	32K								2 ch (UART: 1 ch)			
For	μPD78064	16K-32K											
atible EBus	μPD78098B	40K-60K	2 ch	1 ch	1 ch	1 ch	8 ch	-	2 ch	3 ch (UART: 1 ch)	69 pins	2.7 V	о
Comp vith IE	μPD78098	32K-60K											
For meter control	μPD780973	24K-32K	3 ch	1 ch	1 ch	1 ch	5 ch	-	-	2 ch (UART: 1 ch)	56 pins	4.5 V	-
ForLV	μPD78P0914	32K	6 ch	-	-	1 ch	8 ch	-	-	2 ch	54 pins	4.5 V	0

Note 10-bit timer: 1 channel

1.2 78K/0 SERIES FEATURES

The 78K/0 Series devices are 8-bit single-chip microcontrollers ideally suited for applications in the consumer field.

*

The μPD78044F subseries are devices that implement high-speed, high-performance CPUs and have on-chip peripheral hardware, such as ROM, RAM, I/O ports, timers, serial interfaces, A/D converter, FIP controller/driver, 6-bit up/down counter, and interrupt controllers.

*

*

The μ PD78044H subseries of devices has been implemented by adding N-ch open-drain I/O pins to the μ PD78044F subseries.

The $\mu PD780208$ subseries has an enhanced version of the FIP controller/driver of the $\mu PD78044F$ subseries.

The μ PD780228 subseries has an enhanced version of the FIP controller/driver of the μ PD78044H subseries.

The one-time PROM or EPROM versions or flash memory version, that can operate at the same low voltage as mask ROM versions, such as the μ PD78P048A, μ PD78P048B, μ PD78P0208, and μ PD78F0228 are also provided. These products are well suited for fast shift to production of application systems and small-lot production.

A block diagram and an overview of the functions of each subseries are shown on the following pages.

Figure 1-1. Block Diagram of the μ PD78044F Subseries

Remarks 1. The capacities of the internal ROM and RAM differ depending on the product.2. The value enclosed in parentheses is applied to the μPD78P048A.

Item	Product name	μPD78042F	μPD78043F	μPD78044F	μPD78045F	μPD78P048A		
Internal	ROM	Masked ROM	One-time PROM/EPROM					
memory		16K bytes	24K bytes	32K bytes	40K bytes	60K bytes ^{Note 1}		
	High-speed RAM	512 bytes		1024 bytes		1024 bytesNote 2		
	Extended RAM			-		1024 bytes		
	Buffer RAM	64 bytes						
	FIP display RAM	48 bytes						
General-purp	oose registers	8 bits x 8 x 4 ban	ks					
Minimum	For main system clock	0.4 μs/0.8 μs/1.6	μs/3.2 μs/6.4 μs (a	: 5.0 MHz)				
execution time	For subsystem clock	122 μs (at 32.768	3 kHz)					
Instruction se	et	 16-bit operations Multiplication/division (8 bits x 8 bits, 16 bits/8 bits) Bit (set, reset, test, Boolean operations) BCD conversion_etc. 						
I/O ports (inc	cluding those with FIP pins)	 Total CMOS input CMOS I/O N-ch open-drair P-ch open-drair P-ch open-drair 	: 68 pins : 2 pins : 27 pins 1/O : 5 pins 1/O : 16 pins n output : 18 pins					
FIP controlle	er/driver	 Total : 34 pins Segments: 9 to 24 pins Digits : 2 to 16 pins 						
A/D converte	er	 8-bit resolution x 8 channels Power supply voltage: AV_{DD} = 4.0 to 6.0 V 						
Serial interface		 3-wire serial I/O, SBI, or 2-wire serial I/O mode selectable : 1 channel 3-wire serial I/O mode (with automatic transmission/ reception function of up to 64 bytes) : 1 channel 						
Timer		 16-bit timer/event counter: 1 channel 8-bit timer/event counter: 2 channels Watch timer : 1 channel Watchdog timer : 1 channel 6-bit up/down counter : 1 channel 						
Timer output	S	3 (one for 14-bit F	PWM output)					

Table 1-1.	Function (Overview	of the	μ ΡD78044F	Subseries ((1/2))
------------	------------	----------	--------	-------------------	-------------	-------	---

- **Notes 1.** The memory size switching register (IMS) can be used to select 16K, 24K, 32K, 40K, or 60K bytes.
 - 2. The IMS can be used to select 512K or 1024K bytes.

*

Item	Product name	μPD78042F	μPD78043F	μPD78044F	μPD78045F	μPD78P048A		
Clock output		19.5 kHz, 39.1 kH	Hz, 78.1 kHz, 156 k	Hz, 313 kHz, 625 l	kHz			
		(at main system o	clock of 5.0 MHz)					
		32.768 kHz (at su	ubsystem clock of 3	32.768 kHz)				
Buzzer outp	ut	1.2 kHz, 2.4 kHz,	4.9 kHz (at 5.0 M	Hz: main system o	clock)			
Vectored	Maskable	Internal: 10, external: 4						
interrupt factors	Non-maskable	Internal: 1						
luotoro	Software	1						
Test input		Internal: 1						
Power supply voltage		V _{DD} = 2.7 to 6.0 V						
Package		80-pin plastic QFP (14 x 20 mm)						
		 80-pin ceramic WQFN: Only for the μPD78P048A 						

Table 1-1. Function Overview of the μ PD78044F Subseries (2/2)

Figure 1-2. Block Diagram of the $\mu\text{PD78044H}$ Subseries

Note Only for the μ PD78P048B

Remarks 1. The capacities of the internal ROM and RAM differ depending on the product.

2. The value enclosed in parentheses is applied to the μ PD78P048B.

*

Table 1-2. Function Overview of the μ PD78044H Subseries (1/2)

Product name		μPD78044H	μPD78045H	μPD78046H	μΡD78P048B Note 1		
Internal	ROM	Masked ROM			One-time PROM/EPROM		
memory		32K bytes	40K bytes	48K bytes	60K bytesNote 2		
	High-speed RAM	1024 bytes					
	Extended RAM		-		1024 bytesNote 3		
	Buffer RAM		-		64 bytes		
	FIP display RAM	48 bytes					
General-purp	oose register	8 bits x 8 x 4 ban	nks				
Minimum	For main system clock	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (at 5.0 MHz)					
execution time	For subsystem clock	122 μs (at 32.768	3 kHz)				
Instruction set		 16-bit operations Multiplication/division (8 bits x 8 bits, 16 bits/8 bits) Bit manipulations (set, reset, test, Boolean operations) BCD conversion, etc. 					
I/O (including those multiplexed with FIP pins)		 Total : 68 lines ports CMOS input : 2 lines CMOS I/O : 19 lines N-ch open-drain I/O : 13 lines P-ch open-drain I/O : 16 lines P-ch open-drain output : 18 lines 					
FIP controller/driver		 Total : 34 lines Segments: 9 to 24 lines Digits : 2 to 16 lines 					
A/D converter		 8-bit resolution x 8 channels Power supply voltage: AV_{DD} = 4.0 to 5.5 V 			 8-bit resolution x 8 channels Power supply voltage: AV_{DD} = 4.0 to 6.0 V 		
Serial interface		• 3-wire serial I/O mode: 1 channel			 3-wire serial I/O, SBI, or 2-wire serial I/O mode: 1 channel 3-wire serial I/O mode with automatic transmission/reception function: 1 channel 		

Notes 1. Under development

- 2. The memory size switching register (IMS) can be used to select 32K, 40K, 48K, or 60K bytes.
- 3. The internal extended RAM size switching register (IXS) can be used to select 0 or 1024 bytes.

	Product name	uPD78044H	uPD78045H	uPD78046H	uPD78P048B Note		
Item		μ. Ξ. σο	μ	μ. 2. 00.011	p. 2. 0. 0.02		
Timer		• 16-bit timer/eve	nt counter: 1 cha	16-bit timer/event counter:			
		• 8-bit timer/even	t counter : 2 cha	nnels	1 channel		
		Watch timer : 1 channel			 8-bit timer/event counter: 2 channels		
		Watchdog timer : 1 channel					
					Watch timer: 1 channel		
					• Watchdog timer: 1 channel		
					6-bit up/down counter:		
					1 channel		
Timer outputs		3 lines (one for 14-bit PWM output)					
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz					
		(at main system clock of 5.0 MHz)					
		32.768 kHz (at subsystem clock of 32.768 kHz)					
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz (at main system clock of 5.0 MHz)					
Vectored	Maskable	Internal: 8, External: 4			Internal: 10, External: 4		
interrupt factors	Non-maskable	Internal: 1					
	Software	1					
Test input		Internal: 1					
Power supply voltage		V _{DD} = 2.7 to 5.5 V			V _{DD} = 2.7 to 6.0 V		
Package		• 80-pin plastic QFP (14 x 20 mm)			• 80-pin plastic QFP (14 x 20 mm)		
					• 80-pin ceramic WQFN		

|--|

Note Under development

Figure 1-3. Block Diagram of the $\mu\text{PD780208}$ Subseries

Remark 1. The capacities of the internal ROM and RAM differ depending on the product.2. The value enclosed in parentheses is applied to the μPD78P0208.

Product name		μPD780204	μPD780205	μPD780206	μPD780208	μPD78P0208				
Internal ROM		Masked ROM One-time PROW/EPF								
memory		32K bytes	40K bytes	48K bytes	60K bytes	60K bytes ^{Note 1}				
	High-speed RAM	1024 bytes								
	Extended RAM		-	1024 bytes		1024 bytesNote 2				
	Buffer RAM	64 bytes								
	FIP display RAM	80 bytes								
General-purp	oose registers	8 bits x 8 x 4 ban	ks							
Minimum	For main system clock	0.4 μs/0.8 μs/1.6	μs/3.2 μs/6.4 μs (at	5.0 MHz)						
execution time	For subsystem clock	122 μs (at 32.768	122 μs (at 32.768 kHz)							
Instruction se	et	16-bit operation	s							
		Multiplication/di	vision (8 bits x 8 bi	s, 16 bits/8 bits)						
		• Bit (set, reset, t	est, Boolean opera	tions)						
		BCD conversion, etc.								
I/O ports (inc	cluding those	Total : 74 pins								
multiplexed v	vith FIP pins)	CMOS input : 2 pins								
		CMOS I/O : 27 pins								
		N-ch open-drain I/O : 5 pins								
		P-ch open-drain I/O : 24 pins								
		P-ch open-drain output : 16 pins								
FIP controller/driver		• Total : 53 pins								
		Segments: 9 to 40 pins								
		Digits : 2 to 16 pins								
A/D converter		8-bit resolution x 8 channels								
		• Power supply voltage: AV _{DD} = 4.0 to 5.5 V								
Serial interface		3-wire serial I/O, SBI, or 2-wire serial I/O mode selectable : 1 channel								
		3-wire mode (with automatic transmission/								
		reception function of up to 64 bytes) : 1 channel								
Timer		16-bit timer/event counter: 1 channel								
		8-bit timer/event counter : 2 channels								
		Watch timer : 1 channel								
		Watchdog timer : 1 channel								
Timer outputs		3 (one for 14-bit PWM output)								

Table 1-3.	Function Overview of	the <code>µ</code>	μ ΡD780208	Subseries ((1/2)
------------	----------------------	--------------------	-------------------	-------------	-------

*

- Notes 1. The memory size switching register (IMS) can be used to select 32K, 40K, 48K, or 60K bytes.
 - 2. The internal extended RAM size switching register (IXS) can be used to select either 0 or 1024 bytes.

Item	Product name	μPD780204	μPD780205	μPD780206	μPD780208	μPD78P0208		
Clock output		19.5 kHz, 39.1 kHz, 78.1 kHz, 156 kHz, 313 kHz, 625 kHz (at main system clock of 5.0 MHz) 32.768 kHz (at subsystem clock of 32.768 kHz)						
Buzzer output		1.2 kHz, 2.4 kHz, 4.9 kHz (at 5.0 MHz: main system clock)						
Vectored	Maskable	Internal: 9, external: 4						
interrupt	Non-maskable	Internal: 1						
factors	Software	1						
Text input		Internal: 1						
Power supply voltage		V _{DD} = 2.7 to 5.5 V						
Package		• 100-pin plastic QFP (14 x 20 mm)						
		 100-pin ceramic WQFN: Only for the μPD78P0208 						

Table 1-3. Function Overview of the μ PD780208 Subseries (2/2)

Figure 1-4. Block Diagram of the $\mu\text{PD780228}$ Subseries

- Remarks 1. The internal ROM capacity differs depending on the product.
 - **2.** The value in parentheses applies to the μ PD78F0228 only.

*

*	

Table 1-4. Function Overview of the $\mu\text{PD780228}$ Subseries

Item	Product name	μPD780226	μPD780228	μPD78F0228							
Internal	ROM	Masked ROM		Flash memory							
memory		48K bytes	60K bytes	60K bytes ^{Note}							
	High-speed RAM	1024 bytes	1								
	Extended RAM	512 bytes	512 bytes								
	FIP display RAM	96 bytes									
General-pur	pose registers	8 bits x 8 x 4 banks									
Minimum ins	struction execution time	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4	μs (at main system clock of 5.	0 MHz)							
Instruction s	et	 16-bit operations Multiplication/division (8 bits x 8 bits, 16 bits/8 bits) Bit (set, reset, test, Boolean operations) BCD conversion, etc. 									
I/O ports (in multiplexed	cluding those with FIP pins)	 Total : 72 pins CMOS input : 8 pins CMOS I/O : 16 pins N-ch open-drain I/O : 16 pins P-ch open-drain I/O : 24 pins P-ch open-drain output : 8 pins 									
FIP controlle	er/driver	 Total : 48 pins 10-mA display current : 16 pins 3-mA display current : 32 pins 									
A/D converte	er	 8-bit resolution x 8 channels Power supply voltage: AV_{DD} = 4.5 to 5.5 V 									
Serial interfa	ace	• 3-wire serial I/O mode: 1 ch	nannel								
Timer		8-bit remote controller timer : 1 channel 8-bit PWM timer : 2 channels Watchdog timer : 1 channel									
Timer output	ts	2 (8-bit PWM output enabled)									
Vectored	Maskable	Internal: 6, external: 4									
interrupt	Non-maskable	Internal: 1									
tactors	Software	1									
Power suppl	ly voltage	V _{DD} = 4.5 to 5.5 V									
Package		100-pin plastic QFP (14 x 20 mm)									

Note The memory size switching register (IMS) can be used to select 48K or 60K bytes.

Caution The $\mu\text{PD780228}$ subseries is under development.

CHAPTER 2 SOFTWARE BASICS

2.1 DATA TRANSFER

The addresses set in the DE and HL registers are the first addresses used in data exchange. The number of bytes in the data exchange is specified in the B register.

Figure 2-1. Data Exchange

(1) Registers used

A, B, DE, HL

(2) Program listing

EXCH:

MOV	A,[DE]
XCH	A,[HL]
XCH	A,[DE]
INCW	DE
INCW	HL
DBNZ	B,\$EXCH
RET	

2.2 DATA COMPARISON

The addresses set in the DE and HL registers are the first addresses used in data comparison. The number of bytes in the data comparison is specified in the B register. When the comparison result is equal, the CY flag is set to 0. When the result is not equal, CY is set to 1. After the flag setting, processing is returned to the main program.

(1) Registers used

A, B, DE, HL

(2) Program listing

COMP:		
	MOV	A,[DE]
	CMP	A,[HL]
	BNZ	\$ERROR
	INCW	DE
	INCW	HL
	DBNZ	B,\$COMP
	CLR1	СҮ
	BR	RTN
ERROR:		
	SET1	СҮ
RTN:		
	ВЕЛ	

2.3 DECIMAL ADDITION

The lowest addresses for decimal addition are specified in the DE and HL registers. The number of digits specified in BYTNUM are added. The addition result is saved in the area pointed to by the HL register. When the addition result is an overflow or an underflow, the processing branches to error processing. Have the branch address defined as 'ERROR' in main program and make it a public declaration.

RET

Figure 2-3. Decimal Addition

(2) Registers used

AX, BC, DE, HL

(3) Program listing

```
;
                                                        *
;
   Input parameters
;
      HL register: start address of the addend
                                                        *
;
      DE register: start address of the augend
   Output parameters
;
      HL register: start address of the operation result
                                                        *
;
;
PUBLIC BCDADD, BCDAD1, BCDAD2
       PUBLIC DADDS
       PUBLIC DSUBS
                              ; Branch address for error processing
       EXTRN ERROR
       EXTBIT SFLAG
                               ; Sign flag
;
                               ; Set the number of operand digits
BYTNUM EQU
              4
;
       CSEG
BCDADD:
              C, #BYTNUM ; Set the number of operand digits in the C register.
       MOV
BCDAD1:
       MOV
              A,C
       MOV
              B,A
       DEC
              В
BCDAD2:
              A, [HL+BYTNUM-1] ; Read in the most significant bit (sign data) of the augend
       MOV
       XCHW
              AX,DE
       XCHW
            AX,HL
       XCHW
              AX,DE
       XOR
              A, [HL+BYTNUM-1] ; Read in the most significant bit (sign data) of the augend
       XCHW
              AX,HL
       XCHW
              AX,DE
       XCHW
              AX,HL
              A.7, $BCDAD3 ; Do the signs agree? ELSE subtraction processing
       ΒТ
                               ; THEN addition processing
       CALL
              !DADDS
       RET
BCDAD3:
       CALL
              !DSUBS
       RET
```

```
***** Decimal Addition *****
;
DADDS:
      CLR1 CY
      CLR1 SFLAG
DADDS1:
      MOV A,[DE]
                         ; Start addition from the least significant digit
      ADDC A,[HL]
      ADJBA
      MOV
           [HL],A
      INCW HL
      INCW DE
      DBNZ B, $DADDS1 ; End addition of (number-of-operand-digits – 1)
      MOV A,[DE]
      ADDC A,[HL]
DADDS2:
                        ; Negative addition
      BNC $DADDS3
                          ; THEN set in the negative state
      SET1 SFLAG
      CLR1 CY
DADDS3:
      ADJBA
      BNC
          $DADDS4
      BR
          ERROR
DADDS4:
      ΒF
          A.7,$DADDS5
          ERROR
      BR
DADDS5:
           SFLAG, $DADDS6 ; Set sign
      ΒF
      SET1 A.7
DADDS6:
          [HL],A
      MOV
      RET
```

; = = = = = =			
;		***** Decim	al Subtraction *****
;======			
DSOBS:	DUQU		
	PUSH CID1	HL CEI NC	
	CLRI	SFLAG A [HI DVTNIIM 1]	. Set the subtrahend to positive value
	CL.R1	A,[HL+BIINOM-I] A 7	, bet the subtrahend to positive value.
	MOV	[HL+BYTNIIM-1].A	
	XCHW	AX.DE	
	XCHW	AX,HL	
	XCHW	AX,DE	
	MOV	A,[HL+BYTNUM-1]	
	BF	A.7,\$DSUBS1	; The minuend is negative.
	CLR1	A.7	; THEN set the minuend to a positive value.
	MOV	[HL+BYTNUM-1],A	
	SET1	SFLAG	; Set the sign to negative.
DSUBS1:			
	XCHW	AX,HL	
	XCHW	AX,DE	
	XCHW	AX,HL	
	MOV	A,C	
		D,A CV	
DSUBS2:	CUKI		
000002	MOV	A.[DE]	
	SUBC	A,[HL]	
	ADJBS		
	MOV	[HL],A	
	INCW	HL	
	INCW	DE	
	DBNZ	C,\$DSUBS2	; End of the subtraction of the number of operand digits.
	BNC	\$DSUBS5	; THEN subtrahend > minuend
	POP	HL	
	PUSH		
	MOV	A,B C A	
DSUBS3:	110 V	С,А	
200200	MOV	А,#99Н	: Complement operation on the subtraction result
	SUB	A,[HL]	; (subtraction-result – 99H)
	ADJBS		
	MOV	[HL],A	
	INCW	HL	
	DBNZ	C,\$DSUBS3	
	505		
	POP	нL	
	rush crm1	нь су	
	9F1T		
	MOV	A,B	
	MOV	С,А	

```
DSUBS4:
                             ; Add 1 to the complement operation result.
             A,#0
       MOV
             A,[HL]
       ADDC
       ADJBA
              [HL],A
      MOV
       INCW
             HL
       DBNZ
              C,$DSUBS4
             CY,SFLAG
       MOV1
      NOT1
              СҮ
      MOV1
              SFLAG,CY
***** 0 Check of Operation Result *****
;
DSUBS5:
              A,B
      MOV
             C,A
       MOV
       POP
              HL
       PUSH
             HL
       MOV
             A,#0
DSUBS6:
                             ; 0 check from the low-order digit
       CMP
             A,[HL]
       INCW
             HL
       BNZ
              $DSUBS7
              C,$DSUBS6
                             ; End of checking all digits for 0
       DBNZ
                              ; THEN subtraction result = 0
       POP
             HL
       RET
DSUBS7:
                              ; Subtraction result is negative.
       BF
              SFLAG, $DSUBS8
       POP
             HL
                              ; THEN set sign
       PUSH
             HL
             A,[HL+BYTNUM-1]
       MOV
       SET1
             A.7
              [HL+BYTNUM-1],A
       MOV
DSUBS8:
       POP
             HL
       RET
```

2.4 DECIMAL SUBTRACTION

The lowest addresses for decimal subtraction are set in the DE and HL registers. Subtraction is performed on the number of digits specified in BYTNUM. The subtraction result is saved in the area specified in the HL register. Additionally, when the subtraction result is an overflow or an underflow, the processing branches to error processing. Have the branch address defined as 'ERROR' in main program and make it a public declaration.

This program replaces the augend and addend with the minuend and subtrahend respectively, and calls the decimal addition program.

(2) Registers used

AX, BC, DE, HL

(3) Program listing

```
Input parameters
                                                      *
;
      HL register: start address of the subtrahend
;
                                                      *
;
      DE register: start address of the minuend
   Output parameters
;
      HL register: start address of the operation result
;
                                                      *
PUBLIC BYTNUM
      PUBLIC BCDSUB
      EXTRN BCDADD, BCDAD2
;
                              ; Set the number of operand digits
BYTNUM EQU 4
;
      CSEG
BCDSUB:
           C, #BYTNUM ; Set the number of operand digits in the C register.
      MOV
BCDSU1:
      MOV
            A,C
      MOV
            B,A
      DEC
            В
            A, [HL+BYTNUM-1] ; Set the most significant bit (sign data) of the subtrahend for use in
      MOV
addition.
      MOV1
           CY,A.7
                              ; Invert the sign data.
      NOT1
           CY
      MOV1
           A.7,CY
      MOV
            [HL+BYTNUM-1].A
                              ; Call decimal addition processing.
      CALL
           !BCDAD2
      RET
```

2.5 BINARY-TO-DECIMAL CONVERSION

16-bit binary data in the data memory is converted into 5-digit decimal data and saved in the data memory. The 16-bit binary data are divided by the decimal number 10 (4 times) and the conversion is based on the values of the results and remainders of these operations.

Example FFH is converted into decimal.

(1) Registers used

AX, BC, HL

(2) Program listing

	PUBLIC	B_DCONV		
	DATDEC	EQU	10	
	DSEG	SADDRP		
REGA:	DS	2		; Save 16-bit binary data.
REGB:	DS	5		; Save 5-digit decimal data.
	COLUMN	EQU	4	
B_DCONV	7:			
	MOVW	AX,REGA		
	MOV	B,#COLNU	JM	
	MOVW	HL, #REGE	3	
B_D1:				
	MOV	C, #DATDE	C	
	DIVUW	С		
	XCH	A,C		
	MOV	[HL],A		
	INCW	HL		
	XCH	A,C		
	DBNZ	B,\$B_D1		
	MOV	A,X		
	MOV	[HL],A		
	RET			

2.6 BIT OPERATION MANIPULATION INSTRUCTION

The logical product (AND) of the 1-bit flag in data memory and bit 4 in port 6 is taken. The logical sum (OR) of the result and bit 5 of port 6 is output to bit 6 of port 6.

Figure 2-6. Bit Operation

(1) Program listing

PUBI	LIC	BIT_	_OP	,FLG
BSEC	3			

FLG DBIT

BIT_OP:

MOV1	CY,FLG
AND1	СҮ,Рб.4
OR1	СҮ,Рб.5
MOV1	Рб.б,СҮ
RET	

2.7 BINARY MULTIPLICATION (16 BITS x 16 BITS)

The data in the multiplicand area (HIKAKE; 16 bits) and the multiplier area (KAKE; 16 bits) are multiplied. The result is saved in the operation result storage area (KOTAE).

Figure 2-7. Binary Multiplication

<Processing>

Multiplication is implemented by adding the multiplicand only the number of "1" bits in the multiplier.

<Use>

Set the data in the multiplicand area (HIKAKE) and the multiplier area (KAKE), and then call the subroutine S_KAKERU.

```
EXTRN S_KAKERU
      EXTRN HIKAKE, KAKE, KOTAE
                                  ; Multiplier
MAIN:
              .
              .
                                  ; Multiplicand data save in the multiplicand area
      HIKAKE=WORKA (A)
      HIKAKE+1=WORKA+1 (A) ;
                                  ; Multiplier data save in the multiplier area
      KAKE=WORKB (A)
      KAKE+1=WORKB+1 (A)
                                 ; Multiplication routine call
      CALL !S_KAKERU
                                  ; HL <- RAM address of the operation result storage area
      HL=#KOTAE
                                  ; Stores the result by the indirect address transfer
              .
```

Caution Manipulate data memory in 8-bit units.

(1) I/O conditions

- Input parameters
 - HIKAKE : Save the multiplicand data.
 - KAKE : Save the multiplier data.
- Output parameter KOTAE : Saves the operation result.

(2) SPD chart

[Multiplication subroutine]

- (3) Registers used
 - Α, Β

(4) Program listing

```
$PC(044A)
;
PUBLIC HIKAKE, S_KAKERU, KAKE, KOTAE
;
;
     RAM definition
DSEG
                     SADDR
                                              ; Multiplicand area
                     2
HIKAKE:
           DS
                                              ; Multiplier area
                     2
KAKE:
          DS
                     1
                                              ; Work area
WORK1:
          DS
                     4
                                              ; Operation result storage area
KOTAE:
          DS
;
;
      Multiplication
CSEG
S KAKERU:
                                              ; Save multiplier (low order) in the work area.
       WORK1=KAKE+1 (A)
                                              ; Initialize the operation result storage area.
       KOTAE=#0
       KOTAE+1=#0
       KOTAE+2=\#0
       KOTAE+3=\#0
                                              ; If at the end of the low-order multiplier,
       for(B=#0;B<#16;B++) (A)
                                              ; save the high-order multiplier in the work area.
            if(B == #8) (A)
                WORK1=KAKE (A)
                endif
                A=WORK1
                                              ; Shift the multiplier one bit to the left.
                CLR1
                       CY
                ROLC
                       A,1
                WORK1=A
                if_bit (CY)
                                              ; If carry,
                                              ; add the multiplicand to the operation result
                   KOTAE+=HIKAKE (A)
                   (KOTAE+1)+=HIKAKE+1,CY (A) ; storage area.
                   (KOTAE+2) += \#0, CY (A)
                   (KOTAE+3) += \#0, CY (A)
                endif
                if(B != #15) (A)
                                              ; Shift the operation result storage area one bit to
                   KOTAE+=KOTAE (A)
                   KOTAE+1+=KOTAE+1,CY (A)
                                              : the left.
                   KOTAE+2+=KOTAE+2,CY (A)
                   KOTAE+3+=KOTAE+3, CY (A)
                endif
            next
            RET
            END
```

2.8 BINARY DIVISION (32 BITS/16 BITS)

The dividend area (HIWARU; 32 bits) is divided by the divisor area (WARUM; 16 bits) and the result is saved in the operation result storage area (KOTAE). If there is a remainder, it is saved in the calculation result remainder storage area (AMARI).

When the divisor is 0, an error results.

<Processing>

The dividend is shifted left starting from the high-order digit into the work area. If the contents of the work area is greater than the divisor, the divisor is subtracted from the work area, and 1 is set in the least significant bit of the dividend. In the above method, division is implemented by operating only on the number of bits in the dividend.

When the divisor is 0, the error flag (F_ERR) is set.

<Use>

Set data in the dividend area (HIWARU) and divisor area (WARUM), and then call the S_WARU subroutine.

```
EXTRN S_WARU
EXTRN HIWARU,WARUM,KOTAE
EXBIT F_ERR
```

MAIN:

•	• 3
	;
HIWARU=WORKA (A)	; Save the dividend data in the dividend area
HIWARU+1=WORKA+1 (A)	;
WARUM=WORKB (A)	; Save divisor data in the divisor area
WARUM+1=WORKB+1 (A)	;
CALL !S_WARU	; Division routine call
HL=#KOTAE	; HL <- Save the RAM address of the operation result
	; storage area
	;
if_bit(F_ERR)	;
Calculation error processing	;
endif	;

Caution Manipulate data memory in 8-bit units.

(1) I/O conditions

- · Input parameters
 - HIWARU : Save the dividend data.
 - WARUM : Save the divisor data.
- Output parameters KOTAE : Save the calculation result.

(2) SPD chart

[Division subroutine]

- (3) Registers used
 - Α, Β

(4) Program listing

```
$PC(044A)
;
PUBLIC
         S WARU, HIWARU, WARUM, F ERR
EXTRN
        KOTAE
;
RAM definition
;
DSEG
               SADDR
                                       ; Dividend area
HIWARU: DS
               4
               2
                                        : Divisor area
WARUM: DS
AMARI: DS
                                        ; Calculation result remainder storage area
               2
       BSEG
F_ERR DBIT
                                       ; Operation error flag
Division
CSEG
S_WARU:
     CLR1 F_ERR
                                        Clear operation error flag
                                        Clear the calculation result remainder storage area
     AMARI=#0
     AMARI+1=\#0
                                        : to zero
     KOTAE = #0
                                        ; Clear the operation result storage area to zero
     KOTAE + 1 = #0
     KOTAE + 2 = \#0
     KOTAE + 3 = #0
                                        : Divisor = 0?
     if(WARUM == \#0)
        if(WARUM+1 == \#0)
                                        ; If the divisor is 0, set the operation error flag.
          SET1
                F_ERR
        endif
     endif
      if_bit(!F_ERR)
                                        Operation error?
        for(B=\#0;B < \#32;B++) (A)
                                        Start the 32-bit division.
                                        Shift the dividend and the remainder one bit to the left.
          HIWARU+=HIWARU (A)
          HIWARU+1+=HIWARU+1,CY (A)
          HIWARU+2+=HIWARU+2,CY (A)
          HIWARU+3+=HIWARU+3,CY (A)
          AMARI+=AMARI,CY (A)
          AMARI+1+=AMARI+1,CY (A)
          if(AMARI+1 > WARUM+1) (A)
                                       ; Remainder \geq divisor?
                                        : Remainder = remainder – divisor
             AMARI-=WARUM (A)
             AMARI+1-=WARUM+1,CY (A)
            HIWARU |= #1
                                        ; Save 1 in the first bit of the dividend area.
          elseif bit(Z)
             if(AMARI >= WARUM) (A)
               AMARI - = WARUM(A)
               AMARI+1-=WARUM+1,CY (A);
               HIWARU |= #1
             endif
          endif
        next
                                        : Save the operation result.
        KOTAE=HIWARU (A)
        KOTAE+1=HIWARU+1 (A)
        KOTAE+2=HIWARU+2 (A)
        KOTAE+3=HIWARU+3 (A)
      endif
     RET
     END
```

CHAPTER 3 SYSTEM CLOCK SWITCHING APPLICATION

The 78K/0 Series can control the selection of the CPU clock and oscillator operation by rewriting the processor clock control register (PCC).

The display mode registers 0 and 1 (DSPM0, DSPM1) can be used to set mode of the noise eliminator for the subsystem clock and enable or disable display operation (except for the µPD780228 subseries).

When the CPU clock is changed, it takes the time shown in Tables 3-1 and 3-2 from when a rewrite instruction is used to the PCC until the CPU clock is actually changed. For a while after an instruction to rewrite the PCC is issued, therefore, it cannot be determined which clock, old or new, is used by the CPU. When a main system clock is to be stopped or a STOP instruction is to be executed, a wait enough to assure instructions listed in Tables 3-1 and 3-2 have been executed is needed.

Setting before switching Setting after switching																											
CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	css	PCC2	PCC1	PCC0	css	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0	CSS	PCC2	PCC1	PCC0
				0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	1	0	1	0	0	1	х	х	х
0	0	0	0	/	/			16 i	nstru	ction	S	16 i	nstru	ction	s	16 i	nstru	ction	s	16 i	nstru	ction	s	f _X /2f _{XT} instructions			tions
																						(64)					
	0	0	1	8 instructions								8 in	struc	tions		8 in	struc	tions		8 in	struc	tions		f _X /4	i _{xt} in	struc	tions
																					(32)						
	0	1	0	4 in	4 instructions 4 instructions										4 instructions			4 instructions			f _X /8f _{XT} instructions			tions			
																							(16)				
	0	1	1	2 in	struc	tions		2 in	struc	tions		2 instructions						2 instructions			f _X /16f _{XT} instructions						
																								(8)			
	1	0	0	1 in	struc	tion	ion 1 instruction						1 instruction				1 instruction						f _X /32f _{XT} instructions			tions	
																							(4)				
1	х	х	x	1 in	struc	tion		1 in	struc	tion		1 instruction			1 instruction				1 instruction								

Table 3-1. Maximum Time Required to Change the CPU Clock (μPD78044F, μPD78044H, and μPD780208 Subseries)

Caution Selecting of the frequency division of the CPU clock (PCC0-PCC2) and switching from main system clock to subsystem clock (CSS: 0 -> 1) must not be performed simultaneously.

However, selecting of the frequency division of the CPU clock (PCC0-PCC2) and switching from subsystem clock to main system clock (CSS: $1 \rightarrow 0$) can be performed simultaneously.

- **Remarks 1.** The execution time of one instruction is the minimum instruction execution time of the CPU clock before switching.
 - **2.** Time enclosed in parentheses is required when $f_X = 5.0$ MHz and $f_{XT} = 32.768$ kHz.

*

Setting	before s	witching		Setting after switching													
PCC2	PCC1	PCC0	PCC2 PCC1 PCC0		PCC2	PCC1	PCC0	PCC2	PCC1	PCC0	PCC2	PCC1	PCC0	PCC2	PCC1	PCC0	
			0	0	0	0	0	1	0	1	0	0	1	1	1	0	0
0	0	0				16 instructions			16 instructions			16 instructions			16 instructions		
0	0	1	8 in	struction	ons				8 instructions			8 instructions			8 instructions		
0	1	0	4 in	struction	ons	4 instructions						4 instructions			4 instructions		
0	1	1	2 in	structi	ons	2 instructions			2 instructions						2 instructions		
1	0	0	1 ir	nstruct	ion	1 ir	nstruct	ion	1 instruction			1 ir	nstruct	ion			

Table 3-2. Maximum Time Required to Change the CPU Clock (µPD780228 Subseries)

Remark The execution time of one instruction is the minimum instruction execution time of the CPU clock before switching.

Symbol	7	6	5	4	3	2	1	0		Address	At reset	R/W	
PCC	мсс	FRC	CLS	CSS	0	PCC2	PCC1	1 PCC0		FFFBH	04H	R/W ^{Note 1}	
R/W	CSS	PCC2	PCC1	PCC0	CPU	clock	(fcpu) :	selectior	n ^{Note 2}				
	0	0	0	0	fx								
		0	0	1	fx/2								
		0	1	0	fx/22								
		0	1	1	fx/23								
		1	0	0	fx/24								
	1	0	0	0	fхт/2								
		0	0	1									
		0	1	0									
		0	1	1									
		1	0	0									
	Othe	r than	the ab	ove	Setti	ng proł	nibited	ł					

Figure 3-1. Format of the Processor Clock Control Register (μPD78044F, μPD78044H, and μPD780208 Subseries)

R	CLS	CPU clock status
	0	Main system clock
	1	Subsystem clock

R/W FRC Selection of the feedback resistor of the subsystem clock 0 Use on-chip feedback resistor. 1 Do not use on-chip feedback resistor.

R/W	мсс	Control of the main system clock's oscillation ^{Note 3}
	0	Oscillation possible
	1	Oscillation stop

Notes 1. Bit 5 is read-only.

- 2. In the μ PD78044F and μ PD78044H subseries, FIP display is possible only when CSS is 0 and PCC2-PCC0 is 000 or 001.
- **3.** When the CPU is operating under the subsystem clock, use MCC to stop the oscillation of the main system clock. Do not use the STOP instruction.

Caution Always set 0 in bit 3.

Remarks 1. f_X : Oscillation frequency of the main system clock

2. f_{XT}: Oscillation frequency of the subsystem clock

*

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
PCC	0	0	0	0	0	PCC2	PCC1	PCC0	FFFBH	04H	R/W
							•				
	PCC2	PCC1	PCC0	CPU clo	ock (fcpu)	selection	n				
	0	0	0	fx							
	0	0	1	fx/2							
	0	1	0	fx/2 ²							
	0	1	1	fx/23							
	1	0	0	fx/24							
	Other t	han the a	above	Setting	prohibite	ed					

Figure 3-2. Format of the Processor Clock Control Register (µPD780228 Subseries)

Caution Always set 0 in bits 3 to 7.

Remark f_X: Oscillation frequency of the main system clock

Of the instructions for the μ PD78044F, μ PD78044H, μ PD780208, and μ PD780228 subseries, the fastest requires two CPU clocks. Thus, the relationship between the CPU clock (f_{CPU}) and minimum instruction execution time is as shown in Table 3-3.

* Table 3-3. Relationship between the CPU Clock and	Minimum Instruction Execution Time
---	------------------------------------

CPU clock (f _{CPU})	Minimum instruction execution time: 2/f _{CPU}
f _X	0.4 μs
f _X /2	0.8 μs
f _X /2 ²	1.6 μs
f _X /2 ³	3.2 μs
f _X /24	6.4 μs
f _{XT} Note	122 μs

Note Only for the μ PD78044F, μ PD78044H, and μ PD780208 subseries

Remark $f_X = 5.0$ MHz, $f_{XT} = 32.768$ kHz

- f_X : Oscillation frequency of the main system clock
- f_{XT}: Oscillation frequency of the subsystem clock

Symbol	7	6	5	4	3	2	1	0	_	Addres	s Ati	reset	R/W
DSPM0	KSF	DSPM06	0	0	SEGS3	SEGS2	SEGS1	SEGS0	į	FFA0H	H 0	0H	R/WNote 1
									SEGS3	SEGS2	SEGS1	SEGS0	Number of display segments
									0	0	0	0	9
									0	0	0	1	10
									0	0	1	0	11
									0	0	1	1	12
									0	1	0	0	13
									0	1	0	1	14
									0	1	1	0	15
									0	1	1	1	16
									1	0	0	0	17
									1	0	0	1	18
									1	0	1	0	19
									1	0	1	1	20
									1	1	0	0	21
									1	1	0	1	22
									1	1	1	0	23
									1	1	1	1	24
								I					
									DSPM06	Mode subsys	setting fo stem clo	or the no ck ^{Note 2}	vise eliminator of the
									0	2.5 M	Hz < fx :	≤ 5.0 MI	Hz
									1	1.25 N	ЛНz < f×	≤ 2.5 N	ЛНz
								•					
									KSF	Timing) status		
									0	Displa	ıy timinç	3	
									1	Key se	can timi	ng	

Figure 3-3. Format of the Display Mode Register 0 (μ PD78044F and μ PD78044H Subseries)

Notes 1. Bit 7 (KSF) is read-only.

2. Specify a value in accordance with the oscillation frequency of the main system clock (f_X). The noise eliminator can be used during FIP display operation.

Remark f_X: Oscillation frequency of the main system clock

Figure 3-4. Format of the Display Mode Register 0 (µPD780208 Subseries) (1/2)

Symbol	7	6	5	4	3	2	1	0	_	Address	At reset	R/W
DSPM0	KSF	DSPM06	DSPM05	SEGS4	SEGS3	SEGS2	SEGS1	SEGS0		FFA0H	00H	R/W

R/W	SEGS4	SEGS3	SEGS2	SEGS1	SEGS0	Number of display segments (display mode 1)	Number of display outputs (display mode 2)
	0	0	0	0	0	9	9
	0	0	0	0	1	10	10
	0	0	0	1	0	11	11
	0	0	0	1	1	12	12
	0	0	1	0	0	13	13
	0	0	1	0	1	14	14
	0	0	1	1	0	15	15
	0	0	1	1	1	16	16
	0	1	0	0	0	17	17
	0	1	0	0	1	18	18
	0	1	0	1	0	19	19
	0	1	0	1	1	20	20
	0	1	1	0	0	21	21
	0	1	1	0	1	22	22
	0	1	1	1	0	23	23
	0	1	1	1	1	24	24
	1	0	0	0	0	25	25
	1	0	0	0	1	26	26
	1	0	0	1	0	27	27
	1	0	0	1	1	28	28
	1	0	1	0	0	29	29
	1	0	1	0	1	30	30
	1	0	1	1	0	31	31
	1	0	1	1	1	32	32
	1	1	0	0	0	33	33
	1	1	0	0	1	34	34
	1	1	0	1	0	35	35
	1	1	0	1	1	36	36
	1	1	1	0	0	37	37
	1	1	1	0	1	38Note	38
	1	1	1	1	0	39Note	39
	1	1	1	1	1	40Note	40

Note If the total number of digits and segments exceeds 53, digits have precedence over segments.

Symbol	7	6	5	4	3	2	1	0	Addre	ess	At reset	R/W
DSPM0	KSF	DSPM06	DSPM05	SEGS4	SEGS3	SEGS2	SEGS1	SEGS0	FFA	ЮН	00H	R/W ^{Note 1}
R/W	DSPM05	Settin	g of dis	play mo	ode							
	0	Displa	ay mode	e 1 (seg	ment/cl	naracte	r type)					
	1	Displa	ay mode	e 2 (type	e that a	segme	nt exter	nds two	or more grids	s)		
R/W	DSPM06	Mode	setting f	or the n	oise elin	ninator o	of the su	bsystem	ClockNote 2			
	0	2.5 M	Hz < fx	≤ 5.0 M	lHz							
	1	1.25 N	/Hz < f	< ≤ 2.5 l	MHz ^{Note}	3						
R	KSF	Timing	g status									
	0	Displa	ay timing	9								

Figure 3-4. Format of the Display Mode Register 0 (μ PD780208 Subseries) (2/2)

Notes 1. Bit 7 (KSF) is read-only.

1

- **2.** Specify a value in accordance with the oscillation frequency of the main system clock (f_X). The noise eliminator can be used during FIP display operation.
- 3. When f_X is used from above 1.25 MHz to 2.5 MHz, set 1 in DSPM06 before FIP display.

Remark f_X: Oscillation frequency of the main system clock

Key scan timing

Symbol	7	6	5	4	3	2	1	0	_	Addres	s At	reset	R/W
DSPM1	DIGS3	DIGS2	DIGS1	DIGS0	DIMS3	DIMS	2 DIMS1	DIMS0		FFA1H	H 0	0H	R/W
									-				
									DIMS0	Displa	v cvcle s	selection	
									0	1024/	fv as 1 c	display o	vole
									Ŭ	(One of	display	cycle is	204.8 μs at 5.0 MHz.)
									1	2048/i (One o	fx as 1 d display	display o cycle is	cycle 409.6 μs at 5.0 MHz.)
									DIMS3	DIMS2	DIMS1	Cut w	idth of the digit signal
									0	0	0	1/16	
									0	0	1	2/16	
									0	1	0	4/16	
									0	1	1	6/16	
									1	0	0	8/16	
									1	0	1	10/16	
									1	1	0	12/16	
									1	1	1	14/16	
									n				
													Number of display digits
									DIGS3	DIGS2	DIGS1	DIGS0	Number of display digits
									DIGS3 0	DIGS2 0	DIGS1 0	DIGS0 0	Number of display digits Display stop (static display) ^{Note}
									DIGS3 0 0	DIGS2 0 0	DIGS1 0 0	DIGS0 0 1	Number of display digits Display stop (static display) ^{Note} 2
									DIGS3 0 0 0	DIGS2 0 0 0	DIGS1 0 0 1	DIGS0 0 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4
									DIGS3 0 0 0 0 0	DIGS2 0 0 0 0 0 1	DIGS1 0 0 1 1 0	DIGS0 0 1 0 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5
									DIGS3 0 0 0 0 0 0 0	DIGS2 0 0 0 0 1 1	DIGS1 0 0 1 1 0 0	DIGS0 0 1 0 1 0 1	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 6
									DIGS3 0 0 0 0 0 0 0 0	DIGS2 0 0 0 0 1 1 1 1	DIGS1 0 1 1 0 0 0 1	DIGS0 0 1 0 1 0 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 6 7
									DIGS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIGS2 0 0 0 1 1 1 1 1 1	DIGS1 0 1 1 0 0 0 1 1	DIGS0 0 1 0 1 0 1 0 1 0 1	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 6 6 7 8
									DIGS3 0 0 0 0 0 0 0 0 0 0 1	DIGS2 0 0 0 1 1 1 1 1 0	DIGS1 0 1 1 0 0 0 1 1 1 0	DIGS0 0 1 0 1 0 1 0 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 6 6 7 8 8 9
									DIGS3 0 0 0 0 0 0 0 0 0 1 1	DIGS2 0 0 0 1 1 1 1 1 0 0	DIGS1 0 1 1 0 0 0 1 1 1 0 0 0	DIGS0 0 1 0 1 0 1 0 1 0 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 5 6 7 8 8 9 10
									DIGS3 0 0 0 0 0 0 0 0 0 0 1 1 1 1	DIGS2 0 0 0 1 1 1 1 1 0 0 0 0	DIGS1 0 1 1 0 0 1 1 1 0 0 0 1	DIGS0 0 1 0 1 0 1 0 1 0 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 6 7 8 9 9 10 11
									DIGS3 0 0 0 0 0 0 0 0 0 1 1 1 1 1	DIGS2 0 0 1 1 1 1 1 0 0 0 0 0	DIGS1 0 1 1 0 0 1 1 0 0 0 1 1 1	DIGS0 0 1 0 1 0 1 0 1 0 1 0 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 6 6 7 8 9 10 10 11 11 12
									DIGS3 0 0 0 0 0 0 0 0 1 1 1 1 1 1	DIGS2 0 0 1 1 1 1 1 0 0 0 0 0 0 1	DIGS1 0 1 1 0 0 1 1 0 0 1 1 1 0 0	DIGS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 5 6 7 8 9 10 10 11 11 12 13
									DIGS3 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	DIGS2 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1	DIGS1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0	DIGS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 6 7 8 9 10 11 12 13 14
									DIGS3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1	DIGS2 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1	DIGS1 0 1 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1	DIGS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0	Number of display digits Display stop (static display) ^{Note} 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3-5. Format of the Display Mode Register 1 (µPD78044F and µPD78044H Subseries)

Note When display is disabled, a port output latch can be operated to enable static display.

Remark f_X : Oscillation frequency of the main system clock

Figure 3-6. Format of the Display Mode Register 1 (µPD780208 Subseries)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
DSPM1	DIGS3	DIGS2	DIGS1	DIGS0	DIMS3	DIMS2	DIMS1	DIMS0	FFA1H	00H	R/W

DIMS0	Setting of display mode cycle
0	1024/fx as 1 display cycle (One display cycle is 204.8 μs at 5.0 MHz.)
1	2048/fx as 1 display cycle (One display cycle is 409.6 μs at 5.0 MHz.)

DIMS3	DIMS2	DIMS1	Cut width of the FIP output signal		
0	0	0	1/16		
0	0	1	2/16		
0	1	0	4/16		
0	1	1	6/16		
1	0	0	8/16		
1	0	1	10/16		
1	1	0	12/16		
1	1	1	14/16		

DIGS3	DIGS2	DIGS1	DIGS0	Number of display digits (display mode 1) DSPM05 = 0	Number of display patterns (display mode 2) DSPM05 = 1
0	0	0	0	Disabled display (static display) ^{Note}	Disabled display (static display)Note
0	0	0	1	2	2
0	0	1	0	3	3
0	0	1	1	4	4
0	1	0	0	5	5
0	1	0	1	6	6
0	1	1	0	7	7
0	1	1	1	8	8
1	0	0	0	9	9
1	0	0	1	10	10
1	0	1	0	11	11
1	0	1	1	12	12
1	1	0	0	13	13
1	1	0	1	14	14
1	1	1	0	15	15
1	1	1	1	16	16

Note When display is disabled, a port output latch can be operated to enable static display.

DSPM05: Bit 5 of display mode register 0

3.1 SWITCHING PCC AFTER RESET

By issuing the RESET signal, the slowest mode (processor clock control register(PCC) = 04H) of main system clock is selected for the CPU clock. As a result, when running at the maximum speed, PCC is rewritten and the CPU clock is set to the maximum speed (PCC = 00H). However, in order to operate at the maximum speed mode, the V_{DD} pin voltage must be increased to the range where high-speed operation is possible and be stable.

In this example, the time until the voltage increase is awaited by the watch timer (3.91-ms interval period selected). After the wait, the CPU clock switches to the maximum speed.

3.2 SWITCHING DURING POWER ON/OFF

The 78K/0 Series can select the subsystem clock based on the processor clock control register(PCC) setting and can operate with an ultralow power consumption. Consequently, by adding a backup power, such as a NiCd battery or super capacitor, to the system, operation can continue even when power fails. In this example, by detecting whether the power is on or off in INTP1 (select detection edge by detecting both the rising and falling edges), the on or off decision is made based on this port level and PCC switches.

Figure 3-8 shows an example circuit. Figure 3-9 shows the switching timing of the system clock.

Figure 3-9. System Clock Switching during Power On and Off (µPD78044F Subseries)

(1) SPD chart

(2) Program listing

VEPO CSEG AT 08H ; INTP1 vector address setting DW INTP1 INTM0, #00110000B ; Both edge detection mode MOV CLR1 PMK1 ΕI ;* Low-speed/high-speed mode setting INTP1: if_bit(!P0.1) On-chip hardware setting (low speed) ; User processing ; PCC=#10010000B ; Set to low-speed mode. else On-chip hardware setting (high speed) ; User processing ; PCC=#0000000B ; Set to high-speed mode. endif RETI

[MEMO]

CHAPTER 4 WATCHDOG TIMER APPLICATION

The watchdog timer in the 78K/0 Series has the two functions of a watchdog timer mode to detect runaway operation of the microcontroller and an interval timer mode.

The watchdog timer is set by timer clock selection register 2 (TCL2), watchdog timer mode register (WDTM), and watchdog timer clock selection register (WDCS).

- * Cautions 1. WDCS is incorporated into the μ PD780228 subseries only.
- *
- 2. The format of the registers incorporated into the μ PD780228 subseries differs from that of the registers incorporated into the μ PD78044F, μ PD78044H, and μ PD780208 subseries. When using any of the sample programs described in this chapter with the μ PD780228 subseries, replace the register settings with those for the μ PD780228 subseries.

Symbol	7		6	5	4	4	3	2	2	1		0	A	ddress	At r	eset R/W	
TCL2	TCL2	27 T	CL26	TCL25	тсі	L24	0	тсі	_22	TCL	.21 T	CL20	F	F42H	00	OH R/W	
ľ			—														
												[TO 1 00	TO 1 04	TO 1 00	Count clock selection	on
										L_			TCL22	TCL21	TCL20	Watchdog timer mode	Interval timer mode
													0	0	0	fx/2³ (625 kHz)	fx/24 (313 kHz)
													0	0	1	fx/24 (313 kHz)	fx/2⁵ (156 kHz)
													0	1	0	fx/2⁵ (156 kHz)	fx/26 (78.1 kHz)
													0	1	1	fx/2 ⁶ (78.1 kHz)	fx/2 ⁷ (39.1 kHz)
													1	0	0	fx/2 ⁷ (39.1 kHz)	fx/2 ⁸ (19.5 kHz)
													1	0	1	fx/2 ⁸ (19.5 kHz)	fx/2º (9.8 kHz)
													1	1	0	fx/2 ⁹ (9.8 kHz)	fx/2 ¹⁰ (4.9 kHz)
													1	1	1	fx/211 (2.4 kHz)	fx/2 ¹² (1.2 kHz)
												r					
													TCL24	Count	clock se	lection for the watch	timer ^{Note}
													0	fx/28 (1	9.5 kHz)		
													1	fхт (32 .	768 kHz)	
												-					
													TCL27	TCL26	TCL25	Selection of the buzz	er output frequency
													0	x	х	Buzzer output prohi	bited
													1	0	0	fx/2 ¹⁰ (4.9 kHz)	
													1	0	1	fx/2 ¹¹ (2.4 kHz)	
													1	1	0	fx/2 ¹² (1.2 kHz)	
													1	1	1	Setting prohibited	

Figure 4-1. Format of Timer Clock Selection Register 2 (μPD78044F, μPD78044H, and μPD780208 Subseries)

Note When a main system clock at 1.25 MHz or lower and an FIP controller/driver are used simultaneously, select $f_X/2^8$ as the count clock for the watch timer.

Caution When TCL2 will be rewritten with data other than identical data, rewrite after temporarily stopping timer operation.

- **Remarks 1.** f_X : Main system clock oscillation frequency
 - 2. f_{XT}: Subsystem clock oscillation frequency
 - 3. x : Don't care
 - 4. The values in parentheses apply to operation with $f_X = 5.0$ MHz or $f_{XT} = 32.768$ kHz.

Figure 4-2. Format of the Watchdog Timer Mode Register (μPD78044F, μPD78044H, and μPD780208 Subseries)

- Notes 1. When WDTM3 and WDTM4 are set to 1 once, they cannot be cleared to 0 by software.
 - 2. In this mode, the watchdog timer start operating as an interval timer immediately after RUN is set to 1.
 - **3.** When RUN is set once to 1, it cannot be cleared to 0 by software. As a result, when the count starts, stopping by means other than $\overline{\text{RESET}}$ input is not possible.
- Cautions 1. When RUN is set to 1 and the watchdog timer work was cleared, the period of an actual overflow becomes a maximum of 0.5% shorter than the time set in timer clock selection register 2.
 - When watchdog timer mode 1 or 2 is being used, check that the interrupt request flag (TMIF4) is set to 0 and set WDTM4 to 1.
 If WDTM4 is set to 1 while TMIF4 is set to 1, a non-maskable interrupt request occurs regardless of the contents of WDTM3.

Remark x: Don't care

* Figure 4-3. Format of the Watchdog Timer Mode Register (μPD780228 Subseries)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
WDTM	RUN	0	0	WDTM4	WDTM3	0	0	0	FFF9H	00H	R/W

WDTM4	WDTM3	Operating mode selection for the watchdog timerNote 1
0	x	Interval timer mode
		(During overflow, a maskable interrupt request is issued.)
1	0	Watchdog timer mode 1
		(During overflow, a non-maskable interrupt request is issued.)
1	1	Watchdog timer mode 2
		(During overflow, reset operation starts.)

RUN	Selection of watchdog timer operation ^{Note 2}
0	Stop count
1	After clearing the counter, start the count.

- Notes 1. When WDTM3 and WDTM4 are set to 1 once, they cannot be cleared to 0 by software.
 - 2. When RUN is set once to 1, it cannot be cleared to 0 by software. As a result, when the count starts, stopping by means other than RESET input is not possible.
- Caution When RUN is set to 1 and the watchdog timer work was cleared, the period of an actual overflow becomes a maximum of 0.5% shorter than the set time.
- Remark x: Don't care

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
WDCS	0	0	0	0	0	WDCS2	WDCS1	WDCS0	FF42H	00H	R/W
	WDCS2	WDCS1	WDCS0	Overflow	w time o	f the watc	hdog/inte	erval timer			
	0	0	0	2 ¹² /fx (8	19 µs)						
	0	0	1	213/fx (1	.64 ms)						
	0	1	0	214/fx (3	.28 ms)						
	0	1	1	215/fx (6	.55 ms)						
	1	0	0	216/fx (1	3.1 ms)						
	1	0	1	217/fx (2	6.2 ms)						
	1	1	0	2 ¹⁸ /fx (5	2.4 ms)						
	1	1	1	2 ²⁰ /fx (2	10 ms)						

Figure 4-4. Format of the Watchdog Timer Clock Selection Register (Only for the μ PD780228 Subseries)

Remarks 1. f_X: Oscillation frequency of the main system clock

2. The values in parentheses apply to operation with $f_X = 5.0$ MHz.

4.1 SETTING THE WATCHDOG TIMER MODE

In processing operation of the watchdog timer after detecting the runaway, there is reset processing or non-maskable interrupt servicing. Either one can be selected by the watchdog timer mode register (WDTM). When the watchdog timer mode is used, the timer must be cleared in a time interval shorter than the set runaway detection time. When the timer is not cleared, an overflow occurs and reset or interrupt servicing is executed.

The runaway detection time for the watchdog timer is set in timer clock selection register 2(TCL2).

In this example, 7.81 ms is selected in the runaway detection time and reset processing operation is selected when an overflow occurs.

(1) SPD chart

(2) Program listing

```
; Set the watchdog timer to 7.81 ms.
     TCL2=#00000100B
     WDTM=#10011000B
                          ; Set the reset start mode.
     User processing 1
;
     SET1 <sup>|</sup> RUN
                          ; Timer clear
     User processing 2
;
     SET1
           RUN
                          ; Timer clear
     User processing 3
;
     SET1
           RUN
                          ; Timer clear
```

4.2 INTERVAL TIMER MODE SETTING

When the interval timer mode is used, the interval time is set in timer clock selection register 2(TCL2) (interval time = 977 μ s to 250 ms at f_X = 4.19 MHz). This interval timer sets the interrupt request flag (TMIF4) when the timer overflows.

In this example, setting the three times of 977 μ s, 7.82 ms, and 250 ms is illustrated.

(1) Program listing

```
<1> Setting 977 µs
```

TCL2	=	#0000000B	; Set to 977 μs.
WDTM	=	#10001000B	; Select the interval timer mode.

<2> Setting 7.82 ms

TCL2	=	#00000011B	; Set to 7.82 ms.
WDTM	=	#10001000B	; Select the interval timer mode

<3> Setting 250 ms

TCL2 =	#00000111B	; Set to 250 ms.
WDTM =	#10001000B	; Select the interval timer mode.

CHAPTER 5 16-BIT TIMER/EVENT COUNTER APPLICATION

The 16-bit timer/event counter in the 78K/0 Series supports the following functions:

- Interval timer
- PWM output
- Pulse width measurement
- External event counter
- Square wave output

The 16-bit timer/event counter requires the setting of the following six registers:

- Timer clock selection register 0 (TCL0)
- 16-bit timer mode control register (TMC0)
- 16-bit timer output control register (TOC0)
- Port mode register 3 (PM3)
- External interrupt mode register (INTM0)
- Sampling clock selection register (SCS)

Symbol	7	6	5	5	4	3	2	1	0	A	ddress	At r	eset	R/W
TCL0	CLO	E TCL06	TCL	_05 TC	L04	TCL03	TCL02	TCL01	TCL00	F	F40H	00	Н	R/W
•														
										TCL03	TCL02	TCL01	TCL00	PCL output clock selection
										0	0	0	0	fxt (32.768 kHz)
										0	1	1	1	fx/2 ³ (625 kHz)
										1	0	0	0	fx/24 (313 kHz)
										1	0	0	1	fx/2⁵ (156 kHz)
										1	0	1	0	fx/2 ⁶ (78.1 kHz)
										1	0	1	1	fx/2 ⁷ (39.1 kHz)
										1	1	0	0	fx/2 ⁸ (19.5 kHz)
										Other t	han the	above		Setting prohibited
										TCL06	TCL05	TCL04	Selecti of the	on of the count clock 16-bit timer register
										0	0	0	TI0 (va	lid edge settable)
										0	0	1	fx (5.0	MHz)
										0	1	0	fx/2 (2.	5 MHz)
										0	1	1	fx/2² (1	.25 MHz)
										1	0	0	fx/2³ (6	25 kHz)
										Other t	han the	above	Setting	prohibited
									I			.4		
	<u> </u>									OLUE				
										U	Output	pronibit	ea	
										1	Output	enabled	L	

Figure 5-1. Format of Timer Clock Selection Register 0

- Cautions 1. Setting the valid edge for the TI0/INTP0 pin is performed by the external interrupt mode register (INTM0). In addition, selecting the frequency of the sampling clock is performed by the sampling clock selection register (SCS).
 - 2. After setting TCL00 to TCL03 when PCL output is enabled, set 1 in CLOE by using a 1-bit memory manipulation instruction.
 - 3. When the TM0 count clock is TI0 and the count value is read, read from TM0 and not from the capture register (CR01).
 - 4. When data other than identical data will be rewritten in TCL0, rewrite after temporarily stopping timer operation.

Remarks 1. f_X : Main system clock oscillation frequency

- **2.** f_{XT} : Subsystem clock oscillation frequency
- 3. TI0 : Input pin of the 16-bit timer/event counter
- 4. TM0: 16-bit timer register
- 5. The values in parentheses apply to operation with $f_X = 5.0$ MHz or $f_{XT} = 32.768$ kHz.

Figure 5-2. Format of the 16-Bit Timer Mode Control Register

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
тмс0	0	0	0	0	тмс03	TMC02	TMC01	OVF0	FF48H	00H	R/W

OVF0	Overflow detection of the 16-bit timer register
0	No overflow
1	Overflow

TMC03	TMC02	TMC01	Selection of operating mode and clear mode	Selection of TO0 output timing	Interrupt request generation
0	0	0	Stop operation (Clear TM0 to 0.)	No change	Not generated
0	0	1	PWM mode (free running)	PWM pulse output	Generated when TM0 and CR00 match
0	1	0	Free running mode	TM0 and CR00 match.	
0	1	1		TM0 and CR00 match or valid edge occurs at TI0.	
1	0	0	When there is a valid edge at TI0, clear and start.	TM0 and CR00 match.	
1	0	1		TM0 and CR00 match or valid edge occurs at TI0.	
1	1	0	When TM0 and CR00 match, clear and start.	TM0 and CR00 match.	
1	1	1		TM0 and CR00 match or valid edge occurs at TI0.	

- Cautions 1. Perform switching of the clear mode and TO0 output timing after timer operation is stopped (Set 000 in TMC01-TMC03.)
 - 2. Setting the valid edge of the TI0/INTP0 pin is performed by the external interrupt mode register (INTM0). In addition, the sampling clock frequency is specified in the sampling clock selection register (SCS).
 - 3. When PWM mode is used, after setting the PWM mode, set the data in CR00.
 - 4. When TM0 and CR00 matched and the mode to clear and start was selected, the CR00 setting is FFFFH. When the value in TM0 changes from FFFFH to 0000H, the OVF0 flag is set to 1.
 - 5. The 16-bit timer register begins operating when a value other than 000 (operation stop mode) is set in TMC01-TMC03. To stop the operation, set 000 in TMC01-TMC03.

Remarks 1. TO0 : Output pin of the 16-bit timer/event counter

- 2. TI0 : Input pin of the 16-bit timer/event counter
 - 3. TM0 : 16-bit timer register
 - 4. CR00: Compare register 00

Figure 5-3. Format of the 16-Bit Timer Output Control Register

Cautions 1. Always set TOC0 after timer operation has stopped.

2. 0 is read from LVS0 and LVR0 when read after setting data.

Figure 5-4. Format of the Port Mode Register 3

Caution When the P30/TO0 pin is used for timer output, set 0 in the output latches of PM30 and P30.

Caution Set the valid edge of the INTP0/TI0/P00 pin after timer operation is stopped by setting 0 in bits 1 to 3 (TMC01 to TMC03) of the 16-bit timer mode control register (TMC0).

Remarks 1. The INTPO pin also acts as the TIO/POO pin.

2. The INTP3 pin use the falling edge only.

Figure 5-6. Format of the Sampling Clock Selection Register

- Caution $f_X/2^{N+1}$ is the clock supplied to the CPU. $f_X/2^6$ and $f_X/2^7$ are the clocks supplied to peripheral hardware. $f_X/2^{N+1}$ stops in the HALT mode.
- **Remarks 1.** N: Value (N = 0 to 4) set in bits 0 to 2 (PCC0 to PCC2) in the processor clock control register (PCC)
 - **2.** f_X: Main system clock oscillation frequency
 - **3.** The values in parentheses apply to operation with $f_X = 5.0$ MHz.

5.1 INTERVAL TIMER SETTING

When the interval timer is used, first the timer clock selection register (TCL0) and 16-bit timer mode control register (TMC0) are set. The clear mode of the 16-bit timer is set in TMC0. The interval time is set in TCL0.

Then, the setting time and the compare register (CR00) from the count clock are set. The setting time is set by the following procedure.

Setting-time = (compare-register-value + 1) x count-clock-period

This example illustrates how to set the setting time of interval timer to 10 ms and 50 ms.

(a) For a 10 ms interval

<1> TMC0 setting

Select clear and start when TM0 and CR00 match.

<2> TCL0 setting

A setting greater than 10 ms is possible and the f_X mode with the highest resolution is selected.

<3> CR00 setting

10 ms = (N + 1) x
$$\frac{1}{4.19 \text{ MHz}}$$

N = 10 ms x 4.19 MHz - 1 = 41899

(1) Program listing

```
CR00=#41899
TCL0=#00010000B; Select the count clock f<sub>X</sub>.
TMC0=#00001100B; The 16-bit timer/event counter is set to clear and start when TM0 and CR00
match.
```

(b) For a 50-ms interval

<1> TMC0 setting

Select clear and start when TM0 and CR00 match.

<2> TCL0 setting

A setting greater than 50 ms is possible and the $f_X/2^2$ mode with the highest resolution is selected.

<3> CR00 setting

50 ms = (N + 1) x $\frac{1}{4.19 \text{ MHz}/2^2}$ N = 50 ms x 4.19 MHz/2² - 1 = 52374

(1) Program listing

CR00=#52374 TCL0=#00110000B ; Select the count clock f_X/2². TMC0=#00001100B ; The 16-bit timer/event counter is set to clear and start when TM0 and CR00 match.

5.2 PWM OUTPUT

When the PWM output is used, set the PWM mode in the 16-bit timer mode control register (TMC0) and the 16-bit timer/event counter in the output enabled state in the 16-bit timer output control register (TOC0).

The PWM pulse width (active level) is determined by the value set in CR00. However, because PWM in the 78K/0 Series has 14-bit resolution, bits 2 to 15 become valid in the compare register (CR00). (Set bits 0 and 1 in CR00 to 0.)

In this example, the basic period of the PWM mode is set to 61.0 μ s (2⁸/f_X) and the active level is set to active-low. Also, the pulse width setting program rewrites the high-order 4 bits based on a parameter (00H to 0FH). Consequently, this application example can have a PWM output in 16 steps (CR00 = 0FFCH to FFFCH).

(1) Package description

<Symbols declared as public>

PWM : PWM output subroutine name PWMOUT : Input parameter of PWM active level

<Registers used>

AX

<RAM used>

Name	Use	Attribute	Byte
PWMOUT PWM active-level setting		SADDR	1

<Nesting>

1 level, 2 bytes

<Hardware used>

- 16-bit timer/event counter
- P30/TO0

<Initial settings>

16-bit timer/event counter setting
 PWM output mode TMC0=#00000010B
 Basic PWM period of 61.0 μs TCL0=#00010000B
 Active-low output TOC0=#00000011B

 P30 output mode PM30=0

 P30 output latch P30=0

<Startup procedure>

After setting data in PWMOUT of the RAM, call the subroutine PWM.

(2) Use example

```
EXTRN PWM, PWMOUT

:

TOC0=#00000011B ; Setting PWM output and active-low

TCL0=#00010000B ; Select the count clock f<sub>X</sub>.

TMC0=#00000010B ; PWM mode setting

:

PWMOUT=A ; Input parameter setting of active level

CALL !PWM
```

(3) SPD chart

(4) Program listing

```
PUBLIC PWM, PWMOUT
PWM_DAT DSEG
            SADDR
                               ; PWM output data area (0 to 15)
PWMOUT: DS
            1
; *
      PWM output (16 levels)
PO_SEG CSEG
PWM:
                               ; Read high-order data of PWMOUT
      A=PWMOUT
      A<<=1
      A<<=1
      A<<=1
      A < < = 1
                               ; Set low-order 12 bits in 0FFCH.
      A!=#0FH
      X=#0FCH
      CR00=AX
      RET
```

5.3 REMOTE CONTROL RECEPTION

Two examples of programs are introduced for remote control reception using the 16-bit timer/event counter.

- The counter is cleared when a valid edge is detected by the remote control. The pulse width from the timer count value (capture register CR01) is measured until the next valid edge is detected.
- The timer is allowed to run freely and the pulse width is measured from the difference in the counter between valid edges. In addition, this is synchronized to the PWM output.

The remote control signal is received by a PIN light receiving diode, introduced to the μ PC1490 receiving preamplifier for remote control and input at pin P00/INTP0. An example remote control circuit is shown in Figure 5-7. The format of the remote control signal is shown in Figure 5-8.

Figure 5-7. Example of the Remote Control Receiving Circuit

Figure 5-8. IC Output Signal for Remote Control Transmission

Because the μ PC1490 preamplifier for remote control reception used in this circuit example is activelow, the level inputs to the μ PD78044F subseries become inverted data of the data transmitted by the remote control.

5.3.1 Remote Control Reception by a Counter Clear

In this program, the valid pulse width when receiving a remote control signal is shown in Table 5-1 and the processing for each signal is described in **<1>** to **<6>**. The repeat signal of the remote control signal is valid for only the 250 ms following a valid input. Also, when a signal is input within 3 ms after a normal read, data is also invalid.

Signal name		Output time	Valid time
Leader code (low)		9 ms	6.8 ms-11.8 ms
Leader code (high)	Normal	4.5 ms	3 ms-5 ms
	Repeat	2.25 ms	1.8 ms-3 ms
Custom code/data code	0	1.125 ms	0.5 ms-1.8 ms
	1	2.25 ms	1.8 ms-2.5 ms

Table 5-1. Valid Time for Input Signal

<1> Leader code (low)

The interval of the 16-bit timer/event counter is set to 1.5 ms and port level sampling is performed by interrupt servicing. When the low-level input is detected five consecutive times, a leader code is judged to be present and the interval changes to 7.81 ms. Then, by having an interrupt request at the rising edge of INTP0, the low-level pulse width of the leader code is measured.

<2> Leader code (high)

Based on an interrupt request at the falling edge at INTP0, the high-level pulse width of the leader code is measured by the timer counter.

<3> Custom/data code

Based on an interrupt request at the falling edge at INTP0, the pulse width is measured at every bit (1 period). After the 32nd bit of data is read in, a match of the inverted data and custom code is tested. Furthermore, the absence of data at the 33rd bit is verified.

<4> Repeat code detection

When the high level of the leader code is less than 3 ms, the pulse width is measured until a rising edge occurs at INTP0 after the leader code is output.

<5> Valid period of the repeat code

After valid data is input, there is sampling by interrupt servicing of the 16-bit timer/event counter (1.5 ms interval) and the valid period of 250 ms for the repeat code is measured.

<6> Time out during pulse width measurement

When an interrupt request (7.81 ms) of the 16-bit timer/event counter occurred during pulse width measurement, a time out occurs and the data become invalid.

(1) Package description

<Symbols declared as public>

RMDATA : Saves remote control reception data

RPT : Decision flag for the repeat valid interval

IPDTFG : Decision flag indicating the presence of valid data

RMDTOK : Decision flag indicating the presence of a valid input signal

RMDTSET: Decision flag indicating the presence of an input signal

<Registers used>

Bank 0: AX, BC, HL

<RAM used>

Name	Use	Attribute	Byte
RPTCT	Repeat code valid time counter	SADDR	1
RMENDCT	No input time counter after data input		
SELMOD	Mode selection		
LD_CT	Leader signal detection counter		
RMDATA	Valid data storage area		
WORKP	Input signal storage area	SADDRP	4

<Flags used>

Name	Use	
IPDTFG	Presence of valid data	
RMDTOK	Presence of a valid input signal	
RMDTSET	Presence of an input signal	
RPT	Decision on whether the repeat valid interval has elapsed	

<Nesting>

5 levels, 12 bytes

<Hardware used>

- 16-bit timer/event counter
- P00/INTP0

<Initial settings>

- 16-bit timer/event counter setting
 - Time clear mode when TM0 and CR00 match Count/clock f_X Compare register 00
- INTP0 sampling clock f_X/27
- INTP0 high-priority interrupt request
- 16-bit timer/event counter interrupt enabled
- Define custom code in CSTM. This is a public declaration.
- RAM clear

<Startup procedure>

Start using the INTP0 and INTTM0 interrupt requests.

TMC0 = #00001100B TCL0 = #00010000B CR00 = #6290 SCS = #00000011B PPR0 = 0

 $\mathsf{TMMK0} = 0$

(2) Example use

PUBLIC CSTM EXTRN RMDATA, RPTCT EXTBIT RPT, RMDTSET, IPDTFG CSTM EQU 9dh ; Remote control custom code CR00=#6290 ; Set to 1.5 ms. TCL0=#00010000B TMC0=#00001100B SCS=#00000011B ; INTP0 sampling clock is $f_X/128$. ; High priority INTP0 CLR1 PPR0 ; Clear flag CLR1 RPT CLR1 IPDTFG CLR1 RMDTSET ; Enable timer interrupt CLR1 TMMK0 ΕI DT_TEST: if_bit(RMDTSET) CLR1 RMDTSET if_bit(RPT)

```
;
                Repeat processing
;
;
           else
;
                Input present processing
;
;
            endif
       else
            if_bit(!RPT)
;
                No input present processing
;
;
            endif
       endif
```

(3) SPD chart

(4) Program listing

```
PUBLIC RPT, IPDTFG, RMDTOK, RMDTSET
         PUBLIC RMENDCT, RPTCT, SELMOD, LD_CT, RMDATA
         EXTRN CSTM
       DSEG SADDR
RM DAT
RPTCT: DS
                                         ; Repeat code valid time counter
                1
RMENDCT: DS
                 1
                                         ; No input time counter after data input
SELMOD: DS
                 1
                                          : Mode selection
                 1
                                         ; Leader signal detection counter
LD_CT: DS
                                         ; Valid data storage area
RMDATA: DS
                 1
RM_DATP DSEG
                SADDRP
WORKP: DS
                 4
                                         ; Input signal storage area
        BSEG
                                          : Valid data is present.
IPDTFG
       DBIT
RMDTOK DBIT
                                         ; Input signal is valid.
RMDTSET DBIT
                                         ; Input signal is present.
RPT
        DBIT
                                          ; Repeat code valid period
VEP0
         CSEG
                AT 06H
                                         ; INTP0 vector address setting
         DW
                INTP0
                 AT 14H
VETMO
         CSEG
                                         ; 16-bit timer vector address setting
         DW
                 INTTM0
;
    Remote control signal timer processing
TMO SEG
           CSEG
INTTM0:
        SEL RB1
                                         ; Interrupt enabled (INTP0)
        ΕI
        if_bit(IPDTFG)
                                         ; Is the input signal present?
            if bit(RMDTOK)
                                         ; Is the data valid?
            RPTCT--
                                         ; Repeat invalid time
                if(RPTCT==#0)
                    CLR1 RPT
                                         ; Repeat code invalid state
                    CLR1 IPDTFG
                    CLR1 RMDTOK
                endif
                CALL
                        !S_LOWCT
            else
                RMENDCT--
                if(RMENDCT==#0)
                    SET1 RMDTOK
                                         ; Set to valid data is present.
                    SET1 RMDTSET
                                         ; Set to leader (low) detection mode.
                    CALL !S_MOSET
                endif
                LD_CT = #5
            endif
        else
                    !S_LOWCT
            CALL
        endif
        RET1
```

```
S_LOWCT:
                                ; Leader (low) detection mode?
       if(SELMOD==#0)
          if_bit(!P0.0)
            LD_CT--
            if(LD_CT==\#0)
               SELMOD=#1
                                ; Leader (low) measurement mode
               TMC0=#0000000B
                                ; 7.81-ms timer
               CR00=#32767
               TMC0=#00001100B
               INTM0=#00000100B
                      PIF0
               CLR1
                                ; INTP0 interrupt enabled
               CLR1
                       PMK0
               LD_CT=#5
            endif
          else
            LD_CT = #5
          endif
       else
          CALL !S_MOSET
                            ; Set to leader (low) detection mode.
          LD CT = #5
       endif
       RET
$EJECT
;*
    Remote control signal edge detection processing
PO SEG CSEG
INTP0;
       SEL RB0
                                ; 100-µs wait
       CALL !WAIT
       switch(SELMOD)
       case 1:
          CALL !LEAD_L
                                ; Leader low detection processing
         break
       case 2:
                                ; Leader high detection processing
         CALL !LEAD_H
         break
       case 3:
         CALL !CDCODE
                                 ; Custom/data code read processing
         break
       case 4:
                                 ; Repeat code detection processing
          CALL !REPCD
         break
       case 5:
          CALL !ENDCHK
                                ; Error data detection processing
       ends
       RETI
```

```
Leader low detection
; *
LEAD L:
                                         ; Level check P0.0 = 0:noise
     if_bit(P0.0)
                                         ; 100-µs wait
        CALL !WAIT
        if_bit(P0.0)
           CALL !CR_READ
                                         ; Timer value read
                                         ; 6.8 \text{ ms} - (1.5 \text{ ms} \times 4)
           if(AX>=#3354)
                                         ; 11.8 ms - (1.5 ms x 5)
               if(AX<#18035)
                                         ; Leader high detection mode
                  SELMOD=#2
                                         ; INTP0 falling edge
                  INTM0=#0000000B
               else
                                         ; Set to leader (low) detection mode.
                          !S_M0SET
                  CALL
               endif
           else
                                         ; Set to leader (low) detection mode.
               CALL
                       !S_M0SET
           endif
        endif
     endif
     RET
$EJECT
Leader high detection
;*
LEAD H:
                                         ; Level check P0.0 = 1:noise
     if_bit(!P0.0)
        CALL !WAIT
                                         ; 100-µs wait
        if_bit(!P0.0)
                                         ; Timer value read
           CALL !CR READ
           if(AX>=#5710-160/2)
                                         ; 1.8 \text{ ms} - 100 \mu \text{s} \times 2 - 160 \text{ clocks} (edge detection -> timer start)
               if(AX<#20132-160/2)
                                         ; 5 ms – 100 µs x 2 – 160 clocks (edge detection -> timer start)
                  if (AX>#11743-160/2); Custom/data code (3 ms - 100 µs x 2)?
                                         ; Data read mode
                     SELMOD=#3
                                         ; Initialize work area.
                     WORKP=#0000H
                     (WORKP) + 2 = #8000H ; Set most significant bit to 1 (for verifying the end of data).
                  else
                                         ; Repeat detection mode
                     SELMOD=#4
                     INTM0=#00000100B ; INTPO rising
                  endif
               else
                                         ; Set to leader (low) detection mode.
                  CALL
                          !S_M0SET
               endif
            else
                                         ; Set to leader (low) detection mode.
               CALL
                       !S_M0SET
           endif
        endif
     endif
     RET
$EJECT
```

```
; *
      Custom/data code read
CDCODE:
                                          : Level check P0.0 = 1:noise
      if_bit(!P0.0)
                                          ; 100-µs wait
          CALL !WAIT
          if_bit(!P0.0)
                                          ; Timer value read
             CALL !CR_READ
             if(AX>=#1257-190/2)
                                          : 0.5 ms - 100 µs x 2 – 190 clocks (edge detection -> timer start)
                if(AX<#9646-190/2)
                                          ; 2.5 ms - 100 µs x 2 – 190 clocks (edge detection -> timer start)
                    if (AX>=#6710-190/2); 1.8 ms - 100 µs x 2 - 190 clocks (edge detection -> timer start)
                       SET1 CY
                    else
                       CLR1 CY
                    endif
                                          ; Set work area address.
                    HL=#WORKP+3
                                          ; Set number of digits in work area.
                    C = #4
                WKSHFT:
                                          ; 1-bit data save
                    A=[HL]
                    RORC A,1
                                          : 1-bit shift
                    [HL]=A
                    HL--
                                          ; Completed the shift of all digits.
                    DBNZ C,$WKSHFT
                                          ; Is 32-bit input finished?
                    if_bit(CY)
                       if(WORKP+0==#CSTM) (A)
                                          ; Custom code check
                          A<sup>+</sup>=WORKP+1
                           if (A==#0FFH) ; Custom code inverted data check
                              A=WORKP+2
                              A<sup>+</sup>=WORKP+3 ; Data code inverted data check
                              if(A==#0FFH)
                                          ; Save input data.
                                 RMDATA=WORKP+2 (A)
                                          ; Set in the input data present state.
                                 SET1
                                          IPDTFG
                                 CLR1
                                          RMDTSET
                                 CLR1
                                          RPT
                                 CLR1
                                          RMDTOK
                                 CALL
                                          !S_M5SET
                              else
                                          ; Set to leader (low) detection mode.
                                          !S_MOSET
                                 CALL
                              endif
                           else
                                          ; Set to leader (low) detection mode.
                                      !S_M0SET
                              CALL
                           endif
                       else
                          CALL !S_MOSET
```

```
endif
                  endif
               else
                  CALL !S_MOSET
                                    ; Set to leader (low) detection mode.
               endif
            else
               CALL !S_MOSET
                                    ; Set to leader (low) detection mode.
            endif
         endif
      endif
     RET
$EJECT
;*
     Repeat code detection
REPCD:
                                    ; Level check P0.0 = 0:noise
      if_bit(P0.0)
         CALL !WAIT
                                    ; 100-µs wait
         if_bit(P0.0)
            if_bit(RMDTOK)
                                    ; Is valid data present?
                                    ; Timer value read
               CALL !CR_READ
               if (AX<=#3354-190/2); 1ms-100 µs x 2-190 clocks (edge detection -> timer start)
                  SET1
                         RPT
                                    ; Input signal check after the end of data
                  CLR1
                         RMDTOK
                  CLR1
                         RMDTSET
                  CALL !S_M5SET
               else
                                   ; Set to leader (low) detection mode.
                  CALL !S_MOSET
               endif
            else
                      !S_M0SET
                                    ; Set to leader (low) detection mode.
               CALL
            endif
         endif
      endif
      RET
$EJECT
```
```
;*
        Error data detection
ENDCHK:
    if bit(!P0.0)
                          : Level check P0.0 = 1:noise
                          ; 100-µs wait
       CALL !WAIT
       if_bit(!P0.0)
         CLR1 !PDTFG
CLR1 RPT
                          ; Error data input
                          : Input signal invalid
         CALL !S_MOSET
                          ; Set to leader (low) detection mode.
       endif
     endif
    RET
;*
           100-µs wait
WAIT:
                          ; CALL(14), RET(12), MOV(8)
    B=#(838-14-12-8)/12
                          : 100-us setting
WAITCT:
    DBNZ B,$WAITCT
                           ; 1 instruction, 12 clocks
    RET
;*
   Leader (low) detection mode setting
S MOSET:
    TMC0=#0000000B
    CR00=#6290
                          ; Set timer to 1.5 ms.
    TCL0=#00010000B
    TMC0=#00001100B
                           ; Leader (low) detection mode
    SELMOD=#0
    SET1 PMK0
    RET
Error data detection mode setting
; *
S_M5SET:
    RPTCT=#173
                           ; Counter for 250-ms measurement
                           ; End of data input mode
    SELMOD=#5
                          ; Counter for no input verification
    RMENDCT=#3
                          ; Operation stopped
    TMC0=#0000000B
    CR00=#6290
                           ; Set to 1.5 ms.
    TMC0=#00001100B
    RET
; *
        Read timer count value
CR_READ:
    AX=CR01
                          ; Stop operation
    TMC0=#0000000B
    TMC0=#0000000B
TMC0=#00001100B
                          ; Timer start
    RET
```

5.3.2 Remote Control Reception by PWM Output and Free Running

In this program, the valid pulse widths when the remote control signal is the received signal are shown in Table 5-2. The processing methods for each signal are explained in **<1>** to **<6>**.

Signal name		Output time	Valid time
Leader code (low)		9 ms	3 ms-10 ms
Leader code (high) Normal		4.5 ms	3 ms-5 ms
	Repeat	2.25 ms	1.8 ms-3 ms
Custom code/data code 0		1.125 ms	0.5 ms-1.8 ms
	1	2.25 ms	1.8 ms-2.5 ms

Table 5-2. Valid Time of the Input Signal

<1> Leader code (low)

An interrupt request during the detection of the falling edge of INTP0 causes the 16-bit capture register (CR01) value to be saved in memory. When the rising edge occurs, the pulse width is measured from the difference with the 16-bit compare register (CR00).

<2> Leader code (high)

Based on an interrupt request due to the falling edge of INTP0, the pulse width during the high level of the leader code is measured by the timer count.

<3> Custom/data code

Based on an interrupt request due to the falling edge of INTP0, the pulse width is measured for each bit (1 period). After the 32nd bit of data is read in, test for a match of the inverse data and custom code. Furthermore, the absence of a 33rd bit of data is verified.

<4> Repeat code detection

When the high level of the leader code is less than 3 ms, the pulse width is measured until the rising edge of INTP0 after the leader code output.

<5> Valid time for repeat code

After valid data input, the overflow flag (OVF0) of the 16-bit timer/event counter is tested in the main program. A valid time of 250 ms for the repeat code is measured.

<6> Time out during pulse width measurement

The OVF0 of the 16-bit timer/event counter during pulse width measurement is tested in the main program. When detected twice, a time out occurs and data becomes invalid. Because the 16-bit timer/event counter in this example is operated in the PWM output mode, by linking the program shown in **Section 5.2**, remote control reception and PWM output can be simultaneously executed.

(1) Package description

<Symbols declared as public>

TIM_PRO : Name of subroutine for timer overflow processing
RMDATA : Saves remote control reception data.
RPT : Decision flag for the repeat valid interval
IPDTFG : Decision flag indicating the presence of valid data
RMDTOK : Decision flag indicating the presence of a valid input signal
RMDTSET: Decision flag indicating the presence of an input signal
OVSENS : Timer overflow detection flag in INTP0 processing

<Register used>

Bank 0: AX, BC, HL

<RAM used>

Name	Use	Attribute	Byte
RPTCT	Time counter for valid repeat code	SADDR	1
RMENDCT	No input time counter after data input		
SELMOD	Mode selection		
LD_CT Leader signal detection counter		•	
RMDATA Valid data storage area			
TO_CNT	Timer overflow detection counter		
CR01_NP Newest timer counter value storage area		SADDRP	2
CR01_OP	R01_OP Previous timer counter value storage area		
WORKP	Input signal storage area		4

<Flags used>

Name	Use
IPDTFG	Presence of valid data
RMDTOK	Presence of valid input signal
RMDTSET	Presence of input signal
RPT	Decision on whether the repeat valid interval has elapsed
TO_FLG	Timer overflow present
OVSENS	Timer overflow detection in INTP0 processing

<Nesting>

5 levels, 11 bytes

<Hardware used>

- 16-bit timer/event counter
- P00/INTP0
- P30/TO0

<Initial settings>

•	16-bit timer/event counter setting	
	PWM output mode	TMC0 = #00000010B
	Basic PWM period of 61.0 μs	TCL0 = #00010000B
	Active-low output	TOC0 = #00000011B
•	P30 output mode	PM30 = 0
•	INTP0 sampling clock f _X /2 ⁷	SCS = #00000011B
•	INTP0 high-priority interrupt request	PPR0 = 0
•	INTP0 interrupt enabled	PMK0 = 0
•	Define custom code in CSTM. This is	a public declaration.

Clear RAM

<Startup procedure>

- Test OVF0 of the 16-bit timer/event counter. When OVF0 is set, call the TIM_PRO subroutine.
- Start using an interrupt request based on the edge detection of the remote control signal.

(2) Example use

	PUBLIC CSTM EXTRN RMDATA,RPTCT,PWM,PWMOUT,TIM_PR0 EXTBIT RPT,RMDTSET,IPDTFG,TO_FLG,OVSENS		UT,TIM_PR0 _FLG,OVSENS
CSTM	EQU	9DH	; Custom code
	TOC0=#0 TCL0=#0 TMC0=#0 INTM0=# SCS=#00	0000011B 0010000B 0000010B 00000000B 0000011B	; Setting of PWM output and active low ; Select f _X count clock. ; Overflow present in PWM mode. ; INTP0 falling edge ; INTP0 sampling clock of f _X /128
	CLR1 CLR1 CLR1 CLR1	PPRO RPT IPDTFG RMDTSET	; INTP0 high priority ; Clear flag
	CLR1 EI	PMK0	; INTP0 interrupt enabled
DT_TEST	:		
	if_bit(CLR CAL	OVSENS) 1 OVSENS L !TIM_PR0	; Timer overflow detection in INTP0 processing
	elseif_ CLR SET CAL	bit(OVF0) 1 OVF0 1 TO_FLG L !TIM_PR0	; Timer overflow is present.
	if bit(
	CLR	1 RMDTSET bit(RPT)	
; ;		Repeat processing	
;	els	e	
; ;	end	Input present processing	
	else if_	bit(!RPT)	
; ; ;		No input present processing	
	end endif MOV CALL	if PWMOUT.A !PWM	

(3) SPD chart

(4) Program listing

```
PUBLIC TIM_PRO, RPT, IPDTFG, RMDTOK, RMDTSET
         PUBLIC RMENDCT, RPTCT, SELMOD, LD_CT, RMDATA
        PUBLIC TO_FLG, OVSENS
        EXTRN
                 CSTM
RM_DAT DSEG
                 SADDR
                                             ; Counter for repeat code valid time
RPTCT: DS
                 1
RMENDCT:DS
                 1
                                             ; Counter for no input time after data input
                 1
                                             ; Mode selection
SELMOD: DS
                                             ; Leader signal detection counter
LD_CT DS
                 1
                                             ; Valid data storage area
                 1
RMDATA: DS
                                             : Timer overflow counter
TO CNT: DS
                 1
RM_DATP DSEG
                 SADDRP
                                             ; Newest timer counter value storage area
CR01_NP:DS
                 2
                 2
                                             ; Previous timer counter value storage area
CR01_OP:DS
WORKP: DS
                 4
                                             ; Input signal storage area
        BSEG
                                             ; Valid data is present.
!PDTFG DBIT
                                             ; Input signal is valid.
RMDTOK DBIT
                                             ; Input signal is present.
RMDTSET DBIT
                                             : Repeat code valid period
RPT
        DBIT
                                             ; Timer overflow is present.
TO_FLG DBIT
                                             ; Timer overflow detection in INTP0 processing
OVSENS DBIT
VEP0
        CSEG
                 AT 06H
                                             ; Setting of the INTP0 vector address
        DW
                 INTP0
$EJECT
; *
     Remote control signal timer processing
TM0_SEG CSEG
TIM_PRO:
         if_bit(IPDTFG)
                                             ; Is an input signal present?
                                             ; Is the data valid?
             if_bit(RMDTOK)
                 RPTCT--
                 if(RPTCT==#0)
                                            ; Repeat invalid time
                      CLR1 RPT
                                            ; Repeat code invalid state
                      CLR1
                              !PDTFG
                      CLR1
                              RMDTOK
                 endif
             else
                 RMENDCT--
                 if(RMENDCT==#0)
                      SET1 RMDTOK
                                            ; Set to valid data is present.
                      SET1
                              RMDTSET
                             !S_M0SET
                                            ; Set to leader (low) detection mode.
                      CALL
                 endif
             endif
         else
             CALL
                     !TO_CHK
                                             ; Timer overflow check
         endif
        RET
```

```
TO_CHK:
     if(SELMOD==#0)
       CLR1 TO_FLG
     else
       TO CNT++
       if(TO_CNT = = #2)
                                   ; Set to starting edge detection mode.
         CALL !S_MOSET
       endif
     endif
     RET
  $EJECT
;*
   Remote control signal edge detection
PO_SEG CSEG
INTP0:
      SEL RB0
      CALL !WAIT
                                    ; 100-µs wait
      switch(SELMOD)
      case 0:
        CALL !RM_STA
                                    ; Starting edge detection
         break
      case 1:
                                    ; Leader low detection
        CALL !LEAD L
         break
      case 2:
                                    ; Leader high detection
         CALL !LEAD_H
         break
      case 3:
         CALL !CDCODE
                                    ; Custom/data code read
         break
      case 4:
         CALL !REPCD
                                    ; Repeat code detection
         break
      case 5:
                                    ; Error data detection
         CALL !ENDCHK
      ends
      RETI
; *
         Starting edge detection
RM_STA:
      CLR1 TO_FLG
                                    ; Timer counter starts
                                    ; Level check P0.0 = 1:noise
      if_bit(!P0.0)
         CALL !WAIT
                                    ; 100-µs wait
         if_bit(!P0.0)
                                   ; Save capture register.
           CR01_OP=CR01 (AX)
                                   ; Leader low detection mode
           SELMOD=#1
           INTM0=#00000100B
                                    ; INTP0 rising edge
           TO_CNT=#0
         endif
      endif
      RET
```

```
;*
     Leader low detection
LEAD_L:
                                          ; Level check P0.0 = 1:noise
     if_bit(P0.0)
        CALL !WAIT
                                          ; 100-µs wait
        if_bit(P0.0)
                                          ; Timer value read
           CALL !PW_CT
           if_bit(!CY)
              TO CNT=#0
              if(AX>=#12582)
                                          : 3 ms
                                          ; 10 ms
                 if(AX<#41942)
                    SELMOD=#2
                                          : Leader high detection mode
                    INTM0=#0000000B
                                         ; INTP0 falling edge
                 else
                                          ; Set to starting edge detection mode.
                    CALL
                            !S_M0SET
                 endif
              else
                                          ; Set to starting edge detection mode.
                 CALL
                         !S_M0SET
              endif
           else
                                          ; Set to starting edge detection mode.
              CALL
                    !S_M0SET
           endif
        endif
     endif
     RET
  $EJECT
Leader high detection
; *
;***********************************
LEAD H:
                                          : Level check P0.0 = 0:noise
     if bit(!P0.0)
        CALL !WAIT
                                          ; 100-µs wait
        if bit(!P0.0)
           CALL !PW CT
                                          ; Timer value read
           if_bit(!CY)
              TO_CNT = #0
              if(AX>=\#7549)
                                          ; 1.8 ms
                 if(AX<#20971)
                                          ; 5 ms
                    if(AX>#12582)
                                          ; Custom/data code (3 ms)?
                                          ; Data read mode
                        SELMOD=#3
                        WORKP=#0000H
                                          ; Initialize work area.
                        (WORKP)+2=\#8000H; Set the most significant bit to 1 (to verify the end of data).
                    else
                       SELMOD=#4
                                          ; Repeat detection mode
                       INTM0=#00000100B; INTPO rising
                    endif
                 else
                    CALL
                            !S MOSET
                                          ; Set to starting edge detection mode.
                 endif
              else
                 CALL !S_MOSET
                                          ; Set to starting edge detection mode.
              endif
           else
              CALL !S_MOSET
                                          ; Set to starting edge detection mode.
           endif
        endif
     endif
     RET
  $EJECT
```

```
Custom/data code read
; *
CDCODE:
                                         ; Level check P0.0 = 1: noise
     if_bit(!P0.0)
        CALL !WAIT
                                         ; 100-µs wait
        if_bit(!P0.0)
           CALL !PW CT
                                         : Timer value read
           if_bit(!CY)
              TO_CNT=#0
              if(AX>=#2096)
                                        ; 0.5 ms
                 if(AX<#10485)
                                        ; 2.5 ms
                    if(AX>=#7549)
                                         ; 1.8 ms
                       SET1
                               CY
                    else
                       CLR1 CY
                    endif
                                       ; Set work area address.
                    HL=#WORKP+3
                                         ; Set the number of digits in the work area.
                    C=#4
                 WKSHFT:
                    A=[HL]
                                        : 1-bit data save
                    RORC A,1
                                         ; 1-bit shift
                    [HL]=A
                    HL--
                    DBNZ C, $WKSHFT ; End of shifting all digits
                                         ; End of 32-bit input?
                    if_bit(CY)
                                         ; Custom code check
                       if(WORKP+0==#CSTM) (A)
                          A<sup>+</sup>=WORKP+1
                          if (A==#0FFH) ; Custom code inverse data check
                              A=WORKP+2
                                         ; Data code inverse data check
                              A^=WORKP+3
                              if(A==#0FFH)
                                         ; Save input data.
                                 RMDATA=WORKP+2 (A)
                                         ; Set in the input data present state.
                                 SET1
                                        IPDTFG
                                 CLR1 RMDTSET
                                 CLR1 RPT
                                 CLR1 RMDTOK
                                 CALL
                                         !S_M5SET
                              else
                                         ; Set to starting edge detection mode.
                                 CALL
                                        !S MOSET
                              endif
                          else
                                         ; Set to starting edge detection mode.
                                     !S_MOSET
                              CALL
                          endif
                       else
                          CALL !S_MOSET
                       endif
                    endif
                 else
                    CALL !S_MOSET
                                         ; Set to starting edge detection mode.
                 endif
              else
```

```
; Set to starting edge detection mode.
                CALL !S_MOSET
             endif
          else
             CALL !S_MOSET
                                     ; Set to starting edge detection mode.
          endif
        endif
     endif
    RET
$EJECT
;*
     Repeat code detection
REPCD:
     if_bit(P0.0)
                                     ; Level check P0.0 = 1: noise
       CALL !WAIT
                                     ; 100-µs wait
        if_bit(P0.0)
                                     ; Is the data valid?
          if_bit(RMDTOK)
             CALL
                   !PW_CT
                                     ; Timer value read
             if_bit(!CY)
                TO_CNT = #0
                if(AX<=#4193)
                                     ; 1 ms
                   SET1 RPT
                   CLR1 RMDTOK
                                     ; Input signal check at the end of data
                   CLR1 RMDTSET
                   CALL !S_M5SET
                else
                   CALL !S_MOSET
                                     ; Set to starting edge detection mode.
                endif
             else
                CALL !S_MOSET
                                     ; Set to starting edge detection mode.
             endif
          else
             CALL !S_MOSET
                                     ; Set to starting edge detection mode.
          endif
        endif
     endif
    RET
  $EJECT
```

```
;*
           Error data detection
ENDCHK:
    if_bit(!P0.0)
                             : Level check P0.0 = 1:noise
      CALL !WAIT
                             ; 100-µs wait
       if_bit(!P0.0)
                             ; Error data input
         CLR1 IPDTFG
         CLR1 RPT
                             : Input signal invalid
                             ; Set to starting edge detection mode.
         CALL !S_MOSET
       endif
    endif
    RET
Calculation of capture register value
; *
PW_CT:
                             ; OVF0 after edge detection?
    if_bit(OVF0)
       if(CR01<#10000-33) (AX) ; Interrupt reception processing time = 65 clocks (MAX)
         CLR1 OVF0
         SET1 OVSENS
         SET1 TO_FLG
       endif
    endif
    CR01_NP=CR01 (AX)
                             ; Capture register value read
    A=CR01_NP+0
                             ; AX=CR01_NP-CR01_OP
    A-=CR01_OP
    X=A
    A=CR01_NP+1
    SUBC A, CR01_OP+1
                             ; Calculation result save
    BC=AX
                             ; CR01_NP>CR01_OP
    if_bit(CY)
                             ; Timer overflow present (flag test).
      if_bit(TO_FLG)
         CLR1 CY
                             : Normal data
      endif
    else
                             ; Timer overflow
       if_bit(TO_FLG)
                             : Error occurred.
         SET1 CY
       endif
    endif
    CR01_OP=CR01_NP (AX)
                             ; Calculation result restored.
    AX=BC
    CLR1 TO_FLG
    RET
```

```
;*
           100-µs wait
WAIT:
                  ; CALL(14), RET(12), MOV(8)
   R = \#(838 - 14 - 12 - 8) / 12
                  ; Set 100-µs.
WAITCT:
   DBNZ B, $WAITCT ; 1 instruction, 12 clocks
   RET
;*
   Starting edge detection mode setting
S_MOSET:
   TO_CNT = #0
                   ; Starting edge detection mode
   SELMOD=#0
                   ; INTP0 falling edge
   INTM0=#00000000B
   RET
;*
   Error data detection mode setting
S_M5SET:
                   ; Counter for 250-ms measurement
   RPTCT=#16
   SELMOD=#5
                   ; End of data input mode
                   ; Counter to verify no input
   RMENDCT=#2
   RET
```

CHAPTER 6 8-BIT TIMER/EVENT COUNTER APPLICATION

The 8-bit timer/event counter in the 78K/0 Series has the three functions of interval timer, external event counter, and square-wave output. In addition, the 8-bit timer/event counter has two on-chip channels. Moreover, they can be used as a 16-bit timer/event counter by connecting them in cascade.

The 8-bit timer/event counter requires the setting of the following five registers:

- Timer clock selection register 1 (TCL1)
- 8-bit timer mode control register (TMC1)
- 8-bit timer output control register (TOC1)
- Port mode register 3 (PM3)
- Port 3 (P3)

Figure 6-1. Format of Timer Clock Selection Register 1

Figure 6-2. Format of the 8-Bit Timer Mode Control Register

Cautions 1. Switch the operating mode after stopping timer operation.

2. When used as a 16-bit timer register, use TCE1 to enable or stop operation.

Figure 6-3. Format of the 8-Bit Timer Output Control Register

Cautions 1. Always set TOC1 after stopping timer operation.

2. When LVS1, LVS2, LVR1, and LVR2 are read out after data were set, 0's are read out.

Figure 6-4. Format of Port Mode Register 3

Caution When the P31/TO1 and P32/TO2 pins are used for timer output, do not only set the output latches of PM31 and PM32 to 0, also set the output latches of P31 and P32 to 0.

6.1 SETTING THE INTERVAL TIMER

When the interval timer is used, the operating mode of the 8-bit timer is set by the 8-bit timer mode control register (TMC1) and the interval time is set by timer clock selection register 1 (TCL1).

The values of the compare registers (CR10, CR20) are set based on the interval time and count clock. The setting time is determined in the form shown below.

Setting-time = (value-in-compare-register + 1) x count-clock-period

The setting time can be determined in a similar manner even when used as an 8-bit timer or as a 16-bit timer. However, when used as a 16-bit timer, the count clock becomes the value selected in bits 0 to 3 (TCL10 to TCL13) in TCL1.

Next, examples of each mode of the 8-bit timer and 16-bit timer are illustrated.

6.1.1 Setting an 8-Bit Timer

This example describes using 8-bit timer 2 and setting the interval times of 500 μ s and 100 ms.

(a) For the 500- μ s interval

<1> TMC1 setting

Select the "8-bit timer register x 2-channel" mode and enable "8-bit timer 2" operation.

<2> TCL1 setting

A setting above 500 μ s is possible. Select the highest possible resolution of f_X/2⁴.

<3> CR20 setting

500 μ s = (N + 1) x $\frac{1}{4.19 \text{ MHz/}2^4}$ N = 500 μ s x 4.19 MHz/ 2^4 - 1 \doteq 130

(1) Program listing

TCL1 = #10001000B ; Select $f_X/2^4$ for the count clock. CR20 = #130TMC1 = #00000010B

(b) For the 100-ms interval

<1> TMC1 setting

Select the "8-bit timer register x 2-channel" mode and enable "8-bit timer 2" operation.

<2> TCL1 setting

A setting above 100 ms is possible. Select the highest possible resolution of $f_X/2^{12}$.

<3> CR20 setting

100 ms = (N + 1) x $\frac{1}{4.19 \text{ MHz}/2^{12}}$ N = 100 ms x 4.19 MHz/2¹² - 1 \doteq 101

(1) Program listing

TCL1 = #11111111B ; Select count clock f_X/2¹². CR20 = #101 TMC1 = #00000010B

6.1.2 Setting the 16-Bit Timer

This example describes connecting 8-bit timer 1 and 8-bit timer 2 in a cascade and setting the interval times of 500 ms and 10 s.

(a) For the 500-ms interval

<1> TMC1 setting

In the "16-bit timer register x 1-channel" mode, enable the operations of 8-bit timers 1 and 2.

<2> TCL1 setting

A setting above 500 ms is possible. Select the highest possible resolution of $f_X/2^5$.

<3> CR10 and CR20 settings

500 ms = $\frac{N + 1}{4.19 \text{ MHz}/2^5}$ N = 500 ms x 4.19 MHz/2⁵ − 1 ≒ 65468 = FF6CH CR10 = 6CH, CR20 = FFH

(1) Program listing

TCL1	=	#00001001B	
CR10	=	#06CH	; Set 65468 in CR10 and CR20.
CR20	=	#0FFH	; CR10 = 6CH, CR20 = FFH
TMC1	=	#00000111B	

(b) For the 10-s interval

<1> TMC1 setting

In the "16-bit timer register x 1-channel" mode, enable the operations of 8-bit timers 1 and 2.

<2> TCL1 setting

A setting above 10 s is possible. Select the highest possible resolution of $f_X/2^{10}$.

<3> CR10 and CR20 settings

 $10 \text{ s} = \frac{\text{N} + 1}{4.19 \text{ MHz}/2^{10}}$ N = 10 s x 4.19 MHz/2¹⁰ - 1 = 40959 = 9FFFH CR10 = FFH, CR20 = 9FH

(1) Program listing

TCL1	=	#00001110B	
CR10	=	#0FFH	; Set 40959 in CR10 and CR20.
CR20	=	#9FH	; CR10 = FFH, CR20 = 9FH
TMC1	=	#00000111B	

6.2 MUSICAL SCALE GENERATION

In this example, the square-wave output (P31/TO1) function of 8-bit timer/event counter 1 is used and a program is illustrated that supplies pulses to an externally attached buzzer to generate a musical scale.

Figure 6-6. Musical Scale Generation Circuit

The output frequency from pin P31/TO1 is set in the count clock and the compare register. In this example, because the center of the frequencies of the musical scale is set in the range of 523 Hz and 1046 Hz, $f_X/2^5$ is selected for the count clock. Table 6-1 lists the settings of the musical scale, compare registers, and frequencies of the pulses to be output. However, because the timer output matches the compare register twice and is created in one period, the interval setting is in one-half of a period.

In the temporal length of the sound, the interval time is set in the 8-bit timer/event counter 2. The number of interrupts are counted and the output time is determined. In this example, 8-bit timer/event counter 2 is set to 20 ms.

Musical scale	Musical scale frequencies (Hz)	Compare register value	Output frequency (Hz)
С	523.25	124	524.3
D	587.33	111	585.1
E	659.25	98	662.0
F	698.46	93	697.2
G	783.98	83	780.2
А	880.00	73	885.6
В	987.77	65	993.0
С	1046.5	62	1040

Table 6-1. Musical Scale and Frequencies

The format of the data table in this program is shown below.

TABLE:

DB musical scale data 1, sound length data 1 DB musical scale data 2, sound length data 2 : : DB musical scale data n, sound length data n DB 0, 0

When there is a rest, musical scale data is set to 0. At the end of data, the length of the sound data is set to 0.

Example Count of the 8-bit timer/event counter 2 when the sound is output for one second Count = 1 s/20 ms = 50 (Data for the count is set to 50.)

Data in this program illustrates an example where C, D, E, ..., C are each output in order for one second.

(1) Package description

<Symbols declared as public>

MLDY: Subroutine name of the musical scale generation program

<Registers used>

Bank 0: A, B, HL

<RAM used>

Name	Use	Attribute	Byte
POINT Save the pointer of table data.		SADDR	1
LNG	Count the length of the sound data.		

<Nesting>

1 level, 3 bytes

<Hardware used>

- 8-bit timer/event counters 1 and 2
- P31/TO1

<Initial settings>

- Subroutine MLDY is set.
- Interrupts enabled

<Startup procedure>

• Call subroutine MLDY.

(2) Use example

EXTRN MLDY : CALL !MLDY EI

(3) SPD chart

(4) Program listing

```
PUBLIC MLDY
              AT 18H
VETM2
      CSEG
       DW
               INTTM2
                             ; Setting the vector address of 8-bit timer/event counter 2
ML_DAT DSEG
              SADDR
                             ; Pointer to table data
POINT: DS
               1
                             ; Length data of sound
LNG:
               1
      DS
;*
     Musical scale generation initialization
ML_SEG CSEG
MLDY:
       CLR1
             PM3.1
                             ; Set bit 1 of port 3 in output mode.
                             ; Initial setting of the pointer
       POINT=#0
      LNG=#1
                             ; Set to the TO1 output mode.
       TOC1=#00000011B
       TCL1=#11011001B
       CR20=#163
                             ; Set timer 2 to 20 ms.
      TMC1=#00000010B
                             ; Timer 2 operation enabled
                             ; Timer 2 interrupt enabled
       CLR1
              TMMK2
       RET
```

\$EJECT

```
;*
   Setting musical scale generation
TM2_SEG CSEG
INTTM2:
       SEL RB0
       LNG--
       if(LNG==#0)
          B=POINT (A)
                                  ; Setting the start address of the table
          HL=#TABLE
          A = [HL + B]
          if(A!=#0)
                                  ; Sound data setting
              CLR1
                    TCE1
              CR10=A
              SET1
                    TOE1
                    TCE1
              SET1
          else
              CLR1 TOE1
          endif
                                  ; Increment pointer.
          B++
                                  ; Read the length data of the sound
          A=[HL+B]
          if(A!=#0)
                                  ; Is the sound being output?
                                  ; Sound length data setting
              LNG=A
              B++
              POINT=B (A)
          else
                                  ; Timer 2 interrupt disabled
              SET1
                    TMMK2
              CLR1
                    TCE2
                                  ; Timer 2 operation stopped
          endif
       endif
       RETI
; *
       Musical scale data table
TABLE:
                                  ; C
             124,50
       DB
                                  ; D
       DB
              111,50
                                  ; E
       DB
              98,50
              93,50
                                  ; F
       DB
                                  ; G
       DB
              83,50
             73,50
                                  ; A
       DB
                                  ; B
              65,50
       DB
       DB
              62,50
                                  ; C
              00,00
                                  ; End
       DB
```

CHAPTER 7 WATCH TIMER APPLICATION

The 78K/0 Series watch timer has a watch timer function that uses as the source signal the main system clock or the subsystem clock and overflows every 0.5 seconds, and an interval timer function capable of setting six types of basic times. These two functions can be used at the same time.

The watch timer is set by timer clock selection register 2 (TCL2) and watch timer mode control register (TMC2).

- **Note** When a main system clock at 1.25 MHz or lower and an FIP controller/driver are used simultaneously, select $f_X/2^8$ as the count clock for the watch timer.
- Caution When TCL2 will be rewritten with data other than identical data, rewrite after temporarily stopping timer operation.

Remarks 1. f_X : Main system clock oscillation frequency

- 2. f_{XT}: Subsystem clock oscillation frequency
- 3. x : Don't care
- 4. The values in parentheses apply to operation with $f_X = 5.0$ MHz or $f_{XT} = 32.768$ kHz.

Caution When a watch timer is used, do not frequently clear the prescaler.

Remarks 1. f_W : Clock frequency of the watch timer ($f_X/2^8$ or f_{XT})

2. The values in parentheses apply to operation with f_W = 32.768 kHz.

7.1 WATCH AND LED DISPLAY PROGRAM

An example using the watch timer is illustrated for a time count using the 0.5-second overflow and LED dynamic display using the 1.95-ms interval.

When the time count tests the overflow flag each time a subroutine is called. When it is set, count up processing of seconds is performed. Because overflow is generated at 0.5 s, when there are 120 counts, 1 minute is counted. The overflow test is performed at 1.95-ms intervals in order not to lose data. The watch display of this program is a 24-hour display. Minute data and hour data are separately stored in memory as the high-order and low-order digits.

Seconds data	Minutes data		Hours	s data
0-120	Low	High	Low	High
	order	order	order	order
	0-9	0-5	0-9	0-2

Figure 7-3. Schematic of Watch Data

An LED dynamic display is a four-digit display that switches the display digits in each 1.95-ms interval. In this example, the high-order four bits of P3 in the digit signal selects P12 where the LEDs in the segment signal can be driven directly.

The LED display displays the digits shown in the display digit area (DIGCT) of the LED display area (LEDDP). Also, when the digit signal switches, switching is performed after the segment signal is turned off in order not to shift neighboring digit displays.

Figure 7-4. LED Display Timing

Figure 7-5. Example Circuit of the Watch Timer

(1) Package description

<Symbols declared as public>

SECD : Area storing seconds dataMINDP : Area storing minutes dataHOURDP: Area storing hours dataLEDDP : LED display area

<Registers used>

Bank 0: AX, B, HL

<RAM used>

Name	Use	Attribute	Byte
MINDP	Minutes data storage	SADDRP	2
HOURDP	Hours data storage		
SECD	Seconds data storage		1
DIGCT	LED display digit data storage		
LEDDP	LED display data		4

<Hardware used>

- Watch timer
- P34-37
- P12

<Initial settings>

•	Watch	operation	of 0.5	s, int	terval	of '	1.95	ms	
---	-------	-----------	--------	--------	--------	------	------	----	--

TMC2 = #00100110B TMMK3 = 0

<Startup procedure>

Startup is by the interval timer interrupt request of the watch timer.

(2) Use example

EXTRN MINDP, HOURDP, SECD, LEDDP

• Watch timer interrupt enabled

TMC2	= #00100110B	; 0.5-s watch operation, 1.95-ms interval
CLR1	TMMK 3	; Watch timer interrupt enabled
ΕI		

(3) SPD chart

(4) Program listing

	PUBLIC	HOURDP, MINDP, SECD, LEDI)P
WT_DATP MINDP: HOURDP: SECD: DIGCT: LEDDP:	DSEG DS DS DS DS DS	SADDRP 2 2 1 1 4	; Area storing minutes data ; Area storing hours data ; Area storing seconds data ; LEDs display digit area ; LEDs display area
VETM3	CSEG DW	AT 12H INTTM3	; Setting the vector address of the watch timer
;****** ;* Int ;****** TM3_SEG INTTM3:	******** erval in ******** CSEG SEL RBO CALL CALL RETI	**************************************	*

```
;*
     LED display
LEDDPSP:
                                           ; Segment output off
         P12=#0FFH
                                           ; Adjustment of digit counter (0 to 3)
         DIGCT&=#00000011B
         if(DIGCT==#0)
              A=P3
              A&=#00001111B
                                           ; Initial setting of digit signal (high-order 4 bits)
              A!=#00010000B
              P3=A
         else
              A=P3
              A&=#11110000B
                                           ; Shift high-order 4 bits.
              X=A
              A=P3
              A + = X
              P3=A
         endif
                                           ; Address setting of display data
         B=DIGCT (A)
                                            ; Start address of the display area
         HL=#LEDDP
                                           ; Display data setting
         B=[HL+B] (A)
         HL=#SEGDT
                                           ; Change to segment data.
                                            ; Segment signal output
         P12=[HL+B] (A)
         DIGCT++
         RET
SEGDT:
                  11000000B
                                           ; 0
         DB
                                           ; 1
         DB
                  11111001B
                                           ; 2
                  10100100B
         DB
                                           ; 3
         DB
                  10110000B
         DB
                  10011001B
                                           ; 4
                  10010010B
                                           ; 5
         DB
                                           ;6
         DB
                  10000010B
                                           ; 7
                  11111000B
         DB
         DB
                  1000000B
                                           : 8
         DB
                  1001000B
                                           ; 9
                  10001000B
                                           ; A
         DB
                                           ; B
                  1000011B
         DB
                                           ; C
         DB
                  11000110B
                                           ; D
         DB
                  10100001B
         DB
                  10000110B
                                           ; E
                                           ; F
         DB
                  10001110B
```

\$EJECT

```
;*
     Watch count up
TIME:
                                                 ; 0.5-s test
      if_bit(WTIF)
          CLR1 WTIF
                                                 ; 120 = 60 s/0.5
          SECD++
          if(SECD==#120)
              SECD=#0
              (MINDP+0)++
                                                 ; Increment low-order part of minutes.
              if((MINDP+0)==#10)
                                                 ; Digit carry
                  (MINDP+0) = #0
                                                 ; Increment high-order part of minutes.
                  (MINDP+1)++
                  if(MINDP+1==\#6)
                                                 ; Digit carry
                       (MINDP+1) = #0
                       (HOURDP+0)++
                       if(HOURDP!=\#0204H) (AX) ; Is hour data 24?
                           if((HOURDP+0) == #10) ; Digit carry
                              (HOURDP+0) = #0
                              (HOURDP+1)++
                           endif
                       else
                           HOURDP=#0000H
                       endif
                  endif
              endif
          endif
      endif
     RET
```

[MEMO]

CHAPTER 8 SERIAL INTERFACE APPLICATION

Table 8-1 lists the serial interfaces of the 78K/0 Series.

Serial interface		Channel 0		Chai	nnel 1	Channel 3
configuration	3-wire	2-wire	SBI	3-wire	3-wire mode	3-wire
					with automatic	
					transmission/	
Subseries					reception function	
μPD78044F	0	0	0	0	0	х
μPD78044H	x	х	х	0	x	х
μPD780208	0	0	0	0	0	х
μPD780228	x	х	х	х	x	0

Table 8-1. Available Serial Interface Channels in Each Subseries

Remark o: Function available x: Function not available

The serial interface requires the setting of the following registers.

*

*

Table 8-2. Serial Interface Registers

Serial interface	Registers to be used
Channel 0	 Timer clock selection register (TCL3) Serial operating mode register 0 (CSIM0) Serial bus interface control register (SBIC) Interrupt timing specification register (SINT)
Channel 1	 Timer clock selection register (TCL3) Serial operating mode register 1 (CSIM1) Automatic data transmit/receive control register (ADTC) Automatic data transmit/receive interval setting register (ADTI)

Remark This chapter describes only the register formats and sample applications for serial interface channels 0 and 1. For details of the register format for channel 3, refer to the μPD780228 Subseries User's Manual (U12012E).

Figure 8-1. Format of Timer Clock Selection Register 3 (µPD78044F and µPD780208 Subseries)

Caution When data other than the same data is rewritten into TCL3, rewrite after temporarily stopping timer operation.

Remarks 1. f_X: Main system clock oscillation frequency

2. The values in parentheses apply to operation with $f_X = 5.0$ MHz.

Symbol	7	6	5	4	3	2	1	0		Address	At r	eset	R/W
TCL3	TCL37	TCL36	TCL35	TCL34	0	0	0	0	,	FF43H	8	8H	R/W ^{Note}
•				·					1				
									TCL37	TCL36	TCL35	TCL34	Selection of serial clock for serial interface channel 1
									0	1	1	0	fx/2 ² (1.25 MHz)
									0	1	1	1	fx/2 ³ (625 kHz)
									1	0	0	0	fx/2 ⁴ (313 kHz)
									1	0	0	1	fx/2⁵ (156 kHz)
									1	0	1	0	fx/2 ⁶ (78.1 kHz)
									1	0	1	1	fx/2 ⁷ (39.1 kHz)
									1	1	0	0	fx/2 ⁸ (19.5 kHz)
									1	1	0	1	fx/2 ⁹ (9.8 kHz)
									Other	than the	above		Setting prohibited

Figure 8-2. Format of Timer Clock Selection Register 3 (µPD78044H Subseries)

Note Bits 0 to 3 are read-only.

When bits 0 to 3 are read, the operation will become unpredictable.

Caution When data other than the same data is rewritten into TCL3, rewrite after temporarily stopping timer operation.

- Remarks 1. f_X: Main system clock oscillation frequency
 - 2. The values in parentheses apply to operation with $f_{\rm X}$ = 5.0 MHz.

Figure 8-3. Format of Serial Operating Mode Register 0 (Only for the μ PD78044F and μ PD780208 Subseries) (1/2)

Symbol	7	6	5	4	3	2	1	0		Address	At reset	R/W		
CSIM0	CSIE 0	COI	WUP	CSIM 04	CSIM 03	CSIM 02	CSIM 01	CSIM 00		FF60H	00H	R/W ^{Note 1}		
R/W	CSIM 01	CSIM 00	Cloo	ck sel	ectio	n for s	serial	interf	face of	channel 0				
	0	х	Inpu	ut cloo	ck fro	m the	outs	ide to	pin s	SCK0				
	1	0	Out	put of	the 8	3-bit t	imer ı	egist	er 2 (TM2)				
	1	1	Cloo	ck spe	ecifie	d by t	oits 0	to 3 c	of the	timer clock s	election	register 3 (TCL3)		
						-				-				
R/W	CSIM 04	CSIM 03	CSIM 02	PM25	P25	PM26	P26	PM27	P27	Operating mode	First bit	SI0/SB0/P25 pin function	SO0/SB1/P26 pin function	SCK0/P27 pin function
	0	x	0	1	х	0	0	0	1	3-wire serial	MSB	SI0 ^{Note 2}	SO0	SCK0
			1							I/O mode	I SB	(input)	(CMOS output)	(CMOS I/O)

		1							I/O mode	LSB	(input)	(CMOS output)	(CMOS I/O)
1	0	0	Note 3 X	Note 3 X	0	0	0	1	SBI mode	MSB	P25 (CMOS I/O)	SB1 (N-channel open drain I/O)	SCK0 (CMOS I/O)
		1	0	0	Note 3 X	Note 3 X	0	1			SB0 (N-channel open drain I/O)	P26 (CMOS I/O)	
1	1	0	Note 3 X	Note 3 X	0	0	0	1	2-wire serial I/O mode	MSB	P25 (CMOS I/O)	SB1 (N-channel open drain I/O)	$\overline{\frac{SCK0}{N\text{-channel}}}$
		1	0	0	Note 3 X	Note 3 X	0	1			SB0 (N-channel open drain I/O)	P26 (CMOS I/O)	

R/W WUP Wakeup function control^{Note 4}

0 An interrupt request signal is issued at each serial transfer in all of the modes.
1 When the address received after the bus release in the SBI mode (when CMDD = RELD = 1) matches the data in the slave address register, an interrupt request signal is issued.

Notes 1. Bit 6 (COI) is read-only.

- 2. When only transmission is performed, this pin can be used as P25 (CMOS input).
- 3. This pin can be used for a port function.
- 4. When the wakeup function is used (WUP = 1), set bit 5 (SIC) of the interrupt timing specification register (SINT) to 0.

Caution The operating mode (3-wire serial I/O, 2-wire serial I/O, or SBI mode) must not be changed while serial interface channel 0 is enabled. To change the operating mode, temporarily stop serial operation beforehand.

Remark x : Don't care PMxx: Port mode register Pxx : Port output latch

*

Figure 8-3. Format of Serial Operating Mode Register 0 (Only for the μ PD78044F and μ PD780208 Subseries) (2/2)

R	COI	Slave	address	comparison	result flagNote
•					

Data in the slave address register and data in serial I/O shift register 0 do not match.

1 Data in the slave address register and data in serial I/O shift register 0 match.

R/W CSIE0 Control of serial interface channel 0 operation

0 Stop operation 1 Enable operation

F

*

0

Note When CSIE0 = 0, COI becomes 0.

Caution The operating mode (3-wire serial I/O, 2-wire serial I/O, or SBI mode) must not be changed while serial interface channel 0 is enabled. To change the operating mode, temporarily stop serial operation beforehand.

Figure 8-4. Format of the Serial Operating Mode Register 1 $(\mu$ PD78044F and μ PD780208 Subseries)

Symbol	7	6	5	4	3	2	1 0	Address	At reset	R/W
CSIM1	CSIE 1	DIR	ATE	0	0	0	CSIM CSI 11 10	M FF68H	00H	R/W

CSIM 11	CSIM 10	Clock selection for serial interface channel 1
0	х	External clock input ^{Note 1} to SCK1 pin
1	0	Output of 8-bit timer register 2 (TM2)
1	1	Clock set by bits 4 to 7 of timer clock selection register 3 (TCL3)

ATE	Selection of operating mode of serial interface channel 1								
0	3-wire serial I/O mode								
1	3-wire serial I/O mode with automatic transmit/receive function								

DIR	First bit	SI1 pin function	SO1 pin function
0	MSB	SI1/P20	SO1
1	LSB	(input)	(CMOS output)

CSIE 1	CSIM 11	PM20	P20	PM21	P21	PM22	P22	Shift register 1 operation	Control of serial clock counter operation	SI1/P20 pin function	SO1/P21 pin function	SCK1/P22 pin function
0	x	Note 2	Stop	Clear	P20	P21	P22					
		х	х	X	x	X	х	operation		(CMOS I/O)	(CMOS I/O)	(CMOS I/O)
1	0	Note 3	Note 3	0	0	1	х	Enable	Count	SI1 ^{Note 3}	SO1	SCK1
		1	X					operation	operation	(input)	(CMOS output)	(input)
	1					0	1					SCK1
												(CMOS output)

Notes 1. When an external clock input is selected and CSIM11 is 0, set bits 2 and 1(STRB and BUSY1) of the automatic data transmit/receive control register (ADTC) to 0.

2. This can be used for a port function.

3. When only transmission is performed, this can be used as P20. Set bit 7 (RE) of ADTC to 0.

Remark x : Don't care

PMxx : Port mode register

Pxx : Port output latch

Figure 8-5. Format of the Serial Operating Mode Register 1 (µPD78044H Subseries)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W			
CSIM1	CSIE 1	DIR	0 ^{Note 1}	0	0	0	CSIM 11	CSIM 10	FF68H	00H	R/W			
	CSIM 11	CSIM 10	Clo	ck sel	ectio	n for s	serial	interf	ace channel '	1				
	0	x	External clock input to SCK1 pin											
	1	0	0 Output of 8-bit timer register 2 (TM2)											
	1	1	Clo	ck set	t by b	its 4 t	o 7 o	f time	r clock select	ion register 3 (TC	L3)			
	DIR	Firs	t bit								SI1 pin function	n	SO1 pi	n function
	0	MSI	В								SI1/P20		SO1	
	1	LSE	3								(input)		(CMOS	S output)
	CSIE 1	CSIM 11	PM20	P20	PM21	P21	PM22	P22	Shift register 1 operation	Control of serial clock counter operation	SI1/P20 pin function	SO1/P pin fun	21 ction	SCK1/P22 pin function
	0	х	Note 2	Note 2	Note 2	Note 2	Note 2	Note 2	Stop	Clear	P20	P21		P22
			x	x	×	X	X	X	operation		(CMOS I/O)	(CMOS	6 I/O)	(CMOS I/O)
	1	0	Note 3	Note 3	0	0	1	x	Enable	Count	SI1 ^{Note 3}	SO1		SCK1

								operation			(01100 1/0)	(01100 1/0)
1	0	Note 3 1	Note 3 X	0	0	1	х	Enable	Count	SI1 ^{Note 3}	SO1	SCK1
		-						operation	operation	(input)	(CMOS output)	(input)
	1					0	1					SCK1
												(CMOS output)

Notes 1. Always set to 0.

- 2. This can be used for a port function.
- **3.** When only transmission is performed, this can be used as P20 (CMOS I/O).

Remark x : Don't care

PMxx : Port mode register Pxx : Port output latch

Figure 8-6. Format of the Interrupt Timing Setting Register (Only for the μ PD78044F and μ D780208 Subseries)

Notes 1. Bit 6 (CLD) is read-only.

- 2. When the wakeup function is used, set SIC to 0.
- **3.** When CSIE0 = 0, CLD becomes 0.

Caution Always set bits 0 to 3 to 0.

 Remark
 SVA
 : Slave address register

 CSIIF0 : Interrupt request flag which corresponds to INTCSI0
 CSIE0 : Bit 7 of serial operating mode register 0 (CSIM0)

Figure 8-7. Format of the Serial Bus Interface Control Register (Only for the μ PD78044F and μ PD780208 Subseries) (1/2)

Symbol	7	6	5	4	3	2	1	0		Address	At reset	R/W		
SBIC	BSYE	ACKD	ACKE	ACKT	CMDD	RELD	CMDT	RELT		FF61H	00H	R/W ^{Note}		
R/W	RELT	This is The S In add	s used to O latch lition, it	o outpu is set (′ is cleare	t the bus 1) by RE ed (0) wl	releas LT = 1. nen CS	e signal After s IE0 = 0.	etting t	the S	O latch, this	bit is automat	tically cleared (0).	
R/W	CMDT	DT This is used for command signal output. The SO latch is cleared (0) by CMDT = 1. After clearing the SO latch, this bit is automatically cleared (0). In addition, it is cleared (0) when CSIE0 = 0.												
R	RELD Bus release detection													
ľ	Clearir	earing conditions (RELD = 0) Setting conditions (RELD = 1)												
	 Wher Wher rece Wher Wher 	When a start transfer instruction is executed When the values in SIO0 and SVA do not match while receiving an address When <u>CSIE0</u> = 0 When <u>RESET</u> is input												
P	СМОО	Comm	and det	tection]	
	Clearir	ng condi	tions (C	MDD =	0)				Settin	g conditions	(CMDD = 1)			
	Where W	n a start n a bus n CSIE0 n RESE	transfe release = 0 T is inpu	r instruc signal (ut	(REL) is	executed detecte	When a command signal (CMD) is detected							
R/W	W ACKT The acknowledge signal is output synchronized to the falling edge of the SCK0 clock immediately after the execution of the instruction that is set (1). After the output, this bit is automatically cleared (0). In addition, when starting the transfer in the serial interface and CSIE0 = 0, this bit is also cleared (0).													

Note Bits 2, 3, and 6 (RELD, CMDD, ACKD) are read-only.

Remark CSIE0: Bit 7 of serial operating mode register 0 (CSIM0)

Figure 8-7. Format of the Serial Bus Interface Control Register (Only for the μ PD78044F and μ PD780208 Subseries) (2/2)

R/W	ACKE	Acknowledge signal output	control					
	0	Automatic output of the ack	nowledge signal is di	sabled. (Output by ACKT is possible.)				
	1	Before the end of transfer	The acknowledge signal is output synchronized to the falling edge of the ninth $\overline{\text{SCK0}}$ clock (automatically output by ACKE = 1).					
		After the transfer ends	The acknowledge signal is output synchronized to the falling edge of the \overline{SCK} clock immediately after the execution of the instruction that is set (1) (automatically output by ACKE = 1). However, after the acknowledge signal is output, the is not automatically cleared (0).					
R	R ACKD Acknowledge detection							
	Clearin	g conditions (ACKD = 0)		Setting conditions (ACKD = 1)				
	 Whe immediate exect Whe Whe 	n a falling edge of the SCK0 ediately after the busy mode euting a start transfer instruct n CSIE0 = 0 n RESET is input	clock occurs was released after ion	 When the acknowledge signal (ACK) is detected at the rising edge of the SCK0 clock after the transfer ends 				
R/W	V BSYE ^{Note} Control of synchronous busy signal output							
0 The output of the busy signal is disabled synchronous to the falling edge of the SCK0 clock immediately executing the instruction that is cleared (0).								
	1	The busy signal is output st	arting at the falling e	dge of the SCK0 clock following the acknowledge signal.				

Note The busy mode can be released at the start of transfer in the serial interface. However, the BSYE flag is not cleared to 0.

Remark CSIE0 : Bit 7 of serial operating mode register 0 (CSIM0)

Figure 8-8. Format of the Automatic Data Transmit/Receive Control Register (Only for the μ PD78044F and μ PD780208 Subseries)

Notes 1. Bits 3 and 4 (TRF, ERR) are read-only.

 Make the decision on the end of automatic transmit/receive based on TRF and not on CSIIF1 (interrupt request flag).

(Continued on the next page)

Caution When bit 1 (CSIM11) of serial operating mode register 1 (CSIM1) is set to 0 and the external clock input is selected, set STRB and BUSY1 in ADTC to 0.

Remark x: Don't care

Figure 8-9. Format of the Automatic Data Transmit/Receive Interval Setting Register (Only for the μ PD78044F and μ PD780208 Subseries) (1/2)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
ADTI	ADTI7	0	0	ADTI4	ADTI3	ADTI2	ADTI1	ADTI0	FF6BH	00H	R/W

ADTI7	Control the interval time for data transfer
0	No control of the interval time by ADTINote 1
1	Control of the interval time by ADTI (ADTI0 to ADTI4)

				ADTI0	Setting the interval time for data tran	sfer (during $f_X = 5.0$ MHz operation)
	//B/II0	7.0 112	7.8111	7.0110	Minimum value ^{Note 2}	Maximum value ^{Note 2}
0	0	0	0	0	36.8 μs + 0.5/f _{SCK}	40.0 μs + 1.5/f _{SCK}
0	0	0	0	1	62.4 μs + 0.5/f _{SCK}	65.6 μs + 1.5/f _{SCK}
0	0	0	1	0	88.0 μs + 0.5/f _{SCK}	91.2 μs + 1.5/f _{SCK}
0	0	0	1	1	113.6 μs + 0.5/f _{SCK}	116.8 μs + 1.5/f _{SCK}
0	0	1	0	0	139.2 μs + 0.5/f _{SCK}	142.4 μs + 1.5/f _{SCK}
0	0	1	0	1	164.8 μs + 0.5/f _{SCK}	168.0 μs + 1.5/f _{SCK}
0	0	1	1	0	190.4 μs + 0.5/f _{SCK}	193.6 μs + 1.5/f _{SCK}
0	0	1	1	1	216.0 μs + 0.5/f _{SCK}	219.2 μs + 1.5/f _{SCK}
0	1	0	0	0	241.6 μs + 0.5/f _{SCK}	244.8 μs + 1.5/f _{SCK}
0	1	0	0	1	267.2 μs + 0.5/f _{SCK}	270.4 μs + 1.5/f _{SCK}
0	1	0	1	0	292.8 μs + 0.5/f _{SCK}	296.0 μs + 1.5/f _{SCK}
0	1	0	1	1	318.4 μs + 0.5/f _{SCK}	321.6 μs + 1.5/f _{SCK}
0	1	1	0	0	344.0 μs + 0.5/f _{SCK}	347.2 μs + 1.5/f _{SCK}
0	1	1	0	1	369.6 μs + 0.5/f _{SCK}	372.8 μs + 1.5/f _{SCK}
0	1	1	1	0	395.2 μs + 0.5/f _{SCK} 398.4 μs + 1.5/f _{SCK}	
0	1	1	1	1	420.8 μs + 0.5/f _{SCK}	424.0 μs + 1.5/f _{SCK}

(Continued on the next page)

- Notes 1. The interval time depends only on CPU processing.
 - 2. Errors are contained in the interval time for data transfer. The minimum and maximum values of the interval time for each data transfer are determined from the following equations (n: values set in ADTI0 to ADTI4). However, when the minimum value calculated from the following equation is less than 2/f_{SCK}, the minimum value of the interval time becomes 2/f_{SCK}.

minimum value = (n + 1) x
$$\frac{27}{f_X}$$
 + $\frac{56}{f_X}$ + $\frac{0.5}{f_{SCK}}$
maximum value = (n + 1) x $\frac{27}{f_X}$ + $\frac{72}{f_X}$ + $\frac{1.5}{f_{SCK}}$

Cautions 1. Do not write to ADTI during operation of the automatic transmit-receive function.

- 2. Always set bits 5 and 6 to 0.
- 3. When ADTI is being used to control the interval time for data transfer performed using the automatic transmission/reception function, busy control is disabled.
- **Remarks 1.** f_X : Main system clock oscillation frequency
 - 2. f_{SCK}: Serial clock frequency

Figure 8-9. Format of the Automatic Data Transmit/Receive Interval Setting Register (Only for the μ PD78044F and μ PD780208 Subseries) (2/2)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
ADTI	ADTI7	0	0	ADTI4	ADTI3	ADTI2	ADTI1	ADTI0	FF6BH	00H	R/W

					Setting the interval time for data tran	sfer (during $f_X = 5.0$ MHz operation)
	ADTIS	ADTIZ	ADIII	ADTIO	Minimum value ^{Note}	Maximum value ^{Note}
1	0	0	0	0	446.4 μs + 0.5/f _{SCK}	449.6 μs + 1.5/f _{SCK}
1	0	0	0	1	472.0 μs + 0.5/f _{SCK}	475.2 μs + 1.5/f _{SCK}
1	0	0	1	0	497.6 μs + 0.5/f _{SCK}	500.8 μs + 1.5/f _{SCK}
1	0	0	1	1	523.2 μs + 0.5/f _{SCK}	526.4 μs + 1.5/f _{SCK}
1	0	1	0	0	548.8 μs + 0.5/f _{SCK}	552.0 μs + 1.5/f _{SCK}
1	0	1	0	1	574.4 μs + 0.5/f _{SCK}	577.6 μs + 1.5/f _{SCK}
1	0	1	1	0	600.0 μs + 0.5/f _{SCK}	603.2 μs + 1.5/f _{SCK}
1	0	1	1	1	625.6 μs + 0.5/f _{SCK}	628.8 μs + 1.5/f _{SCK}
1	1	0	0	0	651.2 μs + 0.5/f _{SCK}	654.4 μs + 1.5/f _{SCK}
1	1	0	0	1	676.8 μs + 0.5/f _{SCK}	680.0 μs + 1.5/f _{SCK}
1	1	0	1	0	702.4 μs + 0.5/f _{SCK}	705.6 μs + 1.5/f _{SCK}
1	1	0	1	1	728.0 μs + 0.5/f _{SCK}	731.2 μs + 1.5/f _{SCK}
1	1	1	0	0	753.6 μs + 0.5/f _{SCK}	756.8 μs + 1.5/f _{SCK}
1	1	1	0	1	779.2 μs + 0.5/f _{SCK}	782.4 μs + 1.5/f _{SCK}
1	1	1	1	0	804.8 μs + 0.5/f _{SCK}	808.0 μs + 1.5/f _{SCK}
1	1	1	1	1	830.4 μs + 0.5/f _{SCK}	833.6 μs + 1.5/f _{SCK}

Note Errors are contained in the interval time for data transfer. The minimum and maximum values of the interval time for each data transfer are determined from the following equations (n: values set in ADTI0 to ADTI4). However, when the minimum value calculated from the following equation is less than 2/f_{SCK}, the minimum value of the interval time becomes 2/f_{SCK}.

minimum value = (n + 1) x
$$\frac{2^7}{f_X}$$
 + $\frac{56}{f_X}$ + $\frac{0.5}{f_{SCK}}$
maximum value = (n + 1) x $\frac{2^7}{f_X}$ + $\frac{72}{f_X}$ + $\frac{1.5}{f_{SCK}}$

- Cautions 1. Do not write to ADTI during operation of the automatic transmit/receive function.
 - 2. Always set bits 5 and 6 to 0.
 - 3. When ADTI is being used to control the interval time for data transfer performed using the automatic transmission/reception function, busy control is disabled.
- **Remarks 1.** f_X : Main system clock oscillation frequency
 - 2. f_{SCK}: Serial clock frequency

*

8.1 INTERFACING WITH EEPROM[™] (μPD6252)

The μ PD6252^{Note} is a 2048-bit electrically programmable and erasable ROM (EEPROM). Writing to and reading from the μ PD6252 is performed through a 3-wire serial interface.

*** Note** The μPD6252 is provided for maintenance purposes only.

Figure 8-10. μ PD6252 Pin Configuration

Pin number	Pin name	I/O	Function
1	CE	CMOS input	 Set high during data transfer. Caution Do not switch to this pin from high to low during data transfer. When this pin is switched from high to low, operate in the state where the CS pin (pin 7) is set low. When pins CE and CS are both set to low levels, the standby state is entered. In the standby state, low power consumption results.
2 3	IC	-	Set the IC pin to a high or low level individually using an external resistor.
4	GND	-	Ground
5	SDA	CMOS input/ N-channel open- drain output	This pin is for data I/O. Attach a pull-up resistor externally for the N-channel open-drain I/O.
6	SCL	CMOS input	This is the clock input pin for data transfer.
7	CS	CMOS input	This is the chip select pin. The μ PD6252 can be operated by a high input. The read and write operations of a memory cell are not possible when at the low level. In the state where the SCL pin is high, this pin changes from low to high and the signal for starting operation of the serial bus interface results. In addition, when this pin changes from high to low, the signal of the end of operation of the serial bus interface results.
8	V _{DD}	-	Positive voltage (+5 V ±10%)

Table 8-3. Description of μ PD6252 Pins

8.1.1 Communication in the 2-Wire Serial I/O Mode

*

The 3-wire system in the μ PD6252^{Note} indicates the three wires of the serial clock (SCL), data (SDA), and chip select (CS). Consequently, except for handshakes, because the required wires in an interface become the two clock and data wires, when the 78K/0 Series is used to establish an interface, the 2-wire serial I/O mode is selected. An example using the μ PD78044F subseries is explained here.

Note The μ PD6252 is provided for maintenance purposes only.

Figure 8-11. µPD6252 Connection Example

Table 8-4 and Figure 8-12 show the commands and communication formats when the μ PD6252 is read and written.

Command name	Command	Operation description	
RANDOM WRITE	00000000B [00H] MSB C ₇ -C ₀	After setting the word address (WA) (8 bits), write data is transferred. The write data are consecutive and a maximum of three bytes can be set. Correspondence of the word addresses WA : first data byte WA+1: second data byte WA+2: third data byte The write operation is executed during an internal write cycle after timing in which the CS pin falls from high to low.	
CURRENT READ	10000000B [80H] MSB C ₇ -C ₀	The memory contents, that are specified in the word address (WA) (current address) when the command was set, are sent to the read data buffer. When data is read from the SDA pin, the word address (WA) is incremented for every 8 bits read out and the corresponding memory contents are sent to the read data buffer.	
RANDOM READ	11000000В [СОН] MSB С ₇ -С ₀	After setting the word address (WA), a data read is executed with the set word address (WA) as the first address. The difference from CURRENT READ is the word address (WA) is set after the command is executed. After setting the word address (WA), the operation is identical to CURRENT READ.	

Table 8-4. μ PD6252 Command List

Figure 8-12. µPD6252 Communication Format (2/2)

(3) RANDOM READ

A program for the μ PD6252 is illustrated in **<1>** to **<5>**. In this example, the number of data bytes in one write or read in the interface is fixed at one byte. In addition, when the μ PD6252 is write busy (WB) while interfacing, the busy flag is set.

- <1> The CS pin (P32) is set to the high level to initiate the interface.
- <2> The write and read commands are transmitted.
- <3> WRITE BUSY data is received. If in the state where interfacing with the μPD6252 is possible, 00H is received. When data other than 00H is received, the WRITE BUSY state is judged and processing to stop communication is performed.
- <4> Data for the command is transferred.
- <5> The CS pin (P32) is set low to end communication.

(1) Package description

<Symbols declared as public>

- T3_6252 : Name of μ PD6252 transfer subroutine
- RWRITE : RANDOM WRITE command value
- RREAD : RANDOM READ command value
- CREAD : CURRENT READ command value
- WADAT : Word address storage area
- TRNDAT : Transmission data storage area
- RCVDAT : Receive data storage area
- CMDDAT : Command data storage area
- BUSYFG : Busy state test flag
- CS6252 : CS pin (P32) of μ PD6252

<Registers used>

А

<RAM used>

Name	Use	Attributes	Bytes
WAADR	Stores the word address (before the transfer begins)	SADDR	1
TRNDAT	Stores the transmission data (before the transfer begins)		
RCVDAT	Stores the receive data (after the transfer ends)		
CMDDAT	Stores the command data (before the transfer begins)		

<Flag used>

Name	Use
BUSYFG	WRITE BUSY state setting

<Nesting>

1 level, 3 bytes

<Hardware used>

- Serial interface channel 0
- P32

<Initial settings>

- Serial interface channel 0 settings
- 2-wire serial I/O mode, SB1 pin selection
- Serial clock f_X/2⁴
- SB1 latch is the high level

CSIM0=#10011011B TCL3=#xxxx1000B RELT=1

<Starting procedure>

Set the required data corresponding to command and T3_6252 is called. After returning from a subroutine, the busy flag (BUSYFG) is tested. When the busy flag is set, the transfer must be repeated because no transfer was performed. When in the receiving mode, after returning from a subroutine, the receive data is stored in RCVDAT.

(2) Use example

Set each data in memory. UNTIL : No WRITE BUSY is present Clear the busy flag. Call T3_6252. Read in the receive data.

```
EXTRN
         RWRITE, RREAD, CREAD
         WADAT, TRNDAT, RCVDAT, CMDDAT, T3_6252
EXTRN
EXTBIT BUSYFG, CS6252
    CSIM0=#10011011B
                                        ; 2-wire serial I/O mode and SB1 pin settings
                                        ; Set \overline{SCK0} = 262 \text{ kHz}.
    TCL3=#10011000B
    CLR1
               SB0
                                        ; Set the CS pin on the \mu\text{PD6252} to the low level.
    CLR1
              CS6252
    CLR1
             PM3.2
    CMDDAT=A
       :
       :
    WADAT=A
      :
       :
    TRNDAT=A
       :
       :
    repeat
                     BUSYFG
               CLR1
               CALL !T3_6252
    until_bit(!BUSYFG)
       :
       :
    A=RCVDAT
```

(3) SPD chart

(4) Program listing

```
PUBLIC RWRITE, RREAD, CREAD
        PUBLIC WADAT, TRNDAT, RCVDAT, CMDDAT, T3_6252
        PUBLIC BUSYFG, CS6252
CSI_DAT DSEG
                 SADDR
                                            ; Word address storage area
WADAT: DS
                1
                                            ; Transmission data storage area
TRNDAT: DS
                1
                 1
                                            ; Receive data storage area
RCVDAT: DS
CMDDAT: DS
                 1
                                            ; Command data storage area
CSI_FLG BSEG
                                            ; Busy state setting
BUSYFG DBIT
                                            ; RANDOM WRITE mode
RWRITE EOU
                00H
RREAD
        EQU
                OCOH
                                            : RANDOM READ mode
                                            ; CURRENT READ mode
CREAD
        EQU
                 080H
                                            ; 0FF03H=PORT3
CS6252 EQU
                 0FF03H.2
CSI_SEG CSEG
; *
     \muPD6252 (3-wire) communication
Т3_6252:
        CLR1
                BUSYFG
                                            ; Issue the start bit.
        SET1
                CS6252
                                            ; Transfer the command.
        SIO0=CMDDAT (A)
                                            ; Wait for the end of transfer.
        while_bit(!CSIIF0)
        endw
        CLR1
                CSIIF0
        SIO0=#0FFH
                                            ; Start reception of the busy signal.
                                            ; Wait for the end of transfer.
        while_bit(!CSIIF0)
        endw
        CLR1
                CSIIF0
                                            ; Busy check
        if(SIO0==#00H)
            switch (CMDDAT)
                 case RWRITE:
                                            ; Transfer the word address.
                     SIO0=WADAT (A)
                                            ; Wait for the end of transfer.
                     while_bit(!CSIIF0)
                     endw
                     CLR1
                              CSIIF0
                                            : Start the data transfer.
                     SIO0=TRNDAT (A)
                                            ; Wait for the end of transfer.
                     while_bit(!CSIIF0)
                     endw
                     CLR1
                              CSIIF0
                 break
                 case RREAD:
                                            ; Transfer the word address.
                     SIOO=WADAT (A)
                                            ; Wait for the end of transfer.
                     while_bit(!CSIIF0)
                     endw
                     CLR1
                              CSIIF0
```

```
case CREAD:
              SIO0=#0FFH
                                       ; Start data reception.
                                      ; Wait for the end of transfer.
              while_bit(!CSIIF0)
              endw
              CLR1
                       CSIIF0
                                     ; Store the receive data.
              RCVDAT=SIO0 (A)
    ends
else
                                       ; Set in the busy state
    SET1
             BUSYFG
endif
CLR1
        CS6252
RET
```

8.2 INTERFACING WITH THE OSD LSI (μ PD6451A)

The μ PD6451A, an OSD (On-Screen Display) LSI, displays VCR programming information or TV channels on a display by using it in conjunction with a microcontroller. To interface with the μ PD6451A, the four lines of DATA, CLK, STB, and BUSY are used. An example using the μ PD78044F subseries is described here.

Figure 8-13. Connection Example with μ PD6451A

The output of the strobe signal (STB) and testing the busy signal (BUSY) used in handshaking for interfacing to the μ PD6451A are automatically performed in serial interface channel 1 of the 78K/0 Series. To match the μ PD6451A's communication format, the strobe signal output enable and busy signal input enable (active high) mode is selected. Data (maximum of 32 bytes) to be transmitted to the buffer RAM area (FAC0H-FADFH) are automatically transmitted when the number of data bytes to be transmitted is set at the automatic data transmit/receive address pointer (ADTP) and multiple bytes of data are consecutive.

(1) Package description

<Symbols declared as public>

TR6451 : Name of μ PD6451A transfer subroutine DTVAL : Area for setting the number of transmission data bytes

<Register used>

А

<RAM used>

Name	Use	Attributes	Bytes
DTVAL	Stores the number of bytes of transmission data	SADDR	1

<Nesting>

1 level, 2 bytes

<Hardware used>

• Serial interface channel 1

<Initial settings>

 Serial interface channel 1 settings 	
Automatic transmit/receive operation enabled, MSB first	CSIM1=#10100011B
Busy input enabled (active high), strobe output enabled,	
single shot mode	ADTC=#00000110B
 Interval time for data transfer 	ADTI=#00000000B
 Serial clock f_X/2⁴ 	TCL3=#1000xxxxB
 Set the P22 output latch to the high level. 	
 P21, P22, P23 set in output mode, P24 in input mode 	PM2=#xxx1000xB

<Startup procedure>

When data will be transmitted to the buffer RAM (transmission from a high order address), the number of data bytes to be transmitted is set in DTVAL and TR6451 is called. When the data transfer ends, bit 3 (TRF) of the automatic data transmit/receive control register (ADTC) can be tested for verification.

(2) Use example

```
Set data in the buffer RAM.
                               Set the number of transmission data bytes in DTVAL.
                               Call TR6451.
                          C
                             - WHILE : Waiting for the transfer to end
       EXTRN
                 TR6451, DTVAL
SCK1 EQU
                 P2.2
             :
             :
       P2=#00000100B
       PM2=#11110001B
                                            ; Set to the automatic transmit/receive function.
       CSIM1=#10100011B
                                            ; <u>SCK1</u> = 262 kHz
       TCL3=#10001000B
       ADTC=#00000110B
                                            ; The strobe and busy signals are present.
       ADTI=#0000000B
             :
             :
                                            ; Table reference address setting for transmission data
       DE=#TABLE1
                                            ; Start address setting of the buffer RAM
       HL=#0FAC0H
                                            ; Number of transmission data bytes setting
       B=32
       while(B>#0)
                                            ; Transfer transmission data to the buffer RAM.
                 B--
                  [HL+B] = [DE] (A)
                 DE++
       endw
       DATVAL=#32
                                            ; Number of transmission data bytes setting
                !TR6451
       CALL
                                            ; Wait for the transfer to end.
       while_bit(TRF)
       endw
```

TABLE1:		
DB	11111111B	; Power-on-reset command 1
DB	0100000B	; Vertical address 0
DB	11000000B	; Horizontal address 0
DB	1000000B	; Character size
DB	11111100B	; Command 0
DB	11101001B	; LC send ON, blinking OFF, display ON
DB	10001100B	; Blinking ON, character: RED
DB	11011011B	; Color setting, background color: CYAN
DB	10010101B	; Display line 5
DB	1010000B	; Display digit 0
22	0.0	. 7
DB	0 / H	, /
DB	08H	, 8 . K
DB	1BH	; K
DB	6DH	; /
DB	00H	; 0
DB	10H	
DB	11H	; A
DB	20H	; P
DB	20H	; P
DB	1CH	; L
DB	19H	; I
DB	13H	; C
DB	11H	; A
DB	24H	; T
DB	19н	; I
DB	00H	; O
DB	1EH	, N
DB	10H	
DB	1EH	; N
DB	00H	0
DB	24H	Т
DB	15H	: E

RemarkFor information on the commands and data in the output table data, refer to the μPD6451A DataSheet (Document No. IC-2337A).
(3) SPD chart

 TR6451
 Set (number-of-data-bytes-transferred – 1) in ADTP.

 Set in the state before transfer.

 Start the transfer.

(4) Program listing

PUBLIC TR6451,DTVAL CSI_DAT DSEG SADDR ; Number of data bytes setting area DTVAL: DS 1 CSI_SEG CSEG ;* μ PD6451A communication TR6451: ; Number of data bytes setting A=DTVAL A--ADTP=A ; Start the transfer. SIO1=#0FFH RET

8.3 SBI MODE INTERFACE

The 78K/0 Series has the SBI mode which conforms to the NEC serial bus format. The SBI mode allows one master CPU to communicate with multiple slave CPUs via the two wires of clock and data. An example using the μ PD78044F subseries is explained here.

Figure 8-15 shows a connection example and Figure 8-16 shows the communication format when using the SBI mode.

Figure 8-15. Connection Example of the SBI Mode

Figure 8-16. SBI Mode Communication Format

(a) Address transmission

(b) Command transmission

(c) Data transmission and reception

Table 8-5. SBI Mode Signal List

Signal name	Output side	Meaning	
Address	Master	Slave device selection	
Command	Master	Instruction to a slave device	
Data	Master/slave	Data processed by a slave or master	
Clock	Master	Transmit/receive synchronization signal for serial data	
ACK	Receiving sideNote	Reception response signal	
BUSY	Slave	State where communication is not possible	

Note During normal operation, the receiving side outputs this signal, but when an error occurs that results in time out processing, the master CPU outputs this signal.

8.3.1 Application as a Master CPU

The processing in (a) to (d) is performed for the slave CPU.

- (a) Address transmission
- (b) Command transmission
- (c) Data transmission
- (d) Data reception

Error checks <1> and <2> are performed in the communication in (a) to (d).

<1> Time out processing

During a master CPU transmission, when the ACK signal is not returned within a constant time (here, within the time it takes for the watch timer to generate five interrupt requests), an error is judged. The master CPU outputs the \overline{ACK} signal and processing ends.

<2> Bus line test

The master CPU tests whether the data was correctly output to the bus line by setting the transmission data in serial I/O shift register 0 (SIO0) and slave address register (SVA). Because bus line data is received by SIO0, the normal output of data is verified by testing bit 6 (COI) of serial operating mode register 0 (CSIM0) (set when SIO0 and SVA match) at the end of transfer.

Figure 8-18. Bus Line Test

In Figure 8-18, because the values at the end of transfer do not match (SIO0 = 07H, SVA = 0FH), COI = 0 results and an error is generated in the bus line.

(1) Package description

<Symbols declared as public>

M_TRANS: Name of master SBI transfer subroutine

- TR_MODE: Storage area of the selection of the transfer mode
- TRNDAT : Transmission data storage area
- RCVDAT : Receive data storage area
- TRADR : Selection of the address transmission mode
- TRCMD : Selection of command transmission mode
- TRDAT : Selection of data transmission mode
- RCDAT : Selection of data reception mode
- ERRORF : Error state test flag

<Registers used>

Subroutine A

<RAM used>

Name	Use	Attributes	Bytes
TR_MODE	Stores the selection of the transfer mode	SADDR	1
ACKCT	Time out counter		
TRNDAT	Stores the transmission data		
RCVDAT	Stores the receive data		

<Flags used>

Name	Use
RCVFLG	Reception mode setting
BUSYFG	Busy state setting
ERRORF	Error state setting
ACKWFG	ACK signal wait state setting

<Nesting>

2 levels, 5 bytes

<Hardware used>

- Serial interface channel 0
- Watch timer

<Initial settings>

• Serial interface channel 0 settings SBI mode, SB1 pin selection CSIM0=#10010011B• Serial clock $f_X/2^4$ TCL3=#xxxx1000B• Set SO0 latch high. RELT = 1• Set the P27 output latch to the high level. P27=1• 1.95-ms interval for the watch timer TMC2=#00100110B• Watch timer interrupt enabled

<Startup procedure>

The data required for the transfer mode is set and M_TRANS is called. After returning from the subroutine, by testing the error flag (ERRORF), the presence of a transfer error can be determined. In addition, during the receiving mode, after returning from the subroutine, the reception data is saved in RCVDAT.

(2) Use example

			Transfer mode setting Transmission data setting Call M_TRANS. IF : Error occurs. — Error processing
EXTRN EXTRN EXTBIT	M_TRANS TRNDAT, ERRORF	, TR_MODE , TRADR , RCVDAT	, TRCMD , TRDAT , RCDAT
SCK0 SB1 :	EQU EQU	P2.7 P2.5	
SET1 CSIM0=# TCL3=#1 TMC2=#0 CLR1 SET1 SET1 SET1 CLR1	SB1 10010111 0001000E 0100110E BSYE RELT SCK0 SB1	B 3	; <u>Operate</u> in the SBI mode. ; SCK0 = 262 kHz ; Set a 1.95-ms interval for the watch timer. ; Disable the busy signal output. ; Set the output latch.
CLR1 CLR1 EI :	CSIMK0 TMMK3		; Enable serial interface channel 0 interrupt. ; Enable watch timer interrupt. ; Enable master interrupt.
: TR_MODE TRNDAT= CALL if_bit(Erro endif	=#TRADR #5AH !M_TRAN ERRORF) or processin	ng	

(3) SPD chart

(4) Program listing

PUBLIC M_TRANS,TR_MODE,TRADR,TRCMD,TRDAT,RCDAT
PUBLIC TRANDAT,RCVDAT,ERRORF

VECSIO VETM3	CSEG DW CSEG DW	AT 0EH INTCSI0 AT 12H INTTM3	; Vector address setting of serial interface channel 0 ; Vector address setting of the watch timer
SBI_DAT TRNDAT: RCVDAT: TR_MODE: ACKCT:	DSEG DS DS DS DS	SADDR 1 1 1 1	; Transmission data ; Reception data ; <u>Tran</u> sfer mode setting ; ACK time out count
SBI_FLG RCVFLG BUSYFG ERRORF ACKWFG	BSEG DBIT DBIT DBIT DBIT		; Reception mode setting ; Busy transferring state ; <u>Error</u> display ; ACK wait state
SBO SCKO	EQU EQU	P2.5 P2.7	
TRADR TRCMD TRDAT RCDAT	EQU EQU EQU EQU	1 2 3 4	; Address transmission mode selection ; Command transmission mode selection ; Data transmission mode selection ; Data reception mode selection

```
;*
     SBI data transfer processing
SBI_SEG CSEG
M TRANS:
    switch(TR_MODE)
    case TRADR:
        SET1
              PM2.5
        while_bit(!SB0)
                                         ; SB0 = HIGH?
              PM2.5
        CLR1
        endw
                                         ; SCK = HIGH?
        while_bit(!SCK0)
        endw
        SET1
                CMDT
                                         ; Command signal output
                                         ; Wait
        NOP
                                         ; Bus release signal output
        SET1
                RELT
        A=#TRCMD
    case TRCMD:
        SET1
                PM2.5
        while_bit(!SB0)
                                         ; SB0 = HIGH?
              PM2.5
        CLR1
        endw
                                         ; SCK = HIGH?
        while_bit(!SCK0)
        endw
                                         ; Command signal output
        SET1
              CMDT
        A=#TRDAT
    case TRDAT:
                                         ; Set in the transmission mode.
        CLR1
                RCVFLG
        A=TRNDAT
                                         ; Transmission data setting
        break
    case RCDAT:
                                         ; Set in the reception mode.
        SET1
                RCVFLG
                                         ; Reception buffer off
        MOV
                A,#OFFH
        break
    ends
                                         ; Set in the busy transferring state.
        SET1
                BUSYFG
                                         ; For use in bus line testing
        SVA=A
        SIO0=A
                                         ; Start transfer.
        while_bit(BUSYFG)
                                         ; Busy transferring
        endw
                                         ; Reception data storage
        RCVDAT=SIO0 (A)
        if_bit(!RCVFLG)
                                         ; Reception mode
                                         ; Bus line output is no good.
            if_bit(!COI)
                                         ; Set in the error state.
                SET1
                         ERRORF
            endif
        endif
        RET
```

```
;*
     INTCSI0 interrupt processing
CSI_SEG CSEG
INTCSI0:
        SEL RB0
        if_bit(!RCVFLG)
                                       ; Transmission mode
                                      ; No acknowledge signal received
            if_bit(!ACKD)
                ACKCT=#5
                                       ; Setting of the acknowledge signal wait state
                SET1
                     ACKWFG
            else
                                       ; Release the busy state.
                CLR1
                       BUSYFG
                                       ; Release the error state.
                CLR1
                       ERRORF
            endif
        else
           SET1 ACKT
CLR1 BUSYF
CLR1 ERROF
                                      ; Output the acknowledge signal.
                                      ; Release the busy state.
                   BUSYFG
                                       ; Release the error state.
                    ERRORF
        endif
        RETI
; *
         Time out processing
TM3_SEG CSEG
INTTM3:
        SEL RB0
                                       ; In the acknowledge signal wait state?
        if_bit(ACKWFG)
                                       ; Has the acknowledge signal been received?
            if_bit(ACKD)
                                      ; Release the acknowledge signal wait state.
                CLR1 ACKWFG
                                      ; Release the busy state.
                CLR1
                       BUSYFG
            else
                ACKCT--
                if(ACKCT==#0)
                                       ; Time out?
                                       ; Time out error processing
                         ACKT
                    SET1
                    SET1
                            ERRORF
                                      ; Release the acknowledge signal wait state
                    CLR1 ACKWFG
CLR1 BUSYFG
                    CLR1
                           ACKWFG
                                      ; Release the busy state.
                endif
            endif
        endif
```

8.3.2 Application as a Slave CPU

Addresses, commands, and data are received from the master CPU and data are transmitted to the master CPU.

In this example, the wakeup function is used and an address is received. A wakeup function is a function that generates an interrupt request signal only when the address transmitted by the master CPU matches the value set in the slave address register (SVA) while in the SBI mode. Consequently, INTCSI0 is generated only in the slave CPU selected by the master CPU. The slave CPUs that are not selected can be operated without generating a spurious interrupt request.

When selected, a slave CPU releases the wakeup function (generates an interrupt request signal at the end of the transfer) and interfaces with the master CPU. In addition, discriminating addresses, commands, and data is done by testing bits 2 and 3 (RELD and CMDD) of the serial bus interface control register (SBIC).

Because there is no automatic return to a state where no slave CPU is selected, a program is required that returns to the unselected state by, for example, command processing between the master and slaves.

(1) Package description

<Symbols declared as public>

RCVDAT: Reception data storage area

<Registers used>

Bank 0: A

<RAM used>

Name	Use	Attributes	Bytes
RCVDAT	Stores the reception data	SADDR	1

<Flags used>

Name	Use
RCVFLG	Reception mode setting

<Nesting>

1 level, 3 bytes

<Hardware used>

• Serial interface channel 0

<Initial settings>

- Serial interface channel 0 settings SBI mode, SB1 pin, wakeup mode Serial clock is the external clock input
- Synchronous busy signal output
- Set the SO0 latch to the high level.
- Slave address
- Enable serial interface channel 0 interrupt

<Startup procedure>

Generating INTCSI0 starts interrupt servicing. The following processing occurs in the interrupt servicing.

CSIM0=#10010011B

SVA=#SLVADR

BYSE=1

RELT=1

- Address, command, and data discrimination
- ACK signal output
- Storing the receive data in RCVDAT.

(2) Use example

EXTRN EXTBIT	RCVDAT RCVFLG		
SLVADR	EQU	5AH	
SB1	EQU	P2.5	
:			
:			
SET1	SB1		
CSIM0=#1	L0110100B	3	; Select the external clock input, SB1 pin, wakeup mode
SET1	RELT		; Set the output latch to the high level.
SET1	BSYE		; Set in the busy automatic output mode.
SVA=#SLV	/ADR		; Slave address setting
SIO0=#0B	FFH		; Start serial transfer instruction
CLR1	SB1		
CLR1	CSIMK0		; Enable the serial interface channel 0 interrupt.
ΕI			; Enable the master interrupt.

(3) SPD chart

(4) Program listing

```
AT OEH
VECSIO CSEG
               INTCSI0
                                      ; Vector address setting of serial interface channel 0
       DW
CSI_DAT DSEG
               SADDR
RCVDAT: DS
               1
                                      ; Receive data storage area
CSI_FLG BSEG
RCVFLG DBIT
                                      ; Reception mode setting
CSI_SEG CSEG
;*
     INTCSIO interrupt processing
INTCSI0:
       SEL RB0
       if_bit(RELD)
                                      ; Go to address reception.
                                      ; Release the wakeup mode.
           CLR1 WUP
                                      ; Output the acknowledge signal.
           SET1
                   ACKT
   User processing (address reception)
;
************************************
                                      ; Go to command reception.
       elseif_bit(CMDD)
           User processing (command reception)
;
                                      ; Output the acknowledge signal.
           SET1
                   ACKT
       else
           if_bit(RCVFLG)
               User processing (data reception processing)
;
                                      ; Output the acknowledge signal.
               SET1
                        ACKT
           else
               User processing (data transmission processing)
;
           endif
endif
       RCVDAT=SIO0 (A)
       RETI
```

8.4 3-WIRE SERIAL I/O MODE INTERFACE

The function of the 3-wire serial I/O mode (serial clock, data input, data output) of serial channel 0 of the 78K/0 Series is used in communication between the master and slave CPUs. In this example, synchronized master-slave communication is demonstrated by adding one busy signal line as the handshake signal. The busy signal is active-low and is output by the slaves. In addition, data is 8 bits long and the MSB is transmitted first. An example using the μ PD78044F subseries is described.

8.4.1 Application as a Master CPU

The serial clock is set to $f_X/2^4$. Communication with the slave CPU is performed synchronized to this serial clock.

After setting the transmission data, the master CPU begins the transfer. However, when the slave CPU is in the busy state (low busy signal), there is no transfer and the busy flag (BUSYFG) is set.

(1) Package description

<Symbols declared as public>

- TRANS : Name of the master 3-wire transfer subroutine
- TDATA : Transmission data storage area
- RDATA : Receive data storage area
- BUSY : Busy signal input port
- TREND : End of transfer test flag
- BUSYFG : Busy state test flag

<Registers used>

Interrupt bank 0 A Subroutine A

<RAM used>

Name	Use	Attributes	Bytes
TDATA	Stores the transmission data	SADDR	1
RDATA	Stores the receive data		

<Flags used>

Name	Use
TREND	End of transfer state setting
BUSYFG	Busy state setting

<Nesting>

2 levels, 5 bytes

<Hardware used>

- Serial interface channel 0
- P33

<Initial settings>

- Serial interface channel 0 settings 3-wire serial I/O mode, MSB first
- Serial clock f_X/24
- Set the P27 output latch to the high level.
- P33 input mode
- Enable the serial interface channel 0 interrupt.

<Startup procedure>

The transmission data is set in TDATA and TRANS is called. After returning from the subroutine, the busy flag (BUSYFG) is tested. When the busy flag is set, the transfer must be repeated because no transfer was performed. In addition, when the busy flag is cleared, receive data is saved in RDATA because the transfer has ended.

CSIM0=#10000011B TCL3=#xxxx1000B P27=1

(2) Use example


```
EXTRN
          TDATA, RDATA, TRANS
EXTBIT
         TREND, BUSYFG, BUSY
SCK0
         EQU
                   P2.7
          :
          :
                                            ; Set to 3-wire serial I/O mode and MSB first.
     CSIM0=#10000011B
                                            ; Set to \overline{SCK0} = 262 \text{ kHz}.
     TCL3=#10001000B
     SET1
               SCK0
                                            ; Bit 3 of port 3 set in input mode
     SET1
               PM3.3
                                            ; Enable the serial interface channel 0 interrupt.
     CLR1
               CSIMK0
     ΕI
          :
          :
                                            ; Transmission data setting
     TDATA=A
     repeat
                                            ; Busy test
                          BUSYFG
               CLR1
               CALL
                          !TRANS
     until_bit(!BUSYFG)
                                            : End of transfer
     while_bit(!TREND)
     endw
     A=RDATA
                                            ; Read in the received data.
```

(3) SPD chart

Set TREND.

(4) Program listing

PUBLIC TRANS, RDATA, TDATA, BUSY, TREND, BUSYFG CSEG AT OEH VECSI0 ; Vector address setting of serial interface channel 0 DW INTCSI0 BUSY EQU 0FF03H.3 ; 0FF03H = PORT 3 CSI_DAT DSEG SADDR ; Receive data storage area RDATA: 1 DS ; Transmission data storage area TDATA: DS 1 CSI_FLG BSEG ; End of transfer state setting TREND DBIT ; Busy state setting BUSYFG DBIT CSI_SEG CSEG INTCSI0 interrupt servicing ;* INTCSI0: SEL RB0 RDATA=SIOO (A) ; Save receive data. : Set in the end of transfer state. SET1 TREND RETI ;* 3-wire (master) TRANS: ; Transfer possible state if_bit(BUSY) ; Set the transmission data. SIOO=TDATA (A) else ; Set in busy state. SET1 BUSYFG endif RET

8.4.2 Application as a Slave CPU

Synchronous transmission/reception of 8-bit data is performed while synchronized to the serial clock from the master CPU. The busy signal from the slave CPU is output at a low level (busy state) while the transmission data is being prepared. The output timing of this busy signal releases the busy signal (high level) by setting the transmission data (CALL !TRANS). A busy signal (low level) is output as a result of interrupt servicing for INTCSI0 at the end of the transfer.

Consequently, the busy state begins at the end of the transfer and lasts until the data is set.

Figure 8-21. Busy Signal Output

(1) Package description

<Symbols declared as public>

TRANS: Name of the slave 3-wire transfer subroutine

TDATA: Transmission data storage area

RDATA: Receive data storage area

BUSY : Busy signal output port

TREND: End of transfer test flag

<Registers used>

Interrupt bank 0 A Subroutine A

<RAM used>

Name	Use	Attributes	Bytes
TDATA	Store the transmission data.	SADDR	1
RDATA	Store the receive data.		

<Flags used>

Name	Use
TREND	End of transfer state setting

<Nesting>

2 levels, 5 bytes

<Hardware used>

- Serial interface channel 0
- P33

<Initial settings>

- Serial interface channel 0 settings
 - 3-wire serial I/O mode, MSB first, external clock input

CSIM0=#1000000B P33=0

Busy state setting

• P33 set in output mode

• Enable the serial interface channel 0 interrupt.

<Startup procedure>

The transmission data is set in TDATA and TRANS is called. Because the busy signal is released in TRANS processing, the state to wait for communication with the master CPU is entered. After communication ends, interrupt service is started by generating INTCSI0. The end of the transfer can be verified by testing TREND. After TREND is set, the received data is saved in RDATA.

(2) Use example

(3) SPD chart

(4) Program listing

PUBLIC RDATA, TDATA, BUSY, TREND, BUSYFG PUBLIC TRANS VECSIO CSEG AT OEH DW INTCSIO INTCSI0 ; Vector address setting of serial interface channel 0 CSI_DAT DSEG SADDR ; Receive data storage area RDATA: DS 1 ; Transmission data storage area TDATA: DS 1 CSI_FLG BSEG ; End of transfer state setting TREND DBIT ; Busy state setting BUSYFG DBIT BUSY EQU 0FF03H.3 ; 0FF03H=PORT3 CSI_SEG CSEG INTCSI0 interrupt servicing ;* INTCSI0: SEL RBO ; Set in the busy state. CLR1 BUSY RDATA=SIOO (A) ; Save the receive data. : Set in the end of transfer state. SET1 TREND RETI ;* 3-wire (slave) TRANS: ; Transmission data setting SIOO=TDATA (A) ; Release the busy state. SET1 BUSY RET

8.5 HALF-DUPLEX ASYNCHRONOUS COMMUNICATION

The clocked serial interface channel 0 is used to perform half-duplex asynchronous communication. Two application examples are presented using the 3-wire mode and the SBI mode. The communication protocol is as follows.

Transmission speed: 9600 bps				
Start bit	: 1 bit			
Character length	: 8 bits (LSB first)			
Parity bit	: 1 bit (even/odd parity can be selected)			
Stop bit	: 2 bits			

Because the transmission speed is set to 9600 bps, 8-bit timer/event counter 2 is used to generate the serial clock.

8.5.1 Half-Duplex Asynchronous Communication of the 3-Wire Mode

Figure 8-22 illustrates the system structure. Serial input and output is performed via the SI0 and SO0 pins, respectively. Bits 0 and 1 of port 3 are used as I/O for the BUSY signal. When the BUSY signal is 'L,' serial communication is possible.

(1) Transmission in the 3-wire mode

Data transmission processing is explained below.

- <1> Start bit -> Transmission time wait based on the output latch operation of the serial interface and 8-bit timer/event counter 2
 - Caution To prevent a timing delay in data reception due to the loss of the start bit, assign high priority to the INTP1 interrupt request.
- <2> Data -> Transmission by the serial buffer
- <3> Parity bit -> The output latch of the serial interface is manipulated in the interrupt servicing of 8-bit timer/event counter 2 and the parity bit is output.

Caution To prevent a delay in the transmission timing, assign high priority to interrupt requests from 8-bit timer/event counter 2.

<4> Stop bit -> The output latch of the serial interface in the interrupt servicing in 8-bit timer/event counter 2 is set and the stop bit is output.

Caution To prevent a delay in the transmission timing, assign high priority to interrupt requests from 8-bit timer/event counter 2.

(2) Reception in the 3-wire mode

The following example illustrates data reception processing.

<1> Start bit -> Reception is started by a port test and the detection of a falling edge at the INTP1 pin.

Caution To prevent a timing delay in data reception due to the loss of the start bit, assign high priority to the INTP1 interrupt request.

- <2> Data -> Reception by the serial buffer
- <3> Parity bit -> The port is tested in the interrupt servicing of 8-bit timer/event counter 2 and the parity bit is output.

Caution To prevent a delay in reception timing, assign high priority to interrupt requests from 8-bit timer/event counter 2.

<4> Stop bit -> The port is tested in the interrupt servicing for 8-bit timer/event counter 2 and the stop bit is output.

Caution To prevent a delay in reception timing, assign high priority to interrupt requests from 8-bit timer/event counter 2.

When a parity error or an overrun error is generated, the flag is set.

(3) Package description

<Symbols declared as public>

- Subroutine names
 - S_SOSHIN : Name of transmission subroutine
 - S_JUSHIN : Name of reception subroutine
- Input parameters

SODATA : Stores transmission data

- F_PARITY : Indicates an even or odd parity selection state
- F_TUSHIN : Indicates a receiving or transmitting state
- Output parameters
 - JUDATA : Stores the receive data
 - F_DATA : This is set after reception ends.
 - F_ERRP : Indicates a parity error
 - F_ERRE : Indicates an end bit error
- I/O parameter
 - F_PADATA: Stores the communication parity bit

<Registers used>

- Bank 0 A
- Bank 1 A

Bank 2 A

<RAM used>

Name	Use	Attributes	Bytes
SODATA	Transmission data storage area	SADDR	1
JUDATA	Receive data storage area	SADDR	1
C_WORK	State storage counter	SADDR	1
i	Work counter for loop operation	SADDR	1
j	Work counter for loop operation	SADDR	1

<Flags used>

	Name	Use
F_PARITY	Parity selection flag	Set when odd parity is selected.
F_PADATA	Parity bit storage flag	Stores the parity.
F_TUSHIN	Communication flag	Set during communication.
F_ERRP	Parity error flag	Set when a parity error occurs.
F_ERRE	End bit error flag	Set when an end bit error occurs.
F_DATA	End of reception flag	Set at the end of reception.
F_WORK	Work flag	For work

<Nesting>

1 level, 3 bytes

<Hardware used>

- Serial interface channel 0 (3-wire mode)
- 8-bit timer/event counter 2
- External interrupt edge detection (INTP1 pin)

<Initial settings>

 Set in the S_SOSHIN and S_JUSHIN subroutines. 	
 Port 2: bit 5 input port; bit 6 output port settings 	PM2=#x01xxxxxB
 Port 3: bit 0 input port; bit 1 output port settings 	PM3=#xxxxx01B
 Serial interface channel 0 settings 	
3-wire mode, serial clock = 8-bit timer/event counter 2 selection	CSIM0=#10000110B
 8-bit timer/event counter 2 setting 	
9600-bps baud rate setting	CR20=#54
8-bit timer register x 2-channel mode	TCL1=#01100000B
8-bit timer/event counter 2 operation disabled	TOC1=#0000000B
	TMC1=#0000000B
 INTP1 setting INTP1 falling edge 	INTM0=#0000000B
 High priority 8-bit timer/event counter 2 interrupt 	CLR1 TMPR2
 High priority INTP1 interrupt 	CLR1 PPR1
 Serial interface interrupt enabled 	CLR1 CSIMK0

<Startup procedure>

- Set in the following order when starting data transmission or reception.
 - Starting data transmission
 - <1> Store the transmission data in the SODATA area.
 - **<2>** Set the transmission flag.
 - <3> Call the S_SOSHIN subroutine.
 - Starting data reception
 - <1> Clear the communication flag (F_TUSHIN). (Set to 0.)
 - **<2>** Invert the BUSY signal.
 - <3> Call the S_JUSHIN subroutine.
- When interrupt requests other than those in the 78K/0 Series package are used, to enable high priority interrupts, set the ISP flag to 0 at the beginning of interrupt processing and enable interrupts.

(4) Use example

This example illustrates selecting an even or odd parity bit and selecting transmission or reception by using key input.

```
EXTRN
        SODATA
EXTRN JUDATA, S_SOSHIN, S_JUSHIN
EXTBIT F_PARITY, F_DATA, F_PADATA, F_TUSHIN
EXTBIT F_ERRE, F_ERRP
;
BUSY_O EQU P3.1
BUSY_I EQU P3.0
PARIKEY EQU 22
                                    ; Decoded parity key value
JYUSHIN EQU 21
                                    ; Decoded reception key value
TUSHIN EQU 20
                                    ; Decoded transmission key value
Initialize
VERES CSEG
                AT 00H
    DW RES_STA
MЗ
            CSEG
RES_STA:
                                    ; P2.5=H,P2.6=L
    MOV P2,#0BFH
    MOV P3,#0FFH
    MOV PM2,#00100000B
MOV PM3,#00000001B
                                    ; P2.5 = input port, P2.6 = output port
                                    ; P3.0 = input port, P3.1 = output port
;***8-bit timer register settings***
    CR20=#54
    TCL1=#01100000B
                                     ; 1.05-MHz count clock
    TOC1=#00000000B
    TMC1=#0000000B
                                     ; 8-bit timer register selection, timer 2 operation disabled
;***Serial interface 0 settings***
                                     ; 3-wire mode, serial clock selection, 8-bit timer 2
    CSIM0=#10000110B
    SET1
           RELT
;***INTP1 settings***
                                    ; INTP1 falling edge
    INTM0=#0000000B
                                     ; High priority timer 2 interrupt
    CLR1 TMPR2
    CLR1 PPR1
CLR1 PIF1
CLR1 TMIF2
                                    ; High priority INTP1 interrupt
                                    ; Clear the INTP1 request flag.
                                     ; Clear the timer 2 request flag.
                                     ; Clear the serial interface request flag.
    CLR1 CSIIF0
                                    ; Enable the serial interface interrupt.
    CLR1 CSIMK0
    while(forever)
```

```
if_bit(F_KEYON)
                                        ; Is the key on flag 1?
    switch(M_KEYON)
                                        ;
                                        ; The pressed key was the parity key.
    case PARIKEY:
         SET1
                                        ; Invert the even/odd parity decision
                 CY
         CY ^=F_PARITY
         F PARITY=CY
         break
    case TUSHIN:
                                        ; The pressed key was the communication key.
         SET1
                                        ; Set the communication flag (during transmission).
                 F_TUSHIN
         CLR1
                 F_SOEND
         break
    case JYUSHIN:
                                        ; The pressed key was the reception key.
         CLR1
                                        ; Clear the communication flag (during reception)
                   F_TUSHIN
                                        ; Inverted BUSY signal data is output.
         CY=BUSY_0
         NOT1
                  CY
         BUSY_0=CY
         if_bit(CY)
                                        ; INTP1 interrupt is disabled.
              SET1
                        PMK1
         else
              CLR1
                    F_ERRP
              CLR1
                      F_ERRE
              CALL
                       !S JUSHIN
         endif
         break
    ends
endif
       .
if_bit(!F_SOEND)
    if_bit(F_TUSHIN)
                                        ; Is the communication flag set?
                                        ; Is the BUSY signal inactive?
         CY=BUSY_I
         if_bit(!CY)
              SODATA=#0
              SET1
                        F_SOEND
                                        ; Transmission data storage area <- transmission data
              SODATA=WORK
              CALL
                       !S SOSHIN
         endif
    endif
endif
```

(5) SPD chart

[Reception subroutine]

[Transmission subroutine]

[Parity end bit communication processing (8-bit timer/event counter 2 interrupt)]

[Data transmission/reception completion processing]

[Startup processing for data reception (INTP1 interrupt processing)]

(6) Program listing

PUBLIC F_	PADATA,F	_PARITY						
PUBLIC F_DATA, F_TUSHIN								
PUBLIC JUDATA, SODATA, S_JUSHIN, S_SOSHIN								
PUBLIC F_	ERRP,F_E	RRE						
;								
VEINTP1	CSEG	AT 08H						
	DW	INTP	; INTP1 vector address setting					
VEINTSI0	CSEG	AT OEH						
	DW	INTSI0	; Vector address setting of serial interface channel 0					
VETIM2	CSEG	AT 18H						
	DW	TAIMA2	; Vector address setting of 8-bit timer 2					
;								
SIO	EQU	P2.5						
BUSY_0	EQU	P3.1						
BUSY_1	EQU	P3.0						
;								
MORAM	DSEG	SADDR						
SODATA:	DS	1	; Transmission data storage area					
C_WORK:	DS	1	; Work counter					
JUDATA:	DS	1	; Received data storage area					
i:	DS	1	; Work counter					
k:	DS	1	; Work counter					
;								
MOFLG	BSEG							
F_PARITY	DBIT		; Parity selection flag					
F_ERRP	DBIT		; Parity error flag					
F_ERRE	DBIT		; End bit error flag					
F_DATA	DBIT		; End of reception flag					
F_PADATA	DBIT		; Parity data flag					
F_WORK	DBIT		; Work flag					
F_TUSHIN	DBIT		; Communication flag					
;*******	* * * * * * * * *	* * * * * * * * * * *	* * * * *					
; R	Reception	n routine						
;*******	* * * * * * * * *	* * * * * * * * * * *	* * * * *					
JUSHIN CS	EG		;					
S_JUSHIN:			;					
CLR1	PIF1		; Clear INTP1 request flag.					
CLR1	PMK1		; Enable the INTP1 interrupt.					
RET			,					

```
;
        Transmission routine
SOSHIN CSEG
S_SOSHIN:
                                    ; Clear parity data.
   CLR1
           F_PADATA
   if_bit(F_PARITY)
                                    ; Is odd parity selected?
                                     Set parity data.
        SET1 F_PADATA
   endif
   A=SODATA
   for(i=#0;i<#8;i++)</pre>
                                    ; Determine parity data.
       RORC
              A,1
        CY ^=F_PADATA
       F_PADATA = CY
   next
   TOC1=#01100000B (A)
         TMIF2
                                     Clear timer 2 request flag.
   CLR1
   DI
   SET1 TCE2
SET1 CMDT
                                     Enable 8-bit timer operation.
                                    ; Transmit the start bit.
                                     Wait for the start bit to be transmitted.
   while_bit(!TMIF2)
   endw
   CLR1 TMIF2
   SIO0=SODATA (A)
                                     Start data transmission.
   ΕI
   RET
Timer 2 interrupt servicing
TIM2
           CSEG
TAIMA2:
                                    ; Set to bank 1.
   SEL RB1
   if_bit(F_TUSHIN)
                                    ; Is the communication flag set?
        if(C_WORK <= #4)
                                    ; Work counter contents
            switch(C_WORK)
                                    ; 0: parity data transmission
            case 0:
                if_bit(F_PADATA)
                    SET1 RELT
                else
                    SET1 CMDT
                endif
               break
                                    ; 2: end bit transmission
            case 2:
                                    ; Transmit 'H.'
                SET1
                      RELT
               break
            case 4:
                                    : 4: end bit transmission
                SET1
                                    ; Transmit 'H.'
                     RELT
                                    ; Disable timer 2 interrupt.
                SET1
                      TMMK2
                       TCE2
                                   ; Disable 8-bit timer operation.
               CLR1
                C_WORK=#0
               break
            ends
            C_WORK++
        else
            C_WORK=#0
        endif
```

else	• ;				
if(C_WORK <= #6)	; Receiving? ; Work counter contents				
switch(C_WORK)					
case 1:	; 1: read in parity data				
CY=SI0	,				
F_PADATA=CY	,				
break	· ,				
case 3:	; 3: check the end bit				
if_bit(!SIO)	; If an error is present, set the end bit error flag.				
SET1 F_ERRE	,				
endif	• •				
break	;				
case 5:	; 5: check the end bit				
if bit(!SIO)	: If an error is present, set the end bit error flag.				
SET1 F ERRE					
endif	•				
C WORK=#0					
	, : Disable timer 2 interrupt				
	: Disable 8-bit timer operation				
CIRI F WORK					
if bit (E DADITY)	,				
II_DIC(F_PARIII)	,				
SEII F_WORK					
enali	,				
A=JUDATA	, Otana in the needing data				
for(1=#0;1<#8;1++)	; Store in the receive data.				
RORC A, L	;				
CY ^= F_WORK	,				
F_WORK = CY	• ;				
next	,				
CLR1 F_ERRP	,				
CLR1 F_DATA	· ,				
F_WORK ^= F_PADATA (CY)	;				
if_bit(!F_WORK)	; Check parity data.				
if_bit(!F_ERRE)	; Check end bit data.				
SET1 F_DATA	;				
endif	,				
else	; If parity data matches, set F_DATA.				
SET1 F_ERRP	; If the parity data does not match, set the parity error flag.				
endif	· · · · · · · · · · · · · · · · · · ·				
break	;				
ends					
C WORK++					
else	•				
C WORK=#0					
endif	, :				
endif	· · · · · · · · · · · · · · · · · · ·				
RETI	, :				
	2				

```
INTSIO interrupt servicing (reception)
;
S_SIO CSEG
INTSI0:
                                  : Set to bank 2.
   SEL RB2
   CLR1 TMIF2
CLR1 TMMK2
SET1 BUSY_0
                                  ; Clear timer 2 request flag.
                                  ; Enable timer 2 interrupt.
                                  ; Output high BUSY signal.
   if_bit(!F_TUSHIN)
      JUDATA=SIO0 (A)
   endif
                                  : Clear the work counter to zero.
   C_WORK=#0
   RETI
INTP1 interrupt servicing (reception)
;
CSEG
S_P1
INTP1:
   SEL RB1
   CLR1 TMIF2
CLR1 TCE2
SET1 TCE2
                                  ; Clear timer 2 request flag.
                                  ; Clear timer 2 counter.
                                  ; Enable timer operation.
   while_bit(!TMIF2)
   endw
         TMIF2
   CLR1
                                  ; INTP1 chattering processing
   if_bit(!SIO)
      TOC1=#10100000B
                                  ; Disable INTP1 interrupt.
       SET1 PMK1
      SIO0 = #0FFH
   endif
   RETI
   END
```

8.5.2 Half-Duplex Asynchronous Communication in the SBI Mode

Figure 8-25 shows the system structure. Serial input and output are performed via pin SB0. Bits 0 and 1 of port 3 are used for input and output of the BUSY signal. When the BUSY signal is low, serial communication is possible.

Cautions concerning the use of the SBI mode are given below.

- <1> Set bit 5 of port 2 (SB0) in the output mode when reset starts. However, when the SB0 port is tested, set SB0 in the input mode. At the end of port testing, set in the output mode again.
- <2> After the last stop bit is transmitted and detected in serial communication, enable serial operation again after it has been disabled.

Essentially, the end of SBI communication is determined by checking the ready signal after detecting the acknowledge signal. However, because the acknowledge signal is used in transmitting and receiving the parity bit, when a '1' parity bit is transmitted and received, the condition for the end of SBI communication does not hold. When this is not considered to be the end of serial communication, sometimes the next communication does not operate normally.

Figure 8-25. System Structure (SBI Mode)

(1) Transmission in the SBI mode

<3> Stop bit

Data transmission processing is shown below.

<1> Start bit -> Transmission time wait based on the output latch operation of the serial interface and 8-bit timer/event counter 2

Caution To prevent a timing delay in data reception due to the loss of the start bit, assign high priority to the INTP1 interrupt request.

- <2> Data and parity bits -> 9-bit transmission by the serial buffer and the acknowledge signal
 - -> The output latch of the serial interface is set in the interrupt servicing of 8-bit timer/event counter 2 and the stop bit is output.
 - Cautions 1. To prevent delays in the transmission timing, assign high priority to an interrupt request from 8-bit timer/event counter 2.
 - 2. If the second stop bit has been transmitted, enable operation again after serial operation for verifying the end of transmission is disabled once.

Figure 8-26. SBI Mode Transmission Format

Note After serial operation is disabled once, set again to enable.

(2) Reception in the SBI mode

Data reception processing is shown below.

- <1> Start bit
 - Start reception by detecting a falling edge at pin INTP1 and testing the port
 - Cautions 1. When testing the port, set in the following order.
 - <1> Set bit 5 (SI0) of port 2 to an input port.
 - <2> Test the port and write to SIO0.
 - <3> Reset bit 5 of port 2 in the output mode.
 - 2. To prevent delayed timing in data reception due to the loss of the start bit, assign high priority to the INTP1 interrupt request.
- <2> Data and parity bits -> Reception by the serial buffer and acknowledge detection
- <3> Stop bit -> Test the port in interrupt servicing for 8-bit timer/event counter 2 and output the parity bit.
 - Cautions 1. To prevent delays in the transmission timing, assign high priority to an interrupt request from 8-bit timer/event counter 2.
 - 2. If the second stop bit has been transmitted, enable operation again after serial operation for verifying the end of transmission is disabled once.

When a parity or an overrun error occurs, set the flag.

(3) Package description

<Symbols declared as public>

- Subroutine names
 - S_SOSHIN : Name of transmission subroutine
 - S_JUSHIN : Name of reception subroutine
- Input parameters
 - SODATA : Stores transmission data
 - F_PARITY : Indicates even and odd parity selection state
 - F_TUSHIN : Indicates the busy receiving or transmitting state
- Output parameters
 - JUDATA : Stores receive data
 - F_DATA : If reception is over, this is set.
 - F_ERRP : Indicates a parity error
 - F_ERRE : Indicates an end bit error
- I/O parameter
 - F_PADATA: Stores the parity bit for communication

<Registers used>

- Bank 0 A
- Bank 1 A
- Bank 2 A

<RAM used>

Name	Use	Attributes	Bytes
SODATA	Transmission data storage area	SADDR	1
JUDATA	Receive data storage area	SADDR	1
C_WORK	State storage counter	SADDR	1
i	Work counter for loop operation	SADDR	1
j	Work counter for loop operation	SADDR	1

<Flags used>

	Name	Use
F_PARITY	Parity selection flag	Set when odd parity is selected.
F_PADATA	Parity bit storage flag	Stores the parity.
F_TUSHIN	Communication flag	Set during communication.
F_ERRP	Parity error flag	Set when a parity error occurs.
F_ERRE	End bit error flag	Set when an end bit error occurs.
F_DATA	End of reception flag	Set at the end of reception.
F_WORK	Work flag	For work

<Nesting>

1 level, 3 bytes

<Hardware used>

- Serial interface channel 0 (SBI mode)
- 8-bit timer/event counter 2
- External interrupt edge detection (INTP1 pin)

<Initial settings>

- After a reset start at the pin (P25) for I/O data, set the following before the serial transmission of the first byte.
 - <1> Set the output latch of P25 to 1.
 - <2> Set bit 0 (RELT) of the serial bus control register (SBIC) to 1.

<3> This time, set the output latch of the P25 set to 1 to 0.

- Set in the S_SOSHIN and S_JUSHIN subroutines.
- Port 2: bit 5 input port, bit 6 output port settings
 Port 3: bit 0 input port, bit 1 output port settings
 PM3=#x01xxxxB
 PM3=#xxxxx01B
 Serial interface channel 0 setting
 SBI mode, serial clock = 8-bit timer 2 selection
 S-bit timer/event counter 2 settings
- 9600-bps baud rate setting
 8-bit timer register x 2-channel mode
 8-bit timer/event counter 2 operation disabled
 INTP1 setting INTP1 falling edge
 High-priority 8-bit timer/event counter 2 interrupt
 High-priority INTP1 interrupt
 CR20=#54
 TCL1=#0110000B
 TOC1=#0000000B
 TMC1=#0000000B
 CLR1 TMPR2
 CLR1 PPR1
- Enable serial interface interrupt
 CLR1 CSIMK0

<Startup procedure>

- Set the following order when starting data transmission and reception.
 - Starting data transmission
 - <1> Store transmission data in the SODATA area.
 - <2> Set transmission flag.
 - <3> Call the S_SOSHIN subroutine.
 - Starting data reception
 - <1> Clear the communication flag (F_TUSHIN). (Set to 0.)
 - <2> Invert the busy signal.
 - <3> Call the S_JUSHIN subroutine.
- When interrupt requests other than those in the 78K/0 Series package are used, to enable high priority interrupts, set the ISP flag to 0 at the beginning of interrupt processing and enable interrupts.

(4) Use example

This example illustrates selecting an even or odd parity bit and selecting transmission or reception by using key input.

EXTRN	SODATA									
EXTRN	JUDATA, S_SOSHIN, S_JUSHIN									
EXTBIT	F_PADATA,F_PARITY,F_DATA,F_TUSHIN									
EXTBIT	F_ERRP,F_ERRE	F ERRP, F ERRE								
;										
TUSHIN	EQU 20									
JYUSHIN	EQU 21									
PARIKEY	EQU 22									
BUSY_O	EQU P3.1									
BUSY_I	EQU P3.0									
SB0	EQU P2.5									
; * * * * * * *	* * * * * * * * * * * * * * * * * * * *	* * *								
;	Initialize									
;*****	* * * * * * * * * * * * * * * * * * * *	* * *								
M3S	CSEG	;								
RES_STA:		;								
MOV	P2,#9FH	; P2.5=L, P2.6=L								
MOV	P3,#0FFH	;								
MOV	PM2,#0000000B	; P2.5 = output mode								
MOV	PM3,#0000001B	; P3.0 = input port, P3.1 = output port								
;***8-bi	t timer register setting***									
CR20)=#54	;								
TCL1	L=#01100000B	; 1.05-MHz count clock								
TOCI	L=#0000000B	;								
TMC1	L=#0000000B	; 8-bit timer register selection and timer 2 operation disable								
;***Seri	al interface 0 settings***									
SET1	SB0	;								
CSIN	40=#10000110B	; SBI mode, serial clock selection, 8-bit timer 2								
SET1	RELT	;								
CLR1	SB0	;								
;***INTF	01 settings***									
CLR1	TMPR2	; High priority timer 2 interrupt								
CLR1	PPR1	; High priority INTP1 interrupt								
INTN	40=#0000000B	; INTP1 falling edge								
CLR1	PIF1	; Clear the INTP1 request flag.								
CLR1	TMIF2	; Clear the timer 2 request flag.								
CLR1	CSIIF0	; Clear the serial interface request flag.								
CLR1	KSIF	; Clear the interrupt request flag.								
CLR1	CSIMK0	; Enable serial interface interrupt.								
CLR1	KSMK	; Enable INTKS interrupt.								

while(forever)	;
	1
if_bit(F_KEYON)	; ; Is the key on flag 1?
SWITCH(M_KEYON)	, The proceed key was the parity key
Case PARIKEY:	, The pressed key was the parity key.
SETI CY	
CY ~= F_PARITY	,
F_PARITY=CY	
break	, The present key was the communication key
case TUSHIN:	; The pressed key was the communication key.
SETI F_TUSHIN	; Set the communication flag (while transmitting).
CLR1 F_SOEND	,
break	
case JYUSHIN:	; The pressed key was the reception key.
CLR1 F_TUSHIN	; Clear the communication flag (while receiving).
CY=BUSY_0	; Output the inverted BUSY signal data.
NOT1 CY	• 3
BUSY_0=CY	3
it_bit(CY)	
SET1 PMK1	; Disable INTP1 interrupt.
else	,
CLR1 F_ERRP	,
CLR1 F_ERRE	,
CALL !S_JUSHIN	,
endif	• ን
break	• ን
ends	,
endif	
· ·	
if_bit(!F_SOEND)	; Is the communication flag set?
if_bit(F_TUSHIN)	; Is the BUSY signal inactive?
CY=BUSY_I	• 3
if_bit(!CY)	• 3
SET1 F_SOEND	• 3
SODATA=#0	· ;
SODATA=WORK (A)	; I ransmission data storage area <- transmission data
CALL !S_SOSHIN	; Call the transmission routine.
endif	• ,
endif	• ,
endif	• ,

(5) SPD chart

[Stop bit transmission/reception processing (8-bit timer/event counter 2 interrupt servicing)]

[Data transmission/reception completion processing (INTSI0 interrupt servicing)]

[Starting processing for data reception (INTP1 interrupt servicing)]

(6) Program listing

PUBLIC	JUDATA								
PUBLIC	SODATA, F_PARITY, S_SOSHIN								
PUBLIC	F_DA	F_DATA,S_JUSHIN,F_PADATA,F_TUSHIN							
PUBLIC	F_ERRE,F_ERRP								
;									
VEINTP1		CSEG	AT 08H						
		DW	INTP1						
VEINTSI0)	CSEG	AT OEH						
		DW	INTSI0						
VETIM2		CSEG	AT 18H						
		DW	TAIMA2						
;									
SB0		EQU	P2.5						
BUSY_O		EQU	P3.1						
BUSY_I		EQU	P3.0						
PORT25		EQU	PM2.5						
;									
MOSRAM		DSEG	SADDR						
SODATA:		DS	1	; Transmission data storage area					
C_WORK:		DS	1	; Work counter					
JUDATA:		DS	1	; Receive data storage area					
i:		DS	1	; Work counter					
k:		DS	1	; Work counter					
;									
MOSFLG		BSEG							
F_ERRP		DBIT		; Parity error flag					
F_ERRE		DBIT		; End bit error flag					
F_DATA		DBIT		; End of reception flag					
F_PADATA	7	DBIT		; Parity data flag					
F_PARITY		DBIT		; Parity selection flag					
F_WORK		DBIT		; Flag work area					
F_TUSHIN	1	DBIT		; Communication flag					
;									
;******	* * * *	* * * * * * * *	* * * * * * * * * * * * * *						
;	Rece	eption r	outine						
;******	* * * *	* * * * * * * *	* * * * * * * * * * * * * *						
JUSHIN	CSEG	1		,					
S_JUSHIN	1:			;					
CLR1		PIF1		; Clear the request flag.					
CLR1	-	PMK1		; Enable INTP1 interrupt.					
RET				,					

; Transmission routine SOSHIN CSEG S SOSHIN: ; Reverse the direction of the transmission data. A=SODATA SODATA=#0 if_bit(A.7) SET1 SODATA.0 endif if bit(A.6) SET1 SODATA.1 endif if_bit(A.5) SET1 SODATA.2 endif if_bit(A.4) SET1 SODATA.3 endif if_bit(A.3) SET1 SODATA.4 endif if_bit(A.2) SET1 SODATA.5 endif if bit(A.1) SET1 SODATA.6 endif if_bit(A.0) SET1 SODATA.7 endif ; Clear the parity data flag. CLR1 F_PADATA if_bit(F_PARITY) ; Is odd parity currently selected? SET1 F_PADATA ; Set the parity data. endif A=SODATA for(k=#0;k<#8;k++) ; Parity data setting. RORC A,1 CY ^= F PADATA $F_PADATA = CY$ next TOC1=#01100000B (A) Clear the timer 2 request flag. CLR TMIF2 DT Enable 8-bit timer operation. SET1 TCE2 SET1 CMDT Start bit transmission. ; Wait the time for the start bit to be transmitted. while_bit(!TMIF2) endw TMIF2 CLR1 ACKE ; Clear acknowledge. SET1 Clear acknowledge when parity data is 1. if_bit(F_PADATA) CLR1 ACKE endif SIO0=SODATA (A) Start data transmission ΕI RET

;						
; * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * * * *	* *			
; Time	er 2 interrupt :	servicing				
; * * * * * * *	* * * * * * * * * * * * * * *	* * * * * * * * * *	* *			
TIM2	CSEG		,			
TAIMA2:			,			
SEL	RB1		; Set to bank 1.			
if_b	it(F_TUSHIN)		; Busy communicating?			
	if(C_WORK < #3)		; Work mode contents			
	switch(C_WC	RK)	; 0: end bit transmission			
	case 0:		;			
	SET1	RELT	,			
	break		,			
	case 2:		; 2: end bit transmission			
	SET1	RELT	; Disable 8-bit timer 2 interrupt.			
	SET1	TMMK2	,			
	CLR1	TCE2	; Disable 8-bit timer 2 operation.			
	SET1	SB0	; Set bit 5 of port 2 to an input port.			
	CLR1	CSIE0	; Disable serial operation.			
	SET1	CSIE0	; Enable serial operation.			
	SET1	RELT	. ,			
	CLR1	SB0	; Set bit 5 of port 2 to an output mode.			
	C_WORK=	#0	. ,			
	break		. ,			
	ends		. ,			
	C_WORK++		•			
	else		•			
	C_WORK=#0		. ,			
	endif		,			

```
else
                                             Busy receiving?
     if(C_WORK < #4)
                                            ; Set bit 5 of port 2 to an input port.
          SET1
                   PORT25
          switch(C_WORK)
                                            : Work mode contents
                                            ; 1: If the end bit is high, set the end bit error flag.
          case 1:
               if_bit(!SB0)
                    SET1 F_ERRE
               endif
               break
          case 3:
                                             3: If the end bit is high, set the end bit error flag.
               if_bit(!SB0)
                   SET1
                             F_ERRE
               endif
               SET1
                         SB0
                                             Bit 5 of port 2 = High
                                            ; Disable serial operation.
                        CSIE0
               CLR1
                                            ; Enable serial operation.
                        CSIE0
               SET1
               SET1
                        RELT
                                            ; Bit 5 of port 2 = Low
               CLR1
                        SB0
               C_WORK=#0
                                            : Disable 8-bit timer 2 interrupt.
               SET1
                        TMMK2
                                             Disable 8-bit timer operation.
                         TCE2
               CLR1
               CLR1
                        F_WORK
               if_bit(F_PARITY)
                    SET1
                            F_WORK
               endif
               A=JUDATA
                                           : Store in the receive data.
               for(i=#0;i<#8;i++)</pre>
                    RORC A,1
                    CY ^= F_WORK
                    F_WORK = CY
               next
                        F_ERRP
               CLR1
                        F_DATA
               CLR1
               F_WORK ^= F_PADATA (CY);
               if_bit(!F_WORK)
                                            ; Check parity data.
                    if_bit(!F_ERRE)
                                  F_DATA ; If a normal reception, set the F_DATA flag.
                         SET1
                    endif
               else
                                            ; If a parity error occurs, set the F_ERRP flag.
                    SET1
                              F_ERRP
               endif
               CLR1
                         F_WORK
               break
          ends
                                            ; Set bit 5 of port 2 to an output port.
          CLR1
                    PORT25
          C_WORK++
     else
          C_WORK=#0
     endif
endif
RETI
```

```
;
;
 INTSIO interrupt servicing (reception)
S_SI0
         CSEG
INTSI0:
   SEL RB2
                                 ; Clear timer 2 request flag.
   CLR TMIF2
   CLR1
         TMMK2
                                  ; Enable timer 2 interrupt.
   SET1 BUSY_O
   if_bit(!F_TUSHIN)
      A=SIO0
       JUDATA=#0
       if_bit(A.7)
                                 ; Reread the receive data in reverse.
          SET1
                 JUDATA.0
       endif
       if_bit(A.6)
          SET1 JUDATA.1
       endif
       if_bit(A.5)
          SET1 JUDATA.2
       endif
       if_bit(A.4)
          SET1
               JUDATA.3
       endif
       if_bit(A.3)
          SET1 JUDATA.4
       endif
       if_bit(A.2)
          SET1 JUDATA.5
       endif
       if_bit(A.1)
          SET1 JUDATA.6
       endif
       if_bit(A.0)
          SET1
                JUDATA.7
       endif
                                 ; Read in the parity data.
       CLR1
            F_PADATA
       CY=ACKD
       NOT1
            CY
       F_PADATA=CY
   endif
   C_WORK=#0
   RETI
```

```
INTP1 interrupt servicing (reception)
;
S_P1
              CSEG
INTP1:
   SEL RB1
   CLR1 TMIF2
CLR1 TCE2
SET1 TCE2
                                     ; Clear timer 2 request flag.
                                     ; Clear timer 2 counter.
                                     ; Enable timer operation.
   while_bit(!TMIF2)
   endw
   CLR1
          TMIF2
                                      Set port to an input port.
   SET1
          PORT25
                                      Chattering processing of INTP1
   if_bit(!SB0)
       CLR1 ACKE
       TOC1=#1010000B
                                      Disable INTP1 interrupt.
       SET1
             PMK1
       SIO0 = #0FFH
   endif
   CLR1
          PORT25
                                     ; Set bit 5 of port 2 to an output port.
   RETI
   END
```

[MEMO]

CHAPTER 9 A/D CONVERTER APPLICATION

The A/D converter in the 78K/0 Series has 8-bit resolution and eight channels, and is a successive approximation type. Its only operating mode is the select mode, but the start of conversion can also be specified by using an external trigger. In addition, when there is no external trigger, the selected channel is repeated and A/D conversion is performed.

The A/D converter is set by the A/D converter mode registers (ADM and ADM0), A/D converter input selection register (ADIS), and analog input channel specification register (ADS0).

Cautions 1. ADM0 and ADS0 are incorporated into the μ PD780228 subseries only.

- * *
- 2. The format of the registers incorporated into the μPD780228 subseries differs from that of the μPD78044F, μPD78044H, and μPD780208 subseries. When using any of the sample programs described in this chapter with the μPD780228 subseries, replace the register settings with those for the μPD780228 subseries.

Figure 9-1. Format of the A/D Converter Mode Register (µPD78044F, µPD78044H, and µPD780208 Subseries)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
ADM	CS	TRG	FR1	FR0	ADM3	ADM2	ADM1	1	FF80H	01H	R/W
	ADM3	ADM2	ADM1	Analog	input ch	annel se	election				
	0	0	0	ANI0							
	0	0	1	ANI1							
	0	1	0	ANI2							
	0	1	1	ANI3							
	1	0	0	ANI4							
	1	0	1	ANI5							
	1	1	0	ANI6							
	1	1	1	ANI7							
	FR1	FR0	A/D co	nversior	n time se	election	lote 1				
			With fx	= 5.0 M	lHz		With fx = 4.19 MHz				
	0	0	160/fx	(32.0 μs	;)		160/fx (3	38.1 μs)			
	0	1	80/f× (\$	Setting p	orohibite	d ^{Note 2})	80/fx (19	9.1 μs)			
	1	0	200/fx	(40.0 μs	40.0 μs) 200/fx (47.7 μs)						
	1	1	Setting	ı prohibi	rohibited						
	TRG	Extern	al trigge	r selection	on						
	0	No ext	ernal trig	gger (sol	ftware st	tart mod					
	1	Conve	rsion sta	rted by	an exter	rnal trigg					
	00	A /P									
	CS	A/D co	nverter	operatio	n contro)I					
	0	Stop o	peration								
	1	Start o	peration								

Notes 1. Set the A/D conversion time to at least 19.1 μ s.

2. Setting is prohibited because the A/D conversion time is less than 19.1 μ s.

Cautions 1. Set bit 0 to 1.

- 2. When executing the HALT or STOP instruction, clear bit 7 (CS) of the ADM register to stop A/D conversion operations prior to the instruction execution. This reduces the total power consumption of the device in the standby mode, because the A/D converter consumes much power when operating.
- 3. To restart A/D conversion operation, clear the interrupt request flag (ADIF) to 0.

Remark f_X: Main system clock oscillation frequency

Figure 9-2.	Format of	the A/D	Converter	Mode	Register	(µPD780228	Subseries)
-------------	-----------	---------	-----------	------	----------	------------	------------

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
ADM0	CS0	0	FR02	FR01	FR00	0	0	0	FF80H	00H	R/W

FR02	FR01	FR00	A/D conversion time selectionNote 1				
			With $f_x = 5.0 \text{ MHz}$	With fx = 4.19 MHz			
0	0	0	144/f× (28.8 μs)	144/fx (34.4 μs)			
0	0	1	120/fx (24 μs)	120/fx (28.6 μs)			
0	1	0	96/fx (19.2 μs)	96/fx (22.9 μs)			
1	0	0	72/fx (14.4 μs)	72/fx (17.2 μs)			
1	0	1	60/fx (Setting prohibitedNote 2)	60/fx (14.3 μs)			
1	1	0	48/fx (Setting prohibited ^{Note 2}) 48/fx (Setting prohibited ^{Note 2})				
Other than the above			Setting prohibited				

CS0	A/D converter operation control
0	Stop converter operation
1	Enable converter operation

Notes 1. Set the A/D conversion time to at least 14 μ s.

2. Setting is prohibited because the A/D conversion time is less than 14 μ s.

Caution The results of conversion obtained immediately after setting bit 7 (CS0) to 1 will be unpredictable.

Remark f_X: Oscillation frequency of the main system clock

Symbol	7	6	5	4	3	2	1	0	Address At reset		R/W		
ADIS	0	0	0	0	ADIS3	ADIS2	ADIS1	ADIS0	I	F84H	0	0H	R/W
L													
													Selection of the number
									ADI53	ADI52	ADIST	ADI50	of analog input channels
									0	0	0	0	No analog input channels
													(P10-P17)
									0	0	0	1	1 channel
													(ANI0, P11-P17)
									0	0	1	0	2 channels
													(ANI0, ANI1, P12-P17)
									0	0	1	1	3 channels
													(ANI0-ANI2, P13-P17)
									0	1	0	0	4 channels
													(ANI0-ANI3, P14-P17)
									0	1	0	1	5 channels
													(ANI0-ANI4, P15-P17)
									0	1	1	0	6 channels
													(ANI0-ANI5, P16, P17)
									0	1	1	1	7 channels
													(ANI0-ANI6, P17)
									1	0	0	0	8 channels
													(ANIO-ANI7)
									Other t	han the	above		Setting prohibited

Figure 9-3. Format of the A/D Converter Input Selection Register (μ PD78044F, μ PD78044H, and μ PD780208 Subseries)

- Cautions 1. Set the analog input channel in the following order.
 - <1> Set the number of analog input channels in ADIS.
 - <2> For channels set for analog input in ADIS, the channel for A/D conversion selects one channel in the A/D converter mode register (ADM).
 - 2. Regardless of the value of bit 1 (PUO1) in the pull-up resistor option register (PUO), the channel selected for analog input in ADIS does not use the on-chip pull-up resistor.

* Figure 9-4. Format of the Analog Input Channel Specification Register (Only for the μ PD780228 Subseries)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
ADS0	0	0	0	0	ADS03	ADS02	ADS01	ADS00	FF81H	00H	R/W
	ADS03	ADS02	ADS01	ADS00	Analog	input ch	annel se	lection			
	0	0	0	0	ANI0						
	0	0	0	1	ANI1						
	0	0	1	0	ANI2						
	0	0	1	1	ANI3						
	0	1	0	0	ANI4						
	0	1	0	1	ANI5						
	0	1	1	0	ANI6						
	0	1	1	1	ANI7						
	Other t	han the a	above		Setting	prohibite	ed				

9.1 LEVEL METER

The analog voltage input to the A/D converter is displayed by 16 LEDs. The LED display is arranged in a 4 x 4 matrix. An example using the μ PD78044F subseries is described here.

Because the objective in this example is a level meter, this LED display digitally shows the current decibel level of the analog ANIn pin input. Figure 9-5 shows the level meter circuit. Figure 9-6 shows the relationship between the A/D conversion result and the number of display digits.

Figure 9-5. Level Meter Circuit Example

Figure 9-6. A/D Conversion Result and LED Display

The level meter in this example operates in the manner described in <1> to <3>.

<1> Measurement method

A/D conversion is performed every 20 ms. The data of the last four conversions are averaged and used in the LED display data.

<2> Display method

The LED is updated every 20 ms. The LED display is a $4 \times 4 = 16$ dynamic display. 8-bit timer/ event counter 1 (interval time: 2 ms) is used in the dynamic display.

<3> Peak hold

The maximum display level hold during a constant period (1 second) is called the peak hold. Even when the display level drops during the constant period, only the maximum display level of the LEDs is held. As a result, the hold period of the hold level ranges from 20 ms to 1 s.

Figure 9-7. Conceptual Diagram of the Peak Hold

	.	Constant period (1 s)								>	ļ							
Hold level	6	6	6	6	7	8	9	9	9	9	9	9	4	4	4	5	6	6
Display level	6	5	4	5	7	8	9	8	7	6	5	5	4	3	3	5	6	2

(1) Package description

<Symbols declared as public>

LEVEL : Name of LED display subroutine DSPLEV: Display level storage area HLDLEV: Hold level storage area CT20MS: 20-ms measurement counter CT1S : 1-s measurement counter

<Registers used>

AX, HL, BC (subroutine servicing) Bank 0: A, HL, B (interrupt servicing)

<RAM used>

Name	Use	Attributes	Bytes
ADDAT	A/D conversion value storage	SADDR	4
DSPLEV	Display level storage		1
HLDLEV	Hold level storage		
CT20MS	20-ms measurement counter		
CT1S	1-s measurement counter		
DIGCNT	Display digit counter		
DSPDAT	Display data storage		4
WORKCT	Work counter for loop operation		1

<Flags used>

Name	Use
T20MSF	Set every 20 ms.
T1SF	Set every 1 s.

<Nesting>

2 levels, 5 bytes

<Hardware used>

- A/D converter
- 8-bit timer/event counter 1
- P3

<Initial settings>

- Channel selection and operation start of the A/D converter
- 2-ms interval for the 8-bit timer/event counter 1

ADM=#1000xxx1B TCL1=#10101010B TMC1=#00000001B CR10=130

- P3 output mode
- Set the P3 output latch to the low level.
- INTTM1 interrupt enabled

<Startup procedure>

This program is divided into the two parts of A/D conversion processing (subroutine) and LED display processing (interrupts).

• A/D conversion processing

Call LEVEL at least once every 20 ms from the main processing. In LEVEL processing, A/D conversion is performed when 20 ms have elapsed.

• LED display

The 4 x 4 matrix LED display performs a dynamic display by using interrupt servicing by 8-bit timer/event counter 1 (interval: 2 ms). In addition, in interrupt servicing by 8-bit timer/event counter 1, the flags of T20MSF (read in A/D conversion value) and T1SF (end of the hold period) used in A/D conversion are set using the interval (2 ms).

(2) Use example

EXTRN	LEVEL,CT20MS,CT1S	
MOV	CT20MS,#10	
MOV	CT1S,#50	
MOV	TMC2,#00100110B	
CLR1	ТММК З	
P3=#00H	[; Turn off LED display
PM3=#00	000000B	
ADM=#10	000001B	; ANI0 pin, start operation
TCL1=#1	0101010B	; Set 8-bit timer/event counter 1 to 2 ms.
CR10=#1	.30	
TMC1=#0	000001B	
CLR1	TMMK1	; Enable 8-bit timer/event counter 1 interrupt.
EI		

(3) SPD chart

(4) Program listing

PUBLIC LEVEL, HLDLEV, DSPLEV, CT20MS, CT1S SADDR AD_DAT DSEG ; A/D conversion result storage area ADDAT: DS 4 : Display level value DSPLEV: DS 1 : Hold level value HLDLEV: DS 1 : 20-ms measurement counter CT20MS: DS 1 1-s measurement counter CT1S: DS 1 ; Display digit counter DIGCNT: DS 1 ; Display data DSPDAT: DS 4 WORKCT: DS 1 AD FLG BSEG T20MSF DBIT : 20-ms measurement T1SF DBIT ; 1-s measurement VETM1 CSEG AT 16H DW INTTM1 : Set vector address of 8-bit timer/event counter 1 AD_SEG CSEG ;* Level meter data setting LEVEL: IF_BIT(T20MSF) ; 20-ms check CLR1 T20MSF A=ADCR ; A/D conversion input ; Save A/D conversion value. A<->ADDAT A<->ADDAT+1 A<->ADDAT+2 A<->ADDAT+3 ; Average the last four A/D conversion values. AX=#0H HL=#ADDAT : Data storage address for(WORKCT=#0;WORKCT<#4;WORKCT++)</pre> A+=[HL] HL++ if bit(CY) : Carry ; High-order digit X++ endif next A<->X C=#4 ; Average four conversions ; AX/C=AX (quotient)...C (remainder) AX/=C; Remainder processing (carry \geq 2) if(C>=#2) (A) ; Carry processing X + +endif HL=#LEVTBL ; Conversion result storage register B=#0 for(WORKCT=#0;WORKCT<#16;WORKCT++)</pre> if(X>=[HL+B]) (A) ; Data comparison B++ else break endif next

```
DSPLEV=B (A)
                                    ; Display data decision
   if_bit(!T1SF)
                                    ; 1 s (hold update)
                                    ; Comparison of hold and display levels
        X=HLDLEV (A)
        if(X<DSPLEV) (A)
             HLDLEV=DSPLEV (A)
        endif
   else
        CLR1
                  T1SF
        HLDLEV=DSPLEV (A)
   endif
   HL=#DSPTBL
   A=DSPLEV
                                    ; Create display level.
   A + = A
   B=A
   A=HLDLEV
   A+=A
   C=A
   X = [HL + B] (A)
   B++
   A = [HL + B]
   HL=#HLDTBL
                                    ; Create hold level.
   A < -> X
   A = [HL+C]
   A<->X
   C++
   A = [HL+C]
   BC=AX
                                    ; First digit segment signal setting
   HL=#DSPDAT
   A=C
   A\&=#0FH
   A = #00010000B
                                    ; Digit signal setting
   [HL]=A
   HL++
   A=C
                                    ; Second digit segment signal setting
   A>>=1
   A>>=1
   A>>=1
   A>>=1
   A\&=\#0FH
                                    ; Digit signal setting
   A = #0010000B
   [HL]=A
   HL++
                                    ; Third digit segment signal setting
   A=B
   A\&=#0FH
   A | =#0100000B
                                    ; Digit signal setting
   [HL]=A
   HL++
                                    ; Fourth digit segment signal setting
   A=B
   A>>=1
   A>>=1
   A>>=1
   A>>=1
   A\&=#0FH
   A|=#1000000B
                                    ; Digit signal setting
   [HL]=A
endif
```

RET

LEVTBL:

	DB DB DB DB DB DB DB DB DB DB	0AH 12H 20H 2EH 39H 40H 48H 51H 5BH 66H 72H
	DB	80H
	DB	90H
	DB	0A2H
	DB	0В5Н
	DB	OFFH
DSPTBL:		
	DW	000000000000000000000B
	DW	000000000000001B
	DW	000000000000011B
	DW	000000000000111B
	DW	000000000001111B
	DW	000000000011111B
	DW	000000000111111B
	DW	000000000111111B
	DW	0000000011111111B
	DW	0000000111111111B
	DW	0000001111111111
	DW	0000011111111111
	DW	0000111111111111
	DW	0001111111111111
		011111111111111111
	DW	1111111111111111111
	211	

HLDTBL:

DW	000000000000000000000B
DW	000000000000001B
DW	0000000000000010B
DW	0000000000000100B
DW	000000000001000B
DW	000000000010000B
DW	00000000010000B
DW	00000000100000B
DW	00000001000000B
DW	00000010000000B
DW	00000100000000B
DW	000001000000000B
DW	000010000000000B
DW	000100000000000B
DW	001000000000000B
DW	0100000000000000B
DW	1000000000000000B

```
;* Level meter output
TM1_SEG CSEG
INTTM1:
      SEL RB0
                          ; Turn off digit and segment signals.
      P3=#0000000B
      HL=#DSPDAT
      B=DIGCNT (A)
      P3=[HL+B] (A)
      DIGCNT++
      DIGCNT&=#00000011B
                           ; 20 ms ?
      CT20MS--
      if(CT20MS==#0)
                           ; Initial counter setting
          CT20MS=#10
          SET1 T20MSF
          CT1S--
                           ;1s?
          if(CT1S==#0)
                          ; Initial counter setting
             CT1S=#50
             SET1 T1SF
          endif
      endif
      RETI
```
9.2 THERMOMETER

In this example, a thermistor (6 k Ω /0 °C) is used in a temperature sensor and measures temperatures between –20 °C and +50 °C. Changes in resistance corresponding to the temperature of the thermistor can be represented in the following way.

 $R = R_0 \exp \{B (1/T - 1/T_0)\}$

- R : Resistance at some temperature T [°K]
- T : Any temperature [°K]
- R_0 : Resistance at the reference temperature T_0 [°K]
- T_0 : Reference temperature [°K]
- B : Constant determined from the reference temperature T_0 [°K] and T_0 [°K]

However, the B constant is not constant and is changed by the temperature. The B constant is transformed in the above equation and can be determined by the following equation.

 $B = \frac{1}{(1/T - 1/T_0)} In \frac{R}{R_0}$

An example circuit is shown in Figure 9-8. This circuit is set so that 0 V is input at -20 °C and 5 V are input at +50 °C.

Figure 9-8. Thermometer Circuit Example

In this example circuit, because the thermistor characteristics are not linear, the input analog voltage is changed into a temperature from -20 °C to +50 °C by comparing the voltage with table data and not by a calculation. This conversion result is saved in the RAM (DSPDAT) as two BCD digits. Figure 9-9 shows the thermistor characteristics. Table 9-1 shows the relationship between the temperature and the A/D conversion value.

Also, the measurement method changes the average of the four conversion results into a temperature. Therefore, the conversion result is stored in the display area. Consequently, one datum in four is updated. For example, when measurement processing is performed every 250 ms, the display update period becomes one second.

Figure 9-9. Temperature and Output Characteristics

Conversion value	Temperature [°C]	Conversion value	Temperature [°C]	Conversion value	Temperature [°C]	Conversion value	Temperature [°C]
00	-20.0	38	-2.5	82	15.5	СВ	33.5
01	-19.5	3C	-1.5	86	16.5	CE	34.5
04	-18.5	40	-0.5	8B	17.5	D2	35.5
07	-17.5	44	0.5	8F	18.5	D6	36.5
0A	-16.5	48	1.5	93	19.5	D9	37.5
0C	-15.5	4C	2.5	97	20.5	DC	38.5
0F	-14.5	50	3.5	9B	21.5	E0	39.5
12	-13.5	54	4.5	9F	22.5	E3	40.5
16	-12.5	58	5.5	A3	23.5	E7	41.5
19	-11.5	5C	6.5	A8	24.5	EA	42.5
1C	-10.5	60	7.5	AC	25.5	ED	43.5
1F	-9.5	64	8.5	B0	26.5	F0	44.5
23	-8.5	69	9.5	B4	27.5	F3	45.5
26	-7.5	6D	10.5	B7	28.5	F6	46.5
2A	-6.5	71	11.5	BB	29.5	F9	47.5
2D	-5.5	75	12.5	BF	30.5	FC	48.5
31	-4.5	7A	13.5	C3	31.5	FE	49.5
35	-3.5	7E	14.5	C7	32.5	FF	50.0

Table 9-1.	A/D Conversion	Values and	Temperatures
------------	----------------	------------	--------------

(1) Package description

<Symbols declared as public>

THMETER: Name of the thermometer subroutine

DSPDAT : Display data storage area

- CNTPRO : Number of inputs test counter
- MINUSF : Minus temperature display flag

T250MSF : Flag for setting 250 ms

<Registers used>

AX, BC, HL

<RAM used>

Name	Use	Attributes	Bytes
ADDAT	A/D conversion value storage	SADDR	4
DSPDAT	Display data storage		2
CNTPRO	Number of inputs test counter		1
WORKCT	Work counter for loop operation		

<Flag used>

Name	Use
T250MSF	When set, measurement processing is executed.
MINUSF	Set when the temperature is minus.

<Nesting>

1 level, 2 bytes

<Hardware used>

A/D converter

<Initial settings>

Channel selection and operation start for A/D converter ADM=#1000xxx1B

<Startup procedure>

In timer processing, set the T250MSF flag in each measurement period. Then, call THMETER at least once during the measurement period.

(2) Use example

```
EXTRN
               THMETER, DSPDAT, CNTPRO
       EXTBIT MINUSF, T250MSF
AD_DAT DSEG
               SADDR
CT250MS:DS
               1
                                    ; 250-ms measurement counter
                                    ; LED display area
LEDD:
      DS
              4
                                    ; LED display digit counter
               1
DIGCT: DS
VETM3
       CSEG AT 12H
            INTTM3
                                    ; Vector address setting of the watch timer
       DW
       MOV TMC2,#00100110B
                                    ; 1.95-ms setting for the watch timer
       CLR1
               TMMK3
         :
         :
       CT250MS=#128
       CNTPRO=#4
                                   ; ANI1 pin, operation start
       ADM=#10000011B
         :
         :
;
    Watch timer interrupt servicing
       1.95-ms interval
;
INTTM3:
                                    ; 1.95-ms interrupt servicing
         :
         :
              CT250MS,$RTNTM3
       DBNZ
                                   ; 250-ms had elapsed
       MOV
             CT250MS,#128
       SET1 T250MSF
RTNTM3:
         :
         :
       RETI
```

(3) SPD chart

(4) Program listing

PUBLIC THMETER, DSPDAT, CNTPRO, T250MSF, MINUSF SADDR AD_DAT DSEG ; A/D conversion result storage area 4 ADDAT: DS DSPDAT: DS 2 : Display data ; Test the number of inputs. CNTPRO: DS 1 WORKCT: DS 1 AD FLG BSEG ; 250-ms setting T250MSF DBIT MINUSF DBIT ; Negative data setting TH SEG CSEG ;* Temperature data setting ;******* THMETER: if_bit(T250MSF) : 250 ms CLR1 T250MSF A=ADCR A<->ADDAT A<->ADDAT+1 A<->ADDAT+2 A<->ADDAT+3 CNTPRO-if(CNTPRO==#0) CNTPRO=#4 AX=#0H HL=#ADDAT ; Data storage address for(WORKCT=#0;WORKCT<#4;WORKCT++)</pre> A+=[HL] HL++ if_bit(CY) ; Carry present. X++ ; Carry endif next A<->X C=#4 ; AX/C=AX (quotient)...C (remainder) AX/=Cif(C>=#2) (A) ; Remainder processing (carry \geq 2) X++ ; Carry processing endif ; Convert to temperature data. A=X B=#0 HL=#THRTBL if(A==#0FFH) B=#70 else for(WORKCT=#0;WORKCT<#70;WORKCT++)</pre> if(X > = [HL+B]) (A) B++ else break endif next

```
endif
         CLR1
                  MINUSF
         A=#20
                                   ; Temperature data 20
         B-=A
                                   ; To decimal conversion
         if_bit(CY)
              SET1 MINUSF
              A=#0
                                   ; Take the absolute value of data
              A-=B
              A<->B
         endif
         X=#0
                                   ; Decimal conversion
         A=B
         A < ->X
         C=#10
                                   ; Temperature data/10
         AX/=C
                                   ; Update display data.
         DSPDAT=C (A)
         (DSPDAT+1) = X (A)
    endif
endif
RET
```

THRTBL:

;		

DB DB DB DB DB DB DB DB DB	1 4 7 0AH 0CH 0FH 12H 16H 19H 1CH	; -19.5 ; -18.5 ; -17.5 ; -16.5 ; -15.5 ; -14.5 ; -13.5 ; -12.5 ; -11.5 ; -10.5
DB DB DB DB	1FH 23H 26H 2AH	;
DB	2DH	; -5.5
DB	31H	; -4.5
DB	35H	; -3.5
DB	38H	; -2.5
DB DB DB DB	3CH 40H 44H 48H	;
DB	4CH	; 2.5
DB	50H	; 3.5
DB	54H	; 4.5
DB	58H	: 5.5
DB	5CH	; 6.5
DB	60H	; 7.5
DB	64H	; 8.5
DB	69H	9 5
DB DB DB DB	6DH 71H 75H	; 10.5 ; 11.5 ; 12.5
DB DB DB	7EH 82H 86H	, 13.5 ; 14.5 ; 15.5 ; 16.5
DB	8BH	; 17.5
DB	8FH	; 18.5
DB	93H	; 19.5
DB	97H	; 20.5
DB	9BH	; 21.5
DB	9FH	; 22.5
DB	0A3H	; 23.5
DB	0A8H	; 24.5
DB	0ACH	; 25.5
DB	0B0H	; 26.5
DB	0B4H	; 27.5
DB	0B7H	; 28.5
DB	0BBH	; 29.5
DB	0BFH	; 30.5
DB	0C3H	; 31.5
DB	0C7H	; 32.5
DB	0CBH	; 33.5
DB	0CEH	; 34.5
DB	0D2H	; 35.5
DB	0D6H	; 36.5

DB	0D9H	; 37.5
DB	0DCH	; 38.5
DB	OEOH	; 39.5
DB	0E3H	; 40.5
DB	0E7H	; 41.5
DB	0 EAH	; 42.5
DB	0 EDH	; 43.5
DB	OFOH	; 44.5
DB	0F3H	; 45.5
DB	ОГСН	; 46.5
DB	0F9H	; 47.5
DB	OFCH	; 48.5
DB	OFEH	; 49.5

9.3 ANALOG KEY INPUT

The A/D converter is used to read in 16 keys. In order to perform key input, the circuit is configured so that when a key is pressed, a voltage unique to that key is input into the A/D converter.

In this example, because 16 different keys are read in, the V_{DD} voltage is divided into 16 levels. This voltage is converted into a key code. Table 9-2 shows the relationship between the input voltage and key code (00H-0FH). When there is no key input, the key code is 10H.

Input voltage (V)	A/D conversion value	Key code
GND	00-07H	00H
1/16V _{DD}	08-17H	01H
2/16V _{DD}	18-27H	02H
3/16V _{DD}	28-37H	03H
4/16V _{DD}	38-47H	04H
5/16V _{DD}	48-57H	05H
6/16V _{DD}	58-67H	06H
7/16V _{DD}	68-77H	07H
8/16V _{DD}	78-87H	08H
9/16V _{DD}	88-97H	09H
10/16V _{DD}	98-A7H	0AH
11/16V _{DD}	A8-B7H	0BH
12/16V _{DD}	B8-C7H	0CH
13/16V _{DD}	C8-D7H	0DH
14/16V _{DD}	D8-E7H	0EH
15/16V _{DD}	E8-F7H	0FH
V _{DD}	F8-FFH	10H

Table 9	9-2.	Input	Voltages	and	Kev	Codes
1 4 8 1 9 1		mpac	ronugoo	ana		00400

Figure 9-10 shows an example circuit implementing the relationship between the input voltage and the key code. However, when two or more keys are pressed in this circuit, the key having the smaller code is given priority and read in.

Figure 9-10. Analog Key Input Circuit Example

Resistors R0 to R15 used in the circuit shown in Figure 9-10 can be determined from the following equation.

$$\sum_{K=1}^{n} R_{K} = \frac{n \times R0}{16 - n}$$

Table 9-3 shows the resistances of R1 to R15 based on this equation when R0 was 1 k Ω . (Because the resistances are based on the color-coded display on commercial resistors, the calculation results may differ.)

Resistor number	Resistance (Ω)	Resistor number	Resistance (Ω)	Resistor number	Resistance (Ω)
R1	68	R6	150	R11	560
R2	75	R7	180	R12	750
R3	82	R8	220	R13	1.3 k
R4	100	R9	270	R14	2.7 k
R5	120	R10	390	R15	8.2 k

Table 9-3. Resistances of R1 to R15

In this program, the analog voltage that was input is converted into a key code listed in Table 9-2. After chattering is absorbed, the code is saved in RAM. Chattering absorption uses a technique where a key becomes valid when the key code matches five consecutive times. For example, when sampling is performed every 5 ms, chattering lasting 20 ms to 25 ms is absorbed. When the key input changed, the key change flag (KEYCHG) is set.

(1) Package description

<Symbols declared as public>

AKEYIN : Name of analog key input subroutine
KEYDAT : Key code storage area
PASTDT : Key code storage area for chattering absorption
CHATCT : Chattering absorption counter
KEYCHG : Key change test flag
CHTENDF: End of chattering absorption test flag
KEYOFF : Key code when there is no key input

<Registers used>

А

<RAM used>

Name	Use	Attributes	Bytes
PASTDAT	Key code storage for chattering absorption	SADDR	1
KEYDAT	Key code storage		
CHATCNT	Chattering counter		

<Flags used>

Name	Use
KEYCHG	Set when the key changes
CHTENDF	Set at the end of chattering absorption

<Nesting>

1 level, 2 bytes

<Hardware used>

A/D converter

<Initial settings>

Channel selection and operation start of A/D converter ADM=#1000xxx1B

<Startup procedure>

- Call AKEYIN in each constant interval.
- Read in the key code after testing the key change flag. Also, because the key change flag is not cleared in the subroutine, clear after testing the flag.

(2) Use example

```
EXTRN
                AKEYIN, KEYDAT, PASTDT, CHATCT
                KEYOFF
        EXTRN
        EXTBIT KEYCHG, CHTENDF
VETM3
        CSEG
                AT 12H
                                     ; Vector address setting of the watch timer
        DW
                INTTM3
MAINDAT DSEG
                SADDR
CT5MS:
                1
       DS
        TMC2=#00100110B
        CLR1
                TMMK3
        CT5MS = #3
                                     ; Set the OFF data in the key data.
        KEYDAT=#KEYOFF
        PASTDT=#KEYOFF
                                     ; Set the chattering count to 5 times.
        CHATCT=#CHAVAL
        CLR1
               CHTENDF
        CLR1
                KEYCHG
        ADM=#10000101B
                                     ; ANI2 pin, operation start
        ΕI
          :
          :
                                     ; Did the key change?
        if_bit(KEYCHG)
                CLR1
                        KEYCHG
                ; Key input processing
        endif
          :
          :
Watch timer interrupt servicing
;
             1.95-ms interval
;
; 1.95-ms interrupt servicing
INTTM3:
          :
          :
        DBNZ
               CT5MS,$RTNTM3
                                    ; 1.95 ms x 3 elapsed
                CT5MS,#3
        MOV
               !AKEYIN
        CALL
RTNTM3:
          :
          :
        RETI
```

(3) SPD chart

(4) Program listing

```
PUBLIC AKEYIN, KEYDAT, PASTDT
         PUBLIC CHATCT, KEYOFF
         PUBLIC KEYCHG, CHTENDF
AK_DAT
         DSEG
                  SADDR
                                              ; Key data storage area
KEYDAT: DS
                  1
PASTDT: DS
                 1
                                              ; Chattering key data
                                              ; Chattering counter
CHATCT: DS
                  1
AK_FLG
        BSEG
                                              ; Key change.
KEYCHG DBIT
                                              ; End of chattering absorption state
CHTENDF DBIT
                                              ; OFF key data
KEYOFF
         EQU
                  10H
CHAVAL
        EQU
                  5
                                              ; Chattering absorption count
AK_SEG CSEG
;*
     Analog key input
;************************
AKEYIN:
                                              ; A/D conversion input
         A=ADCR
                                              ; Data adjustment
         A+=#8
         if_bit(CY)
                                              ; Set to the no input key state.
             A=#KEYOFF
         else
                                              ; Decode key
              A>>=1
             A>>=1
             A>>=1
             A>>=1
              A\&=#0FH
         endif
         if(A==PASTDT)
                                              ; No key change
              if_bit(!CHTENDF)
                                              ; Absorbing chattering
                  CHATCT--
                                              ; End of chattering absorption
                  if(CHATCT==#0)
                                              ; Set to the end of chattering absorption state
                       SET1 CHTENDF
                       A=PASTDT
                                             ; There is a valid key change.
                       if(A!=KEYDAT)
                           KEYDAT=A
                                              ; Update key data.
                           SET1 KEYCHG ; Set to the key change state.
                       endif
                  endif
              endif
         else
                                              ; Update previous key data.
              PASTDT=A
                                              ; Start chattering absorption.
              CHATCT=#CHAVAL-1
              CLR1
                      CHTENDF
         endif
         RET
```

9.4 4-CHANNEL INPUT A/D CONVERSION

This section describes an A/D conversion method where four channels are scanned. A/D conversion is started by a software start.

Analog voltages input to the four selected channels undergo A/D conversion. The conversion result of each channel is saved in RAM.

An interrupt request is generated by 8-bit timer/event counter 1 and the conversion result is read into processing for the interrupt request and channel conversion is performed. Because the time set for 8-bit timer/event counter 1 is 10 ms, measuring the waiting time for A/D conversion is not necessary.

Caution When the interrupt time changes, set the following.

- The timer is set to a value longer than { A/D-conversion-completion-time + interrupt-return-time + interrupt-servicing-time
- Flags are tested at the end of conversion.

Figure 9-11. Timing Chart in the 4-Channel Scanning Mode

(1) Package description

<Symbols declared as public>

- Output parameters
 - M_CH0: Stores the conversion result of channel 0
 - M_CH1: Stores the conversion result of channel 1
 - M_CH2: Stores the conversion result of channel 2
 - M_CH3: Stores the conversion result of channel 3

<Registers used>

А

<RAM used>

Name	Use	Attributes	Bytes
M_CH0	Storage area for channel 0 conversion result	SADDR	1
M_CH1	Storage area for channel 1 conversion result	SADDR	1
M_CH2	Storage area for channel 2 conversion result	SADDR	1
M_CH3	Storage area for channel 3 conversion result	SADDR	1
M_MODE	Mode storage area	SADDR	1

<Nesting>

1 level, 3 bytes

<Hardware used>

- A/D converter
- 8-bit timer/event counter 1
- Port 1 (P10-P13)

<Initial settings>

- Channel selection and operation start of the A/D converter ADM=#1000xxxxB
- Channel number selection of A/D converter
- 10-ms interval for 8-bit timer/event counter 1

ADM=#1000xxxxB ADIS=#00000100B TCL1=#00001101B TMC1=#00000001B CR10=#81

• TMMK1 interrupt enabled

(2) Use example

M_CH0, M_CH1, M_CH2, M_CH3, M_MODE EXTRN Initialize Μ4 CSEG ; RES_STA: ; SEL RBO ; DI • . ; A/D operation start, no external trigger, channel 0 selected ADM=#1000001B ; Analog input, 4 channels selected ADIS=#00000100B ; Modulo register 81 setting CR10=#81 ; Count/clock 8.2 kHz TCL1=#00001101B ; Enable 8 bit/timer/register 1 operation TMC1=#0000001B ; Clear timer 1 interrupt request flag. CLR1 TMIF1 ; Enable timer 1 interrupt. CLR1 TMMK1 ΕI $M_MODE = #0$; Set the initial value (0 channels) in the mode area . ; while(forever) . . ; A <- channel 0 data A=M_CH0 . . ; A <- channel 1 data A=M_CH1 . . ; A <- channel 2 data A=M_CH2 . . A=M_CH3 ; A <- channel 3 data . .

(3) SPD chart

[A/D conversion processing]

(4) Program listing

; A/D conversion \$PC(044A) ; PUBLIC M_CH0, M_CH1, M_CH2, M_CH3, M_MODE ; ; AT 16H VEINTM1 CSEG DW KASAN RAM definition DSEG SADDR ; RAM area for channel 0 addition M_CH0: 1 DS ; RAM area for channel 1 addition M_CH1: DS 1 ; RAM area for channel 2 addition M_CH2: DS 1 M_CH3: DS 1 ; RAM area for channel 3 addition ; Mode storage area M_MODE: DS 1 ; CSEG ; KASAN: : Switch to bank 2. SEL RB2 ; Which channel is currently selected? switch(M_MODE) Channel 0: case 0: ; Transfer conversion result to RAM $M_CH0 = ADCR$ (A) M_MODE++ ADM=#10000011B Change channel selection to 1. break Channel 1: case 1: Transfer conversion result to RAM M_CH1=ADCR (A) M_MODE++ ADM=#10000101B Change channel selection to 2. break case 2: Channel 2: Transfer conversion result to RAM $M_CH2 = ADCR$ (A) M_MODE++ ADM=#10000111B Change channel selection to 3. break Channel 3: case 3: ; Transfer conversion result to RAM $M_CH3=ADCR$ (A) $M_MODE = #0$ ADM=#1000001B Change channel selection to 0. break ends RETI END

CHAPTER 10 APPLICATIONS OF FIP CONTROLLER/DRIVER

The functions of the FIP controller/driver are listed below. The differences between the μ PD78044F, μ PD78044H, μ PD780208, and μ PD780228 subseries are listed in Table 10-1.

- (1) Segment signal output (DMA operation) by automatically reading display data and automatic output of digit signals
- (2) Display mode register controlling FIP (fluorescent indicator panel) (See Table 10-1.)
- (3) Those pins not used for FIP display can be used either as output port or I/O port pins (however, pins FIP0 through FIP12 of the μPD780208 subseries and pins FIP0 through FIP15 of the μPD780228 subseries are dedicated to display output).
- (4) Brightness can be set to one of eight steps by using display mode register 1 (DSPM1).
- (5) Hardware for key scan application

*

*

- Generates an interrupt request signal (INTKS) indicating the key scan timing
- Key scan signals are output from segment output pins if data for key scanning is set to port (see Table 10-1).
- Key scan data output timing can be detected by key scan flag (KSF).
- Whether the key scan timing is inserted can be selected (only for the μ PD780228 subseries).
- (6) High-voltage output buffer directly driving FIP
- (7) Pull-down resistor can be connected by mask option to display output pins.
- (8) Any digit signal output timing can be set by selecting display mode 2 with display mode register 0 (DSPM0) (μPD780208 subseries only).
- Caution The format of the registers incorporated into the μPD780228 subseries differs from that of the registers incorporated into the μPD78044F, μPD78044H, and μPD780208 subseries.
 When using any of the sample programs described in this chapter with the μPD780228 subseries, replace the register settings with those for the μPD780228 subseries.

* Table 10-1. Differences between μPD78044F, μPD78044H, μPD780208, and μPD780228 Subseries

Item	Subseries	μPD78044F subseries	μPD78044H subseries	μPD780208 subseries	μPD780228 subseries	
Number of segmen	ts	9-24		9-40	Up to 48 for total	
Number of digits		2-16			segments and digits	
Display mode		Segment type		 Segment type Character type Type that a segmen more grids 	t extends two or	
Multiplexed key sca	an port	Ports 11 and 12		Ports 8-12	Ports 7-10	
Controlling register		Display mode registers (DSPM0 and DSPM1)	s 0 and 1	Display mode registers 0-2 (DSPM0-DSPM2)		

Symbol	7		6	5	4	3	2	1	0	_	Addres	s At	reset	R/W
DSPM0	KSF	DS	PM06	0	0	SEGS3	SEGS2	SEGS1	SEGS0		FFA0H	H 0	0H	R/W ^{Note 1}
										_		1		
										SEGS3	SEGS2	SEGS1	SEGS0	Number of display segments
										0	0	0	0	9
										0	0	0	1	10
										0	0	1	0	11
										0	0	1	1	12
										0	1	0	0	13
										0	1	0	1	14
										0	1	1	0	15
										0	1	1	1	16
										1	0	0	0	17
										1	0	0	1	18
										1	0	1	0	19
										1	0	1	1	20
										1	1	0	0	21
										1	1	0	1	22
										1	1	1	0	23
										1	1	1	1	24
										-	1			
										DSPM06	Mode subsy	setting stem clo	for the r ock ^{Note 2}	noise eliminator of the
										0	2.5 M	Hz < fx :	≤ 5.0 MI	Ηz
										1	1.25 N	ЛHz < f>	≤ 2.5 N	1Hz
	L									KSF	Timing	g status		
										0	Displa	y timing	9	
										1	Key se	can timi	ng	

Figure 10-1. Format of Display Mode Register 0 (μ PD78044F and μ PD78044H Subseries)

- **Notes 1.** Bit 7 (KSF) is read-only.
 - 2. Specify a value in accordance with the oscillation frequency of the main system clock (f_X). The noise eliminator can be used during FIP display operation.
- Caution When using the FIP controller/driver with a main system clock of 1.25 MHz, use the main system clock (TCL24 (bit 4 of timer clock selection register 2 (TCL2)) = 0) for the watch timer.
- **Remark** f_X: Oscillation frequency of the main system clock

Figure 10-2.	Format of Display	Mode Register	0 (uPD780208	Subseries) (*	1/2)
rigare ro z.	I office of Display	mode Register	0 (µ1 D100200	000000000000000000000000000000000000000	

Symbol	7	6	5	4	3	2 1 0 Address At reset R/W
DSPM0	KSF	DSPM06	DSPM05	SEGS4	SEGS3	SEGS2 SEGS1 SEGS0 FFA0H 00H R/W
R/W	SEGS4	SEGS3	SEGS2	SEGS1	SEGS0	Number of display segments (display mode 1) Number of display outputs (display mode 2)
	0	0	0	0	0	9 9
	0	0	0	0	1	10 10
	0	0	0	1	0	11 11
	0	0	0	1	1	12 12
	0	0	1	0	0	13 13
	0	0	1	0	1	14 14
	0	0	1	1	0	15 15
	0	0	1	1	1	16 16
	0	1	0	0	0	17 17
	0	1	0	0	1	18 18
	0	1	0	1	0	19 19
	0	1	0	1	1	20 20
	0	1	1	0	0	21 21
	0	1	1	0	1	22 22
	0	1	1	1	0	23 23
	0	1	1	1	1	24 24
	1	0	0	0	0	25 25
	1	0	0	0	1	26 26
	1	0	0	1	0	27 27
	1	0	0	1	1	28 28
	1	0	1	0	0	29 29
	1	0	1	0	1	30 30
	1	0	1	1	0	31 31
	1	0	1	1	1	32 32
	1	1	0	0	0	33 33
	1	1	0	0	1	34 34
	1	1	0	1	0	35 35
	1	1	0	1	1	36 36
	1	1	1	0	0	37 37
	1	1	1	0	1	38 ^{Note} 38
	1	1	1	1	0	39 ^{Note} 39
	1	1	1	1	1	40 ^{Note} 40

Note If the total number of digits and segments exceeds 53, digits have precedence over segments.

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
DSPM0	KSF	DSPM06	DSPM05	SEGS4	SEGS3	SEGS2	SEGS1	SEGS0	FFA0H	00H	R/W ^{Note 1}
R/W	DSPM05	Settin	g of dis	play mo	ode						
	0	Displa	ay mode	e 1 (seg	ment/cl	naracte	r type)				
	1	Displa	ay mode	e 2 (type	e that a	segme	nt exter	nds two o	or more grids)		
R/W	DSPM06	Mode	setting	for the	noise e	liminato	or of the	subsyst	tem clock ^{Note 2}		
	0	2.5 M	Hz < fx	≤ 5.0 N	lHz						
	1	1.25 N	∕IHz < f	x ≤ 2.5	MHz ^{Note}	3					
R	KSF	Timing	g status	;							
	0	Displa	ay timin	g							
	1	Key s	can tim	ing							

Figure 10-2. Format of Display Mode Register 0 (µPD780208 Subseries) (2/2)

Notes 1. Bit 7 (KSF) is read-only.

- **2.** Specify a value in accordance with the oscillation frequency of the main system clock (f_X). The noise eliminator can be used during FIP display operation.
- **3.** When f_X is used from above 1.25 MHz to 2.5 MHz, set 1 in DSPM06 before FIP display.
- Caution When using the FIP controller/driver with a main system clock of 1.25 MHz, use the main system clock (TCL24 (bit 4 of timer clock selection register 2 (TCL2)) = 0) for the watch timer.
- **Remark** f_X: Oscillation frequency of the main system clock

*

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
DSPM0	DSPEN	0	FOUT5	FOUT4	FOUT3	FOUT2	FOUT1	FOUT0	FF90H	10H	R/W
	FOUT5	FOUT4	FOUT3	FOUT2	FOUT1	FOUT0	Numbe	er of FIP c	output pins		
	0	1	0	1	1	1	17-24				
	0	1	1	1	1	1	25-32				
	1	0	0	1	1	1	33-40				
	1	0	1	1	1	1	41-48				
	Other t	han the a	above				Setting	prohibite	d		

Figure 10-3. Format of Display Mode Register 0 (µPD780228 Subseries)

DSPEN	Enabling or disabling FIP display
0	Enable FIP display
1	Disable FIP display

Cautions 1. Always set bit 6 to 0.

- 2. When bit 7 (DSPEN) is 1, do not write data into bits other than DSPEN.
- 3. The output latch of the port multiplexed with the pins used for FIP output must be set to 0.

Symbol	7	6	5	4	3	2	1	0	_	Addres	s At	reset	R/W
DSPM1	DIGS3	DIGS2	DIGS1	DIGS0	DIMS3	DIMS2	2 DIMS1	DIMS0		FFA1H	H 0	оH	R/W
									1				
									DIMS0	Displa	ay cycle	selectio	on
									0	1024/	fx as 1 c	display o	
										(One			204.8 μs at 5.0 MΠ2.)
									1	2048/ (One	tx as 1 d display	cycle is	cycle 409.6 μs at 5.0 MHz.)
									DIMS3	DIMS2	DIMS1	Cut w	idth of the digit signal
									0	0	0	1/16	
									0	0	1	2/16	
									0	1	0	4/16	
									0	1	1	6/16	
									1	0	0	8/16	
									1	0	1	10/16	
									1	1	0	12/16	
									1	1	1	14/16	
									DICCO				Number of display digits
									DIGS3	DIGS2	DIGS1	DIGS0	Number of display digits
									DIGS3 0	DIGS2	DIGS1	DIGS0 0	Number of display digits Disabled display (static display) ^{Note}
									DIGS3 0 0	DIGS2 0 0	DIGS1 0 0	DIGS0 0 1	Number of display digits Disabled display (static display) ^{Note} 2
									DIGS3 0 0 0	DIGS2 0 0 0	DIGS1 0 0 1	DIGS0 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3
									DIGS3 0 0 0 0	DIGS2 0 0 0 0	DIGS1 0 0 1 1	DIGS0 0 1 0 1	Number of display digits Disabled display (static display) ^{Note} 2 3 4
									DIGS3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DIGS2 0 0 0 0 1	DIGS1 0 1 1 0	DIGS0 0 1 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6
									DIGS3 0 0 0 0 0 0 0	DIGS2 0 0 0 0 1 1 1	DIGS1 0 1 1 0 0 0	DIGS0 0 1 0 1 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7
									DIGS3 0 0 0 0 0 0 0 0	DIGS2 0 0 0 1 1 1 1 1	DIGS1 0 1 1 0 0 0 1 1	DIGS0 0 1 0 1 0 1 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7 8
									DIGS3 0 0 0 0 0 0 0 0 0 1	DIGS2 0 0 0 1 1 1 1 1 0	DIGS1 0 1 1 0 0 0 1 1 1 0	DIGS0 0 1 0 1 0 1 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7 8 8
									DIGS3 0 0 0 0 0 0 0 0 0 1 1	DIGS2 0 0 0 1 1 1 1 1 0 0	DIGS1 0 1 1 0 0 1 1 1 0 0	DIGS0 0 1 0 1 0 1 0 1 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7 8 8 9 10
									DIGS3 0 0 0 0 0 0 0 0 0 1 1 1	DIGS2 0 0 0 1 1 1 1 1 0 0 0	DIGS1 0 1 1 0 0 1 1 1 0 0 0 1	DIGS0 0 1 0 1 0 1 0 1 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7 8 9 10 10
									DIGS3 0 0 0 0 0 0 0 1 1 1 1 1	DIGS2 0 0 0 1 1 1 1 1 0 0 0 0 0	DIGS1 0 1 1 0 0 1 1 0 0 0 1 1 1	DIGS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7 8 9 10 10 11 12
									DIGS3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	DIGS2 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1	DIGS1 0 1 1 0 0 1 1 0 0 0 1 1 1 0	DIGS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7 8 9 10 10 11 11 12 13
									DIGS3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1	DIGS2 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 1 1	DIGS1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0	DIGS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7 8 9 10 10 11 12 12 13 14
									DIGS3 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1	DIGS2 0 0 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1	DIGS1 0 1 1 0 0 1 1 0 0 1 1 1 0 0 0 1 1	DIGS0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0	Number of display digits Disabled display (static display) ^{Note} 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 10-4. Format of Display Mode Register 1 (µPD78044F and µPD78044H Subseries)

Note When display is disabled, a port output latch can be operated to enable static display.

Remark f_X: Oscillation frequency of the main system clock

7

6

5

4

Figure 10-5. Format of Display Mode Register 1 (µPD780208 Subseries)

1

Symbol DSPM1

3 2

0 Address DIGS3 DIGS2 DIGS1 DIGS0 DIMS3 DIMS2 DIMS1 DIMS0 FFA1H

R/W At reset 00H R/W

DIMS0	Settin	g of dis	play mo	de cycle								
0	1024/	024/fx as 1 display cycle (One display cycle is 204.8 μs at 5.0 MHz.)										
1	2048/1	048/fx as 1 display cycle (One display cycle is 409.6 μs at 5.0 MHz.)										
	D1 1 0 0											
DIMS3	DIMS2	DIMS1	Cut w	idth of the FIP output signal								
0	0	0	1/16									
0	0	1	2/16									
0	1	0	4/16									
0	1	1	6/16									
1	0	0	8/16									
1	0	1	10/16									
1	1	0	12/16									
1	1	1	14/16	ł/16								
DIGS3	DIGS2	DIGS1	DIGS0	Number of display digits (display mode 1) DSPM05 = 0	Number of display patterns (display mode 2 DSPM05 = 1							
0	0	0	0	Disabled display (static display) ^{Note}	Disabled display (static display) ^{Note}							
0	0	0	1	2	2							
0	0	1	0	3	3							
0	0	1	1	4	4							
0	1	0	0	5	5							
0	1	0	1	6	6							
0	1	1	0	7	7							
0	1	1	1	8	8							
1	0	0	0	9	9							
1	0	0	1	10	10							
1	0	1	0	11	11							
1	0	1	1	12	12							
1	1	0	0	13	13							
1	1	0	1	14	14							
1	1	1	0	15	15							
1	1	1	1	16	16							

Note When display is disabled, a port output latch can be operated to enable static display.

: Oscillation frequency of the main system clock Remark f_X DSPM05 : Bit 5 of display mode register 0

Figure 10-6.	Format of Display	Mode Register	1 (μ PD780228	Subseries)
--------------	-------------------	---------------	------------------------------	------------

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
DSPM1	FBLK2	FBLK1	FBLK0	FPAT4	FPAT3	FPAT2	FPAT1	FPAT0	FF91H	01H	R/W
											

FPAT4	FPAT3	FPAT2	FPAT1	FPAT0	Number of display patterns
0	0	0	0	1	2
0	0	0	1	0	3
0	0	0	1	1	4
0	0	1	0	0	5
0	0	1	0	1	6
0	0	1	1	0	7
0	0	1	1	1	8
0	1	0	0	0	9
0	1	0	0	1	10
0	1	0	1	0	11
0	1	0	1	1	12
0	1	1	0	0	13
0	1	1	0	1	14
0	1	1	1	0	15
0	1	1	1	1	16
Other	than the a	above			Setting prohibited

FBLK2	FBLK1	FBLK0	Blanking width for the FIP output signal
0	0	0	1/16
0	0	1	2/16
0	1	0	4/16
0	1	1	6/16
1	0	0	8/16
1	0	1	10/16
1	1	0	12/16
1	1	1	14/16

Caution When bit 7 (DSPEN) of display mode register 0 (DSPM0) is 1, do not write data into display mode register 1 (DSPM1).

*

Figure 10-7.	Format c	of Display	Mode Regist	ter 2 (µPD78	0208 Subseries) (1/2)
--------------	----------	------------	-------------	--------------	-----------------------

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
DSPM2	0	0	USEG5	USEG4	USEG3	USEG2	USEG1	USEG0	FFA1H	00H	R/W

USEG5	USEG4	USEG3	USEG2	USEG1	USEG0	Number of write mask bits
0	0	0	0	0	0	None
0	0	0	0	0	1	1
0	0	0	0	1	0	2
0	0	0	0	1	1	3
0	0	0	1	0	0	4
0	0	0	1	0	1	5
0	0	0	1	1	0	6
0	0	0	1	1	1	7
0	0	1	0	0	0	8
0	0	1	0	0	1	9
0	0	1	0	1	0	10
0	0	1	0	1	1	11
0	0	1	1	0	0	12
0	0	1	1	0	1	13
0	0	1	1	1	0	14
0	0	1	1	1	1	15
0	1	0	0	0	0	16
0	1	0	0	0	1	17
0	1	0	0	1	0	18
0	1	0	0	1	1	19
0	1	0	1	0	0	20
0	1	0	1	0	1	21
0	1	0	1	1	0	22
0	1	0	1	1	1	23
0	1	1	0	0	0	24
0	1	1	0	0	1	25
0	1	1	0	1	0	26
0	1	1	0	1	1	27
0	1	1	1	0	0	28
0	1	1	1	0	1	29
0	1	1	1	1	0	30
0	1	1	1	1	1	31

Figure 10-7. Format of Display Mode Register 2 (µPD780208 Subseries) (2/2)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
DSPM2	0	0	USEG5	USEG4	USEG3	USEG2	USEG1	USEG0	FFA1H	00H	R/W

USEG5	USEG4	USEG3	USEG2	USEG1	USEG0	Number of write mask bits
1	0	0	0	0	0	32
1	0	0	0	0	1	33
1	0	0	0	1	0	34
1	0	0	0	1	1	35
1	0	0	1	0	0	36
1	0	0	1	0	1	37
1	0	0	1	1	0	38
1	0	0	1	1	1	39
Othe	er than t	he abov	'e			Setting prohibited

*

Figure 10-8. Format of Display Mode Register 2 (µPD780228 Subseries)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
DSPM2	KSF	KSM	0	0	0	0	FCYC1	FCYC0	FF92H	00H	R/W

FCYC1	FCYC0	Display cycle
0	0	2 ¹² fx (819.2 μs)
0	1	2 ¹¹ /fx (409.6 μs)
1	0	2 ¹⁰ /f _x (204.8 μs)
1	1	Setting prohibited

KSM	Selection of key scan cycle insertion
0	Insert a key scan cycle
1	Insert no key scan cycle

KSF	Status of the key scan cycle
0	During a cycle other than the key scan cycle
1	During the key scan cycle

Cautions 1. Always set 0 in bits 2 to 5.

- 2. When bit 7 (DSPEN) of display mode register 0 (DSPM0) is 1, do not write data into display mode register 2 (DSPM2).
- **Remarks 1.** f_X: Oscillation frequency of the main system clock
 - **2.** The values in parentheses apply to operation with $f_X = 5.0$ MHz.

Figure 10-9. FIP Controller Operation Timing

- n : Number of display digits 1 (2 to 16 digits selectable by display mode register 1 (DSPM1)
- T_{DSP}: One display cycle

(1024/f_X (244 μs at 4.19 MHz) or 2048/f_X (488 μs at 4.19 MHz))

 ${\sf T}_{\sf KS}\,$: Key scan timing

 $(T_{KS} = T_{DSP})$

T_{CYT}: Display cycle

 $(T_{CYT} = T_{DSP} x \text{ (number of digits + 1)})$

T_{DIG} : Digit signal pulse width (eight types, selectable with display mode register 1 (DSPM1))

10.1 12-DIGIT DISPLAY FOR FIP AND KEY INPUT

This section shows an example of processing an FIP having 12 digits by 9 segments and 8 x 4 key inputs by using the FIP controller/driver of the μ PD78044F subseries.

In this example, a key of the 8 x 4 key matrix that has been pressed is displayed on the first digit of the FIP (TO in Figure 10-10), and the data that has already been displayed is shifted one column to the left. Figure 10-10 shows the configuration.

Figure 10-10. Configuration of 12-Digit FIP Display and Key Input

10.1.1 12-Digit FIP Display

(1) Setting the number of segments and number of digits

With the circuit shown in Figure 10-10, twelve digits are displayed using eight key scan signals. The 9 segment x 12 digit FIP display mode is set. Nine segments is the minimum value for the selected number.

Figure 10-11 shows the pin layout according to the number of display digits for which nine segments are displayed.

				Selected N	umber of Di	splay Digits	;		
Pin Name	Display stops	2		9	10	11	12		16
FIP0/P80	P80	T0		то	то	TO	TO		TO
FIP1/P81	P81	T1	\ \	T1	T1	T1	T1		T1
FIP2/P90	P90	P90	N N	T2	T2	T2	T2		T2
FIP3/P91	P91	P91	1	Т3	Т3	Т3	Т3		Т3
FIP4/P92	P92	P92		T4	T4	T4	T4		T4
FIP5/P93	P93	P93		T5	T5	T5	T5		T5
FIP6/P94	P94	P94	N N N N N N N N N N N N N N N N N N N	Т6	Т6	T6	Т6		T6
FIP7/P95	P95	P95		T7	T7	T7	T7		T7
FIP8/P96	P96	P96	1	Т8	Т8	Т8	Т8		Т8
FIP9/P97	P97	P97		P97	Т9	Т9	Т9		Т9
FIP10/P100	P100	S0		S0	S0	T10	T10		T10
FIP11/P101	P101	S1		S1	S1	S0	T11	x	T11
FIP12/P102	P102	S2		\$2	\$2	S1	S0	``\.	T12
FIP13/P103	P103	S3		S 3	S 3	S2	S1	```	T13
FIP14/P104	P104	S4		S4	S4	S3	\$2	```	T14
FIP15/P105	P105	S5		S5	S 5	S4	S 3	Ň	T15
FIP16/P106	P106	S6		S6	S6	S 5	S4		S0
FIP17/P107	P107	S7		S7	S7	S6	S 5		S1
FIP18/P110	P110	S8∨P110		S8∨P110	S8∨P110	S7∨P110	S6∨P110	<u>`</u>	S2∨P110
FIP19/P111	P111	P111		P111	P111	S8∨P111	S7∨P111	```	S3∨P111
FIP20/P112	P112	P112		P112	P112	P112	S8∨P112	````	S4∨P112
FIP21/P113	P113	P113		P113	P113	P113	P113	· · · · · · · · · · · · · · · · · · ·	S5∨P113
FIP22/P114	P114	P114		P114	P114	P114	P114	Ì	S6∨P114
FIP23/P115	P115	P115		P115	P115	P115	P115		S7∨P115
FIP24/P116	P116	P116		P116	P116	P116	P116		S8∨P116
FIP25/P117	P117	P117		P117	P117	P117	P117		P117
FIP26/P120	P120	P120		P120	P120	P120	P120		P120
FIP27/P121	P121	P121		P121	P121	P121	P121		P121
FIP28/P122	P122	P122		P122	P122	P122	P122		P122
FIP29/P123	P123	P123		P123	P123	P123	P123		P123
FIP30/P124	P124	P124		P124	P124	P124	P124		P124
FIP31/P125	P125	P125		P125	P125	P125	P125		P125
FIP32/P126	P126	P126		P126	P126	P126	P126		P126
FIP33/P127	P127	P127		P127	P127	P127	P127		P127

✓ : Logical add (OR)

: Area used by this program
(2) Display data memory

The display data memory is an area that stores the segment data to be displayed on an FIP. This area is mapped to addresses FA50H through FA7FH. The FIP controller reads data from this area independently of instruction operation to enable the display of the FIP and outputs a segment signal synchronized with digit signals (DMA operation).

Any unused portion of this area can be used as an ordinary RAM area.

When a key is scanned, all digit signals are cleared to 0, and the data of the output latches of ports 11 and 12 are output to the FIP18/P110 through pins FIP33/P127.

The shaded portion in Figure 10-12 indicates the area used by this program.

Figure 10-12. Relationship between Contents of Display Data Memory and Segment Output

Bit	7 0	7 0	7 (p 🗸				
	FA50H	FA60H	FA70H	то				
ſ	FA51H	FA61H	FA71H	↓ T1				
	FA52H	FA62H	FA72H	T2]			
	FA53H	FA63H	FA73H	→ T3	Ļ			
	FA54H	FA64H	FA74H	↓ T4	•			
	FA55H	FA65H	FA75H	→ T5	•			
	FA56H	FA66H	FA76H		•			
	FA57H	FA67H	FA77H	→ T7				
	FA58H	FA68H	FA78H	- ↓ T8 ↓	Timing			
	FA59H	FA69H	FA79H	T9	output			
	FA5AH	FA6AH	FA7AH	T10]			
	FA5BH	FA6BH	FA7BH		 •			
	FA5CH	FA6CH	FA7CH	T12]			
	FA5DH	FA6DH	FA7DH	T13	1			
	FA5EH	FA6EH	FA7EH	 T14	•			
	FA5FH	FA6FH	FA7FH	T15				
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
S	S23 S16 S15 S8 S7 S0							

(3) Display

To display an FIP, output the data set for a display digit as the digit signals and write the data to be displayed as segment signals (i.e., to the display data memory).

As an example, the setting of display mode registers 0 and 1 when 9 segments and 12 digits are to be displayed is shown below.

Figure 10-13 shows an example display based on this setting.

• Setting of DSPM0

DSPM0 = #00000000B; Selects 9 segments

- Setting of DSPM1
 - DSPM1 = #10110011B; Selects 12 digits, a digit signal cut width of 2/16, and a display cycle of 488 μ s (at 4.19 MHz)

10.1.2 Key Input

An example of a program that receives input from an 8 x 4 key matrix is shown.

The circuit used for this program uses port 11 (P110 through P117) for the key scan signals and the lower 4 bits (P120 through P123) of port 12 for the key return signals (see Figure 10-10).

The key scan flag (KSF) is set to 1 while keys are scanned and is cleared to 0 during display. When this flag is set to 1, an interrupt request occurs and keys are input by this interrupt. Because not all of the 8 x 4 keys can be input during the time made available by one interrupt request (488 μ s), the interrupt request must be issued twice to enable input of all the keys. The timing chart shown in Figure 10-14 illustrates how all the keys are input.

Figure 10-14. Key Interrupt Timing Chart

One input key corresponds to 1 bit and is stored in RAM. The RAM data is set according to the pressed key. When the key is released, the data is cleared. By sequentially testing each bit of RAM data starting from the first bit, therefore, the statuses of the keys can be checked. Chattering is compensated for by validating the key only if the key data coincides with the corresponding RAM bit three times in a row.

Because 12 digits are displayed and the keys are scanned every 12.688 ms (= $13 \times 488 \mu s$ (display cycle selectable) x two times (number of interrupts necessary for inputting all the keys)) in this example, chattering of about 25 ms to 38 ms can be eliminated. If a key input is changed, the key change flag (F_KHENKA) is set. Figure 10-15 illustrates how chattering is eliminated.

Figure 10-15. Compensating for Chattering

To prevent unwanted data from being displayed during display, the timing is checked by the key scan flag (KSF) at the beginning and end of key scan processing.

10.1.3 Description of Package

(1) FIP display

An FIP display program is not included in the package. Refer to the explanation of initial setting and display data conversion processing in Section 10.1.4.

(2) Key input

Because key input processing is performed as interrupt processing, the key input processing performed by this package is executed when the INTKS interrupt request is enabled.

<Symbols declared as public>

Output parameters
 KEY1_OLD : Stores key bit after eliminating chattering
 KEY1_NEW: Stores key bit while eliminating chattering
 SCAN : Stores scanned key data
 NEWKEYP : Stores RAM address used to store next key bit while eliminating chattering
 F_KHENKA : Set if current key is found to be different from previous key after eliminating chattering

<Registers used>

Bank 2, AX, HL, DE, B

<RAM used>

Name	Use	Attributes	Bytes
C_CAHTA	Chattering counter	SADDR	1
KEY1_OLD	Previous key bit input storage area	SADDR	8
KEY1_NEW	Current key bit input storage area	SADDR	8
SCAN	Key scan data storage area	SADDR	1
NEWKEYP	Next key bit input storage area	SADDRP	2
WORK	Key data transfer area	SADDR	1
i	Loop processing work counter	SADDR	1
B_FIP1	Stores display data	SADDR	12

<Flags used>

Name	Use
F_KHENKA Set upon change in key input.	
F_KEYEND	Set when four keys are scanned.

<Nesting>

1 level, 3 bytes

<Hardware used>

- FIP controller/driver
- Port 11
- Port 12 (P120 through P123)

<Initial settings>

Setting of DSPM0

DSPM0 = #00000000B ; Selects 9 segments

- Setting of DSPM1
 DSPM1 = #10110011B ; 12 display digits, digit signal cut width of 2/16, and display cycle of 488 μs
- Port 11 output mode
 PM11 = #0000000B
- INTKS interrupt enable CLR1 KSMK

<Processing>

The input key data is stored into the KEY1_NEW area after the processing of the INTKS interrupt. All keys are completely input after the INTKS interrupt request has occurred two times. The determined key is stored into the KEY1_OLD area.

<Usage>

- Set RAM as follows after reset and start:
 - NEWKEYP = #KEY1_NEW ; key bit storage RAM address
 - SCAN = #00000001B ; key scan data initial value
- Input the key data after testing the key change flag. Because the key change flag is not cleared to 0 by interrupt processing, clear this flag after flag test.

10.1.4 Example of Use

In the program example shown below, the initial setting of the key scan work area and display data conversion processing are performed for FIP display.

EXTRN KEY1_OLD, KEY1_NEW, SCAN, NEWKEYP EXTBIT F_KHENKA ; EQU OFA70H FIP1 ; ; FIP display 1st digit output BUF B_FIP1: DS 12 Μ1 CSEG ; RES_STA: DI ; Selects 9 segments DSPM0=#0000000B ; 12 display digits, cut width of 2/16, display cycle of 488 μ s DSPM1=#10110011B PM11=#0000000B ; Port 11 output mode ; Clears the interrupt request flag CLR1 KSIF ; Enables INTKS interrupt CLR1 KSMK SCAN=#0000001B ; Key scan data initial value NEWKEYP=#KEY1_NEW ; INTKS interrupt (INT_KEY) started by enabled interrupt ΕI while(forever) ; Key change flag set? IF_BIT(F_KHENKA) CLR1 F_KHENKA ; Clears key change flag Decode processing ; Converts 12 FIP display digits into output data and stores that for(B=#0;B<#12.B++)</pre> HL=#B_FIP1 ; data into the output BUF X = [HL + B]A=#0 AX+=#DISPLAY HL=AX A = [HL]HL=#FIP1 [HL+B]=A next ; FIPDAT CSEG DISPLAY: DB 11111100B :0 ; 1 DB 01100000B : 2 DB 11011010B ; 3 DB 11110010B DB 01100110B :4 ; 5 DB 10110110B DB 10111110B ;6 ; 7 DB 11100000B : 8 DB 11111110B DB 11110110B :9 ; A DB 11101110B DB 00111110B ; B ; C DB 10011100B ; D DB 01111010B DB 10011110B ; E ; F DB 10001110B

10.1.5 SPD Chart

[Key input processing (INTKS interrupt processing)]

10.1.6 Program Listing

```
;
    Key input processing (INTKS interrupt)
;
$PC(044A)
PUBLIC KEY1_OLD, KEY1_NEW, SCAN, NEWKEYP
PUBLIC F-KHENKA
;
VEINTKS CSEG
               AT 1CH
               INT_KEY
       DW
;
                                           ; Number of times chattering is eliminated
CHATDAT EQU
               02H
SCANDAT EQU
                0000001B
                                           ; First key scan data
;
RAM definition
;
;
KEYRAM
          DSEG SADDR
KEY1 OLD: DS
                                           ; Previous key bit input determination data area
                   8
                                           ; Current key bit input determination data area
KEY1_NEW: DS
                   8
                                           ; Chattering counter
C_CHATA:
           DS
                   1
                                           : Work area
WORK:
          DS
                   1
                                           ; Key scan data storage area
SCAN:
          DS
                   1
                                           ; Work counter area
i:
          DS
                   1
           DSEG SADDRP
          DS
                   2
                                           ; Next key bit input determination RAM address storage area
NEWKEYP:
;
         BSEG
KEYFLG
F_KHENKA
          DBIT
                                           ; Key change flag
                                           ; Key END flag
F KEYEND
           DBIT
;
KEY
    CSEG
INT KEY:
                                           ; Checks flag of INTKS
   IF_BIT(KSF)
                                           ; Selects bank 2
       SEL RB2
       WORK=#0
                                           ; Stores next key storage RAM address into HL register
       HL=NEWKEYP (AX)
       for(i=#0;i<=#4;i++)</pre>
                                           ; Outputs key scan signal
           P11=SCAN (A)
                                           ; Shifts scan signal 1 bit to left
           A=SCAN
           ROL A,1
           SCAN=A
           for(B=#0;B<#6;B++) (A)
                                           ; Scan time wait processing
           next
           A=P12
                                           ; Key return input
           A &= #0FH
                                           ; Stores key return to WORK area
           WORK=A
```

if(A!=[HL])	•
C_CHATA=#0FFH	; Clears chattering counter unless the same as the previous
endif	; value
[HL] = WORK (A)	. ,
HL++	. ,
next	;
NEWKEYP=HL (AX)	;
if_bit(F_KEYEND)	; All keys input?
CLR1 F_KEYEND	• 1
if(C_CHATA>#CHATDAT)	; End of chattering elimination?
DE=#KEY1_OLD	•
HL=#KEY1_NEW	; Previously determined key \neq currently determined key?
for(i=#0;i<#8;i++)	• 1
if([DE]!=[HL]) (A)	; Sets key change flag
SET1 F_KHENKA	• 3
endif	• 9
[DE]=[HL] (A)	• 3
DE++	• 3
HL++	• 3
next	• •
C_CHATA=#0	; Clears chattering counter
NEWKEYP=#KEY1_NEW	; Initializes next key bit input determination RAM address
SCAN=#SCANDAT	; Initializes key scan data
else	· ,
if_bit(KSF)	; Checks INTKS flag
C_CHATA++	; Increments chattering counter if OK
endif	· ,
endif	· ,
else	· ,
SET1 F_KEYEND	• 1
endif	• •
ENDIF	• 1
RETI	• 1
END	

CHAPTER 11 APPLICATIONS OF 6-BIT UP/DOWN COUNTER

The 6-bit up/down counter is incremented or decremented at the valid edge of the CI0/P03/INTP3 pin. This counter uses a 6-bit up/down register (UDC) to count the number of count pulses input to the CI0/P03/ INTP3 pin (see Figure 11-1).

If the value of the UDC coincides with the value of a 6-bit up/down counter compare register (UDCC) in ascending count mode, an interrupt request flag (PIF3) is set, and the UDC is cleared to 0.

If the UDC underflows in the descending count mode, the interrupt request flag (PIF3) is set, and a value of UDCC minus 1 is loaded into the UDC.

The 6-bit up/down counter is controlled by a 6-bit up/down counter control register (UDM).

<Ascending count operation>

Caution When using the 6-bit up/down counter, set the CI0/P03/INTP3 pin to input mode (by setting bit 3 (PM03) of port mode register 0 to 1).

Figure 11-2. Format of 6-Bit Up/Down Counter Control Register

- Cautions 1. Do not set UDM0, UDM1, and UDM3 at the same time as the input of the valid edge of the CI0/P03/INTP3 pin.
 - 2. When 1 is written into UDM3, the UDC is cleared to 0. When the UDC is cleared, UDM3 is automatically reset to 0.
 - 3. The UDC cannot be read or written until data is set in it after $\overline{\text{RESET}}$.

11.1 1-SECOND COUNTER

This section provides an example in which the 6-bit up/down counter generates an interrupt request every 1 second when an external frequency of 60 Hz is input to CI0. The interrupt processing increments or decrements a RAM counter (C_COUNT) by using a count direction flag (F_HOUKOU).

(1) Description of package

<Symbols declared as public>

- Subroutine name
 - S_UPDOWN: Subroutine incrementing/decrementing counter
- Input parameter
 F_HOUKOU : Up/down count status
 - DATAU : Data stored to compare register (frequency: 60 Hz)
- Output parameter
 C_COUNT : Stores counter value

<Register used>

None

<RAM used>

Name Use		Attributes	Bytes
C_COUNT	RAM counter	SADDR	1

<Flags used>

Name	Use	
F_HOUKOU	Count direction flag (counter counts down when this flag is set)	

<Nesting>

2 levels, 5 bytes

<Hardware used>

• 6-bit up/down counter

<Initial settings>

- Set by subroutine S_UPDOWN
- INTUD interrupt enabled

<Usage>

- Counting is started when the INTUD interrupt request is enabled.
- Call subroutine S_UPDOWN to change the count direction (between up and down).

(2) Example of use

EXT.		ער איזרים א	
L 22 I .		DOWN.DAIAO	
М2		CSEG	• ,
RES	_STA:		
	DI		. ,
	UDC=#0		; Clears 6-bit up/down counter
	UDCC=#D	DATAU	; Sets value to compare register up
	UDM=#00	011110B	; Set by INTUD interrupt signal. Ascending count operation.
	CLR1	PIF3	; Clears INTP3 (INTUD) interrupt request flag
	CLR1	KSIF	; Clears interrupt request flag
	CLR1	РМК З	; Enables INTUD interrupt
	CLR1	KSMK	; Enables INTKS interrupt
	ΕI		• 1

```
if(up/down change)
        CALL !S_UPDOWN
endif
```

(3) SPD chart

[Count processing (INTUD interrupt processing)]

[Count direction change routine]

(4) Program list

; 6-bit up/down counter (INTUD) ; \$PC(044A) PUBLIC C_COUNT, F_HOUKOU PUBLIC S_UPDOWNU PUBLIC DATAU VEINTUD CSEG AT OCH DW COUNT ; 60 Hz cycle EQU 60 DATAU ; RAM definition DSEG SADDR ; RAM counter C_COUNT: DS 1 BSEG ; Count direction flag F_HOUKOU DBIT CSEG COUNT: SEL RB2 ; Count direction flag = 1? if_bit(F_HOUKOU) C_COUNT--; yes -> decrements RAM counter else ; no -> increments RAM counter C_COUNT++ endif RETI ; RAM counter up/down subroutine S_UPDOWN: CLR1 UDM.2 ; Stops count operation if_bit(F_HOUKOU) ; Down counter operation CLR1 UDM.1 else SET1 UDM.1 ; Up counter operation endif SET1 UDM.2 ; Starts count operation RET END

[MEMO]

APPENDIX A SPD CHART DESCRIPTION

SPD is an acronym derived from Structured Programming Diagrams.

"Structured" means logical design and organization using basic logical structures, and involves structuring the logical processes of a program.

All programs can be created by only combining basic logical structures (sequencing, selection, repetition). (This is called the structured theorem.) Thus, the program flow is clarified by its structure and reliability improves. There are a variety of ways to represent program structure; however, a graphical technique called SPD is used at NEC.

Below, the SPD symbols used in the SPD technique are described and compared to flowchart symbols.

Table A-1. Comparison of SPD Symbols and Flowcharts (1/2)

1. Sequential Processing

Sequential processing is executed in the output order from the top to the bottom.

• SPD chart

- 2. Conditional Branch: 2 Branches (IF) The processing content is selected based on whether the condition specified in IF is true or false (THEN/ ELSE).
 - SPD chart

Examples1. Determine whether X is positive or negative.

2. If the signal is red, stop.

3. Conditional Branch: Multiple Branches (SWITCH)

The condition specified by SWITCH is compared to the states indicated by CASE and the processing is selected. The two types of processing for a SWITCH statement are the case where only processing in the matched state is executed and the case where processing starts at the matched state and continues on below it. (When processing is not continued, 'break' is written.) Also, when no condition is matched, 'default' processing is executed (specifying 'default' is optional).

(1) For only the matched state

• SPD chart

Example Display the name of a month by entering a character.

(2) For processing beginning at the matched state

• SPD chart

Example Communication through a serial interface

4. Conditional Loop (WHILE)

The condition specified in WHILE is evaluated. The processing is repeatedly executed as long as the condition holds. (When the condition does not hold from the beginning, nothing is executed.)

• SPD chart

Example The keys are buffered until the RETURN key is input.

5. Conditional Loop (UNTIL)

The condition specified in UNTIL is evaluated after the process. The process is repeatedly executed until the condition holds. (Even when the condition does not hold at the beginning, the process is executed once.)

• SPD chart

Example The value in register B is multiplied by 10 and saved in register A.

6. Conditional Loop (FOR)

The process is repeatedly executed until the parameter conditions specified in FOR hold.

• SPD chart

Example Beginning at the HL address, clear 256 bytes to 0.

7. Infinite Loop

By specifying 'forever' as the WHILE condition, the process is repeatedly executed forever.

• SPD chart

Example Repeatedly execute the main processing.

8. Connector (GOTO)

The specified address is unconditionally branched to.

- SPD chart
 - (1) Branch to the same module

(2) Branch to different modules

Example At the starting address of the subroutine, the parameter is selected and a wait is set.

9. Connector (Continue)

When one SPD module lasts multiple pages, the processing flow is shown below.

• SPD chart

APPENDIX B REVISION HISTORY

The complete revision history is shown below. The applicable places are shown for the chapter in each edition.

Edition no.	Major revisions from the previous edition	Applicable chapters	
Version 2	The following chapters and sections have been added: Sections 2.1 to 2.6, Chapters 3 to 7, Sections 8.1 to 8.4 and 9.1 to 9.3	Throughout	
	The following subseries have been added as applicable products: μPD78024, μPD78044A, and μPD780208		
	 The following subseries are no longer applicable products: μPD78002, μPD78002Y, μPD78014, and μPD78014Y subseries (These subseries are described in Basics (I).) μPD78044 Subseries μPD78054 and μPD78064 subseries (These subseries are described in Basics (III).) 		
	"Configuration of 12-Digit FIP Display and Key Input" has been changed.	Chapter 10	
Version 3	The following products have been added as applicable products: μ PD78044F, μ PD78044H, and μ PD780228 subseries, μ PD780206, and μ PD780208	Throughout	
	The following subseries have been dropped as applicable products: $\mu\text{PD78024}$ and $\mu\text{PD78044A}$ subseries		
	The following subseries have been added in Section 1.1. μPD78075B, μPD78075BY, μPD780018, μPD780018Y, μPD780058, μPD780058Y, μPD78058F, μPD78058FY, μPD780034, μPD780034Y, μPD780024, μPD780024Y, μPD78014H, μPD780964, μPD780924, μPD780228, μPD78044H, μPD78044F, μPD780308, μPD780308Y, μPD78064B, μPD78098B, μPD780973, and μPD780805 subseries, and μPD78P0914	Chapter 1	
	Table 3-3 has been added.	Chapter 3	
	Note 2 and Caution 2 have been added to Figure 4-2. Figure 4-4 has been added.	Chapter 4	
	A Caution has been added to Figure 5-5.	Chapter 5	
	Table 8-2 has been added.	Chapter 8	
	Note 4 and a Caution have been added to Figure 8-3.		
	A Caution has been added to Figure 8-9.		
	Section 8.1 The $\mu PD6252$ has been defined as a product provided for maintenance purposes only.		
	Figure 9-4 has been added.	Chapter 9	

[MEMO]

Facsimile Message

From:			
Name			
Company			

FAX

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Address

Tel.

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: 1-800-729-9288 1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583
Europe NEC Electronics (Europe) GmbH Technical Documentation Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: 02-528-4411	Japan NEC Corporation Semiconductor Solution Engineering Division Technical Information Support Dept. Fax: 044-548-7900
South America NEC do Brasil S.A. Fax: +55-11-889-1689	Taiwan NEC Electronics Taiwan Ltd. Fax: 02-719-5951	

I would like to report the following error/make the following suggestion:

Document title:

Document number: _____ Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				