
© 2008 Integrated Device Technology, Inc.

Notes

IDT Confidential

®

Application Note
AN-705

Linux Device Driver Architecture
for PES24NT3/PES12NT3/
PES16NT2/PES8NT2

By Alex Chang
Overview
This Linux device driver is implemented for the endpoints of IDT inter-domain PCIe switches,

PES24NT3/12NT3/16NT2/8NT2 (referred as PES24NT3). This document explains how the driver is
designed and implemented to work with the latest released Linux kernels. The driver has been tested with
the following Fedora Core releases from Redhat:

References
89HPES24NT3 User Manual
PCI Express Base Specification Revision 1.0a
Linux source code
pci.txt under Linux source tree
Application Note AN-510, Usage of Non-transparent Bridging with IDT PCI Express NTB Switches by

Kwok Kong, January 23, 2007

Limitations
PCIe Spread Spectrum Clock needs to be disabled via system BIOS.
For 64-bit BAR configuration, the driver works only when the system assigns a BAR base address

beyond the 4 GB boundary and when the driver can allocate local buffers with associated physical
addresses beyond the 4 GB boundary.

Abbreviations
PCIe: PCI Express
NTB: Non-Transparent Bridge
EP: NTB endpoint device
BAR: Base Address Register
IPC: Inter-Processor Communication
DMA: Direct Memory Access
DSID: Device Service ID
EEPROM: Electrically Erasable Programmable Read-Only Memory

Fedora Cores Kernel releases 32/64 bit OS 32/64 bit BARs

Fedora 3 2.6.9-1.667 32 bit 32 bit

Fedora 6 2.6.18-1.2798 32 and 64 bit 32 bit

Fedora 7 2.6.21-1.3194 32 and 64 bit 32 bit

Fedora 8 2.6.23.1-42 32 and 64 bit 32 bit

Fedora 9 2.6.25-14 32 and 64 bit 32 and 64 bit

Table 1 Supported Linux Platforms
1 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
MTU: Maximum Transfer Unit
IOAT: I/O Acceleration Technology

NTB Connections
The switch functional block diagram of a PES24NT3 is illustrated in Figure 1.

Figure 1 PES24NT3 Functional Block Diagram

There are two PCI endpoints on both internal and external sides of the NTB. These endpoints serve as
communication windows between two Root Complexes when Port A and Port C are connected to two sepa-
rate Root Complexes.

With the Punch-through feature, the PES24NT3 can support two different connections in NTB mode:
– Single NTB Port Connection: Single NTB port connecting two Root Complexes.
– Dual NTB Port Connection: Two NTB ports connecting two Root Complexes.

Type 1
Configuration Header

PCI-PCI
Transparent

Bridge

Type 1
Configuration Header

PCI-PCI
Transparent

Bridge

Internal Type 0
Configuration Header

Non-Transparent

External Type 0
Configuration Header

Bridge

Type 1
Configuration Header

PCI-PCI
Transparent

Bridge

Virtual PCI Bus

Port A
(Upstream Port)

Port B
(Downstream Port)

Port C
(Non-Transparent Port)
2 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
Single NTB Port Connection

Figure 2 Single NTB Port Connection

With a single NTB port connection, both Root Complexes can communicate with each other through a
number of facilities implemented in the NTB endpoints:

– Inter-processor Communication (IPC) registers: Both internal and external endpoints can
configure their IPC registers, such as Doorbell registers, to generate interrupts on the other side
to draw attention or make requests.

– Base Address Registers (BAR): There are five BARs available for address-routed transactions.
BAR[0..3] may each be used to map 32- or 64- bit memory or I/O windows between the internal
and external sides of the NTB. BAR4 can only be used to map the configuration space of the NTB
endpoint.

– Mapping Table registers: These registers contain valid Bus, Device, and Function number for ID-
routed transactions between both sides of the NTB.

Port
NTB Port

Root Complex 2Root Complex 1

Upstream

PES24NT3

Endpoint

Downstream

Port
Address
Domain 1 Address

Domain 2
3 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
Dual NTB Ports Connection

Figure 3 Dual NTB Port Connection

With a dual NTB ports connection, both external endpoints are connected together. In addition to the
facilities mentioned in the previous section, the connection requires the Punch-through feature to achieve
inter-processor communications. The Punch-through feature ensures both internal endpoints are capable
of generating configuration transactions on the external sides of the remote NTB ports, such that the local
internal endpoint can communicate with the remote internal endpoint of the other NTB port. Whenever a
local internal endpoint intends to interrupt a remote internal endpoint, it programs the remote external
endpoint’s Outbound Doorbell register via the Punch-through registers. For more details regarding this
feature, please refer to Chapter 9 of the PES24NT3 User Manual.

PES24NT3 Device Driver Design
Version 2 of PES24NT3 Linux NTB endpoint device driver is divided into two layers: Function and Base

Layers. The Base Layer initializes/de-initializes driver components, interacts with the NTB endpoints, and
provides services to Function Layer drivers to complete data transfers. The Function Layer includes a
virtual Ethernet driver and a Raw Packet transfer driver (additional details are provided in section Function
Layer on page 5).

Driver Architecture
The PES24NT3 NTB endpoint device driver is built as a Linux kernel mode module. The included Func-

tion Layer is meant to provide the device driver function to the OS. There are two function services:
– Ethernet Function Service: provides a virtual Ethernet interface that allows Ethernet packets to be

exchanged between two hosts connected to the PES24NT3 switch.
– Raw Packet Function Service: directly transfers raw packets from/to PF_PACKET sockets asso-

ciated with a network interface without any protocol stack processing involved.

Root Complex 1

Upstream Port

Downstream
Port

NTB port

PES24NT3

Endpoint

Root Complex 2

Upstream Port

Downstream
PortNTB port

PES24NT3

Endpoint

Address
Domain 1

Address
Domain 2

NTB Address domain
4 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
When the driver is loaded, the Base Layer registers with the Linux kernel as an endpoint device driver
after successfully allocating the required resources and initializing all necessary sub-modules. The
following sub-modules are implemented in the Base Layer driver:

– Init/De-init: module initialization/de-initialization.
– IPC: inter-processor communication.
– Function Service: function service interface.
– Buffer Queuing: software queue management for buffers.
– Tx/Rx: transmit/receive interface.
– DMA: packet transfer via DMA/MTRR.
– MM: memory management interface.
– HPR: hardware platform specific routines.

Figure 4 illustrates the block diagram of both Function and Base Layers implemented in the PES24NT3
device driver. Within the Base Layer, the green sub-modules are designed to interact with the Function
Layer drivers while yellow sub-modules are transparent to them. The design details of these blocks and
how they interact are discussed in the following sections.

Figure 4 PES24NT3 NTB Endpoint Device Driver Block Diagram

Function Layer
Each function in this layer can be included or excluded independently while compiling the driver. Both

Ethernet and Raw Packet device drivers are included by default. However, while compiling the driver, spec-
ifying "NONET=1" or "NORAW=1" can exclude the Ethernet or Raw Packet driver respectively. Once
included, when the NTB endpoint device driver is loaded with the "insmod" command, it calls their associ-
ated initialization routines after all necessary resources are allocated and initialized successfully. When the
driver is unloaded with the "rmmod" command, their associated de-initialized routines are called to
completely unload the function service driver(s) from the system.

There are four module parameters (shown in Table 2) set up to modify the default sizes of I/O memory
and buffer for Ethernet and Raw packet drivers. When the NTB endpoint device driver is being loaded, the
module parameters may be overridden only if the specified I/O memory size and buffers size does not
exceed the allocated BAR memory size set up via EEPROM. For example, "insmod idt-ntb.ko
eth_mem=512 eth_buf=2" requests to have only 512 KB memory for the Ethernet driver, and each transfer
buffer is 2 KB in length.

Ethernet Device Driver
Function

Raw Packet Device
Driver Function

Function Layer

Base Layer

Init/De-init

Function Service

IPC

Buffer Queuing

Tx/Rx

DMA

MM HPR
5 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
Table 2 details these parameters for the Ethernet and Raw Packet drivers. When users try to override
the above default sizes, they need to consider the following:

– The default buffer size is used to determine MTU for the Ethernet and Raw Packet driver. By
default, the MTU is 18KB - 64 Bytes (assumed max packet header size).

– For some applications which always transfer smaller packet sizes, such as Smartbit applications,
the default buffer size can be reduced, resulting in more buffers being made available for data
transfers and better throughput.

– The default I/O memory size is set up via EEPOM. If the user attempts to override with a larger
size than the default size, the default I/O memory size will be used.

– The limitation of the size of I/O memory is system-dependent.

Ethernet Device Driver Function
After the Base Layer driver is loaded, the Ethernet driver's initialization routine, pes24n3_net_init, is

called to start out the necessary initialization process. When unloaded, its module exit routine,
pes24n3_net_exit, gets called to remove itself from the system.

Module Initialization
1. Call register_netdev to register as an Ethernet device driver.
2. Call idt_ntb_func_alloc to allocate an idt_ntb_func data structure and initialize its members.
3. Call idt_ntb_func_regiser to register as a function service with Base Layer driver.
4. Call idt_ntb_alloc_bar and idt_ntb_alloc_doorbell to reserve a dedicated BAR memory and a door-

bell bit for later data transfer.
Module De-initialization
The module de-initialization process is exactly reversing the steps of module initialization:
1. Call idt_ntb_free_bar and idt_ntb_free_doorbell to release the resources.
2. Call idt_ntb_func_unregiser to remove itself form function service list.
3. Call idt_ntb_func_free to free up function service data structure.
4. Call unregister_netdev to un-register virtual Ethernet device interface.
5. Call free_netdev to de-allocate Ethernet device data structure.
Other Core Functions
net_open: This function is invoked when the Ethernet interface is activated. It calls netif_start_queue to

enable packet transfer.
net_stop: This function is invoked when the Ethernet interface is being removed. It calls

netif_stop_queue to halt data transfers associated with the interface.
net_tx: This function is called to transmit packets out of the Ethernet interface.
net_rx: This function is called by the Base Layer driver when it receives a packet and identifies it as an

Ethernet packet via DSID of idt_ntb_func. Then skb_buff is allocated to save the packet data and call
netif_rx to pass up the received packet.

I/O Memory Size Buffer Size

Ethernet Driver Module Parameter Default Size (KB) Module Parameter Default Size (KB)

eth_mem 1024 eth_buf 18

Raw Packet
Driver

Module Parameter Default Size (KB) Module Parameter Default Size (KB)

raw_mem 1024 raw_buf 18

Table 2 Module Parameters for I/O Memory and Buffer Size
6 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
Raw Packet Device Driver Function
The Raw Packet driver works similarly as the Ethernet driver discussed in the previous section. Both

share __net_data structure and some member functions of net_device structure, such as net_open,
net_stop, net_tx and net_rx, etc. However, the Raw Packet driver is used to transfer raw packets via
PF_PACKET sockets. Applications such as RawX (included in NTB device driver release) create
PF_PACKET sockets and exchange raw packets with a network interface directly without involving any
protocol stack processing.

 The Raw Packet driver sets up the network interface to transfer and receive raw packets. Its module
initialization routine, pes24n3_raw_init, works the same as pes24n3_net_init and its module exit routine,
pes24n3_raw_exit, does similar cleanups as pes24n3_net_exit.

Base Layer
The major components of the NTB endpoint device driver are implemented in the Base Layer driver. As

illustrated in Figure 4, the Base Layer driver is divided into several sub-modules. The detail design of each
sub-module is elaborated in the following sub-sections.

Init/De-init
This sub-module covers all the driver/device initialization and de-initialization related tasks:

Module initialization routine: pes24n3_ntb_init.
Module de-initialization routine: pes24n3_ntb_exit.
All PCI driver required routines: pes24n3_ntb_probe, pes24n3_ntb_remove,
pes24n3_ntb_resume, etc.
Device initialization routine: pes24n3_dev_init.
Device de-initialization routine: pes24n3_dev_exit.

Pes24n3_ntb_init
This function gets called right after the NTB endpoint driver is loaded. It calls pci_register_driver with a

populated pci_driver data structure to register itself with the system.
Pes24n3_ntb_exit
This function gets called when the driver is removed from the system. It calls pci_unregister_driver with

pci_driver data structure to un-register itself from the system.
PCI Driver Routines
The PCI driver routines are specified and populated in the pci_driver data structure. Also, all the

supported NTB endpoint devices and IDT vendor IDs are disclosed in pci_driver.
pes24n3_ntb_probe: This function is called by the kernel after it has identified the presence of a
device whose vendor/device IDs match any entry of the disclosed ID table of pci_driver. All device-
related initialization starts from here.
pes24n3_ntb_remove: This function is called when the driver is removed from the system. All the
device-related de-initialization is handled here.

pes24n3_dev_init
This function is called by pes24n3_ntb_probe to start all the device-related initialization:

Call pci_enable_device to enable the PCI device.
Call pci_set_master to enable PCI bus mastering.
Call pci_request_regions to request regions.
Call ioremap_nocache to map PCI configuration space onto BAR4.
Check to see whether it's single or dual NTB port connection.
Call pes24n3_plat_init to complete platform specific tasks.
Populate mapping table entries.
Set up interrupt and its ISR.
7 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
Call pes24n3_mem_init to initialize BAR related memory.
Call pes24n3_net_init if the Ethernet driver is included.
Call pes24n3_raw_init if the Raw Packet driver is included.
Call idt_ntb_ipc_init to initialize IPC related tasks.
Enable interrupt and get ready to communicate with the other endpoint of NTB.

Now the main control shift to IPC sub-module and all activities are interrupt-driven.
pes24n3_dev_exit
This function is called by pes24n3_ntb_remove to complete all the device related de-initialization:

Call pes24n3_net_exit if the Ethernet driver was initialized.
Call pes24n3_raw_exit if the Raw Packet driver was initialized.
Call pes24n3_ipc_exit to notify the other endpoint with IPC_CMD_DOWN, disable interrupt and
free up resources.
Call pes24n3_mem_exit to release memory resources.
Call iounmap to un-map BAR4.
Call pci_release_regions.
Call pci_disable_device.

Function Service
This sub-module provides major APIs to the Function Layer drivers. When the Function Layer driver

initializes, it calls idt_ntb_func_alloc to allocate its own idt_ntb_func data structure. After populating the
structure, it calls idt_ntb_func_register to register itself with the Base Layer driver. When the Function Layer
driver is unloaded, it calls idt_ntb_func_free and idt_ntb_func_unregister to remove itself from the function
service list of the Base Layer driver.

Other available APIs are also provided:
– int idt_ntb_alloc_bar(idt_ntb_ep* ep, idt_ntb_func* func, unsigned bar, unsigned outbound)

Any Function Layer driver can reserve which BAR will serve as the incoming or outgoing data
transfer window via parameter outbound after registering with the Base Layer driver. If the specified
bar is being used, the Base Layer driver will assign another available BAR instead. When the
Function Layer driver sends out IPC_CMD_HELLO to another endpoint, it indicates the assigned
BAR in bit[0..15] of MSG1 to tell the other endpoint using the BAR to send data to itself.

– int idt_ntb_free_bar(idt_ntb_ep* ep, idt_ntb_func* func, unsigned outbound)
The Function Layer driver needs to call this function to release the reserved BAR when the driver is
removed from the system. Then the Base Layer driver can assign it to other Function Layer drivers
upon request.

– int idt_ntb_alloc_doorbell(idt_ntb_ep* ep, idt_ntb_func* func, unsigned db_bit)
The Function Layer driver can reserve an INDBELL bit for its incoming data transfer by calling this
function. If the specified db_bit is not available, an available bit will be granted by the Base Layer
driver. When the Function Layer driver sends out IPC_CMD_HELLO to the other endpoint, it
indicates the assigned bit in bit[16..31] of MSG1 to tell the other endpoint using the bit to interrupt
itself.

– int idt_ntb_free_doorbell(idt_ntb_ep* ep, idt_ntb_func* func)
The Function Layer driver needs to call this function to release the reserved INDBELL bit when the
driver is removed from the system. Then the Base Layer driver can assign it to other Function
Layer drivers upon request.

– idt_ntb_frame* idt_ntb_frame_alloc(u32 frags, u32 priv_len, idt_ntb_frame_ds ds)
The Function Layer driver needs to call this function to allocate a packet frame for data transfer.
Usually, it needs one fragment and zero private data length. The destruction routine, ds, needs to
be specified. This routine gets called to free skb buffer by calling dev_kfree_skb after the transfer is
completed.
8 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
The Base Layer driver also calls this function to allocate a packet frame when receiving a packet
from the other endpoint. The priv_len is used to indicate the size of structure idt_ntb_rx instead.

– void idt_ntb_frame_free(idt_ntb_frame* frame)
When receiving a packet from the other endpoint, the Function Layer driver first passes the skb up
by calling netif_rx, and then the driver uses this function to free the packet frame allocated by the
Base Layer driver. Again, this function also gets called by the Base Layer driver to free the packet
frame after finishing the data transfer by ringing OUTDBELL bit to notify the other endpoint of the
just sent packet.

Tx/Rx
This sub-module contains the core functions required for transfer/receive operations. These functions

are responsible for handling data frame transfer per requests from the Function Service sub-module and
the pending received data frame in PostQueue.

Transferring Packets
The Function Layer driver calls idt_ntb_frame_send to transfer data after it successfully allocates

memory for idt_ntb_frame data structure and populates its data members, such as the location and length
of the source buffer.

If the return value of idt_ntb_frame_send is negative, the packet is dropped and the memory of
idt_ntb_frame is freed. If it's positive, the Function Layer driver needs to notify the application to temporarily
halt a data transfer and to set up a timer to transfer the current packet at a later time by calling
netif_wake_queue. Otherwise, the transfer is completed.

A callback function, tx_cb, is passed while calling the data transfer function, idt_ntb_dma_L2P. After
data transfer completes, tx_cb is called to insert the data packet to the PostQueue of the remote endpoint,
ring the OUTDBELL bit to interrupt the endpoint, and free the memory of idt_ntb_frame data structure.

Receiving Packets
When the current IPC state is STATE_OK and the local endpoint is interrupted via INDBELL bit[1..31], it

indicates the remote endpoint is transferring a packet over. The current thread calls idt_ntb_frame_receive
to determine if there is any pending receiving buffer in local PostQueue.

If any pending buffer is found, call rx to set up idt_ntb_frame structure for the received packet.
Call the receiving callback function of Function Layer driver to pass the idt_ntb_frame structure up. The

Function Layer driver needs to request a destination buffer, save it into idt_ntb_frame structure, and call
rx_frame_sync with a callback function to start the data transfer via DMA or memory copy.

After data transfer completes, the callback function gets called to free the memory of idt_ntb_frame and
release the destination buffer.

IPC
When IPC sub-module is initialized, the following tasks need to be completed:

– Initialize tasklet routine, idt_ntb_tasklet_proc.
– Initialize resources, such as spin locks, timer, incoming/outgoing ipc list, etc.
– Register interrupt handler, idt_ntb_ipc_isr.
– Enable interrupt.
– Schedule first tasklet to kick off IPC.

When de-initialized, it does the following:
– Call ipc_down to notify the other endpoint with IPC_CMD_DOWN.
– Disable interrupt.
– De-initialize the above resources.
– Un-register interrupt via free_irq.
– De-initialize tasklet routine.
9 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
 More details regarding IPC protocols and usage of IPC registers can be found in section IPC Protocols
and Initialization on page 13.

Buffer Queuing
This sub-module serves as a buffer queuing manager that is transparent to the Function Layer drivers.

The basic idea is, during initialization, the local CPU adds the addresses of its local receive buffers to the
local freeQ, which is initialized as remote freeQ by the remote CPU when it receives IPC_CMD_HELLO,
indicating where the freeQ is. Figure 5 details the layout of the initialized queue structure in memory.

Figure 5 Queue Structure in Memory

When a remote endpoint needs to send a packet to a local endpoint, the following steps are required:
– The remote endpoint reads the buffer address and removes buffer from the remote FreeQ asso-

ciated with the local endpoint for transferring data.
– Transfer the data into the buffer.
– After completion, the remote endpoint adds the buffer address to the local PostQ of the local

endpoint.
– The remote endpoint rings the appropriate doorbell bit to interrupt the local endpoint.
– The local endpoint then reads the pending buffer address from its local PostQ to retrieve the data.
– After processing the data, the local endpoint adds the buffer back to local FreeQ.

qStart

qEnd

qRead

qWrite

qStart

qEnd

qRead

qWrite

PostQ entries

FreeQ entries

Buffers
10 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
Figure 6 depicts the above scenario.

Figure 6 Data Transfer with Software Queuing

DMA
This sub-module provides the interface between the IOAT DMA driver and Tx/Rx when DMA transfer is

available. If DMA is not available, packets are transferred via Write-combining MTRR regions set up by the
MM sub-module. A compiling flag called IOATDMA is set up for enabling the interface to the IOAT DMA
driver. By default, IOATDMA is 1 and it can be disabled with "make IOATDMA=0".

If the IDT-provided IOAT DMA drivers are not loaded first, loading the NTB endpoint driver with
IOATDMA=1 results in an error like "Unknown symbol in module" due to the non-existing exported func-
tions. Functions referred by this sub-module with prefix "mp_dma_async_" and "ioat_dma_" are exported
from the IOAT DMA drivers. The interaction between the NTB endpoint driver and IOAT DMA drivers can be
separated into two parts: Initialization/de-initialization and data transfer.

The chipsets used to test DMA transfers are Intel’s Bensley and Stoakley. They are all equipped with an
IOAT DMA engine to accelerate data transfer for I/O devices. Please note that the original IOAT DMA
drivers from Intel have been modified to work with IDT’s NTB endpoint drivers.

Initialization/de-initialization
The initialization routine, mp_dma_register, calls mp_dma_async_client_register with a callback func-

tion dma_event to register as a DMA client.
If registration succeeds, the routine then calls mp_dma_async_client_chan_request to request 2 DMA

channels, one for local to local memory transfer when receiving packets, and the other for local to PCI I/O
memory transfer when transmitting packets.

The callback function, dma_event, needs to be called to receive the granted DMA channels. Asynchro-
nous DMA data transfer is employed only after the requested 2 channels are granted.

If any failure happens above, data transfer will fall back to use MTRR regions.
The de-initialization routine, mp_dma_unregister, calls mp_dma_async_client_unregister when the NTB

endpoint driver gets unloaded.
Data Transfer
When transmitting a packet, dma_start_ioatdma gets called to move data from local to PCI I/O memory.

When receiving a packet, dma_start_ioatdma gets called to move data from local buffer to the destination
buffer provided by Function Layer driver.

Before transferring data, dma_start_ioatdma calls idt_ntb_dma_alloc to allocate memory for
idt_ntb_dma data structure and to set up necessary information, such as the callback function for cleaning
up and the data structure to pass into the callback function.

Transfer a data packetRemote EP Local EP

FreeQueue
Read buffer address

Return buffer address

Transfer data to the buffer

Write buffer address
and ring doorbell PostQueue Process data packet

Return buffer to
FreeQueue
11 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
The granted DMA channel 0 is for local to local buffer transfer, while channel 1 is for local to PCI I/O
memory transfer.

For local to local transfer, call the exported ioat_dma_memcpy_buf_to_buf_cb function from IOAT DMA
drivers to do asynchronous DMA transfer. If the return value is not negative, current thread will move on to
engage next transfer. Similarly, the exported ioat_dma_memcpy_buf_to_io_cb function gets called to
process local to PCI I/O memory transfer.

When the DMA transfer completes, idt_ntb_dma_free gets called to free up the idt_ntb_dma data struc-
ture.

MM (Memory Management)
This sub-module is responsible for initializing local and remote buffers for data transfer. If the given BAR

is not set up via EEPROM, it won't be initialized. Its initialization routine, pes24n3_mem_init, is called by
pes24n3_dev_init while the de-initialization routine, pes24n3_mem_exit, is called by pes24n3_dev_exit to
release the memory resources. Its major functions include:

– int local_mem_init(idt_ntb_ep* ep, unsigned map, unsigned long size)
Allocates local memory for an incoming data buffer. The local memory allocation would be skipped
if the specified BAR of the other endpoint is not set up with an assigned physical address. The valid
map values are from 0 to 3 for 32-bit BARs and 0 or 2 for 64-bit BARs.

– local_mem_exit(idt_ntb_ep* ep, unsigned map)
Free the previously allocated local memory.

– int remote_mem_init(idt_ntb_ep* ep, unsigned map, unsigned long size)
Re-map the specified BAR memory region into virtual memory space with ioremap_noncache. The
memory region serves as an out-going buffer memory to the other endpoint. This region will be
added to Write-combining MTRR region to accelerate data transfer.

– void remote_mem_exit(idt_ntb_ep* ep, unsigned map)
Before un-mapping the previously mapped BAR memory region with iounmap, it removes this
region from MTRR region.

HPR (Hardware Platform Routines)
This sub-module includes all known hardware platform-specific routines that must be executed when the

NTB endpoint driver is loaded. Its main function, pes24n3_plat_init, handles Mapping Table setup and
some NTB endpoint register setup for certain motherboards or chipsets. In addition, for x86 systems, the
memory allocation (pes24n3_local_malloc) and de-allocation (pes24n3_local_mfree) APIs are also
included.

Users may add any hardware-specific implementation which is required by them to make the driver work
with their hardware. For example, if their system has special entries to add into Mapping Table of the NTB
endpoint, they should append them in this sub-module.
12 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
IPC Protocols and Initialization

IPC Protocols
To setup memory mappings and coordinate data transfers between NTB endpoints, the device drivers

running on both sides of NTB must adhere to the following protocol:
– After module initialization processes successfully complete in the Base Layer driver, the driver

needs to start the IPC initialization by sending the IPC_CMD_START command.
– The Base Layer driver manages all the allocated memories physically located on its side of NTB.
– To access a memory region physically residing on the other side of the NTB, the Base Layer driver

must request a buffer from the memory region associated with the other side of NTB using an
IPC_CMD_MAP command.

– The Base Layer driver disables all message interrupt generations. The OUTMSG registers are
used for sending requests and replies to the other side of NTB. In the case of a request,
OUTMSG0 is used for identifying the desired service, while OUTMSG1, OUTMSG2, and
OUTMSG3 are used for passing parameters associated with the request. In the case of a reply,
OUTMSG0 is used for identifying the request associated with this reply, while OUTMSG1,
OUTMSG2, and OUTMSG3 are used for returning results associated with the reply. The usage
and interpretation of the OUTMSG1, OUTMSG2, and OUTMSG3 depend on whether the content
of the OUTMSG0 is a request or a reply.

– The Base Layer driver triggers doorbell interrupt generation. The OUTDBELL registers are used
for generating interrupts on the other side of NTB to signal new events. Bits 0 and 1 of OUTDBELL
are defined as VALID and DONE bits, respectively. The driver sets the VALID bit in the OUTD-
BELL register to signal a new request or reply to the other side of NTB after updating the
OUTMSG registers. The driver sets the DONE bit in the OUTDBELL register to acknowledge the
reception of a request or reply from the other side of NTB after reading the INMSG registers. Other
bits in the Doorbell registers may be reserved and used by Function Layer drivers.

The IPC Doorbell register usage is shown in Table 3. The Base Layer driver uses bits 0 and 1 only.

The IPC MSG0 register definition is shown in Tables 4 and 5.

Field Names Bits Definitions

VALID 0 Signal a new request or reply

DONE 1 Acknowledge the reception of a request or reply

Allocated dynamically 2-31 To be assigned to the Function Layer drivers.

Table 3 IPC Doorbell Register Definitions

Field Names Bits Definitions

Tag# 0 – 7 Used for matching reply to request

DSID 8 – 15 Driver Service ID. For Base Layer, always specify it as 0.
0 = Base device driver,
1 = Ethernet device driver function,
2 = Raw Packet device driver function.
Others are reserved for other function services.

Table 4 IPC MSG0 Register Definitions for Base Layer Driver (Page 1 of 2)
13 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
CMD 16 – 23 Used for identifying the type of requests or replies.
128 = IPC_CMD_START
1 = IPC_CMD_MAP
2 = IPC_CMD_OK
3 = IPC_CMD_DOWN
Others are reserved.

MAP 24 – 26 Used to identify which mapping region:
0 = 32-bit mapping associated with BAR0.
1 = 32-bit mapping associated with BAR1.
2 = 32-bit mapping associated with BAR2.
3 = 32-bit mapping associated with BAR3.
0 = 64-bit mapping associated with BAR[0..1]
2 = 64-bit mapping associated with BAR[2..3].
Others are reserved.

REPLY 27 Set to 0 for requests and 1 for replies

STATUS 28 – 31 Return the status in a reply.
0 = IPC_STS_OK, successful completion of the request.
1 = IPC_STS_NR, IPC is not ready.
2 = IPC_STS_MAP, mapping error.
3 = IPC_STS_OOB, out of bound error
4 = IPC_STS_NS, request is not supported.
15 = IPC_STS_UK, unknown error.
Others are reserved.

Field Names Bits Definitions

Tag# 0 – 7 Used for matching reply to request

DSID 8 – 15 Driver Service ID. This identifies which Function Layer driver owns the
IPC message.
Currently defined Driver Service ID for Function Layer drivers:
1 = Ethernet device driver function.
2 = Raw Packet device driver Function.
Others are reserved for other function services.

CMD 16 – 23 Used to identify the type of requests or replies.
8 = IPC_CMD_HELLO, IPC packet to notify my peer that I am ready to
communicate, which Doorbell bit and BAR to use, etc.
Others are reserved.

Reserved 24 – 26 N/A

REPLY 27 Set to 0 for requests and 1 for replies

STATUS 28 – 31 Return the status in a reply.
0 = IPC_STS_OK, successful completion of the request.
1 = IPC_STS_NR, IPC is not ready.
4 = IPC_STS_NS, request is not supported.
15 = IPC_STS_UK, unknown error.
Others are reserved.

Table 5 IPC MSG0 Register Definitions for Function Layer Drivers

Table 4 IPC MSG0 Register Definitions for Base Layer Driver (Page 2 of 2)
14 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
The use of IPC MSG registers associated with IPC commands is shown in Table 6. The commands
IPC_CMD_MAP and IPC_CMD_HELLO carry additional data in Message registers other than MSG0.

IPC State Diagram
After the Base Layer driver gets loaded and module initialization is completed, the driver needs to

initialize the IPC communication channel by issuing an IPC_CMD_START command to the other side of
NTB. After an IPC_CMD_START reply is sent from the other side of NTB, IPC_CMD_MAP and
IPC_CMD_HELLO commands will follow. If they complete this hand-shaking process without any error,
they both are ready to start transferring data for the Function Layer drivers.

The Base Layer driver notifies all registered Function Layer drivers by calling their associated event call-
back function provided by the Function Layer driver with NTB_EVENT_UP message. Once the registered
Function Layer device driver receives the message, it sends the IPC_CMD_HELLO command, as
mentioned in Table 6, to the other NTB endpoint. When the other NTB endpoint receives the
IPC_CMD_HELLO request, it will check to see if it provides the same Function Layer service. If yes, it
initializes the remote queue associated with the requesting endpoint and replies to the IPC request with
IPC_STS_OK. Otherwise, it replies with IPC_STS_NS.

It makes no difference which endpoint has the NTB endpoint device driver loaded first because they
synchronize with each other in STATE_INIT by an IPC_CMD_START command. The IPC states are
defined in Table 7. After completing all IPC_CMD_MAP exchanges between the NTB endpoints, they
synchronize their states in STATE_OK by the IPC_CMD_OK command.

Figure 7 illustrates the IPC state diagram of a NTB endpoint.

CMD field of MSG0 MSG1 MSG2 MSG3

IPC_CMD_START Request N/A N/A N/A

Reply N/A N/A N/A

IPC_CMD_MAP Request Lower 32 bits of
size

Upper 32 bits of
size

N/A

Reply Lower 32 bits of
address

Upper 32 bits of
address

N/A

IPC_CMD_OK Request N/A N/A N/A

Reply N/A N/A N/A

IPC_CMD_DOWN Request N/A N/A N/A

Reply N/A N/A N/A

IPC_CMD_HELLO Request Bit[0..15]:
BAR[0..3] to use.
Bit[16..31]: Door-
bell bit to use for

interrupt triggering
after an entry is

added to the Post-
Queue.

N/A

Reply N/A N/A N/A

Table 6 IPC Request and Reply Definitions for Commands
15 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
Figure 7 IPC State Diagram

EEPROM Initialization
The following registers need to be initialized through EEPROM for NTB mode in 32-bit (Table 8) and 64-

bit BARs (Table 9).

STATE_DOWN STATE_INIT STATE_MAP STATE_OK STATE_ERROR

values 0x00000001 0x00000002 0x00000004 0x00001000 others

Table 7 IPC State Definition

Register Name Register
Offset

Register
Value Comment

PCIE_INTRLINE 0x303C 0x00000100 Use INTA

PCEE_INTRLINE 0x383C 0x00000100 Use INTA

PCIE_NTBCTL 0x3078 0x00000000 Enable opposite side

PCIE_BARSETUP0 0x307C 0x80000140 Memory Space Indicator = Memory Space
Address Type = 32-bit addressing
Prefetchable = False
Size = 0x14 (1 Mbytes)
Bar Enable = True

Table 8 32-bit BAR EEPROM Contents for NTB Initialization (Page 1 of 2)

STATE_DOWN

STATE_INIT

Issues
IPC_CMD_MAP
commands and
exchange memory
dd

Device/Driver
Initialization completed

STATE_OK

STATE_MAP

Install Modules System powers up

Notifies the other EP
with IPC_CMD_START
and wait

Notification from the
other EP with
IPC_CMD_DOWN
or received Port C
Link down interrupt.

Modules uninstalled
Notifies the other EP
with
IPC_CMD_DOWN
command.

Notifies the other EP with IPC_CMD_OK
command and waits for response from it
Once receiving response from the other EP
who is in STATE_OK, procedure is completed.
Ready for data transfer.

Response from the
other EP who is in the
state STATE_INIT,
too.

Done with all
IPC_CMD_MAP
commands.

Received PortC
link down
interrupt
16 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
PCEE_BARSETUP0 0x387C 0x80000140 Memory Space Indicator = Memory Space
Address Type = 32-bit addressing
Prefetchable = False
Size = 0x14 (1 Mbytes)
Bar Enable = True

PCIE_BARSETUP1 0x3084 0x80000140 Memory Space Indicator = Memory Space
Address Type = 32-bit addressing
Prefetchable = False
Size = 0x14 (1 Mbytes)
Bar Enable = True

PCEE_BARSETUP1 0x3884 0x80000140 Memory Space Indicator = Memory Space
Address Type = 32-bit addressing
Prefetchable = False
Size = 0x14 (1 Mbytes)
Bar Enable = True

PCIE_BARSETUP4 0x309C 0x800000c0 Memory Space Indicator = Memory Space
Address Type = 32-bit addressing
Prefetchable = False
Size = 0xC (4 Kbytes)
Bar Enable = True

PCEE_BARSETUP4 0x389C 0x800000c0 Memory Space Indicator = Memory Space
Address Type = 32-bit addressing
Prefetchable = False
Size = 0xC (4 Kbytes)
Bar Enable = True

Register Name Register
Offset

Register
Value Comment

PCIE_INTRLINE 0x303C 0x00000100 Use INTA

PCEE_INTRLINE 0x383C 0x00000100 Use INTA

PCIE_NTBCTL 0x3078 0x00000000 Enable opposite side

PCIE_BARSETUP0 0x307C 0x8000014c Memory Space Indicator = Memory
Space
Address Type = 64-bit addressing
Prefetchable = True
Size = 0x14 (1 Mbytes)
Bar Enable = True

PCEE_BARSETUP0 0x387C 0x8000014c Memory Space Indicator = Memory
Space
Address Type = 64-bit addressing
Prefetchable = True
Size = 0x14 (1 Mbytes)
Bar Enable = True

Table 9 64-bit BAR EEPROM Contents for NTB Initialization (Page 1 of 2)

Table 8 32-bit BAR EEPROM Contents for NTB Initialization (Page 2 of 2)
17 of 18 December 2, 2008

IDT Application Note AN-705

Notes

IDT Confidential
PCIE_BARSETUP2 0x308C 0x8000014c Memory Space Indicator = Memory
Space
Address Type = 64-bit addressing
Prefetchable = True
Size = 0x14 (1 Mbytes)
Bar Enable = True

PCEE_BARSETUP2 0x388C 0x8000014c Memory Space Indicator = Memory
Space
Address Type = 64-bit addressing
Prefetchable = True
Size = 0x14 (1 Mbytes)
Bar Enable = True

PCIE_BARSETUP4 0x309C 0x800000cc Memory Space Indicator = Memory
Space
Address Type = 32-bit addressing
Prefetchable = False
Size = 0xC (4 Kbytes)
Bar Enable = True

PCEE_BARSETUP4 0x389C 0x800000cc Memory Space Indicator = Memory
Space
Address Type = 32-bit addressing
Prefetchable = False
Size = 0xC (4 Kbytes)
Bar Enable = True

Table 9 64-bit BAR EEPROM Contents for NTB Initialization (Page 2 of 2)
18 of 18 December 2, 2008

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Overview
	References
	Limitations
	Abbreviations

	NTB Connections
	Single NTB Port Connection
	Dual NTB Ports Connection

	PES24NT3 Device Driver Design
	Driver Architecture
	Function Layer
	Raw Packet Device Driver Function
	Base Layer
	IPC Protocols and Initialization

	EEPROM Initialization

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

