APPLICATION
LENESAS MULTI-QUEUE FLOW-CONTROL DEVICE NOTE
SERIALPROGRAMMING AN-303
By Stewart Speed & Jack Deans
INTRODUCTION Empty and Almost Full flag offsets of all queues will set to either 8 or 128

The multi-queue flow-control device family from IDT are user programmable
devices, the user can program a given device to have anywhere from 1 tothe
maximum number of queues available. The usercanalso programeachqueue
tobe any depth, assigning memory blocks from the total pool of memory within
the device to the queues independent of each other. Thatis, queue sizes are
flexible and can be setto any depth onaper queue basis. The size ofaqueue
mustcomprise of memory blocks, therefore aqueue can be configured down
to a resolution of 1024 x 9, 512 x 18 or 256 x 36.

Theusercanalso set Almost Fulland Almost Empty flags to any location within
the depth of aqueue, again ona per queue basis, so that the Almost Full and
AlmostEmpty flags withinindividual queues of adevice are atdifferentlocations.

Please note, that queue widths per device are notindependent, thatis, all
queues withina given device willhave the same datainput bus width and the
same data outputbus width.

Asone canimagine, this requires alarge amount of configuration registers
withinthe device to store and hold the set-upinformation of aMulti-Queue device.
Theregisters can be configured independently by the multi-queue flow-control
device using the default programming mode. Here asequence of WCLK cycles
mustbe providedtothe device afteramaster reset, these WCLK cycles loading
theregistersinternally. The default programming will configure amulti-queue
flow-control device in a predetermined manner that is always the same, the
maximum number of queues will be set-up, all queues willbe equal depths. The
totalmemory ofthe device willbe shared equally betweenallqueues. The Aimost

depending on the DF input at master reset.

The set-upregisters ofthe Multi-Queue devices are also user programmable
via the serial port. As opposed to default configuration of the device, serial
programming can be performed by the user allowing the configuration of the
number of queues, between 1 and the maximum, the depth of queue’s, a
minimumof 1024 x 9; 512 x 18; 256 x 36, the flag offsets at any point withina
respective queue depth. One may also modify the serial bitstream file manually
instead of using the serial bitstream generator for minor changes. A section
describing the bitstream register values are defined in this document.

THE SERIAL PORT OF THE MULTI-QUEUE FLOW-CONTROL DEVICE
The serial port comprises the following inputs/outputs:
1. Serial Clock, SCLK.
2. Serial Input Enable, SENI
3. Serial Data Input, SI
4. Serial Output Enable, SENO
5. Serial Data Output, SO

The user serially loads data onto the Slinput, this data is clocked into the
device on the rising edge of SCLK provided that SENI is active, LOW. The
SENO outputofadeviceis HIGH until programming ofthe device s fully complete
atwhich pointthe SENO outputfollowsthe SENIinput, therefore with SENI being
LOWthe SENO outputshould go LOW. With SENO LOW, ifthe user continues
toclock datainto adevice serially on SI, this data will be passed throughto the

Master Reset

Default Mode

I A
“\ e
<
‘

-

DFM =0
DFM MRS DFM MRS DFM MRS
MQ1 MQ2 MQn
Serial Enable —p»| SENI SENO|— | SENI SENO ¢ p| SENI SENO |—p Serial Loading
Complete
Serial Input —»{ Sl SO |—| SI SO — ¢ i SI SO
SCLK SCLK SCLK
Serial Clock I I T 5997 drwo1
Figure 1. Serial Port Connection
JULY 2003

© 2019 Renesas Electronics Corporation

DSC-5997/3

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING IDT APPLICATION NOTE AN-303

SO output ofthe device. Therefore the SENO output has 2 purposes, firstly it
can be used when devices are connected in expansion mode. In expansion
mode the SENO outputofdevice N connects directly to the SENIinput of device
N+1,the SO output of device N connects directly to the Slinput of device N+1.
This canbe seenfromFigure 1, Serial Port Connection. The SENIand Slinputs
ofthefirstdevice withinachainis controlled by the userand serial datarequired
forall devices loaded here. The first device programmed is the first device in
the chain, when the first device is programmed the second will be and so on.
Thisis done by virtue of the factthat the SENO of device N connects to SENI
of N+1and SO of N to Sl of N+1. Sowhen device N is programmed its SENO
goes LOW driving SENI of N+1 LOW, serial data being passed from SO of N
to Sl of N+1.

The second purpose ofthe SENOis providing the user with a programming
“Done” signal, whether the Multi-Queue device is used in single device mode
or expansion mode, the SENO output of the single device (or last device ina
chain) should be used to indicate that programming of the Multi-Queue(s) is
complete, when the final SENO goes LOW (provided that SENI is LOW)
programming has been completed and the user should stop serial program-
ming, and take SENI inactive, HIGH. This can be seen in Figure 2, Serial

Programming. Remember, thatwhen programming of adevice iscomplete, the
SENO outputwillfollow the SENIinputand the SO outputwill followthe Slinput.

Therefore, in Serial programming mode the user has to provide a serial
bitstream to the multi-queue flow-control device(s). This bitstream varies in
length depending onthe number of queues required within adevice and how
many devices are connectedtogether. The number of bits required for adevice
canbe calculated from:

Number of bits = 19 + (Q x 72), where Q is the number of queues required.

When multiple devices are connected in expansion the number of bits
required willaccumulate accordingly suchthat:

Total Number of bits=[19+(Qax 72)] +[19+(Qbx 72)] +,where Qa
isthe number of queues inthe first device and Qb is the number of queuesin
the second, and so on.

This means thatthe number of serial bits required can vary from 91 bits for
asingle device, single queue setup, to 18,5384 bits for 8 devices with 32 queues
ineachdevice. The user mustgenerate this bitstreamand storeitto be dumped
intothe Multi-Queue(s) whenrequired. There are multiple ways this bitstream
may be generated and stored, this application note will discuss one such method
opentothe designer.

© 2019 Renesas Electronics Corporation

IDT APPLICATIONNOTE AN-303

)
=
=
=
<
o
(O]
o
o
o
-
=S
o
w
0
Ll
e
>
w
(=]
P
[©]
o
=
=
[®]
Q
=
o
|
L
w
2
w
2
4
i
=)
=

20MIp L66S 2 2

BuiwwrelBold [euss 'z ainbiq

W7ag oHOd)

Z-H9H

(e21n0Q B1EIS)

oH (« (
))

Z-HO9IH

Jite]

d1s3
/N3avd

Y104

N3am

(e01n0(onEIS)

aje|dwo) Buiwweiboid

_A

XRRLLXXXXX XXX

_J
dON3S) g
((((((
))))))
n_Ome,ﬂk\ Jﬂ
onasy
RRXXRROKIXIKKIIN e X e N o X o =G
7 n_On_wwvlv 7 Oﬂwﬂ\vi
ugg MW 289 7 reg MW uzg MW ccd led uig

-

(C
)]

Yy puzg st

NS

ureyQ ui 8oAaQ [euld

yu pug sL

NS

urey) uj 8oineQ pug

ureyp ul ao1neq Ist

EE]

d1Sd
/NIAVM

M10M

108

© 2019 Renesas Electronics Corporation

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING IDT APPLICATION NOTE AN-303

DESIGNMETHODOLOGY

IDT can provide a“Serial Bitstream Generator”, whichisa ‘C’ programthat
takesauser defined inputfile containing the user's set-up requirements. These
requirements include the following:

1. The number of devices to be programmed.

2. The number of queues within each device.

3. The depth of every queue.

4. The Almost Empty and Almost Full offset values for every queue.

The generatorwhenrunwill create an output file which is basically a bitfile
containing logical 1'sand 0's that should be stored and dumped to the Multi-
Queue when programming takes place. (Please contactthe IDT Flow-Control
Managementapplication group for this “Serial Bitstream Generator”).

The example discussedinthis application note utilizes a Xicor X5323 32Kbit
Serial (SPI) EEPROM that stores the serial bit file to be loaded into the Multi-
Queue(s). This bitfile has at some time earlier been loaded (written) into the
EEPROM, thisloading ofthe EEPROM is not discussedin this application note.
Thisapplication note also utilizesan FPGA (or PLD) asthe interface between
the EEPROM and the Multi-Queue device(s). Alsoincluded inthe application
noteisthe associated Verilog code that shows how the interface is controlled.

Figure 3, Hardware Set-Up for Serial Programming, is shown below. This
diagram shows thatanywhere between 1 and 8 Multi-Queue devices can be

connected inexpansion mode, with the associated serial ports cascaded. Some
important points to note fromthis figure are:

1. The FPGA interfaces betweenthe EEPROMand the 1. Multi-Queue(s).

2. This set-up is the same for a single Multi-Queue device application or
multiple Multi-Queue’s cascadedtogether.

3. The SENO ofthe single device orthe last device ina chain mustfeedback
tothe controlling FPGA and be used as a “done” signal that causes
programming to cease when SENO goes LOW.

4. Theserial portinputs of thefirstdevice within achain, SENIand Sl connect
tothe FPGA, the FPGA programsaall devicesinachainviathese input pins.

5. The serial bit file stored in the EEPROM is fed through the FPGA to the
Multi-Queue(s).

6. The SENO of device 1 connectstothe SENI ofthe nextdevice, sothatwhen
programming of device 1is complete the SENO output of device 1 takes
the SENI ofthe next device LOW and data from SO of device 1 is written
intothe nextdevice. Remember, this data is being passedthrough device
1, the FPGA writing data in to Sl of device 1.

7. The FPGArequestsserial datafromthe EEPROM, thisis discussedinmore
detaillater. This serial datais read fromthe EEPROM’s SO outputandin
thisexampleis gated throughthe FPGAfromitsinputs_sotoits outputm_si.

8. Notethatallthe pinnames ofthe FPGA are taken fromthe sample Verilog

code.
FPGA . Multi-Queue 1 : Multi-Queue n
m_sclk —eN3yl scLK co- N3t seik
P m_seno_ m_seni_ M2> SENI SENO-M1- --------- M?» SENI SENO | M
. L1 M3 L1 1
—» M_Ssi > Sl SOf==----------~ > SI
S_CS_ Note: The SENO of the last device in a
P S_rs_ s sclk chain is used as the 'Done’ signal.
ols so = Xicor - X5323
i sl 1,1¢cs 8 Pin
SOIC
5-1scK RST|.
9%si e 2—‘

5997 drw03

Figure 3. Hardware Set-Up for Serial Programming

© 2019 Renesas Electronics Corporation

IDT APPLICATIONNOTE AN-303

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING

PROPAGATION OF SERIAL DATAINPUT

Asexplained above, when Multi-Queue devices are connected in expansion
modetheir serial ports are cascaded. Serial dataintended to programthe final
deviceinachain mustpropagate through all devices. This propagation delay
therefore, is accumulative and at worst there may be 8 devices connected.
However, this propagation delay does not affect the performance of the serial
port. This can be seen from the example below, which is based on using the
slowest speed grade device:

1. Theserial portforallMulti-Queue devicesisrated at 10MHz,a 100ns cycle

time.

2. The maximum propagation delay for a Multi-Queue device is 4ns

3. With8devices cascaded (maximumallowable), the total propagation delay

of data written into the Slinput of device 1 to the Slinput of device 8is:
7x4ns =28ns (not counting any trace delays).

Therefore, we can see that there will always be a large amount of margin
provide onthe set-up time for serial data regardless of how many devices are
cascaded. Infactthere willbe 52ns margin onthe data set-up of the final device
even with 8 devices in cascade. This is given from:

Margin=Cycle Time—(Total Propagation Time + Data Set-up Time, tSDS)

Margin = 100ns — (28ns + 20ns) = 52ns

THE XICOR EEPROM REQUIREMENTS

The Xicor X5323 EEPROM is a 32Kbhit serial EEPROM device, itisused to
store the bit file required to program the Multi-Queue(s). A bit file previously
loaded into the EEPROM can be read from the EEPROM via the FPGA and
usedto program the Multi-Queue device(s). Aread sequence is performed on
the X5323 by first pulling the CS (pin 1) LOW, selecting the device. The 8-bit
“read”instruction followed by the 16 bitaddress is transmitted to the device via

CS _\
(Xicor)

the Slinput (pin5). This 16 bitaddressis the start address withinthe EEPROM
fromwhere serial data will begin reading. The user should be aware that the
serial bitstream output formthe X5323will be MSBfirst, i.e. bit 7 of thataddress.

Allinstructions and addressing are done with respectto arising edge of the
SCK (pin 6) input. Once this has been done serial data will be output from SO
(pin2) withrespectto afalling edge of SCK (pin 6). When read operations from
the X5323 are complete the CS input should be taken HIGH. Figure 4 “X5323
Read Timing” shown below illustrates the read operation from the Xicor
EEPROM. The instruction foraread frommemoryis “00000011". Please refer
to the Xicor X5323 data sheet for more details.

The Xicor X5323 with 32Kbit memory, can easily accommodate any
Multi-Queue device(s) configuration file, the largest bit file being 18.5Kbits (as
mentioned). However, one could also consider using the EEPROM to store
multiple files, each starting at their ownrespective address space inmemory.

The designer should note that the maximum clock frequency of the Xicor
X5323is 2MHz.

FPGAINTERFACE

Following is sample code developed foran FPGA to deal with the interfacing
betweenthe Xicor X5323 EEPROM and the Multi-Queue device(s). Thisdesign
isbased onusingan X5323 device witha Vcc Range of 2.7V-5.5V, this device
havingamaximum clock cycle time of 500ns (2MHz). This designis also based
onthe X5323 clock running at IMHz, (the FPGA takes a4MHz clock inputand
dividesby4toproduce a IMHz SCLK output). The suggested partnumber for
the Xicor EEPROM is: X5323S8-2.7

The code design may need to be re-evaluated whenrunning at higher clock
speeds orwhenusing a different EEPROM, to ensure that there are notiming
conflicts.

24 25 26 27 28 29 30

XX XXX XXX

20 21 22 23
SCK
INSTRUCTION 16 BIT ADDRESS
S|
icon XX -3 X2 XX
S0 HIGH IMPEDANCE
(Xicor) o

30000000

5997 drw04

Figure 4. Read EEPROM Array Sequence

© 2019 Renesas Electronics Corporation

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING IDT APPLICATION NOTE AN-303

Verilog Code

/IMqwrite verilog synthesis file
//Serial EEPROM functions for Multi-Queue Validation Board.

//Module to divide down serial clock
module dividesclk(reset_,clkin,clkout);

inputreset_;

input clkin; //4.096MHz input clk
output clkout;

reg [1:0] div; /ffor clk divider

wire clkout;

/[Xicor X5323 maximum clk=2MHz so divide clkin by 4, about 1MHz
assign clkout = div[1];
always @ (posedge clkin or negedge reset_)

begin
if (Ireset_)
div <=2’b00; /[clear registers
else
div <=div + 2’b01; /[count up
end

endmodule //dividesclk

/xxxxxnxnxnxxxxxxnxnxnxnxxxnxxnxnx

/[This module interfaces the serial SPI EEPROM, Xicor X5323

/lor similar, to the Multi-Queue serial programming port.

//Assume that the EEPROM has already been programmed.

/nitially, after master reset, read serial bitstream out

//of the EEPROM and into the Multi-Queue device(s) until SENO_ goes
/Nlow. This should also work in default mode.

module serialprog(reset_,mrs_,sclk,s_rs_,s_so,s_sclk,s_cs_,s_si,
m_so,m_seno_,m_sclk,m_seni_,m_si);

inputreset_; /Imaster reset input

output mrs_; //master reset to Multi-Queue
input sclk; /linput clk

input s_rs_,s_so0; //[EEPROM outputs

output s_sclk,s_cs_,s_si; //[EEPROM inputs
inputm_so,m_seno_; /IMulti-Queue serial outputs
output m_sclk,m_seni_,m_si; //Multi-Queue serial inputs

wire s_sclk,m_sclk;
wire res_sync_;

reg s_cs_,s_si;
regmrs_,m_seni_;

reg [3:0] bitcount; //bit counter

reg [2:0] state; //state machine bits
//state definitions

parameter start = 3'b000;

parameterri = 3'b001;

parameterr7 = 3b011;

parameterr8 = 3'b010;

parameter addr= 3'b110;
parameter data= 3'b111;
parameteridle = 3'b101;

© 2019 Renesas Electronics Corporation

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING IDT APPLICATION NOTE AN-303

assign s_sclk = sclk; //[EEPROM and Multi-Queue both on sclk
assign m_sclk = sclk;
assign m_si = S_SO0; //Pass EEPROM data to Multi-Queue

always @ (posedge sclk or negedge reset_)
if (Ireset_)
state <= start;
else case (state)

start:
begin
s cs_<=1;
s_si <= 0; //start of EEPROM READ b’00000011(msb 1st)
mrs_ <= 0; //reset Multi-Queue
m_seni_<=1;
bitcount <= 4’d0;
if (reset_) /Iwait for reset to end
state <= r1;
else
state <= start;
end
r1: /Inext bit of EEPROM READ
begin
s _cs_<=0; /Istart selecting EEPROM
s_si <= 0; //bits 1-5 of EEPROM READ b’00000011
mrs_ <= 1;
m_seni_<=1;
bitcount <= bitcount + 1;
if (bitcount < 4’d5) /Isend bits 1-6
state <=r1; /Istay here
else
state <= r7;
end
r7: /Inext bit of EEPROM READ
begin
s_cs_<=0;
s_si<=1; //bit 7 of EEPROM READ b’00000011
mrs_<=1;
m_seni_ <= 1;
state <= r8;
end
r8: /Inext bit of EEPROM READ
begin
s_cs_<=0;
s_si<=1; //bit 8 of EEPROM READ b’00000011
mrs_<=1;
m_seni_ <= 1;
bitcount <= 4’d0;
state <= addr;
end
addr: /laddress bits of EEPROM READ
begin
s_cs_<=0;
s_Si<=0; //all address bits=0
mrs_<=1;

m_seni_ <= 1;
bitcount <= bitcount + 1;
if (bitcount < 4’d15) //16 address bits

© 2019 Renesas Electronics Corporation

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING IDT APPLICATION NOTE AN-303

state <= addr;

else
state <= data;
end
data: /Isend data bits
begin
s_cs_<=0;
s_si<=0;
mrs_ <= 1;
m_seni_ <= 0; /lenable Multi-Queue serial in
bitcount <= 4'd0;
if (m_seno_) /Iwait for seno_=0 from Multi-Queue
state <= data;
else
state <= idle; //done
end
idle: /lidle state, stay here until reset
begin
s cs_<=1;
S_si<=0;
mrs_ <= 1;
m_seni_<=1;
bitcount <= 4'd0;
state <= idle;
end
default:
begin
s cs_<=1;
s_si<=0;
mrs_<=1;
m_seni_ <=1;
bitcount <= 4’d0;
state <= idle;
end

endcase

endmodule //serialprog

© 2019 Renesas Electronics Corporation

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING IDT APPLICATION NOTE AN-303

Sysytem
Reset

DReset MQ

START: res_sync=0

Xicor CS =1 R

MQ MRS = 0 ot

MQ SENI =1 Complete
Reset Done
res_sync =1

R1:

XicorCS =0 bitcount < 5

MQ MRS = 1
MQ SENI =1
Xicor SI =0
bitcount inc.

1) Select Xicor EPROM
2) Serially load first 6 bits of
Read Instruction "00000011"

bitcount = 5

Load Final 2 bits of the Read Instr.

R8:
Reset Bitcount
Xicor Sl =1

Load Read Start
Address of Xicor

ADDR:
Xicor SI =0
increment bitcount

bitcount < 15

bitcount=15_ _ _ _ _ _ _ _ _ _ _ o ______.
Program MQ

Load bitstream from
MQ SENO = 1 Xicor to MQ via PLD

DATA:
MQ SENI =0
Reset bitcount

IDLE:
Xicor CS =1

MQ SENI =1
Go to Normal
Operation

5997 drw05

Figure 5. Serial Programming State Diagram

© 2019 Renesas Electronics Corporation

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING IDT APPLICATION NOTE AN-303

SERIAL PROGRAMMING REGISTERS DEFINED

The serial bitstream file generated from the C programis nothing more than
abinary file. By defining the bits in the bitstream file pertaining to the internal
registers, the user can modify certain parameters (such as PAE, PAF offset
values), without having to use the serial bitstream generator.

Because the number of bits required to program a Multi-Queue are relatively
few, storing the bitstreaminan FPGA s aviable alternative. The number of bits
neededto programaMulti-Queue depends onthe number of queues desired.
The minimum number of bits needed to program the Multi-Queue is 91 bits to
program a single queue configured device. The maximum number of bits
needed to program the Multi-Queue is 2323 bits for a full 32 queues. The
required number of bits for any single chip applicationis calculated using the
following formula: Total number of bits =19 + (N x 72) where N is the number
of queues desired.

BITSTREAM REGISTER VALUES DEFINED

Theregistersinthe Multi-Queue are 18 bitswide. Thefirst 18 bits of the serial
bitstream are defined asthe Header register, the nextfour 18 bitregisters define
the first queue parametersthe, second four 18 bitregisters define the second
queue parametersand soonforeach queue. Thefinal bitofthe serial bitstream
isasingle stop bit.

To program multiple devices simply concatenate each devices header
register and queue registers in series to the first device’s string. A stop bitis
required atthe end of each device’s configuration section. Figure 6 showsthe
formatstructure ofthe bitstreams andidentifies the sectionsinthe bitstream. Note
thatthe firsthitin the serial bitstreamis on the far left (MSB) progressing to the
right (LSB) through each register in succession.

© 2019 Renesas Electronics Corporation

MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING IDT APPLICATIONNOTE AN-303

18, bits

P A
1111111111111XXXXX) - Header \
XXXXKXKXXKXKKXXKKXXK - FF mask
XXXXKXKXXXKXXXXKXXX - PAE mask
XXXKXKXKXKXKXKXKXKKXK — PAF mask First Queue
00 | XXXXXXXX | XXXXXXXX - Addr
AN A J
End ;(ddr . Start Midr
. First Device
KXXXKXKXXKXKKXKXKKXKXK - FF mask
XXXXKXKXXXKKXXKXKXXX - PAE mask
XXXKXKXKXKXKXKXKXKXKXK - PAF mask Queue N
00 | XXXXXXXX | XKXXXXXXX - Addr
AN A J
End Addr Start Addr J
+1 Stop bit
18, bits
P A_
1111111111111XXXXX) - Header \
KXXXKXKXXKXKXXKXKKXKK - FF mask
KXXXKXKXXKXKKXKXKKXXK - PAE mask
XXXXKXXXXKXKXXXKKXXX - PAF mask First Queue
00 | XXXXXXXX | XKXXXXXXX - Addr
N A J
End :ﬁ(ddr . Start Addr
. Device N
XXXXKXKXXXKXXXKXKXXX - FF mask
XXXXKXKXXXKKXXKXKXXX - PAE mask
XXXXKXKXXKXKXKXKXKKXKXK - PAF mask Queue N
00 | XXXXXXXX | XKXXXXXXX - Addr
AN A J
End ;(ddr Start Midr j
+1 Stop bit

5997 drw06

Figure 6. Bit Streams Format Structure

© 2019 Renesas Electronics Corporation

MULTI-QUEUE FLOW-CONTROL DEVICE SERIALPROGRAMMING IDT APPLICATION NOTE AN-303

EACH OF THE 18 BIT WIDE REGISTERS ARE FURTHER DESCRIBED BELOW:

Header: This is an 18-hit word and has the following components. 13 ones as the MSB, which are used for error detection, followed by a five bit LSB
indicating the number of queues to be programmed (equal to (#Q-1)). Ex: Five queues requires the binary value “00100". The header is needed only
once for each device.

11 JaJafafa]oafo3fefa]q]
8 9 10 1 12 13 14 15 16 17 18

L1]

1] |
T 2

[1]

1 1
4 5 6

1 [1]
3 7

FF mask: This is an 18-bit word and represents the Full Flag mask. Itis equal to ~(Qdepth-2). Each queue requires a separate FF mask. (~ Denotes
inversion). Qdepth is the number of words in queue where word width is the maximum of the input or output port width. Ex: input port = x9, output port =
x18, and queue depth = 3k (3072x18) then subtract two and invert. Resultant serial stream is shown in the figure below.

Lefafefafaf afofafof of of of of ofofJogJol]Ja1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PAE mask: Thisis an 18-bit word and represents the partial empty mask. Itis equal to ~(PAE Offset). Each queue requires a separate PAE mask. PAE
Offsetis the number of words above the empty queue where word width is the maximum of the input or output port width. Ex: input port = x18, output port
=x9, and PAE Offset = 256 words (x18 wide) from empty queue. Resultant serial stream is shown in the figure below.

L1l 1l a o a] o] 2] 2] 1] of 2] 2] 1] 11111]1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PAF mask: This is an 18-bitword and represents the partial full mask. Itis equal to ~(Qdepth-PAF Offset). Each queue requires a separate PAF mask.
PAF Offset is the number of words below the full queue where word width is the maximum of the input or output port width. Ex: input port =x9, output port
=x18, Qdepth is 5k (1024x5=5120), and PAF Offset = 224 words (x18 wide) from full queue. Resultant serial stream is shown in the figure below.

LelafaJafafofafafof of af af of 1 Ja1]1]1 1|
1 2 3 4 5 6 7 8 9 10 1 12 138 14 15 16 17 18

Start Address: This is an 8-bit word and represents the start address of each queue in memory. Start addresses are specified in increments of 1Kx9
words. 2Mbit Multi-Q devices start at binary address “00000000", 1Mbit Multi-Q at binary address “10000000”, 512kbit Multi-Q at binary address
“11000000", and 256kbit Multi-Q at binary address “11100000". The first queue should always start at this address, subsequent queues should start at
an address just above the previous queue’s end address.

End Address: This is an 8-bit word and represents the end address of each queue in memory. End addresses are specified in increments of 1K x 9
words. The end address for a particular queue should be the number of 1Kx9 blocks (minus one) which will cover the FF Mask value of that queue.
For example, if the queue depth is to be 8Kx9 then add binary “111" to the start address, if the queue depth is to be 1Kx9 then add zero to the start
address to obtain the end address value. Ex: a single queue 10Kx9 depth queue in a IMbit Multi-Q device is shown in the figure below. Note: Under
this example the next queue in this device would start at binary address “10001010".

End Add Start Addr
n r »]<

[o]l o] 1] o] o] ol 1[o]l of 1] 1]Jof of oJo]o]o/o
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

© 2019 Renesas Electronics Corporation

CONCLUSION Inthe cases where the user wishes modify minor configurations in the Multi-

The IDT Multi-Queue requires aserial bitstream for configuring the device ~ Queue withouthaving to generate a bitstream file every time, the user can
prior to operationif other than the default queue parameters are desired. A~ modify or create the binary file directly using the information detailed in this

binary bitstream file can be generated using a C program provided by IDT. ~ @pplicationnote.

