
1
 2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. DSC-5997/3

APPLICATION
NOTE

AN-303
MULTI-QUEUE FLOW-CONTROL DEVICE

SERIAL PROGRAMMING

JULY 2003

By Stewart Speed & Jack Deans

INTRODUCTION
The multi-queue flow-control device family from IDT are user programmable

devices, the user can program a given device to have anywhere from 1 to the
maximum number of queues available. The user can also program each queue
to be any depth, assigning memory blocks from the total pool of memory within
the device to the queues independent of each other. That is, queue sizes are
flexible and can be set to any depth on a per queue basis. The size of a queue
must comprise of memory blocks, therefore a queue can be configured down
to a resolution of 1024 x 9, 512 x 18 or 256 x 36.

The user can also set Almost Full and Almost Empty flags to any location within
the depth of a queue, again on a per queue basis, so that the Almost Full and
Almost Empty flags within individual queues of a device are at different locations.

Please note, that queue widths per device are not independent, that is, all
queues within a given device will have the same data input bus width and the
same data output bus width.

As one can imagine, this requires a large amount of configuration registers
within the device to store and hold the set-up information of a Multi-Queue device.
The registers can be configured independently by the multi-queue flow-control
device using the default programming mode. Here a sequence of WCLK cycles
must be provided to the device after a master reset, these WCLK cycles loading
the registers internally. The default programming will configure a multi-queue
flow-control device in a predetermined manner that is always the same, the
maximum number of queues will be set-up, all queues will be equal depths. The
total memory of the device will be shared equally between all queues. The Almost

Empty and Almost Full flag offsets of all queues will set to either 8 or 128
depending on the DF input at master reset.

The set-up registers of the Multi-Queue devices are also user programmable
via the serial port. As opposed to default configuration of the device, serial
programming can be performed by the user allowing the configuration of the
number of queues, between 1 and the maximum, the depth of queue’s, a
minimum of 1024 x 9; 512 x 18; 256 x 36, the flag offsets at any point within a
respective queue depth. One may also modify the serial bitstream file manually
instead of using the serial bitstream generator for minor changes. A section
describing the bitstream register values are defined in this document.

THE SERIAL PORT OF THE MULTI-QUEUE FLOW-CONTROL DEVICE
The serial port comprises the following inputs/outputs:
1. Serial Clock, SCLK.
2. Serial Input Enable, SENI
3. Serial Data Input, SI
4. Serial Output Enable, SENO
5. Serial Data Output, SO

The user serially loads data onto the SI input, this data is clocked into the
device on the rising edge of SCLK provided that SENI is active, LOW. The
SENO output of a device is HIGH until programming of the device is fully complete
at which point the SENO output follows the SENI input, therefore with SENI being
LOW the SENO output should go LOW. With SENO LOW, if the user continues
to clock data into a device serially on SI, this data will be passed through to the

Figure 1. Serial Port Connection

DFM MRS

SENI SENO

MQ1

SI SO

SCLK

DFM MRS

SENI SENO

MQ2

SI SO

SCLK

DFM MRS

SENI SENO

MQn

SI SO

SCLK

Serial Enable

Serial Input

Serial Clock

Default Mode
DFM = 0

Master Reset

Serial Loading
Complete

5997 drw01

2

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

SO output of the device. Therefore the SENO output has 2 purposes, firstly it
can be used when devices are connected in expansion mode. In expansion
mode the SENO output of device N connects directly to the SENI input of device
N+1, the SO output of device N connects directly to the SI input of device N+1.
This can be seen from Figure 1, Serial Port Connection. The SENI and SI inputs
of the first device within a chain is controlled by the user and serial data required
for all devices loaded here. The first device programmed is the first device in
the chain, when the first device is programmed the second will be and so on.
This is done by virtue of the fact that the SENO of device N connects to SENI
of N+1 and SO of N to SI of N+1. So when device N is programmed its SENO
goes LOW driving SENI of N+1 LOW, serial data being passed from SO of N
to SI of N+1.

The second purpose of the SENO is providing the user with a programming
“Done” signal, whether the Multi-Queue device is used in single device mode
or expansion mode, the SENO output of the single device (or last device in a
chain) should be used to indicate that programming of the Multi-Queue(s) is
complete, when the final SENO goes LOW (provided that SENI is LOW)
programming has been completed and the user should stop serial program-
ming, and take SENI inactive, HIGH. This can be seen in Figure 2, Serial

Programming. Remember, that when programming of a device is complete, the
SENO output will follow the SENI input and the SO output will follow the SI input.

Therefore, in Serial programming mode the user has to provide a serial
bitstream to the multi-queue flow-control device(s). This bitstream varies in
length depending on the number of queues required within a device and how
many devices are connected together. The number of bits required for a device
can be calculated from:

Number of bits = 19 + (Q x 72), where Q is the number of queues required.
When multiple devices are connected in expansion the number of bits

required will accumulate accordingly such that:
Total Number of bits = [19 + (Qa x 72)] + [19 + (Qb x 72)] + ……, where Qa

is the number of queues in the first device and Qb is the number of queues in
the second, and so on.

This means that the number of serial bits required can vary from 91 bits for
a single device, single queue setup, to 18,5384 bits for 8 devices with 32 queues
in each device. The user must generate this bitstream and store it to be dumped
into the Multi-Queue(s) when required. There are multiple ways this bitstream
may be generated and stored, this application note will discuss one such method
open to the designer.

3

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

R
C

LK

W
E
N

S
E
N
O

(M
Q

1)

F
F

W
A

D
E

N
/

F
S

T
R

R
A

D
E

N
/

E
S

T
R O
V

W
C

LK

59
97

 d
rw

02

tW
F

F tE
N

S

tR
O

V

tP
C

W
Q

tQ
S

tQ
H

tQ
S

tQ
H

tP
C

R
Q

H
IG

H
 -

Z

H
IG

H
 -

Z
(S

la
ve

 D
ev

ic
e)

(S
la

ve
 D

ev
ic

e)

S
O

(M
Q

1)

M
R
S

S
C

LK

S
E
N
I

(M
Q

1) S
I

(M
Q

1)

tR
S

R

tS
E

N
O

1s
t

2n
d

nt
h

1s
t

2n
d

nt
h

1s
t

2n
d

nt
h

tS
E

N
S

S
E
N
O

(M
Q

2)

S
E
N
O

(M
Q

8)

B
12

B
11

tS
D

S

B
1n

tS
D

H

B
21

B
22

B
2n

B
81

B
82

B
8n

B
21

B
22

B
2n

B
81

B
82

B
8n

tS
E

N
O

tS
E

N
O

tS
C

LK
tS

C
K

L
tS

C
K

H

P
ro

gr
am

m
in

g
C

om
pl

et
e

1s
t D

ev
ic

e
in

 C
ha

in
2n

d
D

ev
ic

e
in

 C
ha

in
F

in
al

 D
ev

ic
e

in
 C

ha
in

tS
D

O
tS

D
O

P

tS
E

N
O

P

tS
E

N
O

P

Fi
gu

re
 2

. S
er

ia
l P

ro
gr

am
m

in
g

4

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

DESIGN METHODOLOGY
IDT can provide a “Serial Bitstream Generator”, which is a ‘C’ program that

takes a user defined input file containing the user’s set-up requirements. These
requirements include the following:

1. The number of devices to be programmed.
2. The number of queues within each device.
3. The depth of every queue.
4. The Almost Empty and Almost Full offset values for every queue.
The generator when run will create an output file which is basically a bit file

containing logical 1’s and 0’s that should be stored and dumped to the Multi-
Queue when programming takes place. (Please contact the IDT Flow-Control
Management application group for this “Serial Bitstream Generator”).

The example discussed in this application note utilizes a Xicor X5323 32Kbit
Serial (SPI) EEPROM that stores the serial bit file to be loaded into the Multi-
Queue(s). This bit file has at some time earlier been loaded (written) into the
EEPROM, this loading of the EEPROM is not discussed in this application note.
This application note also utilizes an FPGA (or PLD) as the interface between
the EEPROM and the Multi-Queue device(s). Also included in the application
note is the associated Verilog code that shows how the interface is controlled.

Figure 3, Hardware Set-Up for Serial Programming, is shown below. This
diagram shows that anywhere between 1 and 8 Multi-Queue devices can be

connected in expansion mode, with the associated serial ports cascaded. Some
important points to note from this figure are:

1. The FPGA interfaces between the EEPROM and the 1. Multi-Queue(s).
2. This set-up is the same for a single Multi-Queue device application or

multiple Multi-Queue’s cascaded together.
3. The SENO of the single device or the last device in a chain must feedback

to the controlling FPGA and be used as a “done” signal that causes
programming to cease when SENO goes LOW.

4. The serial port inputs of the first device within a chain, SENI and SI connect
to the FPGA, the FPGA programs all devices in a chain via these input pins.

5. The serial bit file stored in the EEPROM is fed through the FPGA to the
Multi-Queue(s).

6. The SENO of device 1 connects to the SENI of the next device, so that when
programming of device 1 is complete the SENO output of device 1 takes
the SENI of the next device LOW and data from SO of device 1 is written
into the next device. Remember, this data is being passed through device
1, the FPGA writing data in to SI of device 1.

7. The FPGA requests serial data from the EEPROM, this is discussed in more
detail later. This serial data is read from the EEPROM’s SO output and in
this example is gated through the FPGA from its input s_so to its output m_si.

8. Note that all the pin names of the FPGA are taken from the sample Verilog
code.

FPGA

m_seno_

s_rs_

s_so

m_sclk

m_seni_

m_si

s_cs_

s_sclk
s_si

SCLK

SENI

SI

SENO

SO

Multi-Queue 1

N3

M2

L1

M1

M3

SCLK

SENI

SI

SENO

Multi-Queue n

N3

M2

L1
M
1

Note: The SENO of the last device in a
chain is used as the ’Done’ signal.

SCK

CS

SI

RST

SO

Xicor - X5323
1

6

5

7

2

8 Pin
SOIC

5997 drw03

Figure 3. Hardware Set-Up for Serial Programming

5

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

Figure 4. Read EEPROM Array Sequence

0 1 2 3 4 5 6 7 8 9 10

CS
(Xicor)

SCK

SI
(Xicor)

SO
(Xicor)

5997 drw04

20 21 22 23 24 25 26 27 28 29 30

INSTRUCTION
15 14 13 3 2 1 0

16 BIT ADDRESS

HIGH IMPEDANCE
7 6 5 4 3 2 1 0

DATA OUT

MSB

PROPAGATION OF SERIAL DATA INPUT
As explained above, when Multi-Queue devices are connected in expansion

mode their serial ports are cascaded. Serial data intended to program the final
device in a chain must propagate through all devices. This propagation delay
therefore, is accumulative and at worst there may be 8 devices connected.
However, this propagation delay does not affect the performance of the serial
port. This can be seen from the example below, which is based on using the
slowest speed grade device:

1. The serial port for all Multi-Queue devices is rated at 10MHz, a 100ns cycle
time.

2. The maximum propagation delay for a Multi-Queue device is 4ns
3. With 8 devices cascaded (maximum allowable), the total propagation delay

of data written into the SI input of device 1 to the SI input of device 8 is:
7 x 4ns = 28ns (not counting any trace delays).

Therefore, we can see that there will always be a large amount of margin
provide on the set-up time for serial data regardless of how many devices are
cascaded. In fact there will be 52ns margin on the data set-up of the final device
even with 8 devices in cascade. This is given from:

Margin = Cycle Time – (Total Propagation Time + Data Set-up Time, tSDS)
Margin = 100ns – (28ns + 20ns) = 52ns

THE XICOR EEPROM REQUIREMENTS
The Xicor X5323 EEPROM is a 32Kbit serial EEPROM device, it is used to

store the bit file required to program the Multi-Queue(s). A bit file previously
loaded into the EEPROM can be read from the EEPROM via the FPGA and
used to program the Multi-Queue device(s). A read sequence is performed on
the X5323 by first pulling the CS (pin 1) LOW, selecting the device. The 8-bit
“read” instruction followed by the 16 bit address is transmitted to the device via

the SI input (pin 5). This 16 bit address is the start address within the EEPROM
from where serial data will begin reading. The user should be aware that the
serial bit stream output form the X5323 will be MSB first, i.e. bit 7 of that address.

All instructions and addressing are done with respect to a rising edge of the
SCK (pin 6) input. Once this has been done serial data will be output from SO
(pin 2) with respect to a falling edge of SCK (pin 6). When read operations from
the X5323 are complete the CS input should be taken HIGH. Figure 4 “X5323
Read Timing” shown below illustrates the read operation from the Xicor
EEPROM. The instruction for a read from memory is “0000 0011”. Please refer
to the Xicor X5323 data sheet for more details.

The Xicor X5323 with 32Kbit memory, can easily accommodate any
Multi-Queue device(s) configuration file, the largest bit file being 18.5Kbits (as
mentioned). However, one could also consider using the EEPROM to store
multiple files, each starting at their own respective address space in memory.

The designer should note that the maximum clock frequency of the Xicor
X5323 is 2MHz.

FPGA INTERFACE
Following is sample code developed for an FPGA to deal with the interfacing

between the Xicor X5323 EEPROM and the Multi-Queue device(s). This design
is based on using an X5323 device with a Vcc Range of 2.7V-5.5V, this device
having a maximum clock cycle time of 500ns (2MHz). This design is also based
on the X5323 clock running at 1MHz, (the FPGA takes a 4MHz clock input and
divides by 4 to produce a 1MHz SCLK output). The suggested part number for
the Xicor EEPROM is: X5323S8-2.7

The code design may need to be re-evaluated when running at higher clock
speeds or when using a different EEPROM, to ensure that there are no timing
conflicts.

6

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

Verilog Code

//Mqwrite verilog synthesis file
//Serial EEPROM functions for Multi-Queue Validation Board.

//Module to divide down serial clock
module dividesclk(reset_,clkin,clkout);

input reset_;
input clkin; //4.096MHz input clk
output clkout;
reg [1:0] div; //for clk divider
wire clkout;
//Xicor X5323 maximum clk=2MHz so divide clkin by 4, about 1MHz
assign clkout = div[1];
always @ (posedge clkin or negedge reset_)
begin

if (!reset_)
div <= 2’b00; //clear registers

else
div <= div + 2’b01; //count up

end
endmodule //dividesclk

//***
//This module interfaces the serial SPI EEPROM, Xicor X5323
//or similar, to the Multi-Queue serial programming port.
//Assume that the EEPROM has already been programmed.
//Initially, after master reset, read serial bitstream out
//of the EEPROM and into the Multi-Queue device(s) until SENO_ goes
//low. This should also work in default mode.
//***

module serialprog(reset_,mrs_,sclk,s_rs_,s_so,s_sclk,s_cs_,s_si,
m_so,m_seno_,m_sclk,m_seni_,m_si);

input reset_; //master reset input
output mrs_; //master reset to Multi-Queue
input sclk; //input clk
input s_rs_,s_so; //EEPROM outputs
output s_sclk,s_cs_,s_si; //EEPROM inputs
input m_so,m_seno_; //Multi-Queue serial outputs
output m_sclk,m_seni_,m_si; //Multi-Queue serial inputs

wire s_sclk,m_sclk;
wire res_sync_;
reg s_cs_,s_si;
reg mrs_,m_seni_;
reg [3:0] bitcount; //bit counter
reg [2:0] state; //state machine bits

//state definitions
parameter start = 3’b000;
parameter r1 = 3’b001;
parameter r7 = 3’b011;
parameter r8 = 3’b010;
parameter addr = 3’b110;
parameter data = 3’b111;
parameter idle = 3’b101;

7

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

assign s_sclk = sclk; //EEPROM and Multi-Queue both on sclk
assign m_sclk = sclk;
assign m_si = s_so; //Pass EEPROM data to Multi-Queue

always @ (posedge sclk or negedge reset_)
if (!reset_)

state <= start;
else case (state)

start:
begin

s_cs_ <= 1;
s_si <= 0; //start of EEPROM READ b’00000011(msb 1st)
mrs_ <= 0; //reset Multi-Queue
m_seni_ <= 1;
bitcount <= 4’d0;
if (reset_) //wait for reset to end

state <= r1;
else

state <= start;
end
r1: //next bit of EEPROM READ
begin

s_cs_ <= 0; //start selecting EEPROM
s_si <= 0; //bits 1-5 of EEPROM READ b’00000011
mrs_ <= 1;
m_seni_ <= 1;
bitcount <= bitcount + 1;
if (bitcount < 4’d5) //send bits 1-6

state <= r1; //stay here
else

state <= r7;
end
r7: //next bit of EEPROM READ
begin

s_cs_ <= 0;
s_si <= 1; //bit 7 of EEPROM READ b’00000011
mrs_ <= 1;
m_seni_ <= 1;
state <= r8;

end
r8: //next bit of EEPROM READ
begin

s_cs_ <= 0;
s_si <= 1; //bit 8 of EEPROM READ b’00000011
mrs_ <= 1;
m_seni_ <= 1;
bitcount <= 4’d0;
state <= addr;

end
addr: //address bits of EEPROM READ
begin

s_cs_ <= 0;
s_si <= 0; //all address bits=0
mrs_ <= 1;
m_seni_ <= 1;
bitcount <= bitcount + 1;
if (bitcount < 4’d15) //16 address bits

8

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

state <= addr;
else

state <= data;
end
data: //send data bits
begin

s_cs_ <= 0;
s_si <= 0;
mrs_ <= 1;
m_seni_ <= 0; //enable Multi-Queue serial in
bitcount <= 4’d0;
if (m_seno_) //wait for seno_=0 from Multi-Queue

state <= data;
else

state <= idle; //done
end
idle: //idle state, stay here until reset
begin

s_cs_ <= 1;
s_si <= 0;
mrs_ <= 1;
m_seni_ <= 1;
bitcount <= 4’d0;
state <= idle;

end
default:
begin

s_cs_ <= 1;
s_si <= 0;
mrs_ <= 1;
m_seni_ <= 1;
bitcount <= 4’d0;
state <= idle;

end
endcase

endmodule //serialprog

9

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

Figure 5. Serial Programming State Diagram

START:
Xicor CS = 1
MQ MRS = 0
MQ SENI = 1

res_sync = 0

Reset
Not
Complete

DReset MQ

Reset Done
res_sync = 1

R1:
Xicor CS = 0
MQ MRS = 1
MQ SENI = 1
Xicor SI = 0
bitcount inc.

bitcount = 5

bitcount < 5

1) Select Xicor E2PROM
2) Serially load first 6 bits of

Read Instruction "00000011"

R7 :
Xicor SI = 1

Load Final 2 bits of the Read Instr.

R8 :
Reset Bitcount
Xicor SI = 1

ADDR:
Xicor SI = 0
increment bitcount

bitcount = 15

bitcount < 15

Load Read Start
Address of Xicor

DATA:
MQ SENI = 0
Reset bitcount

MQ SENO = 0

MQ SENO = 1

Program MQ
Load bitstream from
Xicor to MQ via PLD

IDLE:
Xicor CS = 1
MQ SENI = 1
Go to Normal
Operation

Sysytem
Reset

5997 drw05

10

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

SERIAL PROGRAMMING REGISTERS DEFINED

The serial bitstream file generated from the C program is nothing more than
a binary file. By defining the bits in the bitstream file pertaining to the internal
registers, the user can modify certain parameters (such as PAE, PAF offset
values), without having to use the serial bitstream generator.

Because the number of bits required to program a Multi-Queue are relatively
few, storing the bitstream in an FPGA is a viable alternative. The number of bits
needed to program a Multi-Queue depends on the number of queues desired.
The minimum number of bits needed to program the Multi-Queue is 91 bits to
program a single queue configured device. The maximum number of bits
needed to program the Multi-Queue is 2323 bits for a full 32 queues. The
required number of bits for any single chip application is calculated using the
following formula: Total number of bits = 19 + (N x 72) where N is the number
of queues desired.

BITSTREAM REGISTER VALUES DEFINED

The registers in the Multi-Queue are 18 bits wide. The first 18 bits of the serial
bitstream are defined as the Header register, the next four 18 bit registers define
the first queue parameters the, second four 18 bit registers define the second
queue parameters and so on for each queue. The final bit of the serial bitstream
is a single stop bit.

To program multiple devices simply concatenate each devices header
register and queue registers in series to the first device’s string. A stop bit is
required at the end of each device’s configuration section. Figure 6 shows the
format structure of the bitstreams and identifies the sections in the bitstream. Note
that the first bit in the serial bitstream is on the far left (MSB) progressing to the
right (LSB) through each register in succession.

11

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

 18 bits

1111111111111XXXXX - Header

XXXXXXXXXXXXXXXXXX - FF mask
XXXXXXXXXXXXXXXXXX - PAE mask
XXXXXXXXXXXXXXXXXX - PAF mask
00|XXXXXXXX|XXXXXXXX - Addr

XXXXXXXXXXXXXXXXXX - FF mask
XXXXXXXXXXXXXXXXXX - PAE mask
XXXXXXXXXXXXXXXXXX - PAF mask
00|XXXXXXXX|XXXXXXXX - Addr

+1 Stop bit

1111111111111XXXXX - Header

XXXXXXXXXXXXXXXXXX - FF mask
XXXXXXXXXXXXXXXXXX - PAE mask
XXXXXXXXXXXXXXXXXX - PAF mask
00|XXXXXXXX|XXXXXXXX - Addr

XXXXXXXXXXXXXXXXXX - FF mask
XXXXXXXXXXXXXXXXXX - PAE mask
XXXXXXXXXXXXXXXXXX - PAF mask
00|XXXXXXXX|XXXXXXXX - Addr

+1 Stop bit

First Queue

Queue N

End Addr Start Addr

End Addr Start Addr

First Device

First Queue

Queue N

18 bits

End Addr Start Addr

End Addr Start Addr

Device N

5997 drw06

Figure 6. Bit Streams Format Structure

12

IDT APPLICATION NOTE AN-303MULTI-QUEUE FLOW-CONTROL DEVICE SERIAL PROGRAMMING

EACH OF THE 18 BIT WIDE REGISTERS ARE FURTHER DESCRIBED BELOW:

Header: This is an 18-bit word and has the following components. 13 ones as the MSB, which are used for error detection, followed by a five bit LSB
indicating the number of queues to be programmed (equal to (#Q-1)). Ex: Five queues requires the binary value “00100”. The header is needed only
once for each device.

1 1 1 1 1 1 1 1 1 1 1 1 1 Q4 Q3 Q2 Q1 Q0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

FF mask: This is an 18-bit word and represents the Full Flag mask. It is equal to ~(Qdepth-2). Each queue requires a separate FF mask. (~ Denotes
inversion). Qdepth is the number of words in queue where word width is the maximum of the input or output port width. Ex: input port = x9, output port =
x18, and queue depth = 3k (3072x18) then subtract two and invert. Resultant serial stream is shown in the figure below.

1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PAE mask: This is an 18-bit word and represents the partial empty mask. It is equal to ~(PAE Offset). Each queue requires a separate PAE mask. PAE
Offset is the number of words above the empty queue where word width is the maximum of the input or output port width. Ex: input port = x18, output port
= x9, and PAE Offset = 256 words (x18 wide) from empty queue. Resultant serial stream is shown in the figure below.

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PAF mask: This is an 18-bit word and represents the partial full mask. It is equal to ~(Qdepth-PAF Offset). Each queue requires a separate PAF mask.
PAF Offset is the number of words below the full queue where word width is the maximum of the input or output port width. Ex: input port = x9, output port
= x18, Qdepth is 5k (1024x5=5120), and PAF Offset = 224 words (x18 wide) from full queue. Resultant serial stream is shown in the figure below.

1 1 1 1 1 0 1 1 0 0 1 1 0 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Start Address: This is an 8-bit word and represents the start address of each queue in memory. Start addresses are specified in increments of 1Kx9
words. 2Mbit Multi-Q devices start at binary address “00000000”, 1Mbit Multi-Q at binary address “10000000”, 512kbit Multi-Q at binary address
“11000000”, and 256kbit Multi-Q at binary address “11100000”. The first queue should always start at this address, subsequent queues should start at
an address just above the previous queue’s end address.

End Address: This is an 8-bit word and represents the end address of each queue in memory. End addresses are specified in increments of 1K x 9
words. The end address for a particular queue should be the number of 1Kx9 blocks (minus one) which will cover the FF Mask value of that queue.
For example, if the queue depth is to be 8Kx9 then add binary “111” to the start address, if the queue depth is to be 1Kx9 then add zero to the start
address to obtain the end address value. Ex: a single queue 10Kx9 depth queue in a 1Mbit Multi-Q device is shown in the figure below. Note: Under
this example the next queue in this device would start at binary address “10001010”.

0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Start AddrEnd Addr

13

CORPORATE HEADQUARTERS for SALES: for Tech Support:
6024 Silver Creek Valley Road 800-345-7015 or 408-284-8200 408-360-1533
San Jose, CA 95138 fax: 408-284-2775 email: Flow-Controlhelp@idt.com

www.idt.com

CONCLUSION

The IDT Multi-Queue requires a serial bitstream for configuring the device
prior to operation if other than the default queue parameters are desired. A
binary bitstream file can be generated using a C program provided by IDT.

In the cases where the user wishes modify minor configurations in the Multi-
Queue without having to generate a bitstream file every time, the user can
modify or create the binary file directly using the information detailed in this
application note.

