
Integrated Device Technology, Inc.

11/97

APPLICATION
NOTE

AN-172

THE IDT R4640 “MAD” INSTRUCTION
YIELDS SIGNIFICANT PERFORMANCE
IMPROVEMENT OF OVER 30% VERSUS
USING “MULT”

by Sunil Kakkar

The IDT R4640 is a true 64 bit high performance, low cost
processor. Operating at 180MHz, it achieves more than 235
dhrystone 2.1 MIPS performance and 90 million multiply/
accumulate (MAC) operations per second through the MAD
instruction. This MAC performance is a big plus for embed-
ded DSP applications and achieves improvements of over
30% over applications which only use the multiply instruction.

The R4640 has a MAD (Multiply and Accumulate) instruc-
tion which uses HI-LO as a 64 bit accumulator. The MAD
instruction is defined as :

 MAD rs, rt

and it has the following effect :
 HI,LO <-- HI,LO + rs*rt

For 16 bit operands, the latency and the repeat rates for
MAD are 3 cycles and 2 cycles respectively. For 32 bit
operands, they are 4 cycles and 3 cycles respectively.

The MULT instruction is defined as :
 MULT rs, rt

and it has the following effect :
 HI,LO <-- rs * rt

MULT has the same latency and repeat rates as MAD, but
we cannot take advantage of accumulating the result, a
function very commonly used in DSP programs. So, for
accumulation, the HI-LO registers will have to be saved in
general registers and later on added together. This will lead
to additional “MFHI”, “MFLO” and “ADD” instructions thereby
causing a major performance hit. Back to Back “MULT”s are
hence not possible when accumulation of results is required.
This leads to an additional performance hit because the lower
repeat rates of the “MULT” instruction cannot be exploited in
these cases.

Let us look at a simple example of calculating the following
series in a DSP C program:

 /**
 series = 1 + (2^i * 3^i) + xy + x^2 + x^3 + xyz + xz +

yz
 **/

sum=1;

for (i = 0; i < 2; i++) {

 sum += power(i,2) * power(i,3);
 sum += x*y;
 sum += (x*x);
 sum += x*x*x;
 sum += x*y*z;
 sum += x*z;
 sum += y*z;
}

The function “power (int j,int l)” returns “l to the power of j”
.

Now, let us look at the assembly language code for the
portion of the program used to calculate the above series,
without assuming the availability of the MAD instruction:

 ##
 #
 # Assembly Language Code for the series
 # 1 + (2^i * 3^i) + xy + x^2 + x^3 + xyz + xz + yz
 #
 # DOES NOT USE "MAD"s. USES "MULT"s
 #
 # Atleast 30% Performance Hit by using "MULT"
 # instead of "MAD"
 #
 ##

$L47:
 jal power
 li $5,0x00000002

 move $16,$2
 move $4,$18
 jal power
 li $5,0x00000003

2

THE R4640 ‘S “MAD” INSTRUCTION YIELDS HUGE PERFORMANCE
IMPROVEMENT VERSUS USING “MULT” APPLICATION NOTE AN-172

 ##
 #
 # Total Number of Instructions
 # in Critical Code = 23
 #
 # Total Number of Cycles
 # in Critical Code = 37
 #
 ##

mult $16,$2 # 3 cycles
mflo $8 # 1 cycle
lw $5,16($sp) # 1 cycle
mult $5,$5 # 3 cycles
mflo $4 # 1 cycle
lw $2,20($sp) # 1 cycle
mult $5,$2 # 3 cycles
mflo $3 # 1 cycle
mult $4,$5 # 3 cycles
mflo $10 # 1 cycle
mult $3,$19 # 3 cycles
mflo $6 # 1 cycle
mult $5,$19 # 3 cycles
mflo $7 # 1 cycle
mult $2,$19 # 3 cycles
addu $18,$18,1 # 1 cycle
addu $17,$17,$8 # 1 cycle
addu $17,$17,$3 # 1 cycle
addu $17,$17,$4 # 1 cycle
addu $17,$17,$10 # 1 cycle
addu $17,$17,$6 # 1 cycle
addu $17,$17,$7 # 1 cycle
mflo $2 # 1 cycle

addu $17,$17,$2
slt $2,$18,2
bne $2,$0,$L47
nop

As you can see, each MULT takes 3 cycles. In addition,
each MULT has to be followed by a MFLO to save the LO
register and later on ADDU instructions are required to add
these values that are saved from the LO register. For 64 bit
results, MFHI would also be required.

Now let us look at the assembly language version of the
code used to calculate the above series by using the MAD
instruction.

 ##
 #
 # Assembly Language Code for the series
 # 1 + (2^i * 3^i) + xy + x^2 + x^3 + xyz + xz + yz
 #
 # USES SINGLE AND BACK TO BACK "MAD"s
 #
 # Atleast 30% performance Improvement by using

"MAD"s
 #
 #
 ##

$L61:
 jal power
 li $5,0x00000002

 move $16,$2
 move $4,$18
 jal power
 li $5,0x00000003

 ##
 #
 # Total Number of Instructions
 # in Critical Code = 15
 #
 # Total Number of Cycles
 # in Critical Code = 26
 #
 ##

3

THE R4640 ‘S “MAD” INSTRUCTION YIELDS HUGE PERFORMANCE
IMPROVEMENT VERSUS USING “MULT” APPLICATION NOTE AN-172

mtlo $17 # 1 cycle
mad $16,$2 # 3 cycles
mflo $17 # 1 cycles
lw $3,16($sp) # 1 cycle
lw $5,20($sp) # 1 cycles
mul $4,$3,$5 # 3 cycles
addu $17,$17,$4 # 1 cycle
mul $2,$3,$3 # 3 cycles
addu $17,$17,$2 # 1 cycle
mtlo $17 # 1 cycle
mad $2,$3 # 2 cycles Repeat Rate
mad $4,$19 # 2 cycles
mad $19,$3 # 2 cycles
mad $19,$5 # 3 cycles
mflo $17 # 1 cycle

90 MILLION MADS PER SECOND AT 180 MHz
Latency for one MAD is 3 cycles
Repeat rate for MAD is only 2 cycles

addu $18,$18,1
slt $2,$18,2
bnel $2,$0,$L61
move $4,$18

As you can see, the most critical loop uses only 26 cycles
versus 37 cycles without MADs which is a 30% improvement.
Further, the same number of cycles would be required in the
second case using MADs for 64 bit results also which would
yield a performance improvement of close to 40% versus 64
bit results for MULTs.

Conclusion
Hence, the MAD instruction in R4640 can be utilized to get

a distinct performance advantage in DSP programs. This
performance advantage could easily reach 40% versus pro-
cessors which do not support a Multiply/Accumulate instruc-
tion.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

