
©1998 Integrated Device Technology, Inc.

 6.011
3558/3

MARCH 1999

APPLICATION
NOTE
AN-14

DUAL-PORT SRAMs
WITH SEMAPHORE
ARBITRATION

Introduction
Due to their high bandwidth and message access flexibility, dual-port

SRAMs are used to link multiple high-performance processors and
systems. Integrated Device Technology makes dual-port SRAMs in many
configurations, all of which consist of one SRAM with two sets of address,
data and control signals. This allows two processors to share the same
block of physical memory in their respective address spaces. The two
processors can access data in two memory locations simultaneously and
asynchronously. This approach clearly outperforms a discrete part’s
design where two processors must synchronize through arbitration for
access to a bus which is used to access one location at a time in a standard
single-port RAM.

By Michael J. Miller

Figure 1. Dual-Port RAMs Link High-Performance Processors

MICROPROCESSOR
M68020
I80386

DUAL-PORT
SRAM

MICROPROCESSOR
TMS3020

IDT49C000

3558 drw 01

IDT’s dual-access approach removes synchronization require-
ments at the memory’s bus access level. Nevertheless, synchronization
must be performed at other levels to ensure data integrity and proper
system operation. This application note addresses several approaches
to solving the mutual exclusion problem and gives a detailed discussion
of the semaphore capability provided by the IDT71342.

Arbitration
Consider a multiple-processor system where each processor has

access to the same data. Arbitration schemes are necessary to resolve the
situation when multiple processors want the same piece of data at the same
time. Different approaches to the arbitration issue have different tradeoffs
and are best-suited for different applications. These solutions vary from no
arbitration, hardware solutions, software solutions, and combinations
thereof.

Seemingly, the simplest solution is to employ no arbitration at all. This
approach works if the application guarantees that two processors will not
access the same location simultaneously or, if they do, then the indeter-
minate results are acceptable. Sometimes handshaking can be employed
through I/O ports or interrupt mechanisms. This approach provides a high-
performance, low overhead design but is restricted to certain applications.
If arbitration is not required, the IDT7134 can be used. It is a 4K x 8 dual-
port RAM with no arbitration. This part can also be used in large dual-port
designs where one hardware arbiter is used for a whole array composed
of many IDT7134s. The interrupt handshake mechanism can be achieved
by using devices like the IDT7130/7140.

Most applications cannot sacrifice data integrity and utilize the dual-
port memory as a collection of individual memory locations which require
a finite access time. In this case, arbitration at memory location resolution
is required. For example, the IDT7130 and IDT7132 use an address
comparison mechanism which provides a BUSY signal to the losing side.
When the two processors try to access the very same location, the
arbitration asserts the BUSY signal to the processor which attempted
access last. When access attempts are within 5ns of each other, a side is
chosen arbitrarily. The BUSY outputs are suitable for attachment to the
READY or DTACK inputs of most microprocessors. This approach is very
straightforward and flexible and has the benefit that a processor cannot be
locked out of the RAM longer than the access period of the other processor.

The features of the IDT7130/7132 and other device with BUSY that
make them a superb solution in many designs may create problems in other
applications. The fact that BUSY lines are used and that arbitration
resolution is at the level of individual locations can be a major limitation in
some instances. Many significant controllers, such as theIDT 8031 and
IDT8051, are not equipped with READY or DTACK input pins. Of those
that are equipped, a penalty is often paid in the higher performance
versions if they require “seeing” the BUSY signal faster than the IDT7130/
7132 can supply it (16MHz 68020 requires 25ns AS to DSACK). In these
cases, wasteful wait cycles are required. In other applications, software
constraints may require mutual exclusion at the software data structure
level rather than at the memory cell location level. For this reason,
Integrated Device Technology developed devices like the IDT71342.

Instead of comparing addresses on every cycle, and occasionally
asserting BUSY status, the IDT71342 employs circuitry to support a
software mechanism called semaphores. Here, every memory cycle is
equally as short as the next and arbitration is handled at the software level.

The semaphore concept was pioneered by E.N. Dijkstra in 1968. He
developed a test and set approach for single processor multi-tasking
systems. The task tests a memory location (a semaphore) for a particular
value and, on the next cycle, the task sets the same location a unique value.
If the semaphore was already set, then the current task knows that another
task has access. If the value was not present, then the task knows that it
has permission to proceed and all other tasks are blocked because the
semaphore is not set. Only one task at a time has permission via the
semaphore. Semaphores are used like locks to resources such as disk
buffers, message queues, critical code sections, shared access to commu-
nication controllers, etc.

Because the test and set operation requires that the two memory
accesses are indivisible in time, the IDT7130/7132 will not support
semaphores for many processors and systems. This occurs because one
processor may test the semaphore and, before it can set it, the other
processor might test it, too. In this case, both processors “believe” they

 6.01

Application Note AN-14Dual-Port SRAMs with Semaphore Arbritration

2

have the semaphore. The IDT71342 employs a twist by using set and test.
The “set” corresponds to a request and the “test” checks to see if the request
was granted. The indivisible double access requirement is avoided
because, as soon as a request is made by one processor on one side,
the grant is blocked on the other side. Some processors support test and
set operations through a read/modify/write operation, but the memory bus
design must support the processor in such a way that the address and the
chip select remain constant. When the test and set instruction is used,
arbitration must take place. As will be seen, semaphore operation without
hardware busy arbitration has many advantages.

The IDT semaphore scheme employs a software/hardware ap-
proach which provides a secure method of resource allocation with the
flexibility of software configuration and control and the resolution of
hardware. Since there is no hardware relationship between semaphores
and dual-port memory locations, the block sizes, locations and semaphore
association are defined by the software. The semaphores can also be used
to allocate other resources such as I/O devices. This offers the system
designer considerable flexibility.

As an example, a dual-port SRAM might be shared by a disk
controller processor and a host processor. When the controller is
accessing a buffer in memory (e.g. when writing a sector in a track), the
main processor cannot be allowed to interrupt or delay the controller. By
setting the semaphore, the controller has exclusive access to the disk
buffer. When done, it releases the semaphore and therefore provides
access to the disk buffer by the processor on the other side.

Because the processors must test and set a semaphore with multiple
bus cycles, the semaphore arbitration scheme has a longer arbitration
latency than the address comparison scheme. Since arbitration is most
often used for access to multiple locations in memory the overhead can be
amortized across multiple accesses. In systems that require mutual
exclusion of access to data structures over a period longer than one
memory cycle, this trade-off is irrelevant.

Functional Description of the
IDT71342

The IDT71342 is a fast dual-port 4K x 8 CMOS static SRAM with
semaphore logic, packaged in a 52-pin PLCC and 64-pin TQFP. The
semaphore logic can be used to allocate portions of the dual-port SRAM
to one side or the other and is used in place of the address arbitration logic
used in other dual-port designs. Semaphores are software-controlled.
Therefore, this approach provides several advantages including alloca-
tion of multiple blocks of arbitrary size and no processor WAIT states or
BUSY logic.

Like other IDT dual-port SRAMs, the IDT71342 allows access to a
common set of SRAM cells from two independent ports. Each port is
functionally identical to that of a conventional static RAM. Both ports are
completely independent and asynchronous in operation. Reading or
writing on one port does not affect the operation or timing of read/write
operations on the other port. Unlike the IDT7130/7132, the IDT71342
does not employ hardware arbitration which blocks write access. If one
port is writing to a location while the other port is reading that same location,
the data will change during the read. If both ports attempt to write to the same
location at the same time, the result will be some combination of the two data
words being written. If both ports are reading, however, there is no
interaction because the data does not change.

How the Semaphore Flags Work
The semaphore logic is provided by a set of eight latches. These

latches can be used to pass a flag, or token, from one port to the other to
indicate that a block of SRAM is in use. The internal circuitry prevents the
flag from being passed in both directions at the same time. The semaphores
provide a hardware assist for a use assignment method called “token
passing allocation”. In this method, the state of the semaphore latch is used
as a token indicating that a block of SRAM is in use. If the processor on the
L port wants to use a block of SRAM, it attempts to set the latch, requesting

the token. The processor then checks the latch to see if it was successful
in setting the semaphore. If it was, the processor proceeds to read and/
or write in the block. If the processor was not successful in setting the latch,
it means that the R port had set it first, has the token and is using the block.
The L port then continues to test until it is successful, indicating that the R
port has released the token and is no longer using the block.

The semaphore logic is independent of the dual-port SRAM. These
eight latches can be accessed from either port by enabling the semaphore
chip enable (SEM = VIL), which is separate from the SRAM chip enable.
When the semaphore logic is enabled on a port, one of the eight latches
can be read or written from that port. The latch is selected by the three least
significant address pins for the port and the data for reading and writing
uses the D0 data pin.

A semaphore latch is read or written in the same manner as an SRAM
cell. The latch is written to a “1” or “0” by activating the semaphore logic
enable, selecting the latch with the three least significant address bits,
activating the write enable and putting a “1” or “0”, respectively, on the D0

data pin. The latch may be read by activating the semaphore enable,
selecting the latch, holding the write enable HIGH and reading the data
on D0, For the user’s convenience, all eight of the data lines are set to the
same value as D0 during read. In other words, the data lines will contain
all “1”s or all “0”s when D0 is a “1” or a “0”, respectively. In this way, branch
zero testing can be employed.

The semaphore read logic latches the readout state of the semaphore
flag during the read. This prevents the value seen by the reading port from
changing during the read, even though the state of the latch may be
changing internally due to write activity on the other port. The latch goes
into the hold mode when both semaphore enable and output enable are
active. In order to see the latch change, either the semaphore enable or
output enable must be disabled, and then enabled. This means that read
operations must be cyclic; it is not possible to enable the semaphore and

Figure 2. Functional Block Diagram of
Dual-Port SRAM with Semaphores

DUAL-PORT
RAM

EIGHT
SEMAPHORE

LATCHES

D0-7L

CEL

R/WL

OEL

SEML

A0-11L

D0-7R

CER

R/WR

OER

SEMR

A0-11R
3558 drw 02

 6.01

Application Note AN-14Dual-Port SRAMs with Semaphore Arbritration

3

output enable continuously and wait for the latch value being read to
change.

The semaphore logic is active LOW. An access token is requested
by writing a “0” to the semaphore latch and is released by writing a “1”.
To request a token, an attempt to write a “0” to the semaphore is made and
the semaphore is read to determine if the “0” was successfully written. If
a “0” is read, the token request was granted. If a “1” is read, the request
was denied and the other port has the token.

The critical case of semaphore timing occurs when both ports request
the token by writing a “0” at the same time. The semaphore logic is specially
designed to resolve this problem—if requests are made simultaneously,
the logic guarantees that only one side receives the token. In this case, the
token assignment will be made arbitrarily to one port or the other.

Figure 2 shows the internal logic circuitry for one semaphore “latch”
cell. It is composed of multiple latches and cross-coupled AND gates which
serve as an arbiter to guarantee that only one side at a time receives a grant
signal. A typical sequence of semaphore operations is listed in Table 1. The
D0

columns represent the logic value that would be read on that side. The

“Request F/F's are the internal flip-flops which store the state of requests.

Use of Semaphores
Semaphores provide useful solutions for various problems at both the

hardware and software levels. The following selections highlight a few of

the semaphore benefits which range from increasing performance to
providing functionality not available with other designs.

High-Performance Dual-Port Design
To gain a deeper understanding of the trade-offs between sema-

phore and non-semaphore dual-port SRAM designs, the following
example compares both approaches. Dual-port memory system design
requires a key awareness of the microprocessor’s memory access time
requirements. Figure 3 is a read cycle timing diagram of a 20MHz 68020.
Two timings are critical: A 45ns address to data size acknowledge
(DSACK) to guarantee no wait states and a 95ns address to data. It is also
important to examine a typical design. Figure 4 shows the interface
between a single processor and one side of the dual-port. For simpli-
fication, the other port interface was omitted from the drawing. This
example shows the address bus which is decoded by a comparator
(IDT74FCT521A) and an address decoder (IDT74FCT138A). The
address interface chooses which dual-port SRAM to enable. After the chip
enable is enabled, chip enable arbitration (available on all IDT DPRAMs
except for the IDT7014) and data access can begin.

In a tightly-coupled system (i.e., the 68020 processor and dual-port
are on the same board), chip select can be generated from address in
13ns. In the best case, the data acknowledge is tied to the 68020 through
a NAND gate (to include other acknowledges). The NAND gate will

Figure 3. Simplified Diagram of One Semaphore Cell

Table 1. Semaphore Function Table

E

D Y

E

Y D

D Y

E

Y D

E

WRITEL

D0L

D1L

D7L

READL

WRITER

D0R

D1R

D7R

READR

3558 drw 03

Function

Left Right

Function
D0 Request

F/F
Request

F/F
D0

No action 1 1 1 1 Semaphore Free

L port writes 0 0 0 1 1 L port has token

R port writes 0 0 0 0 1 No change; L port keeps token

L port writes 1 1 1 0 0 Semaphore freed; R port gets it

R port writes 1 1 1 1 1 Semaphore free

L port writes 0 0 0 1 1 L port has token

L port writes 1 1 1 1 1 Semaphore free

3558 tbl 01

 6.01

Application Note AN-14Dual-Port SRAMs with Semaphore Arbritration

4

introduce another 5ns delay. This leaves 26.9ns to generate the acknowl-
edge (DSACK) and meet the 5ns setup time to guarantee that a wait state
will not be inserted. In a less rigorous design where the dual-port and CPU
are on separate boards, 10ns or more may be required for on/off board
buffers and bus delay, etc. This leaves 16ns or less to generate
acknowledge.

Considering the timing constraints, the designer can choose from
several options. In applications which require arbitration resolution to the
memory cell level, 26.9ns is not enough time to generate DSACK from CE
using the IDT7130L55. One solution involves adding logic to the BUSY/
DSACK path so that a wait state is always inserted until the dual-port
can respond with BUSY. This will slow down the system whenever the
dual-port is accessed. If block arbitration or higher memory cycle perfor-
mance are required, the designer should utilize the IDT71342. This
configuration would only be constrained to the 95ns address to data access
time, minus any address and data buffer time. The IDT71342 provides high
enough performance for use with the 25MHz 68020. Some software

the semaphore when it is finished with the resource. This is achieved by
writing a “1” to the semaphore location.

Using Semaphores at the
Software Level

One example of where semaphores might be applied involves two
processors working together to generate a video display for animated
images. The “MASTER” processor generates a picture layout in the form
of a display list. The “SLAVE” processor reads the display list, interprets
it and generates an image in a display buffer. As the image is displayed,
the video buffer is cleared. The displayed list is reinterpreted and

Figure 4. Read Cycle Timing for 20Mhz 68020

Figure 5. Memory Interface to One Port of
a Dual-Port RAM System

Flow Chart 1. Sequence of Operations on Semaphore
 to Guarantee Mutual Exclusion

CLOCK

ADDRESS

AS

DSACKx

DATA

S0 S2 S4

25ns

25ns

5ns

5ns

50ns 50ns
3558 drw 04

DUAL PORT
RAM

DUAL PORT
RAM

DUAL PORT
RAM

DUAL PORT
RAM

7
4
F
C
T
5
2
1
A

7
4
F
C
T
1
3
8
A

ADDRESS DSACK +5V DATA

74FCT521A 7.2ns
74FCT138A 5.8ns

ADDRESS TO CS = 13ns
3558 drw 05

WRITE ZERO TO
SEMAPHORE LOCATION

READ
SEMAPHORE

LOCATION

MUTUAL EXCLUSION
SECTION OF

PROCESS

WRITE ONE TO
SEMAPHORE

LOCATION

REQUEST:

RELEASE:

NOT
ZERO

3558 drw 06

overhead is required for semaphore access but, given the fact that the
semaphore arbitration is for a block of locations, the arbitration latency can
be amortized across multiple higher speed accesses. Consequently, the
semaphore approach provides a higher performance solution if block
arbitration is desirable or acceptable.

A Software View of Semaphores
The dictionary defines semaphore as “signaling by flags”. A

semaphore is implemented as a specialized type of memory location which
can be accessed by either processor in a dual-port design. Two different
operations are performed on the semaphore: the request operation which
attempts to gain access and the release operation which signals the
termination of access. These operations are used to guarantee mutual
exclusion, meaning that only one processor is accessing a resource at any
given time. This occurs from the time a request is granted until the time that
the semaphore is released.

A semaphore is chosen which both processors associate with one
resource. First the processor requests the semaphore by attempting to
write a “0” to the semaphore location. Then it reads the location. If it receives
a non-zero value (i.e. a “1”), it loops back and reads the semaphore
location again. It will continue to read the location until it receives a “0”. The
software may be written in such a way that useful work may be performed
while waiting. When a “0” is read, the processor can access the resource
for as long, and as many times, as desired. The processor must release

 6.01

Application Note AN-14Dual-Port SRAMs with Semaphore Arbritration

5

displayed. If the display list is changed, the image appears as though it has
moved, giving the illusion of animation.

A dual-port SRAM is used to store the display list. The SLAVE
interprets one display list repeatedly to generate the display buffer image,
while the MASTER generates and updates another display list. The
SLAVE processor continuously updates the video display buffer since the
buffer is wiped clean when its contents are dumped to the video screen.

In this particular application, the dual-port SRAM is broken up into
three areas. The first area contains common information concerning which

statements accessing a variable called SEM. The semaphore is released
by writing a “1” to that variable.

Semaphores and Caches
In high-performance dual-port systems, semaphores can be used

with caches to achieve valid data synchronization. The use of caches is
an established method of speeding up access between a processor and
main memory. Main memory may be slower due to the use of lower cost,
higher density DRAMs or system bus latency. The cache operates by

Figure 5B. Software Block Diagram of Video Display System for Animation

Flow Chart 2. Sequence of Operations for Master Processor

HIGH SPEED DUAL-PORT
MEMORY WITH SEMAPHORES

BUFF:

CMD:
MASTER

µP

SEM0

SEM1

SEM2

SLAVE
µP VIDEO DISPLAY

3558 drw 07

REQUEST
BUFFER

BUILD DISPLAY
LIST

RELEASE
BUFFER

NO

START

GOT IT

TELL SLAVE
TO SWITCH

PREPARE TO WORK
IN OTHER BUFFER

3558 drw 08

display list is being accessed and which one is being updated. It is locked
with the semaphore SEM0. Two buffers comprise the other areas and are
locked by semaphores SEM1 and SEM2. At any given time one buffer is
used for the display list currently being interpreted and the other is used
for the list being built. The common area stores the pointer which indicates
which buffer is being updated.

The key to the effectiveness of this approach lies at the software level.
The flow chart for the master processor begins with a buffer request via
a semaphore. Once granted, it builds a display list. Then it releases the
buffer through the semaphore mechanism. Next it calls a routine to inform
the SLAVE processor to switch over to the new buffer. It then loops back
to request access to the other buffer.

The SLAVE processor functions by first fetching the current buffer
number. Then it requests the buffer via the semaphore mechanism
(involving SEM1 or SEM2). Once the SLAVE gains access to the buffer,
it builds the display from the list. After releasing the buffer, it goes back to
fetching the current buffer/number. This is necessary because the
MASTER processor may have switched buffers. Fetching the current
buffer/number requires access to the common area which is achieved by
obtaining the semaphore SEM0. After accessing the data, the SLAVE
releases SEM0 which allows the MASTER to come in and update the
common area.

The software code for the MASTER and SLAVE processors is listed
on the following pages. It is in the form of a pseudo-"C" language-
type program. The request for a semaphore is made by the WHILE

 6.01

Application Note AN-14Dual-Port SRAMs with Semaphore Arbritration

6

monitoring data transfer between the processor and memory. When write
operations are performed, the cache remembers the data and location.
When a read is performed it compares the address of the request with a
list of locations it has data for. If the address matches, the cache supplies
the data and aborts the main memory access. If no match occurs, the cache
allows the main memory access to proceed and notes the data and location.

One might first assume that the dual-port SRAM can always be used
with cached memory accesses. However, extra considerations must be

Flow Chart 3. Sequence of Operations for Slave Processor

Flow Chart 4. Dual-Port SRAM in a Cached Memory Environment

START

REQUEST
BUFFER

BUILD DISPLAY
LIST

RELEASE
BUFFER

FETCHS CURRENT
BUFFER NUMBER

3558 drw 09

CPU

CACHE

DUAL-PORT
SRAM

SRAM

CPU

3558 drw 10

made. When data is written to a memory location in dual-port SRAM, the
cache stores the acquired value and its associated location. The next time
that location is read, the cache will register a “match” and bypass reading
from the location in dual-port SRAM. This might result in an error if a
processor on the other port has written new data to the location.

One way to remedy the situation is to put the dual-port SRAM into non-
cached I/O address space and block data transfer between the dual-port
SRAM and cached address space where standard SRAM exists. To
make this approach work, semaphores must be employed to lock a buffer
in the dual-port SRAM while the data is in the cached SRAM. In this way
a “check out” procedure can be implemented to ensure data integrity. The
semaphore latches must be addressed through non-cached I/O space in
order for the request and release mechanism to function correctly.

Conclusion
There are a number of ways to handle dual-port SRAM arbitration.

Choice of the most efficient technique concerns what granularity of address
arbitration is required, whether a processor must be locked out of a block
of memory for multiple accesses from the other processor and what
constraints are imposed by the memory access cycle timing. Semaphores
provide an alternative which can result in higher performance systems and
provide functions which are not otherwise achievable. The following is a
quick summary.
No Busy Logic- Some applications guarantee by definition that the two
processors will not access the same locations simultaneously or, if they do,
it doesn’t matter. The IDT7134 is also ideal for use in large dual-port
designs where one arbiter is used for an array of dual-port devices.
Interrupt Logic - Interrupt logic provides a signaling method from one
processor to the other to provide a mechanism for handshaking.
Hardware Busy Logic- Hardware busy logic provides the lowest
latency overhead when accessing multiple individual unrelated memory
locations. The MASTER/SLAVE concept was introduced by IDT to
provide a single arbiter, thus avoiding deadlocks encountered with
multiple arbiters when using more than one dual-port in wide bus
applications.
Semaphore Logic- Semaphore logic provides the best overhead trade-
off when accessing a block of data comprised of multiple related locations.
This facility may also be required in high performance applications where
one of the processors does not have a ready/busy input or the overhead
of wait states cannot be tolerated.

Semaphores provide a mechanism for one processor to bar the
other processor from seeing an incomplete update of a block of data.
This is achieved through a software mechanism supported by on-chip
circuitry which provides a test and set facility that arbitrates between
simultaneous requests.

 6.01

Application Note AN-14Dual-Port SRAMs with Semaphore Arbritration

7

CODE FOR MASTER PROCESSOR

MAIN () {
/* code to initialize */

FOREVER {
SEM (CUR_BUF):= 0
UNTIL (SEM (CUR_BUF) = 0); /*request*/
BUILD_DISPLAY (CUR_BUFF); /*Build new display list*/
SEM (CUR_BUFF):= 1 /*release*/
SWITCH_BUFF (CUR_BUFF);
IF (CUR -= BUFF = 1)

CUR_BUFF:= 2;
else CUR_BUFF:= 1;
}

} /*end MAIN*/

SWITCH_BUFF (NBUFF) {
SEMO:= 0
UNTIL (SEMO = 0); /*request*/
BUFF:= NBUFF;
CMD:= NEW;
SEM:= 1; /*release*/
RETURN ()
}

CODE FOR SLAVE PROCESSOR

MAIN () {
FOREVER {

CUR_BUFF:= FETCH_BUFF ();
PROCESS (CUR_BUFF);
}

}

FETCH_BUFF () {
SEM 0:= 0;
UNTIL (SEMO = 0); /*request*/
A BUFF:= BUFF;
CMD:= OLD;
RETURN (ABUFF);
SEMO:= 1; /*release*/
}

PROCESS (BUFF) {
SEM (BUFF):= 0;

UNTIL (SEM (BUFF) = 0); /*request*/
REFRESH (BUFF): /*code to refresh display*/
SEM (BUFF):= 1; /*release*/
}

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

