

© 2022 Renesas Electronics Corporation Page 1 of 11

AN-1136
LED Matrix Sequential Character Display

Authors: Mustafa Balcı and Tuğçe Çelt

Date: August 23, 2016

Introduction

In this application note, we will explain how to

control an 8x8 LED matrix with the GreenPAK

Programmable Mixed-signal ASIC. An 8x8 LED

matrix and an Arduino program were used in this

application note.

This project contains 2 stages:

1. Identification of the letters that are going to be

displayed on the 8x8 LED Matrix in Arduino.

2. Receiving and processing data with the

GreenPAK IC.

System View

In this project we will write “SILEGO” onto the

8x8 LED matrix through GreenPAK. Using the

GreenPAK this way leaves microcontroller GPIO’s

available for other tasks. First, let’s talk about the

working logic of the 8x8 LED matrix. It consists of

64 LEDs in 8 columns and 8 rows.

As shown, each column is connected to the rows

with LEDs. The columns must be connected to

Power and the rows must be connected to Ground

to illuminate the LEDs. When the circuit is

completed, current flowing through the LEDs

allows the LEDs to light up. As shown in Figure 1,

the LED matrix to which cathodes are connected

commonly is called LED matrix with common

cathodes. Positive voltage (HIGH) is applied to the

selected column, while the LOW level is applied to

the selected row to light up a specific LEDs in this

matrix. Let’s take a look at how we can obtain the

letters on the 8x8 LED matrix before we pass it to

the Arduino program.

You see letter “S” formed on the 8x8 LED matrix

below as an example;

 C1 C2 C3 C4 C5 C6 C7 C8

R1

R2 L1 L2 L3 L4

R3 L5 L6 A L7 L8

R4 L9 L10

R5 L11 L12 L13 L14

R6 L15 L16

R7 L17 L18 L19 L20

R8 L21 L22 L23 L24

Figure 2. Display of “S” letter on LED Matrix

Figure 1. 8x8 LED Matrix schematic

© 2022 Renesas Electronics Corporation Page 2 of 11

LED Matrix Sequential Character Display

We need to illuminate 24 LED’s to create the

letter “S” as shown in Figure 2. We can’t light

them up at the same time because of the

common cathode structure of the matrix. For

instance, we must set C4 Column as HIGH and R2

Row as LOW to light up the L2 LED. Because we

set up C4 Column for L2 LED as HIGH and R3 Row

for L6 as LOW, the LED A located in C4 Column

will light up too. Therefore, we have to show it

row by row instead of showing the letter “S” at

one time. The 8-bit data (1 byte) is enough for 8

columns. After each 8-bit data, GreenPAK IC

should complete the letter “S” by passing to the

next row. It must appear as a complete character

as we drive row by row. For this, transitions

between the rows must take place very quickly.

25fps (Frame Per Second) is enough for people to

easily discern the character, but we need more

than 25fps to smooth the LED flicker. This is

easily achievable with the SPI unit within the

GreenPAK IC. We learned the structure of LED

Matrix and how to drive it. We can now proceed

with the Arduino Program.

Arduino Program

We learned why we need to send images row by

row in the previous part. We will separate the

letters row by row and we are going to send it to

the GreenPAK IC using SPI. We are going to

define each letter as an 8-byte sequence because

each row is of 1 byte. Let’s make the letter “S”

again.

R1 Column goes on as 10000000, R2 Column as

00111100 and R3 Column as 101100110 as

shown in Figure 3. We are going to define the

letter “S” as an 8-byte assay. Unlike the previous

figure, you can clearly see the alterations in the

first column in this figure. The reason for this is to

set the first column for row switching

functionality. In this way, we aim for all the rows

to be scanned when new row of data passes to

the next row.

 C1 C2 C3 C4 C5 C6 C7 C8

R1 1 0 0 0 0 0 0 0

R2 0 0 1 1 1 1 0 0

R3 1 1 1 0 0 1 1 0

R4 0 1 1 0 0 0 0 0

R5 1 0 1 1 1 1 0 0

R6 0 0 0 0 0 1 1 0

R7 1 1 1 0 0 1 1 0

R8 0 0 1 1 1 1 0 0

Figure 3. Display of “S” letter with row clock

So we imagined the first column as a clock signal

that controls the row changes. So the first column

should be like: R1 as 1, R2 as 0, R3 as 1, R4 as 0,

R5 as 1, R6 as 0, R7 as 1 and R8 as 0.

Note: From here onwards, the first column will be

named as rClock and it’s not to be confused with

other columns.

And according to this, our new codes are shown in

Table 1.

Warning: Pay attention to the order of the

columns in Figure 3, because it was made

according to the diagram shown in Figure 1.

However, in Figure 4, the order of bits is opposite

to the order that is shown in Figure 3. This is

because C8 has been taken as MSB and rClock as

LSB.

We keep 8x8 led matrix fonts in original form and

are going to add rClock signal before sending row

information to the GreenPAK IC.

Arduino variable for letter “S”;

© 2022 Renesas Electronics Corporation Page 3 of 11

LED Matrix Sequential Character Display

 Binary Hexadecimal

 C8...C2 rClock

R1 0000000 1 01

R2 0011110 0 3c

R3 0110011 1 67

R4 0000011 0 06

R5 0011110 1 3d

R6 0110000 0 60

R7 0110011 1 67

R8 0011110 0 3c

Table 1. Binary and Hexadecimal

Representation of row datas

Warning: Order of data continues like R8, R7, R6.

0x00 represents R1.

If other letters and markings are recorded as two-

dimensional matrix to comply with the ASCII

table, a variable which is similar to the Figure to

the upper right reveals the following data.

This matrix is defined as constant at the

beginning of the program because its value will

not change. We arranged the settings of the SPI

communication in the “setup” stage and we

arranged a PIN as an output to activate the SPI

unit of GreenPAK IC.

We wrote a function after we made some

arrangements in the setup function.

© 2022 Renesas Electronics Corporation Page 4 of 11

LED Matrix Sequential Character Display

This function takes 2 arguments as its input.

These are: 1. A sentence that is going to be

shown (char sentence []) and 2. The changing

time of letter/mark (unsigned long appearTime).

First, variables that are going to be used in the

“For loop” (int i, y) and a variable (byte row) that

keeps the row information to be sent to GreenPAK

IC, have been identified.

Then we created the “For cycle” using strlen

function to scan all the characters of the sentence

variable that is received as input.

Then, we got the current time information by

using millis function and saved it to the variable

that is named as “enterTime”. We obtained “while

loop” by using this variable and the millis

function.

This loop continuously sends the same character

to GreenPAK IC for a period equal to the value of

the appearTime variable received as input.

The equation in the while loop subtracts the

current time with the time that we have saved (

enterTime) and compares the difference with the

time that the user had entered (appearTime). As

a result of this, it keeps sending the same

character even if a shorter time passes than the

amount requested by the user. If more time

passes than what the user entered, it breaks the

cycle and the next letter is picked.

These rows need to be sent one by one because

each character is comprised of 8 rows. For this,

the “For cycle” and row data are sent one by one.

Note: The reason for decreasing the variable y

from 7 to 0 is because the first row data (R1) is

located in the 8th column of the two-dimensional

matrix.

Then we checked out the row order to add rClock

signal. We set the first column of data as HIGH in

the odd-numbered indexes and set the first

column of data as LOW in the even-numbered

indexes by using the indexes of the two-

dimensional matrix.

The index numbers of column in the two-

dimensional matrix and corresponding row

numbers:

Index 0 1 2 3 4 5 6 7

Row R8 R7 R6 R5 R4 R3 R2 R1

Table 2. Order of row data in font matrix

We benefited from the ASCII table to find out the

corresponding character in the sentence that the

user entered on the 8x8 led matrix font. Each

character, letter and mark has a numerical value

according to the ASCII table. We created an 8x8

led matrix font by using this numerical

correspondence. For instance:

The value of “L” in the ASCII table is 76. We

obtain the data that has been created for “L” if we

type this number to the row index in the two-

dimensional matrix that we have created. You can

inspect the ASCII table below.

© 2022 Renesas Electronics Corporation Page 5 of 11

LED Matrix Sequential Character Display

The code above “(int)sentence(i)” represents the

corresponding ASCII code of the related

character. After this, we obtained the row

information of the related character from the 8x8

LED Matrix Font that we have created. We

processed the rows one by one with Index[y].

If we need to set first column HIGH for rClock

signal, then we apply “Logical or” to that row with

0x01. The first column goes HIGH while the other

columns stay unaffected because 0 is an

ineffective element in the “Logic or” process.

If we need to set the first column to LOW, we

apply “Logical AND” to that row with 0xfe.

Because of the ineffective element in “Logical

AND”, the first column goes LOW while other

columns stay unaffected.

At last, we send this row information to the

GreenPAK IC by using the SPI interface.

You can call the function in the loop section as it

is shown below.

Table 3. ASCII Table

© 2022 Renesas Electronics Corporation Page 6 of 11

LED Matrix Sequential Character Display

Design of the GreenPAK IC

First, we must adjust the settings of the SPI unit

to get the data that comes from the Arduino.

Settings should be as shown in Fig. 4 below:

The SPI unit converts the data that comes from

the Arduino to parallel data and allows us to

process the bits separately. Data that comes from

the Arduino is column data and this allows us to

connect this data directly to the column pins.

When programming Arduino, we have arranged

the first column as 1-0-1-0…. to ensure that it

keeps changing constantly.

In the S2P mode of the SPI unit, we will use

rClock as a clock to understand that the serial to

parallel data conversion has finished. The first

column that changes after every new row will

report to us that the data is ready. We connected

the first column to P DLY1 unit to detect any

change in the first column. The settings of DLY1

units are shown in Fig. 6 below:

In this way, every copy of incoming data triggers

the P DLY unit and declares that we should pass

to the next row. We used a simple counter to

activate the rows in a sequential manner. This

counter increases one by one and counts up to 8

whenever a new row arrives.

Figure 4. Settings of SPI

Figure 5. Connections of SPI

Figure 6. Settings of P DLY1

© 2022 Renesas Electronics Corporation Page 7 of 11

LED Matrix Sequential Character Display

The first state is set as idle and the next 8 states

are set as row states and that is why the counter

counts up to 9. You can see the counter that was

used in Fig.7 below:

You can see active row signals based on this

counter in Table 4.

We either energized each row or stopped

energizing according the situation of K3-K2-K1-

K0. You can see the LUTs and pins that we have

used in Figure 8.

Instead of using the INV1 cell we can set the Q

output polarity of DFF6 as inverted. In this way

we can eliminate the INV1 cell. You should make

the settings of DFF6 as shown in Figure 9.

K3 K2 K1 K0 R8 R7 R6 R5 R4 R3 R2 R1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 1 0

0 0 1 1 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 1 0 0 0

0 1 0 1 0 0 0 1 0 0 0 0

0 1 1 0 0 0 1 0 0 0 0 0

0 1 1 1 0 1 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

Table 4. Active line signals based on row

counter

Figure 7. Row counter

Figure 8. Connection of row pins

© 2022 Renesas Electronics Corporation Page 8 of 11

LED Matrix Sequential Character Display

However, each equation that contains K0 is

needed to be edited again. For example, in the

first situation, 3 bits LUT1 is HIGH when K2, K1,

K0 = 111, while in the new situation it must be

HIGH in K2, K1, K0 = 110.

Alternative Design

Unlike the first design, we can use DFFs to shift

the signal for the row switching function. In this

way we can eliminate LUTs that are connected

with row pins and we can connect the DFF to row

pins directly.

This design is shown in Figure 10.

Figure 9. Settings of DFF 6

Figure 10. Chaining DFFs R1 to R5 in Matrix0

© 2022 Renesas Electronics Corporation Page 9 of 11

LED Matrix Sequential Character Display

DFF0 located in Matrix 0 sees the idle state task.

At each change of rClock , DFFs go to HIGH in

order. The first R1 goes HIGH followed by R2. R8

is connected to R1 and then this cycle is

completed. The first design uses less DFF’s while

the second design uses less LUT’s.

Connections

You can change the brightness of the LEDs by

changing the current. Using an external power

supply and by controlling this current with

transistors, we will have a better solution instead

of just fully driving the LEDs through the

GreenPAK IC. You can adjust the brightness of the

LED’s with a potentiometer that you connect to an

external power source or drive the transistors

with PWM.

Arduino Pins SLG46620V Pins

43 13

52 2

51 10

Table 5. Top-Level Connections 1

SLG46620V Pins NPN transistor base

3 R1 base

4 R2 base

5 R3 base

6 R4 base

7 R5 base

8 R6 base

9 R7 base

12 R8 base

Table 6. Top-Level Connections 2

SLG46620V pins 8x8 LED Matrix pins

14 3

15 4

16 10

17 6

18 11

19 15

20 16

Table 7. Top-Level Connections 3

Figure 11. Chaining DFFs R6 to R8 in

Matrix1

© 2022 Renesas Electronics Corporation Page 10 of 11

LED Matrix Sequential Character Display

8x8 LED Matrix

pins

NPN transistor

collector

9 R1

14 R2

8 R3

12 R4

1 R5

7 R6

2 R7

5 R8

Table 8. Top-Level Connections 5

NPN transistor

emitter

Potentiometer

pin

R1 3

R2 3

R3 3

R4 3

R5 3

R6 3

R7 3

R8 3

Table 9. Top-Level Connections 6

Figure 12. Top-Level Schematic

© 2022 Renesas Electronics Corporation Page 11 of 11

LED Matrix Sequential Character Display

Potentiometer pin Power Supply pin

2 GND

Table 10. Top-Level Connections 4

Conclusion

In this project, we learned to control the

commonly used 8x8 LED Matrix with the

GreenPAK IC. It is quite easy to control the LED

Matrix with the SPI unit located in the SLG46620V

version and you can easily control the LED Matrix

with this method. Alternatively, you can control

the pins’ output by using the I2C protocol which is

available within GreenPAK5.

Design Limitations:

• Column 1 of SPI is reserved for rCLK

• Not enough GPIOs for Column 1 if design is

changed

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

