RENESAS

Introduction

In this application note, we will explain how to
control an 8x8 LED matrix with the GreenPAK
Programmable Mixed-signal ASIC. An 8x8 LED
matrix and an Arduino program were used in this
application note.

This project contains 2 stages:

1. Identification of the letters that are going to be
displayed on the 8x8 LED Matrix in Arduino.

2. Receiving and processing data with the
GreenPAK IC.

System View

In this project we will write “"SILEGO” onto the
8x8 LED matrix through GreenPAK. Using the
GreenPAK this way leaves microcontroller GPIO’s
available for other tasks. First, let’s talk about the
working logic of the 8x8 LED matrix. It consists of
64 LEDs in 8 columns and 8 rows.

col 2 3 4 5 6 7 8§
L0 0000060
1?@'ffffffff
: o £1¥|¥] ¥ ¢ ¥]¥]7]
s o Y €| ¥ ¥ ¥ ¥ 9%
e 18181018 1815252
s o Y| Y| ¥| V¥ ¥]¥[¥
o o Y| E|¥| ¥ ¥]¥| ¥ ¥
! o ¥ €] €] ¥1 ¥ ¥ ¥]7]
o LELYYLEEY

Figure 1. 8x8 LED Matrix schematic

AN-1136

LED Matrix Sequential Character Display

Authors: Mustafa Balci and Tudge Celt
Date: August 23, 2016

As shown, each column is connected to the rows
with LEDs. The columns must be connected to
Power and the rows must be connected to Ground
to illuminate the LEDs. When the circuit is
completed, current flowing through the LEDs
allows the LEDs to light up. As shown in Figure 1,
the LED matrix to which cathodes are connected
commonly is called LED matrix with common
cathodes. Positive voltage (HIGH) is applied to the
selected column, while the LOW level is applied to
the selected row to light up a specific LEDs in this
matrix. Let’s take a look at how we can obtain the
letters on the 8x8 LED matrix before we pass it to
the Arduino program.

You see letter "S” formed on the 8x8 LED matrix
below as an example;

Ci|C2|C3|C4|C5|C6|C7]|C8

R1

R2

R3

R4

R5

R6

R7

R8

Figure 2. Display of "'S” letter on LED Matrix

© 2022 Renesas Electronics Corporation

Page 1 of 11

RENESAS

We need to illuminate 24 LED’s to create the
letter "S” as shown in Figure 2. We can't light
them up at the same time because of the
common cathode structure of the matrix. For
instance, we must set C4 Column as HIGH and R2
Row as LOW to light up the L2 LED. Because we
set up C4 Column for L2 LED as HIGH and R3 Row
for L6 as LOW, the LED A located in C4 Column
will light up too. Therefore, we have to show it
row by row instead of showing the letter “S” at
one time. The 8-bit data (1 byte) is enough for 8
columns. After each 8-bit data, GreenPAK IC
should complete the letter “S” by passing to the
next row. It must appear as a complete character
as we drive row by row. For this, transitions
between the rows must take place very quickly.
25fps (Frame Per Second) is enough for people to
easily discern the character, but we need more
than 25fps to smooth the LED flicker. This is
easily achievable with the SPI unit within the
GreenPAK IC. We learned the structure of LED
Matrix and how to drive it. We can now proceed
with the Arduino Program.

Arduino Program

We learned why we need to send images row by
row in the previous part. We will separate the
letters row by row and we are going to send it to
the GreenPAK IC using SPI. We are going to
define each letter as an 8-byte sequence because
each row is of 1 byte. Let’s make the letter “S”
again.

R1 Column goes on as 10000000, R2 Column as
00111100 and R3 Column as 101100110 as
shown in Figure 3. We are going to define the
letter *S” as an 8-byte assay. Unlike the previous
figure, you can clearly see the alterations in the
first column in this figure. The reason for this is to
set the first column for row switching
functionality. In this way, we aim for all the rows
to be scanned when new row of data passes to
the next row.

LED Matrix Sequential Character Display

Ci1|C2|C3|C4|C5|C6|C7]|C8
R1| 1 0 0 0 0 0 0 0
R2| O 0 0 0
R3| 1 0 0 0
R4 | O 0 0 0 0 0
R5| 1 0 0 0
R6| O 0 0 0 0 0
R7 | 1 0 0 0
R8| O 0 0 0

Figure 3. Display of "'S” letter with row clock

So we imagined the first column as a clock signal
that controls the row changes. So the first column
should be like: R1as 1, R2as 0,R3as 1,R4 as 0,
R5as 1,R6as 0, R7 as 1 and R8 as 0.

Note: From here onwards, the first column will be
named as rClock and it’s not to be confused with
other columns.

And according to this, our new codes are shown in
Table 1.

Warning: Pay attention to the order of the
columns in Figure 3, because it was made
according to the diagram shown in Figure 1.
However, in Figure 4, the order of bits is opposite
to the order that is shown in Figure 3. This is
because C8 has been taken as MSB and rClock as
LSB.

We keep 8x8 led matrix fonts in original form and
are going to add rClock signal before sending row
information to the GreenPAK IC.

Arduino variable for letter "S”;

{0x3c, OxB6, Ox60, 0x3c, 0x06, Ox6E6, Ox3c, Oxl0}, // S

© 2022 Renesas Electronics Corporation

Page 2 of 11

RENESAS

Binary Hexadecimal
C8...C2 rClock
R1 0000000 1 01
R2 0011110 0 3c
R3 0110011 1 67
R4 0000011 0 06
R5 0011110 1 3d
R6 0110000 0 60
R?7 0110011 1 67
RS 0011110 0 3c

Table 1. Binary and Hexadecimal
Representation of row datas

Warning: Order of data continues like R8, R7, R6.
0x00 represents R1.

If other letters and markings are recorded as two-
dimensional matrix to comply with the ASCII
table, a variable which is similar to the Figure to
the upper right reveals the following data.

This matrix is defined as constant at the
beginning of the program because its value will
not change. We arranged the settings of the SPI
communication in the “setup” stage and we
arranged a PIN as an output to activate the SPI
unit of GreenPAK IC.

vold setup() {

pinMode(ss, OUTPUT);

digitalWrite(ss,LOW);

SPI.beqin();

SPI.beginTransaction(SPISettings (100000, MSEFIRST, SPI_MODEL)):

LED Matrix Sequential Character Display

{0x00, Ox00, 0x00, 0x00, Ox00, Ox00, Ox00, Gx00}, // Space
{0x18, 0x00, 0x18, 0x18, Ox3c, Ox3c, Ox18, Ox00F, // !
10x00, 0x00, Ox00, Ox00, 0x28, Ox6c, OxGc, Bx00T, /7
{0x6c, OxBe, Oxfe, OxbBc, Oxfe, Oxdc, Oxac, Ox0OQ}, // 2
{0x10, Ox3c, Ox40, 0x38, 0x04, Ox73, Ox10, Ox00}, // §
{0x60, OxB6, Ox0c, Ox18, 0x30, 0xE6, Ox06, Ox00}, // %
{0xfc, OxB6, Oxab, 0x14d, Ox3c, OxE6, Ox3c, Ox00}, // &
(
]
*
+

{0x00, 0x00, Ox00, Ox0c, 0x18, Ox18, Ox18, Ox00}, //
{0x6E0, 0x30,0x18, Ox18, 0x18, 0x30, Ox60, Ox00}, //
{0x06, 0x0c, Ox18, Ox18, 0x13, Ox0c, Ox08, Ox00}, //
{0x00, Ox6c, Ox38, Oxfe, Ox38, Ox6c, Ox00, Ox00}, //
{0x00, 0x10, 0x10, Ox7c, Ox10, Ox10, Ox00, Ox00}, //
{0x06, 0x0c, Ox0c, OxBc, Ox00, Ox00, Ox00, Ox00F, // .,
{0x00, 0x00, 0x00, Ox3c, Ox00, 0x00, 0x00, Ox00}, /1 -
{0x06, 0x0E, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00}, //
10x00, 0x06, Ox0c, Ox18, Ox30, Ox60, Ox00, Ox00}, //
{0x3c, OxB6, OxE6, Oxbe, OxT6, OxE6, Ox3c, Ox00}, /7
{0x7e,0x18,0x18, 0x18, Oxlc, Ox18, Ox18, Gx00}, //
{0x7e, Ox06, Ox0c, 0x30, OxE0, Ox6E6, Ox3c, Gx00}, /7
{0x3c, OxB6, OxE0, 0x38, OxE0, OxE6, Ox3c, Gx00}, /7
{0x30, 0x30, 0x7e, Ox32, 0x34, Ox 38, 0x30, Ox00}, //
{0x3c, OxBE, OxE0, OxE0, Ox3e, Ox06, OxTe, Ox00}, //
{0x3c, OxBE, Ox6E6, Ox3e, Ox06, Ox66, Ox3c, Ox00}, //
{0x18, 0x18,0x18, Ox30, Ox30, Ox66, OxTe, Ox00}, //

b [T T N I e e B

We wrote a function after we made
arrangements in the setup function.

some

voild silegoBxB(char sentence[],unsigned long appearTime)
1

int 1,y;

byte row;

for(i=0:i<strlen{sentence) ;i)

i

enterTime=nillis();
while{millis()-enterTime<appearTime)
{

for fy =7; y ==0; y--) {

if(y%2==1) row=font[(int)sentencelil][y]|0x0L;
else row=font[(int)sentence[1i]][y]&0xfe;
SPI.transfer(row);

delay(1);

© 2022 Renesas Electronics Corporation

Page 3 of 11

RENESAS

This function takes 2 arguments as its input.
These are: 1. A sentence that is going to be
shown (char sentence []) and 2. The changing
time of letter/mark (unsigned long appearTime).
First, variables that are going to be used in the
“For loop” (int i, y) and a variable (byte row) that
keeps the row information to be sent to GreenPAK
IC, have been identified.

Then we created the “For cycle” using strlen
function to scan all the characters of the sentence
variable that is received as input.

for{i=0;i<strlen{sentence);i++)

Then, we got the current time information by
using millis function and saved it to the variable
that is named as “enterTime”. We obtained “while
loop” by wusing this variable and the millis
function.

enterTime=millis (};
while(millis()-enterTime=appearTime)

This loop continuously sends the same character
to GreenPAK IC for a period equal to the value of
the appearTime variable received as input.

The equation in the while loop subtracts the
current time with the time that we have saved (
enterTime) and compares the difference with the
time that the user had entered (appearTime). As
a result of this, it keeps sending the same
character even if a shorter time passes than the
amount requested by the user. If more time
passes than what the user entered, it breaks the
cycle and the next letter is picked.

for {y =7; y == 0; y--) {
if(y%2==1) row=font[(int)sentence[i]][y]|Ox01;
else row=font[(int)sentenceli]][y]&oxfe;

SPI.transfer{row);
delay (1);

LED Matrix Sequential Character Display

These rows need to be sent one by one because
each character is comprised of 8 rows. For this,
the “For cycle” and row data are sent one by one.

Note: The reason for decreasing the variable y
from 7 to O is because the first row data (R1) is
located in the 8th column of the two-dimensional
matrix.

Then we checked out the row order to add rClock
signal. We set the first column of data as HIGH in
the odd-numbered indexes and set the first
column of data as LOW in the even-numbered
indexes by using the indexes of the two-
dimensional matrix.

The index numbers of column in the two-
dimensional matrix and corresponding row
numbers:

Index 0 1 2 3 4 5 6 7

Row R8 | RZ | R6 | R5 | R4 | R3 | R2 | R1

Table 2. Order of row data in font matrix

We benefited from the ASCII table to find out the
corresponding character in the sentence that the
user entered on the 8x8 led matrix font. Each
character, letter and mark has a numerical value
according to the ASCII table. We created an 8x8
led matrix font by using this numerical
correspondence. For instance:

The value of “L” in the ASCII table is 76. We
obtain the data that has been created for “L” if we
type this number to the row index in the two-
dimensional matrix that we have created. You can
inspect the ASCII table below.

font[(int)sentenceli]] [y]

© 2022 Renesas Electronics Corporation

Page 4 of 11

RENESAS

LED Matrix Sequential Character Display

e S

Uappemsl Tiih e dam Ceppieg i TEE Lasoag (aga demperes Fisapea, i

ASCIH Contral ASCII ASCH ASCIU

walue Character character | value Character | walue Character wirlue Character
000D {nualll) NHUL 1574 {apoca) 064 1 056

LI i) Lo S0OH 3 | 065 A 037 u

2 [5TX Xk 066 B 038 b

(i k] v ETX 3% i 0e7 c 034 =

004 * EOT 036 -3 0&8 D 100 d |
(1153 Y ENG 37 % 069 E 11 I 1
006 . ACK 038 & i F Loz i
007 {boep) EBEL 39 ' 07l G 103 q f
004 -] B 040 { oz H 104 h

[112] {tab} HT 041 J 073 [105 i

010 {line leed) LF 042 - 074 I 108 i

(1Y {home) VT 043 ars K i) ke

012 {form beed) FF 044 07e L 108 l

013 {carriage return) CR 045 orr M 104 m

04 I3 S0 046 LIS M 110 n

015 " sl 047 a7a O 111 a

[1}] - OLE 048 0 L] P 112 3

o7 - (b | 049 | el Q 113 q

oie i DCi 050 b 02 R 114 r

019 1 D3 05l .| L 5 115 5

oea 5 Dcy 052 4 R4 T 116 i |
0z1 5 NAK 053 S oG85 U 17 u |
0zz — S5YM 054 B (i) 118 " |
023 1 ETE 055 7 (7T w 119 W

024 I CaN 056 B (s X 120 '

0z] EM 0s7 9 [] 1 121 ¥

026 e SUB 058 - 0 P | 122 z

oxr s ESC 053 4] [123 {

LI Fx] (earsor right) 133 00 e 24 .

[IFa] (cursor left) Lo i] 1.2] | 125 i

030 feursor up) RS 062 - 094 | 126

031 (cursor down) Us 063 7 095 | 127

Table 3. ASCII Table

The code above "“(int)sentence(i)” represents the
corresponding ASCII code of the related
character. After this, we obtained the row
information of the related character from the 8x8
LED Matrix Font that we have created. We
processed the rows one by one with Index[y].

if(yx2==1) row=font[(int)sentence[i]][y]|0Ox01;
glse row=font[{int)sentencelil] [y]&0xfe;

If we need to set first column HIGH for rClock
signal, then we apply “Logical or” to that row with
0x01. The first column goes HIGH while the other
columns stay unaffected because 0 is an
ineffective element in the "“Logic or” process.

If we need to set the first column to LOW, we
apply “Logical AND” to that row with Oxfe.
Because of the ineffective element in “Logical
AND"”, the first column goes LOW while other
columns stay unaffected.

SPI.transfer{row);
delay(l);

At last, we send this row information to the
GreenPAK IC by using the SPI interface.

You can call the function in the loop section as it
is shown below.

© 2022 Renesas Electronics Corporation

Page 5 of 11

RENESAS

void loop() {
s1lego8x8("SILEGO",1000);

b

Design of the GreenPAK IC

First, we must adjust the settings of the SPI unit
to get the data that comes from the Arduino.

Settings should be as shown in Fig. 4 below:

5P1

Mode: S52P =
Clock phase 1 -
(CPHA):
Clock polarity 1 -
(CPOL):
Byte selection: | [7:0] -
ADC data sync i -
with SPI clock: | Disable
PWHM data sync i -
with SPI clock: | Disable
FsM data sync i -
with SPI clock: | Disable

Connections
PAR input

Aeie® FSMO[7:0] FSM1[7: ~

Serial data: SPI <- PIM 10 (out) =

Figure 4. Settings of SPI

The SPI unit converts the data that comes from
the Arduino to parallel data and allows us to
process the bits separately. Data that comes from
the Arduino is column data and this allows us to
connect this data directly to the column pins.
When programming Arduino, we have arranged
the first column as 1-0-1-0.... to ensure that it
keeps changing constantly.

LED Matrix Sequential Character Display

Figure 5. Connections of SPI

In the S2P mode of the SPI unit, we will use
rClock as a clock to understand that the serial to
parallel data conversion has finished. The first
column that changes after every new row will
report to us that the data is ready. We connected
the first column to P DLY1 unit to detect any
change in the first column. The settings of DLY1
units are shown in Fig. 6 below:

P DLY1
Mode: Both edge detector
Delay: 1 Cell -
Output mode: Mon-delayed -

Figure 6. Settings of P DLY1

In this way, every copy of incoming data triggers
the P DLY unit and declares that we should pass
to the next row. We used a simple counter to
activate the rows in a sequential manner. This
counter increases one by one and counts up to 8
whenever a new row arrives.

© 2022 Renesas Electronics Corporation

Page 6 of 11

RENESAS LED Matrix Sequential Character Display
-]

The first state is set as idle and the next 8 states K3 K2 K1 KO R8 R7 R6 R5 R4 R3 R2 R1

are set as row states and that is why the counter

counts up to 9. You can see the counter that was 0 0 0O 0 00 O0O0OOOTO O

used in Fig.7 below:
0 0 01 0 00 00O OO0O1
0 010 0 000O0OOT1O0
0 011 0 00 0O 1O00O0
01 00 0 0001 0O0O0TUO
01 0 1 0 001 0O0O0TO
01 10 0 01 00 O OO
01 1 1 01 00 O0O0O0OTUO
1 0 0O 1 00 0 0 0O 0O

Table 4. Active line signals based on row
counter

Figure 7. Row counter

You can see active row signals based on this
counter in Table 4.

We either energized each row or stopped
energizing according the situation of K3-K2-K1-
KO. You can see the LUTs and pins that we have
used in Figure 8.

Instead of using the INV1 cell we can set the Q
output polarity of DFF6 as inverted. In this way
we can eliminate the INV1 cell. You should make
the settings of DFF6 as shown in Figure 9.

Figure 8. Connection of row pins

© 2022 Renesas Electronics Corporation Page 7 of 11

RENESAS

DFFILATCHG
Mode: DFF
nSET/nRESET NRESET

option:
Initial polarity: | Low

E;I':rti'::t Inverted (nQ)

Figure 9. Settings of DFF 6

LED Matrix Sequential Character Display

1

However, each equation that contains KO is
needed to be edited again. For example, in the
first situation, 3 bits LUT1 is HIGH when K2, K1,
KO = 111, while in the new situation it must be
HIGH in K2, K1, KO = 110.

Alternative Design

Unlike the first design, we can use DFFs to shift
the signal for the row switching function. In this
way we can eliminate LUTs that are connected
with row pins and we can connect the DFF to row
pins directly.

This design is shown in Figure 10.

Figure 10. Chaining DFFs R1 to R5 in Matrix0

© 2022 Renesas Electronics Corporation

Page 8 of 11

RENESAS LED Matrix Sequential Character Display
-]

Arduino Pins SLG46620V Pins

43 13
52 2
51 10

Table 5. Top-Level Connections 1

SLG46620V Pins | NPN transistor base

3 R1 base

R2 base

R3 base

R4 base

R6 base

Figure 11. Chaining DFFs R6 to R8 in
Matrix1

4
5
6
7 R5 base
8
9

R7 base

12 R8 base

DFFO located in Matrix O sees the idle state task.
At each change of rClock , DFFs go to HIGH in Table 6. Top-Level Connections 2
order. The first R1 goes HIGH followed by R2. R8
is connected to R1 and then this cycle is

completed. The first design uses less DFF’s while SLG46620V pins | 8x8 LED Matrix pins
the second design uses less LUT's. 14 3

15 4
Connections 16 10
You can change the brightness of the LEDs by 17 6
changing the current. Using an external power 18 11
supply and by controlling this current with
transistors, we will have a better solution instead 19 15
of just fully driving the LEDs through the 20 16
GreenPAK IC. You can adjust the brightness of the

LED’s with a potentiometer that you connect to an
external power source or drive the transistors Table 7. Top-Level Connections 3
with PWM.

© 2022 Renesas Electronics Corporation Page 9 of 11

RENESAS

L ncsB

LED Matrix Sequential Character Display

Col4

Clock

.0

data I

Col3

Col2

Figure 12. Top-Level Schematic

8x8 LED Matrix | NPN transistor
pins collector
9 R1
14 R2
8 R3
12 R4
1 R5
7 R6
2 R7
5 R8

Table 8. Top-Level Connections 5

fritzing

NPN transistor
emitter

Potentiometer
pin

R1

3

R2

R3

R4

R5

R6

R7

R8

W W W ww| w|lw

Table 9. Top-Level Connections 6

© 2022 Renesas Electronics Corporation

Page 10 of 11

RENESAS

Potentiometer pin | Power Supply pin

2 GND

Table 10. Top-Level Connections 4

Conclusion
In this project, we learned to control the
commonly used 8x8 LED Matrix with the

GreenPAK IC. It is quite easy to control the LED

LED Matrix Sequential Character Display

Matrix with the SPI unit located in the SLG46620V
version and you can easily control the LED Matrix
with this method. Alternatively, you can control
the pins’ output by using the I12C protocol which is
available within GreenPAKS5.

Design Limitations:
e Column 1 of SPI is reserved for rCLK

e Not enough GPIOs for Column 1 if design is
changed

© 2022 Renesas Electronics Corporation

Page 11 of 11

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (‘RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

Corporate Headquarters Contact Information

TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit www.renesas.com/contact-us/.
Trademarks

Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

© 2026 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

