

© 2022 Renesas Electronics Corporation

AN-1107
How to Use Silego’s Arduino Library

with GreenPAK
Author: David Riedell

Date: May 29, 2016

Introduction

This app note will explain how to use Silego’s

Arduino Library to interact with GreenPAK

devices using I2C communication. An Arduino

Library allows a user to create a simpler

program by offloading common functions and

declarations into a separate library folder. In

this case, we have created a library and a set

of macros for each I2C-compatible GreenPAK

device. That library is available on this App

Note’s website page. For more information

about using I2C with GreenPAK, read AN-

1090. This app note will assume the user has

basic knowledge of the Arduino IDE, but is

unfamiliar with Arduino Libraries.

Installing the Library

The first thing you need to do is download

the “SilegoLibrary.zip” folder. Unzip this

folder into your Arduino libraries directory.

The default location for this directory is:

C:\Program Files (x86)\Arduino\libraries

Inside the “SilegoLibrary” folder you will find

five items:

• Silego.h – header file that includes

definitions for the library

• Silego.cpp – C++ file that includes the

library code

• library.properties – includes meta

information for the Arduino libraries manager

• macros directory – holds several

header files which define shortcut macros to

simplify code

• examples directory – includes a few

example programs to help you get the hang

of using the library

Once your library is in the correct directory,

you will need to include it by opening up an

Arduino sketch, then navigating to Sketch ->

Include Library -> Manage Libraries. You

should see a progress bar appear briefly at

the bottom of the “Library Manager” window.

Once the progress bar disappears, you can

use the search field to verify that “Silego”

appears among your libraries.

Using the Library

Within your Arduino sketch you need to

include your header files and create an

instance of the Silego class. In this case, we’ll

call the class “silego” with a lowercase “s”.

// Include Silego header file
#include "Silego.h"

// Include macros for SLG46531
#include "macros/SLG46531.h"

// Create an instance of Silego
class called "silego" with device
address 0x00
Silego silego(0x00);

When you create the instance of the Silego

class, you will need to pass it a byte-long

parameter, which will give your class the

device address you’re working with. The

device address in Dialog’s SLG46531V chip

can be configured by editing its control code

within the I2C properties sidebar as shown in

Figure 1.

https://www.renesas.com/us/en/document/apn/1090-simple-i2c-io-controllers-slg46531v?r=1570446
https://www.renesas.com/us/en/document/apn/1090-simple-i2c-io-controllers-slg46531v?r=1570446

© 2022 Renesas Electronics Corporation

How to Use Silego’s Arduino Library
with GreenPAK

The SLG46531V has 16 possible device

addresses, shown in Table 1. For this

example we will use address 0x00.

Control

Code, bin:

Device

address, dec:

Device

address, hex:

0000 0 0x00

0001 8 0x08

0010 16 0x10

0011 24 0x18

0100 32 0x20

0101 40 0x28

0110 48 0x30

0111 56 0x38

1000 64 0x40

1001 72 0x48

1010 80 0x50

1011 88 0x58

1100 96 0x60

1101 104 0x68

1110 112 0x70

1111 120 0x78

Table 1. GreenPAK SLG46531V Device

addresses Addresses

WriteI2C

There are two functions available in version

0.0.1 of the Silego library: writeI2C and

readI2C. The syntax to call one of these

functions in an Arduino sketch is

silego.function(parameters);. WriteI2C is

defined in Silego.h with three variants:

void writeI2C(byte byte_address,
byte data);
void writeI2C(byte byte_address,
bool data, byte bit_location);
void writeI2C(byte byte_address,
byte data, byte bit_location, byte
length);

The first variant allows the user to write a

byte of data to the register address given in

the first parameter. The second variant

allows the user to write a single bit of data to

the byte address in the first parameter and

the bit location given as the third parameter

without altering the rest of the bits in the

byte. For instance, if you wanted to write

“xxx1 xxxx” to byte_address 0xCC (where

“x’s” are bits you don’t wish to change), your

command would be:

writeI2C(0xCC, 1, 0x10);

Where:

• 0xCC = the register’s byte_address

• 1 = the Boolean value you wish to

write

• 0x10 = the bit_location offset, since

the desired bit in “xxx1 xxxx” occurs at

the 24 bit location

The last writeI2C command allows you to

write several consecutive bits to a register by

adding in a “length” parameter.

Figure 1. I2C Properties

© 2022 Renesas Electronics Corporation

How to Use Silego’s Arduino Library
with GreenPAK

If you wanted to use this function to write

“x100 1xxx” to byte address 0xCC, the

command would be:

writeI2C(0xCC, 1001, 0x08, 0x04);

Where:

• 0xCC = the register’s byte_address

• 1001 = the value you wish to write

• 0x08 = the bit_location offset of the

written value’s LSB, which occurs at “xxxx

1xxx”, the 23 bit location

• 0x04 = the length of the value you

wish to write (1001 is 4 bits long)

ReadI2C

Like writeI2C, the readI2C function has

multiple variants that can be called

depending on how many parameters are

included by the user:

uint8_t readI2C(byte byte_address);
bool readI2C(byte byte_address, byte
bit_location);

The first variant only includes one parameter,

the byte address you wish to read. This

variant will return the value of the byte

stored in the GreenPAK’s register at the

specified byte address. If you wish to read

the value stored at address 0xCC, you would

need a command that looks something like

this:

uint8_t myVariable = readI2C(0xCC);

The second variant of readI2C returns a

Boolean which represents the value of a

single bit within a byte located at

byte_address.

If the value stored at 0xCC is “1111 1011”,

then the following command would return 0

because the bit value at the 22 bit location is

0:

readI2C(0xCC, 0x02);

Macros

Back in Section 3 we had you include a file

called “SLG46531.h” at the top of your

Arduino sketch. If you open up that file you’ll

see that there are about 100 pre-defined

macros to simplify your I2C commands. Each

macro’s value is taken from the product’s

datasheet which can be downloaded from the

Dialog’s website.

Example Arduino Sketch

In the code below, we have our included files

at the top, followed by our instantiation of

the Silego library with the device address

0x00. We then declare byte “a” and call

Serial.begin(9600) to start serial data

transmission at 9600 baud. Byte “a” is

written to byte_address RAM_BYTE_0 using

writeI2C. Then we read back the value of “a”

and store it in “myData.” Finally, we print out

“myData” to the Arduino Serial Monitor and

increment “a.”

© 2022 Renesas Electronics Corporation

How to Use Silego’s Arduino Library
with GreenPAK

#include "Silego.h" //
Include Silego header file
#include "macros/SLG46531.h" //
Include macros for SLG46531

// Create an instance of Silego
class called
// "silego" with device address 0x00
Silego silego(0x00);

byte a = 0;

void setup() {
 Serial.begin(9600);
 Serial.print("GreenPAK: ");
 Serial.println(GreenPAK);
}

void loop() {
 // write the value of variable "a"
to byte_address RAM_BYTE_0
 silego.writeI2C(RAM_BYTE_0, a);

 // read the data in RAM_BYTE_0 and
store it in variable "myData"
 byte myData =
silego.readI2C(RAM_BYTE_0);

 Serial.print("myData: "); //
print the value of "myData" to
 Serial.print(myData); //
the Arduino Serial Monitor
 Serial.println();
 a++;
 delay(100);
}

Conclusion

In this App Note we explained how to use

Silego’s Arduino Library to simplify testing

and prototyping with I2C-capable GreenPAK

devices. Using I2C with GreenPAK allows the

user to see what’s going on inside the

GreenPAK in real time, and also allows them

to change settings and connections on the

fly. This capability makes Dialog’s GreenPAK

products extremely flexible IC’s that can be

used in a variety of applications.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

