

RAA23022x RAA23023x

16V Input, 3A, Dual Step-Down DC/DC Converter

R18DS0017EJ0100 REV.1.00 Apr.21.2015

Description

The RAA23022x and RAA23023x are dual step-down DC/DC converter, 4.5V to 16V input voltage rage and 3A output current. Auto PFM mode makes devices low power operation at light load, so it makes a system lower power.

+ Battery Backup

The RAA23022x is suitable for battery backup system using lithium primary cell with built-in battery backup circuit.

Features

• DC/DC	
Input voltage range	4.5V to 16V
Shutdown current	luA (typ.)
Auto PFM mode	
Maximum output current	3A
Synchronous rectification type step-down DC/I	DC
Integrated power MOSFETs	
Switching frequency	1.1MHz (fixed)
Output voltage range	0.8V to 6V
Internal phase compensator	
Soft start	2ms (fixed)
Discharge circuit	
Power Good	
Battery backup circuit (RAA23022x)	
Protection circuit	
Short circuit protection (latch type)	
Thermal shutdown circuit	165°C (typ.)
Under voltage lockout circuit (recovery type)	
• Package	
20-pin HTSSOP	

Application

Communication (Router, Home Gate Way, Radio, etc.) Industrial (Surveillance camera, Various controller, etc.) Building (Security device, Emergency device, Various controller, etc.) OA (Printer, Plane paper copier, etc.) Smart meter Smart home appliances And, usable various application

Note: The information contained in this document is being issued in advance of the production cycle for the product. The parameters for the product may change before final production, or Renesas Electronics Corporation, at its own discretion, may withdraw the product prior to its production.

A quality grade of these ICs is "Standard". Recommended applications are indicated below. Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment, and industrial robots, etc.

Product Lineup Table

Part number	Output	Туре	VIN range	νουτ	IOUT (max.)	Switching frequency
RAA230221	2	Step-down + BB ^{*1}	4.5 to 16V	CH1 3.3V (fixed) CH2 0.8V to 6.0V* ²	3A	1.1MHz
RAA230222	2	Step-down + BB ^{*1}	4.5 to 16V	CH1 3.3V (fixed) CH2 5.0V (fixed)	ЗA	1.1MHz
RAA230223	2	Step-down + BB ^{*1}	4.5 to 16V	CH1 and CH2 0.8V to 6.0V* ²	ЗA	1.1MHz
RAA230231	2	Step-down	4.5 to 16V	CH1 3.3V (fixed) CH2 0.8V to 6.0V* ²	ЗA	1.1MHz
RAA230232	2	Step-down	4.5 to 16V	CH1 3.3V (fixed) CH2 5.0V (fixed)	3A	1.1MHz
RAA230233	2	Step-down	4.5 to 16V	CH1 and CH2 0.8V to 6.0V* ²	3A	1.1MHz

Note *1 BB : Battery Backup

*2 Adjustable by external resistors

Circuit example

RAA23022x (2CH DCDC + Battery Backup, VOUT set by external resistors)

RAA23023x (2CH DCDC, VOUT set by external resistors)

Block Diagram

RAA23022x (2CH DCDC + Battery backup, VOUT set by external resistors)

RAA23023x (2CH DCDC, VOUT set by external resistors)

Pin Function

RAA23022x (2CH DCDC + Battery backup)

Pin No.	Symbol	I/O	Function		
1	PGND1	I/O	CH1 Power Ground		
2	LX1	0	CH1 Inductor connection		
2	Boost1	I	CH1 Boot strap input		
5			(Connect 0.1uF capacitor between LX1 and Boost1)		
4	VIN1	1	CH1 Power supply		
5	VOUT1	I	CH1 VOUT feedback		
6	FB1	I	CH1 Feedback resistor connection		
7	GND	I/O	Analog Ground		
Q		0	Internal power supply output		
0	VREG	0	(Connect 1uF capacitor between VREG and AGND)		
			Power good output (open drain)		
9	PGOOD	0	CH1 and CH2 stop :L		
			CH1 or CH2 operation : HiZ		
			Auto PFM mode ON/OFF		
			x_AutoPFM="L" : Auto PFM mode (change automatically)		
10	x_AutoPFM	I	PFM mode at light load		
			PWM mode at heavy load		
			x_AutoPFM="H" : PWM mode (fixed)		
11	VBB_IN	Ι	Battery connection		
12	VBB_OUT	0	Backup voltage output		
			CH1 enable		
13	EN1	I	EN1="L" :CH1 Stop		
			EN1="H" : CH1 Operation		
			CH2 enable		
14	EN2	I	EN2="L" :CH2 Stop		
			EN2="H" : CH2 Operation		
15	FB2	I	CH2 Feedback resistor connection		
16	VOUT2	I	CH2 VOUT feedback		
17	VIN2	I	CH2 Power supply		
10	Boost2	Ι	CH2 Boot strap input		
10			(Connect 0.1uF capacitor between LX2 and Boost2)		
19	LX2	0	CH2 Inductor connection		
20	PGND2	I/O	CH2 Power Ground		

RAA23023x (2CH DCDC)

Pin No.	Symbol	I/O	Function	
1	PGND1	I/O	CH1 Power Ground	
2	LX1	0	CH1 Inductor connection	
3	Boost1	I	CH1 Boot strap input	
5			(Connect 0.1uF capacitor between LX1 and Boost1)	
4	VIN1	Ι	CH1 Power supply	
5	VOUT1	- 1	CH1 VOUT feedback	
6	FB1	I	CH1 Feedback resistor connection	
7	GND	I/O	Analog Ground	
Q		0	Internal power supply output	
0	VREG	0	(Connect 1uF capacitor between VREG and AGND)	
			Power good output (open drain)	
9	PGOOD	0	CH1 and CH2 stop :L	
			CH1 or CH2 operation : HiZ	
			Auto PFM mode ON/OFF	
			x_AutoPFM="L" : Auto PFM mode (change automatically)	
10	x_AutoPFM	I	PFM mode at light load	
			PWM mode at heavy load	
			x_AutoPFM="H" : PWM mode (fixed)	
11	GND	I/O	Analog Ground	
12	GND	I/O	Analog Ground	
			CH1 enable	
13	EN1	I	EN1="L" :CH1 Stop	
			EN1="H" : CH1 Operation	
			CH2 enable	
14	EN2	I	EN2="L" :CH2 Stop	
			EN2="H" : CH2 Operation	
15	FB2	_	CH2 Feedback resistor connection	
16	VOUT2	Ι	CH2 VOUT feedback	
17	VIN2	Ι	CH2 Power supply	
18	Boost2	I	CH2 Boot strap input	
10			(Connect 0.1uF capacitor between LX2 and Boost2)	
19	LX2	0	CH2 Inductor connection	
20	PGND2	I/O	CH2 Power Ground	

Absolute Maximum Ratings

		(Unle	ss otherwise	e specified, TA = 25° C,)
Parameter	Symbol	Ratings	Unit	Condition
VIN applied voltage	VIN	-0.3 to +17.6	V	VIN1, VIN2
EN applied voltage	EN	-0.3 to +17.6	V	EN1, EN2
x_AutoPFM applied voltage	x_AutoPFM	-0.3 to +17.6	V	x_AutoPFM
PGOOD voltage	PGOOD	-0.3 to +6.5	V	PGOOD
FB applied voltage	FB	-0.3 to +6.5	V	FB1, FB2
VOUT applied voltage	VOUT	-0.3 to +6.5	V	VOUT1, VOUT2
VBB_IN applied voltage (RAA23022x)	VBB_IN	-0.3 to +6.5	V	VBB_IN
VIN input current(peak)	IVIN(peak)-	4.2	А	VIN1, VIN2
LX output current(peak)	ILX(peak)+	4.2	А	LX1, LX2
VOUT sink current (DC)	IVOUT(DC)-	100	mA	VOUT1, VOUT2 When discharge circuit operation
GND voltage	GND	-0.3 to +0.3	V	PGND1, PGND2, GND
Total power dissipation	PT	3400 ^{*1}	mW	TA≦+25°C
Operating ambient temperature	ТА	-40 to +85	°C	
Operation junction temperature	TJ	-40 to +125	°C	
Storage temperature	Tstg	-55 to +150	°C	

Note: *1 This is the value at $T_A < +25^{\circ}C$. At $T_A > +25^{\circ}C$, the total power dissipation decrease with $-34 \text{ mW/}^{\circ}C$.

Board specification : 4 layers glass epoxy board, 76.2mm x 114.3mm x 1.664mm.

Copper coverage area: 50%, 0.070mm thickness (top and bottom layers)

95%, 0.035mm thickness (layers 2 and 3)

Connecting exposed pad

Caution: Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Recommended Operating Condition

(Unless otherwise specified, $TA = 25^{\circ}C$)

				(
Parameter	Symbol	MIN.	TYP.	MAX.	Unit	Condition
VIN applied voltage	VIN	4.5		16.0	V	VIN1, VIN2
EN applied voltage	EN	0		16.0	V	EN1, EN2 *1
x_AutoPFM applied voltage	x_AutoPFM	0		16.0	V	x_AutoPFM
PGOOD voltage	PGOOD	0		6.0	V	PGOOD
FB applied voltage	FB	0		6.0	V	FB1, FB2
VOUT setting range	Vdcdc_ext	*2		6.0	V	At external resistor setting

*1 About rising time (tr) and falling time (tf) of input signal to EN1 and EN2 pin, when EN1 and EN2 pin are not connected to power supply pin (VIN1, VIN2), set tr and tf less than 100ms. When EN1, EN2 pin are connected to VIN1, VIN2 pin, there are no restriction.

*2 Output voltage (minimum value)

Electrical Characteristics

	(Unless otherwise specified, $TA = 25^{\circ}C$, $VIN1 = VIN2 = 12V$)						
Parameter		Symbol	MIN.	TYP.	MAX.	Unit	Condition
Total	Shutdown current	IDD(SHDN)		1	10	uA	EN1 = EN2 = GND
Under voltage lock	Operating start voltage	Vrls(vin)	3.6	3.9	4.2	V	VIN1 and VIN2 rising are detected
out circuit (UVLO)	Operating stop voltage	Vdet(vin)	3.4	3.7	4.0	V	VIN1 and VIN2 falling are detected
Internal power supply (VREG)	Internal power supply voltage	VREG	4.7	5.0	5.3	V	Ireg = 0mA, VIN1 = 6V to 16V
	E/A feedback voltage	vref07	0.693	0.700	0.707	V	Include input offset at external resistor setting
Output	Output voltage accuracy	Vacc	-2.5		+2.5	%	Fixed VOUT products
(PWM mode)	High side FET on-resistance	Ronh		180		mΩ	lo=100mA
	Low side FET on-resistance	Ronl		130		mΩ	lo=-100mA
Discharge circuit	On-resistance	Rondc	-	100	200	Ω	CH1, CH2, lo=15mA
Soft start	Soft start time *1	tss	1.2	2	3.5	ms	
Thermal	Detect temperature*2			165		°C	
snutdown circuit	Hysteresis temperature ^{*2}			20		°C	
	High level threshold voltage	VIH	1.3		VIN+0.3	V	EN1, EN2, x_AutoPFM
Logic input	Low level threshold voltage	VIL	-0.3		0.4	V	EN1, EN2, x_AutoPFM
	Input current	IEN		1		uA	EN1 = 3.3V, EN2 = 3.3V x_AutoPFM = 3.3V
	VBB_IN input voltage range	VBB	2.7	3.0	3.7	V	
Battery	On-resistance between VBB_IN and VBB_OUT	Ron_vbat		400		Ω	VBB_OUT = VBB_IN, Io=0.5mA
backup (RAA23022x)	On-resistance between VOUT1 and VBB_OUT	Ron_vout1		100		Ω	VBB_OUT = VOUT1, lo=0.5mA
	VBB leak current ^{*1}	IL_BB		0.5		uA	VBB_OUT = VBB_IN = 3.0V, No load

Note: *1 Reference value *2 Not production tested.

Typical Performance Characteristics

Efficiency vs. Output Current

(Unless otherwise specified, $T_A = 25^{\circ}C$)

- VIN= 16V

10000

1000

Output voltage vs. Output Current

Start-up and Shutdown Waveforms

CH2 Vout=5.0V, Auto PFM mode

10

30

CH2 Vout=5.0V, Auto PFM mode 6.5 6.0 5.5 Ξ 5.0 Vout 4.5 VIN=8V 4.0 VIN=12V VIN=16V 3.5 10 100 1000 10000 IOUT [mA]

100

IOUT [mA]

Operation Waveforms

1 1 400μV

1 20.0mV 4 (2

20us/Div

10.0µs

10us/Div

(10.0V/Div)

1 20.0mV/\% (2)

20.0μs 1+τ7.93380ms
5.00GS/s
20M points
1 400μV

Load Step Transient Waveforms

200us/Div

Battery Backup circuit : VBB_OUT changing Waveform (RAA23022x)

VIN=8.0V, VOUT1=3.3V, VBB_OUT output current =10uA, VBB_OUT capacitor = 0.47uF

(1) Battery Voltage (VBB_IN pin)=3.0V、VOUT1=3.3V

(2) Battery Voltage(VBB_IN pin) = 3.6V、VOUT1=3.3V

Temperature Derating Curve

Detailed Description

Control Block

EN1, EN2 : ON/OFF setting

EN1	EN2	State	VREG
L	L	Shutdown	0V
		(CH1 and CH2 stop)	
L L		CH1 Operation	5.0V
П		CH2 Stop	
Н	Н	CH1 and CH2 Operation	5.0V
, н		Ch1 Stop	5.0V
L		CH2 Operation	

Note: L: Low level, H: High level

There is no pull-down resistor within EN1 and EN2 pin because of reducing power consumption at light load. Fix EN1 and EN2 pin to high level or low.

x_autoPFM : AutoPFM mode/ PWM mode setting

x_autoPFM	Operation		
L	Auto PFM mode (change automatically)		
	PFM mode at light load		
	PWM mode at heavy load		
Н	PWM mode (fixed)		

Note: L: Low level, H: High level

There is no pull-down resistor within x_autoPFM pin because of reducing power consumption at light load. Fix x_autoPFM pin to high level or low.

PGOOD : Power Good output

State	PGOOD
CH1 and CH2 stop	L
CH1 or CH2 operation	HiZ

Note: L: Low level, H: High level

When using this function, connect PGOOD pin to VREG, VOUT1, VOUT2, etc. When VREG voltage falls under 3.7V, PGOOD pin becomes high impedance though CH1 and CH2 stop.

Auto PFM mode

RAA23022x and RAA23023x have Auto PFM mode to achieve high efficiency over a wide load current range. The devices operate with PFM (Pulse Frequency Modulation) mode at light load current, and PWM (Pulse Width Modulation) mode at heavy load current. An operation mode is automatically switched depending on load current.

When a bottom of inductor ripple current is under 0A, reverse current flow at low-side N-channel MOSFET of output block. The devices operate with PFM mode during detecting this current. A current of switching PFM / PWM mode (I_{change}) is calculated by an equation below.

$$I_{change} = \frac{\Delta IL}{2}$$
$$\Delta IL = \frac{(V_{IN} - V_{OUT})}{L} \times \frac{V_{OUT}}{V_{IN}} \times \frac{1}{f_{SW}}$$

L: inductance, f_{SW} : 1.1MHz

RAA23022x and RAA23023x have x_autoPFM pin. When Low level, the devices operate Auto PFM mode (PFM mode / PWM mode changed automatically). When High level, the devices operate PWM mode, then not change into Auto PFM mode.

Soft Start

To limit the startup inrush current and output voltage overshoot, a soft start circuit is used to ramp up the reference voltage from 0 V to its final value linearly. When EN pin is set from low level to high level, the device starts operation and output voltage rises with soft start. Both CH1 and CH2 soft start time are fixed at 2ms(Typ.) and no additional components are needed. Soft start feature gradually increases the error amplifier (E/A) input threshold voltage by using the voltage that is generated by the digital soft start (DSS) circuit.

Discharge Circuit

The device has discharge circuit in both CH1 and CH2. This enables a rapid discharge without an external MOSFET. When an EN pin is changed from high level to low, each discharge switch in VOUT pin is turned on and all capacitors which are connected to each output are rapidly discharged through VOUT pin.

When VIN pin voltage becomes low level, discharge switches become off because there are no voltage to keep them on. The control voltage of discharge switches is VREG, and the discharge time of VREG capacitor is over 100ms when VIN voltage falls down, so even if EN pin is connected to VIN pin, an output voltage can be discharged because VREG voltage level can keep the discharge switches on.

Discharge time can be calculated by an equation below.

$$V_{dc} = V_{OUT} \times e^{-\frac{t_{dc}}{C_{ALL} \times R_{ondc}}}$$

 V_{dc} is a voltage after $t_{dc}(s)$.

C_{ALL} is sum of all capacitance which are connected to CH1 or CH2 output (output capacitor, bypass capacitor around MCU, etc.).

 R_{ondc} is on resistance of discharge circuit.

Power Good

Power Good is an open-drain output that requires a pull – up resistor (Recommended value = $100k\Omega$). PGOOD pin becomes high impedance (HiZ) when either CH1 or CH2 FB pin voltage and thus its output voltage rises above 80% of nominal regulation point. If it is pulled-up, PGOOD output high level. PGOOD pin goes low when both CH1 or CH2 output voltage falls below 80% of the regulation point. When both EN1 and EN2 pin goes low level, PGOOD pin becomes HiZ because VREG is used for power good control and it fall down at this time. So, if PGOOD pin is connected to VIN, its status becomes high level even if CH1 and CH2 stop. PGOOD pin must be pulled up to CH1 output, CH2 output or VREG when using this function.

CH1 and CH2 can be started in order by connecting PGOOD pin to EN1 or EN2. This function can be also used for sequence signal for other devices.

Battery Backup (RAA23022x)

RAA23022x has a battery backup circuit which is used to operate some devices at system power-off. The circuit can be easily designed by RAA23022x without two diodes.

When CH1 operates, VBB_OUT = VOUT1. When CH1 stops and VOUT1 pin voltage is higher than VBB_IN pin, VBB_OUT = VOUT1 pin. When CH1 stops and VOUT1 pin voltage is lower than VBB_IN pin, VBB_OUT = VBB_IN pin.

VBB_OUT voltage value is dependent on on-resistance between VBB_IN and VBB_OUT, On-resistance between VOUT1 and VBB_OUT and VBB_OUT output current. VBB_OUT can be calculated by equations below.

1. Normal operation mode (VBB_OUT = VOUT1)

$$V_{BB_{OUT}} = V_{OUT1} - I_{BB_{OUT}} \times R_{on_vout1}$$

2. Battery backup mode (VBB_OUT = VBB_IN)

$$V_{BB_OUT} = V_{BB_IN} - I_{BB_OUT} \times R_{on_vbat}$$

 $\begin{array}{l} V_{BB_OUT}:VBB_OUT \ voltage \ (V) \\ V_{OUT1}:VOUT1 \ voltage = CH1 \ output \ voltage \ (V) \\ V_{BB_IN}:VBB_IN \ voltage = Battery \ voltage \ (V) \\ I_{BB_OUT}:VBB_OUT \ output \ current \ (A) \\ R_{on_vout1}: On \ resistance \ between \ VOUT1 \ and \ VBB_OUT \ 100\Omega \ (Typ.) \\ R_{on_vbat}: On \ resistance \ between \ VBB_IN \ and \ VBB_OUT \ 400\Omega \ (Typ.) \end{array}$

Note : $2.7V \leq V_{BB_OUT} \leq 3.7V$

Connect over 0.47uF capacitor to VBB_OUT pin.

Note : POK1 is an IC internal signal which identifies CH1 operating status. It cannot be seen from IC outside.

VBB_OUT	pin output status
---------	-------------------

CH1	VOUT1, VBB_IN	VBB_OUT
Operation	VOUT1 ≥ VBB_IN	VOUT1
(POK1 = H)	or	
	VOUT1 < VBB_IN	
Stop	VOUT1 ≥ VBB_IN	VOUT1
(POK1 = L)	VOUT1 < VBB_IN	VBB_IN

Note : L: Low level, H: High level

Timing chart of battery backup

1. With 3.0V battery

2. With 3.6V battery

Protection Circuit View

Protection	Function	Operation status		Reset
circuit		Common circuit (VREG, etc.)	CH1, CH2 Output	
Short circuit protection (SCP)	Detect output voltage dropping because of short circuit, etc. (Latch type)	Operation	Latched to off	Turn EN1 and EN2 pin from high level to low level or Drop VIN1 and VIN2 pin voltage under operation stop voltage of UVLO
Thermal shutdown circuit (TSD)	Detect rise up of IC internal temperature (Over 165°C) (Auto recovery type)	Operation	Stop	The temperature falls
Under voltage lockout circuit (UVLO)	Detect dropping of VIN (Auto recovery type)	Operation	Stop	Up VIN1 and VIN2 over operating start voltage (3.9V)

Note SCP : Short Circuit Protection

TSD : Thermal Shutdown Circuit UVLO : Under Voltage Lockout Circuit

Short Circuit Protection (Latch type)

When CH1 or CH2 output voltage drops, each FB pin input voltage also drops. If this voltage falls below the input detection voltage (0.35V(typ.)) of the short circuit protection, the outputs both CH1 and CH2 are stopped (latched to OFF). At this time, common circuits (such as VREG, etc.) continue operating.

When the protection is operating, to reset the latch, either turn the EN1 pin and EN2 pin from high to low or drop the VIN1 pin and VIN2 voltage under operation stop voltage of UVLO.

Thermal Shutdown Circuit (Auto Recovery Type)

When overheating has been detected (detect temperature: 165°C), the outputs both CH1 and CH2 is stopped. Then, power MOSFET of output both high side and low side are turned off. Common circuits (such as VREG, etc.) continue operating.

If the device temperature falls and becomes under detect temperature, the protection is canceled and output automatically resumes.

Under Voltage Lockout Circuit (Auto Recovery Type)

(1) Under voltage lockout operation

When the power supply voltage (VIN1 and VIN2) falls to the operation stop voltage (3.7V), output from all channels stops. Common circuits (such as VREG, etc.) continue operating.

(2) Restoring output

Once VIN1 and VIN2 is restored to the Operating start voltage (3.9V), the under voltage lockout operation is canceled and output automatically resumes. The output voltage cannot be restored while the under voltage lockout circuit is operating, not even by manipulating the EN pin.

Current Limiting

If an overcurrent occurs, an output current is limited on a pulse-by-pulse basis. If the current sensor detects an overcurrent, the current is limited and the switching operation of the Power MOSFET in the output stage stops until the next cycle.

When an output current is limited, the output voltage drops. If a FB pin voltage falls below the input detection voltage, the short-circuit protection circuit starts operating.

Guide for Circuit Design

Setting Output Voltage (When the output voltage is set by external resistor)

The output voltage can be calculated by an equation below.

VOUT = 0.7 x (1 + R1 / R2)

Examples of R1 and R2 selection

Vout	0.9V	1.0V	1.05V	1.1V	1.18V	1.2V	1.5V	1.8V	2.5V	3.3V	5.0V
R1	110k	100k	100k	91k	110k	130k	150k	130k	100k	100k	110k
R2	390k	240k	200k	160k	160k	180k	130k	82k	39k	27k	18k

Output voltage accuracy (When the output voltage is set by external resistor)

Output voltage accuracy can be calculated by an equation below.

$$V_{OUTACC} = V_{ITHACC} + \frac{(Vout - V_{ITH})}{Vout} \times 2 \times R_{ACC}$$

V_{OUTACC} is the output voltage accuracy (%).

V_{ITHACC} is the E/A input threshold voltage accuracy (%).

V_{OUT} is the output voltage (V).

 R_{ACC} is the external resistor accuracy (%).

So, an output voltage accuracy of the device is below.

$$V_{OUTACC} = 1 + \frac{(Vout - 0.7)}{Vout} \times 2 \times R_{ACC}$$

Note : These equation don't include Vout fluctuation by load step transient.

Inductor selection

An inductor target is that ripple current (Δ IL) of inductor becomes 10 to 40 % of Iout(max).

When ΔIL increases, inductor current peak raises, so ripple of Vout gets larger and power loss increases. But, large size inductor is required to lower ΔIL .

 Δ IL can be calculated by an equation below.

$$\Delta IL = \frac{(Vin - Vout)}{L} \times \frac{Vout}{Vin} \times \frac{1}{f_{sw}}$$

fsw is 1.1MHz.

Peak current of inductor (ILpeak) can be calculated by an equation below.

$$IL_{Peak} = I_{OUT}(MAX) + \frac{\Delta IL}{2}$$

Choose a inductor which saturation current is higher than ILpeak .

Inductor Example

Inductance (uH)	Inductor	Manufacturer	I _{TEMP} (A)	I _{SAT} (A)	Size (LxWxT, mm)
2.2	NRS5024T2R2NMGJ	TAIYO YUDEN	3.1	4.1	4.9x4.9x2.4
2.2	744778002	WURTH	4.0	4.8	7.3x7.3x3.2
3.3	NRS5030T3R3MMGJ	TAIYO YUDEN	3.0	3.6	4.9x4.9x3.1
3.3	7447789003	WURTH	3.4	4.2	7.3x7.3x3.2
4.7	NRS5040T4R7NMGK	TAIYO YUDEN	3.1	3.3	4.9x4.9x4.1
4.7	744777004	WURTH	4.0	4.0	7.3x7.3x4.3

Note I_{TEMP} : Rated current by temperature rising

 I_{SAT} : Rated current by inductance loss

These inductors are examples. About inductor detail, contact each manufacturer

Output capacitor selection

RAA23022x and RAA23023x have a phase compensation circuit which is optimized to DC/DC operation. In order to operate stably with the phase compensation, connect the output capacitor which is over 22 uF. Ceramic capacitor can be used for output capacitor. It has low ESR, so VOUT ripple is decreased.

VOUT ripple (Δ Vrpl) can be calculated by an equation below.

$$\Delta V_{rpl} = \Delta IL \times \left(ESR + \frac{1}{(8 \times C_{OUT} \times f_{SW})} \right)$$

ESR : Equivalent Series Resistance

Input capacitor selection

Connect an input capacitor which is over 10 uF between each VIN pin and power ground. It should be placed close to the device as possible.

VREG capacitor

Connect 1uF ceramic capacitor to VREG pin.

Bootstrap capacitor

Connect 0.1uF ceramic capacitor between LX pin and Boost pin.

Feedback capacitor

When PFM operation at Auto PFM mode, feedback capacitor can be connected in parallel to high side output voltage setting resistor to adjust phase characteristic. If connected, there are possibility that operation in large current (at PWM operation) is not stable. Confirm the operation with system status.

When using feedback capacitor with an output voltage fixed product, connect feedback capacitor between VOUT pin and FB pin.

When not using feedback capacitor with an output voltage fixed product, keep FB pin open.

Components example

		L (uH)	Cout (uF)	Сғв (рҒ)		
VIIN (V)	VOUT (V)			Auto PFM mode	PWM mode	
	5V	3.3	22 to 44	0 to 100	No need	
12	3.3V	3.3	22 to 44	0 to 100	No need	
	1.2V	3.3	22 to 44	0 to 100	No need	
F	3.3	2.2	22	0 to 100	No need	
5	1.2	2.2	22	0 to 100	No need	

Notes on Use

VIN Applied Voltage

Be sure to apply the same voltage toVIN1 pin and VIN2 pin.

Pattern Wiring

To actually perform pattern wiring, separate a ground of control signal from a ground of a power line, so that these grounds do not have a common impedance as much as possible.

Connection of Exposed PAD

HTSSOP package has an Exposed PAD on the bottom to improve radiation performance. On the mounting board, connect this Exposed PAD to PGND or GND.

Fixed Usage of Control Input Pin

When EN pin and x_AutoPFM pin are fixed, connect to a pin listed below.

Input Din	Connect Pin				
input Pin	Fixed to Low Level	Fixed to High Level			
EN1	GND	VIN			
EN2	GND	VIN			
x_AutoPFM	GND	VIN			

Package Dimensions

20pin HTSSOP

Revision History

RAA23022x, RAA23023x Datasheet

		Description	
Rev.	Date	Page	Summary
1.00	Apr.21. 2015	-	First Edition issued

All trademarks and registered trademarks are the property of their respective owners.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

California Eastern Laboratories, Inc. 4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A. Tei: +1-408-919-2500, Fax: +1-408-988-0279
Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd. Unii 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tel: +86-21-222E-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2866-9022
Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141