
Tool News

RENESAS TOOL NEWS on January 16, 2005: RSO-SHC-050116D

The C/C++ Compiler Packages
for the SuperH RISC engine family
Revised to Their V.9.00 Release 01

We have revised the C/C++ compiler packages for the SuperH RISC engine family from their
V.9.00 Release 00 to V.9.00 Release 01.

1. Descriptions of Revision

1.1 Functions Introduced and Improved
1.1.1 In Simulator Debugger (for Windows Version Only)

(1) Little-endian-type data transfer supported in the
simulator debugger for the SH-2 core.

(2) Memory resources reserved automatically at loading the
user program into the simulator.

(3) If a memory-access error detected, the address where
the error has arisen displayed.

1.1.2 In Compiler
(1) The following options introduced:

(a) bss_order={declaration|definition}
- Specifies the order of memory assignments to the
uninitialized variables.

(b) stuff[={bss|data|const}[,...]] and nostuff
- Assigns a segment to a variable according to its
size.

For details of these options, see "SuperH RISC engine
C/C++ Compiler, Assembler, Optimizing Linkage Editor
Compiler Package V.9.00 User's Manual (Rev.1.01)".

(2) Little-endian-type data transfer supported in the
simulator for the SH-2 core. Note, however, that this

function cannot be used in the devices not supporting
little endian.

1.2 Problems Fixed
1.2.1 In High-performance Embedded Workshop (for Windows Version Only)

The problem on unloading ELF/DWARF2-formatted load modules has been fixed.
(Unloading load modules generated in the ELF/DWARF2 format results in the High-
performance Embedded Workshop's abnormal termination.)
For details, see RENESAS TOOL NEWS "A Note on Using Integrated Development
Environment High-performance Embedded Workshop--On Unloading ELF/DWARF2-
Formatted Load Modules," issued on November 1, 2004.

1.2.2 In Simulator Debugger (for Windows Version Only)
The following problems have been fixed.
(1) On creating projects for the SH7206 microprocessor:

During simulations of projects for the SH7206
microprocessor, simulations may be halted or memory
access errors may arise because necessary memory
resources for operand caches cannot be acquired.
For details, see RENESAS TOOL NEWS "A Note on Using a
C/C++ Compiler Package V.9.00 Release 00 for the
SuperH RISC engine Family Devices," issued on October
16, 2004.

(2) On executing the RESBANK instruction in the SH2A-FPU
Cycle Base Simulator: When the RESBANK instruction is
executed in the SH2A-FPU Cycle Base Simulator, the
number of cycles for executing the instruction becomes
different from the specified ones.
For details, see RENESAS TOOL NEWS "A Note on Using a
C/C++ Compiler Package V.9.00 Release 00 for the
SuperH RISC engine Family Devices," issued on
November 1, 2004.

1.2.3 In Compiler
The following 12 problems have been fixed:
(1) When the following functions in the DSP libraries are used

in programs for the SH4AL-DSP (a CPU core), they may not
operate properly:
FftComplex, FftReal, IfftComplex, IfftReal, FftInComplex,
FftInReal, IfftInComplex, IfftInReal, Fir, ConvComplete,
ConvCyclic, ConvPartial, Correlate, CorrCyclic, MatrixMult,
MsPower, and Variance

As a result of this fixing, the file names of the libraries for
the SH4AL-DSP have been changed as follows:

Option selected Library file name

-pic=0 -endian=big sh4aldspnb.lib

-pic=1 -endian=big sh4aldsppb.lib

-pic=0 -endian=little sh4aldspnl.lib

-pic=1 -endian=little sh4aldsppl.lib

(2) Loops containing a controlling expression may be executed
an incorrect number of times if the following conditions are
all satisfied (SHC-0008):

Conditions
1. The optimize=1 option is selected.
2. A program loop exists.
3. The increment or decrement of the controlled variable

in the loop in Condition 2 is 1.
4. The above loop contains an if statement.
5. Either condition 5a or 5b below is met.

5a. The controlling expression in the if statement in
Condition 4 compares the controlled variable in
the loop in Condition 2 with an invariant in the
loop (variable c in Example 1 below).

5b. The initial value or the upper limit of the
controlled variable in the loop in Condition 2 is
an invariant in the loop (variable c in Example 2
below).

6. The invariant in Condition 5a or 5b is of type int.

Example 1:
--
int b[100];
unsigned int c=0;
void func1() {
 unsigned int i;
 for(i=0;i<=100;i++) { // Executed infinite times.
 if(i != c) {
 b[i]=0;
 }

 }
}
--

Example 2:
--
int b[100];
unsigned int c=0;
void func2() {
 unsigned int i;
 for(i=0;i<c;i++) { // Executed once or more even if c
= 0.
 if(i != 5) {
 b[i]=0;
 }
 }
}
--

(3) Do-while loops to be executed only once may be repeated
twice or more if the following conditions are all satisfied
(SHC-0010):

Conditions
1. The optimize=1 option is selected.
2. A do-while loop exists.
3. The controlled variable in the loop in Condition 2 is of

type int, signed int, long, or signed long.
4. The controlling expression in the loop in Condition 2

checks whether its controlled variable is less than, less
than or equal to, greater than, or greater than or
equal to a constant.

5. The comparison operator, the initial value of the
controlled variable, its incremented or decremented
value in the loop, and the constant to be compared in
the controlling expression satisfy any of the following
conditions, 5a through 5d:
5a. If the controlled variable of the loop is less than

the constant to be compared, the following
relations are all held:
- The incremented or decremented value is

positive

- The constant to be compared is less than or
equal to the initial value of the controlled
variable.

- 0x00000000 <= (constant - initial value - 1)
<= 0x7FFFFFFF.

5b. If the controlled variable of the loop is less than
or equal to the constant to be compared, the
following relations are all held:
- The incremented or decremented value is

positive.

- The constant to be compared is less than the
initial value of the controlled variable.

- 0x00000000 <= (constant - initial value - 1)
<= 0x7FFFFFFF.

5c. If the controlled variable of the loop is greater
than the constant to be compared, the following
relations are all held:
- The incremented or decremented value is

negative.

- The constant to be compared is greater than
or equal to the initial value of the controlled
variable.

- 0x00000000 <= (initial value - constant - 1)
<= 0x7FFFFFFF.

5d. If the controlled variable of the loop is greater
than or equal to the constant to be compared
the following relations are all held:
- The incremented or decremented value is

negative.

- The constant to be compared is greater than
the initial value of the controlled variable.

- 0x00000000 <= (initial value - constant - 1)
<= 0x7FFFFFFF.

Example:
--
int func() {
int count=0;

int limit=0x60000000;
do {
 count++;
 limit += 0x10000000;
} while(limit < -0x60000000);
 // If executed correctly, the expression
 // is FALSE after the first looping,
 // and the loop is exited.
 return (count); // "count" takes another value
 // than the correct 1 .
}
--

(4) When 1 is compared with a signed bit field of 1 bit wide or
with the result of an operation performed on that of any
comparison, the incorrect result may be obtained if either
of the following conditions is satisfied (SHC-0011):

Conditions
1. The conditions stated below are all met.

1a. The optimize=1 option is selected.

1b. A signed bit field of 1 bit wide is used.

1c. Equality or inequality (== or !=) between 1 and
the signed bit field in Condition 1b is tested.

2. The conditions stated below are all met.
2a. The optimize=1 option is selected.

2b. Any of the following operations is performed on
the result of any comparison: (1) subtraction
between it and 1, (2) XOR operation of it and 1,
(3) its sign inversion, and (4) its bitwise
inversion.

2c. Equality or inequality (== or !=) between 1 and
the result of the operation in Condition 2b is
tested.

Example 1:
--
struct {
 char b0:1;
} ST;
void func() {

 if (ST.b0 != 1) {

 }
}
--
Example 2:
--
int a;
void func2() {
 int t;
 t = ((a & 0x40) == 0);
 t = t - 1;
 t = -t;
 if(~t==1) {
 a = 1;
 } else {
 a = 2;
 }
}
--

(5) When the result of an add or subtract operation between a
variable and 0 or a multiply operation of a variable by 1 is
used in another operation, a change may incorrectly be
made to the value of the variable if the following conditions
are all satisfied (SHC-0012):

Conditions
1. An addition/subtraction of 0 to/from a variable or a

multiplication of a variable by 1 is performed.
2. The result of the operation in Condition 1 is used in

another operation such as addition, subtraction,
bitwise AND, bitwise OR, bitwise XOR, division,
remainder or shift.

Example:
--
int a[4], b;
void func() {
 a[3&(b-0)]=0;
}
--

(6) When a double-type member of a structure or union for
which "pack" is defined as 1 is referenced, a change may
incorrectly be made to the value of register R2 if the
following conditions are all satisfied (SHC-0013):
Conditions

1. A structure or union exists for which pack=1 is used.
2. The structure or union in Condition 1 contains a

member of type double.
3. CPU options cpu=sh4, sh4a, and sh2afpu are used.
4. Option "size" or "unaligned=runtime" is selected.
5. The runtime-routine "_pack1_ld64" is called at

referencing.

Example:
--
#pragma pack 1
struct {
 double d;
} ST;
int t;
double d[2];
void func() {
 d[t]=ST.d;
}
--

(7) In an expression containing both a multiplication and
division by constants, an incorrect result may be obtained if
the following conditions are all satisfied (SHC-0015):

Condition
1. A multiplication of an unsigned-type expression by a

constant exists.
2. The expression in Condition 1 is divided by a positive

factor of the constant in Condition 1.
3. The result of the multiplication in Condition 1 exceeds

the maximum value allowed to the type of the
expression.

Example:
--
unsigned int a=65536;
unsigned int b;
void func() {

 b=(a*65536)/8; // The correct result b=0
 // ((65536*65536)/8 =>> 0/8=0)
} // replaced by b=65535<<13.
--

(8) In shift operations, consider each shift count is less than
the bit size of the value to be shifted. When such shifts are
performed more than once, and the total number of shifts
exceeds the bit size of the value to be shifted, an incorrect
result of operation may be obtained if the following
conditions are all satisfied (SHC-0016):

Conditions
1. Any CPU option parameters except

cpu=[sh1|sh2|sh2e|sh2dsp] are used.
2. Either condition 2a or 2b below is met.

2a. Left shifts and multiplications by powers of 2 are
performed twice or more, where every shift
count and exponent in powers of 2 is less than
the bit size of the value to be shifted.

2b. Right shifts and divisions by powers of 2 are
performed twice or more, where every shift
count and exponent in powers of 2 is less than
the bit size of the value to be shifted.

3. The total sum of the shift counts and the exponents in
powers of 2 in 2a or 2b exceeds the bit size of the
value to be shifted.

Example:
--
int x,y;
void func() {
 x=y<<31<<1; // The total of shift counts, 32, exceeds
 // the bit size of type int.
}
--

(9) When a function call is made at the end of a function, the
address of the function to be called may incorrectly be
loaded into register R0 if the following conditions are all
satisfied:

Condition
1. A function call is made at the end of a function.
2. The definition of the function to be called and the

description of the function call in Condition 1 are made
in the same file.

3. The definition of the function to be called in Condition
2 and the description of the function call in Condition 1
are placed 4096 bytes or more apart or in different
sections from each other.

4. The calling function makes only one function call
stated in Condition 1.

Example:
--
char a[3];
void func2() {}
#pragma section A
void func() {
 ++a[2];
 func2();
}
--

(10) When an operation is performed on a member of a bit field
through a pointer, an incorrect result may be obtained if
the following conditions are all satisfied (SHC-0023):

Conditions
1. A structure or union is used.
2. A member of the structure or union in Condition 1 is

referenced directly (un.b in Example below).
3. A pointer variable (p in Example) exists which points

to a member of the structure or union (un.a in
Example) in the same area as the member referenced
in Condition 2.

4. The pointer in Condition 3 is a local variable.
5. An indirect reference using the pointer in Condition 3

(*p in Example) exists.
6. Updated is the value of the area where the member

referenced in Conditions 2 and 3 exist.
7. The structure or union itself is not referenced in the

function where references in Conditions 2 and 3 are
made.

Example:
--
typedef union {
 unsigned int a;
 unsigned int b:32;
} UN;
UN un;
void func() {
 int *p=(int *)&un.a;
 un.b=1;
 *p+=1;
}
--

(11) Copying a structure or union may reserve the stack area
more than necessary if the following conditions are all
satisfied (SHC-0021):

Conditions
1. An array of structures or unions exists which include

members of type structure or union.
2. The array in Condition 1 has two or more elements.
3. An assignment expression to a structure or union

exists.
4. The left term of the assignment expression in

Condition 3 is a member of a structure or union in the
array of structures or unions.

Example:
--
typedef struct {
 unsigned char c;
} ST0;
typedef struct {
 ST0 s;
} ST;
extern ST A[1000];
extern unsigned short i;
void func(ST *d) {
 A[i-1].s=d->s; // Stack reserved redundantly for
A[1000].
}
--

(12) The C4098 and C4099 internal errors may arise (SHC-
0007, SHC-0017, SHC-0022, and SHC-0025).

1.2.4 In Assembler
The following three problems have been fixed which are encountered in creating
programs for the SH-2A or SH2A-FPU core:
(1) Displacement values in extended or branch instructions

(in the PC-relative addressing) may become incorrect if
the following conditions are all satisfied:

Conditions
1. CPU option cpu=sh2a or cpu=sh2afpu is selected.
2. Before a delayed branch instruction exist an odd

number of "MOV @(disp,Rn)" instructions, in which
disp:12 is selectable as an addressing mode, but not
selected.

3. The instruction following the delayed branch
instruction in Condition 2 is a .ALIGN or .ORG
directive one.

4. The directive instruction in Condition 3 makes an
address adjustment of 2 bytes.

5. An extended or branch instruction (in the PC-
relative addressing) follows the directive instruction
in Condition 3.

Example:
--
 .ALIGN 4
 NOP
 MOV.L @(AA,R1),R0
 BRA LABEL
 .ALIGN 4
 BT LABEL
.
LABEL: NOP
AA: .EQU 4
--

(2) The destination of an address branching may become
incorrect if the following conditions are all satisfied:

Conditions

1. CPU option cpu=sh2a or cpu=sh2afpu is selected.
2. Before a delayed branch instruction exist an odd

number of "MOV @(disp,Rn)" instructions, in which
disp:12 is selectable as an addressing mode, but not
selected.

3. The instruction following the delayed branch
instruction in Condition 2 is a .ALIGN or .ORG
directive one.

4. The directive instruction in Condition 3 makes an
address adjustment of 2 bytes multiplied by the
number of MOV @(disp,Rn)instructions.

5. An address branch instruction follows the directive
instruction in Condition 3.

Example:
--
 .SECTION SEC1,CODE
 MOV.L @(AA,R1),R0 ; 2-byte instruction
 NOP
 BRA L3
 .ALIGN 4 ; Location counter; adjusted
 BF L1 ; Not delayed slot instruction
L3: NOP
 .SECTION SEC2,CODE
L1: NOP
AA: .EQU 4
--

(3) The result of operation performed using an even operator
$even2 and an odd operator $odd2 may become
incorrect.

1.2.5 In Optimizing Linkage Editor
The following five problems have been fixed:
(1) When step-execution is performed in the debugger by

using debug information generated under the condition
the optimization with the sama-code unification
(optimize=same_code) is effective, the program may
branch to an incorrect function.

(2) If a .stack directive command is not specified in a defined
symbol and specified only in a referenced symbol, the
information on the stack size of the symbol is not output
to the sni file.

(3) When the optimization with the sama-code unification
(optimize=same_code) is effective, reading a relocatable
file at linking may generate incorrect code if the following
conditions are all satisfied:

Conditions
1. The goptimize option is used at compilation.
2. The optimization with sama-code unification option

(optimize=same_code) is effective.
3. The optimizing linkage editor V.8.00.03 or later is

used.
4. A relocatable file is read at linking.
5. The codes in the relocatable file in Condition 4 are

unified into 4n + 2 bytes by the optimization in
Condition 2.

(4) When optimization by unifying the same constants and
literals is effective, an improper error (L2330) may arise
if the following conditions are all satisfied:

Conditions
1. The goptimize option is used at compilation.
2. The optimization by unifying the same constants and

literals (optimize=string_unify) is effective.
3. The abs16 option is used at compilation or a variable

of type const that is declared to be #pragma abs16
exists.

(5) An internal error arises in each of the following cases:
1. When optimization by deleting un-referenced

symbols (optimize=symbol_delete) is effective, an
output file is divided into more than one file using
the output option. (Internal error 7041 arises.)

2. The binary option is used when the profile option
has already been selected. (Internal error L4001
arises.)

2. How to Revise Yours and Order Revised Ones

2.1 Free-of-Charge Revision
(1) If you are using the Windows version, revise it online by visiting the Download

Site.

(2) If you are using the Solaris version or the HP-UX version, please supply the
following items of information to your local Renesas Technology sales office or
distributor:

Product Types : V.9.00

Version No. : V.9.00

Release No. : Release 01

2.2 First Ordering
When you place an order for any of the products concerned, please supply the
following information to your local Renesas Technology sales office or distributor:

Product Types : Windows, Solaris, or HP-UX Version

Version No. : V.9.00

Release No. : Release 01

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

