
Tool News

RENESAS TOOL NEWS on April 1, 2006: RSO-SHC_2-060401D

Notes on Using
the C/C++ Compiler Package V.9

for the SuperH RISC Engine Family

Please take note of the four problems described below in using the C/C++ compiler package V.9
for the SuperH RISC engine family of MCUs.

1. Versions Concerned
The C/C++ compiler package V.9.00 Release 00--V.9.00 Release 03
for the SuperH RISC engine family

2. Descriptions
2.1 Problem on Defining a Structure or Union after

Declaring an Array of the Type of the Said Structure
or Union (SHC-0064)
When a structure or union is defined after an array is
declared which is of the type of the said structure or
union and whose storage class is extern, code for
accessing the first element of the array may be generated
if any element other than the first is accessed.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) In the program exists an array that is of the type

of a structure or union and whose storage class is
extern.

(2) After the declaration of the array in (1), the
structure or union in (1) is defined.

(3) Any element except the first one of the array in
(1) is accessed.

Example:
--
extern struct TBL g[3]; // Condition (1)
struct TBL { // Condition (2)
 int m;
};
struct TBL tbl;

void func() {
 tbl.m = g[1].m; // Condition (3)
}
--

Result of compilation:
--
_func:
 MOV.L L11+2,R1 ; _g
 MOV.L L11+6,R4 ; _tbl
 MOV.L @R1,R6 ; In spite of g[1].m, g[0].m
 ; accessed in error
 RTS
 MOV.L R6,@R4
--

Workaround:
Define the structure or union involved before declaring
the array in Condition (1).

2.2 On Assigning a Variable to a Parameter of a Function
(SHC-0065)
When a variable is assigned to a parameter of a function,
the assignment may be performed incorrectly.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) The opitmize=1 option is selected.

(2) The schedule=0 option is not selected.

(3) The noscope option is not selected.

(4) A function takes a parameter of type signed char,
unsigned char, signed short, or unsigned short.

(5) The address of the parameter in (4) is not
accessed.

(6) A value is passed to the parameter in (4) from the
calling function via a register.

(7) An assignment is made to the parameter in (4).

Example
--
void func(unsigned short ss) { // Conditions (4) and (6)

 ss = 0xffff - ss; // Condition (7)

}
--

Result of compilation:
--
_func1:

 MOV #-1,R1 ; H'FFFFFFFF
 EXTU.W R1,R1
 SUB R4,R1
 MOV #30,R0 ; H'0000001E
 MOV.W R1,@(R0,R15) ; ss = 0xffff - ss
 MOV.L R4,@(28,R15) ; Left term of above
overwritten

--

Workarounds:
This problem can be circumvented any of the following
ways:
(1) Use the optimize=0 option.

(2) Use the schedule=0 option.

(3) Use the noscope option.

(4) Qualify the parameter involved to be volatile.

(5) Use the parameter involved after assigning it to a
local variable at the beginning of the function
involved.

2.3 On Using a Function That Takes a Parameter Passed
via the Stack (SHC-0066)
When a comparison (== or !=) is made or a bit field is
used within a function that takes a parameter passed via
the stack, the comparison or the access to the bit field
may incorrectly be performed.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) The optimize=1 option is selected.

(2) Equality or inequality (== or !=) is evaluated
between a given value and a constant within a
range of -128 to 127 inclusive, or a bit field is
used in a function.

(3) The function in (2) takes a parameter passed via
the stack.

Example:
--
struct {
 unsigned int a:31;
 unsigned int b:1;
} *p;

void func(unsigned int a, unsigned int b, unsigned int c,
 unsigned int d, unsigned int g) {
 volatile int q[16];
 q[15]=0;
 p->b = g; // Conditions (2) and (3)
}
--

Result of compilation:
--
 ADD #-64,R15
 MOV.L L13,R4 ; _p
 MOV #1,R7 ; H'00000001
 MOV.L @R4,R6
 MOV #0,R1 ; H'00000000
 MOV.B @(3,R6),R0

 MOV #64,R0 ; R0 corrupted
 MOV.L @(R0,R15),R5
 MOV.L R1,@(60,R15)
 TST R7,R5
 OR #1,R0
 BF L12
--

Workarounds:
This problem can be circumvented either of the following
ways:
(1) Use the optimize=0 option.

(2) Assign all the parameters passed via the stack to
volatile variables at the beginning of the function
involved.

2.4 On Assigning a 0 or 1 to a Volatile Variable in the
True and False Statements of a Control Statement
(SHC-0067)
When a 0 or 1 is assigned to a volatile-qualified variable
according to the evaluation of the controlling expression
of a control statement, unnecessary accesses to memory
may be performed.

Conditions:
This problem may occur if the following conditions are all
satisfied:
(1) The optimize=1 option is selected.

(2) An if statement or a conditional operator (?:) is
used.

(3) In each of the true and else statements of the if
statement or the conditional operator exists an
assignment expression to the same volatile
variable (included the case where the
global_volatile option is selected).

(4) A 0 is assigned to the variable in one assignment
expression in (3) and a 1 to the variable in the
other.

(5) In the true and false statements of the if
statement or the conditional operator in (2), only

the assignment expressions are different each
other.

Example
--
 volatile int a; // Condition (3)
 int b;
 void func(){
 if (b == 0) // Condition (2)
 {
 a = 0; // Conditions (3), (4), and (5)
 } else {
 a = 1; // Conditions (3), (4), and (5)
 }
 }
--

Result of compilation:
--
 MOV.L L11,R5 ; _b
 MOV.L @R5,R1
 TST R1,R1
 MOVT R4
 MOV.L L11+4,R7 ; _a
 MOV.L R4,@R7 ; If interrupt generated here,
 ; value of a is incorrect.
 MOV.L @R7,R0
 XOR #1,R0
 RTS
 MOV.L R0,@R7
--

Workarounds:
This problem can be circumvented any of the following
ways:
(1) Use the optimize=0 option.

(2) When an if statement is used in Condition (2),
place an nop() include function or an assignment
expression to a different volatile variable from the
one in Condition (3) in either the true or the false
statement.

(3) When a conditional operator is used in Condition
(2), change it to an if statement and then follow

the way in (2) above.

3. Schedule of Fixing the Problem
The above problems have already been resolved in the product of V.9.00 Release 04
(revised on this April 1).
For details of the revision, see RENESAS TOOL NEWS No. RSO-SHC_1-060401D, published
on April 1, 2006.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

