
Tool News

RENESAS TOOL NEWS on January 16, 2008: 080116/tn1

A Note on Using the C/C++ Compiler Package
for the M32R Family of MCUs

Please take note of the following problem in using the C/C++ compiler package--M3T-CC32R--
for the M32R family of MCUs:

With using an assignment expression whose left term is of a shorter data type than the
right term and after which is placed an expression that is equivalent to the right term of the
assignment expression

1. Product and Versions Concerned
 C/C++ compiler package--M3T-CC32R--for the M32R family
 V.3.20 Release 1 through V.5.00 Release 00

2. Description
 Consider the case where an assignment expression whose left term is
 of a shorter data type than the right term exists, and after it is
 placed another expression that contains an expression equivalent to
 the right term of the assignment expression.
 When the second expression is evaluated, such a value is used that is
 obtained by casting the operation result of the right term of the
 assignment expression to the shorter data type; not the above operation
 result itself.

3. Conditions
 This problem may occur if the following conditions are all satisfied:
 (1) The optimizing option used in compilation meets either (a) or (b)
 shown below.
 (a) Option -O, -O2, -O3, -O6, or -O7 is used.
 (b) Option -Ospace or -Otime is used with -O0, -O1, -O4, and -O5
 not used.
 (2) An expression exists which contains more than one variable of an
 integral type and whose operation result is also of an integral type.

 The expression can contain only one variable of an integral type.[h1]
 (3) An assignment expression exists in which the operation result of
 the expression in (2) is assigned to an auto variable of a shorter
 integral type than the operation result in (2).
 (4) An expression equivalent to the expression in (2) is used as
 a part of another expression evaluated after the assignment
 expression in (3).
 (5) Between the assignment in (3) and the use of an expression in (4)
 exists no possibility of changing the values of any variables
 contained in the expression in (2).
 (6) The auto variable in (3) is saved on the stack; not on a register.
 (7) The operation result of the expression in (2) is saved on
 a register. This is valid when the expression contains only one
 variable.

 NOTICE:
 Whether the objects in Conditions (6) and (7) are saved on the stack
 or a register depends on your compiler and is not determined by the
 source code. It should be checked using the code generated after
 compilation.

 Example:
 In the operation of expression val_ulong >> 8 below is used the value
 of val_ulong after assigned to val_uchar. So the operation result of
 this expression becomes incorrect. However, this problem may not arise
 depending on the descriptions of the program lines that are omitted
 below.

 unsigned long func_ulong(unsigned short);
 void func(void)
 {
 unsigned long val_ulong;
 unsigned char val_uchar;
 unsigned int val_another;
 unsigned short val_ushort;
 /*
 .
 */
 val_ulong = func_ulong(val_ushort);
 val_uchar = val_ulong; /* Conditions (2) and (3) */
 val_another = val_ulong >> 8; /* Conditions (4) and (5) */
 /*
 .

 */
 }

4. Workarounds
 Avoid this problem in either of the following ways:
 (1) Suppress the optimization in Level 2.
 If you are using option -O, -O2, -O3, -O6, or -O7, replace it
 with -O0, -O1, -O4, or -O5.
 If you are using -Ospace or -Otime, use -O0, -O1, -O4, or -O5
 at the same time.
 (2) Exchange the expressions in Conditions (3) and (4) in their order.

 Example modified:
 --
 unsigned long func_ulong(unsigned short);
 void func(void)
 {
 .
 val_ulong = func_ulong(val_ushort);
 val_another = val_ulong >> 8; /* Conditions (4) and (5) */
 val_uchar = val_ulong; /* Conditions (2) and (3) */
 .
 }
 --

5. Schedule of Fixing the Problem
 This problem has already been fixed in the V.5.01 Release 00 package.
 So use the latest version of the package. Note that the package V.4.30
 Release 00 or earlier cannot be updated to the latest version. If this
 is the case, please purchase the latest version.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

