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A Note on Using C Compiler M3T-NC308WA

Please take note of the following problem in using the M3T-NC308WA C-compiler (with an
assembler and integrated development environment) for the M32C/80 and M16C/80 series
MCUs:

e On casting an integer-type value to a pointer-type one

1. Versions Concerned
M3T-NC308WA V.2.00 Release 1 through V.5.10 Release 1

2. Description
When an integer-type value representing an address outside of the address space is cast to
a pointer-type one, the comparison of it with another pointer-type value may not be
performed correctly. The reason is as follows:

In the M3T-NC308WA, a pointer-type value in the far area is 32-bit wide. However, it is
assigned to a 24-bit address register in some versions of the products because the whole
address space can be represented in 24 bits.

If an integer-type value indicating the outside of the address space is cast to a pointer-type
one in the far area, all the uppermost 8 bits of 32-bit value must be changed to zeros since
the real size of the storage area that holds far pointers is a minimum of 24 bits.

We are sorry that in the above case the uppermost 8 bits are not changed to zeros in the
product concerned. Then, casting an integer-type value indicating the outside of the
address space to a pointer-type value in the far area and making the comparison of it with
another pointer-type value may not bring a correct result depending on whether the cast
value to compare is assigned to a 24-bit address register or not.

Note that in pointer-type values pointing to variables or functions on memory, their
uppermost 8 bits definitely become zeros, so that no problems arise.



3. Conditions
This problem occurs if the following four conditions are satisfied:

(1) An integer-type variable or constant is cast to a pointer-type one.
(2) The comparison of the cast value in (1) with another pointer-type value is made.
(3) The original value in (1) is not within a range from 0x00000000 to OxOQOffffff.

(4) As a result of compilation, either of the two values in (2) is assigned to a 24-bit
address register before or at the comparison.

4. Example
The following is an example under the condition that optimizing option -0 is used in the
M3T-NC308WA V.5.10 Release 1.
Since whether a pointer-type value is assigned to a 24-bit address register or not depends
on the product's version, this problem does not occur if your product's version is not
involved.

void func(char *p)

{
if (p == 0) return; /* Equality testing with 0: no problem */
if (p == (int *)(-1)) { /* Condition (1): integer-type constant
(-1) is cast */
/* Condition (2): cast value is tested */
/* Condition (3): -1 is not within a range
from 0 to OxOOffffff */
return;
b
*p=0;
b
void caller(void)
{
func((int *)(-1)); /* Condition (1): integer-type constant
(-1) is cast */
b

5. Workaround
When casting a value outside of a range from 0 to OxOOffffff to a pointer-type value,
perform an AND operation between the value before casting and a constant of OxOOffffff to



mask the uppermost 8 bits. The following is a case where a constant of type int is handled;
this method is also applicable to a variable of type int.

void func(char *p)

{
if (p == 0) return;

if (p == (int *)(-1 & Ox0Offffff)) { /* Uppermost 8 bits masked */
return;

void caller(void)

{
func((int *)(-1 & Ox0Offffff)); /* Uppermost 8 bits masked */

6. Schedule of Fixing the Problem
We plan to fix this problem in our next release of the product.
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