RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU & MCU	Document No.	TN-RX*-A110A/E	Rev.	1.00	
Title	Specification Changes to Improve the Produc RX111 Group	Information Category	Lechnical Notification			
Applicable Product	RX111 Group Products with #3A or #UA at the end of the orderable part number	Lot No.	Reference Document	RX111 Group User's Hardware Rev.1.10 (R01UH0365EJ011 Corrections to Desc the Flash Memory in Group User's Manu (TN-RX*-A109A/E)	0) ription: n the R	s for

This document describes changes to the specifications in RX111 Group User's Manual: Hardware Rev.1.10 for the improvement of the products in the RX111 Group. The specifications for the improved products are changed as follows:

- •Changed orderable part numbers
- •Added an option for sub-clock oscillator drive capacity
- •Relax the restriction on AVCC0
- •Added the temperature sensor calibration data registers
- •Added the unique ID

1. Changed Orderable Part Numbers

The end of orderable part numbers are changed from #30 and #U0 to #3A and #UA, respectively. For example,

R5F51115AGFM#30 → R5F5115AGFM#3A R5F51114ADLF#U0 → R5F51114ADLF#UA

2. Added an Option for Sub-Clock Oscillator Drive Capacity

•Page 603 of 1243

"Drive capacity for a standard-CL crystal" is added to the Description column of the RTCDV[2:0] bits in 23.2.19 RTC Control Register 3 (RCR3) and descriptions for setting values are also changed as follows:

Before correction

bit	symbol	Bit Name	Description	R/W
b3 to b1	RTCDV[2:0]	Sub-Clock Oscillator Drive Capacity Control	 b3 b1 0 0 0: Medium drive capacity (4.4 pF type) 0 0 1: High drive capacity (6.0 pF type) 1 0 1: Low drive capacity (3.7 pF type) Settings other than above are prohibited. 	R/W

After correction

bit	symbol	Bit Name	Description	R/W
b3 to b1	RTCDV[2:0]	Sub-Clock Oscillator Drive Capacity Control	 b3 b1 0 0 0: Medium drive capacity for a low-CL crystal 0 0 1: High drive capacity for a low-CL crystal 0 1 0: Low drive capacity for a low-CL crystal 1 0 0: Drive capacity for a standard-CL crystal Settings other than above are prohibited. 	R/W

3. Relax the Restriction on AVCC0

•Page 344 of 1243

Description for port 4 and port J in Table 18.7 Handling of Unused Pins is changed as follows:

Before correction

Pin Name	Description
Port 0 to 5, A to C, E, H, J (for pins that exist on products with fewer than 64 pins)	 Set these pins to input (PORTn.PDR bit = 0) and connect each of them to VCC via a pull-up resistor or to VSS via a pull-down resistor. *1
with lewer than 04 pins)	 Set these pins to output (PORTn.PDR bit = 1), set the output data to 0 (PORTn.PODR bit = 0), and leave them open. *1, *2

After correction

Pin Name	Description
Ports 0 to 3, 5, A to C, E, H (for pins that exist on products with fower than 64 pins)	 Set these pins to input (PORTn.PDR bit = 0) and connect each of them to VCC via a pull-up resistor or to VSS via a pull-down resistor. *1
with fewer than 64 pins)	 Set these pins to output (PORTn.PDR bit = 1), set the output data to 0 (PORTn.PODR bit = 0), and leave them open. *1, *2
Ports 4 and J (for pins that exist on products with fewer than 64 pins)	 Set these pins to input (PORTn.PDR bit = 0) and connect each of them to AVCC0 via a pull-up resistor or to AVSS0 via a pull-down resistor. *1
	 Set these pins to output (PORTn.PDR bit = 1), set the output data to 0 (PORTn.PODR bit = 0), and leave them open. *1, *2

•Page 1076 of 1243

Descriptions for "Relationship between power supply pin pairs (AVCC0–AVSS0, VREFH0–VREFL0, VCC–VSS)" of the second bullet in 30.7.10 are changed as follows:

Before correction

The following conditions should be satisfied: AVCC0 = VCC, and AVSS0 = VSS. A 0.1- μ F capacitor should be connected between each pair of power supply pins to create a closed loop with the shortest route possible as shown in Figure 30.16, and connection should be made so that the following conditions are satisfied at the supply side. VREFL0 = AVSS0 = VSS

When the A/D converter is not used, the following conditions should be satisfied. VREFH0 = AVCC0 = VCC and VREFL0 = AVSS0 = VSS

After correction

The following condition should be satisfied: AVSS0 = VSS. A 0.1- μ F capacitor should be connected between each pair of power supply pins to create a closed loop with the shortest route as shown in Figure 30.16, and connection should be made so that the following conditions are satisfied at the supply side: VREFL0 = AVSS0 = VSS

When the 12-bit A/D converter is not used, the following conditions should be satisfied:

VREFH0 = AVCC0 = VCC and VREFL0 = AVSS0 = VSS

•Page 1178 of 1243

Specifications for AVCC0 in Table 36.2 Recommended Operating Conditions are changed as follows:

Before correction

Table 36.2 Recommended Operating Conditions

Item	Symbol	Value	Min.	Тур.	Max.	Unit
item	Oymbol Value		141111.	Typ.	Max.	Onit
Power supply voltages	VCC	VCC When USB not used		—	3.6	V
		When USB used	3.0	—	3.6	V
	VSS		—	0	—	V
USB power supply voltages	VCC_USB			VCC	—	V
	VSS_USB		—	0	—	V
Analog power supply voltages	AVCC0 *1		_	VCC	—	V
	AVSS0		_	0	_	V

Note 1. For details, 30.7.10 Voltage Range of Analog Power Supply Pins.

After correction

Table 36.2Operating Conditions

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltages	tages VCC *1 When USB		1.8	_	3.6	V
	When USB used		3.0	_	3.6	V
	VSS		—	0	_	V
USB power supply voltages	VCC_USB		—	VCC	_	V
	VSS_USB		—	0	_	V
Analog power supply voltages	AVCC0 *1, *2		1.8	_	3.6	V
	AVSS0		—	0	-	V

Note 1. Supply AVCC0 simultaneously with or after supplying VCC.

Note 2. Refer to section 30.7.10, Voltage Range of Analog Power Supply Pins to determine the AVCC0 voltage.

•Page 1179 of 1243

Condition for AVCC0 in Table 36.3 DC Characteristics (1) and specifications for port 4 and port J are changed as follows:

Before correction

Table 36.3DC Characteristics (1)

Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, $T_a = -40$ to +105°C

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
Schmitt trigger input voltage		omitted							
Input level voltage	MD	VIH	VCC × 0.9	-	VCC + 0.3	V			
(except for Schmitt trigger input pins)	XTAL (external clock input)			VCC × 0.8	_	VCC + 0.3			
	Ports 40 to 44, 46, ports J6, J7		VCC × 0.7	-	VCC + 0.3				
	RIIC input pin (SMBus)		2.1	_	VCC + 0.3				
	MD	V _{IL}	-0.3	_	VCC × 0.1				
	XTAL (external clock input)		-0.3	_	VCC × 0.2				
	Ports 40 to 44, 46, ports J6, J7		-0.3	_	VCC × 0.3				
	RIIC input pin (SMBus)		-0.3	_	0.8				

After correction

Table 36.3DC Characteristics (1)

Conditions: VCC = VCC_USB = 2.7 to 3.6 V, AVCC0 = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, $T_a = -40$ to +105°C

	Item		Min.	Тур.	Max.	Unit	Test Conditions	
Schmitt trigger input voltage		omitted						
Input level voltage	MD	V _{IH}	VCC × 0.9	—	VCC + 0.3	V		
(except for Schmitt trigger input pins)	XTAL (external clock input)		VCC × 0.8	—	VCC + 0.3			
	Ports 40 to 44, 46, ports J6, J7		AVCC0 × 0.7	—	AVCC0 + 0.3			
	RIIC input pin (SMBus)		2.1	_	VCC + 0.3			
	MD	V _{IL}	-0.3	_	VCC × 0.1			
	XTAL (external clock input)	-	-0.3	—	VCC × 0.2			
	Ports 40 to 44, 46, ports J6, J7		-0.3	_	AVCC0 × 0.3			
	RIIC input pin (SMBus)		-0.3	—	0.8	1		

•Page 1179 of 1243

Condition for AVCC0 in Table 36.4 DC Characteristics (2) and specifications for port 4 and port J are changed as follows:

Before correction

Table 36.4DC Characteristics (2)

Conditions: VCC = AVCC0 = VCC_USB = 1.8 to 2.7 V, VSS = AVSS0 = VREFL = VREFL0 = VSS_USB = 0 V, $T_a = -40$ to +105°C

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
Schmitt trigger input voltage		omitted							
Input level voltage	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V			
(except for Schmitt trigger input pins)	XTAL (external clock input)			VCC × 0.8	—	VCC + 0.3			
lingger input pins)	Ports 40 to 44, 46, ports J6, J7		VCC × 0.7	—	VCC + 0.3				
	MD	VIL	V _{IL}	V _{IL}	-0.3	_	VCC × 0.1		
	XTAL (external clock input)		-0.3	—	VCC × 0.2				
	Ports 40 to 44, 46, ports J6, J7		-0.3	—	VCC × 0.3	1			

After correction

Table 36.4DC Characteristics (2)

Conditions: VCC = VCC_USB = 1.8 to 2.7 V, AVCC0 = 1.8 to 2.7 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, $T_a = -40$ to +105°C

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions		
Schmitt trigger input voltage		omitted							
Input voltage	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V			
(except for Schmitt trigger input pins)	XTAL (external clock input)		VCC × 0.8	_	VCC + 0.3				
ingger input pins)	Ports 40 to 44, 46, ports J6, J7		AVCC0 × 0.7	—	AVCC0 + 0.3				
	MD	V _{IL}	-0.3	_	VCC × 0.1				
	XTAL (external clock input)		-0.3	_	VCC × 0.2				
	Ports 40 to 44, 46, ports J6, J7		-0.3	—	AVCC0 × 0.3				

•Page 1188 of 1243

Condition for AVCC0 in Table 36.17 Output Values of Voltage (1) and specifications for port 4 and port J are changed as follows:

Before correction

Table 36.17 Output Values of Voltage (1)

Conditions: VCC = AVCC0 = VCC_USB = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, $T_a = -40$ to $+105^{\circ}$ C

Item		Symbol	Min.	Max.	Unit	Test Conditions		
Output low		omitted						
Output high	All output ports (except for port 4 and port J)	V _{OH}	VCC - 0.5	_	V	I _{OH} = -2.0 mA		
_	Ports 40 to 44, 46, ports J6, J7		VCC – 0.5	_		I _{OH} = –0.1 mA		

After correction

Table 36.17 Output Voltage (1)

Conditions: VCC = VCC_USB = 2.7 to 3.6 V, AVCC0 = 2.7 to 3.6 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, T = 40 to $\pm 105^{\circ}$ C

T_a = –40 to +105°C

Item			Min.	Max.	Unit	Test Conditions
Low-level output voltage	omitted					
High-level output	All output ports (except for port 4 and port J)	V _{OH}	VCC - 0.5	_	V	I _{OH} = -2.0 mA
voltage	Ports 40 to 44, 46, ports J6, J7		AVCC0 - 0.5	_		I _{OH} = –0.1 mA

•Page 1188 of 1243

Condition for AVCC0 in Table 36.18 Output Values of Voltage (2) and specifications for port 4 and port J are changed as follows:

Before correction

Table 36.18 Output Values of Voltage (2)

Conditions: VCC = AVCC0 = VCC_USB = 1.8 to 2.7 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, $T_a = -40$ to $+105^{\circ}$ C

Item			Min.	Max.	Unit	Test Conditions	
Output low		omitted					
Output high	All output ports (except for port 4 and port J)	V _{OH}	VCC - 0.5	_	V	I _{OH} = -1.0 mA	
	Ports 40 to 44, 46, ports J6, J7		VCC – 0.5	_		I _{OH} = -0.1 mA	

After correction

Table 36.18 Output Voltage (2)

Conditions: VCC = VCC_USB = 1.8 to 2.7 V, AVCC0 = 1.8 to 2.7 V, VSS = AVSS0 = VREFL0 = VSS_USB = 0 V, $T_a = -40$ to +105°C

Item			Min.	Max.	Unit	Test Conditions
Low-level output voltage	omitted					
High-level output	All output ports (except for port 4 and port J)	V _{OH}	VCC - 0.5	_	V	I _{OH} = -1.0 mA
voltage	Ports 40 to 44, 46, ports J6, J7		AVCC0 - 0.5	_		I _{OH} = –0.1 mA

Reference Section

section 25.

4. Added the Temperature Sensor Calibration Data Registers

•Page 113 of 1243

Table 5.1 List of I/O Registers (Address Order) (16/16) in 5. I/O Registers is changed as follows:

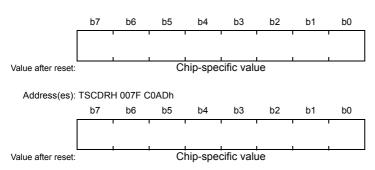
Before correction

Table 5.1 List of I/O Registers (Address Order) (16/16)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access States	Reference Section
000A 0096h	USB0	PIPE2 Transaction Counter Register	PIPE2TRN	16	16	9 PCLKB or more	section 25.
			omitted				
007F C090h	FLASH	E2 DataFlash Control Register	DFLCTL	8	8	2 or 3 FCLK	section 35.
007F C0B0h	FLASH	Flash Start-Up Setting Monitor Register	FSCMR	16	16	2 or 3 FCLK	section 35.
			omitted				

After correction

Table 5.1 List of I/O Registers (Address Order) (16/16)						
				Number		Number of
Address	Module Symbol	Register Name	Register Symbol	of Bits	Access Size	Access States
000A 0096h	USB0	PIPE2 Transaction Counter Register	PIPE2TRN	16	16	9 PCLKB or more
			omitted			


007F C090h	FLASH	E2 DataFlash Control Register	DFLCTL	8	8	2 or 3 FCLK	section 35.	
007F C0ACh	TEMPS	Temperature Sensor Calibration Data Register	TSCDRL	8	8	1 or 2 PCLKB	section 32.	
007F C0ADh	TEMPS	Temperature Sensor Calibration Data Register	TSCDRH	8	8	1 or 2 PCLKB	section 32.	
007F C0B0h	FLASH	Flash Start-Up Setting Monitor Register	FSCMR	16	16	2 or 3 FCLK	section 35.	
	omitted							

•Page 1085 of 1243

Section 32.2 Register Descriptions and registers below are added to 32. Temperature Sensor (TEMPSa).

32.2.1 Temperature Sensor Calibration Data Register (TSCDRH, TSCDRL)

Address(es): TSCDRL 007F C0ACh

Registers TSCDRH and TSCDRL stores the temperature sensor calibration data that was measured for each individual chip before shipping.

The temperature sensor calibration data is a digital value (converted by the 12-bit A/D converter) of the voltage that the temperature sensor outputs under the following conditions: Ta = Tj = 88°C, and AVCC0 = VREFH0 = 3.3 V. The TSCDRH register stores the upper 4 bits, and the TSCDRL register stores the lower 8 bits.

5. Added the Unique ID

The unique ID is added to each product for identifying the individual MCU. Accordingly, the unique ID register is added, and "consecutive read command" is changed to "unique ID read command".


5.1 Added the Unique ID Register

•Page 1116 of 1243

The unique ID register is added to 35. Flash Memory as follows:

35.4.26 Unique ID Register n (UIDRn) (n = 0 to 31)

Address(es): 0850h to 086Fh (extra area)

The UIDRn register stores 32-byte ID code (unique ID) for identifying the individual MCU. The unique ID is stored in the extra area of the flash memory and cannot be rewritten by the user. Use the unique ID read command to read the register value.

5.2 Changed from "Consecutive Read Command" to "Unique ID Read Command"

•Page 1095 of 1243

The Software commands column in Table 35.1 Flash Memory Specifications is changed as follows:

Before correction

Table 35.1 Flash Memory Specifications

Item	Description
Memory space	omitted
Software commands	 The following commands can be executed in boot mode or during self-programming: blank check, block erase, program, read, set access window omitted
	omitted

After correction

Table 35.1 Flash Memory Specifications

Item	Description	
Memory space	omitted	
Software commands	 The following commands can be executed in boot mode or during self-programming: blank check, block erase, program, unique ID read, set access window omitted 	
	omitted	

•Page 1098 of 1243

Descriptions in 35.4.1 E2 DataFlash Control Register (DFLCTL) are changed as follows:

Before correction

bit	symbol	Bit Name	Description	R/W
b0	DFLEN	E2 DataFlash Access Enable	 0: Access to E2 DataFlash and access to code flash in P/E mode*1 disabled 1: Access to E2 DataFlash and access to code flash in P/E mode*1 enabled 	R/W
b7 to b1	—	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Consecutive reading and start-up area information programming/access window information programming in P/E mode

The DFLCTL register is used to enable or disable accessing (reading, programming, and erasing) of the E2 DataFlash and accessing (consecutive reading and start-up area information programming/access window information programming) of the code flash.

After correction

bit	symbol	Bit Name	Description	R/W
b0	DFLEN	E2 DataFlash Access Enable	 0: Access to E2 DataFlash and access to the extra area in P/E mode*1 disabled 1: Access to E2 DataFlash and access to the extra area in P/E mode*1 enabled 	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Unique ID read, start-up area information program, and access window information program

The DFLCTL register is used to enable or disable access (read, program, and erase) to the E2 DataFlash and access (unique ID read, start-up area information program, and access window information program) to the extra area in P/E mode.

•Page 1105 of 1243

Descriptions in 35.4.9 Flash Control Register (FCR) are changed as follows:

Before correction

bit	symbol	Bit Name	Description	R/W
b3 to b0	CMD[3:0]	Software Command Setting	 b3 b0 0 0 0 1:Program 0 1 0 0:Block erase 0 1 0 1:Consecutive read 0 0 1 1:Blank check Settings other than above are prohibited.*1 	R/W
b4	DRC	Data Read Completion	0: Data is not read or next data is requested.1: Data reading is completed.	R/W
			omitted	

Note 1. This does not include writing 00h to the FCR register when the FSTATR1.FRDY bit is 1.

— omitted —

[Products with 384-Kbyte or 512-Kbyte ROM]

• Consecutive reading and blank checking cannot be executed across 256-Kbyte boundaries.

After correction

bit	symbol	Bit Name	Description	R/W
b3 to b0	CMD[3:0]	Software Command Setting	 b3 b0 0 0 0 1:Program 0 0 1 1:Blank check 0 1 0 0:Block erase 0 1 0 1:Unique ID read Settings other than above are prohibited.*1 	R/W
b4	DRC	Data Read Completion	0: Start data read. 1: Complete data read.	R/W
			omitted	

Note 1. This does not include set the FCR register to 00h when the FSTATR1.FRDY flag is 1.

— omitted —

[Products with 384-Kbyte or 512-Kbyte ROM]

• Blank check cannot be executed across 256-Kbyte boundaries.

•Pages 1105, 1106 of 1243

Descriptions for bits CMD[3:0] and DRC in 35.4.9 Flash Control Register (FCR) are changed as follows:

Before correction

CMD[3:0] Bits (Software Command Setting)

These bits are used to set a software command (program, block erase, consecutive read, or blank check). The function of each command is described below.

— omitted —

[Consecutive read]

• Read the area from the address set in the FSARH and FSARL registers to the address set in the FEARH and FEARL registers during ROM read P/E mode or E2 DataFlash P/E mode. The read data is stored in the FRBH and FRBL registers.

DRC Bit (Data Read Completion)

After executing a consecutive read command and reading the FRBH and FRBL registers, write 1 to the DRC bit to complete the processing for reading the data. To issue a request for reading the next data, write 0 to the DRC bit.

After correction

CMD[3:0] Bits (Software Command Setting)

These bits are used to set a software command (program, block erase, unique ID read, or blank check). The function of each command is described below.

— omitted —

[Unique ID read]

• When executing the unique ID read after setting registers FSARH, FSARL, FEARH, and FEARL to 00h, 0850h, 00h, and 086Fh, respectively, the unique ID is stored in registers FRBH and FRBL sequentially.

DRC Bit (Data Read Completion)

This bit is used with the unique ID read command to control the state of the sequencer.

When issuing the unique ID read command with this bit set to 0, data is read from the address set in registers FSARH and FSARL, and the data is stored in registers FRBH and FRBL.

When issuing the unique ID read command with this bit set to 1 after reading data from registers FRBH and FRBL, the sequencer ends the read cycle and enters the wait state.

When issuing the unique ID read command again with this bit set to 0, the internal address of the sequencer is incremented by 4, and the next data is read.

•Page 1109 of 1243

Descriptions in 35.4.15 Flash Read Buffer Register H (FRBH) are changed as follows:

Before correction

This register is used to store the higher-order 16 bits of the data read from the ROM when consecutive read is executed. When the E2 DataFlash is read, the read data is stored in bit 7 to bit 0 in the FRBL register.

After correction

This register is used to store the upper 2 bytes of the 4-byte data (part of the unique ID) that is read from the extra area when unique ID read is executed.

•Page 1109 of 1243

Descriptions in 35.4.16 Flash Read Buffer Register L (FRBL) are changed as follows:

Before correction

This register is used to store the lower-order 16 bits of the data read from the ROM or the data read from the E2 DataFlash when consecutive read is executed. When the E2 DataFlash is read, 00h is stored in bit 15 to bit 8.

After correction

This register is used to store the lower 2 bytes of the 4-byte data (part of the unique ID) that is read from the extra area when unique ID read is executed.

•Page 1113 of 1243

Descriptions for the DRRDY flag is added to 35.4.20 Flash Status Register 1 (FSTATR1) as follows:

DRRDY Flag (Data Read Ready Flag)

This flag is used to check if the valid read data is stored in registers FRBH and FRBL.

When the sequencer stores data read from the flash memory to registers FRBH and FRBL, the DRRDY flag becomes 1. When issuing the unique ID command with the FCR.DRC bit set to 1, the sequencer ends the read cycle, and the DRRDY flag becomes 0.

Note that, even if issuing the unique ID command with the FCR.DRC bit set to 0 after reading data from the address set in registers FEARH and FEARL, the DRRDY flag does not become 1, but the FRDY flag becomes 1.

•Page 1120 of 1243

Table 35.4 Software Commands is changed as follows:

Before correction

Table 35.4Software Commands

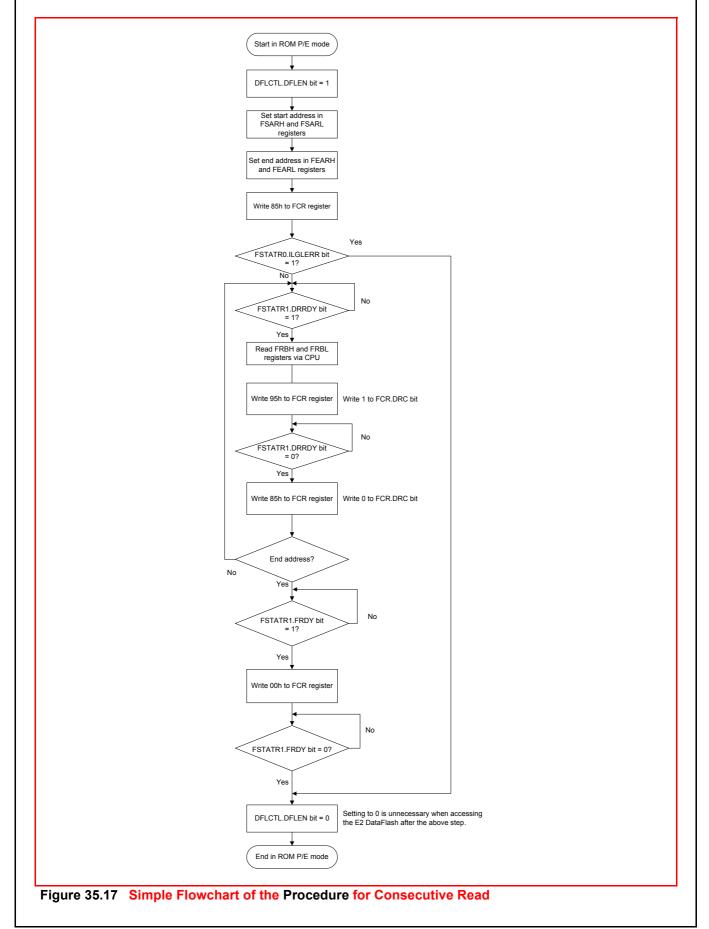
Command	Function
	omitted
Consecutive read	Read the specified area during ROM P/E mode or E2 DataFlash P/E mode.
	omitted

After correction

Table 35.4Software Commands

Command	Function	
	omitted	
Unique ID read	Read the unique ID from the extra area	
	omitted	

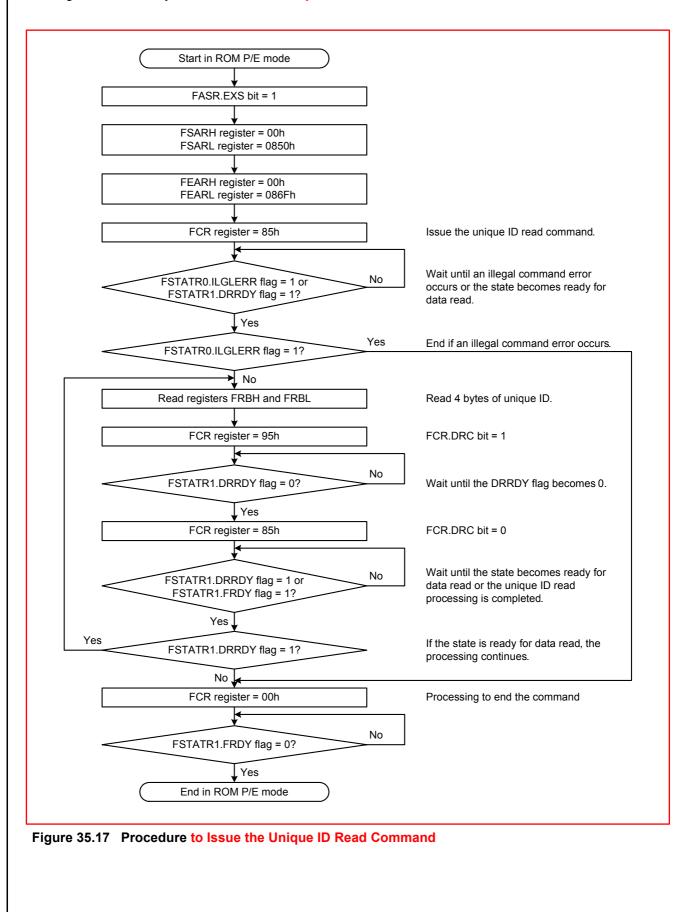
•Page 1132 of 1243


(5) Consecutive Read in 35.7.3 Software Command Usage is changed as follows:

Before correction

(5) Consecutive Read

Figure 35.17 is a simple flowchart for the procedure for consecutive read.



(5) Unique ID Read

Figure 35.17 is the procedure to issue the unique ID read command.

