Date: Apr. 2, 2021

RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RX*-A0252A/E	Rev.	1.00		
Title	RX66N Group, RX72M Group, and RX72N G Expansion of the Lower Limit of the Power St Voltage Supplied to the Battery Backup Power Pin	Information Category	Technical Notification				
		Lot No.					
Applicable Product RX72M Group, RX72N Group		All	Reference Document	User's Manual: Hardware for app products (see the table at the last page)		pplicable	

This document describes an extension of the lower limit of the power supply voltage supplied to the battery backup power supply pin for the applicable products.

Page and table numbers are based on the RX66N Group. Refer to the table on the last page for the corresponding page and table numbers in the other groups.

• Page 81 of 3058

The description for power supply voltage in Table 1.1, Outline of Specifications (11/11) is changed as follows.

Before correction

Table 1.1 Outline of Specifications (11/11)

Classification	Module/Function	Description
		Omitted.
Power supply voltage		VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, $2.7 \le VREFH0 \le AVCC0$, $V_{BATT} = 2.0$ to 3.6 V
		Omitted.

After correction

Table 1.1 Outline of Specifications (11/11)

Classification	Module/Function	Description
		Omitted.
Power supply voltage		VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, $2.7 \le VREFH0 \le AVCC0$, $V_{BATT} = 1.62$ to 3.6 V^{*4}
		Omitted.

Note 4. The low CL crystal unit cannot be used when the V_{BATT} voltage is less than 2.0 V.

Page 2951 of 3058

The specification for V_{BATT} power supply voltage and the description of Note 4 in Table 61.2, Recommended Operating Conditions (1) are changed as follows.

Before correction

Table 61.2 Recommended Operating Conditions (1)

Item	Symbol	Min.	Тур.	Max.	Unit
	Omitted.				
V _{BATT} power supply voltage	V _{BATT}	2.0	_	3.6	V
	Omitted.				
Input voltage (5V tolerant ports: P11 to P17, P20, P21, P30 to P33, P67, and PC0 to PC3)*4	V _{in}	-0.3	_	VCC + 3.6 (up to 5.5)	٧
	Omitted.		•		•

Omitted.

Note 4. For P30 to P32, input as follows when the V_{BATT} power supply is selected. V_{in} Min. = -0.3, Max. = V_{BATT} + 0.3 (V_{BATT} = $\frac{2.0}{100}$ to 3.6 V)

After correction

Table 61.2 Recommended Operating Conditions (1)

•	• •				
ltem	Symbol	Min.	Тур.	Max.	Unit
	Omitted.				
V _{BATT} power supply voltage	V _{BATT}	1.62* ²	_	3.6	V
	Omitted.				
Input voltage (5V tolerant ports: P11 to P17, P20, P21, P30 to P33, P67, and PC0 to PC3)*5	V _{in}	-0.3	_	VCC + 3.6 (up to 5.5)	V
	Omitted.	•			

Omitted.

Note 2. The low CL crystal unit cannot be used when the V_{BATT} voltage is less than 2.0 V.

Omitted.

Note 5. For P30 to P32, input as follows when the V_{BATT} power supply is selected. V_{in} Min. = -0.3, Max. = V_{BATT} + 0.3 (V_{BATT} = 1.62 to 3.6 V)

Page 2952 of 3058

The description of Note 3 in Table 61.4, DC Characteristics (1) is changed as follows.

Before correction

Note 3. For P30 to P32, input as follows when the V_{BATT} power supply is selected. V_{IH} Min. = $V_{BATT} \times 0.8$, V_{IL} Max. = $V_{BATT} \times 0.2$ ($V_{BATT} = 2.0$ to 3.6 V)

After correction

Note 3. For P30 to P32, input as follows when the V_{BATT} power supply is selected. V_{IH} Min. = $V_{BATT} \times 0.8$, V_{IL} Max. = $V_{BATT} \times 0.2$ ($V_{BATT} = 1.62$ to 3.6 V)

• Page 2954 of 3058

The characteristics of RTC operating current when a standard CL crystal is in use under the condition of $V_{BATT} = 1.62 \text{ V}$ are added to Table 61.6, DC Characteristics (3) as follows.

Before correction

Table 61.6 DC Characteristics (3)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS USB = 0 V,

 $T_a = T_{opr}$

Item			Symbol	D version		G version		Unit	Test Conditions
	item		Syllibol	Тур.	Max.	Тур.	Max.	Offic	rest Conditions
Supply	Omitted.		I _{CC} *3	Omitted.					
current*1	When the RTC is operating while VCC is	When a low C _L crystal is in use		0.9	_	0.9	_	μΑ	V _{BATT} = 2.0 V, VCC = 0 V
	The hattery hacklin			1.6	_	1.6	_		V _{BATT} = 3.3 V, VCC = 0 V
		When a standard C _L crystal is in use		1.7	_	1.7	_		V _{BATT} = 2.0 V, VCC = 0 V
				3.3	_	3.3	_		V _{BATT} = 3.3 V, VCC = 0 V
-			Omitted.						

After correction

Table 61.6 DC Characteristics (3)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V,

 $T_a = T_{opr}$

Item			Symbol	D version		G version		Unit	Test Conditions
	item			Тур.	Max.	Тур.	Max.	Unit	rest Conditions
Supply	0	mitted.	I _{CC} *3	Omitted.					
current*1	When the RTC is operating while VCC is	When a low C _L crystal is in use		0.9	_	0.9	_	μΑ	V _{BATT} = 2.0 V, VCC = 0 V
not supplied (Only the RTC and sub-clock oscillator operate with the battery backup function)			1.6	_	1.6	_		V _{BATT} = 3.3 V, VCC = 0 V	
	the battery backup	When a standard C _L crystal is in use		1.6	_	1.6	_		V _{BATT} = 1.62 V, VCC = 0 V
	Tanouariy				1.7	_	1.7	_	
				3.3	_	3.3	_		V _{BATT} = 3.3 V, VCC = 0 V
			Omitted.						

Page 2964 of 3058

The V_{BATT} voltage in Conditions of Table 61.20, Sub-Clock Timing is changed as follows.

Before correction

Table 61.20 Sub-Clock Timing

```
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, V_{BATT} = 2.0 to 3.6 V, T_a = T_{opr}
```

After correction

Table 61.20 Sub-Clock Timing

```
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, V_{BATT} = 1.62 to 3.6 V, T_a = T_{opr}
```

Page 2965 of 3058

The V_{BATT} voltage in Conditions of Table 61.21, CLKOUT Pin Output Timing is changed as follows.

Before correction

Table 61.21 CLKOUT Pin Output Timing

```
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, VBATT = 2.0 to 3.6 V, Ta = Topr. High-drive output is selected by the driving ability control register
```

After correction

Table 61.21 CLKOUT Pin Output Timing

```
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = V_{BATT} = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, T_a = T_{opr}, High-drive output is selected by the drive capacity control register
```

• Page 2965 of 3058

The V_{BATT} voltage in Conditions of Table 61.22, CLKOUT25M Pin Output Timing is changed as follows.

Before correction

Table 61.22 CLKOUT25M Pin Output Timing

```
Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, V_{BATT} = 2.0 to 3.6 V, T_a = T_{opr}, High-speed interface high-drive is selected by the driving ability control register
```

After correction

Table 61.22 CLKOUT25M Pin Output Timing

```
Conditions: VCC = AVCC0 = AVCC1 = VCC\_USB = V_{BATT} = 2.7 \text{ to } 3.6 \text{ V}, 2.7 \text{ V} \le VREFH0 \le AVCC0}, VSS = AVSS0 = AVSS1 = VREFL0 = VSS\_USB = 0 \text{ V}, T_a = T_{opr}, High-speed interface high-drive output is selected by the drive capacity control register
```

• Page 3033 of 3058

The V_{BATT} voltage in Conditions of Table 61.60, Battery Backup Function Characteristics is changed as follows.

Before correction

Table 61.60 Battery Backup Function Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, V_{BATT} = 2.0 to 3.6 V, T_a = T_{opr}

After correction

Table 61.60 Battery Backup Function Characteristics

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V \leq VREFH0 \leq AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, V_{BATT} = 1.62 to 3.6 V, T_a = T_{opr}

Reference Documents

Applicable Products	Manual Title (Document Number)
RX66N Group	RX66N Group User's Manual: Hardware Rev1.11 (R01UH0825EJ0111)
RX72M Group	RX72M Group User's Manual: Hardware Rev1.11 (R01UH0804EJ0111)
RX72N Group	RX72N Group User's Manual: Hardware Rev1.11 (R01UH0824EJ0111)

Page Number, Section/Figure/Table Number

Item	Page Number, Section/Figure/Table Number						
item	RX66N Group	RX66N Group RX72M Group					
Outline of Specifications	Page 81 of 3058	Page 89 of 3362	Page 85 of 3232				
Outline of opecifications	Table 1.1 (11/11)	Table 1.1 (11/11)	Table 1.1 (11/11)				
Recommended Operating	Page 2951 of 3058	Page 3253 of 3362	Page 3125 of 3232				
Conditions (1)	Table 61.2	Table 65.2	Table 63.2				
DC Characteristics (1)	Page 2952 of 3058	Page 3254 of 3362	Page 3126 of 3232				
DC Characteristics (1)	Table 61.4	Table 65.4	Table 63.4				
DC Characteristics (3)	Page 2954 of 3058	Page 3256 of 3362	Page 3128 of 3232				
DC Characteristics (3)	Table 61.6	Table 65.6	Table 63.6				
Sub-Clock Timing	Page 2964 of 3058	Page 3266 of 3362	Page 3138 of 3232				
Sub-Clock Tilling	Table 61.20	Table 65.20	Table 63.20				
CLKOUT Pin Output Timing	Page 2965 of 3058	Page 3267 of 3362	Page 3139 of 3232				
CEROOTT III Output Tilling	Table 61.21	Table 65.21	Table 63.21				
CLKOUT25M Pin Output Timing	Page 2965 of 3058	Page 3267 of 3362	Page 3139 of 3232				
CEROOT25WT III Output Tilling	Table 61.22	Table 65.22	Table 63.22				
Battery Backup Function	Page 3033 of 3058	Page 3338 of 3362	Page 3207 of 3232				
Characteristics	Table 61.60	Table 65.62	Table 63.60				