# **RENESAS TECHNICAL UPDATE**

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan **Renesas Electronics Corporation** 

| Product<br>Category   | MPU/MCU                                                            |          | Document<br>No.         | TN-RX*-A003A/E                 | Rev. | 1.00 |
|-----------------------|--------------------------------------------------------------------|----------|-------------------------|--------------------------------|------|------|
| Title                 | RX610 Group<br>Notes on DMAC/DTC transfer using Commun<br>Function | nication | Information<br>Category | Technical Notification         |      |      |
|                       |                                                                    | Lot No.  |                         | RX610 Group<br>Hardware Manual |      |      |
| Applicable<br>Product | RX610 Group                                                        | All lots | Reference<br>Document   |                                |      |      |

Thank you for your consistent patronage of Renesas semiconductor products.

We would like to inform you of notes on DMAC/DTC transfer in the RX610 group.

## 1. Notes on transferring DMAC/DTC using Communication Function (SCI, RIIC)

When the DMAC/DTC is activated using an interrupt from the communication function, the DMAC/DTC cannot accept an activation request from the communication function and may not perform DMAC/DTC transfer. In this phenomenon, when the next transfer request is issued by the time that the interrupt status flag (IR flag) is automatically cleared after data transfer (reading reception data or writing Transmit data) using the DMAC/DTC, the transfer request is lost.

For example, when the DTC is activated using the SCI reception interrupt with CPU interrupt (DISEL=1) for every transfer, the IR flag is set to 1 in a first receiving operation and the DTC is activated. After the DTC transfer, the IR flag is retained at 1 until the CPU interrupt is received. In the meantime, if a second receiving operation is completed, a setting of the IR flag that is the transfer request is ignored. Therefore, the DTC cannot be activated, and the data received in second receiving operation cannot be transferred.

Example) SCI reception + DTC transfer (CPU interrupt (DISEL = 1) for every transfer), a DMAC block transfer using the IRQ interrupt





The following table shows setting conditions of the DMAC/DTC and occurrence of the phenomenon.

| Destination of<br>interrupt<br>request from<br>communication<br>function | Chain Transfer<br>Used or Not Used      | No | Communication Interrupts to CPU<br>Issued or Not Issued <sup>*1</sup> | Possibility of<br>problem<br>occurrence |
|--------------------------------------------------------------------------|-----------------------------------------|----|-----------------------------------------------------------------------|-----------------------------------------|
| DMAC                                                                     | <ul> <li>(Chain transfer not</li> </ul> | 1  | No CPU interrupt (ISEL[1:0]=10b)                                      | Impossible                              |
|                                                                          | provided)                               | 2  | CPU interrupt (ISEL[1:0]=11b)                                         | Possible                                |
| DTC                                                                      | Chain transfer not used                 | 3  | No CPU interrupt (DISEL=0)                                            | Impossible *2                           |
|                                                                          |                                         | 4  | CPU interrupt (DISEL=1)                                               | Possible                                |
|                                                                          | Chain transfer used                     | 5  | No CPU interrupt (DISEL=0)                                            | Impossible *2                           |
|                                                                          |                                         | 6  | CPU interrupt (DISEL=1)                                               | Possible                                |

Note 1: Communication Interrupts include: transmit data empty and receive data full interrupts from SCI and RIIC.

Note 2: In the final transfer, if the DTC is re-set too late for the transfer request of the next packet to be transmitted/received, the same problem may occur as with the case in DESEL = 1.

- When the DMAC is used with ISEL[1:0] = 11b, use the DTC with DISEL = 1 and implement the following preventive measures.
- · When the DTC is used with DISEL = 1, it should be used such that the transfer request is not lost, or

implement the software preventive measures of the DTC to prevent the transfer request from being lost.

#### 2. Software Preventive Measures

The flowchart for software preventive measures to be taken for the DTC is shown below. \*





R/W R/W R R/(W)\* R/(W)\* R/(W)\* R/W

#### 3. Specifications Addition Disclosure

Following specifications are disclosed for the software preventive measures to be taken this time.

3.1 Add following specifications in bits 7 and 6 in SSR (Serial Status Register) of SCI.

| Ex<br>Sp | isting<br>becificati | on [                | b7<br>-<br>× | b6<br>—<br>×       | b5<br>ORER<br>0    | b4<br>FEF<br>0 | 2                                                                    | b3<br>PER<br>0                                                                   | b2<br>TEND<br>1 | b1<br>—<br>0 | b0<br>—<br>0 | ] |  |  |
|----------|----------------------|---------------------|--------------|--------------------|--------------------|----------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------|--------------|--------------|---|--|--|
|          | Bit                  | Bit Symbol Bit Name |              |                    |                    |                | Description                                                          |                                                                                  |                 |              |              |   |  |  |
|          | b1-b0                | -                   |              | Reserved           |                    |                | These bits are always read as 0. The write value should always be 0. |                                                                                  |                 |              |              |   |  |  |
|          | b2                   | TEND                | )            | Transmit Fl        | Transmit Flag End  |                |                                                                      | 0: A character is being transmitted.<br>1: Character transfer has been completed |                 |              |              |   |  |  |
|          | b3                   | PER                 |              | Parity Error       | Parity Error Flag  |                |                                                                      | 0: No parity error occurred<br>1: A parity error has occurred                    |                 |              |              |   |  |  |
|          | b4                   | FER                 |              | Framing Er         | Framing Error Flag |                |                                                                      | : Framing error has not occurred<br>1: Framing error has occurred                |                 |              |              |   |  |  |
|          | b5                   | OREF                | ર            | Overrun Error Flag |                    |                | 0: No overrun error occurred 0<br>1: An overrun error has occurred   |                                                                                  |                 |              |              |   |  |  |
|          | b7-b6                | -                   |              | Reserved           |                    |                |                                                                      | The read value is undefined. The write value should always be 1.                 |                 |              |              |   |  |  |

#### Note: Only 0 can be written to this bit, to clear the flag, after reading 1.

| Specific   | ation |      | b7    | b6                       | b5   | b4  | b3                                                                                | b2      | b1 | b0 | _ |                     |
|------------|-------|------|-------|--------------------------|------|-----|-----------------------------------------------------------------------------------|---------|----|----|---|---------------------|
| undate     | ation |      | TDRE  | RDRF                     | ORER | FER | PER                                                                               | TEND    | -  | -  |   |                     |
| upuale     |       |      | 1     | 0                        | 0    | 0   | 0                                                                                 | 1       | 0  | 0  |   |                     |
| Bit        | t     | S    | ymbol | Bit Name                 |      |     |                                                                                   | R/W     |    |    |   |                     |
| b1-b0      | -     | -    |       | Reserved                 |      |     | These bits are                                                                    | R/W     |    |    |   |                     |
| b2         | т     | END  | )     | Transmit End Flag        |      |     | 0: A character<br>1: Character t                                                  | R       |    |    |   |                     |
| b3         | Ρ     | PER  |       | Parity Error Flag        |      |     | 0: No parity er<br>1: A parity erro                                               | R/(W)*1 |    |    |   |                     |
| b4         | F     | ER   |       | Framing Error Flag       |      |     | 0: No framing<br>1: A framing e                                                   | R/(W)*1 |    |    |   |                     |
| b5         | C     | DREF | २     | Overrun Error Flag       |      |     | 0: Overrun err<br>1: Overrun err                                                  | R/(W)*1 |    |    |   |                     |
| b6         | R     | RDRF | -     | Receive Data Full Flag   |      |     | 0: When data<br>1: When data                                                      | R/(W)*2 |    |    |   |                     |
| b <b>7</b> | т     | DRE  |       | Transmit Data Empty Flag |      |     | 0: When data is transferred to TDR<br>1: When data is transferred from TDR to TSR |         |    |    |   | R/(W)* <sup>2</sup> |

Notes: 1. Only 0 can be written to this bit,

to clear the flag, after reading 1. 2. Write 1 when writing is necessary.

3.2 Add following specifications in IR flag in IRi (Interrupt Request Register) of ICU.

| sting              |     | b7                              | b6                             | b5                                                     | b4                      | b3                                                 | b2                           | b1                               | b0            | 1                 |     |
|--------------------|-----|---------------------------------|--------------------------------|--------------------------------------------------------|-------------------------|----------------------------------------------------|------------------------------|----------------------------------|---------------|-------------------|-----|
| ecificatio         | on  | 0                               | 0                              | 0                                                      | 0                       | 0                                                  | 0                            | 0                                | 0             | ]                 |     |
| Bit                | 5   | Symbol                          | Bit Name                       |                                                        |                         |                                                    |                              | R/W                              |               |                   |     |
| b0                 | IR  |                                 | Interrupt Status Flag          |                                                        |                         | : No interrupt<br>: An interrupt                   | R/(W)*                       |                                  |               |                   |     |
| b7-b1              | -   |                                 | Reserved                       |                                                        | Т                       | hese bits are                                      | always read                  | as 0. The w                      | rite value sh | ould always be 0. | R/W |
| pecificat<br>odate | ION | _                               |                                |                                                        | -                       |                                                    |                              |                                  | IR            | ]                 |     |
| Judio              |     | 0                               | 0                              | 0                                                      | 0                       | 0                                                  | 0                            | 0                                | 0             |                   |     |
| Bit                |     | Symbol                          |                                | Bit Name                                               |                         |                                                    |                              | Des                              | cription      |                   | R/W |
| b0                 | IR  |                                 | Interrupt Status Flag          |                                                        |                         | 0: No interrupt<br>1: An interrupt                 | R/(W)*                       |                                  |               |                   |     |
| b7-b1              | -   |                                 | Reserved                       |                                                        |                         | These bits are                                     | R/W                          |                                  |               |                   |     |
|                    | N   | ote: For ec<br>Writin<br>throug | lge-detected<br>g 1 is prohibi | sources, o<br>ited <mark>except</mark><br>For level-de | only writin<br>when 1 i | g 0 to clear t<br>s written to p<br>ources, writir | he flag is po<br>revent loss | ossible.<br>of DTC tra<br>sible. | nsfer reque   | ests              |     |



### 4. Modifications in IO header file (iodefine.h)

Modify the IO header file, as shown below, according to the specifications added.

| [Before modification] | [After modification]  |  |  |  |  |
|-----------------------|-----------------------|--|--|--|--|
| struct st_sci0 {      | struct st_sci0 {      |  |  |  |  |
| •••                   | •••                   |  |  |  |  |
| unsigned char TDR;    | unsigned char TDR;    |  |  |  |  |
| union {               | union {               |  |  |  |  |
| unsigned char BYTE;   | unsigned char BYTE;   |  |  |  |  |
| struct {              | struct {              |  |  |  |  |
| unsigned char :2;     | unsigned char TDRE:1; |  |  |  |  |
| unsigned char ORER:1; | unsigned char RDRF:1; |  |  |  |  |
| unsigned char FER: 1; | unsigned char ORER:1; |  |  |  |  |
| unsigned char PER:1;  | unsigned char FER:1;  |  |  |  |  |
| unsigned char TEND:1; | unsigned char PER:1;  |  |  |  |  |
| unsigned char :2;     | unsigned char TEND:1; |  |  |  |  |
| } BIT;                | unsigned char :2;     |  |  |  |  |
| struct {              | } BIT:                |  |  |  |  |
| unsigned char :2;     | struct {              |  |  |  |  |
| unsigned char ORER:1; | unsigned char TDRE:1; |  |  |  |  |
| unsigned char ERS:1;  | unsigned char RDRF:1; |  |  |  |  |
| unsigned char PER:1;  | unsigned char ORER:1; |  |  |  |  |
| unsigned char TEND:1; | unsigned char ERS:1;  |  |  |  |  |
| unsigned char:2;      | unsigned char PER:1;  |  |  |  |  |
| } BIT2;               | unsigned char TEND:1: |  |  |  |  |
| } SSR:                | unsigned char :2;     |  |  |  |  |
| unsigned char RDR:    | } BIT2;               |  |  |  |  |
| •••                   | } SSR:                |  |  |  |  |
|                       | unsigned char RDR;    |  |  |  |  |
|                       | •••                   |  |  |  |  |

Furthermore, struct st\_sci1, struct st\_sci2, struct st\_sci3, struct st\_sci4, struct st\_sci5, and struct st\_sci6 are also in the similar manner. Therefore, modify these structures as shown above and use them.

