Date: Nov. 06, 2013

RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU & MCU	Document No.	TN-RX*-A077A/E Rev. 1.00		
Title	Note on Using Channel-Dedicated Sample-ar Circuits for the 12-Bit A/D Converter (S12AD) RX210 Group	Information Category	Technical Notification		
		Lot No.			
Applicable Product RX210 Group		All	Reference Document	RX210 Group User's Manual: Hardware Rev.1.40 (R01UH0037EJ0140)	

This document describes a note on using channel-dedicated sample-and-hold circuits for the 12-bit A/D converter (S12ADb) in the RX210 Group and the relevant corrections to the manual.

1. Note

When using any of AN000 to AN002 channel-dedicated sample-and-hold circuits (the corresponding bit of the ADSHCR.SHANS[2:0] bits is 1), the input voltage (V_{AN}) for the selected channel is limited to the following range: $0.25~V \le V_{AN} \le AVCC0$ - 0.25~V

2. Corrections to the Manual

•Page 1552 of 1622

Table 42.61 is corrected as follows:

Before correction

Table 42.61 A/D Conversion Characteristics (1)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 \geq 2.7 V, AVCC0-0.9 V \leq VREFH0 \leq AVCC0*3, VSS = AVSS0 = VREFL = VREFL0 = 0 V, Ta = -40 to +105°C

Item	Min.	Тур.	Max.	Unit.	Test Conditions
		: omitted			
Absolute accuracy	_	±1.25	±5.0	LSB	High-precision channel*4
	_	±1.25	±8.0	LSB	Normal-precision channel
DNL differential nonlinearity error	_	±1.0	_	LSB	*4
INL integral nonlinearity error	_	±1.0	±3.0	LSB	*4

- Note: PCLKD must be set to 40 MHz or lower when HOCO is to be selected as the A/D conversion clock. The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, fullscale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
- Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
- Note 2. The value in parentheses indicates the sampling time.
- Note 3. When using the temperature sensor, use it when AVCC0 = VREFH0.
- Note 4. When using the sample-and-hold circuit, $0.25 \le$ analog input voltage \le AVCC 0.25 V.

After correction

Table 42.61 A/D Conversion Characteristics (1)

Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 \geq 2.7 V, AVCC0-0.9 V \leq VREFH0 \leq AVCC0*3, VSS = AVSS0 = VREFL = VREFL0 = 0 V, Ta = -40 to +105°C

Item	Min.	Тур.	Max.	Unit.	Test Conditions
		: omitted			
Absolute accuracy	_	±1.25	±5.0	LSB	High-precision channel
	_	±1.25	±8.0	LSB	Normal-precision channel
DNL differential nonlinearity error	_	±1.0	_	LSB	
INL integral nonlinearity error	_	±1.0	±3.0	LSB	

- Note: PCLKD must be set to 40 MHz or lower when HOCO is to be selected as the A/D conversion clock. The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, fullscale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
- Note: When using the channel-dedicated sample-and-hold circuit, use the AN000 to AN002 analog input voltage (V_{AN}) that satisfies all the following conditions: $0.25 \text{ V} \le V_{AN} \le \text{AVCC0} 0.25 \text{ V}$, $V_{AN} \le \text{VREFH0}$, and $\text{AVCC0} \ge 2.7 \text{ V}$.
- Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
- Note 2. The value in parentheses indicates the sampling time.
- Note 3. When using the temperature sensor, use it when AVCC0 = VREFH0.

•Page 1552 of 1622

The X-axis and title of Figure 42.99 are corrected as follows:

Before correction

• X-axis: AVCC

• Figure title: AVCC to AVREFH Voltage Range

After correction

• X-axis: AVCC0

• Figure title: AVCC0 to VREFH0 Voltage Range

Date: Nov. 06, 2013

•Page 1553 of 1622

Table 42.62 is corrected as follows:

Before correction

Table 42.62 Channel Classification for A/D Converter

Classification	Channel	Conditions		
High-precision channel	AN003 to AN007	AVCC0 = 1.62 to 5.5 V	It is disallowed to use pins	
	AN000, AN001, AN002	AVCC0 = 2.7 to 5.5 V, when the sample-and-hold circuit is in use.	AN000 to AN007 as digital outputs when the A/D converter is used.	
		AVCC0 = 1.62 to 5.5 V, when the ssample-and-hold circuit is not in use.	, 33.113.13.13 a 330d.	
Normal-precision channel	AN008 to AN015	AVCC0 = 1.62 to 5.5 V		

After correction

Table 42.62 Channel Classification for A/D Converter

Classification	Channel	Channel-Dedicated Sample-and-Hold Circuit	Conditions		
High-precision channel	AN000 to AN002	Used	$\begin{aligned} & \text{AVCC0} = 2.7 \text{ to } 5.5 \text{ V} \\ & \text{AVCC0} - 0.9 \text{ V} \leq \text{VREFH0} \leq \text{AVCC0} \\ & \text{VREFH0} \geq 2.7 \text{ V} \\ & \text{AVSS0} = \text{VREFL0} = 0 \text{ V} \\ & 0.25 \text{ V} \leq \text{V}_{\text{AN}} \leq \text{AVCC0} - 0.25 \text{ V} \\ & \text{V}_{\text{AN}} \leq \text{VREFH0} \end{aligned}$	It is disallowed to use pins AN000 to AN007 as digital outputs when the A/D converter is used.	
		Not used	AVCC0 = 1.62 to 5.5 V		
	AN003 to AN007	_	When AVCC0 ≥ 1.8 V, AVCC0 - 0.9 V < VREFH0 < AVCC0		
Normal-precision channel	AN008 to AN015	_	VREFH0 \geq 1.8 V When AVCC0 < 1.8 V, VREFH0 = AVCC0 AVSS0 = VREFL0 = 0 V 0 V \leq V _{AN} \leq VREFH0		

•Page 1554 of 1622

A note is added to Table 42.64 as follows:

Table 42.64 A/D Conversion Characteristics (2)

Conditions: VCC = AVCC0 = 1.8 to 3.6 V, 1.8 V \leq VREFH0 \leq 2.7 V, AVCC0-0.9 V \leq VREFH0 \leq AVCC0*3, VSS = AVSS0 = VREFL = VREFL0 = 0 V, Ta = -40 to +105°C

Item	Min.	Тур.	Max.	Unit.	Test Conditions
		:			·
		omitted			

- Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.
- Note: When using the channel-dedicated sample-and-hold circuit, use the AN000 to AN002 analog input voltage (V_{AN}) that satisfies all the following conditions: $0.25 \text{ V} \le V_{AN} \le \text{AVCC0} 0.25 \text{ V}$, $V_{AN} \le \text{VREFH0}$, and $\text{AVCC0} \ge 2.7 \text{ V}$.
- Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.
- Note 2. The value in parentheses indicates the sampling time.
- Note 3. When using the temperature sensor, use it when AVCC0 = VREFH0.

Date: Nov. 06, 2013