RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU & MCU		Document No.	TN-RX*-A081A/E	Rev.	1.00	
Title	Errata to RX63N Group, RX631 Group User's regarding the RAM	Manual	Information Category	Technical Notification			
Applicable Product	RX63N Group, RX631 Group	Lot No. All	Reference Document	RX63N Group, RX6 User's Manual: Haro Rev.1.70 (R01UH00	dware	-	

This document describes corrections to descriptions for the RAM in RX63N Group, RX631 Group User's Manual: Hardware Rev.1.70.

•Page 158 of 2004

The address for the RAM in Figure 4.1 is corrected as follows:

Before correction

	Single-chip mode*1		On-chip ROM enabled extended mode		On-chip ROM disabled extended mode
0000 0000h	RAM* ²	0000 0000h	RAM* ²	0000 0000h	RAM* ²
0002 0000h	Reserved area* ³	0002 0000h	Reserved area* ³	0002 0000h	Reserved area* ³
0008 0000h	Peripheral I/O registers	0008 0000h	Peripheral I/O registers	0008 0000h	Peripheral I/O registers

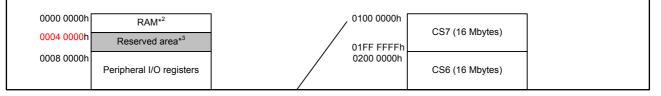
Figure 4.1 Memory Map in Each Operating Mode

After correction

	Single-chip mode*1		On-chip ROM enabled extended mode		On-chip ROM disabled extended mode
0000 0000h	RAM* ²	0000 0000h	RAM* ²	0000 0000h	RAM* ²
0004 0000h	Reserved area* ³	0004 0000h	Reserved area* ³	0004 0000h	Reserved area* ³
0008 0000h	Peripheral I/O registers	0008 0000h	Peripheral I/O registers	0008 0000h	Peripheral I/O registers

Figure 4.1 Memory Map in Each Operating Mode

•Page 159 of 2004


The address for the RAM in Figure 4.2 is corrected as follows:

Before correction

0000 0000h 0002 0000h 0008 0000h	Reserved area* ³	0100 0000h 01FF FFFFh 0200 0000h	CS7 (16 Mbytes)
0008 000011	Peripheral I/O registers	0200 000011	CS6 (16 Mbytes)

Figure 4.2 Correspondence between External Address Spaces and CS Areas (In On-Chip ROM Disabled Extended Mode)

After correction

Figure 4.2 Correspondence between External Address Spaces and CS Areas (In On-Chip ROM Disabled Extended Mode)

•Page 287 of 2004

Table 11.2 is corrected as follows:

Before correction

Table 11.2 Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

Entering and Exiting Low Power Consumption Modes and Operating States	Sleep Mode	All-Module Clock Stop Mode	Software Standby Mode	Deep Software Standby Mode
		: Omitted		
CPU	Stopped (Retained)	Stopped (Retained)	Stopped (Retained)	Stopped (Undefined)
RAM3 (0003 0000h to 0003 FFFFh)	Operating possible (Retained)	Stopped (Retained)	Stopped (Retained)	Stopped (Undefined)
RAM2 (0002 0000h to 0002 FFFFh)	Operating possible (Retained)	Stopped (Retained)	Stopped (Retained)	Stopped (Undefined)
RAM1 (0001 0000h to <mark>0001 FFFF</mark> h)	Operating possible (Retained)	Stopped (Retained)	Stopped (Retained)	Stopped (Undefined)
RAM0 (0000 0000h to 0000 FFFFh)	Operating possible (Retained)	Stopped (Retained)	Stopped (Retained)	Stopped (Retained/Undefined)* ⁸
Flash memory	Operating	Stopped (Retained)	Stopped (Retained)	Stopped (Retained)

After correction

Table 11.2 Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

Entering and Exiting Low Power Consumption Modes and Operating States	Sleep Mode	All-Module Clock Stop Mode	Software Standby Mode	Deep Software Standby Mode
		:		
		Omitted		
CPU	Stopped (Retained)	Stopped (Retained)	Stopped (Retained)	Stopped (Undefined)
RAM1 (0001 0000h to 0003 FFFFh)	Operating possible (Retained)	Stopped (Retained)	Stopped (Retained)	Stopped (Undefined)
RAM0 (0000 0000h to 0000 FFFFh)	Operating possible (Retained)	Stopped (Retained)	Stopped (Retained)	Stopped (Retained/Undefined)* ⁸
Flash memory	Operating	Stopped (Retained)	Stopped (Retained)	Stopped (Retained)

: Omitted

•Page 295 of 2004

11.2.4 Module Stop Control Register C (MSTPCRC) is corrected as follows: <u>Before correction</u>

Address: 0008 0018h

_	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	Ι	Ι			MSTPC 27	MSTPC 26	MSTPC 25	MSTPC 24	_	MSTPC 22	_	-	MSTPC 19	MSTPC 18	MSTPC 17	MSTPC 16
Value after reset:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
_	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
					-	_	_	—	_		_	-	MSTPC 3	MSTPC 2	MSTPC 1	MSTPC 0
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	MSTPC0	RAM0 Module Stop*1	Target module: RAM0 (0000 0000h to 0000 FFFFh) 0: RAM0 operating 1: RAM0 stopped	R/W
b1	MSTPC1	RAM1 Module Stop* ¹	Target module: RAM1 (0001 0000h to 0001 FFFFh) 0: RAM1 operating 1: RAM1 stopped	R/W
b2	MSTPC2	RAM2 Module Stop*1	Target module: RAM2 (0002 0000h to 0002 FFFFh) 0: RAM2 operating 1: RAM2 stopped	R/W
b3	MSTPC3	RAM3 Module Stop*1	Target module: RAM3 (0003 0000h to 0003 FFFFh) 0: RAM3 operating 1: RAM3 stopped	R/W
b15 to b4	_	Reserved	These bits are always read as 0. The write value should always be 0.	R/W

Omitted

Note 1. The MSTPC0 to MSTPC3 bits should not be set to 1 during access to the corresponding on-chip RAM. The corresponding RAM should not be accessed while the MSTPC0 to MSTPC3 bits are set to 1.

Note 2. For entering software standby mode after rewriting the MSTPC18 bit, wait for two IEBUS clock (IECLK) cycles after rewriting, and execute the WAIT instruction.

After correction

Address: 0008 0018h

	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
		-	_	_	MSTPC 27	MSTPC 26	MSTPC 25	MSTPC 24	_	MSTPC 22	_	-	MSTPC 19	MSTPC 18	MSTPC 17	MSTPC 16
Value after reset:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	Ι			_	-	_	_	_	_	_	_	_	—		MSTPC 1	MSTPC 0
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	MSTPC0	RAM0 Module Stop* ¹	Target module: RAM0 (0000 0000h to 0000 FFFFh) 0: RAM0 operating 1: RAM0 stopped	R/W
b1	MSTPC1	RAM1 Module Stop* ¹	Target module: RAM1 (0001 0000h to 0003 FFFFh) 0: RAM1 operating 1: RAM1 stopped	R/W
b15 to b <mark>2</mark>	—	Reserved	These bits are always read as 0. The write value should always be 0.	R/W
513 10 52		Reserveu	: Omitted	

Note 1. The MSTPC0 and MSTPC1 bits should not be set to 1 during access to the corresponding on-chip RAM. The corresponding RAM should not be accessed while bits MSTPC0 and MSTPC1 are set to 1.

Note 2. For entering software standby mode after rewriting the MSTPC18 bit, wait for two IEBUS clock (IECLK) cycles after rewriting, and execute the WAIT instruction.

•Page 326 of 2004

Note 2 in 11.6.4.1 Transition to Deep Software Standby Mode is corrected as follows:

Before correction

Note 2. The RAM address space is divided into the RAM0 area to RAM3 area. For the RAM address space, see Table 11.2.

After correction

Note 2. The RAM address space is divided into the RAM0 area and RAM1 area. For the RAM address space, see Table 11.2.

•Page 398 of 2004

The address for the RAM in Table 16.2 is corrected as follows:

Before correction

Table 16.2 Addresses Assigned for Each Bus

	Туре о	of Bus	Area			
	On-Chip R	COM Mode	On-Chip ROM Mode			
Address	Enabled	Disabled	Enabled	Disabled		
0000 0000h to 0001 FFFFh	Memory	/ bus 1	On-chip RAM			
0002 0000h to 0007 FFFFh			Reserved area			

: Omitted

After correction

Table 16.2 Addresses Assigned for Each Bus

	Туре о	of Bus	Area			
	On-Chip F	ROM Mode	On-Chip ROM Mode			
Address	Enabled	Disabled	Enabled	Disabled		
0000 0000h to 0003 FFFFh	Memory	y bus 1	On-chip RAM			
0004 0000h to 0007 FFFFh			Reserved area			

: Omitted

•Page 1770 of 2004

Table 46.1 is corrected as follows:

Before correction

Table 46.1Specifications of RAM

Item	Description
RAM capacity	64 Kbytes (RAM0: 64 Kbytes)
	128 Kbytes (RAM0: 64 Kbytes, RAM1: 64 Kbytes)
	192 Kbytes (RAM0: 64 Kbytes, RAM1: 64 Kbytes, RAM2: 64
	Kbytes)
	256 Kbytes (RAM0: 64 Kbytes, RAM1: 64 Kbytes, RAM2: 64
	Kbytes, RAM3: 64 Kbytes)
RAM address	RAM0: 0000 0000h to 0000 FFFFh (64 Kbytes)
	RAM1: 0001 0000h to 0001 FFFFh (64 Kbytes)
	RAM2: 0002 0000h to 0002 FFFFh (64 Kbytes)
	RAM3: 0003 0000h to 0003 FFFFh (64 Kbytes)
Access	 Single-cycle access is possible for both reading and writing.
	 RAM can be enabled or disabled.^{*1}
Data retention function	Data in RAM0 can be retained in deep software standby mode
Low-power consumption function	The module-stop state is independently selectable for RAM0 to RAM3.

After correction

Table 46.1 Specifications of RAM

Item	Description
RAM capacity	64 Kbytes (RAM0: 64 Kbytes) 128 Kbytes (RAM0: 64 Kbytes, RAM1: 64 Kbytes) 192 Kbytes (RAM0: 64 Kbytes, RAM1: <mark>128 Kbytes</mark>) 256 Kbytes (RAM0: 64 Kbytes, RAM1: <mark>192 Kbytes</mark>)
RAM address	• When the RAM capacity is 64 Kbytes RAM0: 0000 0000h to 0000 FFFFh (64 Kbytes) RAM1: None
	 When the RAM capacity is 128 Kbytes RAM0: 0000 0000h to 0000 FFFFh (64 Kbytes) RAM1: 0001 0000h to 0001 FFFFh (64 Kbytes)
	 When the RAM capacity is 192 Kbytes RAM0: 0000 0000h to 0000 FFFFh (64 Kbytes) RAM1: 0001 0000h to 0002 FFFFh (128 Kbytes)
	 When the RAM capacity is 256 Kbytes RAM0: 0000 0000h to 0000 FFFFh (64 Kbytes) RAM1: 0001 0000h to 0003 FFFFh (192 Kbytes)
Access	 Single-cycle access is possible for both reading and writing. RAM can be enabled or disabled.^{*1}
Data retention function	Data in RAM0 can be retained in deep software standby mode.
Low-power consumption function	The module-stop state is independently selectable for RAM0 and RAM1.

•Page 1770 of 2004

Descriptions in 46.2.1 Data Retention are corrected as follows:

Before correction

The address space for RAM is divided into the RAM0 to RAM3 areas. The difference between the two is whether internal power can be supplied in deep software standby mode. Whether or not the supply of internal power to RAM0 continues in deep software standby mode is selectable by the DPSBYCR.DEEPCUT[1:0] bits.

If continuation of the supply of internal power is selected, data in RAM0 are retained in deep software standby mode. The supply of internal power supply to RAM1 to RAM3 is stopped at this time, so data are not retained in RAM1 to RAM3. See section 11, Low Power Consumption, for details on the DPSBYCR.DEEPCUT[1:0] bits.

After correction

The address space for RAM is divided into the RAM0 and RAM1 areas. The difference between the two is whether internal power can be supplied in deep software standby mode. Whether or not the supply of internal power to RAM0 continues in deep software standby mode is selectable by the DPSBYCR.DEEPCUT[1:0] bits.

If continuation of the supply of internal power is selected, data in RAM0 are retained in deep software standby mode. The supply of internal power supply to RAM1 is stopped at this time, so data are not retained in RAM1.

See section 11, Low Power Consumption, for details on the DPSBYCR.DEEPCUT[1:0] bits.

•Page 1770 of 2004

Description in 46.2.2 Low-Power Consumption Function is corrected as follows:

Before correction

If the MSTPCn bit in MSTPCRC is set to 1, supply of the clock signal to RAMn is stopped (n = 0 to 3).

The respective modules (RAM0 to RAM3) are thus placed in the module-stop state by stopping supply of the clock signals. The RAM operates after a reset.

After correction

If the MSTPCn bit in MSTPCRC is set to 1, supply of the clock signal to RAMn is stopped (n = 0, 1). The respective modules (RAM0 and RAM1) are thus placed in the module-stop state by stopping supply of the clock signals. The RAM operates after a reset.

•Page 1882 of 2004

The address for the RAM in Figure 49.1 is corrected as follows:

Before correction

0000 0000h	On-chip RAM
0002 0000h	Reserved area*1
0008 0000h	Peripheral I/O registers

Figure 49.1 Memory Map in On-chip ROM Disabled Extended Mode

After correction

_	
0000 0000h	On-chip RAM
0004 0000h	Reserved area*1
	Reserved area
0008 0000h	
0000 000011	D. i.i. IIIO
	Peripheral I/O registers

Figure 49.1 Memory Map in On-chip ROM Disabled Extended Mode

