発行日: 2011年12月14日

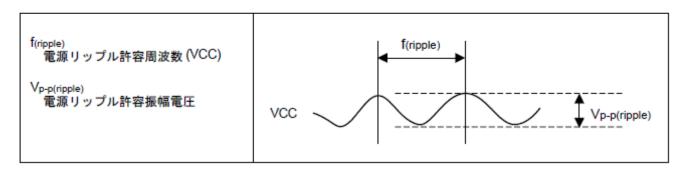
RENESAS TECHNICAL UPDATE

〒211-8668 神奈川県川崎市中原区下沼部 1753 ルネサス エレクトロニクス株式会社

問合せ窓口 http://japan.renesas.com/inquiry

E-mail: csc@renesas.com

製	品分類	MPU & MCU	発行番号	TN-16C-A	210A/J	Rev.	第1版
題名				情報分類	技術情報		
適			対象ロット等		MacCON D. 354	a Curan	23o
用製品	M16C/5LD グループ、M16C/56D グループ		関連資料	M16C/5LD、M1 ユーザーズマニュ ア編 Rev.1.20			


M16C/5LD、56D グループの仕様の一部を変更します。また、使用方法や設定手順を追加・変更します。 なお [] 内は M16C/5LD、M16C/56D グループ ユーザーズマニュアル ハードウェア編 Rev.1.20 上の掲載箇所を示します。

1.仕様変更

1.1 クロック [8.9.5 PLL 周波数シンセサイザ使用時]

PLL 周波数シンセサイザをご使用になる場合は、電源リップルの許容範囲内で電源電圧を安定させてください。表に電源リップルの許容範囲を、図に電源変動のタイミングを示します。

en B			H (+			
記号	項目	最小	標準	最大	単位	
f(ripple)	電源リップル許容周波数(VCC)			10	kHz	
Vp-p(ripple)	電源リップル許容振幅電圧	(VCC=5V時)			0.5	V
		(VCC=3V時)			0.3	V
Vcc(ΔV/ΔT)	電源リップル立ち上がり/立ち下がり勾配	(VCC=5V時)			0.3	V/ms
		(VCC=3V時)			0.3	V/ms

G1BT レジスタには何も書かないでください。

(補足)

G1BT レジスタは、G1BCR1 レジスタの BTS ビットを "0" (ベースタイマリセット)にすると、"0000h" になります。この機能は従来どおり変更ありません。

- 2. 使用上の注意事項の変更
- 2.1 時間測定機能選択時の割り込み要求 [18.5.6 時間測定機能選択時の割り込み要求]

G1FS レジスタの FSCj (j=0~7)ビットを "1" (時計計測機能)、かつ G1FE レジスタの IFEj ビットを "1" に すると、最大で fBT1 の 2 サイクル後に G1IR レジスタの G1IRj ビットや ICOCiIC (i=0、1)、ICOCHjIC (ただ し j=0~3)レジスタの IR ビットが "1" (割り込み要求あり)になることがあります。

発行日: 2011年12月14日

このため、IC/OC 割り込み i または IC/OC チャネル j 割り込みを使用する場合、FSCj ビットを "1" かつ IFEj ビットを "1" にした後、次の処理をしてください。

- (1) fBT1 の 2 サイクル以上待つ
- (2) ICOCiIC、ICOCHjIC レジスタの IR ビットを"0" にする
- (3) (時間測定機能選択から fBT1 の 3 サイクル以上待ってから)G1IR レジスタを "00h" にする (G1IR レジスタは ICOCiIC レジスタの IR ビットを "0" にした後で、"00h" にする)
- 3. 使用方法、設定手順等の追加・変更
- 3.1 フラッシュメモリ
- 3.1.1 ユーザブートプログラム [26.11.4.1 ユーザブートプログラム]

ユーザブートモードに次の注意事項を追加します。

- ・ユーザブートモードで起動し実行するプログラムは、プログラム ROM2 に配置してください。
- ・OFS1 番地の LVDAS ビット、OFS2 番地の WDTRCS1~WDTRCS0 ビットはブートモードでは無効です。
- ・ユーザブートモードで起動した後、再度ユーザブートモードで起動すると RAM が不定になります。
- 13FF8h~13FFBh 番地の値がすべて "00h" の場合は、標準シリアル入出力モードにはなりません。 したがって、ライタやオンチップデバッガには接続できません。
- ・リセットシーケンスが異なりますので、プログラムを実行し始めるまでの時間がシングルチップモードより 長くなります。
- ・ユーザブートモードの機能は、オンチップデバッギングエミュレータ、フルスペックエミュレータでは デバッグできません。
- ・ユーザブート機能使用中は、ユーザブートモードエントリに使用する端子の入力レベルを変更しないでください。入力レベルが変化する場合は、ユーザブートモードで必要な処理を行った後、入力レベルが変化する前にシングルチップモードで起動し直してください。
- ・標準シリアル入出力モード後、ユーザブートモードを使用する場合、標準シリアル入出力モードを使用した後、一度電源を切り、再度電源を立ち上げてください(コールドスタートしてください)。このとき、ユーザブートモードになる条件が整っていれば、ユーザブートモードになります。

3.1.2 サスペンド機能許可時の手順

[26.8.1.1 サスペンド機能(EW0 モード)、26.8.2.1 サスペンド機能(EW1 モード)]

サスペンド機能許可時の手順を変更します。変更する図と変更箇所は次の通りです。次のページに EW0 モードのプログラムコマンドの例を示します。

<変更する図>

EW0 モードのプログラムフローチャート(サスペンド機能許可時)

EW0 モードのブロックイレーズフローチャート(サスペンド機能許可時)

EW0 モードのロックビットプログラムフローチャート(サスペンド機能許可時)

<変更箇所>

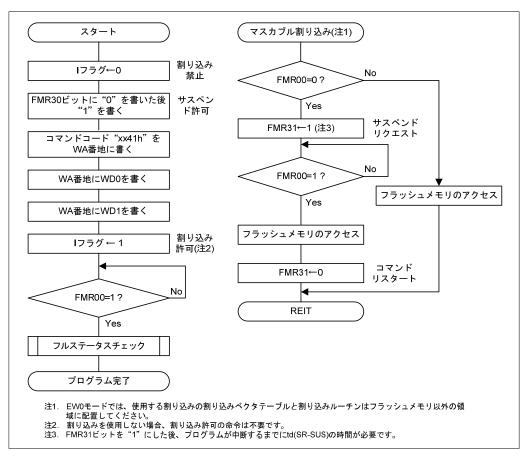
- ·Iフラグを"1"(割り込み許可)にする場所を変更します。
- ・マスカブル割り込みルーチンで判定に使用するフラグを FMR32 ビットまたは FMR33 ビットから FMR00 ビットに変更します。

<変更する図>

EW1 モードのプログラムフローチャート(サスペンド機能許可時)

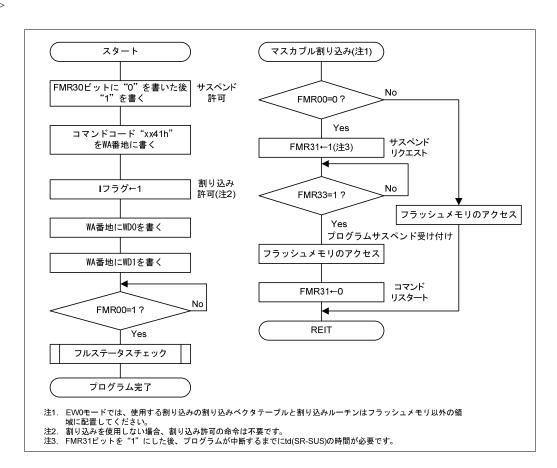
EW1 モードのブロックイレーズフローチャート(サスペンド機能許可時)

EW1 モードのロックビットプログラムフローチャート(サスペンド機能許可時)


<変更箇所>

·Iフラグを"1"(割り込み許可)にする場所を変更します。

発行日: 2011年12月14日


発行日: 2011年12月14日

<変更後>

EW0モードのプログラムフローチャート(サスペンド機能許可時)

<変更前>

EW0 モードのプログラムフローチャート(サスペンド機能許可時)

RENESAS TECHNICAL UPDATE TN-16C-A210A/J

4. 電気的特性の追加・変更

4.1 推奨動作条件 VCC [27.1.2 推奨動作条件]

VCC 電源電圧の最小値の規格を訂正します。

記号	項目		規格値	直	単位	
		最小		標準	最大	
		変更前	変更後			
VCC	電源電圧	3.0	2.7		5.5	V

4.2 電圧検出 2 回路 [27.1.5 電圧検出回路、電源回路の電気的特性]

電圧検出 2 回路の電圧検出レベル Vdet2_0~Vdet2_3、Vdet2_5~Vdet2_7 の規格を追加します。

記号	項目	測定条件		規格値		単位
			最小	標準	最大	
Vdet2_0	電圧検出レベル Vdet2_0	VCC 立ち下がり時		3.21		V
Vdet2_1	電圧検出レベル Vdet2_1			3.36		V
Vdet2_2	電圧検出レベル Vdet2_2			3.51		V
Vdet2_3	電圧検出レベル Vdet2_3			3.66		V
Vdet2_5	電圧検出レベル Vdet2_5			3.96		V
Vdet2_6	電圧検出レベル Vdet2_6			4.10		V
Vdet2_7	電圧検出レベル Vdet2_7		<u> </u>	4.25		V

4.3 電源回路のタイミング特性 [27.1.5 電圧検出回路、電源回路の電気的特性]

td(W-S)の最大値を変更します。

記号	項目	測定条件	規格値				単
			最小	標準	最	大	位
					変更前	変更後	
td(W-S)	低消費電力モードウェイトモード解 除時	Vcc=3.0~5.5V			150	300	μs

4.4 発振回路 「27.1.6 発振回路の電気的特性」

ウォッチドッグタイマ専用 125kHz オンチップオシレータの規格を追加します。

記号	項目		規格値		単位
		最小	標準	最大	
$ m f_{WDT}$	ウォッチドッグタイマ専用 125kHz オンチップオシレータ 発振周波数	100	125	150	kHz

発行日: 2011年12月14日

4.5 ヒステリシス VT+-VT- TA0IN 他

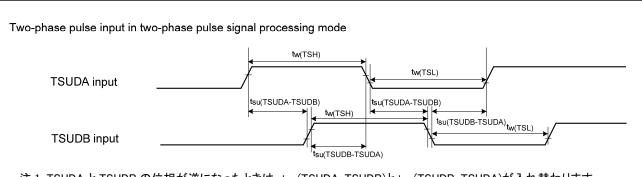
[27.2.1 電気的特性 (VCC=5V)]

下の V_{T+} - V_{T} ヒステリシスの最大値を変更します。

記号	項目		測定 規格値					単
			条件	最小	標準	最	 大	位
						変更前	変更後	
$V_{T+}-V_{T-}$	ヒステリシス	TA0IN~TA4IN, TB0IN~TB2IN,		0.2		2.5	0.4VCC	V
		<u>INT0~INT5</u> , NMI,						
		ADTRG, CTS0~CTS3, SCL2,						
		SDA2, CLK0~CLK4,						
		TA0OUT~TA4OUT,						
		KIO~KI3, RXDO~RXD4, ZP, IDU,						
		IDW, IDV, SD,						
		INPC1_0~INPC1_7, CRX0						

[27.3.1 電気的特性 (VCC=3V)]

下の V_{T+} - V_{T-} ヒステリシスの最大値を変更します。


記号	項目		測定		夫	見格値		単
			条件	最小	標準	最	 大	位
						変更前	変更後	
V_{T^+} - V_{T^-}	ヒステリシス	TA0IN~TA4IN, TB0IN~TB2IN,				1.8	0.4VCC	V
		$\overline{\text{INT0}} \sim \overline{\text{INT5}}, \overline{\text{NMI}},$						
		$\overline{\text{ADTRG}}, \overline{\text{CTS0}} \sim \overline{\text{CTS3}}, \text{SCL2},$						
		SDA2, CLK0~CLK4,						
		TA0OUT~TA4OUT,						
		KIO~KI3, RXDO~RXD4, ZP, IDU,						
		IDW, IDV, SD,						
		INPC1_0~INPC1_7, CRX0						

4.6 タイマS入力 二相パルス入力 [27.2.2.5 タイマS入力、27.3.2.5 タイマS入力]

二相パルス信号処理モードの二相パルス入力の規格を追加します。

端子名も P8_0 に TSUDA、P8_1 に TSUDB を追加しました。

記号	項目	規格	·値	単位
		最小	最大	
tw(TSH)	TSUDA、TSUDB 入力"H"パルス幅	2		μs
tw(TSL)	TSUDA、TSUDB 入力"L"パルス幅	2		μs
tsu(TSUDA-TSUDB)	TSUDB 入力セットアップ時間	1		μs
tsu(TSUDB-TSUDA)	TSUDA 入力セットアップ時間	1		μs

注 1. TSUDAとTSUDBの位相が逆になったときは、tsu(TSUDA-TSUDB)とtsu(TSUDB-TSUDA)が入れ替わります。

以上

発行日: 2011年12月14日