Date: Oct. 28, 2015

RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A055A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice RL78/G1C Descriptions in the User's Manua Hardware Rev. 1.10 Changed	Information Category	Technical Notification			
		Lot No.				
Applicable Product	RL78/G1C Group	All Lots	Reference Document RL78/G1C User's Manual: Ha Rev. 1.10 R01UH0348EJ0110 (Nov. 201			

This document describes misstatements found in the RL78/G1C User's Manual: Hardware Rev. 1.10 (R01UH0348EJ0110).

Corrections

Applicable Item	Applicable Page	Contents
5.3.10 PLL control register (DSCCTL)	p.136	Additional entry
5.4.5 PLL (Phase Locked Loop)	p.142	Incorrect descriptions revised
5.6.4 Example of setting PLL circuit	p.148	Incorrect descriptions revised
5.6.5 CPU clock status transition diagram	p.149	Incorrect descriptions revised
5.6.5 CPU clock status transition diagram Table 5-4. CPU Clock Transition and SFR Register Setting Examples	p.150 – p.154	Incorrect descriptions revised
5.6.6 Condition before changing CPU clock and processing after changing CPU clock	p.157 – p.168	Incorrect descriptions revised
7.3.4 Real-time clock control register 1 (RTCC1)	p.280	Additional entry

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

		Correction	ns and Applicable Ite	ms		Pages in this
No		Document No.	English	R01UH0	348EJ0110	document for corrections
1	5.3.10 PLL control	register (DSCCTL)			p.136	p.3
2	5.4.5 PLL (Phase L	ocked Loop)			p.142	p.4
3	3 5.6.4 Example of setting PLL circuit					p.6 – p.7
4	5.6.5 CPU clock sta		p.149	p.8		
5	5 5.6.5 CPU clock status transition diagram Table 5-4. CPU Clock Transition and SFR Register Setting Examples				p.150 – p.154	p.9 – p.15
6	6 5.6.6 Condition before changing CPU clock and processing after changing CPU clock				p.157 – p.168	p.16 – p.17
7	7.3.4 Real-time cloo	ck control register 1 (RTCC1)		p.280	p.18

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/G1C Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A046A/E	Jul. 6 , 2015	Correction No.7 revised
TN-RL*-A055A/E	Oct. 28, 2015	First edition issued Corrections No.1 to No.6 revised (This document)

1. 5.3.10 PLL control register (DSCCTL) (Page 136)

Additional entry to Figure 5 - 11 Format of PLL control register (DSCCTL)

<u>Old:</u>

Figure 5-11. Format of PLL Control Register (DSCCTL)

Address:	F02E5H	After rese	et: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
DSCCTL	0	0	0	0	0	DSFRDIV	DSCM	DSCON

DSFRDIV	PLL reference clock divider control			
0	No division			
1	Divided by 2			

Remark PLL reference clock is the high-speed system clock (f_{MX}).

DSCM	PLL multiplication selection
0	12 times (6 times)
1	16 times (8 times)

Remark The frequency is divided by 2 in the last stage of the PLL oscillator,

therefore the multiplication ratio becomes the value in parentheses.

DSCON	PLL oscillation and output control
0	Stop
1	Ocsillation, output

Caution Be sure to clear bits 3 to 7 to 0.

New:

Figure 5-11. Format of PLL Control Register (DSCCTL)

Address:	F02E5H	After rese	et: 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
DSCCTL	0	0	0	0	0	DSFRDIV	DSCM	DSCON

DSFRDIV	PLL reference clock divider control
0	No division
1	Divided by 2

Remark PLL reference clock is the high-speed system clock (f_{MX}).

DSCM	PLL multiplication selection
0	12 times (6 times)
1	16 times (8 times)

Remark The frequency is divided by 2 in the last stage of the PLL oscillator,

therefore the multiplication ratio becomes the value in parentheses.

DSCON	PLL oscillation and output control
0	Stop
1	Ocsillation, output

Caution 1. Be sure to clear bits 3 to 7 to 0.

Caution 2. Be sure to set the DSCON bit to 0 before changing DSFRDIV and DSCM.

Caution 3. Do not set the DSCON bit to 0 while the PLL clock is selected as the system

clock.

2. 5.4.5 PLL (Phase Locked Loop) (Page 142)

Incorrect descriptions revised to Caution 2.

<u>Old:</u>

Caution 1. When switching from PLL mode to the internal high-speed oscillation clock and the high speed system clock, stop the function (USB function controller) that provides the PLL output clock (f_{PLL}).

Caution 2. PLL operations cannot be performed while the subsystem clock is

operating

Date: Oct. 28, 2015

New:

Caution 1. When switching from PLL mode to the internal high-speed oscillation clock and the high speed system clock, stop the function (USB function controller) that provides the PLL output clock (f_{PLL}).

Caution 2. Do not set the DSCON bit to 1 to start the PLL operating while the subsystem clock is the operating clock for the CPU.

3. 5.6.4 Example of setting PLL circuit (Page 148)

Incorrect descriptions revised to 5.6.4 Example of setting PLL circuit.

<u>Old:</u>

[Register settings] Set the register in the order of <1> to <5> below.

<1> Set the DSFRDIV bit and DSCM bit in the DSCCTL register to set the PLL multiplication and division.

	7	6	5	4	3	2	1	0
DOCOTI						DSFRDIV	DSCM	DSCON
DSCCTL	0	0	0	0	0	0/1	0/1	0
<2> Set the	e RDIV1, F	RDIV0 bits	of the MC	<c register<="" td=""><td>to set the</td><td>division of</td><td>the system</td><td>n clock.</td></c>	to set the	division of	the system	n clock.
	7	6	5	4	3	2	1	0

MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	0

AMPHS0 and AMPHS1 bits: These bits are used to specify the oscillation mode of the XT1 oscillator.

<3> Set (1) the DSCON bit of the DSCCTL register to operate the PLL circuit Note.

	7	6	5	4	3	2	1	0	_
DOOOTI						DSFRDIV	DSCM	DSCON	
DSCCTL	0	0	0	0	0	0/1	0/1	1	

<4> Wait for 40 μ s by using software.

<5> Set (1) the CKSELR bit of the MCKC register to select PLL output for the system clock.

	7	6	5	4	3	2	1	0
MCKC						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	1

Note After the X1 oscillator clock stabilizes, allow at least 1 μ s to elapse before operating the PLL. When operating the PLL again after it has been stopped, wait for at least 4 μ s before operating.

New:

[Register settings] Set the register in the order of <1> to <5> below.

<1> Set the HIOSTOP bit in the CSC register to make the high-speed on-chip oscillator run.

	7	6	5	4	3	2	1	0
CSC	0/1	0/1	0	0	0	0	0	
	0/1	0/1	U	0	0	0	U	0

<2> Set the DSFRDIV bit and DSCM bit in the DSCCTL register to set the PLL multiplication

and division.

_	7	6	5	4	3	2	1	0
DECCTI						DSFRDIV	DSCM	DSCON
DSCCTL	0	0	0	0	0	0/1	0/1	0

<3> Set the RDIV1, RDIV0 bits of the MCKC register to set the division of the system clock.

	7	6	5	4	3	2	1	0
MOKO						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	0

AMPHS0 and AMPHS1 bits: These bits are used to specify the oscillation mode of the XT1 oscillator.

<4> Set (1) the DSCON bit of the DSCCTL register to operate the PLL circuit Note.

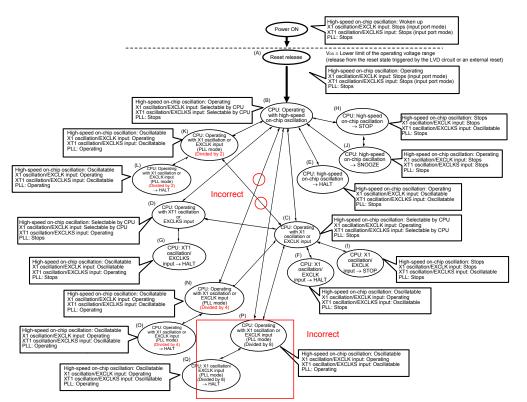
	7	6	5	4	3	2	1	0
DSCCTL						DSFRDIV	DSCM	DSCON
DSCCIL	0	0	0	0	0	0/1	0/1	1
<5> Set (1) the CKS	ELR bit of t	he MCKC	register to	select PLL	output for	the system	n clock.
	7	c	F	4	2	2	4	0

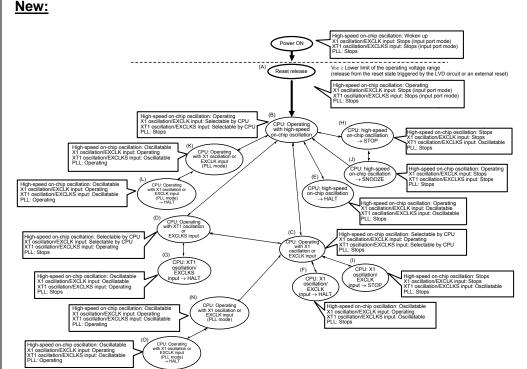
	7	6	5	4	3	2	1	0
МСКС						RDIV1	RDIV0	CKSELR
MCKC	0	0	0	0	0	0/1	0/1	1

Date:	Oct.	28,	2015
-------	------	-----	------

<6> Use s	<6> Use software to set up a wait of 65 μs. ^{Note3}												
<7> Set the HIOSTOP bit in the CSC register to stop the high-speed on-chip oscillator. ^{Note2}													
	7 6 5 4 3 2 1 0 HIOSTOP												
CSC	0/1 0/1 0 0 0 0 1 ^{Note1}												
<8> When	<8> When the PLL clock frequency divided by 2, 4, or 8 is selected as the main system clock												
(f _{MAIN}), set	(f _{MAIN}), set the MCM0 bit in the CKC register to select the source for deriving the main system												
clock as a	signal with	a frequen	cy (fін) of u	ip to 24 Mł	Ηz.								
	7	6	5	4	3	2	1	0					
СКС	CLS	CSS	MCS	MCM0									
ono	0/1	0/1	0	0	0	0	0	0					
Note 1. No setting is required to change to the PLL while the CKSELR bit is 1.													
W	When setting the CKSELR bit to 1, ensure that the high-speed on-chip oscillator is												
ru	nning.												

Note 2. After oscillation by the X1 oscillator clock has become stable, allow at least 1 μ s to elapse before starting the PLL. When restarting the PLL after it has been stopped, wait for at least 4 μ s before using it in operations.


Note 3. Wait for 40 μs for oscillation by the oscillator clock to become stabled if the HIOSTOP


bit is not set to 0.

4. 5.6.5 CPU clock status transition diagram (Page 149)

Incorrect descriptions revised to Figure 5 - 18 CPU Clock Status Transition Diagram

<u>Old:</u>

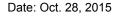
5. 5.6.5 CPU clock status transition diagram

Table 5 - 4 CPU Clock Transition and SFR Register Setting Examples (pages 150 to 154)

<u>Old:</u>

(2) CPU operating with high-speed system clock (C) after reset release (A)

(The CPU operates with the high-speed on-chip oscillator clock immediately after a reset release (B).)


(Setting sequence of SFR registers)							
Setting Flag of SFR Register	СМС	Registe	r ^{Note 1}	OSTS Register	CSC Register	OSTC Register	CKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		MCM0
$\begin{array}{l} (A) \rightarrow (B) \rightarrow (C) \\ (X1 \ clock: 1 \ MHz \leq f_X \leq 10 \ MHz) \end{array}$	0	1	0	Note 2	0	Must be checked	1
$\begin{array}{l} (A) \rightarrow (B) \rightarrow (C) \\ (X1 \ clock: 10 \ MHz < f_X \leq 20 \ MHz) \end{array}$	0	1	Q	Note 2	0	Must be checked	1
$(A) \rightarrow (B) \rightarrow (C)$ (external main clock)	1	1	×	Note 2	0	Must not be checked	1

New:

(2) CPU operating with high-speed system clock (C) after reset release (A)

(The CPU operates with the high-speed on-chip oscillator clock immediately after a reset release (B).)

(Setting sequence of SFR registers)							
Setting Flag of SFR Register	CMC Register Note 1			OSTS Register	CSC Register	OSTC Register	CKC Register
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		MCM0
	0	1	0	Note 2	0	Must be checked	1
$\begin{array}{l} (A) \rightarrow (B) \rightarrow (C) \\ (X1 \ clock: 10 \ MHz < f_{X} \leq 20 \ MHz) \end{array}$	0	1	1	Note 2	0	Must be checked	1
$(A) \rightarrow (B) \rightarrow (C)$ (external main clock)	1	1	×	Note 2	0	Must not be checked	1

Old:

(4) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system

clock (C)

(Setting sequence of SFR -(Setting sequence of SER registers) Setting Flag of SFR Register CMC RegisterNote 1 OSTS CSC **OSTC** Register СКС Register Register Register Status Transition St EXCLK OSCSEL AMPH MSTOP MCM0 $(B) \rightarrow (C)$ 0 1 0 Note 2 0 Must be checked 1 (B (X1 clock: 1 MHz \leq f_x \leq 10 MHz) (X $(B) \rightarrow (C)$ 0 Note 2 Must be checked 1 1 0 1 (B (X1 clock: 10 MHz < $f_X \le 20$ (X MHz) Μ (B) → (**D**)... 1 1 Note 2 0 Must not be 1 (B х checked (external main clock) (e Unnecessary if these Unnecessary if the CPU is registers are already set operating with the high-speed system clock (6) CPU clock changing from high-speed system clock (C) to high-speed on-chip oscillator (6) clock (B) cloo (Setting sequence of SFR registers) / Setting Flag of SFR Register CSC Register Oscillation accuracy **CKC** Register stabilization time HIOSTOP MCM0 Status Transition Stat 0 $(C) \rightarrow (B)$ Note 0 (C) Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock the high-speed on-chip oscillator clock Note When FRQSEL4 = 0: 18 μ s to 65 μ s Note When FRQSEL4 = 0: 18 μ s to 65 μ s When FRQSEL4 = 1: 18 μ s to 75 μ s When FRQSEL4 = 1:18 μ s to 135 μ s

Date: Oct. 28, 2015

New:

(4) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (C)

registers)							
Setting Flag of SFR Register	СМС	CMC Register ^{Note 1} OSTS CSC O RegisterRegister		OSTC Register	CKC Register		
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		MCM0
$B) \to (C)$	0	1	0	Note 2	0	Must be checked	1
X1 clock: 1 MHz $\leq f_X \leq$ 10 MHz)							
$B) \to (C)$	0	1	1	Note 2	0	Must be checked	1
X1 clock: 10 MHz < f _X ≤ 20 MHz)							
$B) \rightarrow (C)$	1	1	×	Note 2	0	Must not be	1
external main clock)						checked	
) CPU clock changing from hig ock (B) (Setting sequence of SFR registe	registers gh-speed	sary if the	dy set	operating system c	g with the clock	e CPU is high-speed d on-chip oscilla	ator
Setting Flag of SFR Regis	ster C	SC Regis	ster	Oscillatio	on accura	CKC	Register
Sourig - idy of of the syloid		HIOSTO		stabilizat			CM0
atus Transition							
		0			Note		

<u>Old:</u>

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	Oscillation	CKC Register
Status Transition	HIOSTOP	accuracy stabilization time	CSS
$(D) \to (B)$	0	Note	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1: 18 μ s to 75 μ s

Date: Oct. 28, 2015

New:

(8) CPU clock changing from subsystem clock (D) to high-speed on-chip oscillator clock (B)

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	Oscillation	CKC Register
Status Transition	HIOSTOP	accuracy stabilization time	CSS
$(D) \rightarrow (B)$	0	Note	0

Unnecessary if the CPU is operating with the high-speed on-chip oscillator

clock

Note When FRQSEL4 = 0: 18 μ s to 65 μ s

When FRQSEL4 = 1:18 μ s to 135 μ s

<u>Old:</u>

- (10) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (divided by 2) (K)
 - CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed
 system clock (PLL mode) (divided by 4) (N)
- CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed
 system clock (PLL mode) (divided by 8) (P)
 - CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (divided by 2) (K)
 - CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (divided by 4) (N)
- CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (divided by 8) (P)

(Setting sequence of SFR registers)						>
Setting Flag of SFR Register	DSCCTL. Register		MCKC Register		Waiting for Oscillation	MCKC. Register
Status Transition	DSFRDI V	DSCM	RDIV1	RDIVO	Stabilization	CKSELR
(B)	0/1	0/1	0/1	Q/1	40.µs	1
(B)						
(B)						
(C)						
(C)→.(N)						
(C)						

New:

- (10) CPU clock changing from high-speed on-chip oscillator clock (B) to high-speed system clock (PLL mode) (K)
- CPU clock changing from high-speed system clock (C) to high-speed system clock (PLL mode) (N)

Continue

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CMC Re	gister Note 1		OSTS Register	CSC Register	OSTC Register	DSCCTL F	Register	MCKC	Register	Waiting for Oscillation	DSCCT L Register	Waiting for Oscillation	MCKC Registe r
Status Transition	EXCLK	OSCSEL	AMPH		MSTOP		DSFRDI V	DSCM	RDIV1	RDIV0	Stabilization	DSCON	Stabilization	CKSEL R
(B) \rightarrow (K) (divided by 2)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	0	0		1		1
(B) \rightarrow (K) (divided by 4)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	0	1	1us	1	40us	1
(B) \rightarrow (K) (divided by 8)	0/1	1	0/1	Note 2	0	Must be checked	0/1	0/1	1	0		1		1

Note 1. Writing to the clock operating mode control register (CMC) can only proceed once and must be by an 8-bit memory manipulation instruction after release from the reset state.

Note 2. Set the oscillation stabilization time in the oscillation stabilization time select register (OSTS) as follows.

• Desired oscillation stabilization time setting of the oscillation stabilization time counter status register (OSTC) < Oscillation stabilization time set in the OSTS register

Caution: Completion of clock switching after the CKSELR bit has been set to 1 requires up to 2 clock cycles when the FRQSEL4 bit is 1, and up to 10 clock cycles when the FRQSEL4 bit is 0.

Until the clock switching is completed, do not stop the high-speed on-chip oscillator.

(Setting sequence of SFR registers)

Setting Flag of SFR Register	CSC Register	DSCCTL Registe	er	MCKC Regi	ster	DSCCTL Register	MCKC Register	Waiting for Oscillation	CSC Register	CKC Register
	HIOSTOP	DSFRDIV	DSCM	RDIV1	RDIV0	DSCON	CKSELR	Stabilization	HIOSTOP	MCM0
$(C) \rightarrow (N) (divided by 2)$	0 ^{Note3}	0/1	0/1	0	0	1	1 ^{Note3}		1 ^{Note3}	0
$(C) \rightarrow (N) (divided by 2)$	0 ^{Note3}	0/1	0/1	0	1	1	1 ^{Note3}	135us ^{Note4}	1 ^{Note3}	0
$(C) \rightarrow (N)$ (divided by 2)	0 ^{Note3}	0/1	0/1	1	0	1	1 ^{Note3}		1 ^{Note3}	0

Note 3. No setting is required to change to the PLL while the CKSELR bit is 1. When setting the CKSELR bit to 1, ensure that the high-speed on-chip oscillator is running.

Note 4. Wait for 40 μ s for oscillation by the oscillator clock to become stable if the HIOSTOP bit is not set to 0

Date: Oct. 28, 2015

<u>Old:</u>

- (11) CPU clock changing from high-speed system clock (PLL mode) (divided by 2) (K) to high-speed on-chip oscillator clock (B)
 - CPU clock changing from high-speed system clock (PLL mode) (divided by 4)
 (N) to high-speed on-chip oscillator clock (B)
- CPU clock changing from high-speed system clock (PLL mode) (divided by 8)
 (P) to high-speed on-chip oscillator clock (B)
 - CPU clock changing from high-speed system clock (PLL mode) (divided by 2) (K) to high-speed system clock (C)
 - CPU clock changing from high-speed system clock (PLL mode) (divided by 4) (N) to high-speed system clock (C)
- CPU clock changing from high-speed system clock (PLL mode) (divided by 8)
 (P) to high-speed system clock (C)

(Setting sequence of SFR registers) -		
Setting Flag of SFR Register	MCKC Register	DSCCTL Register
Status Transition	CKSELR	DSCON
(K)(B)	Q	Q
(N)		
(P)→.(B)		
(K)⇒.(C)		
(N)→.(C)		
(P).→.(C)		

New:

- (11) CPU clock changing from high-speed system clock (PLL mode) (K) to high-speed on-chip oscillator clock (B)
- CPU clock changing from high-speed system clock (PLL mode) (N) to high-speed system clock (C)

Setting Flag of SFR Register	CSC Register	Waiting for Oscillation	MCKC Register	Waiting for	DSCCTL Register
Status Transition	HIOSTOP	Stabilization	CKSELR	clock change	DSCON
(K) \rightarrow (B) FRQSEL4=0	0	18∼65 µs	0	256 clokc	0
(K) \rightarrow (B) FRQSEL4=1		18∼135 µs		16 clock	

Continue

-►

(Setting sequence of SFR registers) -

Setting Flag of SFR Register Status Transition	CKC Register MCM0	Waiting for clock change	DSCCTL Register DSCON
(N) \rightarrow (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 16MHz		3 Clock	
(N) \rightarrow (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 12MHz		4 Clock	
(N) \rightarrow (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 8MHz		6 Clock	
(N) \rightarrow (C) (divided by 2) (RDIV1,0 = 00) High-speed system clock (fMX) = 6MHz		8 Clock	
(N) \rightarrow (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 16MHz		2 Clock	
$\begin{array}{ll} ({\sf N}) & \rightarrow & ({\sf C}) & ({\rm divided \ by \ 4}) \ ({\sf RDIV1,0=01}) \\ {\rm High-speed \ system \ clock \ (fMX)=12MHz} \end{array}$	1	2 Clock	0
$\begin{array}{ll} (N) & \rightarrow & (C) & (\text{divided by 4}) (RDIV1,0=01) \\ \text{High-speed system clock (fMX) = 8MHz} \end{array}$		3 Clock	0
(N) \rightarrow (C) (divided by 4) (RDIV1,0 = 01) High-speed system clock (fMX) = 6MHz		4 Clock	
(N) \rightarrow (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 16MHz		2 Clock	
(N) \rightarrow (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 12MHz		2 Clock	
(N) \rightarrow (C) (divided by 8) (RDIV1,0 = 10) High-speed system clock (fMX) = 8MHz		2 Clock	
$\begin{array}{ll} ({\sf N}) & \rightarrow & ({\sf C}) & ({\rm divided \ by \ 8}) \ ({\sf RDIV1,0=10}) \\ {\rm High-speed \ system \ clock \ (fMX)=6MHz} \end{array}$		2 Clock	

<u>Old:</u>

(12) $\bullet\,$ HALT mode (E) set while CPU is operating with high-speed on-chip oscillator clock

(B)

- HALT mode (F) set while CPU is operating with high-speed system clock (C)
- HALT mode (G) set while CPU is operating with subsystem clock (D)
- HALT mode (L) set while CPU is operating with high-speed system clock (PLL mode) (divided by 2) (K)
- HALT mode (O) set while CPU is operating with high-speed system clock (PLL mode) (divided by 4) (N)

HALT mode (Q) set while CPU is operating with high-speed system clock (PLL

mode) (divided by 8) (P)

Status Transition	Setting
$(B) \to (E)$	Executing HALT instruction
$(C) \rightarrow (F)$	
$(D) \rightarrow (G)$	
$(K) \to (L)$	
$(N) \rightarrow (Q)$	
(P).→.(Q)	

(15) • STOP mode (I) set while CPU is operating with high-speed system clock (PLL mode)

(divided by 2) (K)

• STOP mode (I) set while CPU is operating with high-speed system clock (PLL

mode) (divided by 4) (N)

• STOP mode (I) set while CPU is operating with high-speed system clock (PLL

mode) (divided by 8) (P)

Switch from PLL mode operation to **high-speed on-chip oscillator clock** and high-speed system clock operations

(refer to 5.6.5 (11)) and stop the PLL (DSCON = 0), then execute the STOP instruction

Date: Oct. 28, 2015

New:

(12) • HALT mode (E) set while CPU is operating with high-speed on-chip oscillator clock(B)

- HALT mode (F) set while CPU is operating with high-speed system clock (C)
- HALT mode (G) set while CPU is operating with subsystem clock (D)

• HALT mode (L) set while CPU is operating with high-speed system clock (PLL mode) (K)

• HALT mode (O) set while CPU is operating with high-speed system clock (PLL mode)

(N)

Status Transition	Setting
$(B) \to (E)$	Executing HALT instruction
$(C) \rightarrow (F)$	
$(D) \to (G)$	
$(K) \to (L)$	
$(N) \to (O)$	

(15) • Changing to STOP mode (I) from the high-speed system clock (PLL mode) as the

operating clock for the CPU (K)

Switch to high-speed system clock operation from PLL mode, stop the PLL (DSCON = 0),

and then execute the STOP instruction.

6.5.6.6 Condition before changing CPU clock and processing after

changing CPU clock (pages 157 158)

<u>Old:</u>

Table 5-5. Changing CPU Clock (1/3)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
X1 clock	(omitted)		
	PLL clock	Oscillation of PLL • DSCON = 1	_

New:

Table 5-5. Changing CPU Clock (1/3)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
X1 clock		(omitted)	
	PLL clock	Oscillation of PLL • DSCON = 1	-
		Enabling oscillation of high-speed on-chip	
		oscillator · HIOSTOP = 0	
		The oscillation accuracy stabilization time	
		has elapsed	

<u>Old:</u>

Table 5-5. Changing CPU Clock (2/3)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
External main system clock	High-speed on-chip oscillator clock	 Enabling oscillation of high-speed on-chip oscillator HIOSTOP = 0 After elapse of oscillation accuracy stabilization time 	External main system clock input can be disabled (MSTOP = 1).
	X1 clock Transition not possible		_
	XT1 clock	Stabilization of XT1 oscillation • OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 • After elapse of oscillation stabilization time	External main system clock input can be disabled (MSTOP = 1).
	External subsystem clock	Enabling input of external clock from the EXCLKS pin • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	External main system clock input can be disabled (MSTOP = 1).
	PLL clock	Oscillation of PLL • DSCON = 1	-
(omitted)			

New:

Table 5-5. Changing CPU Clock (2/3)

CPU Clock		Condition Before Change	Processing After Change
Before Change	After Change		
External main system clock	High-speed on-chip oscillator clock	Enabling oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • After elapse of oscillation accuracy stabilization time Transition not possible	External main system clock input can be disabled (MSTOP = 1).
	XT1 clock	Stabilization of XT1 oscillation • OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 • After elapse of oscillation stabilization time	External main system clock input can be disabled (MSTOP = 1).
	External subsystem clock	Enabling input of external clock from the EXCLKS pin • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	External main system clock input can be disabled (MSTOP = 1).
	PLL clock	Oscillation of PLL • DSCON = 1 Enabling oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • The oscillation accuracy stabilization time has elapsed	_
has elapsed (omitted)			

7. 7.3.4 Real-time clock control register 1 (RTCC1)

Additional entry to Figure 7 - 5 Format of Real-time clock control register 1 (RTCC1) (2/2)

<u>Old:</u>

RWAIT	Wait control of real-time clock 2	RWAIT	Wait control of real-time clock 2	
0	Sets counter operation.	0	Sets counter operation.	
1	Stops SEC to YEAR counters. Mode to read or write counter value	1	Stops SEC to YEAR counters. Mode to read or write counter value	
This bit controls the operation of the counter.		This bit controls the operation of the counter.		
Be sure to	write "1" to it to read or write the counter value.	Be sure to write "1" to it to read or write the counter value.		
As the inte	ernal counter (16-bit) is continuing to run, complete reading or writing within one second and turn	As the internal counter (16-bit) is continuing to run, complete reading or writing within one second and turn		
back to		back to		
0.		0.		
When RW	AIT = 1, it takes up to one cycle of fRTCuntil the counter value can be read or written (RWST =	When RWAIT = 1, it takes up to one cycle of fRTC until the counter value can be read or written (RWST =		
1).		1) ^{Notes1,2}		
When the	internal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT	When the in	nternal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until RWAIT	
= 0, then o	counts up.	= 0, then co	punts up.	
However,	when it wrote a value to second count register, it will not keep the overflow event.	However, w	hen it wrote a value to second count register, it will not keep the overflow event.	
		Note1.	When setting RWAIT=1 during 1 operating clock (f_{RTC}), after setting RTCE=1, it may take	
			two clock time of the operation clock (f_{RTC}), until RWST bit is set to "1".	
		Note2.	When setting RWAIT=1 during 1 operating clock ($f_{\text{RTC}}),$ after returning from a stand-by	
			(HALT mode, STOP mode and SNOOZE mode), it may take two clock time of the operation	
			clock (f _{RTC}), until RWST bit is set to "1".	
		I		

New:

