RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A029A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice RI Descriptions in the User's Manual: Hardware Changed	Information Category	Technical Notification			
		Lot No.				
Applicable Product	RL78/L13 Group	All lots	Reference Document	RL78/L13 User's Man Rev. 2.00 R01UH0382EJ0200 (I		

This document describes misstatements found in the RL78/L13 User's Manual: Hardware Rev. 2.00 (R01UH0382EJ0200).

Corrections

Applicable Item	Applicable Page	Contents
5.3.9 High-speed on-chip oscillator trimming register (HIOTRM)	Page 164	Incorrect descriptions revised
14.5.7 SNOOZE mode function Timing Chart of SNOOZE Mode Operation (Figure 14-71. and Figure 14-73.)	Pages 592 and 594	Incorrect descriptions revised
14.6.3 SNOOZE mode function	Page 618	Incorrect descriptions revised
14.6.3 SNOOZE mode function Timing Chart of SNOOZE Mode Operation (Figure 14-90., Figure 14-91. and Figure 14-93.)	Pages 620, 621 and 623	Incorrect descriptions revised
19.4.3 Multiple interrupt servicing Table 19-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing During Interrupt Servicing	Page 864	Incorrect descriptions revised
23.2 Configuration of Power-on-reset Circuit Figure 23-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (1)	Page 900	Incorrect descriptions revised
32.1 Absolute Maximum Ratings	Page 1001	Specifications changed
32.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 1056	Content change
33.1 Absolute Maximum Ratings	Page 1065	Specifications changed
33.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 1114	Content change

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

		Corrections and Applicable Items		Pages in this
No.	Document No.	English	R01UH0382EJ0200	document for corrections
1	5.3.9 High-speed on-chip osc	illator trimming register (HIOTRM)	Page 164	Page 3
2	14.5.7 SNOOZE mode function Timing Chart of SNOOZE Mode (Figure 14-71. and Figure 14-	de Operation	Pages 592 and 594	Page 4 and 5
3	14.6.3 SNOOZE mode function	on	Page 618	Page 6
4	14.6.3 SNOOZE mode function Timing Chart of SNOOZE Mode (Figure 14-90., Figure 14-91.)	de Operation	Pages 620, 621 and 623	Page 7 to 9
5	19.4.3 Multiple interrupt servi Table 19-5. Relationship Betv Multiple Interrupt Servicing D	Page 864	Page 10	
6	23.2 Configuration of Power- Figure 23-2. Timing of Gener Power-on-reset Circuit and V	ation of Internal Reset Signal by	Page 900	Page 11
7	32.1 Absolute Maximum Rati	ngs	Page 1001	Page 12
8	32.8 Data Memory STOP Mo Characteristics	de Low Supply Voltage Data Retention	Page 1056	Page 13
9	33.1 Absolute Maximum Rati	ngs	Page 1065	Page 14
10	33.8 Data Memory STOP Mo Characteristics	de Low Supply Voltage Data Retention	Page 1114	Page 15

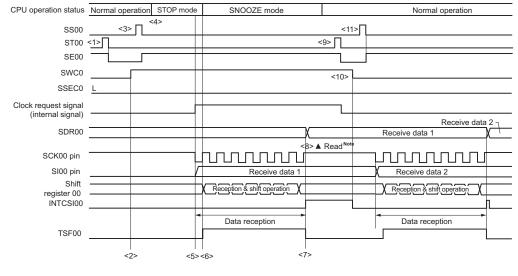
Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/L13 Correction for incorrect description notice

Ι	Document Number	Issue Date	Description
	TN-RL*-A029A/E	Jul. 01, 2014	First edition issued
			Corrections No.1 to No.10 revised (this document)

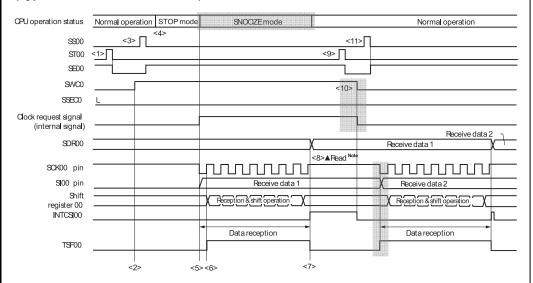
(Page Incorrect: 5.3.9 High	<u>≥ 243)</u> n-speed on- 10. Forma	chip oscilla	tor trimming (omi beed On-Ch	g register (H tted)	nming re HOTRM) r Trimming 2			_	10. Fo	on-chip oscill rmat of High-S After reset: u 5 5	orr) Speed On-Cl	nitted)		Register (H	IIOTRM) 0
HIOTRM	0 0	HIOTRM5	4 HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	U HIOTRM0	HIOTRM	0 0	HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0
HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0	High-spee oscill	-	HIOTRM5	HIOTRM		HIOTRM2	HIOTRM1	HIOTRM0	High-speed oscilla	ator
0	0	0	0	0	0	Minimur	m speed	0	0	0	0	0	0	Minimum	n speed
0	0	0	0	0	1		^	0	0	0	0	0	1		
0	0	0	0	1	0			0	0	0	0	1	0		
0	0	0	0	1	1			0	0	0	1	0	0		
0	0	0	1	0	0			0	0	0	•	0	U		
			•								•				
1	1	1	1	1	0		•	1	1	1	1	1	0		/
1	1	1	1	1	1	Maximu	▼ m speed	1	1	1	1	1	1	Maximun	n speed
Remarks 1 g 2 M	. The HIO scillator closes. For the use	TRM regist ock to an ac age example ligh-speed (er can be curacy with of the HIOT	nin about 0.(RM register,	adjust_the_	olication not	e for RL78	Remarks 1 C 2 N	. The H scillator 0.05%. 2. For the	e after reset is f IOTRM register with an increm e usage examp ies High-speed 464).	holds a six- ent of 1 corr le of the HIO	bit value use esponding to TRM register	ed to adjust th an increase r, see the app	of frequenc	y by about e for RL78


2. 14.5.7 SNOOZE mode function

Timing Chart of SNOOZE Mode Operation (Figure 14-71. and Figure 14-73.) (Pages 592 and 594)

It is correction of "CPU operation status", "Clock request signal (internal signal)" and "TSF00" in this Figure.

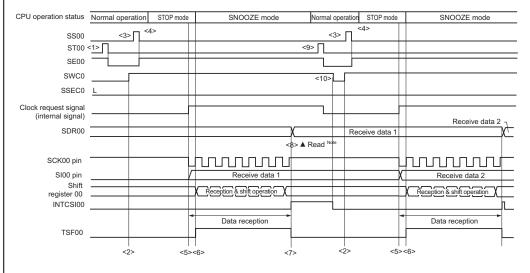
Incorrect:


Figure 14-71. Timing Chart of SNOOZE Mode Operation (once startup) (Type 1: DAPmn = 0, CKPmn = 0)

(omitted)

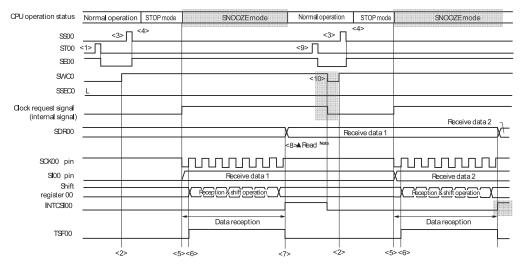
Correct:

Figure 14-71. Timing Chart of SNOOZE Mode Operation (once startup) (Type 1: DAPmn = 0, CKPmn = 0)



It is correction of "CPU operation status", "Clock request signal (internal signal)" and "INTCSI00" in this Figure.

Incorrect:



(omitted)

Correct:

3. 14.6.3 SNOOZE mode function (Page 618)

Incorrect:

14.6.3 SNOOZE mode function

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fin) is selected for fcLk.

(omitted)

4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.

Correct:

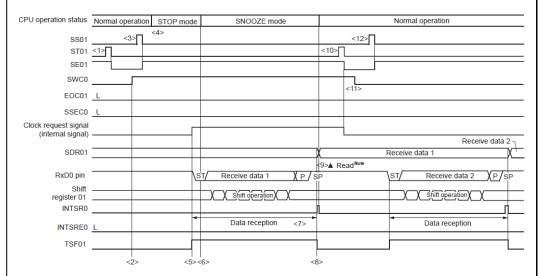
14.6.3 SNOOZE mode function

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fill) is selected for fcLK.

- 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.
- 5. The CPU shifts from the STOP mode to the SNOOZE mode on detecting the valid edge of the RxDq signal. Note, however, that transfer through the UART channel may not start and the CPU may remain in the SNOOZE mode if an input pulse on the RxDq pin is too short to be detected as a start bit. In such cases, data may not be received correctly, and this may lead to a framing error or parity error in the next UART transfer.



4. 14.6.3 SNOOZE mode function Timing Chart of SNOOZE Mode Operation (Figure 14-90., Figure 14-91. and Figure 14-93.) (Pages 620, 621 and 623)

It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

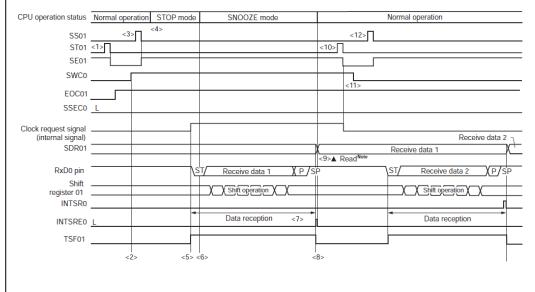
Incorrect:

Figure 14-90. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

(omitted)

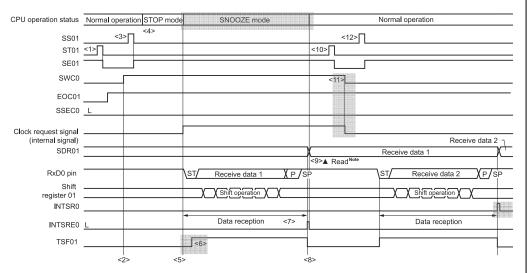
Correct:

Figure 14-90. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)



It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

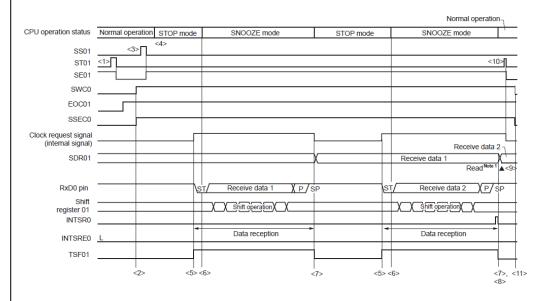
Incorrect:


Figure 14-91. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)

(omitted)

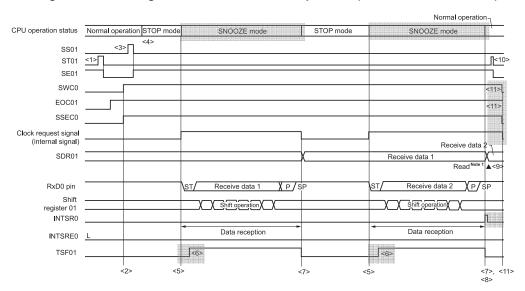
Correct:

Figure 14-91. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)


(omitted)

It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

Incorrect:


Figure 14-93. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

(omitted)

Correct:

Figure 14-93. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

5. 19.4.3 Multiple interrupt servicing Table 19-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing During Interrupt Servicing (Page 864)

Incorrect:

 Table 19-5.
 Relationship Between Interrupt Requests Enabled for Multiple Interrupt

 Servicing During Interrupt Servicing

Multiple Interru	ıpt	Maskable Interrupt Request							
Reque	Phoney	v Level 0 = 00)	-	Level 1 = 01)	Priority L (PR =			Level 3 = 11)	Interrupt Request
Being Serviced	IE = 1	IE = 0	IE = 1	IE = 0	IE = 1	IE = 0	IE = 1	IE = 0	
Maskable ISP1 = interrupt ISP0 =	-	×	×	×	×	×	×	×	0
ISP1 = ISP0 =	• -	×	0	×	×	×	×	×	0
ISP1 = ISP0 =	. –	×	0	×	0	×	×	×	0
ISP1 = ISP0 =	-	Q	0	Q	0	Q	0	Q	0
Software interrupt	0	×	0	×	0	×	0	×	0

Correct:

RENESAS

 Table 19-5.
 Relationship Between Interrupt Requests Enabled for Multiple Interrupt

 Servicing During Interrupt Servicing

Multip	le Interrupt		Maskable Interrupt Request								
Interrupt	Request	Priority Level 0 (PR = 00)		Priority Level 1 (PR = 01)		Priority Level 2 (PR = 10)		Priority Level 3 (PR = 11)		Interrupt Request	
Being Servic	ced	IE = 1	IE = 0	IE = 1	IE = 0	IE = 1	IE = 0	IE = 1	IE = 0		
Maskable interrupt	ISP1 = 0 ISP0 = 0	0	×	×	×	×	×	×	×	0	
	ISP1 = 0 ISP0 = 1	0	×	0	×	×	×	×	×	0	
	ISP1 = 1 ISP0 = 0	0	×	0	×	0	×	×	×	0	
	ISP1 = 1 ISP0 = 1	0	×	0	×	0	×	0	×	0	
Software in	terrupt	0	×	0	×	0	×	0	×	0	
	(omitted)										

- 6. 23.2 Configuration of Power-on-reset Circuit Figure 23-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (1) (Page 900)
- Incorrect:

Figure 23-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (1/3)

(1) When the externally input reset signal on the RESET pin is used

(omitted)

Notes 3. The time until normal operation starts includes the following reset processing time when the external reset is released (after the first release of POR) after the RESET signal is driven high (1) as well as the voltage stabilization wait time after VPOR (1.51 V, typ.) is reached.

Reset processing time when the external reset is released is shown below. After the first release of POR:

0.672 ms (typ.), 0.832 ms (max.) (when the LVD is in use)

0.399 ms (typ.), 0.519 ms (max.) (when the LVD is off)

4. Reset processing time when the external reset is released after the second release of POR is shown below.

After the second release of POR:

0.531 ms (typ.), 0.675 ms (max.) (when the LVD is in use) 0.259 ms (typ.), 0.362 ms (max.) (when the LVD is off) (omitted) Correct:

- Figure 23-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (1/3)
- (1) When the externally input reset signal on the RESET pin is used

(omitted)

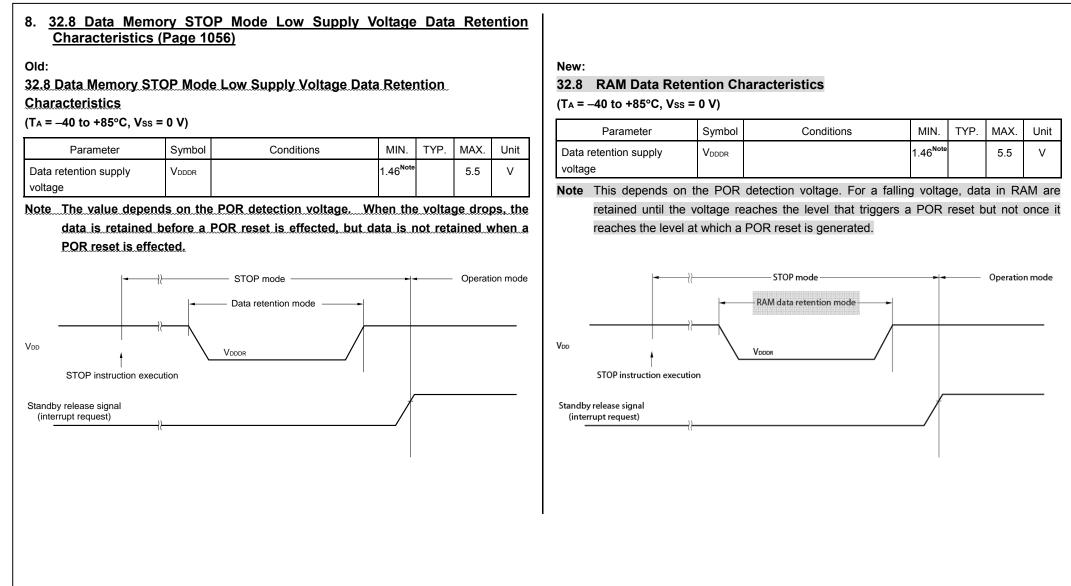
Notes 3. The time until normal operation starts includes the following reset processing time when the external reset is released (release from the first external reset following release from the POR state) after the RESET signal is driven high (1) as well as the voltage stabilization wait time after VPOR (1.51 V, typ.) is reached. Reset processing time when the external reset is released is shown below. Release from the first external reset following release from the POR state: 0.672 ms (typ.), 0.832 ms (max.) (when the LVD is in use) 0.399 ms (typ.), 0.519 ms (max.) (when the LVD is off)

 Reset times in cases of release from an external reset other than the above are listed below.

Release from the reset state for external resets other than the above case: 0.531 ms (typ.), 0.675 ms (max.) (when the LVD is in use) 0.259 ms (typ.), 0.362 ms (max.) (when the LVD is off) (omitted)

7. <u>32.1 Absolute Maximum Ratings</u> (Page 1001)

Incorrect:


Absolute Maximum Ratings (3/3)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P14 to P17 , P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
		Total of all pins –170 mA	P00 to P07, P14 to P17, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
	Іон2	Per pin	P10 to P13, P20 to P27	-0.5	mA
		Total of all pins		 2	mA
Output current, low	Iol1	Per pin	P00 to P07, P14 to P17 , P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
		Total of all pins	P40 to P47, P130	70	mA
		170 mA	P00 to P07, P14 to P17, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
	IOL2	Per pin	P10 to P13, P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation	on mode	-40 to +85	°C
temperature		In flash memory p	orogramming mode		
Storage temperature	Tstg			-65 to +150	°C

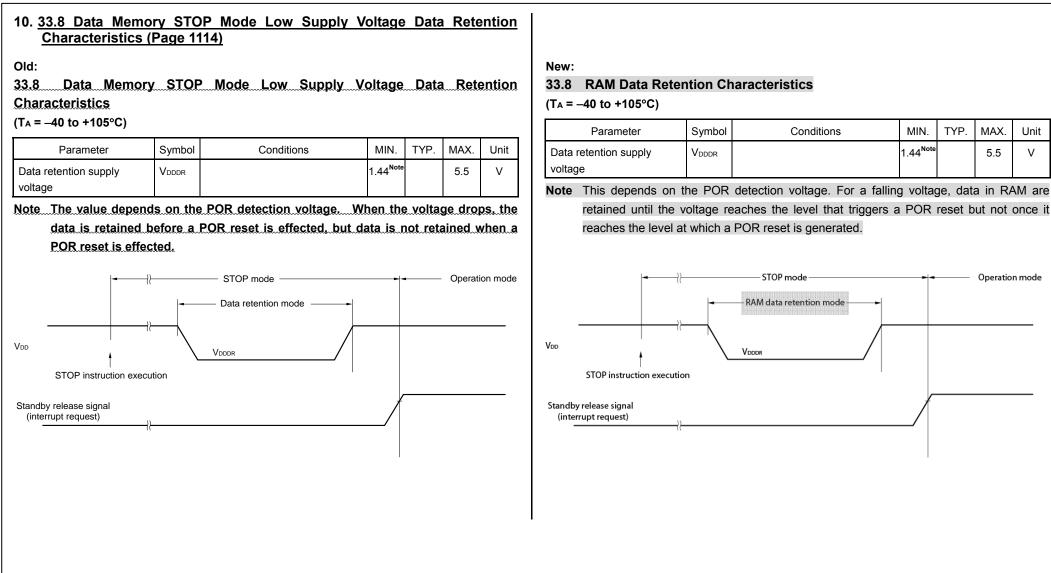
Correct:
Absolute Maximum Ratings (3/3)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
		Total of all pins −170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	Iol1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
		Total of all pins	P40 to P47, P130	70	mA
		170 mA	P00 to P07, P10 to P17, P22 to P27,P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operation	on mode	-40 to +85	°C
temperature		In flash memory p	programming mode		
Storage temperature	Tstg			-65 to +150	°C

9. <u>33.1 Absolute Maximum Ratings</u> (Page 1065)

Incorrect:

Absolute Maximum Ratings (3/3)


Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P14 to P17 , P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
		Total of all pins −170 mA	P00 to P07, P14 to P17 , P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
	Іон2	Per pin	P10 to P13, P20 to P27	-0.5	mA
		Total of all pins		 2	mA
Output current, low	Iol1	Per pin	P00 to P07, P14 to P17 , P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
		Total of all pins	P40 to P47, P130	70	mA
		170 mA	P00 to P07, P14 to P17 , P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
	IOL2	Per pin	P10 to P13, P20 to P27	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal operation	on mode	-40 to +105	°C
temperature		In flash memory p	orogramming mode		
Storage temperature	Tstg			-65 to +150	°C

Correct:	
Absolute Maximum	Patin

Absolute Maximum Ratings (3/3)

Parameter	Symbol		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-40	mA
		Total of all pins −170 mA	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	-170	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	IOL1	Per pin	P00 to P07, P10 to P17, P22 to P27, P30 to P35, P40 to P47, P50 to P57, P60, P61, P70 to P77, P125 to P127, P130	40	mA
		Total of all pins 170 mA	P40 to P47, P130	70	mA
			P00 to P07, P10 to P17, P22 to P27, P30 to P35, P50 to P57, P60, P61, P70 to P77, P125 to P127	100	mA
	Iol2	Per pin	P20, P21	1	mA
		Total of all pins]	2	mA
Operating ambient temperature	Ta	In normal operation mode		-40 to +105	°C
		In flash memory programming mode			
Storage temperature	Tstg		-65 to +150	°C	

V

