RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A016A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice RI Descriptions in the User's Manual: Hardware Changed	Information Category	Technical Notification			
		Lot No.				
Applicable Product	RL78/L12 Group R5F10Rxxx All lots		Reference Document RL78/L12 User's Manu Rev. 1.00 R01UH0330EJ0100 (J			

This document describes misstatements found in the RL78/L12 User's Manual: Hardware Rev. 1.00 (R01UH0330EJ0100).

Corrections

Applicable Item	Applicable Page	Contents
3.1.3 Internal data memory space	Page 60	Specifications extended
12.6.3 SNOOZE mode function	Page 490	Specifications changed
19.3.2 STOP mode	Pages 746, 747	Incorrect descriptions revised
19.3.3 SNOOZE mode	Page 749	Incorrect descriptions revised
23.3.6 Invalid memory access detection function	Page 797	Incorrect descriptions revised
Figure 25-3 Format of Option Byte (000C2H)	Page 810	Specifications extended
26.4.3 Procedure for accessing data flash memory	Page 823	Incorrect descriptions revised
30.3.1 Pin characteristics	Pages 867, 868	Incorrect descriptions revised
30.3.2 Supply current characteristics	Pages 872 to 877	Incorrect descriptions revised
30.4 AC Characteristics	Page 878	Specifications extended
30.5.1 Serial array unit	Pages 881 to 899	Incorrect descriptions revised
30.5.2 Serial interface IICA	Pages 900 to 902	Incorrect descriptions revised
30.6.1 A/D converter characteristics	Pages 903 to 905	Specifications extended
30.6.2 Temperature sensor/internal reference voltage characteristics	Page 905	Incorrect descriptions revised
30.6.3 POR circuit characteristics	Page 905	Incorrect descriptions revised
30.6.5 Supply voltage rise time	Page 907	Specifications added
30.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 912	Specifications extended
ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to +105°C)	New	Specifications extended

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

		Corrections and Applicable Items		Pages in this	
No.	Document No.	English	R01UH0330EJ0100	document for corrections	
1	3.1.3 Internal data memory sp	ace	Page 60	Page 3	
2	12.6.3 SNOOZE mode function	n	Page 490	Pages 4 and 5	
3	19.3.2 STOP mode		Pages 746, 747	Page 6	
4	19.3.3 SNOOZE mode		Page 749	Page 7	
5	23.3.6 Invalid memory access	detection function	Page 797	Pages 8 and 9	
6	Figure 25-3 Format of Option	Byte (000C2H)	Page 810	Page 10	
7	26.4.3 Procedure for accessin	g data flash memory	Page 823	Page 11,12	
8	30.3.1 Pin characteristics		Pages 867, 868	Page 13	
9	30.3.2 Supply current character	eristics	Pages 872 to 877	Page 13	
10	30.4 AC Characteristics		Page 878	Page 13	
11	30.5.1 Serial array unit		Pages 881 to 899	Page 13	
12	30.5.2 Serial interface IICA		Pages 900 to 902	Page 13	
13	30.6.1 A/D converter characte	ristics	Pages 903 to 905	Page 13	
14	30.6.2 Temperature sensor/in	ternal reference voltage characteristics	Page 905	Page 14	
15	30.6.3 POR circuit characteris	tics	Page 905	Page 14	
16	30.6.5 Supply voltage rise time	9	Page 907	Page 14	
17	30.7 Data Memory STOP Moc Characteristics	le Low Supply Voltage Data Retention	Page 912	Page 14	
18	ELECTRICAL SPECIFICATIC (G: $T_A = -40$ to +105°C)	NS	New	Page 14	

Incorrect: Bold with underline: Correct: Gray hatched

Revision History

RL78/L12 Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A016A/E	Jan.10.2014	First edition issued Corrections No.1 to No.18 revised (This document)

1. 3.1.3 Internal data memory space

Incorrect:

Cautions 2. The internal RAM in the following products cannot be used as stack area when using the self-programming function and data flash function.

R5F10Rx8 (x = B, F, G, J): FFE20H to FFEDFH. FFB00H to FFC89H R5F10RxA (x = B, F, G, J, L): FFE20H to FFEDFH. FFB00H to FFC89H R5F10RxC (x = B, F, G, J, L): FFE20H to FFEDFH. FF900H to FFC89H

Correct:

- Cautions 2. While self-programming is being executed or rewriting the data flash, do not allocate the RAM address which is used in stack, data buffer, the branch of vectored interrupt servicing, or the transfer destination or source by DTC in the address between FFE20H to FFEDFH.
 - 3. The RAM area in the products listed below cannot be used when using the self-programming function or rewriting the data flash, because they are used by libraries.

R5F10Rx8(x = B, F, G,J) :FFB00H to FFC89H

R5F10RxA (x = B, F, G, J, L) : FFB00H to FFC89H

R5F10RxC (x = B, F, G, J, L) : FF900H to FFC89H

2. 12.6.3 SNOOZE mode function

Incorrect:

SNOOZE mode makes UART operate reception by RxDq pin input detection while the STOP mode. Normally UART stops communication in the STOP mode. But, using the SNOOZE mode makes reception UART operate unless the CPU operation by detecting RxDq pin input.

When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode.

Cautions: 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fclk.

2. The maximum transfer rate when using UARTq in the SNOOZE mode is 9600 bps.

Correct:

SNOOZE mode makes UART operate reception by RxDq pin input detection while the STOP mode. Normally UART stops communication in the STOP mode. But, using the SNOOZE mode makes reception UART operate unless the CPU operation by detecting RxDq pin input.

When using UARTq in SNOOZE mode, execute the following settings before entering STOP mode (Refer to Flowcharts of SNOOZE mode operation in Figure 12-93 and Figure 12-95).

- In SNOOZE mode, UART reception baud rate must be set differently from normal operation. Refer to Table 12-3 to set registers SPSm and SDRmn [15:9].
- Set bits EOCmn and SSECmn to enable or disable the error interrupt (INTSRE0) when a communication error occurs.
- Set the SWCm bit in the serial standby control register m (SSCm) to 1 just before entering STOP mode. After initialization, set the SSm1 bit to 1 in the serial channel start register m (SSm).

When the MCU detects the RxDq pin edge input (input the start bit) after entering STOP mode, the UART reception is started.

Cautions: 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock (fiH) is selected for fcLK.

- 2. The transfer rate in SNOOZE mode is 4800 bps only.
- 3. When the SWCm bit is 1, UARTq can be used only when the reception is started in STOP mode. If UARTq is used with other SNOOZE function or interrupts concurrently and the reception is started in state other than STOP mode as described below, the UARTq cannot receive data correctly and may cause a framing error or parity error.

•The case the UARTq reception is started from the moment the SWCm bit is set to 0 before the MCU enters STOP mode

•The case the UARTq reception is started in SNOOZE mode

•The case the UARTq reception is started from the moment the MCU exits STOP mode and enters normal mode using interrupts before the SWCm bit is set to 0

4. When the SSECm bit is 1, if a parity error, framing error, or overrun error occurs, flags PEFmn, FEFmn, or OVFmn is not set, nor an error interrupt (INTSREq) is generated. To set the SSECm bit to 1, clear flags PEFmn, FEFmn, and OVFmn before setting the SWC0 bit to 1, and read bits 7 to 0 (RxDq) in the SDRm1 register.

Table 12-3 UART Reception Baud Rate Setting in SNOOZE Mode

High-speed on-chip	UAF	UART reception baud rate in SNOOZE mode					
oscillator							
(fін)		Bau	d rate: 4800 bps				
	Operating clock	SDRmn	Maximum	Minimum			
	(fмск)	[15:9]	acceptable value	acceptable value			
24 MHz ± 1.0% ^(note)	f _{с∟к} /2⁵	79	1.60%	-2.18%			
16 MHz ± 1.0% ^(note)	f _{ськ} /2 ⁴	105	2.27%	-1.53%			
12 MHz ± 1.0% ^(note)	f _{ськ} /2 ⁴	79	1.60%	-2.19%			
8 MHz ± 1.0% ^(note)	f _{ськ} /2 ³	105	2.27%	-1.53%			
6 MHz ± 1.0% ^(note)	f _{ськ} /2 ³	79	1.60%	-2.19%			
4 MHz ± 1.0% ^(note)	f _{ськ} /2 ²	105	2.27%	-1.53%			
3 MHz ± 1.0% ^(note)	f _{ськ} /2 ²	79	1.60%	-2.19%			
2 MHz ± 1.0% ^(note)	f _{ськ} /2 ¹	105	2.27%	-1.54%			
1 MHz ± 1.0% ^(note)	f _{ськ} / 2 ⁰	105	2.27%	-1.57%			
Note: When the h	Note: When the birth encoding this applicate clock converses is $ct \cdot 4.5\%$ or 2.0%						
······································							
				alue of f⊪ + 1.0%.			
the acceptable range is limited as follows: • f⊮ ± 1.5%: Subtract 0.5% from the maximum acceptable value of f⊮ ± 1.0% and add 0.5% to the minimum acceptable value of f⊮ ± 1.0%.							

• fin \pm 2.0%: Subtract 1.0% from the maximum acceptable value of fin \pm 1.0%, and add 1.0% to the minimum acceptable value of fin \pm 1.0%.

Remarks: Maximum and minimum acceptable values in the above table are the baud rate acceptable values in UART reception. Make sure to set the baud rate for transmission within this range.

RENESAS TECHNICAL UPDATE TN-RL*-A016A/E

3. 19.3.2 STOP mode

Incorrect:

Figure 19-5 STOP Mode Release by Interrupt Request Generation (1/2) (1) When high-speed system clock (X1 oscillation) is used as CPU clock (omitted)

Notes: 2. Wait time for STOP mode release

High-speed system clock (X1 oscillation): 3-clock

 (2) When high-speed system clock (external clock input) is used as CPU clock
 (3) When high-speed on-chip oscillator clock is used as CPU clock (omitted)

Notes: 2 Supply of the clock is stopped: 19.08 to 32.99 µs

Wait

• When vectored interrupt servicing is carried out: 7 clocks

• When vectored interrupt servicing is not carried out: 1 clock

Correct:

Figure 19-5 STOP Mode Release by Interrupt Request Generation (1/2) (1) When high-speed system clock (X1 oscillation) is used as CPU clock (omitted)

Notes:2. STOP mode release time

Supply of the clock is stopped: 18 µs to "whichever is longer 65 µs or the oscillation stabilization time"

Wait

• When vectored interrupt servicing is carried out: 10 to 11 clocks

• When vectored interrupt servicing is not carried out: 4 to 5 clocks

Remark: The time to stop clock supply varies depending on the temperature conditions and STOP mode time.

 (2) When high-speed system clock (external clock input) is used as CPU clock
 (3) When high-speed on-chip oscillator clock is used as CPU clock (omitted)

Notes: 2. STOP mode release time Supply of the clock is stopped: 18 to 65 µs

Wait

- When vectored interrupt servicing is carried out: 7 clocks
- When vectored interrupt servicing is not carried out: 1 clock

Remark: The time to stop clock supply varies depending on the temperature conditions and STOP mode time.

4. 19.3.3 SNOOZE mode

Incorrect:

In SNOOZE mode transition, wait status to be only following time.

From STOP to SNOOZE

HS (High-speed main) mode: 18.96 to 28.95 µs LS (Low-speed main) mode: 20.24 to 28.95µs LV (Low-voltage main) mode: 20.98 to 28.95 µs

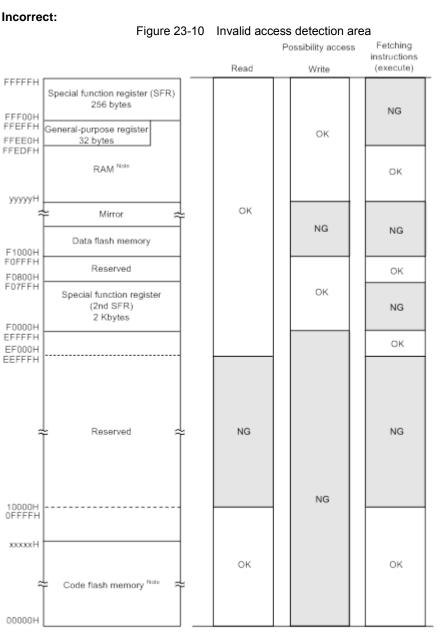
From SNOOZE to normal operation

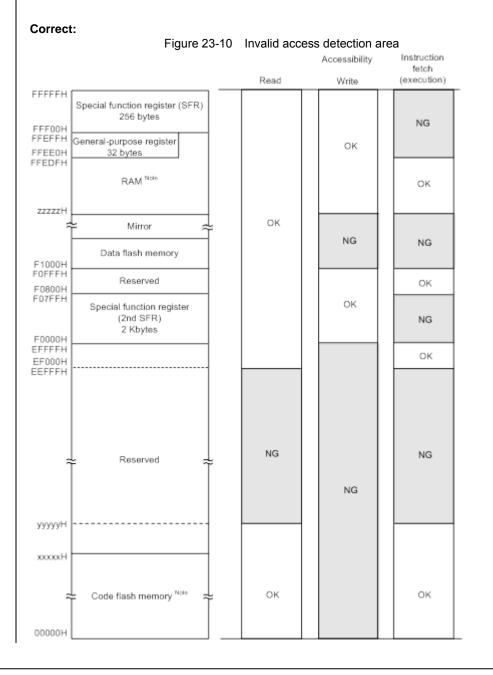
- When vectored interrupt servicing is carried out: HS (High-speed main) mode: 6.79 to 12.4 µs + 7 clocks LS (Low-speed main) mode: 2.58 to 7.8 µs + 7 clocks LV (Low-voltage main) mode: 12.45 to 17.3 µs + 7 clocks
- When vectored interrupt servicing is not carried out: HS (High-speed main) mode: 6.79 to 12.4 µs + 1 clock LS (Low-speed main) mode: 2.58 to 7.8 µs + 1 clock LV (Low-voltage main) mode: 12.45 to 17.3 µs + 1 clock

Correct:

The MCU transits from STOP mode to SNOOZE mode or from SNOOZE mode to normal operation after time shown below elapses.

Transit time from STOP mode to SNOOZE mode: 18 to 65 µs Remark: The transit time from STOP mode to SNOOZE mode varies depending on the temperature conditions and STOP mode time.


Transit time from SNOOZE mode to normal operation:


- When vectored interrupt servicing is carried out: HS (High-speed main) mode: "4.99 to 9.44 μs" + 7 clocks LS (Low-speed main) mode: "1.10 to 5.08 μs" + 7 clocks LV (Low-voltage main) mode: "16.58 to 25.40 μs" + 7 clocks
- When vectored interrupt servicing is not carried out: HS (High-speed main) mode: "4.99 to 9.44 μs" + 1 clock LS (Low-speed main) mode: "1.10 to 5.08 μs" + 1 clock LV (Low-voltage main) mode: "16.58 to 25.40 μs" + 1 clock

5. 23.3.6 Invalid memory access detection function

RENESAS TECHNICAL UPDATE TN-RL*-A016A/E

Date: Januay 10, 2014

Note: Code flash memory and RAM address of each product are as follows.

Broducto	Code flash memory	RAM
Products	(00000H to xxxxxH)	(yyyyyH to FFEFFH)
R5F10Rx8	8192 x 8 bit	1024 x 8 bit
(x = B, F, G, J)	(00000H to 01FEEH)	(FEB00H to FEEFEH)
R5F10RxA	16384 x 8 bit	1024 x 8 bit
(x = B.F. G. J. L)	(00000H to 03FFFH)	(FFB00H to FFEFFH)
R5F10RxC	32768 x 8 bit	1536 x 8 bit
(x = B, F, G, J, L)	(00000H to 07FFFH)	(FF900H to FFEFFH)

Note: Code flash memory area, RAM area, and the detected lowest address of each product are as follows.

Products	Code flash memory (00000H to xxxxxH)	RAM (zzzzH to FFEFFH)	Detected lowest address for read/instruction fetch (execution) (yyyyyH)
R5F10Rx8	8192 × 8 bit	1024 × 8 bit	10000H
(x = B, F, G, J)	(00000H to 01FFFH)	(FFB00H to FFEFFH)	
R5F10RxA	16384 × 8 bit	1024 × 8 bit	10000H
(x = B, F, G, J, L)	(00000H to 03FFFH)	(FFB00H to FFEFFH)	
R5F10Rx8	8192 × 8 bit	1024 × 8 bit	80000H
(x = B, F, G, J)	(00000H to 01FFFH)	(FFB00H to FFEFFH)	

RENESAS TECHNICAL UPDATE TN-RL*-A016A/E

Date: Januay 10, 2014

<u>6. Fi</u>	gure 25-3 Fc	ormat of C	Option E	<u> 3yte (000</u>	<u>)C2H)</u>										
Old:	s: 000C2H	Figure 25	-3 Format	t of Option I	Byte (000C2H)			New: Address: 0	00C2H ^{note}	Figure 25	-3. Format	of Option	Byte (000C2H)	
7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
CMODE	E1 C5MODE0	1	0	FRQSEL3	FRQSEL2 FI	RQSEL1	FRQSEL0	CMODE1	C5MODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL	1 FRQSEL0
				-	flash operation mod							-	flash operation r		
CMOD	E1 CMODE0			0	Operating Frequenc Range	y Oper	ating Voltage Range	CMODE1	CMODE0				Operating Frequ Range	ency Op	erating Voltage Range
					Range		_						Range		Range
0	0		ltage main)	, ,	1 to 4 MHz		.6 to 5.5 V	0	0		oltage main)		1 to 4 MHz		1.6 to 5.5 V
1	0	LS (low sp	eed main) i	mode	1 to 8 MHz		.8 to 5.5 V	1	0	LS (low sp	peed main) n	node	1 to 8 MHz		1.8 to 5.5 V
1	1	HS (high s	peed main)) mode	1 to 16 MHz		.4 to 5.5 V	1	1	HS (high s	speed main)	mode	1 to 16 MHz		2.4 to 5.5 V
0		0		,	1 to 24 MHz	2.	.7 to 5.5 V				. ,		1 to 24 MHz	2	2.7 to 5.5 V
Oth	er than above	Setting pro	onibited					Other th	an above	Setting pro	ohibited				
FRQSE	L3 FRQSEL2	FRQSEL1	FRQSEL	0 Erequ	ency of the high-spe	eed on-ch	nin oscillator	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL	0 Erecu	uency of the high	-speed on	chin oscillator
0	0	0	0	24 MHz				0	0		0	24 MHz		I-speed off	
	0	0	1	16 MHz				0	0	0	1	16 MHz			
0	0	0	1	12 MHz				0	0	0	1	12 MHz			
1	0	1	0	8 MHz				1	0	1	0	8 MHz			
1	0	1	1	4 MHz				Ō	Ō	1	0	6 MHz			
1	1	0	1	1 MHz				1	0	1	1	4 MHz			
	Other the	an above		Setting	prohibited			0	0	1	1	3 MHz			
Cautio	n: Be sure to	o set 10B to	bits 5 and	d 4.				1	1	0	1	2 MHz			
								1	1	0	1	1 MHz			
									Other that	an above		Setting	prohibited		
								Caution:	Be sure to	o set 10B to	bits 5 and	4.			
1															

7. 26.4.3 Procedure for accessing data flash memory	
Incorrect:	Correct:
The data flash memory is initially stopped after a reset ends and cannot be accessed (read or programmed). To	The data flash memory is stopped after a reset ends. To access the data flash, make initial settings according to the
access the memory, perform the following procedure:	following procedure.
<1> Write 1 to bit 0 (DFLEN) of the data flash control register (DFLCTL). <2> Wait for the setup to finish for software timer. etc. The time setup takes differs for each main clock mode. <setup clock="" each="" for="" main="" mode="" time=""> • HS (High-speed main): 5µs • LS (Low-speed main): 720 ns • LV (Low-voltage main): 10µs</setup>	<1> Set bit 0 (DFLEN) of the data flash control register (DFLCTL) to 1. <2> Wait for the setup to finish for software timer, etc. The time setup takes differs for each flash operation mode for the main clock. <setup each="" flash="" for="" mode="" operation="" time=""> • HS (High speed main): 5 µs • LS (Low speed main): 720 ns</setup>
<3> After the wait, the data flash memory can be accessed.	 LV (Low voltage main): 10 μs <3> After the wait, the data flash memory can be accessed.
Cautions 1. Accessing the data flash memory is not possible during the setup time. 2. Before executing a STOP instruction during the setup time, temporarily clear DFLEN to 0.	 Cautions 1. Accessing the data flash memory is not possible during the setup time. 2. Transition to the STOP mode is not possible during the setup time. To enter the STOP mode during the setup time, clear DFLEN to 0 and then execute the STOP instruction. 3. The high-speed on-chip oscillator should be kept operating during data flash rewrite. If it is kept stopping, operate the high-speed on-chip oscillator clock (HIOSTOP = 0) and execute the data flash library after 30 µs have elapsed.

After initialized, the data flash memory can be read by using a CPU instruction or can be read/written by using a data

flash library.

If the DMA controller operates when the data flash memory is accessed, however, follow one of these procedures:

(A) Suspending/forcibly terminating DMA transfer

Before reading the data flash memory, suspend DMA transfer of all the channels used.

After setting the DWAITn bit to 1, however, wait at least for the duration of three clocks (fCLK) before reading the

data flash memory. After reading the data flash memory, lift the suspension of transfer by clearing the DWAITn bit to 0.

Or, forcibly terminate DMA transfer in accordance with the procedure in 15.5.5 Forced termination by software

before reading the data flash memory. Resume DMA transfer after the data flash memory has been read.

(B) Access the data flash memory by using the newest data flash library.

(C) Insertion of NOP

Insert an NOP instruction immediately before the instruction that reads the data flash memory.

<Example>

MOVW HL, !addr16 ; Reads RAM.

NOP ; Insert NOP instruction before reading data flash memory.

MOV A,[DE] ; Read data flash memory.

If a high-level language such as C is used, however, the compiler may generate two instructions for one code. In

this case, the NOP instruction is not inserted immediately before the data flash memory read instruction.

Therefore, read the data flash memory by (A) or (B) above.

Remarks 1. n: DMA channel number (n = 0, 1)

2. fCLK: CPU/peripheral hardware clock frequency

8. 30.3.1 Pin characteristics	
Incorrect: Fixed typo in Note 2 in pages 867 and 868.	Correct: Refer to pages 7 and 8 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".
 <u>9. 30.3.2 Supply current characteristics</u> Incorrect: Fixed typo in Notes and typical values of IDD2 and IDD3 in pages 872 to 877. 	Correct: Refer to pages 12 to 17 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".
 <u>10. 30.4 AC Characteristics</u> Old: Specifications of the external system clock frequency and external system clock input high-level width, low-level width in page 878 extended. 	New: Refer to page 18 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".
<u>11. 30.5.1 Serial array unit</u> Incorrect: Fixed typo in 30.5.1 Serial array unit in pages 881 to 899.	Correct: Refer to pages 24 to 44 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".
12. 30.5.2 Serial interface IICA	
Incorrect: Fixed typo in 30.5.2 Serial interface IICA in pages 900 to 902.	Correct: Refer to pages 45 to 49 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".
13. 30.6.1 A/D converter characteristics	
Old: Specifications in 30.6.1 A/D converter characteristics in pages 903 to 905 extended.	New: Refer to pages 50 to 53 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".

14. 30.6.2 Temperature sensor/internal reference voltage characteristics	
Incorrect: Fixed typo in 30.6.2 Temperature Sensor/Internal Reference Voltage Characteristics in page 905.	Correct: Refer to page 54 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".
15. 30.6.3 POR circuit characteristics	
Incorrect: Fixed typo in 30.6.3 POR circuit characteristics in page 905.	Correct: Refer to page 54 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".
16. 30.6.5 Supply voltage rise time	
Old: Specifications in Supply Voltage Rise Time in page 907 added.	New: Refer to page 56 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS".
17. 30.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	
Old: Specifications in Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics in page 912 extended.	New: Refer to page 61 in Technical Update Exhibit 1 "Chapter 30 ELECTRICAL SPECIFICATIONS (A, D: $T_A = -40$ to + 85°C)".
18. ELECTRICAL SPECIFICATIONS (G: T _A = −40 to +105°C)	
Old: Specifications in ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C) extended.	New: Refer to Technical Update Exhibit 2 "Chapter 31 ELECTRICAL SPECIFICATIONS".

CHAPTER 30 ELECTRICAL SPECIFICATIONS

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C)", and "G: Industrial applications (T_A when using the RL78 microcontrollers at -40 to $+85^{\circ}$ C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD}, or EV_{SS} pin, replace EV_{DD} with V_{DD}, or replace EV_{SS} with Vss.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.1.6 Pins for each product (pins other than port pins).

30.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD	V _{DD} = EV _{DD}	–0.5 to +6.5	V
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{Note\;1}$	V
Input voltage	VI1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127,P140 to P147	-0.3 to EV_{DD} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	V _{I2}	P60, P61 (N-ch open-drain)	-0.3 to EV_{DD} +0.3 and -0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	V
	Vı3	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	–0.3 to V _{DD} +0.3 $^{\rm Note 2}$	V
Output voltage	Vo1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_DD +0.3 and -0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	V _{O2}	P20, P21	–0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
Analog input voltage	VAI1	ANI16 to ANI23	-0.3 to EV_DD +0.3 and -0.3 to AV_{REF(+)} +0.3 $^{Notes\ 2,\ 3}$	V
	Vai2	ANIO, ANI1	-0.3 to V_DD +0.3 and -0.3 to AV_{REF(+)} +0.3 Notes2,3	V

Absolute Maximum Ratings (T_A = 25°C) (1/3)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF(+)} : + side reference voltage of the A/D converter.
 - 3. Vss is the reference voltage.

Parameter	Symbols	С	onditions		Ratings	Unit
LCD voltage	VL1	V₋ı voltage ^{Note 1}			–0.3 to +2.8 and –0.3 to V∟₄ +0.3	V
	VL2	VL2 voltage ^{Note 1}	V∟₂ voltage ^{Note 1}			V
	VL3	VL3 voltage ^{Note 1}		-0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V	
	VL4	VL4 voltage ^{Note 1}			-0.3 to +6.5	V
	VLCAP	CAPL, CAPH voltage ^{Note}	1		-0.3 to V_{L4} +0.3 $^{\text{Note 2}}$	V
	Vlout	COM0 to COM7, SEG0 to SEG38, COMEXP output voltage	External resistance division	Other than memory-type liquid crystal mode	-0.3 to V _{DD} +0.3 ^{Note 2}	
	Memory-type liquid crystal mode		-0.3 to VL4 +0.3 $^{\text{Note 2}}$	V		
			Capacitor split		-0.3 to V_DD +0.3 $^{\text{Note 2}}$	
			Internal voltage	e boosting	–0.3 to VL4 +0.3 $^{\text{Note 2}}$	

Absolute Maximum Ratings (T_A = 25°C) (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss is the reference voltage.

Absolute Maximum Ratings (TA = 25°C) (3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	Iol1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins		2	mA
Operating ambient	TA	In normal operati	ion mode	-40 to +85	°C
temperature		In flash memory	In flash memory programming mode		
Storage temperature	T _{stg}			-65 to +150	°C

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

30.2 Oscillator Characteristics

30.2.1 X1, XT1 oscillator characteristics

(TA = -40 to $+85^{\circ}$ C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator/	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	
frequency (fx) Note	crystal resonator	$2.4 \text{ V} \leq V_{\text{DD}} \leq 2.7 \text{ V}$	1.0		16.0	N 41 1-
		$1.8 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$	1.0		8.0	MHz
		$1.6~V \leq V_{\text{DD}} < 1.8~V$	1.0		4.0	
XT1 clock oscillation frequency $(f_{XT})^{Note}$	Crystal resonator		32	32.768	35	kHz

Note Indicates only the permissible deviation of the oscillator frequencies. Refer to **AC Characteristics** for instruction execution time. Inquire with the resonator manufacturer to perform an evaluation on the actual circuit and check the oscillator characteristics before use.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 or XT1 oscillator, refer to **5.4 System Clock Oscillator**.

30.2.2 On-chip oscillator characteristics

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1		+1	%
clock frequency accuracy			$1.6~V \leq V_{\text{DD}} \leq 1.8~V$	-5		+5	%
		–40 to –20 °C	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
			$1.6~V \leq V_{\text{DD}} \leq 1.8~V$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

30.3 DC Characteristics

30.3.1 Pin characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(1/5)

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	•	P10 to P17, P30 to P32, P40 P120, P125 to P127, P130,				-10.0 Note 2	mA
		Total of P10 to P14, P40 to P43, P120, P130, P140 to P147	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-40.0	mA	
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA	
		(When duty = 70% ^{Note 3})		$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-2.0	mA
		Total of P15	to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-60.0	mA
		,	P70 to P74, P125 to P127	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
				$1.8~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
				$1.6~V \leq EV_{\text{DD}} < 1.8~V$			-4.0	mA
						-100.0	mA	
	Іон2	P20, P21	Per pin				-0.1	mA
			Total of all pins	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD}, EV_{DD} pins to an output pin.

2. Do not exceed the total current value.

3. Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

	,							•
Items	Symbol		Conditions			TYP.	MAX.	Unit
Output current, Iow ^{Note 1}	Iol1	•	P10 to P17, P30 to P32, F 4, P70 to P74, P120, P125 147				20.0 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P10 to P14, P40 to P43,		$4.0~V \le EV_{\text{DD}} \le 5.5~V$			70.0	mA
		,	0, P140 to P147	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(When duty = 70% ^{Note 3})		$1.8~V \le EV_{\text{DD}} < 2.7~V$			9.0	mA
				$1.6~V \le EV_{\text{DD}} < 1.8~V$			4.5	mA
		Total of P	15 to P17, P30 to P32,	$4.0~V \le EV_{\text{DD}} \le 5.5~V$			80.0	mA
		P50 to P54, P60, P61, P70 to P74, P125 to P127 (When duty = 70% ^{Note 3})		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
				$1.8~V \leq EV_{\text{DD}} < 2.7~V$			20.0	mA
		、	,,	$1.6~V \leq EV_{\text{DD}} < 1.8~V$			10.0	mA
-		Total of all (When dut	pins y = 70% ^{Note 3})				150.0	mA
	IOL2	P20, P21 Per pi	Per pin	er pin			0.4	mA
			Total of all pins	$1.6~V \leq V_{\text{DD}} \leq 5.5~V$			0.8	mA
	1	1	I					

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVss and Vss pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

((3/3)
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vihi	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD}		EVDD	V
	VIH2	P10, P11, P15, P16	TTL input buffer 4.0 V \leq EV _{DD} \leq 5.5 V	2.2		EVDD	V
			TTL input buffer $3.3 V \le EV_{DD} < 4.0 V$	2.0		EVDD	V
			TTL input buffer 1.6 V \leq EV _{DD} $<$ 3.3 V	1.50		EVDD	V
	VIH3	P20, P21		0.7V _{DD}		VDD	V
	VIH4	P60, P61	0.7EVDD		EVDD	V	
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, RESET				Vdd	V
Input voltage, low	VIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EVDD	V
	VIL2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq EV_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer $1.6 \text{ V} \leq EV_{\text{DD}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20, P21		0		0.3VDD	V
	VIL4	P60, P61		0		0.3EV _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2VDD	V

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

(4/5)

Items	Symbol	Conditions			TYP.	MAX.	Unit
Output voltage, high	Vон1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10 \ mA \end{array}$	EVDD-1.5			V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array}$	EVDD-0.7			V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -2.0 \ mA \end{array}$	EVDD-0.6			V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	EVDD-0.5			V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ IOH1 = -1.0 mA	EVDD-0.5			V
	Vон2	P20, P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH2 = -100 μ A	VDD-0.5			V
Output voltage, low	Vol1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 20 \ mA \end{array}$			1.3	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array}$			0.7	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ I_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ $I_{\text{OL1}} = 0.3 \text{ mA}$			0.4	V
	Vol2	P20, P21	$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ Iol2 = 400 μ A			0.4	V
	Vol3	P60, P61	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array}$			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V},$ Iol3 = 1.0 mA			0.4	V

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

						1	1	(5/1
Items	Symbol	Conditio	Conditions			TYP.	MAX.	Unit
Input leakage current, high	Ішні	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVDD				1	μA
	ILIH2	P20, P21, P137, RESET	VI = VDD				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilil1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVss				-1	μA
	ILIL2	P20, P21, P137, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-up	Ruı	VI = EVss	SEGxx po	ort				
resistance			2.4 V ≤	EV_{DD} = $V_{DD} \le 5.5 V$	10	20	100	kΩ
			1.6 V ≤	EV _{DD} = V _{DD} < 2.4 V	10	30	100	kΩ
	Ru2		Ports othe	r than above	10	20	100	kΩ
			(Except fo P130)	r P60, P61, and				

$(T_{A} = -40)$	to +85°C, 1.6	V < EVDD = V DD	< 5.5 V. Vss =	: EVss = 0 V)
(17 - 40			<u> </u>	- $ -$

(5/5)

30.3.2 Supply current characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

Parameter	Symbol		Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	Idd1	Operating mode	HS (high-	f _{IH} = 24 MHz ^{Note 3}	Basic V _{DD} = 5.0 V			1.5		mA
			speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		1.5		mA
					Normal operation	V _{DD} = 5.0 V		3.3	5.0	mA
						V _{DD} = 3.0 V		3.3	5.0	mA
				f⊪ = 16 MHz ^{Note 3}	Normal operation	V _{DD} = 5.0 V		2.5	3.7	mA
						V _{DD} = 3.0 V		2.5	3.7	mA
			LS (low- speed main) mode ^{Note 5}	f _{IH} = 8 MHz ^{Note 3} Normal operation	Normal	V _{DD} = 3.0 V		1.2	1.8	mA
					V _{DD} = 2.0 V		1.2	1.8	mA	
			LV (low- voltage main) mode ^{Note 5}	fili = 4 MHz ^{Note 3}	Normal operation	V _{DD} = 3.0 V		1.2	1.7	mA
						V _{DD} = 2.0 V		1.2	1.7	mA
			HS (high- speed main) mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
				V _{DD} = 5.0 V	operation	Resonator connection		3.0	4.6	mA
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.6	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal operation Normal	Square wave input		1.8	2.6	mA
				V _{DD} = 5.0 V		Resonator connection		1.8	2.6	mA
				f _{MX} = 10 MHz ^{Note 2} ,		Square wave input		1.8	2.6	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.8	2.6	mA
			LS (low- speed main) mode Note5 Subsystem clock operation	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		1.1	1.7	mA
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V	operation	Resonator connection		1.1	1.7	mA
				fsue = 32.768 kHz Note 4	Normal	Square wave input		3.5	4.9	μA
				T _A =40°C	operation	Resonator connection		3.6	5.0	μA
				fsue = 32.768 kHz Note 4	Normal	Square wave input		3.6	4.9	μA
				T _A = +25°C	operation	Resonator connection		3.7	5.0	μA
				fsue = 32.768 kHz Note 4	Normal	Square wave input		3.7	5.5	μA
				T _A = +50°C	operation	Resonator connection		3.8	5.6	μA
				fsue = 32.768 kHz Note 4	Normal	Square wave input		3.8	6.3	μA
				T _A = +70°C	operation	Resonator connection		3.9	6.4	μA
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.1	7.7	μA
				T _A = +85°C	operation	Resonator connection		4.2	7.8	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash programming.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1), not including the current flowing into RTC, 12-bit interval timer, WDT, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz

2.4 V \leq Vdd \leq 5.5 V@1 MHz to 16 MHz

- LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 8 MHz LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}@1 \text{ MHz}$ to 4 MHz
- Remarks 1. f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fil: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter Symbol				Conditions			TYP.	MAX.	Unit
Supply	IDD2	HALT	HS (high-				0.44	1.28	mA
Current Note 1	Note 2	mode	speed main)		$V_{DD} = 3.0 V$		0.44	1.28	mA
			mode ^{Note 7}	f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.00	mA
					$V_{DD} = 3.0 V$		0.40	1.00	mA
			LS (low- speed main) mode ^{Note 7}	fi⊢ = 8 MHz ^{Note 4}	$V_{DD} = 3.0 V$		260	530	μA
					$V_{DD} = 2.0 V$		260	530	μA
			LV (low- voltage main) mode Note 7	f _{IH} = 4 MHz ^{Note 4}	V _{DD} = 3.0 V		420	640	μA
					V _{DD} = 2.0 V		420	640	μA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} , Square wave input			0.28	1.00	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.00	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	1.17	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	0.67	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	0.60	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	0.67	mA
			LS (low- speed main) mode ^{Note 7}	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 3.0 V	Resonator connection		145	380	μA
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	μA
			Subsystem clock operation	f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μA
				T _A = -40C	Resonator connection		0.50	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μA
				T _A = +25°C	Resonator connection		0.56	0.76	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μA
				T _A = +50°C	Resonator connection		0.65	1.36	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μA
				T _A = +70°C	Resonator connection		0.76	2.16	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μA
				T _A = +85°C	Resonator connection		1.04	3.56	μA
	IDD3 Note 6	STOP mode Note 8	T _A = -40°C	$T_A = -40^{\circ}C$			0.17	0.50	μA
			T _A = +25°C				0.23	0.50	μA
			T _A = +50°C				0.32	1.10	μA
			T _A = +70°C				0.43	1.90	μA
			T _A = +85°C				0.71	3.30	μA

(TA = -40 to +85°C, 1.6 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(2/3)

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash programming.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1), not including the current flowing into 12-bit interval timer, WDT, LCD controller/driver.
 - 6. The current flowing into RTC, 12-bit interval timer, WDT are not included.
 - 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 24 MHz
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $~~1.8~V \leq V_{\text{DD}} \leq 5.5~V \textcircled{0}1~\text{MHz}$ to 8 MHz
 - LV (low-voltage main) mode: 1.6 V \leq V_{DD} \leq 5.5 V@1 MHz to 4 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(1 - 40 0 + 10 + 10)	05 0, 1.0	$V \leq EVDD = VDD$	≤ J.J V , V55 –	$\Box V SS = U V $				(3/3)
Parameter	Symbol	Conditions				TYP.	MAX.	Unit
Low-speed on- chip oscillator operating current	FIL ^{Note 1}			0.20		μA		
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped		0.08		μA		
12-bit inteval timer operating current	_{I⊤} Notes 1, 2, 4			0.08		μA		
Watchdog timer operating current	IWDT Notes 1, 2, 5	f⊩ = 15 kHz			0.24		μA	
A/D converter	ADC Notes 1, 6	When conversion		1.3	1.7	mA		
operating current	Notes 1, 0	at maximum speed	Low voltage mo	de, AV _{REFP} = V_{DD} = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1		I					μA
Temperature sensor operating current	ITMPS Note 1			75.0		μA		
LVD operating current	ILVD Notes 1, 7					0.08		μA
Self- programming operating current	FSP Notes 1, 9					2.50	12.20	mA
BGO operating current	BGO Notes 1, 8					2.00	12.20	mA
LCD operating current	LCD1 Notes 11, 12	External resistance division method		$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.2	μA
	ILCD2 Note 11	Internal voltage bo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.7	μA
		$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V (VLCD = 04H)$				0.63	2.2	μA
	ILCD3 Note 11	Capacitor split met	nod	$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.5	μA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 10			0.50	0.60	
operating current			The A/D conversion performed, Low vot AV _{REFP} = V _{DD} = 3.0	oltage mode,		1.20	1.44	mA
		CSI/UART operation		0.70	0.84			

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(3/3)

(Note, Caution and Remark are lisited on the next page)

- **Notes 1.** Current flowing to the VDD.
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the RTC (not including the operating current of the low-speed on-chip oscillator and XT1 oscillator). The supply current value of the RL78 microcontrollers is the sum of IDD1, or IDD2 and IRTC when RTC is operating in operation mode or HALT mode. Add IFIL to the above value when using the low-speed on-chip oscillator. The operating current of the RTC is included when IDD2 operates with the subsystem clock.
 - 4. Current flowing only to the 12-bit interval timer (not including the operating current of the low-speed on-chip oscillator and XT1 oscillator). The supply current value of the RL78 microcontrollers is the sum of IDD1, or IDD2 and IIT when the 12-bit interval timer is operating in operation mode or HALT mode. Add IFIL to the above value when using the low-speed on-chip oscillator.
 - 5. Current flowing only to the WDT (including the operating current of the low-speed on-chip oscillator). The supply current value of the RL78 microcontrollers is the sum of IDD1, or IDD2 and IWDT when the WDT is operating in operation mode or HALT mode. Add IFIL to the above value when using the low-speed on-chip oscillator.
 - 6. Current flowing only to the A/D converter. The supply current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is operating in operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is operating.
 - 8. Current flowing during data flash programming.
 - 9. Current flowing during self-programming.
 - 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.
 - **11.** Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver is operating in operation mode or HALT mode. Not including the current that flows to the LCD panel.

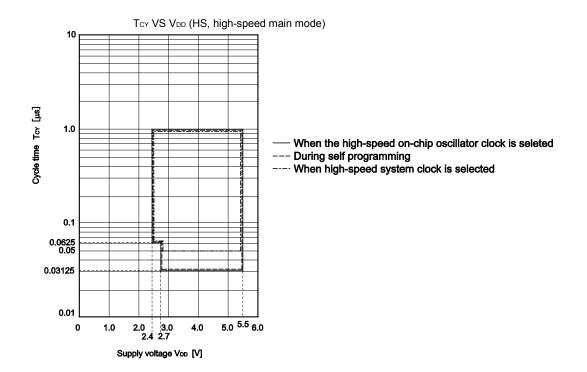
The TYP. value and MAX. value are following conditions.

- When fsub is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows to the external divider resistor when the external resistance division method is used.
- **Remarks 1.** fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

30.4 AC Characteristics

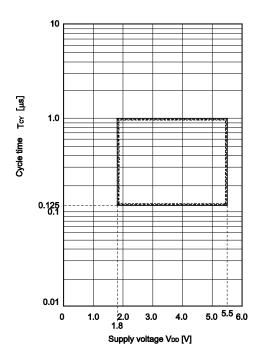
30.4.1 Basic operation

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

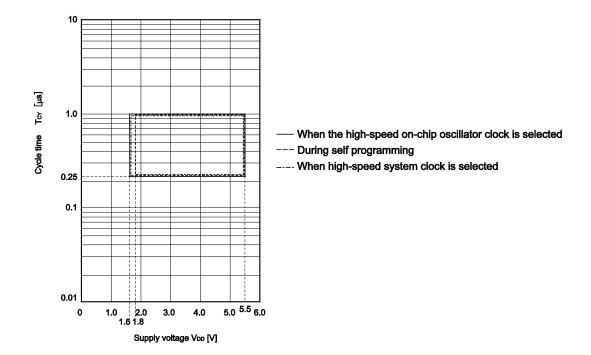

$(1A = -40 \ 10 \ +85^{\circ}C, \ 1.6)$	1		*		/	MINI		N44.3/	1.124
Items	Symbol		Conditio	-		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Тсү	Main system clock (fmain)	HS (high-sp main) mode			0.04167		1	μS
		operation	,		VDD < 2.7 V			1	μS
			LV (low-volta main) mode		Vdd ≤ 5.5 V	0.25		1	μS
			LS (low-spe main) mode		Vdd ≤ 5.5 V	0.125		1	μS
		$\begin{array}{llllllllllllllllllllllllllllllllllll$		28.5	30.5	31.3	μS		
		In the self	HS (high-spee	eed 2.7 V≤	$V_{DD} \le 5.5 V$	0.04167		1	μS
		programming mode	main) mode	2.4 V≤	VDD < 2.7 V	0.0625		1	μS
		mode	LV (low-volta main) mode	ige 1.8V≤'	Vdd ≤ 5.5 V	0.25		1	μS
			LS (low-spee main) mode	ed 1.8V≤'	$V_{DD} \le 5.5 V$	0.125		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq$	1.0		20	MHz			
frequency		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 2.7 \text{ V}$			1.0		16	MHz	
		$1.8 V \le V_{DD}$ <	2.4 V			1.0		8	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$				1.0		4	MHz
	fexs					32		35	kHz
External main system clock	texh, texl	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$				24			ns
input high-level width, low- level width		$2.4 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$				30			ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.4 \text{ V}$				60			ns
		$1.6 V \leq V_{DD} <$	120			ns			
	texhs, texls					13.7			μS
TI00 to TI07 input high-level width, low-level width	tтıн, tтı∟					1/fмск+10			ns
TO00 to TO07 output	fro	HS (high-spe	ed 4.0	$V \leq EV_{DD} \leq$	≤ 5.5 V			16	MHz
frequency		main) mode	2.7	V ≤ EV _{DD} <			8	MHz	
			2.4	V ≤ EV _{DD} <			4	MHz	
		LS (low-spee mode						4	MHz
		LV (low-voltag main) mode	ge 1.6				2	MHz	
PCLBUZ0, PCLBUZ1 output	tput f _{PCL}	HS (high-spe	ed 4.0	$V \le EV_{DD} \le$	≤ 5.5 V			16	MHz
frequency		main) mode	2.7	$2.7~V \leq EV_{\text{DD}} < 4.0~V$				8	MHz
			2.4	$2.4~V \leq EV_{\text{DD}} < 2.7~V$				4	MHz
		LS (low-spee mode	$\label{eq:low-speed} \begin{array}{ l l l l l l l l l l l l l l l l l l l$					4	MHz
		LV (low-voltag	ge 1.8	$1.8~V \leq EV_{\text{DD}} \leq 5.5~V$				4	MHz
		main) mode	1.6	$1.6~V \leq EV_{\text{DD}} < 1.8~V$				2	MHz
Interrupt input high-level		INTP0	1.6	$V \leq V_{DD} \leq$	1			μS	
width, low-level width		INTP1 to INT	P7 1.6	$V \leq EV_{DD} \leq$	1			μS	
Key interrupt input low-level	t kr	KR0 to KR3	1.8	$V \leq EV_{DD} \leq$	≤ 5.5 V	250			ns
width				$1.6~V \leq EV_{\text{DD}} < 1.8~V$		1			μS
RESET low-level width	trsl					10			μS

Remark fmck: Timer array unit operation clock frequency

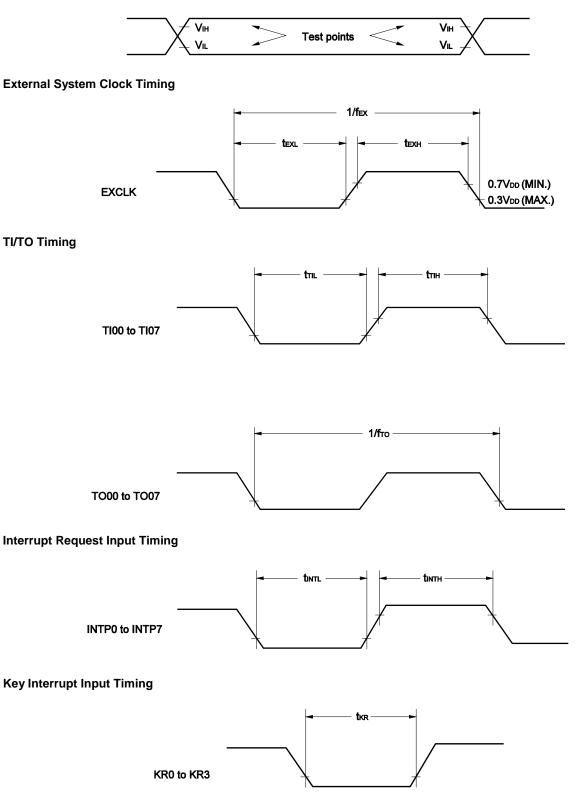
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))



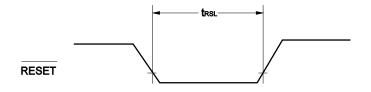
Minimum instruction executing time when the CPU is operating with the main system clock



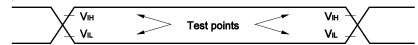
TCY VS VDD (LS, low-speed main mode)


- ----- When the high-speed on-chip oscillator clock is selected
- --- During self programming
- ---- When high-speed system clock is selected

TCY VS VDD (LV, low-voltage main mode)



AC Timing Test Points



RESET Input Timing

30.5 Peripheral Functions Characteristics

AC Timing Test Points

30.5.1 Serial array unit

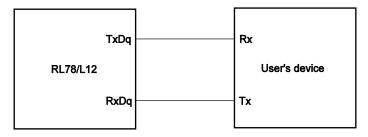
(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

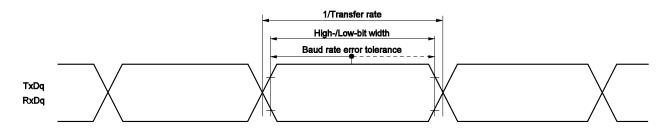
Parameter	Symbol	Conditions		h-speed mode	``	v-speed mode	voltag	(low- e main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$2.4~V \leq EV_{DD} = V_{DD} \leq 5.5~V$		f мск/6		fмск/6		fмск/6	bps
		Theoretical value or maximum transfer r f _{MCK} = f _{CLK} ^{Note 2}		4.0		1.3		0.6	Mbps
		$1.8~V \leq EV_{DD} = V_{DD} \leq 5.5~V$				fмск/6		fмск/6	bps
		Theoretical value or maximum transfer r f _{MCK} = f _{CLK} ^{Note 2}				1.3		0.6	Mbps
		$1.6 \text{ V} \leq EV_{DD}$ = $V_{DD} \leq 5.5 \text{ V}$						fмск/6	bps
		Theoretical value of maximum transfer r f _{MCK} = f _{CLK} ^{Note 2}						0.6	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. CPU/peripheral hardware clock (fcLK) in each operating mode is as below.


HS (high-speed main) mode: fcLk = 24 MHz (2.7 V
$$\leq$$
 VDD \leq 5.5 V)

16 MHz (2.4 V
$$\leq$$
 V_{DD} \leq 5.5 V)


LS (low-speed main) mode: fcLK = 8 MHz (1.8 V \leq VDD \leq 5.5 V)

- LV (low-voltage main) mode: fcLK = 4 MHz (1.6 V \leq VDD \leq 5.5 V)
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

- **Remarks 1.** q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

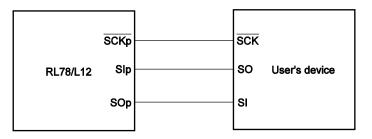
Parameter	Symbol	(Conditions	HS (higi main)	h-speed mode		/-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	2.7 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	167 ^{Note 1}		500 ^{Note 1}		1000 Note 1		ns
		2.4 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	250 ^{Note 1}		500 ^{Note 1}		1000 Note 1		ns
		1.8 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$			500 ^{Note 1}		1000 Note 1		ns
		1.6 V ≤ EV	$\prime_{\text{DD}} \leq 5.5 \text{ V}$					1000 Note 1		ns
SCKp high-/low-level width	tкн1, tк∟1	4.0 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$	tксү1/2 –12		tксү1/2 —50		tксү1/2 -50		ns
		2.7 V ≤ E\	$T_{DD} \leq 5.5 \text{ V}$	tксү1/2 –18		tксү1/2 —50		tксү1/2 -50		ns
		2.4 V ≤ E\	$T_{DD} \leq 5.5 \text{ V}$	tксү1/2 -38		tксү1/2 —50		tксү1/2 -50		ns
		1.8 V ≤ EV	$\prime_{\text{DD}} \leq 5.5 \text{ V}$			tксү1/2 —50		tксү1/2 —50		ns
		1.6 V ≤ E\	$T_{DD} \leq 5.5 \text{ V}$					tксү1/2 –100		ns
SIp setup time (to SCKp↑)	tsik1	$2.7 \text{ V} \le \text{EV}$	$ m DD \leq 5.5~V$	44		110		110		ns
Note 2		$2.4 \text{ V} \le \text{EV}$	$\prime_{\text{DD}} \leq 5.5 \text{ V}$	75		110		110		ns
		1.8 V ≤ EV	$V_{\text{DD}} \leq 5.5 \text{ V}$			110		110		ns
		$1.6 V \le EV$	$ m DD \leq 5.5~V$					220		ns
SIp hold time (from $\overline{\text{SCKp}}^{\uparrow}$)	tksi1	$2.4 \text{ V} \le \text{EV}$	$ m DD \leq 5.5~V$	19		19		19		ns
		1.8 V ≤ EV	$\prime_{\text{DD}} \leq 5.5 \text{ V}$			19		19		
		1.6 V ≤ EV	$V_{DD} \leq 5.5 \text{ V}$					19		
Delay time from $\overline{\text{SCKp}}\downarrow$ to	tkso1	C = 30 pF Note 4	$2.4~V \le EV_{\text{DD}} \le 5.5~V$		25		25		25	ns
SOp output Note 3		11516 4	$1.8~V \leq EV_{DD} \leq 5.5~V$				25		25	
			$1.6~V \leq EV_{\text{DD}} \leq 5.5~V$						25	

Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.

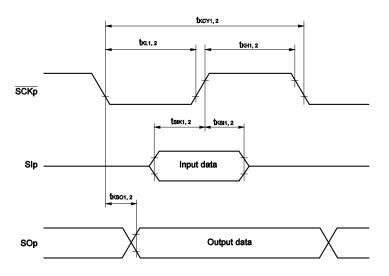
- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time become "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the $\overline{\text{SCKp}}$ and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 - g: PIM and POM numbers (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

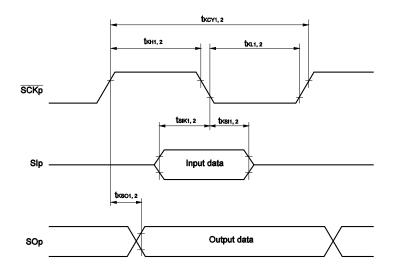
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

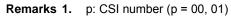
 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$


Parameter	Symbol		Conditio	ons		h-speed mode	``	-speed mode	LV (low- main)	-	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 4	tkCY2	4.0 V ≤ EVD	o≤ 5.5 V	20 MHz < fмск	8/fмск						ns
				fмск ≤ 20 MHz	6/ f мск		6/ f мск		6/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{D}$	□<4.0 V	16 MHz < fмск	8/fмск						ns
				fмск≤16 MHz	6/ f мск		6/fмск		6/fмск		ns
		2.4 V ≤ EVD	⊳ < 5.5 V		6/fмск and 500		6/fмск		6/fмск		ns
		1.8 V ≤ EV	od < 2.4 \	/			6/fмск		6/fмск		ns
		1.6 V ≤ EV	DD < 1.8 \	/					6/fмск		ns
SCKp high-/low-level width	tкн2, tк∟2	$4.0 \text{ V} \le \text{EV}$	00 ≤ 5.5 \	/	tксү2/2 -7		tксү2/2 —7		tксү2/2 —7		ns
		2.7 V ≤ EV	od < 4.0 \	/	tксү2/2 —8		tксү2/ -8		tксү2/2 —8		ns
		2.4 V ≤ EV	DD < 2.7 \	/	tксү2/2 –18		tксү2/2 –18		tксү2/2 –18		ns
		1.8 V ≤ EV	od < 2.4 \	/			tксү2/2 –18		tксү2/2 –18		ns
		1.6 V ≤ EV	DD < 1.8 \	/					tксү2/2 –66		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸ2	2.7 V ≤ EV	\ 5.5 ≥ סמ	/	1/fмск +20		1/fмск +30		1/fмск +30		ns
		$2.4 \text{ V} \le \text{EV}$	od < 2.7 \	/	1/fмск +30		1/fмск +30		1/fмск +30		
		1.8 V ≤ EV	od < 2.4 \	/			1/fмск +30		1/fмск +30		ns
		1.6 V ≤ EV	00 < 1.8 \	/					1/fмск +40		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi2	$2.4 \text{ V} \le \text{EV}$	סס ≤ 5.5 \	1	1/fмск +31		1/fмск +31		1/fмск +31		ns
		1.8 V ≤ EV	od < 2.4 \	/			1/fмск +31		1/fмск +31		ns
		1.6 V ≤ EV	od < 1.8 \	/					1/fмск+ 250		ns
Delay time from $\overline{\text{SCKp}}\downarrow$ to SOp output Note 2	tĸso2	C = 30 pF Note 3	$4.0~V \le$	$EV_{DD} \leq 5.5 V$		2/fмск +44		2/fмск +110		2/fмск +110	ns
			2.7 V ≤	EV _{DD} < 4.0 V		2/fмск +44		2/fмск +110		2/fмск +110	ns
			2.4 V ≤	EV _{DD} < 2.7 V		2/fмск +75		2/fмск +110		2/fмск +110	ns
			1.8 V ≤	EV _{DD} < 2.4 V				2/fмск +110		2/fмск +110	ns
			1.6 V ≤	EV _{DD} < 1.8 V						2/f _{мск} + 220	ns

(Note, Caution and Remark are listed on the next page.)

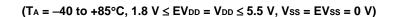

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time become "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. C is the load capacitance of the SOp output lines.
 - 4. Transfer rate in the SNOOZE mode is MAX.1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0),
 - n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))


CSI mode connection diagram (during communication at same potential)



CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



2. m: Unit number, n: Channel number (mn = 00, 01)

Parameter	Symbol		Condition	5	speed	(high- I main) ode	spee	(low- d main) iode	voltag	(low- e main) ode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$4.0 V \le EV_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			$2.7 V \le EV_{DD} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			$2.4 V \le EV_{DD} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$			fмск/6 Note 1		fмск/6 Note 1		fмск/6 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$		4.0		1.3		0.6	Mbps
			$1.8 V \le EV_{DD} < 3.3 V,$ 1.6 V $\le V_b \le 2.0 V$					fMCK/6 Notes 1, 2		fMCK/6 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 3}$				1.3		0.6	Mbps

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. Use it with $EV_{DD} \ge V_b$.

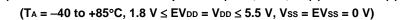
3. CPU/peripheral hardware clock (fcLK) in each operating mode is as below.

HS (high-speed main) mode: fcLK = 24 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: f_{CLK} = 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

LV (low-voltage main) mode: fcLk = 4 MHz (1.6 V \leq VDD \leq 5.5 V)


- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about V_{IH} and V_{IL}, refer to the DC characteristics when the TTL input buffer is specified.
- **Remarks 1.** V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0), g: PIM and POM number (g = 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

Parameter	Symbol		Conditions		speed	high- main) ode	speed	low- main) ode	volt	low- age mode	Unit
					MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$			Note 1		Note 1		Note 1	bps
				Theoretical value of the maximum transfer rate C_0 = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$			Note 3		Note 3		Note 3	bps
				Theoretical value of the maximum transfer rate $C_0 = 50 \text{ pF}, R_0 = 2.7 \text{ k}\Omega$ $V_b = 2.3 \text{ V}$		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$			Note 6		Note 6		Note 6	bps
				Theoretical value of the maximum transfer rate $C_0 = 50 \text{ pF}, R_0 = 5.5 \text{ k}\Omega$ $V_0 = 1.6 \text{ V}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$					Notes 5, 6		Notes 5, 6	bps
				Theoretical value of the maximum transfer rate $C_{o} = 50 \text{ pF}, R_{b} = 5.5 \text{ k}\Omega, V_{b} = 1.6 \text{ V}$				0.43 Note 7		0.43 Note 7	Mbps

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

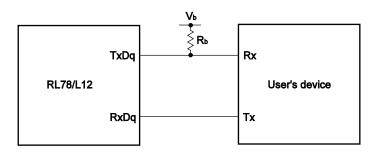
Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

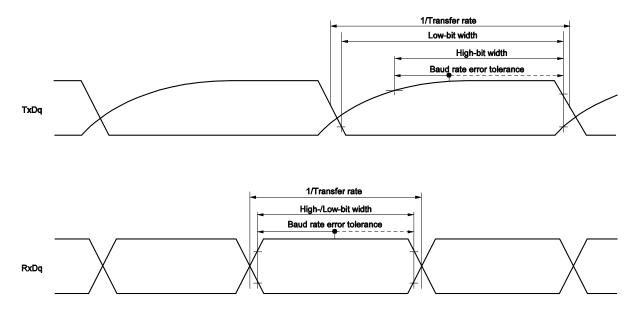
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.
4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

- 5. Use it with $EV_{DD} \ge V_b$.
- **6.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.


Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (32-pin to 52pin products)/EVDD tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about VIH and VIL, refer to the DC characteristics when the TTL input buffer is specified.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remarks 1. R_b[Ω]:Communication line (TxDq) pull-up resistance, V_b[V]: Communication line voltage

2. q: UART number (q = 0), g: PIM and POM number (g = 1)

3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(5) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

(T _A = -40 to +85°C, 2 Parameter	Symbol		conditions	1	high-	LS (Iow	-speed	LV (low-	Unit
T didifictor	Cymbol	tkcy1 ≥ 2/fclk 4.0 V ≤ EVDD ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 20 pF, Rb = 1.4 kg		speed	-		mode		e main)	Onic
				mo	de			mo	de	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tксү1≥2/fc∟к	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$	200		1150		1150		ns
			,	Note 1		Note 1		Note 1		
			•							
			$2.7 V \le EV_{DD} < 4.0 V$, $2.3 V \le V_b \le 2.7 V$.	300 Note 1		1150 Note 1		1150 Note 1		ns
			$C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$							
SCKp high-level width	t кн1	$4.0 V \le EV_{DD} \le 8$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	t ксү1/2		t KCY1/2		t KCY1/2		ns
		C _b = 20 pF, R _b =	= 1.4 kΩ	-50		-50		-50		
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	t ксү1/2		t ксү1/2		t ксү1/2		ns
		C _b = 20 pF, R _b =	= 2.7 kΩ	-120		-120		-120		
SCKp low-level width	t ĸ∟1	$4.0 V \le EV_{DD} \le 8$	$5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V},$	t ксү1/2		t ксү1/2		t ксү1/2		ns
		C _b = 20 pF, R _b =	= 1.4 kΩ	-7		-50		-50		
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	t ксү1/2		t ксү1/2		t ксү1/2		ns
		C _b = 20 pF, R _b =	= 2.7 kΩ	-10		-50		-50		
SIp setup time	tsiĸ1	$4.0 V \le EV_{DD} \le 8$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	58		479		479		ns
(to SCKp↑) Note 2		C_b = 20 pF, R_b =	= 1.4 kΩ							
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	121		479		479		ns
		C _b = 20 pF, R _b =	= 2.7 kΩ							
Slp hold time	tksi1	$4.0~V \le EV_{DD} \le 8$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		10		ns
(from SCKp↑) Note 2		C _b = 20 pF, R _b =	= 1.4 kΩ							
		$2.7 V \le EV_{DD} < 4$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	10		10		10		ns
		C _b = 20 pF, R _b =	= 2.7 kΩ							
Delay time from $\overline{\text{SCKp}}\downarrow$ to	tkso1	$4.0 V \le EV_{DD} \le 8$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,		60		60		60	ns
SOp output Note 2		C _b = 20 pF, R _b =	= 1.4 kΩ							
		$2.7 V \le EV_{DD} < 4$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,		130		130		130	ns
		C _b = 20 pF, R _b =	= 2.7 kΩ							
Slp setup time	tsiĸ1	$4.0 V \leq EV_{DD} \leq 8$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	23		110		110		ns
(to SCKp↓) ^{Note 3}		C _b = 20 pF, R _b =	= 1.4 kΩ							
		$2.7 V \le EV_{DD} < 4$	4.0 V, 2.3 V \leq V _b \leq 2.7 V,	33		110		110		ns
		C _b = 20 pF, R _b =	= 2.7 kΩ							
Slp hold time	tksi1	$4.0 V \leq EV_{DD} \leq 8$	5.5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		10		ns
(from $\overline{\text{SCKp}}\downarrow$) Note 3		C _b = 20 pF, R _b =	= 1.4 kΩ							
			4.0 V, 2.3 V \leq V _b \leq 2.7 V,	10		10		10		ns
		C _b = 20 pF, R _b =								
Delay time from SCKp↑ to SOp output ^{Note 3}	tkso1		5.5 V, 2.7 V \leq V _b \leq 4.0 V,		10		10		10	ns
		C _b = 20 pF, R _b =								
			4.0 V, 2.3 V \leq V _b \leq 2.7 V,		10		10		10	ns
		$C_b = 20 \text{ pF}, R_b =$	= 2.7 kΩ							

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(Note, Caution and Remark are listed on the next page.)

Notes 1. For CSI00, set a cycle of 2/fmck or longer. For CSI01, set a cycle of 4/fmck or longer.

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- 3. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about V_H and V_{IL}, refer to the DC characteristics when the TTL input buffer is specified.
- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

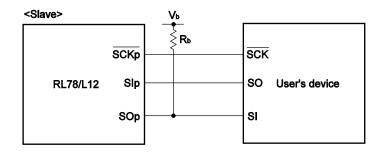
Parameter	Symbol		Conditions	speed	high- I main) ode	`	/-speed mode	voltage	low- e main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1≥4/fс∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	300		1150		1150		ns
			$\label{eq:V} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	1150		1150		1150		ns
			$\label{eq:V_states} \begin{split} & 1.8 \ V \leq EV_{DD} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V^{\ Note}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$			1150		1150		ns
SCKp high-level width	t кн1	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5 \\ C_b = 30 \ pF, \ R_b = \end{array}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, : 1.4 kΩ	tксү1/2 -75		tксү1/2 -75		tксү1/2 -75		ns
		$2.7 V \le EV_{DD} < 4$ $C_b = 30 \text{ pF}, R_b =$	4.0 V, 2.3 V ≤ V₅ ≤ 2.7 V, ÷ 2.7 kΩ	tксү1/2 -170		tксү1/2 -170		tксү1/2 -170		ns
		$2.4 V \le EV_{DD} < 3$ $C_b = 30 \text{ pF}, R_b =$	3.3 V, 1.6 V \le V _b \le 2.0 V, $=$ 5.5 kΩ	tксү1/2 -458		tксү1/2 -458		tксү1/2 -458		ns
		$1.8 V \le EV_{DD} < 3$ $C_b = 30 \text{ pF}, R_b =$	3.3 V, 1.6 V \leq V _b \leq 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 -458		tксү1/2 -458		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \ V \leq EV_{DD} \leq 5 \\ C_b = 30 \ pF, \ R_b = \end{array}$	5.5 V, 2.7 V ≤ V₅ ≤ 4.0 V, = 1.4 kΩ	tксү1/2 –12		tксү1/2 -50		tксү1/2 -50		ns
		$2.7 V \le EV_{DD} < 4$ $C_b = 30 \text{ pF}, R_b =$	4.0 V, 2.3 V ≤ V _b ≤ 2.7 V, = 2.7 kΩ	tксү1/2 –18		tксү1/2 -50		tксү1/2 -50		ns
		$2.4 V \le EV_{DD} < 3$ $C_b = 30 \text{ pF}, R_b =$	3.3 V, 1.6 V \le V _b \le 2.0 V, $=$ 5.5 kΩ	tксү1/2 -50		tксү1/2 -50		tксү1/2 —50		ns
		$1.8 V \le EV_{DD} < 3$ $C_b = 30 \text{ pF}, R_b =$	3.3 V, 1.6 V \le V _b \le 2.0 V ^{Note} , = 5.5 kΩ			tксү1/2 —50		tксү1/2 —50		ns

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, \overline{SCKp} ... internal clock output) (1/2) (T₁ = 40 to $\frac{185}{5}$ C 1.8 V \leq EV $p_{2} \leq$ 5.5 V, V $q_{2} =$ EV $q_{2} = 0.2$ V)

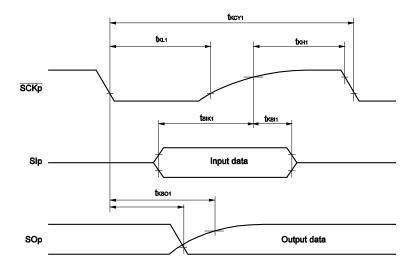
Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about VIH and VIL, refer to the DC characteristics when the TTL input buffer is specified.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, \overline{SCKp} ... internal clock output) (2/2) (T₁ = 40 to $\pm 85\%$ 1.8 V $\leq EV_{00} = 5V_{00} \leq 5.5$ V $V_{00} = EV_{00} = 0$ V)

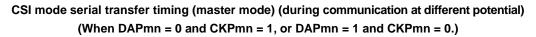
Parameter	Symbol	Conditions	HS (high-	LS(low	-speed	LV (low-	Unit
			speed	l main)	main)	mode	voltage	e main)	
				ode				ode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸ1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	81		479		479		ns
		$\label{eq:V_b} \begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \\ ^{Note \ 3}, \ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \\ ^{Note \ 3}, \ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			19		19		ns
Delay time from <u>SCKp</u> ↓ to SOp output ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		100		100		100	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		195		195		195	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		483		483		483	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \\ ^{\text{Note 3}}, \ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$				483		483	ns
SIp setup time (to SCKp↓) ^{Note 2}	tsik1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		110		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	110		110		110		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \\ ^{Note \ 3}, \ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		19		ns
· · ·		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \\ \mbox{Note 3}, \ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1			25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		25		25		25	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \\ ^{Note \ 3}, \ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$				25		25	ns

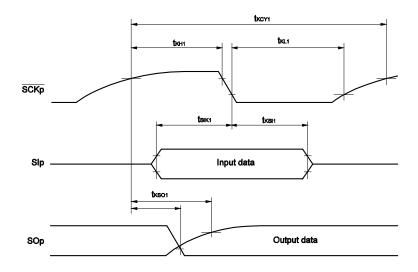

(Note, Caution and Remark are listed on the next page.)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
 - 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** Use it with $EV_{DD} \ge V_b$.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about V_H and V_{IL}, refer to the DC characteristics when the TTL input buffer is specified.



CSI mode connection diagram (during communication at different potential)



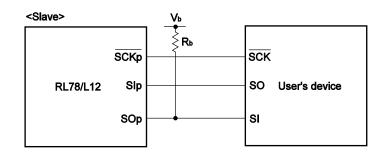

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

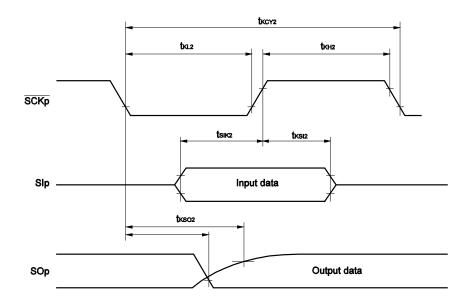
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, \overline{SCKp} ... external clock input) (T_A = -40 to +85°C, 1.8 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

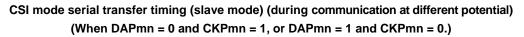
Parameter	Symbol	Cor	ditions	HS (high- main) m	•	LS(low-spe mo	,	LV (low-\ main) r	-	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	t ксү2	$4.0 V \le EV_{DD} \le 5.5 V$,	20 MHz < fмск ≤ 24 MHz	12/fмск						ns
time Note 1		$2.7 \: V {\le} V_b {\le} 4.0 \: V$	8 MHz < fмск ≤ 20 MHz	10/fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/f мск		16/ f мск				ns
			fмck≤4 MHz	6/f мск		10/f мск		10/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V},$	20 MHz < fмск ≤ 24 MHz	16/fмск						ns
		$2.3V{\leq}V_b{\leq}2.7V$	16 MHz < fмск ≤ 20 MHz	14/fмск						ns
			8 MHz < fмск ≤ 16 MHz	12/fмск						ns
			4 MHz < fмск ≤ 8 MHz	8/fмск		16/f мск				ns
			fмск ≤4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	36/f мск						ns
		$1.6V{\le}V_b{\le}2.0V$	16 MHz < fмск ≤ 20 MHz	32/f мск						ns
			8 MHz < fмск ≤ 16 MHz	26/f мск						ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		16/f мск				ns
			fмck ≤4 MHz	10/fмск		10/f мск		10/fмск		ns
			4 MHz < fмск ≤ 8 MHz			16/ f мск				ns
		$\begin{array}{l} 1.6 \ V \leq V_b \leq 2.0 \ V \\ \textbf{Note 2} \end{array}$	fмск≤4 MHz			10/f мск		10/fмск		ns
SCKp high- /low-level	tкн2, tкL2	$4.0~V \leq EV_{\text{DD}} \leq 5.5$	$V, 2.7 V \le V_b \le 4.0 V$	tксү₂/2 −12		tkcy2/2 –50		tксү2/2 –50		ns
width		$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0$	V, 2.3 V \leq V _b \leq 2.7 V	tkcy2/2-18		tксү2/2 –50		tксү2/2 –50		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3$	V, 1.6 V \leq Vb \leq 2.0 V	tkcy2/2-50		tkcy2/2 –50		tксү2/2 –50		ns
		$\begin{array}{l} 1.8 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \\ \text{Note 2} \end{array}$	$V,\ 1.6\ V \leq V_b \leq 2.0\ V$			tксү2/2 –50		tксү2/2 –50		ns
SIp setup	tsik2	$4.0~V \leq EV_{\text{DD}} \leq 5.5$	$V,~2.7~V \leq V_b \leq 4.0~V$	1/fмак +20		1/fмск +30		1/fмск +30		ns
time (to SCKp↑)		$2.7 \text{ V} \le EV_{\text{DD}} < 5.5$	$V,~2.3~V \leq V_b \leq 4.0~V$	1/fмск +20		1/fмск +30		1/fмск +30		ns
Note 3		$2.4~V \le EV_{\text{DD}} < 3.3$	V, 1.6 V \leq Vb \leq 2.0 V	1/fмск +30		1/fмск +30		1/fмск +30		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} < 3.3 \\ _{\text{Note 2}} \end{array}$	$V,~1.6~V \leq V_b \leq 2.0~V$			1/fмск +30		1/fмск +30		ns
SIp hold	tksi2	$4.0~V \leq EV_{\text{DD}} \leq 5.5$	V, 2.7 V \leq V _b \leq 4.0 V	1/fмск +31		1/fмск +31		1/fмск +31		ns
time (from		$2.7~V \leq EV_{\text{DD}} < 5.5$	V, 2.3 V \leq Vb \leq 4.0 V	1/fмск +31		1/fмск +31		1/fмак +31		ns
(ITOTT SCKp↑) Note 3		$2.4~V \leq EV_{\text{DD}} < 3.3$	V, 1.6 V \leq Vb \leq 2.0 V	1/fмак +31		1/fмск +31		1/fмск +31		ns
. ,		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD}} < 3.3 \\ _{\text{Note 2}} \end{array}$	V, 1.6 V \leq Vb \leq 2.0 V			1/fмск +31		1/fмск +31		ns
Delay time from SCKp↓	tĸso2	$\begin{array}{l} 4.0 \; V \leq EV_{\text{DD}} \leq 5.5 \\ C_{\text{b}} = 30 \; pF, \; R_{\text{b}} = 1 \end{array}$	V, 2.7 V \leq V _b \leq 4.0 V, 4 k Ω		2/fмск +120		2/fмск +573		2/fмск +573	ns
to SOp output ^{Note 4}		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \\ C_b = 30 \ pF, \ R_b = 2 \end{array}$	$\begin{array}{l} V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ 7 \ k\Omega \end{array}$		2/fмск +214		2/fмск +573		2/fмск +573	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 4.0$ $C_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 5$	$\begin{array}{l} V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ 5 \ k\Omega \end{array}$		2/fмск +573		2/f _{мск} +573		2/fмск +573	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} < 3.3 \\ ^{\text{Note 2}}, \ C_{\text{b}} = 30 \ \text{pF}, \ R \end{array}$	V, 1.6 V \le V _b \le 2.0 V b = 5.5 kΩ				2/fмск +573		2/fмск +573	ns

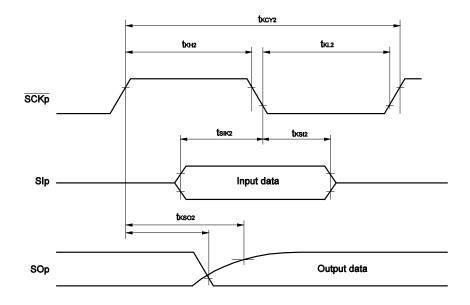

(Note, Caution and Remark are listed on the next page.)

- **Notes 1.** Transfer rate in the SNOOZE mode is MAX. 1 Mbps.
 - **2.** Use it with $EV_{DD} \ge V_b$.
 - 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time become "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about VH and VL, refer to the DC characteristics when the TTL input buffer is specified.



CSI mode connection diagram (during communication at different potential)




- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

30.5.2 Serial interface IICA

(1) I²C standard mode

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

Parameter	Symbol	с	Conditions	speed	high- I main) ode		v-speed mode	voltage	(low- e main) ode	Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fsc∟	Standard mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	kHz
		fc∟k ≥ 1 MHz	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$	0	100	0	100	0	100	
			$1.8~V \le EV_{\text{DD}} \le 5.5~V$			0	100	0	100	
			$1.6~V \le EV_{\text{DD}} \le 5.5~V$					0	100	
Setup time of restart	tsu:sta	$2.7~V \le EV_{\text{DD}} \le 5.5$	5 V	4.7		4.7		4.7		μS
condition		$2.4~V \le EV_{\text{DD}} \le 5.5$	5 V	4.7		4.7		4.7		
		$1.8~V \le EV_{\text{DD}} \le 5.5$	5 V			4.7		4.7		
		$1.6 V \le EV_{DD} \le 5.5$	5 V					4.7		
Hold time Note 1	thd:sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		μS
		$2.7 V \le EV_{DD} \le 5.5 V$ $2.4 V \le EV_{DD} \le 5.5 V$		4.0		4.0		4.0		
		$1.8~V \le EV_{\text{DD}} \le 5.5$	5 V			4.0		4.0		
		$1.6 V \le EV_{DD} \le 5.5$	5 V					4.0		
Hold time when SCLA0 =	t LOW	$2.7 \text{ V} \le EV_{\text{DD}} \le 5.5$	ΣV	4.7		4.7		4.7		μS
"L"		$2.4~V \le EV_{\text{DD}} \le 5.5$	5 V	4.7		4.7		4.7		
		$1.8~V \le EV_{\text{DD}} \le 5.5$	ΣV			4.7		4.7		
		$1.6 V \le EV_{DD} \le 5.5$	ΣV					4.7		
Hold time when SCLA0 =	tніgн	$2.7 V \le EV_{DD} \le 5.5$	5 V	4.0		4.0		4.0		μS
"H"		$2.4~V \le EV_{\text{DD}} \le 5.5$	5 V	4.0		4.0		4.0		
		$1.8~V \le EV_{\text{DD}} \le 5.5$	5 V			4.0		4.0		
		$1.6 V \le EV_{DD} \le 5.5$	5V					4.0		
Data setup time	tsu:dat	$2.7 \text{ V} \le EV_{\text{DD}} \le 5.5$	5 V	250		250		250		ns
(reception)		$2.4~V \le EV_{\text{DD}} \le 5.5$	5V	250		250		250		
		$1.8~V \le EV_{\text{DD}} \le 5.5$	5 V			250		250		
		$1.6 V \le EV_{DD} \le 5.5$	5V					250		
Data hold time	thd:dat	$2.7~V \le EV_{\text{DD}} \le 5.5$	5 V	0	3.45	0	3.45	0	3.45	μS
(transmission) ^{Note 2}		$2.4~V \le EV_{\text{DD}} \le 5.5$	5 V	0	3.45	0	3.45	0	3.45	
		$1.8 V \le EV_{DD} \le 5.5$	5 V			0	3.45	0	3.45	
		$1.6 V \le EV_{DD} \le 5.5$	5V					0	3.45	
Setup time of stop	tsu:sto	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.5$	5V	4.0		4.0		4.0		μS
condition		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		
		$1.8~V \le EV_{DD} \le 5.5~V$				4.0		4.0		
		$1.6 V \le EV_{DD} \le 5.5 V$						4.0		
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5.5$	5V	4.7		4.7		4.7		μS
		$2.4~V \le EV_{\text{DD}} \le 5.5$	5V	4.7		4.7		4.7		
		$1.8 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5$	5V			4.7		4.7		
		$1.6 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5$	5 V					4.7		

(Note and Remark are listed on the next page.)

- Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.
 - 2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- RemarkThe maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up
resistor) at that time in each mode are as follows.
Standard mode:Cb = 400 pF, Rb = 2.7 k\Omega

(2) I^2C fast mode (T_A = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol	Cond	itions		h-speed mode	•	/-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.	
SCLA0 clock frequency	fsc∟	Fast mode: fc∟ĸ ≥	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \\ \leq 5.5 \ V \end{array}$	0	400	0	400	0	400	kHz
		3.5 MHz	$\begin{array}{l} \textbf{2.4 V} \leq \textbf{EV}_{\text{DD}} \\ \leq \textbf{5.5 V} \end{array}$	0	400	0	400	0	400	
			$\begin{array}{l} 1.8 \ V \leq EV_{\text{DD}} \\ \leq 5.5 \ V \end{array}$			0	400	0	400	
Setup time of restart	tsu:sta	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6		0.6		0.6		μS
condition		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6		0.6		0.6		
		$2.4 V \le EV_{DD} \le 5.5 V$ $1.8 V \le EV_{DD} \le 5.5 V$ $2.7 V \le EV_{DD} \le 5.5 V$				0.6		0.6		
Hold time Note 1	thd:sta	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6		0.6		0.6		μS
		$2.7 V \le EV_{DD} \le 5.5 V$ $2.4 V \le EV_{DD} \le 5.5 V$		0.6		0.6		0.6		
		$1.8~V \leq EV_{\text{DD}} \leq$	5.5 V			0.6		0.6		
Hold time when SCLA0 =	t LOW	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	1.3		1.3		1.3		μS
"L"		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	1.3		1.3		1.3		
		$1.8~V \leq EV_{\text{DD}} \leq$	5.5 V			1.3		1.3		
Hold time when SCLA0 =	t high	$2.7 \text{ V} \leq EV_{\text{DD}} \leq$	5.5 V	0.6		0.6		0.6		μS
"H"		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6		0.6		0.6		
		$1.8~V \leq EV_{\text{DD}} \leq$	5.5 V			0.6		0.6		
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	100		100		100		ns
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	100		100		100		
		$1.8 \text{ V} \leq EV_{\text{DD}} \leq$	5.5 V			100		100		
Data hold time	thd:dat	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μS
(transmission) ^{Note 2}		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	
		$1.8~V \leq EV_{\text{DD}} \leq$	5.5 V			0	0.9	0	0.9	
Setup time of stop condition	tsu:sto	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6		0.6		0.6		μS
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6		0.6		0.6		
		$1.8~V \leq EV_{\text{DD}} \leq$	5.5 V			0.6		0.6		
Bus-free time	t BUF	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	1.3		1.3		1.3		μS
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	1.3		1.3		1.3		
		$1.8 V \le EV_{DD} \le$	5.5 V			1.3		1.3		

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

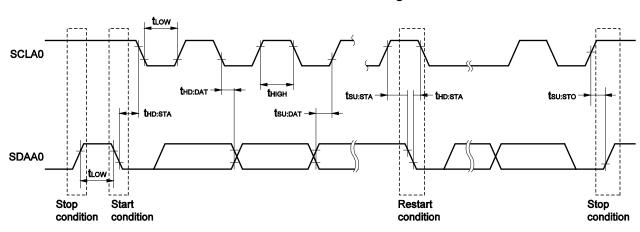
2. The maximum value (MAX.) of the during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

RemarkThe maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up
resistor) at that time in each mode are as follows.Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

Parameter	Symbol	Condi	tions	HS (high-speed main) mode LS (low-speed main) mode LV (low-voltage main) mode MIN. MAX. MIN. MIN. MAX. 0 1000 - -		Unit						
				MIN.	MAX.	MIN.	MIN.	MAX.	MIN.			
SCLA0 clock frequency	fsc∟	Fast mode plus: fc∟ĸ ≥ 10 MHz	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD0}} \\ \leq 5.5 \ V \end{array}$	0	1000	-	-		-	kHz		
Setup time of restart condition	tsu:sta	2.7 V ≤ EV _{DD0} ≤	5.5 V	0.26		-			-			
Hold time Note 1	thd:sta	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq$	5.5 V	0.26		-		_		-		μS
Hold time when SCLA0 = "L"	t LOW	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.5		-			-	μs		
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.26		-			-	μs		
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq$	5.5 V	50		-			-	ns		
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7 V \le EV_{DD0} \le 5.5 V$ 0 0.45		μs								
Setup time of stop condition	tsu:sto	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq$	5.5 V	0.26		-		-		μS		
Bus-free time	t BUF	$2.7 V \le EV_{DD0} \le$	5.5 V	0.5		-			-	μS		

(3) I^2C fast mode plus (T_A = -40 to +85°C, 1.6 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.


2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode plus: C_b = 120 pF, R_b = 1.1 k Ω

Caution When bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1, the above value can be applied. Make sure that the pin characteristics (IOH1, IOL1, VOH1, and VOL1) satisfy the redirected values.

IICA serial transfer timing

30.6 Analog Characteristics

30.6.1 A/D converter characteristics

A/D converter characteristics column

Input channel/Reference	Reference voltage (+) = AVREFP	Reference voltage (+) = V _{DD}	Reference voltage (+) = V _{BGR}
voltage	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM
ANI0 to ANI1	_		
ANI16 to ANI23	Refer to 30.6.1 (2)		Refer to 30.6.1 (4)
Internal reference voltage		Refer to 30.6.1 (3)	
Temperature sensor output voltage	Refer to 30.6.1 (1)		_

(1) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target: internal reference voltage, temperature sensor output voltage

(T_A = -40 to +85°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, 1.6 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Conc	ditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{Note~4}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		target: internal reference	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		voltage output, temperature sensor output voltage, HS	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		(high-speed main) mode					
Zero-scale			$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
error ^{Notes 1, 2}		$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.50	%FSR	
Full-scale	EFS	10-bit resolution	$1.8 \text{ V} \leq AV_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
error ^{Notes 1, 2}		$AV_{REFP} = V_{DD}^{Note 3}$	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{Note~4}$			±0.50	%FSR
Integral linearity	ILE	10-bit resolution	$1.8~V \le AV_{\text{REFP}} \le 5.5~V$			±2.5	LSB
error ^{Note 1}		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{Note~4}$			±5.0	LSB
Differential	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±1.5	LSB
linearity error Note 1		AV _{REFP} = V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.0	LSB
Analog input voltage	VAIN	Internal reference voltage out 2.4 V \leq VDD \leq 5.5 V, HS (high		VBGR Note 5		V	
			Femperature sensor output voltage 2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode			5	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AVREFP is smaller than VDD (AVREFP < VDD), the MAX. values are as follows: Overall error: Add or subtract 1.0 LSB to or from the MAX. value when AVREFP = VDD. Zero-scale error or full-scale error: Add or subtract 0.05%FSR to or from the MAX. value when AVREFP = VDD. Integral linearity error or differential linearity error: Add or subtract 0.5 LSB to or from the MAX. value when AVREFP = VDD.
- 4. These are values when setting the conversion time as 57 μs (MIN.) and 95 μs (MAX.).
- 5. Refer to 30.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target: ANI16 to ANI23

(T_A = -40 to +85°C, 1.6 V \leq EV_{DD} = V_{DD} \leq 5.5 V, 1.6 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \le AV_{\text{REFP}} \le 5.5~V$		1.2	±5.0	LSB
		AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$		1.2	±8.5	LSB
Conversion time	tconv	$10-bit resolution$ $AV_{REFP} = E_{VDD} = V_{DD} N^{Note 3}$	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V_{\text{DD}} \leq 5.5~V$	57		95	μs
Zero-scale error	EZS	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Notes 1, 2	1, 2 AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR	
Full-scale error	EFS	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Notes 1, 2		AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±0.60	%FSR
Integral linearity	ILE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
error Note 1		AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±6.0	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
error Note 1		AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$1.6~V \leq AV_{\text{REFP}} \leq 5.5~V^{\text{Note 4}}$			±2.5	LSB
Analog input voltage	VAIN			0		AV _{REFP} and EV _{DD}	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. When AVREFP is smaller than VDD (AVREFP < VDD), the MAX. values are as follows: Overall error: Add or subtract 4.0 LSB to or from the MAX. value when AVREFP = VDD. Zero-scale error or full-scale error: Add or subtract 0.20%FSR to or from the MAX. value when AVREFP = VDD. Integral linearity error or differential linearity error: Add or subtract 2.0 LSB to or from the MAX. value when AVREFP = VDD.

4. These are values when setting the conversion time as 57 μs (MIN.) and 95 μs (MAX.).

(3) When AV_{REF (+)} = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), AV_{REF (-)} = V_{SS} (ADREFM = 0), target: ANI0, ANI1, ANI16 to ANI23, internal reference voltage, temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{DD}, \text{Reference voltage (-)} = 10^{\circ}\text{C}, 10^{\circ$	
Vss)	

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
			$1.6~V \leq V \text{DD} \leq 5.5~V$	2.125 3.1875 17 57 2.375 3.5625 17 Note 3 Note 3 Note 3 Note 3 10 Note 3 10 10 11 11 11 12 13 14 15 16 17	1.2	±10.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
			$1.6~V \leq V \text{DD} \leq 5.5~V$	57		95	μS
		10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
		target: internal reference	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
Zero-scale error EZS 10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS		
Zero-scale error		10-bit resolution	$1.8~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Notes 1, 2			$1.6~V \leq V_{DD} \leq 5.5~V^{\text{Note 3}}$			±0.85	%FSR
Full-scale error	EFS	10-bit resolution	$1.8~V \le V \text{DD} \le 5.5~V$			±0.60	%FSR
Notes 1, 2			$1.6~V \leq V\text{DD} \leq 5.5~V^{\text{Note 3}}$			±0.85	%FSR
Integral linearity	ILE	10-bit resolution	$1.8~V \leq V\text{DD} \leq 5.5~V$			±4.0	LSB
error Note 1			$1.6~V \leq V \text{DD} \leq 5.5~V^{\text{Note 3}}$			±6.5	LSB
Differential linearity	DLE	10-bit resolution	$1.8~V \leq V\text{DD} \leq 5.5~V$			±2.0	LSB
error Note 1			$1.6~V \leq V\text{DD} \leq 5.5~V^{\text{Note 3}}$			±2.5	LSB
Analog input voltage	VAIN	ANI0, ANI1		0		Vdd	V
		ANI16 to ANI23	ANI16 to ANI23			EVDD	V
		0	Internal reference voltage output, 2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode		V _{BGR} Note 4		
		Temperature sensor output v 2.4 V \leq VDD \leq 5.5 V, HS (high	•	VTMPS25 Note 4			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. These are values when setting the conversion time as 57 μs (MIN.) and 95 μs (MAX.).

4. Refer to 30.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When AV_{REF (+)} = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), AV_{REF (-)} = AV_{REFM}/ANI1 (ADREFM = 1), target : ANI0, ANI16 to ANI23

(T_A = -40 to +85°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V) (HS (high-speed main) mode)

Parameter	Symbol	Cond	Conditions		TYP.	MAX.	Unit
Resolution	Res				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 30.6.2 Temperature sensor/internal reference voltage characteristics.
- 4. When the reference voltage (-) = VSS, the MAX. values are as follows:

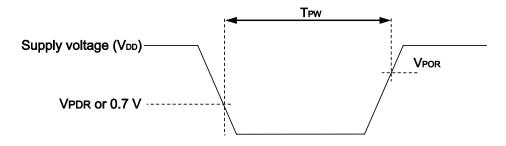
Zero-scale error: Add or subtract 0.35%FSR to or from the MAX. value when the reference voltage (-) = AV_{REFM} .

Integral linearity error: Add or subtract 0.5 LSB to or from the MAX. value when the reference voltage (–) = AV_{REFM} .

Integral linearity error or differential linearity error: Add or subtract 0.2 LSB to or from the MAX. value when the reference voltage (-) = AV_{REFM}.

30.6.2 Temperature sensor/internal reference voltage characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.4 \text{ V} \le = \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$ (HS (high-speed main) mode)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μS

30.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	Tpw		300			μS

Note: Minimum pulse width is required to power-on reset when VDD is smaller than VPDR. When RL78 microcontroller is in STOP mode, or the main system clock (fMAIN) is stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC), the minimum pulse width is required to power-on reset from when VDD falls below 0.7 V and until VDD exceeds VPOR.

30.6.4 LVD circuit characteristics

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.98	4.06	4.14	V
voltage			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
		Power supply fall time	2.90	2.96	3.02	V	
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
		Power supply fall time	2.60	2.65	2.70	V	
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum p	ulse width	tLw		300			μS
Detection d	elay time					300	μS

LVD Detection Voltage of Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDA0	VPOC2, VPOC1, VPOC0 = 0, 0, 0, falling reset voltage			1.60	1.63	1.66	V
mode	VLVDA1	LVIS1	1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS1	1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	V LVDA3	LVIS1	1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
1	VLVDB0	VPOC2, VPOC1,	, V _{POC0} = 0, 0, 1	falling reset voltage	1.80	1.84	1.87	V
	VLVDB1	LVIS1	1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS1	1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
-				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS1	1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2, VPOC1,	, V _{POC0} = 0, 1, 0,	falling reset voltage	2.40	2.45	2.50	V
	VLVDC1		1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS1	1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3	LVIS1	1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2, VPOC1,	, VPOC0 = 0, 1, 1,	falling reset voltage	2.70	2.75	2.81	V
	VLVDD1	LVIS1	1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS1	1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	LVIS1	1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

30.6.5 Supply voltage rise time

$(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to retain an internal reset status by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range described in 30.4 AC Characteristics.

30.7 LCD Characteristics

30.7.1 Resistance division method

(1) Static display mode

(TA = -40 to +85°C, VL4 (MIN.) \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

(2) 1/2 bias method, 1/4 bias method

$(T_{A} = -40 \text{ to } +85^{\circ}\text{C}, \text{ VL4 (MIN.)} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		$V_{\text{DD}}^{\text{Note}}$	V

Note 5.5 V (MAX.) when driving a memory-type liquid crystal (the MLCDEN bit of the MLCD register = 1).

30.7.2 Internal voltage boosting method

(1) 1/3 bias method

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} = 0.47 μ F		2 V∟1 –0.1	2 VL1	2 V _{L1}	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 μ F		3 V∟1 –0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} = 0.47 µF		500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between V_{L1} and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 μF±30 %

- 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).
- 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1 Note 4	⁴ C1 to C5 ^{Note 1} = 0.47 μ F	VLCD = 04H	0.90	1.00	1.08	V
			VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V
Tripler output voltage	VL3	C1 to C5 ^{Note 1} = 0.47 μ F		3 VL1-0.12	3 VL1	3 VL1	V
Quadruply output voltage	VL4 Note 4	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	4 VL1-0.16	4 VL1	4 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between $V_{\mbox{\tiny L3}}$ and GND

C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = C5 = 0.47 μ F±30 %

2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

4. Make sure to set V_{L4} to 5.5 V or less.

30.7.3 Capacitor split method

1/3 bias method

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.2 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
V _{L4} voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		VDD		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V _{L4} -0.1	2/3 VL4	2/3 V∟₄ +0.1	V
V∟1 voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} -0.1	1/3 VL4	1/3 V∟₄ +0.1	V
Capacitor split wait time ^{Note 1}	t vwait		100			ms

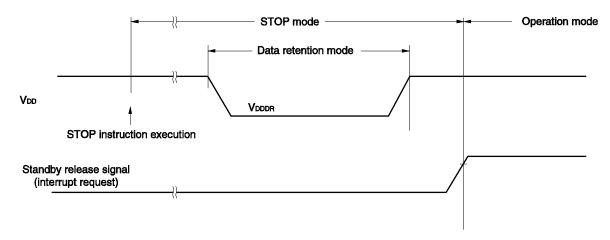
Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
2. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between V_{L1} and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND


C1 = C2 = C3 = C4 = 0.47 μ F ± 30 %

30.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

30.9 Flash Memory Programming Characteristics

(TA = -40 to +85°C, 1.8 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

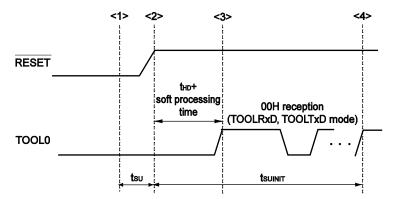
· ·		,					
Parameter	Symbol	Cond	Conditions		TYP.	MAX.	Unit
System clock frequency	fclk	$1.8~V \leq V\text{DD} \leq 5.5~V$	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	T _A = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year	T _A = 25°C		1,000,000		
		Retained for 5 years	T _A = 85°C	100,000			
		Retained for 20 years	T _A = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

- The retaining years are until next rewrite after the rewrite.
- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

30.10 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		When flash memory is programming	115,200		1,000,000	bps

30.11 Timing for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when a pin reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the pin reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until a pin reset ends	tsu	POR and LVD reset must end before the pin reset ends.	10			μS
How long the TOOL0 pin is kept at the low level after an external reset ends (except flash memory firmware processing time)		POR and LVD reset must end before the pin reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

- <2> The pins reset ends. (POR and LVD reset must end before the pin reset ends.)
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion of the baud rate setting
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the reset ends.
 - t_{su}: How long from when the TOOL0 pin is placed at the low level until a pin reset ends (MIN. 10 μ s)
 - thd: How long the TOOL0 pin is kept at the low level after an external reset ends (except flash memory firmware processing time)

CHAPTER 31 ELECTRICAL SPECIFICATIONS

This chapter describes the electrical specifications for the products "G: Industrial applications (T_A = −40 to +105°C)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. With products not provided with an EV_{DD}, or EV_{SS} pin, replace EV_{DD} with V_{DD}, or replace EV_{SS} with Vss.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.1.6 Pins for each product (pins other than port pins).
 - 4. Please contact Renesas Electronics sales office for derating of operation under TA = +85°C to+105°C. Derating is the systematic reduction of load for the sake of improved reliability

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications or G: Industrial applications (T_A when using the RL78 microcontrollers at -40 to $+85^{\circ}$ C)".

Patameter	Appli	cation
	A: Consumer applications,	G: Industrial applications
	and G: Industrial applications (TA when	
	using RL78 at −40 to +85°C)	
Operating ambient temperature	T _A = −40 to +85°C	T _A = −40 to +105°C
Operation mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$ @ 1 MHz to 24 MHz	$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$ @ 1 MHz to 24 MHz
	2.4 V \leq V_{DD} \leq 5.5 V @ 1 MHz to 16 MHz	2.4 V \leq V_{DD} \leq 5.5 V @ 1 MHz to 16 MHz
	LS (low-speed main) mode:	
	1.8 V \leq V_{DD} \leq 5.5 V @ 1 MHz to 8 MHz	
	LV (low-voltage main) mode:	
	1.6 V \leq V_{DD} \leq 5.5 V @ 1 MHz to 4 MHz	
High-speed on-chip osciilator	$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$
clock accuracy	±1.0% @ T _A = −20 to +85°C	±2.0% @ T _A = +85 to +105°C
	±1.5% @ T _A = −40 to −20°C	±1.0% @ T _A = −20 to +85°C
	$1.6~V \leq V_{\text{DD}} \leq 1.8~V$	±1.5% @ T _A = −40 to −20°C
	±5.0% @ T _A = −20 to +85°C	
	±5.5% @ T _A = −40 to −20°C	
Serial array unit	UART	UART
	CSI00: fcLk/2 (supporting 16 Mbps), fcLk/4	CSI00: fclк/4
	CSI01	CSI01
	Simplified I ² C communication	Simplified I ² C communication
IICA	Standard mode	Standard mode
	Fast mode	Fast mode
	Fast mode plus	
Voltage detector	Rising detection voltage: 1.67 to 4.06 V	Rising detection voltage: 2.61 to 4.06 V (8
	(14 levels)	levels)
	Falling detection voltage: 1.63 to 3.98 V	Falling detection voltage: 2.55 to 3.98 V (8
	(14 levels)	levels)

Remark: The electrical characteristics of the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" are different from those of the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}$ C) or G: Industrial applications (T_A when using RL78 at -40 to $+85^{\circ}$ C)". For details, refer to **31.1** to **31.10**.

31.1 Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	VDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVDD	V _{DD} = EV _{DD}	-0.5 to +6.5	V
	EVss		-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to $V_{\rm DD}$ +0.3 $^{\text{Note 1}}$	V
Input voltage	Vıı	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127,P140 to P147	-0.3 to EV _{DD} +0.3 and -0.3 to V _{DD} +0.3 $^{\rm Note\ 2}$	v
	V _{I2}	P60, P61 (N-ch open-drain)	-0.3 to EV_DD +0.3 and -0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	V _{I3}	P20, P21, P121 to P124, P137, EXCLK, EXCLKS, RESET	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Output voltage	V ₀₁	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	-0.3 to EV_DD +0.3 and -0.3 to V_DD +0.3 $^{\text{Note 2}}$	V
	V ₀₂	P20, P21	-0.3 to V _{DD} +0.3 ^{Note 2}	V
Analog input voltage	Val1	ANI16 to ANI23	-0.3 to EV_DD +0.3 and -0.3 to AV_{REF(+)} +0.3 $^{Notes\ 2,\ 3}$	V
	Vai2	ANIO, ANI1	-0.3 to V_DD +0.3 and -0.3 to AV_{REF(+)} +0.3 $^{\text{Notes 2, 3}}$	V

Absolute Maximum Ratings $(T_A = 25^{\circ}C)$ (1/3)

- **Notes 1.** Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
 - 2. Must be 6.5 V or lower.
 - 3. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF(+)} : + side reference voltage of the A/D converter.
 - 3. Vss is the reference voltage.

Parameter	Symbols	С	onditions		Ratings	Unit
LCD voltage	VL1	VL1 voltage ^{Note 1}		–0.3 to +2.8 and –0.3 to V∟₄ +0.3	V	
	VL2 Voltage ^{Note 1}					V
	VL3	VL3 voltage ^{Note 1}		–0.3 to VL4 +0.3 $^{\text{Note 2}}$	V	
	VL4	V _{L4} voltage ^{Note 1}			-0.3 to +6.5	V
	VLCAP	CAPL, CAPH voltage ^{Note}	1		–0.3 to VL4 +0.3 $^{\text{Note 2}}$	V
	Vlout	COM0 to COM7, SEG0 to SEG38, COMEXP output voltage	External resistance division	Other than memory-type liquid crystal mode	-0.3 to V_{DD} +0.3 $^{\text{Note 2}}$	
				Memory-type liquid crystal mode	-0.3 to VL4 +0.3 $^{\text{Note 2}}$	V
			Capacitor split		-0.3 to V_DD +0.3 $^{\text{Note 2}}$	
			Internal voltage	e boosting	–0.3 to VL4 +0.3 $^{\text{Note 2}}$	

Absolute Maximum Ratings (T_A = 25°C) (2/3)

- **Notes 1.** This value only indicates the absolute maximum ratings when applying voltage to the V_{L1}, V_{L2}, V_{L3}, and V_{L4} pins; it does not mean that applying voltage to these pins is recommended. When using the internal voltage boosting method or capacitance split method, connect these pins to Vss via a capacitor (0.47 μ F ± 30%) and connect a capacitor (0.47 μ F ± 30%) between the CAPL and CAPH pins.
 - 2. Must be 6.5 V or lower.
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Vss is the reference voltage.

Absolute Maximum Ratings (TA = 25°C) (3/3)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147	-40	mA
		Total of all pins –170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	-70	mA
			P15 to P17, P30 to P32, P50 to P54, P70 to P74, P125 to P127	-100	mA
	Іон2	Per pin	P20, P21	-0.5	mA
		Total of all pins		-1	mA
Output current, low	Iol1	Per pin	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P10 to P14, P40 to P43, P120, P130, P140 to P147	70	mA
			P15 to P17, P30 to P32, P50 to P54, P60, P61, P70 to P74, P125 to P127	100	mA
	IOL2	Per pin	P20, P21	1	mA
		Total of all pins]	2	mA
Operating ambient	TA	In normal operati	on mode	-40 to +105	°C
temperature		In flash memory	programming mode		
Storage temperature	Tstg			–65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

31.2 Oscillator Characteristics

31.2.1 X1, XT1 oscillator characteristics

(TA = -40 to $+105^{\circ}$ C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) ^{Note} Ceramic resonator/ crystal resonator	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0		
	crystal resonator	$2.4 \text{ V} \leq V_{\text{DD}} \leq 2.7 \text{ V}$	1.0		16.0	MHz
XT1 clock oscillation frequency $(f_{XT})^{Note}$	Crystal resonator		32	32.768	35	kHz

Note Indicates only the permissible deviation of the oscillator frequencies. Refer to **AC Characteristics** for instruction execution time. Inquire with the resonator manufacturer to perform an evaluation on the actual circuit and check the oscillator characteristics before use.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 or XT1 oscillator, refer to 5.4 System Clock Oscillator.

31.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

		,					
Oscillators	Parameters		Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		–20 to +85°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1		+1	%
clock frequency accuracy		–40 to –20°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-1.5		+1.5	%
		+85 to + 105°C	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This indicates the oscillator characteristics only. Refer to AC Characteristics for instruction execution time.

31.3 DC Characteristics

31.3.1 Pin characteristics

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

(1/5)

•							• •	
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	•	P10 to P17, P30 to P32, P40 P120, P125 to P127, P130,	, , ,			-3.0 Note 2	mA
		Total of P10 to P14, P40 to P43, P120,		$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
		P130, P140		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-8.0	mA
		(when duty	= 70% ^{Note 3})	$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-4.0	mA
		Total of P15	otal of P15 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			-30.0	mA
		,	P70 to P74, P125 to P127 = 70% ^{Note 3})	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			-15.0	mA
		(when duty	= /0%	$2.4~V \leq EV_{\text{DD}} < 2.7~V$			-8.0	mA
		Total of all p	bins (When duty = 70% ^{Note 3})				-60.0	mA
	Іон2	P20, P21	Per pin				-0.1	mA
			Total of all pins	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			-0.2	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from the V_{DD}, EV_{DD} pins to an output pin.

- 2. Do not exceed the total current value.
- **3.** Specification under conditions where the duty factor is 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

Items	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Output current, low ^{Note 1}	Iol1	Per pin for P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P130, P140 to P147					8.5 Note 2	mA
		Per pin for	P60, P61				15.0 Note 2	mA
		Total of P1	0 to P14, P40 to P43,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			40.0	mA
		· ·	hen duty = 70% Note 3)	$2.7~V \leq EV_{\text{DD}} < 4.0~V$			15.0	mA
		(when dur	y = 70%)	$2.4~V \leq EV_{\text{DD}} < 2.7~V$			9.0	mA
		Total of P1	5 to P17, P30 to P32,	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$			40.0	mA
		P50 to P54, P60, P61, P70 to P74,		$2.7~V \leq EV_{\text{DD}} < 4.0~V$			35.0	mA
			P125 to P127 (When duty = 70% ^{Note 3})	$2.4~V \leq EV_{\text{DD}} < 2.7~V$			20.0	mA
			Total of all pins (When duty = 70% ^{Note 3})				80.0	mA
	IOL2	P20, P21 Per pin					0.4	mA
			Total of all pins	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			0.8	mA

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{Vss} = \text{EV}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVss and Vss pin.
 - 2. Do not exceed the total current value.
 - Specification under conditions where the duty factor is 70%. The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).
 - Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

•		,	,				(0,0
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0.8EV _{DD}		EVdd	V
	VIH2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \le EV_{\text{DD}} \le 5.5 \text{ V}$	2.2		EVDD	V
			TTL input buffer $3.3 V \le EV_{DD} < 4.0 V$	2.0		EVDD	V
ViH3			TTL input buffer 2.4 V \leq EV _{DD} $<$ 3.3 V	1.50		EVDD	V
	Vінз	P20, P21		0.7V _{DD}		VDD	V
	VIH4	P60, P61		0.7EV _{DD}		EVDD	V
	VIH5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0.8V _{DD}		VDD	V
Input voltage, Iow	VIL1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120, P125 to P127, P140 to P147	Normal input buffer	0		0.2EVDD	V
	VIL2	P10, P11, P15, P16	TTL input buffer $4.0 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}$	0		0.8	V
			TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V \leq EV _{DD} $<$ 3.3 V	0		0.32	V
	VIL3	P20, P21	·	0		0.3V _{DD}	V
	VIL4	P60, P61		0		0.3EV _{DD}	V
	VIL5	P121 to P124, P137, EXCLK, EXCLK	S, RESET	0		0.2VDD	V

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Caution The maximum value of VIH of P10, P12, P15, P17 is EVDD, even in the N-ch open-drain mode.

Items	Symbol	Conditions	-	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array} \end{array} \label{eq:VDD}$	EV _{DD} -0.7	115.	IVIAA.	V
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	EV _{DD} -0.6			V
			$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V},$ IOH1 = -1.5 mA	EVDD-0.5			V
	Vон2	P20, P21	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH2 = -100 μ A	VDD-0.5			V
P50 to P54, P70 to P74, P120	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P70 to P74, P120,	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.7	V	
		P125 to P127, P130, P140 to P147	$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.6	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \end{array} \label{eq:energy}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
	Vol2	P20, P21	$\begin{array}{l} 2.4 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OL2}} = 400 \ \mu\text{A} \end{array}$			0.4	V
	Vol3	P60, P61	$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 15.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			2.0	V
			$\begin{array}{l} 4.0 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 5.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.4	V
			$\begin{array}{l} 2.7 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 3.0 \ mA \end{array} \end{array} \label{eq:eq:entropy}$			0.4	V
			$\begin{array}{l} 2.4 \ V \leq EV_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL3}} = 2.0 \ mA \end{array} \label{eq:DD}$			0.4	V

(4/5)

Caution P10, P12, P15, P17 do not output high level in N-ch open-drain mode.

		,		/				(0/0
Items					MIN.	TYP.	MAX.	Unit
Input leakage current, high	Ішні	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EV _{DD}				1	μA
	ILIH2	P20, P21, P137, RESET	VI = VDD				1	μA
	Іцнз	Iцнз P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)		In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	Ilil1	P10 to P17, P30 to P32, P40 to P43, P50 to P54, P60, P61, P70 to P74, P120, P125 to P127, P140 to P147	VI = EVss	Vi = EVss			-1	μA
		P20, P21, P137, RESET	VI = VSS				-1	μA
	ILIL3	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = VSS In input port or external clock input In resonator connection				-1	μA
							-10	μA
On-chip pull-up	Ruı	VI = EVss	SEGxx po	rt				
resistance			2.4 V ≤	$EV_{DD} = V_{DD} \leq 5.5 \ V$	10	20	100	kΩ
	Ru2			r than above ^r P60, P61, and	10	20	100	kΩ

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(5/5)

31.3.2 Supply current characteristics

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(1/3)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (high-	file = 24 MHz Note 3	Basic	V _{DD} = 5.0 V		1.5		mA
Current Note 1		mode	speed main) mode ^{Note 5}		operation	V _{DD} = 3.0 V		1.5		mA
			mode		Normal	V _{DD} = 5.0 V		3.3	5.3	mA
					operation	V _{DD} = 3.0 V		3.3	5.3	mA
				fi⊢ = 16 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		2.5	3.9	mA
					operation	V _{DD} = 3.0 V		2.5	3.9	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.7	mA
			speed main) mode ^{Note 5}	V _{DD} = 5.0 V	operation	Resonator connection		3.0	4.8	mA
			mode	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.7	mA
				V _{DD} = 3.0 V	operation	Resonator connection		3.0	4.8	mA
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		1.8	2.8	mA
		V _{DD} = 5.0 V	V _{DD} = 5.0 V	operation	Resonator connection		1.8	2.8	mA	
		Subsystem		f _{MX} = 10 MHz ^{Note 2} ,	Normal operation	Square wave input		1.8	2.8	mA
				V _{DD} = 3.0 V		Resonator connection		1.8	2.8	mA
				fsue = 32.768 kHz Note 4	Normal	Square wave input		3.5	4.9	μA
			clock	T _A =40°C	operation	Resonator connection		3.6	5.0	μA
			operation	fsue = 32.768 kHz Note 4	Normal	Square wave input		3.6	4.9	μA
				T _A = +25°C	operation	Resonator connection		3.7	5.0	μA
				fsue = 32.768 kHz Note 4	Normal	Square wave input		3.7	5.5	μA
				T _A = +50°C	operation	Resonator connection		3.8	5.6	μA
				fsue = 32.768 kHz Note 4	Normal	Square wave input		3.8	6.3	μA
				T _A = +70°C	operation	Resonator connection		3.9	6.4	μA
			f _{SUB} = 32.768 kHz ^{Note 4}	Normal	Square wave input		4.1	7.7	μA	
				T _A = +85°C	operation	Resonator connection		4.2	7.8	μA
				f _{SUB} = 32.768 kHz ^{Note 4}	Normal	Square wave input		6.4	19.7	μA
				T _A = +105°C	operation	Resonator connection		6.5	19.8	μA

(Notes and Remarks are listed on the next page.)

- **Notes 1.** Total current flowing into VDD and EVDD, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD or Vss, EVss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash programming.
 - 2. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 3. When high-speed system clock and subsystem clock are stopped.
 - 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When setting ultra-low current consumption (AMPHS1 = 1), not including the current flowing into RTC, 12-bit interval timer, WDT, and LCD controller/driver.
 - 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 V \le V_{DD} \le 5.5 V@1 MHz$ to 24 MHz $2.4 V \le V_{DD} \le 5.5 V@1 MHz$ to 16 MHz
- **Remarks 1.** f_{MX}: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - **4.** Except subsystem clock operation, temperature condition of the TYP. value is $T_A = 25^{\circ}C$

•				,	,				•
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	DD2	HALT	HS (high-	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		0.44	2.3	mA
current Note 1	Note 2	mode	speed main) mode ^{Note 7}		V _{DD} = 3.0 V		0.44	2.3	mA
			mode	f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		0.40	1.7	mA
					V _{DD} = 3.0 V		0.40	1.7	mA
			HS (high-	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	mA
			speed main) mode ^{Note 7}	V _{DD} = 5.0 V	Resonator connection		0.45	2.0	mA
			mode	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	1.9	mA
				V _{DD} = 3.0 V	Resonator connection		0.45	2.0	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 5.0 V	Resonator connection		0.26	1.10	mA
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.02	mA
				V _{DD} = 3.0 V	Resonator connection		0.26	1.10	mA
cloo	Subsystem	fsue = 32.768 kHz ^{Note 5}	Square wave input		0.31	0.57	μA		
	clock operation	T _A = -40C	Resonator connection		0.50	0.76	μA		
			operation	fsue = 32.768 kHz ^{Note 5}	Square wave input		0.37	0.57	μA
				T _A = +25°C	Resonator connection		0.56	0.76	μA
				fsue = 32.768 kHz ^{Note 5}	Square wave input		0.46	1.17	μA
				T _A = +50°C	Resonator connection		0.65	1.36	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.57	1.97	μA
				T _A = +70°C	Resonator connection		0.76	2.16	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		0.85	3.37	μA
				T _A = +85°C	Resonator connection		1.04	3.56	μA
				f _{SUB} = 32.768 kHz ^{Note 5}	Square wave input		3.04	15.37	μA
				T _A = +105°C	Resonator connection		3.23	15.56	μA
	DD3 ^{Note 6}	STOP	T _A = -40°C				0.17	0.50	μA
Mode T _A = +25	T _A = +25°C				0.23	0.50	μA		
			T _A = +50°C				0.32	1.10	μA
			T _A = +70°C				0.43	1.90	μA
			T _A = +85°C				0.71	3.30	μA
			T _A = +105°C	;			2.90	15.30	μA

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

(2/3)

(Notes and $\ensuremath{\textit{Remarks}}$ are listed on the next page.)

- **Notes 1.** Total current flowing into V_{DD} and EV_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD}, EV_{DD} or V_{SS}, EV_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing to the A/D converter, LVD circuit, I/O port, on-chip pull-up/pull-down resistors, and the current flowing during data flash programming.
 - 2. During HALT instruction execution by flash memory.
 - 3. When high-speed on-chip oscillator and subsystem clock are stopped.
 - 4. When high-speed system clock and subsystem clock are stopped.
 - When high-speed on-chip oscillator and high-speed system clock are stopped. When operating real-time clock (RTC) and setting ultra-low current consumption (AMPHS1 = 1), not including the current flowing to 12-bit interval timer, WDT, LCD controller/driver.
 - 6. The current flowing into RTC, 12-bit interval timer, WDT are not included.
 - $\label{eq:relationship} \begin{array}{l} \mbox{Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. \\ \mbox{HS (high-speed main) mode: } 2.7 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V} @1 \mbox{ MHz to } 24 \mbox{ MHz} \end{array}$
 - 2.4 V \leq V_{DD} \leq 5.5 V@1 MHz to 16 MHz
 - 8. Regarding the value for current operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: High-speed on-chip oscillator clock frequency
 - 3. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 4. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +	105°C, 2.	$2.4 \text{ V} \leq \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \leq 5.5 \text{ V}, \text{ V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$							
Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit		
Low-speed on- chip oscillator operatin current	FIL Note 1				0.20		μA		
RTC operating current	IRTC Notes 1, 2, 3	fmain is stopped				0.08		μA	
12-bit inteval timer operating current	ı⊤ Notes 1, 2, 4					0.08		μA	
Watchdog timer operating current	WDT Notes 1, 2, 5	f⊩ = 15 kHz				0.24		μA	
A/D converter		When conversion		AVREFP = VDD = 5.0 V		1.3	1.7	mA	
operating current	Notes 1, 6	at maximum speed	Low voltage mo		0.5	0.7	mA		
A/D converter reference voltage current	ADREF Note 1					75.0		μA	
Temperature sensor operating current	ITMPS Note 1					75.0		μA	
LVD operating current	ILVD Notes 1, 7					0.08		μA	
Self- programming operating current	IFSP Notes 1, 9					2.50	12.20	mA	
BGO operating current	BGO Notes 1, 8					2.50	12.20	mA	
LCD operating current	LCD1 Notes 11, 12	External resistance	e division method	$V_{DD} = EV_{DD} = 5.0 V$ $V_{L4} = 5.0 V$		0.04	0.2	μA	
	ILCD2 Note 11	Internal voltage bo	osting method	V _{DD} = EV _{DD} = 5.0 V V _{L4} = 5.1 V (VLCD = 12H)		1.12	3.7	μA	
				V _{DD} = EV _{DD} = 3.0 V V _{L4} = 3.0 V (VLCD = 04H)		0.63	2.2	μA	
ILCD3 Note 11		Capacitor split met	hod	$V_{DD} = EV_{DD} = 3.0 V$ $V_{L4} = 3.0 V$		0.12	0.5	μA	
SNOOZE	ISNOZ Note 1	ADC operation	peration The mode is performed ^{Note}			0.50	1.10		
operating current			The A/D conversion performed, Low vot AV _{REFP} = V _{DD} = 3.0	oltage mode,		1.20	2.04	mA	
		CSI/UART operation	on			0.70	1.54		

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

(3/3)

(Note, Caution and Remark are lisited on the next page)

- **Notes 1.** Current flowing to the V_{DD} .
 - 2. When high-speed on-chip oscillator and high-speed system clock are stopped.
 - 3. Current flowing only to the RTC (not including the operating current of the low-speed on-chip oscillator and XT1 oscillator). The supply current value of the RL78 microcontrollers is the sum of IDD1, or IDD2 and IRTC when RTC is operating in operation mode or HALT mode. Add IFIL to the above value when using the low-speed on-chip oscillator. The operating current of the RTC is included when IDD2 operates with the subsystem clock.
 - 4. Current flowing only to the 12-bit interval timer (not including the operating current of the low-speed on-chip oscillator and XT1 oscillator). The supply current value of the RL78 microcontrollers is the sum of IDD1, or IDD2 and Irr when the 12-bit interval timer is operating in operation mode or HALT mode. Add IFIL to the above value when using the low-speed on-chip oscillator.
 - 5. Current flowing only to the WDT (including the operating current of the low-speed on-chip oscillator). The supply current value of the RL78 microcontrollers is the sum of IDD1, or IDD2 and IWDT when the WDT is operating in operation mode or HALT mode. Add IFIL to the above value when using the low-speed on-chip oscillator.
 - 6. Current flowing only to the A/D converter. The supply current value of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter is operating in operation mode or the HALT mode.
 - 7. Current flowing only to the LVD circuit. The supply current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is operating.
 - 8. Current flowing during data flash programming.
 - 9. Current flowing during self-programming.
 - 10. For shift time to the SNOOZE mode, see 18.3.3 SNOOZE mode.
 - **11.** Current flowing only to the LCD controller/driver. The supply current value of the RL78 microcontrollers is the sum of the LCD operating current (ILCD1, ILCD2 or ILCD3) to the supply current (IDD1, or IDD2) when the LCD controller/driver is operating in operation mode or HALT mode. Not including the current that flows to the LCD panel.

The TYP. value and MAX. value are following conditions.

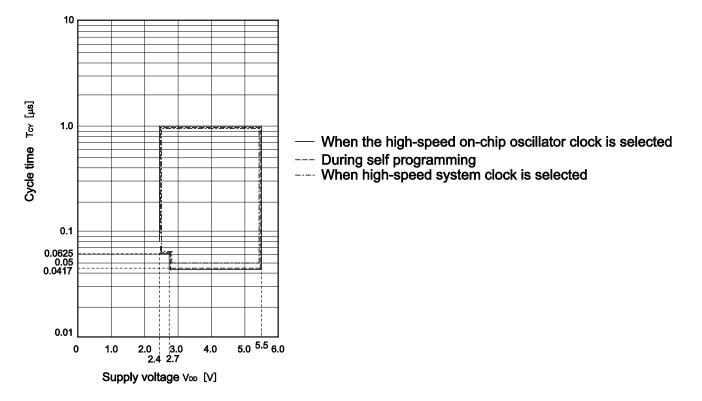
- When fsub is selected for system clock, LCD clock = 128 Hz (LCDC0 = 07H)
- 4-Time-Slice, 1/3 Bias Method
- **12.** Not including the current that flows to the external divider resistor when the external resistance division method is used.
- **Remarks 1.** fil: Low-speed on-chip oscillator clock frequency
 - 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
 - 3. fclk: CPU/peripheral hardware clock frequency
 - 4. Temperature condition of the TYP. value is T_A = 25°C

31.4 AC Characteristics

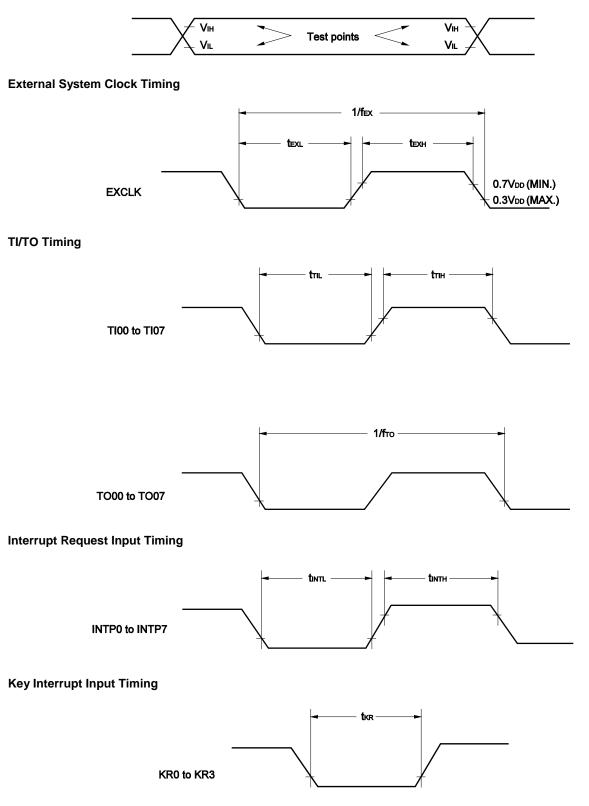
31.4.1 Basic operation

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

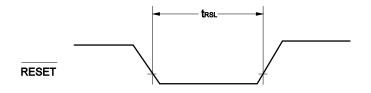
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main	HS (high-speed	$2.7 V \le V_{DD} \le 5.5 V$	0.04167		1	μS
instruction execution time)		system clock (fmain) operation	main) mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
		Subsystem operation	clock (fsuв)	$2.4 V \leq V_{DD} \leq 5.5 V$	28.5	30.5	31.3	μS
		In the self	HS (high-speed	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$	0.04167		1	μS
		programmin g mode	main) mode	$2.4 V \le V_{DD} < 2.7 V$	0.0625		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}}$	≤ 5.5 V		1.0		20	MHz
frequency		$2.4~V \leq V_{\text{DD}}$	< 2.7 V		1.0		16	MHz
	fexs				32		35	kHz
External main system clock input	texh, texl	$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V \\ \\ 2.4 \ V \leq V_{\text{DD}} < 2.7 \ V \end{array}$			24			ns
high-level width, low-level width					30			ns
	texhs, texls				13.7			μS
TI00 to TI07 input high-level width, low-level width	tтıн, tтı∟				1/fмск+10			ns
TO00 to TO07 output frequency	fто	HS (high-sp		$\leq EV_{DD} \leq 5.5 \text{ V}$			16	MHz
		main) mode	2.7 V	\leq EV _{DD} < 4.0 V			8	MHz
			2.4 V	\leq EV _{DD} < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-sp		$\leq EV_{DD} \leq 5.5 V$			16	MHz
frequency		main) mode	2.7 V	\leq EV _{DD} < 4.0 V			8	MHz
			2.4 V	\leq EV _{DD} < 2.7 V			4	MHz
Interrupt input high-level width,	tinth,	INTP0	2.4 V	$\leq V_{DD} \leq 5.5 \text{ V}$	1			μS
low-level width	t intl	INTP1 to IN	TP7 2.4 V	$\leq EV_{DD} \leq 5.5 \text{ V}$	1			μS
Key interrupt input low-level width	t kr	KR0 to KR3	2.4 V	$\leq EV_{DD} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl				10			μS


Remark fmck: Timer array unit operation clock frequency

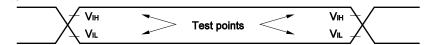
(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n). n: Channel number (n = 0 to 7))


Minimum instruction executing time when the CPU is operating with the main system clock

Tcy VS VDD (HS, high-speed main mode)



AC Timing Test Points



RESET Input Timing

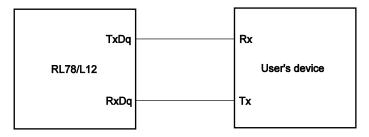
31.5 Peripheral Functions Characteristics

AC Timing Test Points

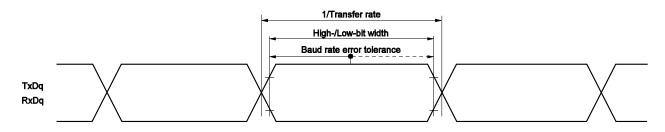
31.5.1 Serial array unit

(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$


Parameter	Symbol	Conditions HS (high-speed main) mode		Unit	
			MIN.	MAX.	
Transfer rate Note 1				fмск/12	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps

- Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.
 - 2. CPU/peripheral hardware clock (fcLK) in each operating mode is as below. HS (high-speed main) mode: fcLK = 24 MHz (2.7 V \leq VDD \leq 5.5 V)


16 MHz (2.4 V
$$\leq$$
 VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

- **Remarks 1.** q: UART number (q = 0), g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkCY1	$2.7 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	334 Note 1		ns
		$2.4 \text{ V} \leq EV_{\text{DD}} \leq 5$	5.5 V	500 ^{Note 1}		ns
SCKp high-/low-level width	tкн1, tк∟1	$4.0~V \le EV_{DD} \le 5$	5.5 V	tксү1/2 -24		ns
		$2.7 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	tксү1/2 —36		ns
		$2.4~V \le EV_{DD} \le 5$	5.5 V	tксү1/2 -76		ns
SIp setup time (to $\overline{\text{SCKp}} \uparrow$) Note 2	tsik1	$2.7 \text{ V} \leq EV_{\text{DD}} \leq 5$	5.5 V	66		ns
		$2.4 \text{ V} \leq EV_{DD} \leq 5$	5.5 V	113		ns
SIp hold time (from $\overline{\text{SCKp}} \uparrow$) Note 2	tksi1	$2.4 \text{ V} \le \text{EV}_{\text{DD}} \le 5$	5.5 V	38		ns
Delay time from $\overline{SCKp} \downarrow$ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note 4}	$2.4~V \le EV_{\text{DD}} \le 5.5~V$		50	ns

Notes 1. The value must also be equal to or more than 4/fmck.

2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time become "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the $\overline{\text{SCKp}}$ and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

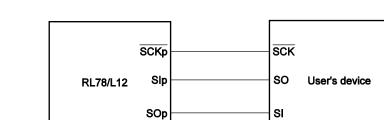
Remarks 1. p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),

g: PIM and POM numbers (g = 1)

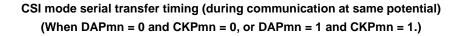
 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

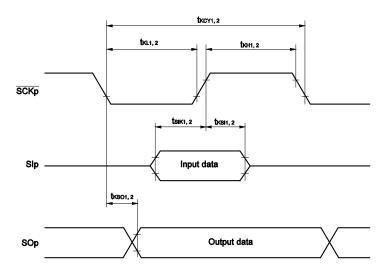
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

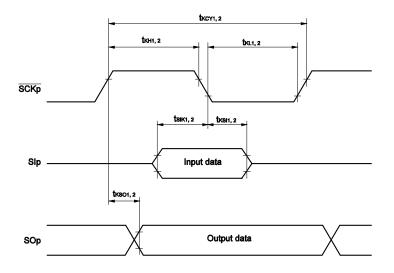
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

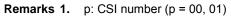

Parameter	Symbol	0	Conditions	HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 4	tkCY2	$4.0 \ V \le EV_{DD} \le 5.5$	5 V 20 MHz < fмск	16/fмск		ns
			$f_{MCK} \le 20 \ MHz$	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}$) V 16 MHz < fмск	16/fмск		ns
			$f_{MCK} \le 16 MHz$	12/fмск		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 5.5 \text{ V}$		12/fмск and 1000		ns
SCKp high-/low-level width	tкн2,	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5$	5.5 V	tксү2/2 –14		ns
	tĸ∟2	$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V}$		tксү2/2 –16		ns
		$2.4~V \leq EV_{\text{DD}} < 2.7~V$		tксү2/2 –36		ns
SIp setup time	tsik2	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск+40		ns
(to SCKp↑) Note 1		$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 2.7 \text{ V}$		1/fмск+60		
SIp hold time (from $\overline{SCKp}^{\uparrow}$) Note 1	tksi2	$2.4~V \leq EV_{\text{DD}} \leq 5.5~V$		1/fмск+62		ns
Delay time from SCKp↓ to SOp output ^{Note 2}	tkso2	C = 30 pF ^{Note 3}	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V$		2/fмск+66	ns
			$2.7~V \leq EV_{\text{DD}} < 4.0~V$		2/fмск+66	ns
			$2.4~V \leq EV_{\text{DD}} < 2.7~V$		2/fмск+113	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time become "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to Sop output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 3. C is the load capacitance of the SOp output lines.
 - 4. Transfer rate in the SNOOZE mode is MAX 1 Mbps.


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).


- **Remarks 1.** p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))




CSI mode connection diagram (during communication at same potential)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

2. m: Unit number, n: Channel number (mn = 00, 01)

Parameter	Symbol	Conditions			HS (high-speed main) mode		Unit
					MIN.	MAX.	
Transfer rate		reception	$4.0 V \le EV_{DD} \le 5.5 V$, $2.7 V \le V_b \le 4.0 V$			f _{MCK} /12 Note1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.7 V \le EV_{DD} < 4.0 V$, $2.3 V \le V_b \le 2.7 V$			f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note 2}$		2.0	Mbps
			$2.4 V \le EV_{DD} < 3.3 V$, $1.6 V \le V_b \le 2.0 V$			f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}$ Note 2		2.0	Mbps

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. CPU/peripheral hardware clock (fcLK) in each operating mode is as below.

- HS (high-speed main) mode: fcLk = 24 MHz (2.7 V \leq VDD \leq 5.5 V) 16 MHz (2.4 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about V_{IH} and V_{IL}, refer to the DC characteristics when the TTL input buffer is specified.
- **Remarks 1.** V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0), g: PIM and POM number (g = 1)

3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit	
					MIN.	MAX.	
Transfer rate		transmission	$4.0~V \leq EV_{\text{DD}} \leq 5.5~V,$			Note 1	bps
			$2.7~V \leq V_b \leq 4.0~V$	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.0 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD}} < 4.0 \text{ V},$			Note 3	bps
			$2.3~V \leq V_b \leq 2.7~V$	Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ $V_b = 2.3 \text{ V}$		1.2 ^{Note 4}	Mbps
			$2.4 \text{ V} \leq \text{EV}_{\text{DD}} < 3.3 \text{ V},$			Note 5	bps
			$1.6 V \le V_b \le 2.0 V$	Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω V _b = 1.6 V		0.43 Note 6	Mbps

(4) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode) (2/2)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 \,[\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **2.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EV_{DD} < 4.0 V and 2.3 V \leq V_b \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

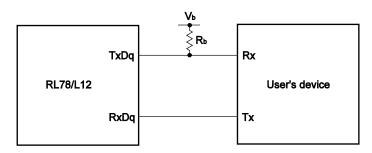
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides.
- **4.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

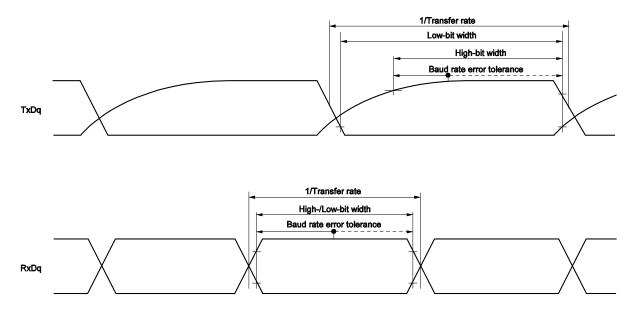
5. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EV_{DD} < 3.3 V and 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate = $\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$ [bps]


Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.


- **6.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about V_{IH} and V_{IL}, refer to the DC characteristics when the TTL input buffer is specified.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remarks 1. R_b[Ω]:Communication line (TxDq) pull-up resistance, V_b[V]: Communication line voltage

2. q: UART number (q = 0), g: PIM and POM number (g = 1)

3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/2)

 $(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EV_{DD} = V_{DD} \le 5.5 \text{ V}, \text{ Vss} = EV_{SS} = 0 \text{ V})$

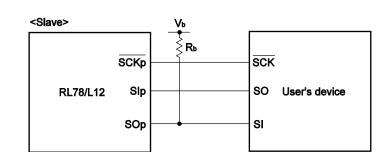
Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tксү1 ≥ 4/fc∟к	$\label{eq:VD} \begin{split} 4.0 \ V \leq EV_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{split}$	600		ns
			$\label{eq:linear} \begin{split} & 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$	600		ns
			$\label{eq:linear} \begin{split} & 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	2300		ns
SCKp high-level width tkh1				tксү1/2 –150		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 -340		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3$ $C_b = 30 \text{ pF}, R_b = 3$	3.3 V, 1.6 V ≤ Vь ≤ 2.0 V, = 5.5 kΩ	tксү1/2 –916		ns
SCKp low-level width	t ĸ∟1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		tkcy1/2 -24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tkcy1/2 -36		ns
			$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$			ns

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52-pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about V_{IH} and V_{IL}, refer to the DC characteristics when the TTL input buffer is specified.

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/2)

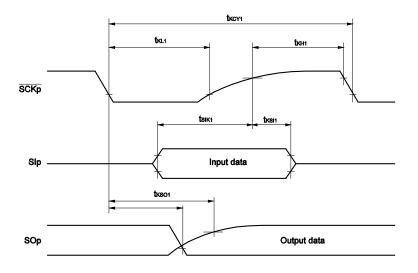
 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

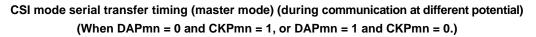
Parameter	Symbol	Conditions	HS (high-spee	ed main) mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	162		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	354		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	958		ns
SIp hold time (from <u>SCKp</u> ↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq E V_{DD} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.7 \ V \leq E V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	t кso1	$\begin{array}{l} \mbox{4.0 V} \le EV_{DD} \le 5.5 \ \mbox{V}, \mbox{2.7 V} \le V_b \le 4.0 \ \mbox{V}, \\ \mbox{C}_b = 30 \ \mbox{pF}, \ \mbox{R}_b = 1.4 \ \mbox{k} \Omega \end{array}$		200	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		390	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		966	ns
	tsiki	$\begin{array}{l} \mbox{4.0 V} \le EV_{DD} \le 5.5 \ \mbox{V}, \mbox{2.7 V} \le V_b \le 4.0 \ \mbox{V}, \\ \mbox{C}_b = 30 \ \mbox{pF}, \ \mbox{R}_b = 1.4 \ \mbox{k}\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	220		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} \mbox{4.0 V} \le EV_{DD} \le 5.5 \ \mbox{V}, \mbox{2.7 V} \le V_b \le 4.0 \ \mbox{V}, \\ \mbox{C}_b = 30 \ \mbox{pF}, \ \mbox{R}_b = 1.4 \ \mbox{k}\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} \mbox{4.0 V} \le \mbox{EV}_{\mbox{DD}} \le \mbox{5.5 V}, \mbox{2.7 V} \le \mbox{V}_{\mbox{b}} \le \mbox{4.0 V}, \\ \mbox{C}_{\mbox{b}} = \mbox{30 pF}, \mbox{R}_{\mbox{b}} = \mbox{1.4 k} \Omega \end{array}$		50	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		50	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		50	ns

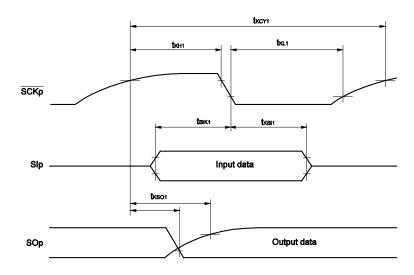

(Note, Caution and Remark are listed on the next page.)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

- **2.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance (32-pin to 52pin products)/EV_{DD} tolerance (64-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about V_H and V_{IL}, refer to the DC characteristics when the TTL input buffer is specified.




CSI mode connection diagram (during communication at different potential)

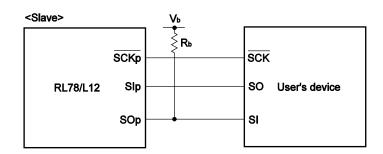

- **Remarks 1.** R_b[Ω]:Communication line (SCKp, SOp) pull-up resistance, C_b[F]: Communication line (SCKp, SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1),
 g: PIM and POM number (g = 1)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

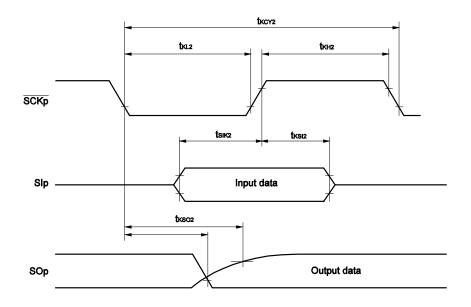
Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, \overline{SCKp} ... external clock input) (T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V)

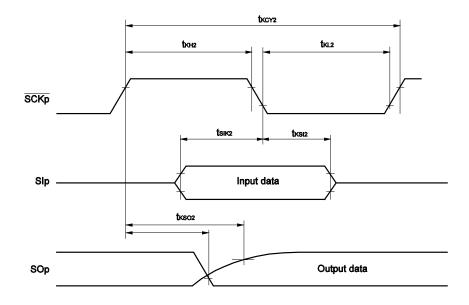
Parameter	Symbol	C	Conditions	HS (high-speed	d main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq EV_{DD} \leq 5.5~V,$	20 MHz < fмск ≤ 24 MHz	24/fмск		ns
		$2.7 \ V {\le} V_b {\le} 4.0 \ V$	8 MHz < fмск ≤ 20 MHz	20/f мск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск≤4 MHz	12/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 4.0 \text{ V},$	20 MHz < fмск ≤ 24 MHz	32/fмск		ns
		$2.3 V {\leq} V_b {\leq} 2.7 V$	16 MHz < fмск ≤ 20 MHz	28/f мск		ns
			8 MHz < fмск ≤ 16 MHz	24/fмск		ns
			4 MHz < fмск ≤ 8 MHz	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V},$	20 MHz < fмск ≤ 24 MHz	72/fмск		ns
		$1.6 \ V {\le} V_b {\le} 2.0 \ V$	16 MHz < fмск ≤ 20 MHz	64/fмск		ns
			8 MHz < fмск ≤ 16 MHz	52/f мск		ns
			4 MHz < fмск ≤ 8 MHz	32/fмск		ns
			fмск≤4 MHz	20/f мск		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \text{ V} \leq EV_{\text{DD}} \leq 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	tксү2/2 –24		ns
width	LKL2	$\begin{array}{c} 4.0 \ \forall \leq E V_{DD} \leq 5.5 \ \lor, \\ 2.7 \ \lor \leq V_b \leq 4.0 \ \lor \\ \end{array}$ $\begin{array}{c} 2.7 \ \lor \leq E V_{DD} < 4.0 \ \lor, \\ 2.3 \ \lor \leq V_b \leq 2.7 \ \lor \\ \end{array}$ $\begin{array}{c} 2.4 \ \lor \leq E V_{DD} < 3.3 \ \lor, \\ 1.6 \ \lor \leq V_b \leq 2.0 \ \lor \\ \end{array}$ $\begin{array}{c} 4.0 \ \lor \leq E V_{DD} < 3.3 \ \lor, \\ 1.6 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ \end{array}$ $\begin{array}{c} 2.7 \ \lor \leq E V_{DD} < 4.0 \ \lor, \\ 2.7 \ \lor \leq E V_{DD} < 4.0 \ \lor, \\ 2.7 \ \lor \leq E V_{DD} < 4.0 \ \lor, \\ 2.7 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.7 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 5.5 \ \lor, \\ 2.4 \ \lor \leq E V_{DD} < 4.0 \ \lor, \\ C_b = 30 \ pF, \ R_b = 2.7 \ \downarrow \\ 2.4 \ \lor \leq E V_{DD} < 4.0 \ \lor, \\ C_b = 30 \ pF, \ R_b = 2.7 \ \downarrow \\ 2.4 \ \lor \leq E V_{DD} < 4.0 \ \lor, \\ \end{array}$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	tксү2/2 –36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD}}$ < 3.3 V , $2.4 \text{ V} \leq 100 \text{ K}$	$1.6 \text{ V} \le \text{V}_{b} \le 2.0 \text{ V}$	tксү2/2 –100		ns
SIp setup time	tsik2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	1/fмск +40		ns
(to SCKp↑) Note 2		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}, 2$	$2.3~V \leq V_b \leq 4.0~V$	1/fмск +40		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, T$	$1.6 V \le V_b \le 2.0 V$	1/fмск +60	МАХ.	ns
SIp hold time	tksi2	$4.0 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	1/fмск +62		ns
(from SCKp↑) Note 2		$2.7 \text{ V} \le \text{EV}_{\text{DD}} < 5.5 \text{ V}, 2$	$2.3~V \leq V_b \leq 4.0~V$	1/fмск +62		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 3.3 \text{ V}, T$	$1.6 V \le V_b \le 2.0 V$	1/fмск +62		ns
Delay time from SCKp↓ to SOp output	tkso2		$\begin{array}{l} 4.0 \; V \leq EV_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		2/fмск +240	ns
Note 3		,	$2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		2/fмск +428	ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD}} < 4.0 \text{ V}, T$ $C_b = 30 \text{ pF}, R_b = 5.5 \text{ kg}$			2/fмск +1146	ns


(Note, Caution and Remark are listed on the next page.)

- Notes 1. Transfer rate in the SNOOZE mode is MAX. 1 Mbps.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time or SIp hold time become "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from $\overline{\text{SCKp}}^{\uparrow}$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin and the N-ch open drain output (VDD tolerance (32-pin to 52-pin products)/EVDD tolerance (64-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For details about VH and VL, refer to the DC characteristics when the TTL input buffer is specified.


CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b[Ω]:Communication line (SOp) pull-up resistance, C_b[F]: Communication line (SOp) load capacitance, V_b[V]: Communication line voltage
 - p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)
 - **3.** fmck: Serial array unit operation clock frequency


(Operation clock to be set by the serial clock select register m (SPSm) and the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark p: CSI number (p = 00, 01), m: Unit number (m = 0), n: Channel number (n = 0, 1), g: PIM and POM number (g = 1)

31.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +105°C, 2.4 V \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

Parameter	Symbol	С	onditions	HS (high-spee	ed main) mode	Unit	
				MIN.	MAX.		
SCLA0 clock frequency	fsc∟	Standard mode:	$2.7~V \le EV_{\text{DD}} \le 5.5~V$	0	100	kHz	
		fc∟κ ≥ 1 MHz	$2.4~V \le EV_{\text{DD}} \le 5.5~V$	0	100		
Setup time of restart condition	tsu:sta	$2.7 \text{ V} \le EV_{\text{DD}} \le 5.5$	5V	4.7		μS	
		$2.4~V \le EV_{\text{DD}} \le 5.5$	ΣV	4.7			
Hold time Note 1	t hd:sta	$2.7 \text{ V} \le EV_{\text{DD}} \le 5.5$	ΣV	4.0		μS	
		$2.4~V \leq EV_{DD} \leq 5.5~V$		4.0			
Hold time when SCLA0 = "L"	t LOW	$2.7~V \leq EV_{DD} \leq 5.5~V$		4.7		μS	
		$2.4~V \le EV_{\text{DD}} \le 5.5$	5V	4.7			
Hold time when SCLA0 = "H"	tніgн	HIGH $2.7 \text{ V} \leq \text{EV}_{\text{DD}} \leq 5.5 \text{ V}$		4.0		μS	
		$2.4~V \le EV_{\text{DD}} \le 5.5$	5V	4.0			
Data setup time (reception)	tsu:dat	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$		250		ns	
		$2.4~V \le EV_{\text{DD}} \le 5.5$	5 V	250			
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \le EV_{\text{DD}} \le 5.5$	5V	0	3.45	μS	
		$2.4~V \le EV_{\text{DD}} \le 5.5$	5 V	0	3.45		
Setup time of stop condition	tsu:sto	$2.7~V \le EV_{\text{DD}} \le 5.5$	5V	4.0		μS	
		$2.4~V \le EV_{\text{DD}} \le 5.5$	5V	4.0			
Bus-free time	t BUF	$2.7 \text{ V} \le EV_{\text{DD}} \le 5.5$	5V	4.7		μS	
		$2.4 \text{ V} \le EV_{\text{DD}} \le 5.5$	ΣV	4.7		1	

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

RemarkThe maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up
resistor) at that time in each mode are as follows.
Standard mode:C_b = 400 pF, $R_b = 2.7 \text{ k}\Omega$

(2) I^2C fast mode (T_A = -40 to +105°C, 2.4 V ≤ EV_{DD} = V_{DD} ≤ 5.5 V, V_{SS} = EV_{SS} = 0 V)

Parameter	Symbol		Conditions		HS (high-speed main) mode		
				MIN.	MAX.		
SCLA0 clock frequency	fsc∟	Fast mode:	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$	0	400	kHz	
		fclk ≥ 3.5 MHz	$2.4~V \le EV_{\text{DD}} \le 5.5~V$	0	400		
Setup time of restart condition	estart condition tsu:sta $2.7 \text{ V} \le \text{EV}_{\text{DD}} \le 5.5 \text{ V}$		5.5 V	0.6		μS	
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6			
Hold time Note 1	thd:sta	$2.7 \text{ V} \leq EV_{\text{DD}} \leq$	5.5 V	0.6		μS	
		$2.4~\text{V} \leq \text{EV}_{\text{DD}} \leq 5.5~\text{V}$		0.6			
Hold time when SCLA0 = "L"	t LOW	$2.7~V \leq EV_{\text{DD}} \leq$	$2.7~V \leq EV_{\text{DD}} \leq 5.5~V$			μS	
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	1.3			
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6		μS	
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	0.6			
Data setup time (reception)	tsu:dat	$2.7 \text{ V} \leq EV_{\text{DD}} \leq$	5.5 V	100		ns	
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	100			
Data hold time (transmission) ^{Note 2}	thd:dat	$2.7~V \leq EV_{\text{DD}} \leq$	5.5 V	0	0.9	μS	
		$2.4~V \leq EV_{\text{DD}} \leq$	5.5 V	0	0.9		
Setup time of stop condition	tsu:sto	$2.7 \ V \le EV_{DD} \le$	5.5 V	0.6		μS	
		$2.4~V \leq EV_{DD} \leq$	5.5 V	0.6			
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD} \leq$	5.5 V	1.3		μS	
		$2.4 V \le EV_{DD} \le$	5.5 V	1.3			

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

31.6 Analog Characteristics

31.6.1 A/D converter characteristics

A/D converter characteristics column

Input channel/Reference	Reference voltage (+) = AVREFP	Reference voltage (+) = V _{DD}	Reference voltage (+) = V _{BGR}		
voltage	Reference voltage (-) = AVREFM	Reference voltage (-) = Vss	Reference voltage (-) = AVREFM		
ANI0 to ANI1	_				
ANI16 to ANI23	Refer to 31.6.1 (2)		Refer to 31.6.1 (4)		
Internal reference voltage		Refer to 31.6.1 (3)			
Temperature sensor output	Refer to 31.6.1 (1)		-		
voltage					

(1) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target: internal reference voltage, temperature sensor output voltage

(T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, 2.4 V \leq AV_{REFP} \leq V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Conc	litions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		target: internal reference	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μS
		sensor output voltage, HS (high-speed main) mode 10-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μS
Zero-scale error ^{Notes 1, 2}	EZS		$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution AV _{REFP} = V _{DD} ^{Note 3}	$1.8~V \leq AV_{\text{REFP}} \leq 5.5~V$			±1.5	LSB
Analog input voltage	Vain	Internal reference voltage out 2.4 V \leq VDD \leq 5.5 V, HS (high-		VBGR ^{Note 4}			V
		Temperature sensor output volta 2.4 V \leq VDD \leq 5.5 V, HS (high-sp	•	VTMPS25 Note 4			V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AVREFP is smaller than VDD (AVREFP < VDD), the MAX. values are as follows; Overall error: Add or subtract 1.0 LSB to or from the MAX. value when AVREFP = VDD. Zero-scale error or full-scale error: Add or subtract 0.05%FSR to or from the MAX. value when AVREFP = VDD. Integral linearity error or differential linearity error: Add or subtract 0.5 LSB to or from the MAX. value when AVREFP = VDD.
- 4. Refer to 31.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When AVREF (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target: ANI16 to ANI23

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Co	nditions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V \text{DD} \le 5.5~V$	2.125		39	μs
		AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		μS	
Zero-scale error Notes 1, 2	EZS	10-bit resolution AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±0.35	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = E _{VDD} =V _{DD} ^{Note 3}	$2.4~V \leq AV_{\text{REFP}} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI23		0		AVREFP and EVDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. When AVREFP is smaller than VDD (AVREFP < VDD), the MAX. values are as follows;

Overall error: Add or subtract 4.0 LSB to or from the MAX. value when AVREFP = VDD.

Zero-scale error or full-scale error: Add or subtract 0.20%FSR to or from the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error or differential linearity error: Add or subtract 2.0 LSB to or from the MAX. value when $AV_{REFP} = V_{DD}$.

(3) When AV_{REF (+)} = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), AV_{REF (-)} = V_{SS} (ADREFM = 0), target: ANI0, ANI1, ANI16 to ANI23, internal reference voltage, temperature sensor output voltage

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{V}_{DD}, \text{Reference voltage (-)} $
= Vss)

Parameter	Symbol	Condi	tions	MIN.	TYP.	MAX.	Unit
Resolution	Res			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μS
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μS
		target: internal reference	$2.7~V \leq V \text{DD} \leq 5.5~V$	3.5625		39	μS
		voltage, temperature sensor output voltage	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
		HS (high-speed main) mode					
Zero-scale error Notes 1, 2	EZS	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	VAIN	ANIO, ANI1		0		Vdd	V
		ANI16 to ANI23		0		EVDD	V
		Internal reference voltage output 2.4 V \leq VDD \leq 5.5 V, HS (high-s		V _{BGR} Note 3		V	
		Temperature sensor output volt 2.4 V \leq VDD \leq 5.5 V, HS (high-s	•	١	/TMPS25 Note	V	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 31.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When AVREF (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), AVREF (-) = AVREFM/ANI1 (ADREFM = 1), target : ANI0, ANI16 to ANI23

(T_A = -40 to +105°C, 2.4 V \leq EV_{DD} = V_{DD} \leq 5.5 V, Vss = EVss = 0 V, Reference voltage (+) = V_{BGR}^{Note 3}, Reference voltage (-) = AV_{REFM}^{Note 4} = 0 V) (HS (high-speed main) mode)

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
Resolution	Res				8		bit
Conversion time	t CONV	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution	$2.4~V \le V \text{DD} \le 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V \text{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		$V_{\text{BGR}}^{\text{Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. Refer to 31.6.2 Temperature sensor/internal reference voltage characteristics.
- 4. When the reference voltage (-) = VSS, the MAX. values are as follows;

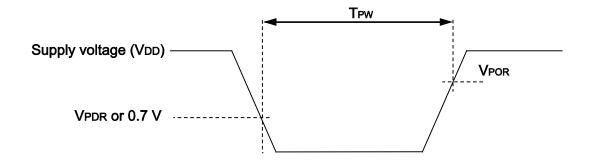
Zero-scale error: Add or subtract 0.35%FSR to or from the MAX. value when the reference voltage (–) = AV_{REFM} .

Integral linearity error: Add or subtract 0.5 LSB to or from the MAX. value when the reference voltage (–) = AV_{REFM} .

Integral linearity error or differential linearity error: Add or subtract 0.2 LSB to or from the MAX. value when the reference voltage (-) = AV_{REFM}.

31.6.2 Temperature sensor/internal reference voltage characteristics

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T_A = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs


(T_A = -40 to $+105^{\circ}$ C, 2.4 V \leq = EV_{DD} = V_{DD} \leq 5.5 V, V_{SS} = EV_{SS} = 0 V) (HS (high-speed main) mode)

31.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	Tpw		300			μS

Note: Minimum pulse width is required to power-on reset when VDD is smaller than VPDR. When RL78 microcontroller is in STOP mode, or the main system clock (fmain) is stopped by setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC), the minimum pulse width is required to power-on reset from when VDD falls below 0.7 V and until VDD exceeds VPOR.

31.6.4 LVD circuit characteristics

(TA = -40 to +105°C, VPDR \leq EVDD = VDD \leq 5.5 V, Vss = EVss = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
voltage			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pu	lse width	t∟w		300			μS
Detection de	elay time					300	μs

LVD Detection Voltage of Interrupt & Reset Mode

1	T _A = -40 to +105°C	VPDR < FVDD =	- Vnn < 5 5 V	$V_{SS} = FV_{SS} = 0 V$
	TA = -70 10 + 100 0	, VFDK <u>s</u> evdd -	- • • • • • • • • • • • • • • • • • • •	$v_{33} = Lv_{33} = 0 v_{j}$

Parameter	Symbol		Cond	litions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDD0	Vpoc2,	VPOC1, VPOC0 = 0, 1, 1	, falling reset voltage	2.64	2.75	2.86	V
mode	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V	
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

31.6.5 Supply voltage rise time

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to retain an internal reset status by the LVD circuit or an external reset until VDD reaches the operating voltage range described in 31.4 AC Characteristics.

31.7 LCD Characteristics

31.7.1 Resistance division method

(1) Static display mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \text{ }^{Note} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.0		Vdd	V

Note Must be 2.4 V or higher.

(2) 1/2 bias method, 1/4 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.7		Vdd	V

(3) 1/3 bias method

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, V_{L4} \text{ (MIN.)} \le V_{DD} \le 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
LCD drive voltage	VL4		2.5		VDD ^{Note}	V

Note 5.5 V (MAX.) when driving a memory-type liquid crystal (the MLCDEN bit of the MLCD register = 1).

31.7.2 Internal voltage boosting method

(1) 1/3 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
LCD output voltage variation range	VL1	C1 to C4 ^{Note 1}	VLCD = 04H	0.90	1.00	1.08	V
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V
			VLCD = 06H	1.00	1.10	1.18	V
			VLCD = 07H	1.05	1.15	1.23	V
			VLCD = 08H	1.10	1.20	1.28	V
			VLCD = 09H	1.15	1.25	1.33	V
			VLCD = 0AH	1.20	1.30	1.38	V
		1	VLCD = 0BH	1.25	1.35	1.43	V
			VLCD = 0CH	1.30	1.40	1.48	V
			VLCD = 0DH	1.35	1.45	1.53	V
			VLCD = 0EH	1.40	1.50	1.58	V
			VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V
			VLCD = 11H	1.55	1.65	1.73	V
			VLCD = 12H	1.60	1.70	1.78	V
			VLCD = 13H	1.65	1.75	1.83	V
Doubler output voltage	VL2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	2 V _{L1} -0.1	2 VL1	2 VL1	V
Tripler output voltage	VL4	C1 to C4 ^{Note 1} = 0.47 μ F		3 V∟1 –0.15	3 VL1	3 VL1	V
Reference voltage setup time Note 2	tvwait1			5			ms
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C4 ^{Note 1} =	0.47 <i>μ</i> F	500			ms

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between VL2 and GND

C4: A capacitor connected between VL4 and GND

C1 = C2 = C3 = C4 = 0.47 μF±30 %

2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

(2) 1/4 bias method

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Cor	ditions	MIN.	TYP.	MAX.	Unit	
LCD output voltage variation range	VL1 Note 4	C1 to C5 Note 1	VLCD = 04H	0.90	1.00	1.08	V	
		= 0.47 <i>µ</i> F	VLCD = 05H	0.95	1.05	1.13	V	
			VLCD = 06H	1.00	1.10	1.18	V	
			VLCD = 07H	1.05	1.15	1.23	V	
			VLCD = 08H	1.10	1.20	1.28	V	
			VLCD = 09H	1.15	1.25	1.33	V	
			`	VLCD = 0AH	1.20	1.30	1.38	V
			VLCD = 0BH	1.25	1.35	1.43	V	
			VLCD = 0CH	1.30	1.40	1.48	V	
			VLCD = 0DH	1.35	1.45	1.53	V	
		VLCD = 0EH	1.40	1.50	1.58	V		
				VLCD = 0FH	1.45	1.55	1.63	V
			VLCD = 10H	1.50	1.60	1.68	V	
			VLCD = 11H	1.55	1.65	1.73	V	
			VLCD = 12H	1.60	1.70	1.78	V	
			VLCD = 13H	1.65	1.75	1.83	V	
Doubler output voltage	VL2	C1 to C5 ^{Note 1} =	0.47 <i>μ</i> F	2 VL1-0.08	2 VL1	2 VL1	V	
Tripler output voltage	VL3	C1 to C5 ^{Note 1} =	0.47 μF	3 VL1-0.12	3 VL1	3 VL1	V	
Quadruply output voltage	VL4 Note 4	C1 to C5 ^{Note 1} =	0.47 μF	4 VL1-0.16	4 VL1	4 V _{L1}	V	
Reference voltage setup time Note 2	tvwait1			5			ms	
Voltage boost wait time ^{Note 3}	tvwait2	C1 to C5 ^{Note 1} =	0.47 μF	500			ms	

Notes 1. This is a capacitor that is connected between voltage pins used to drive the LCD.

C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between $V_{\mbox{\tiny L1}}$ and GND

C3: A capacitor connected between V_{L2} and GND

C4: A capacitor connected between V_{L3} and GND

C5: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = C5 = 0.47 μ F±30 %

2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal voltage boosting method is selected [by setting the MDSET1 and MDSET0 bits of the LCDM0 register to 01B] if the default value reference voltage is used) until voltage boosting starts (VLCON = 1).

3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).

4. Make sure to set V_{L4} to 5.5 V or less.

31.7.3 Capacitor split method

1/3 bias method

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
VL4 voltage	VL4	C1 to C4 = 0.47 μ F ^{Note 2}		Vdd		V
VL2 voltage	VL2	C1 to C4 = 0.47 μ F ^{Note 2}	2/3 V∟₄ –0.1	2/3 VL4	2/3 V∟₄ +0.1	V
V∟1 voltage	VL1	C1 to C4 = 0.47 μ F ^{Note 2}	1/3 V _{L4} -0.1	1/3 VL4	1/3 V∟₄ +0.1	V
Capacitor split wait time ^{Note 1}	tvwait		100			ms

Notes 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
2. This is a capacitor that is connected between voltage pins used to drive the LCD.

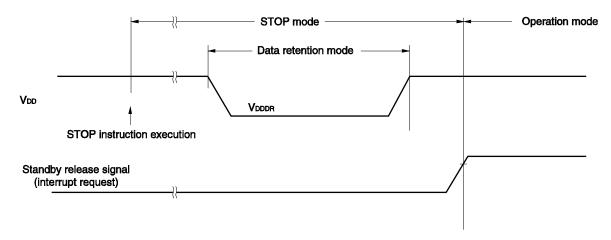
C1: A capacitor connected between CAPH and CAPL

C2: A capacitor connected between VL1 and GND

C3: A capacitor connected between $V_{\mbox{\tiny L2}}$ and GND

C4: A capacitor connected between $V_{{\scriptscriptstyle L4}}$ and GND

C1 = C2 = C3 = C4 = 0.47 μ F ± 30 %



31.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

31.9 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{\text{DD}} = \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = \text{EV}_{\text{SS}} = 0 \text{ V})$

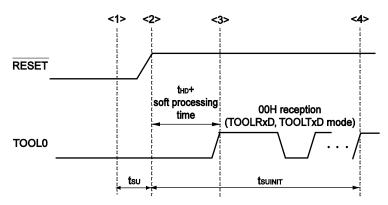
Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
System clock frequency	fськ	$1.8~V \le V \text{DD} \le 5.5~V$	$.8 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$			24	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	T _A = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year	T _A = 25°C		1,000,000		
		Retained for 5 years	T _A = 85°C	100,000			
		Retained for 20 years	T _A = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite.

- The retaining years are until next rewrite after the rewrite.
- 2. When using flash memory programmer and Renesas Electronics self programming library
- 3. This characteristic indicates the flash memory characteristic and based on Renesas Electronics reliability test.

Remark When updating data multiple times, use the flash memory as one for updating data.

31.10 Dedicated Flash Memory Programmer Communication (UART)


$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EV}_{DD} = \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		When flash memory is programming	115,200		1,000,000	bps

31.11 Timing for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when a pin reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the pin reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until a pin reset ends	ts∪	POR and LVD reset must end before the pin reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (except flash memory firmware processing time)	tнd	POR and LVD reset must end before the pin reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

- <2> The pins reset ends. (POR and LVD reset must end before the pin reset ends.)
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and completion of the baud rate setting
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the reset ends.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends (MIN. 10 μs)
 - thd: How long the TOOL0 pin is kept at the low level from after an external reset ends (except flash memory firmware processing time)

