1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

| Product
 Category | MPU/MCU | Document
 No. | TN-RL*-A004C/E | Rev. | 3.00 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Title | Correction for Incorrect Description Notice RL78/G14
 Descriptions in the User's Manual: Hardware Rev. 1.00
 Changed | Information
 Category | Technical Notification | | |

This document describes misstatements found in the RL78 User's Manual: Hardware Rev.1.00 (R01UH0186EJ0100).

Corrections

Applicable Item	Applicable Page	Contents
Incorrect descriptions of reset processing time/standby mode release time	Pages 1049, 1052 to $1055,1060,1061$, 1072,1073	Incorrect descriptions revised
27.3.6 Invalid memory access detection function	Page 1105	Incorrect descriptions revised
Cautions of flash memory programming by self-programming	Page 1142	Incorrect descriptions revised

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

No.	Corrections and Applicable Items			Pages in this document for corrections
	Document No.	English	R01UH0186EJ0100	
1	Specifications of the on-chip oscillator characteristics in the Electrical specifications chapter		Page 1179	Page 4
2	Incorrect descriptions of connection of unused pins of P60 to P63 in Table 2-3 in the Pin functions chapter		Page 83	Page 5
3	Explanations of the timer RD status register		Pages 470, 472	Pages 6 to 8
4	Explanations of the timer RD interrupt		Page 518	Pages 9, 10
5	Explanations of the timer RG status register		Page 534	Pages 11, 12
6	Explanations of the timer RG interrupt		Page 562	Pages 13, 14
7	Descriptions in the comparator block diagram		Page 675	Pages 15, 16
8	Cautions of the high-speed on-chip oscillator frequency select register (HOCODIV)		Page 284	Page 17
9	Incorrect descriptions of reset processing time/standby mode release time		$\begin{aligned} & \hline \text { Pages } 1048 \text { to } 1050, \\ & 1052 \text { to, } 1055,1060, \\ & 1061,1072,1073 \\ & \hline \end{aligned}$	Page 18
10	Cautions of A/D converter mode register 0 (ADM0)		Page 613	Page 19
11	Incorrect descriptions of caution on A/D conversion time selection		Pages 616 to 623	Page 20
12	Explanations when using SNOOZE mode in the A/D converter chapter		$\begin{aligned} & \text { Pages 625, 626, and } \\ & 658 \end{aligned}$	Pages 21 to 23
13	Explanations when using temperature sensor and internal reference voltage (1.45 V) of the A/D test function in the Safety functions chapter		Pages 655, 662	Pages 24, 25
14	Cautions when using SNOOZE mode in the serial array unit		Pages 786, 788	Page 26
15	Explanations of the power-on-reset circuit		Pages 1070, 1071	Page 27
16	Explanations of the A/D test function in the Safety functions chapter		Page 1109	Page 28
17	Explanations of the data flash in the Flash memory chapter		Page 1133	Page 29
18	Cautions of flash memory programming by self-programming		Page 1142	Page 29
19	Items of flash memory programming characteristics		Page 1231	Page 30
20	3.1.3 Internal data memory space		Page 105	Page 31
21	17. 7. 3 SNOOZE mode function		Page 847	Pages 32, 33
22	23.2.2 STOP mode		Pages 1050, 1052	Page 34
23	23.2.3 SNOOZE mode		Page 1055	Page 34
24	27.3.6 Invalid memory access detection function		Page 1105	Page 34
25	Figure 29-3 Format of Option Byte (000C2H/010C2H)		Page 1121	Page 35
26	34.4.1 Pin characteristics		Page 1181, 1182	Page 36
27	34.4.2 Supply current characteristics		Pages 1186 to 1195	Page 36
28	34.5 AC characteristics		Pages 1196 to 1197	Page 36
29	34.6.1 Serial array unit		Pages 1198 to 1221	Page 36
30	34.6.2 Serial interface IICA		Page 1222	Page 36
31	34.7.1 A/D converter characteristics		Pages 1223 to 1226	Page 36
32	34.7.2 Temperature Sensor/Internal Reference VoltageCharacteristics		Page 1227	Page 36
33	34.7.5 POR circuit characteristics		Page 1128	Page 36
34	Supply Voltage Rise Time		None	Page 37
35	34.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics		Page 1231	Page 37
36	Chapter 30 ELECTRICAL SPECIFICATIONS (G:TA $=-40$ to$+105^{\circ} \mathrm{C}$)		None	Page 37
37	Incorrect descriptions of reset processing time/standby mode release time		$\begin{aligned} & \text { Pages 1049, } 1052 \text { to } \\ & \text { 1055, 1060, 1061, } \\ & \text { 1072, 1073 } \end{aligned}$	Pages 38 to 47
38	27.3.6 Invalid memory access detection function		Page 1105	Pages 48, 49
39	Cautions of flash memory programming by self-programming		Page 1142	Page 50

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/G14 Incorrect description notice, issued document history

Document Number	Issue Date	Description
TN-RL*-A004A/E	Dec. 6, 2012	First edition issued Incorrect descriptions of No. 1 to No.19 revised
TN-RL*-A004B/E	July 4, 2013	Rev. 2.00 issued Revisions of No.20 to No.36 incorrect descriptions added
TN-RL*-A004C/E	Oct. 10,2013	Rev. 3.00 issued Incorrect descriptions of No.37 to No.39 revised (This notification)

1. Specifications of the on-chip oscillator characteristics in the Electrical specifications chapter fixed (page 1179)

Incorrect:
34.3.2 On-chip oscillator characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}\right)$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ${ }^{\text {Note } 1}$	fiH			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy ${ }^{\text {Note } 2}$		-20 to $+85^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	-1		+1	\%
			$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$	-5		+5	\%
		-40 to $-20^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	-1.5		+1.5	\%
			$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$	-5.5		+5.5	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Notes 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

When SSOP (30-pin), WQEN (32-40- 48-pin) FLGA (36-pin) LQFP (7×7) (48-pin), LQFP (10×10) ($52-\mathrm{pin}$), LQFP $(12 \times 12)(64-80-\mathrm{pin})$ LQFP $(14 \times 14)(80-100-\mathrm{pin})$ LQFP $(14 \times 20)(100-\mathrm{pin})$ products, these specifications show target values, which may change after device evaluation.

Correct:
34.3.2 On-chip oscillator characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}\right)$

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency ${ }^{\text {Note } 1}$	fiH			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy ${ }^{\text {Note } 2}$		-20 to $+85^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$	-1		+1	\%
			$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{dd}}<1.8 \mathrm{~V}$	-5		+5	\%
		-40 to $-20^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	-1.5		+1.5	\%
			$1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<1.8 \mathrm{~V}$	-5.5		+5.5	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Notes 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 in the HOCODIV register.
2. This table only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.
2. Incorrect descriptions of connection of unused pins of P60 to P63 in Table 2-3 in the Pin functions chapter revised (page 83)

Incorrect:
Table 2-3. Connection of Unused Pins (100-pin products) (2/3)

Pin Name	I/O Circuit Type	1/0	Recommended Connection of Unused Pins
(Omitted)			
P60/SCLA0	13-R	I/O	Input: Independently connect to $\mathrm{EV}_{\mathrm{DDO}}, \mathrm{EV}_{\mathrm{DD} 1}$ or $\mathrm{EV}_{\mathrm{Ss}}, \mathrm{EV}_{\mathrm{SS}} 1$ via a resistor. Output: Leave open.
P61/SDAA0			
P62/SCLA1			
P63/SDAA1			
P64/TI10/TO10	8-R		
P65/TI11/TO11			
P66/TI12/TO12			
P67/TI13/TO13			
(Omitted)			

Correct:
Table 2-3. Connection of Unused Pins (100-pin products) (2/3)

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
(Omitted)			
P60/SCLA0	13-R	I/O	Input: Connect these pins independently to EVdDo, EVDD1 or $E V$ sso, $E V_{s s 1}$ via a resistor.
P61/SDAA0			
P62/SCLA1			Output: Set 0 to the port output latch when using these pins left open. Set 1 to the port output latch when connecting these pins independently to EVDDo, EVDD1, or EVsso, EVss1 via a resistor.
P63/SDAA1			
P64/TI10/TO10	8-R		Input: Connect these pins independently to EVDDo, EVDD1 or $E V$ sso, $E V s s 1$ via a resistor. Output: Leave open.
P65/TI11/TO11			
P66/TI12/TO12			
P67/TI13/TO13			
(Omitted)			

3. Explanations of the timer RD status register added

Explanations of the timer RD status register added (pages 470, 472)

Incorrect:

Notes 1. The value after reset is undefined when FRQSEL4 $=1$ in the user option byte ($000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H}$) and TRD0EN $=0$ in the PER1 register. If it is necessary to read the initial value, set fcLk to fiH and TRDOEN $=1$ before reading. (Omitted)
4. The writing results are as follows:

- If the read value is 1 writing 0 to the bit sets it to 0.
- If the read value is 0 , the bit remains unchanged even if 0 is written to it. (Even if the bit is changed from 0 to 1 after reading and then 0 is written to it, it remains 1.)
- Writing 1 has no effect.

Correct:

Notes 1. The value after reset is undefined when FRQSEL4 $=1$ in the user option byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ and TRD0EN $=0$ in the PER1 register. If it is necessary to read the initial value, set fcLk to fiH and TRDOEN $=1$ before reading. (Omitted)
4. The writing results are as follows:

- Writing 1 has no effect.
- If the read value is 0 , the bit remains unchanged even if 0 is written to it. (Even if the bit is changed from 0 to 1 after reading and then 0 is written to it, it remains 1.)
- If the read value is 1 , writing 0 to the bit sets it to 0 . When status flags of interrupt sources (applicable status flags) of timer RD are set to 0 and their interrupts are disabled in timer RD interrupt enable register i (TRDIERi), use either one of the following methods (a) to (c).
(a) Set 00 H (all interrupts disabled) to timer RD interrupt enable register i (TRDIERi) and write 0 to applicable status flags.
(b) When there are bits set to 1 (interrupt-enabled) in timer RD interrupt enable register i (TRDIERi) and status flags of interrupt sources related to their bits are 0 , write 0 to applicable status flags.

Example: To clear the IMFB bit to 0 when bits IMIEA and OVIE are set to 1 (interrupt-enabled) and the IMIEB bit is set to 0 (interrupt-disabled).

Timer RD Interrupt Enable Register i (TRDIERi)

Timer RD Status Register i (TRDSRi)

As status flags (OVF, IMFA) corresponding to the bit which is set
to 1 (interrupt-enabled) are 0 , write 0 to the IMFB bit.
(Go on to the next page)
(c) When there are bits set to 1 (interrupt-enabled) in timer RD interrupt enable register i (TRDIERi) and status flags of interrupt sources related to their bits are 1 , write 0 to these status flags and applicable status flags at the same time.

Example: To clear the IMFB bit to 0 when the IMIEA bit is set to 1 (interrupt-enabled) and the IMIEB bit is set to 0 (interrupt-disabled).

Timer RD Interrupt Enable Register i (TRDIERi)
Interrupt-enabled

TRDIERi

Timer RD Status Register i (TRDSRi)

1 (interrupt-enabled) is 1 , write 0 to bits IMFB and IFMA at the same time.

4. Explanations of the timer RD interrupt added

Explanations of the timer RD interrupt added (page 518)

Incorrect:

Since the interrupt source (timer RD interrupt) is generated by a combination of multiple interrupt request sources for timer RD, the following differences from other maskable interrupts apply:

(Omitted)

- While multiple bits in the TRDIERi register are set to 1 , if the first request source is met and the TRDIFi bit is set to 1 , and then the next request source is met, the TRDIFi bit is cleared to 0 when the interrupt is acknowledged. However, if the previously met request source is cleared, the TRDIFi bit is set to 1 by the next generated request source.

Correct:

Since the interrupt source (timer RD interrupt) is generated by a combination of multiple interrupt request sources for timer RD, the following differences from other maskable interrupts excluding the timer RG interrupt apply:
(Omitted)

- While multiple bits in the TRDIERi register are set to 1 , if the first request source is met and the TRDIFi bit is set to 1 , and then the next request source is met, the TRDIFi bit is cleared to 0 when the interrupt is acknowledged. However, if the previously-met request source is cleared, the TRDIFi bit is set to 1 by the next generated request source.
- When status flags of interrupt sources (applicable status flags) of the timer RD are set to 0 and their interrupts are disabled in timer RD interrupt enable register i (TRDIERi), use either one of the following methods (a) to (c).
(a) Set 00 H (all interrupts disabled) to timer RD interrupt enable register i (TRDIERi) and write 0 to applicable status flags.
(b) When there are bits set to 1 (enabled) in timer RD interrupt enable register i (TRDIERi) and status flags of interrupt sources related to their bits are 0 , write 0 to applicable status flags.

Example: To clear the IMFB bit to 0 when bits IMIEA and OVIE are set to 1 (interrupt-enabled) and the IMIEB bit is set to 0 (interrupt-disabled).

Timer RD Status Register i (TRDSRi)

As status flags (OVF, IMFA) corresponding to the bit which
is set to 1 (interrupt-enabled) are 0 , write 0 to the IMFB bit.
(Go on to the next page)
(c) When there are bits set to 1 (interrupt-enabled) in timer RD interrupt enable register i (TRDIERi) and status flags of interrupt sources related to their bits are 1, write 0 to these status flags and applicable status flags at the same time.

Example: To clear the IMFB bit to 0 when the IMIEA is set to 1 (interrupt-enabled) and the IMIEB is set to 0
(interrupt-disabled).
 (interrupt-enabled) is 1 , write 0 to bits IMFB and IMFA at the same time.

5. Explanations of the timer RG status register added

Explanations of the timer RG status register added (page 534)

Incorrect:
Note 1. When the counter value of timer RG changes from FFFFH to 0000 H , the TRGOVF bit is set to 1 .
(Omitted)
Note 2. The writing results are as follows:

- If the read value is 1, writing 0 to the bit sets it to 0 .
- If the read value is 0 , the bit remains unchanged even if 0 is written to it. (Even if the bit is changed from 0 to 1.) After reading and then 0 is written to it, it remains 1.
- Writing 1 has no effect.

Correct:
Note 1. When the counter value of timer RG changes from FFFFH to 0000 H , the TRGOVF bit is set to 1 .
(Omitted)
Note 2. The writing results are as follows:

- Writing 1 has no effect.
- If the read value is 0 , the bit remains unchanged even if 0 is written to it. (Even if the bit is changed from 0 to 1 .)
- If the read value is 1 , writing 0 to the bit sets it to 0 . When status flags of interrupt sources (applicable status flags) of the timer RG are set to 0 and their interrupts are disabled in the timer RG interrupt enable register (TRGIER), use either one of the following methods (a) to (c).
(a) Set 00 H (all interrupts disabled) to timer RG interrupt enable register (TRGIER) and write 0 to applicable status flags.
(Go on to the next page)
(b) When there are bits set to 1 (interrupt-enabled) in timer RG interrupt enable register (TRGIER) and status flags of interrupt sources related to their bits are 0 , write 0 to applicable status flags.

Example: To clear the TRGIMFB bit to 0 when bits TRGIMIEA and TRGOVIE are set to 1 (interrupt-enabled) and the TRGIMIEB bit is set to 0 (interrupt-disabled)

Timer RG Interrupt Enable Register (TRGIER)

(c) When there are bits set to 1 (interrupt-enabled) in timer RG interrupt enable register (TRGIER) and status flags of interrupt sources related to their bits are 1 , write 0 to these status flags and applicable status flags at the same time.

Example: To clear the TRGIMFB bit to 0 when the TRGIMIEA bit is set to 1 (interrupt-enabled) and the TRGIMIEB bit is set to 0 (interrupt-disabled).

set to 1 (interrupt-enabled) is 1 , write 0 to bits TRGIMFB and
TRGIFMA at the same time.

6. Explanations of the timer RG interrupt added

Explanations of the timer RG interrupt added (Page 562)

Incorrect: Not applicable (new)
Correct:
9.4 Timer RG Interrupt

Timer RG generates the timer RG interrupt request from four sources. Table 9-16 lists the Registers Associated with Timer RG Interrupt and Figure 9-31 shows the Timer RG Interrupt Block Diagram.

Table 9-16 Registers Associated with Timer RG Interrupt

	Timer RG Status Register	Timer RG Interrupt Enable Register	Interrupt Request Flag (Register)	Interrupt Mask Flag (Register)	Priority Specification Flag (Register)
Timer RG	TRGSR	TRGIER	TRGIF (IF2H)	TRGMK (MK2H)	TRGPR0 (PR02H) TRGPR1 (PR12H)

Figure 9-31 Timer RG Interrupt Block Diagram

Since the interrupt source (timer RG interrupt) is generated by a combination of multiple interrupt request sources for timer RG, the following differences from other maskable interrupts excluding the timer RD interrupt apply:

- When a bit in the TRGSR register is 1 and the corresponding bit in the TRGIER register is 1 (interrupt-enabled), the TRGIF bit in the IF2H register is set to 1 (interrupt requested).
- If multiple bits in the TRGIER register are set to 1 , use the TRGSR register to determine the source of the interrupt request.
- Since the bits in the TRGSR register are not automatically set to 0 even if the interrupt is acknowledged, set the corresponding bit to 0 in the interrupt routine.
- While multiple bits in the TRGIER register are set to 1 , if the first request source is met and the TRGIF bit is set to 1 , and then the next request source is met, the TRGIF bit is cleared to 0 when the interrupt is acknowledged. However, if the previously-met request source is cleared, the TRGIF bit is set to 1 by the next generated request source.
- When status flags of interrupt sources (applicable status flags) of timer RG are set to 0 and their interrupts are disabled in the timer RG interrupt enable register (TRGIER), use either one of the following methods (a) to (c).
(a) Set 00 H (all interrupts disabled) to the TRGIER register and write 0 to applicable status flags.
(Go on to the next page)
(b) When there are bits set to 1 (interrupt-enabled) in timer RG interrupt enable register (TRGIER) and status flags of interrupt sources related to their bits are 0 , write 0 to applicable status flags.

Example: To clear the TRGIMFB bit to 0 when bits TRGIMIEA and TRGOVIE are set to 1 (interrupt-enabled) and the TRGIMIEB bit is set to 0 (interrupt-disabled).

Timer RG Status Register (TRGSR)
Bit to be cleared to 0 TRGSR

-	-	-	TRGDIRF
0	0	0	0

TRGOVF
0

TRGIMFB TRGIMFA

As status flags (TRGOVF, TRGIMFA) corresponding to

the bit which is set to 1 (interrupt-enabled) are 0 , write 0
to the TRGIMFB bit.
(c) When there are bits set to 1 (interrupt-enabled) in the timer RG interrupt enable register (TRGIER) and status flags of interrupt sources related to their bits are 1 , write 0 to these status flags and applicable status flags at the same time.

Example: To clear the TRGIMFB bit to 0 when the TRGIMIEA bit is set to 1 (interrupt-enabled) and the TRGIMIEB bit is set to 0 (interrupt-disabled).
 set to 1 (interrupt-enabled) is 1 , write 0 to bits TRGIMFB and TRGIFMA at the same time.

7. Descriptions in the comparator block diagram improved

Descriptions in the comparator block diagram improved (page 675)

Incorrect:
Figure 16-1 Comparator Block Diagram

Remarks: C1MON COMON C1VRF CQVRF C1WDE COWDE: Bits in the COMPMDR register
C1FCK1, C1FCKO C0FCK1, C0FCKO C1EDG C0EDG C1EPO COEPO: Bits in the COMPFIR register
SPDMD, C1PO, COPO, C1OE, COOE, C1IE, C0IE: Bits in the COMPOCR register

Correct:
Figure 16-1 Comparator Block Diagram

When setting either the COWDE bit or C1WDE bit, or both bits to 1 , this switch is turned ON, and the division resistor to generate the comparison voltage becomes enabled.

Remarks:
$\mathrm{n}=0,1$
CnMON, CnVRF, CnWDE, CnENB: Bits in the COMPMDR register CnFCK1, CnFCK0, CnEDG, CnEPO: Bits in the COMPFIR register

SPDMD, CnOP, CnOE, CnIE: Bits in the COMPOCR register

8. Cautions of the high-speed on-chip oscillator frequency select register (HOCODIV) revised (page 284)

Incorrect:
(8) High-speed on-chip oscillator frequency select register (HOCODIV)
(Omitted)
Caution 1. Set the HOCODIV register within the operable voltage range both before and after changing the frequency.
Caution 2. Use the device within the voltage of the flash operation mode set by the option byte (000C2H/010C2H) even after the frequency has been changed by using the HOCODIV register.

Option Byte ($000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ Value		Flash Operation Mode	Operating Frequency Range	Operating Voltage Range
CMODE1	CMODE2			
0	0	LV (low-voltage main) mode	1 to 4 MHz	1.6 to 5.5 V
1	0	LS (low-speed main) mode	1 to 8 MHz	1.8 to 5.5 V
1	1	HS (high-speed main) mode	1 to 16 MHz	2.4 to 5.5 V
			1 to 32 MHz	2.7 to 5.5 V

Caution 3. When setting of high-speed on-chip oscillator clock as system clock, the device operates at the old frequency for the duration of 3 clocks after the frequency value has been changed by using the HOCODIV register.
Caution 4. To change the frequency of the high-speed on-chip oscillator when X1 oscillation, external oscillation input or subclock is set for the system clock, stop the high-speed on-chip oscillator by setting bit 0 (HIOSTOP) of the CSC register to 1 and the change the frequency,

Correct:
(8) High-speed on-chip oscillator frequency select register (HOCODIV)
(Omitted)
Caution 1. When changing the frequency of the high-speed on-chip oscillator by the HOCODIV register, make sure the previously-set frequency and newly-set frequency fall within the operating frequency range for the flash operation mode set by the option byte $(000 \mathrm{C} 2 \mathrm{H})$.

Option Byte $(000 \mathrm{C} 2 \mathrm{H})$ Value		Flash Operation Mode		Operating Frequency Range
CMODE1	CMODE2		Operating Voltage Range	
0	0	LV (low-voltage main) mode	1 to 4 MHz	1.6 to 5.5 V
1	0	LS (low-speed main) mode	1 to 8 MHz	1.8 to 5.5 V
1	1	HS (high-speed main) mode	1 to 16 MHz	2.4 to 5.5 V
	1 to 32 MHz	2.7 to 5.5 V		

[^0]
9. Incorrect descriptions of reset processing time/standby mode release time revised

Incorrect descriptions of HALT mode release time revised (page 1048)

Incorrect:
Figure 23-3 HALT Mode Release by Interrupt Request Generation

or subsystem clock

Note Wait time for HALT mode release

- When vectored interrupt servicing is carried out Main system clock: 13 to 15 clock Subsystem clock (RTCLPC $=0$): 8 to 10 clock Subsystem clock (RTCLPC $=1$): 9 to 11 clock
- When vectored interrupt servicing is not carried out Main system clock: 8 to 9 clock
Subsystem clock (RTCLPC $=0$): 3 to 4 clock
Subsystem clock (RTCLPC $=1$) ; 4 to 5 clock

Correct:
Figure 23-3 HALT Mode Release by Interrupt Request Generation

or subsystem clock

Notes 1. For details of the standby release signal, see Figure 21-1
2. Wait time for HALT mode release

- When vectored interrupt servicing is carried out Main system clock: 15 to 16 clocks
Subsystem clock (RTCLPC = 0): 10 to 11 clocks
Subsystem clock (RTCLPC = 1): 11 to 12 clocks
- When vectored interrupt servicing is not carried out

Main system clock: 9 to 10 clocks
Subsystem clock (RTCLPC = 0): 4 to 5 clocks
Subsystem clock (RTCLPC = 1): 5 to 6 clocks

For details about incorrect descriptions in pages 1049, 1050, 1052 to 1055, 1060, 1061, 1072, and 1073, refer to No. 37 (pages 38 to 47) in this document.

10. Cautions of A/D converter mode register 0 (ADMO) added (page 613)

Incorrect:
(2) A/D converter mode register 0 (ADMO)
(Omitted)
Notes 1. For details of the FR2 to FR0, LV1, LV0 bits, and A/D conversion, see Table 14-3 A/D Conversion Time Selection.
2. While in the software trigger mode or hardware trigger wait mode, the ADCS bit can be used as a status flag for the conversion operation status. However, while in the hardware trigger no-wait mode, this bit cannot be used as a status flag.
3. While in the software trigger mode or hardware trigger no-wait mode, the operation of the A/D voltage comparator is controlled by the ADCS and ADCE bits, and it takes $1 \mu \mathrm{~s}$ from the start of operation for the operation to stabilize. Therefore, when the ADCS bit is set to 1 after 1μ s or more has elapsed from the time ADCE bit is set to 1 , the conversion result at that time has priority over the first conversion result. Otherwise, ignore data of the first conversion.

Correct:
(2) A/D converter mode register (ADM0)
(Omitted)
Notes

1. For details of the FR2 to FR0, LV1, LV0 bits, and A/D conversion, see Table 14-3 A/D Conversion Time Selection. (Deleted)
2. In software trigger mode or hardware trigger no-wait mode, the operation of the A/D voltage comparator is controlled by bits ADCS and ADCE, and it takes $1 \mu \mathrm{~s}$ from the start of operation for the operation to stabilize. Therefore, when the ADCS bit is set to 1 after 1μ s or more has elapsed from the time ADCE bit is set to 1 , the conversion result at that time has priority over the first conversion result. Otherwise, ignore data of the first conversion.

Cautions 1. Change bits ADMD, FR2 to FRO, LV1, and LVO while conversion is stopped (ADCS $=0$, ADCE $=0$).
2. Do not set the ADCS bit to 1 and the ADCE bit to 0 at the same time.
3. Do not change bits ADCS and ADCE from 0 to 1 at the same time using an 8-bit manipulation instruction.

Make sure to set these bits in the order shown in 14.7 A/D Converter Setup Flowchart.

11. Incorrect descriptions of caution on A/D conversion time selection revised (pages 616 to 623)

Incorrect:
Table 14-3 A/D Conversion Time Selection
(Omitted)
Cautions 1. When rewriting the FR2 to FRO LV1, and LVO bits to other than the same data stop A/D conversion once $(A D C S=0)$ beforehand.

Correct:
Table 14-3 A/D Conversion Time Selection
(Omitted)
Cautions 1. Rewrite bits FR2 to FR0, LV1, and LV0 to other than the same data while conversion is stopped (ADCS $=0$, ADCE $=0$).

12. Explanations when using SNOOZE mode in the A/D converter chapter added

Explanations of A/D converter mode register 2 (ADM2) added (pages 625, 626)

Incorrect:
(4) A / D converter mode register 2 (ADM2)
(Omitted)

ADREFP1	ADREFP0	Selection of the + side reference voltage source of the A/D converter
0	0	Supplied from VDD
0	1	Supplied from P20/AV $V_{\text {REFP/ANIO }}$
1	0	Supplied from the internal reference voltage $(1.45 \mathrm{~V})$
1	1	Setting prohibited

- When ADREFP1 or ADREFP0 bit is rewritten, this must be configured in accordance with the following procedures.
(1) Set ADCE $=0$
(2) Change the values of ADREFP1 and ADREFP0
(3) Stabilization wait time (A)
(4) Set ADCE = 1
(5) Stabilization wait time (B)

When ADREFP1 and ADREFPO are set to 1 and 0 the setting is changed to $A=1 \mu \mathrm{~s}, B=5 \mu \mathrm{~s}$. When ADREFP1 and ADREFP0 are set to 0 and 0 or 0 and 1 , A needs no wait and $B=1 \mu \mathrm{~s}$.

- When ADREFP1 and ADREFP0 are set to 1 and 0 , respectively, A/D conversion cannot be performed on the temperature sensor output.
Be sure to perform A/D conversion while ADISS $=0$.

AWC	Specification of the SNOOZE mode
0	Do not use the SNOOZE mode function.
1	Use the SNOOZE mode function.
When there is a hardware trigger signal in the STOP mode, the STOP mode is exited, and A/D conversion is performed without operating the CPU (the SNOOZE mode). - The SNOOZE mode function can only be specified when the high-speed on-chip oscillator clock is selected for the CPU/peripheral hardware clock (fcck). If any other clock is selected, specifying this mode is prohibited. - Using the SNOOZE mode function in the software trigger mode or hardware trigger no-wait mode is prohibited. - Using the SNOOZE mode function in the sequential conversion mode is prohibited. - When using the SNOOZE mode function, specify a hardware trigger interval of at least "A/D conversion time with stabilization wait time" listed for Table 14-3.	

Correct:

(4) A/D converter mode register 2 (ADM2)
(Omitted)

ADREFP1	ADREFP0	Selection of the + side reference voltage source of the A/D converter
0	0	Supplied from $V_{D D}$
0	1	Supplied from P20/AV REFP/ANIO $^{(1}$
1	0	Supplied from the internal reference voltage $(1.45 \mathrm{~V})^{\text {Note }}$
1	1	Setting prohibited

- When ADREFP1 or ADREFP0 bit is rewritten, this must be configured in accordance with the following procedures.
(1) Set ADCE $=0$
(2) Change the values of ADREFP1 and ADREFP0
(3) Stabilization wait time (A)
(4) Set ADCE = 1
(5) Stabilization wait time (B)

When ADREFP1 and ADREFP0 are set to 1 and 0 , respectively, the setting is changed to $A=5 \mu \mathrm{~s}, \mathrm{~B}=1 \mu \mathrm{~s}$. When ADREFP1 and ADREFP0 are set to 0 and 0 , respectively, or set to 0 and 1 , respectively, A needs no wait and $B=1 \mu \mathrm{~s}$.
After (5) stabilization time, start the A/D conversion.

- When ADREFP1 and ADREFP0 are set to 1 and 0 , respectively, A/D conversion cannot be performed on the temperature sensor output and internal reference voltage output.
Make sure to perform A/D conversion while ADISS $=0$.

AWC	Specification of the SNOOZE mode
0	Do not use the SNOOZE mode function.
1	Use the SNOOZE mode function.

When there is a hardware trigger signal in the STOP mode, the STOP mode is exited, and A/D conversion is performed without operating the CPU (the SNOOZE mode).

- The SNOOZE mode function can only be specified when the high-speed on-chip oscillator clock is selected for the CPU/peripheral hardware clock (fclk). If any other clock is selected, specifying this mode is prohibited.
- Using the SNOOZE mode function in the software trigger mode or hardware trigger no-wait mode is prohibited.
- Using the SNOOZE mode function in the sequential conversion mode is prohibited.
- When using the SNOOZE mode function, specify a hardware trigger interval of at least "shift time to SNOOZE mode (Note) + A/D power supply stabilization wait time + A/D conversion time +2 fclk clocks"
- Even when using SNOOZE mode, make sure to set the AWC bit to 0 in normal operation mode and change it to 1 just before transiting to STOP mode.
Also, make sure to change the AWC bit to 0 after returning from STOP mode to normal operation mode. If the AWC bit is left set to 1, A/D conversion will not start normally in spite of the subsequent SNOOZE or normal operation mode.

Note Refer to 23.2.3 SNOOZE mode.

Explanations of SNOOZE mode related to the A/D converter added (page 658)

Incorrect:
(1) If an interrupt is generated after A / D conversion ends
(Omitted)

- While in the select mode

After A / D conversion ends and the A / D conversion end interrupt request signal (INTAD) is generated, the clock request signal remains at the high level and the A/D converter switches from the SNOOZE mode to the normal operation mode. To stop the high-speed on-chip oscillator clock supplied while in the SNOOZE mode, clear bit 2 (AWC) of A/D converter mode register 2 (ADM2) to 0 . Doing this sets the clock request signal (an internal signal) to the low level and stops the supply of the high-speed on-chip oscillator clock.

- While in the scan mode

If even one A/D conversion end interrupt request signal (INTAD) is generated during A / D conversion of the four channels, the clock request signal remains at the high level and the A/D converter switches from the SNOOZE mode to the normal operation mode. To stop the high-speed on-chip oscillator clock supplied while in the SNOOZE mode, clear bit 2 (AWC) of A/D converter mode register 2 (ADM2) to 0 Doing this sets the clock request signal (an internal signal) to the low level and stops the supply of the high-speed on-chip oscillator clock.

Correct:
(1) If an interrupt is generated after A/D conversion ends

- In select mode

When A/D conversion ends and an A/D conversion end interrupt request signal (INTAD) is generated, the A/D converter returns to normal operation mode from SNOOZE mode. At this time, make sure to clear bit 2 (AWC $=0$: SNOOZE mode release) in A / D converter mode register 2 (ADM2) to 0 . If the AWC bit is left set to $1, A / D$ conversion will not start normally in subsequent SNOOZE or normal operation mode.

- In scan mode

If even one A / D conversion end interrupt request signal (INTAD) is generated during A/D conversion of four channels, the A/D converter transits from SNOOZE mode to normal operation mode. At this time, make sure to clear bit 2 (AWC $=0$: SNOOZE mode release) in A/D converter mode register 2 (ADM2) to 0 . If the AWC bit is left set to $1, A / D$ conversion will not start normally in subsequent SNOOZE or normal operation mode.
13. Explanations when using temperature sensor and internal reference voltage (1.45 V) of the A/D test function in the Safety functions chapter added

Explanation of 14.7.4 Setup when using temperature sensor added (page 655)

Incorrect:
14.7.4 Setup when using temperature sensor (example for software trigger mode and one-shot conversion mode)

Figure 14-35. Setup When Using Temperature Sensor
(Omitted)
Note Depending on the settings of the ADRCK bit and ADUL/ADLL register, there is a possibility of no interrupt signal being generated. In this case, the results are not stored in the ADCR, ADCRH registers.

Correct:
14.7.4 Setup when using temperature sensor (example for software trigger mode and one-shot conversion mode)

Figure 14-35. Setup When Using Temperature Sensor
(Omitted)
Note Depending on the settings of the ADRCK bit and ADUL/ADLL register, interrupt signals may not be generated. In this case, the results are not stored in ADCR and ADCRH registers.

Caution This setting can be selected only in HS (high-speed main) mode.

Explanation of (2) Input range of ANIO to ANI14 and ANI16 to ANI26 pins in 14.10 Cautions for A/D Converter added (page 662)

Incorrect:
14.10 Cautions for A/D Converter
(2) Input range of ANIO to ANI14 and ANI16 to ANI26 pins

Observe the rated range of the ANIO to ANI14 and ANI16 to ANI26 pins input voltage. If a voltage of Vdd and AVREFP or higher and $V_{\text {ss }}$ and $A V_{\text {refm }}$ or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of the other channels may also be affected.

When internal reference voltage $(1.45 \mathrm{~V})$ is selected reference voltage source for the + side of the A/D converter, do not input internal reference voltage or higher voltage to a pin selected by the ADS register. However, it is no problem that a pin not selected by the ADS register is inputed voltage greater than the internal reference voltage.

Correct:
14.10 Cautions for A/D Converter
(2) Input range of ANIO to ANI14 and ANI16 to ANI26 pins

Observe the rated range of ANIO to ANI14 and ANI16 to ANI26 pins input voltage. If a voltage of Vdd and AVrefp or higher and $V_{s s}$ and $A V_{\text {refm }}$ or lower (even in the range of absolute maximum ratings) is input to an analog input channel, the converted value of that channel becomes undefined. In addition, the converted values of other channels may also be affected.

When internal reference voltage $(1.45 \mathrm{~V})$ is selected reference voltage source for the + side of the A / D converter, do not input internal reference voltage or higher voltage to a pin selected by the ADS register. However, it is no problem that a pin not selected by the ADS register is inputed voltage greater than the internal reference voltage.

Caution The internal reference voltage (1.45 V) can be selected only in HS (high-speed main) mode.

14. Cautions when using SNOOZE mode in the serial array unit added

Explanations of SNOOZE mode related to CSI added (pages 786, 788)

Incorrect:
(Omitted)
Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes be sure to set the STm0 bit to 1 and clear the SEm0 bit (to stop the operation).

Correct:
(Omitted)
Caution Before transiting to SNOOZE mode and after the receive operation is completed in SNOOZE mode, set the STm0 bit to 1 (clear the SEm0 bit to 0 , and stop the operation).

And after the receive operation is completed, also clear the SWCm bit to 0 (SNOOZE mode release).

Explanations of SNOOZE mode related to the UART added (pages 847, 848, 850)

Incorrect:
(Omitted)
Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, be sure to set the STm1 bit to 1 and clear the SEm1 bit (to stop the operation).

Correct:
(Omitted)
Caution Before transiting to SNOOZE mode and after the receive operation is completed in SNOOZE mode, set the STm1 bit to 1 (clear the SEm1 bit to 0 , and stop the operation).

And after the receive operation is completed, also clear the SWCm bit to 0 (SNOOZE mode release).

15. Explanations of the power-on-reset circuit added (pages 1070, 1071)

Incorrect:
25.1 Functions of Power-on-reset Circuit

The power-on-reset circuit (POR) has the following functions.

- Generates internal reset signal at power on.

The reset signal is released when the supply voltage (V_{DD}) exceeds $1.51 \mathrm{~V} \pm 0.03 \mathrm{~V}$.

- Compares supply voltage (V_{DD}) and detection voltage $\left(\mathrm{V}_{P D R}=1.50 \mathrm{~V} \pm 0.03 \mathrm{~V}\right.$) generates internal reset signal when Vod $<$ Vedre. 2
(Omitted)
25.3 Operation of Power-on-reset Circuit
- An internal reset signal is generated on power application. When the supply voltage (Vop) exceeds the detection voltage ($\mathrm{V}_{P O R}$), the reset status is released.
- The supply voltage ($V_{D D}$) and detection voltage (VPDR) are compared. When $V_{D D} \leqslant V_{R D R}$ the internal reset signal is generated.

The timing of generation of the internal reset signal by the power-on-reset circuit and voltage detector is shown below.

Correct:
25.1 Functions of Power-on-reset Circuit

The power-on-reset circuit (POR) has the following functions.

- The reset signal is released when the supply voltage ($\mathrm{V} D \mathrm{D}$) exceeds $1.51 \mathrm{~V} \pm 0.03 \mathrm{~V}$.

However, use either the voltage detection function or the external reset pin to retain the reset status until the Vod reaches the operation voltage range shown in 34.4 AC Characteristics.

- Compares supply voltage (VDD) and detection voltage ($\mathrm{V}_{\mathrm{PDR}}=1.50 \mathrm{~V} \pm 0.03 \mathrm{~V}$), generates internal reset signal when VDD < VPDR.

However, when the operation voltage drops, switch the MCU to STOP mode, or use either the voltage detection function or the external reset pin to enter the reset status before the VDD falls below the operation voltage range shown in 34.4 AC

Characteristics.
25.3 Operation of Power-on-reset Circuit

The timing of generation of the internal reset signal by the power-on-reset circuit and voltage detector is shown below.
16. Explanations of the A / D test function in the Safety functions chapter added (section 27.3.8)

Explanation of Figure 27-15. A/D test register (ADTES) added (page 1109)

Incorrect:
(1) A / D test register (ADTES)

Figure 27-15. Format of A / D Test Register (ADTES)

Correct:
(1) A / D test register (ADTES)

Figure 27-15. Format of A / D Test Register (ADTES)

Address: F0013H		After reset: 00 H	R/W					
Symbol	7	6	5	4	3	2	1	0
ADTES	0	0	0	0	0	0	ADTES1	ADTES0

ADTES1	ADTES0	A/D conversion target
0	0	ANIxx (This is specified using the analog input channel specification register (ADS) ${ }^{\text {Note }}$
1	0	AV REFM
1	1	AV REFP
Other than the above		Setting prohibited

Note The temperature sensor output and internal reference voltage output (1.45 V) can be selected only in HS (high-speed main) mode.

17. Explanations of the data flash in the Flash memory chapter added (page 1133)

Incorrect:
An overview of the data flash memory is provided below.

- The data flash memory can be written to by using the flash memory programmer or an external device
- Programming is performed in 8-bit units
- Blocks can be deleted in 1 KB units

The only access by CPU instructions is byte reading (reading: four clock cycles)
(Omitted)

- Manipulating the DFLCTL register is not possible while rewriting the data flash memory
- When data flash is accessed, the CPU waits for three clock cycles

Correct:
An overview of the data flash memory is provided below. For details about how to rewrite the data flash memory, refer to
RL78 Family Flash Data Library User's Manual.

- The data flash memory can be written to by using the flash memory programmer or an external device
- Flash memory is programmed in 8-bit units
- Blocks can be deleted in 1-KB units
- Only byte read is allowed as CPU instructions (1 clock cycle + wait 3 clock cycles)
(Omitted)
- Manipulating the DFLCTL register is prohibited while rewriting the data flash memory
- Transition to HALT/STOP state is prohibited while rewriting the data flash memory

18. Cautions of flash memory programming by self-programming added (page 1142)

Refer to No. 39 (page 50) in this document.

19. Items of flash memory programming characteristics added (page 1231)

Incorrect:
34.10 Flash memory programming characteristics
$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DD0}=\mathrm{EV} \mathrm{DD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, $\mathrm{Vss}=\mathrm{EV}$ sso $=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fcık	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$		1		32	MHz
Number of code flash rewrites	Cerwr	1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.	Retained for 20 years (Self/serial programming) ${ }^{\text {Note }}$	1,000			Times
Number of data flash rewrites			Retained for 1 years (Self/serial programming $)^{\text {Note }}$		1,000,000		
			Retained for 5 years (Self/serial programming ${ }^{\text {Note }}$	100,000			

Note When using flash memory programmer and Renesas Electronics self programming library.

Correct:

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
CPU/peripheral hardware clock frequency	fclk	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$		1		32	MHz
Number of code flash rewrites ${ }^{\text {Notes 1,2,3 }}$	Cerwr	Retaining years: 20 years	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	1,000			Times
Number of data flash rewrites ${ }^{\text {Notes } 1,2,3}$		Retaining year: 1 year	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		1,000,000		
		Retaining years: 5 years	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	100,000			
		Retaining years: 20 years	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	10,000			

Notes $1 \quad 1$ erase +1 write after the erase is regarded as 1 rewrite.
The retaining years are until next rewrite after the rewrite.
2. When using flash memory programmer and Renesas Electronics self-programming library.
3. This characteristics is shown as the flash memory characteristics and based on Renesas Electronics reliability test.

20. 3.1.3 Internal Data Memory Space (page 105)

Incorrect:
Cautions 2 The internal RAM in the following products cannot be used as stack area when using the self-programming function and data flash function.

R5F104xD (x = A to C, E to G, J, L) : FE900H to FED09H R5F104xE ($x=A$ to C, E to G, J, L) : FE900H to FED09H R5F104xJ ($x=$ F , G, J, L, M, P) : F9F00H to FA309H
3. The internal RAM area in the following products cannot be used as stack memory when using the on-chip debugging trace function.

Correct

Cautions 2. While self-programming is being executed or rewriting the data flash, do not allocate the RAM address which is used in stack, data buffer, the branch of vectored interrupt servicing, or the transfer destination or source by DTC in the address between FFE20H to FFEDFH.
3. The RAM area in the products listed below cannot be used when using the self-programming function or rewriting the data flash, because they are used by libraries.
R5F104xD (x = A to C, E to G, J, L) : FE900H to FED09H R5F104xE ($x=A$ to C, E to G, J, L) : FE900H to FED09H R5F104xJ ($x=F, G, J, L, M, P$) : F9F00H to FA309H
4. The internal RAM area in the following products cannot be used as stack memory when using the on-chip debugging trace function.

21. 17.7.3 SNOOZE mode function (page 847)

Incorrect:
When RxDq pin input is detected while in the STOP mode the SNOOZE mode makes data reception that does not require the CPU possible. Only following UARTs can be specified for the reception baud rate adjustment function.

- 30 to 64 -pin products: UARTO only
- 80 to 100 -pin products: UARTO and UART2

When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode.

Cautions: 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fclk.
2. The maximum transfer rate when using UARTa in the SNOOZE mode is 9600 bps (target).

Correct
SNOOZE mode makes UART operate reception by RxDq pin input detection while the STOP mode. Normally UART stops communication in the STOP mode. But, using the SNOOZE mode makes reception UART operate unless the CPU operation by detecting RxDq pin input Only following channels can be set to the SNOOZE mode

- 30 to 64 -pin products: UART0
- 80 to 100 -pin products: UART0 and UART2

When using UARTq in SNOOZE mode, execute the following settings before entering STOP mode (Refer to Flowcharts of SNOOZE mode operation in Figure 17-118 and Figure 17-120).

- In SNOOZE mode, UART reception baud rate must be set differently from normal
operation. Refer to Table 17-3 to set registers SPSm and SDRmn [15:9].
- Set bits EOCmn and SSECmn to enable or disable the error interrupt (INTSREO) when a communication error occurs.
- Set the SWCm bit in the serial standby control register m(SSCm) to 1 just before entering STOP mode. After initialization, set the SSm1 bit to 1 in the serial channel start register m (SSm).

When the MCU detects the RxDq pin edge input (input the start bit) after entering STOP mode the UART reception is started

Cautions 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock (fin) is selected for fclk. Note that SNOOZE mode cannot be used when the high-speed on-chip oscillator clock ($\mathrm{fiH}_{\mathrm{H}}$) is specified either as 64 or 48 MHz
2. The transfer rate in SNOOZE mode is 4800 bps only
3. When the SWCm bit is 1, UARTq can be used only when the reception is started in STOP mode. If UARTq is used with other SNOOZE function or interrupts concurrently and the reception is started in state other than STOP mode as described below, the UARTq cannot receive data correctly and may cause a framing error or parity error.

- When the UARTq reception is started from the moment the SWCm bit is set to 1 before the MCU enters STOP mode
- When the UARTq reception is started in SNOOZE mode
- When the UARTq reception is started from the moment the MCU exits STOP mode and enters normal mode using interrupts before the SWCm bit is set to 0

> 4. When the SSECm bit is 1 , if a parity error, framing error, or overrun error occurs, flags PEFmn, FEFmn, or OVFmn is not set, nor an error interrupt (INTSREq) is generated. To set the SSECm bit to 1, clear flags PEFmn, FEFmn, and OVFmn before setting the SWC0 bit to 1 , and read bits 7 to $0(R x D q)$ in the SDRm1 register.

Table 17-3 UART Reception Baud Rate Setting in SNOOZE Mode

High-speed on-chip oscillator (fiH)	UART reception baud rate in SNOOZE mode			
	Baud rate: 4800 bps			
	Operating clock (fмск)	$\begin{gathered} \hline \text { SDRmn } \\ {[15: 9]} \\ \hline \end{gathered}$	Maximum acceptable value	Minimum acceptable value
$32 \mathrm{MHz} \pm 1.0 \%^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2^{5}$	105	2.27\%	-1.53\%
$24 \mathrm{MHz} \pm 1.0 \%{ }^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2^{5}$	79	1.60\%	-2.18\%
$16 \mathrm{MHz} \pm 1.0 \%^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2^{4}$	105	2.27\%	-1.53\%
$12 \mathrm{MHz} \pm 1.0 \%^{(\text {note })}$	$\mathrm{f}_{\text {CLK }} / 2^{4}$	79	1.60\%	-2.19\%
$8 \mathrm{MHz} \pm 1.0 \%^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2^{3}$	105	2.27\%	-1.53\%
$6 \mathrm{MHz} \pm 1.0 \%{ }^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2^{3}$	79	1.60\%	-2.19\%
$4 \mathrm{MHz} \pm 1.0 \%^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2^{2}$	105	2.27\%	-1.53\%
$3 \mathrm{MHz} \pm 1.0 \%^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2^{2}$	79	1.60\%	-2.19\%
$2 \mathrm{MHz} \pm 1.0 \%^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2^{1}$	105	2.27\%	-1.54\%
$1 \mathrm{MHz} \pm 1.0 \%^{\text {(note) }}$	$\mathrm{f}_{\text {CLK }} / 2{ }^{0}$	105	2.27\%	-1.57\%

Note: When the high-speed on-chip oscillator clock accuracy is at $\pm 1.5 \%$ or 2.0%, the acceptable range is limited as follows:

- $\mathrm{fIH} \pm 1.5 \%$: Subtract 0.5% from the maximum acceptable value of fiH $\pm 1.0 \%$, and add 0.5% to the minimum acceptable value of fiH $\pm 1.0 \%$.
- fiн $\pm 2.0 \%$: Subtract 1.0% from the maximum acceptable value of fiH $\pm 1.0 \%$, and add 1.0% to the minimum acceptable value of fiH $\pm 1.0 \%$.

Remarks: Maximum and minimum acceptable values in the above table are the baud rate acceptable values in UART reception. Make sure to set the baud rate for transmission within this range.

22. 23.2.2 STOP Mode (page 1050, 1052)

Refer to No. 37 (pages 38 to 40) in this document.

23. 23.2.3 SNOOZE Mode (page 1055)

Refer to No. 37 (page 42) in this document.

24. 27.3.6 Invalid memory access detection function (page 1105)

Refer to No. 38 (page 48) in this document.

25. Figure 29-3 Format of Option Byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$ (page 1121)

Old:
Figure 29-3 Format of Option Byte (000C2H/010C2H)
Address: $000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H}$ note

7	6	5	4	3	2	1	0
CMODE1	C5MODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0

CMODE1	CMODE0	Setting of flash operation mode		
			Operating Frequency Range	Operating Voltage Range
0	0	LV (low voltage main) mode	1 to 4 MHz	1.6 to 5.5 V
1	0	LS (low speed main) mode	1 to 8 MHz	1.8 to 5.5 V
1	1	HS (high speed main) mode	1 to 16 MHz	2.4 to 5.5 V
			1 to 32 MHz	2.7 to 5.5 V
Other than above		Setting prohibited		

FRQSEL4	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator	
1				$f_{\text {foco }}$	f_{f}	
1	0	0	0	0	64 MHz	32 MHz
0	1	0	0	0	48 MHz	24 MHz
0	0	0	0	0	32 MHz	32 MHz
0	1	0	0	0	24 MHz	24 MHz
0	0	0	0	1	16 MHz	16 MHz
0	1	0	1	0	12 MHz	12 MHz
0	1	0	1	1	4 MHz	8 MHz
0	1	1	0	1	1 MHz	1 MHz

Note: Set the same value as 000 C 2 H to 010 C 2 H when the boot swap operation is used because 000 C 2 H is replaced by 010 C 2 H .

New:
Figure 29-3. Format of Option Byte $(000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H})$
Address: $000 \mathrm{C} 2 \mathrm{H} / 010 \mathrm{C} 2 \mathrm{H}^{\text {note }}$

7	6	5	4	3	2	1	0
CMODE1	C5MODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0
		Setting of flash operation mode					
CMODE1	CMODEO				$\begin{gathered} \text { Operating Frequency } \\ \text { Range } \end{gathered}$	Operating Voltage Range	
0	0	LV (low voltage main) mode			1 to 4 MHz	1.6 to 5.5 V	
1	0	LS (low speed main) mode			1 to 8 MHz	1.8 to 5.5 V	
1	1	HS (high speed main) mode			1 to 16 MHz	2.4 to 5.5 V	
					1 to 32 MHz	2.7 to 5.5 V	
Other than above		Setting prohibited					

FRQSEL4	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequen on	the high-speed oscillator
					$\mathrm{f}_{\mathrm{Hoco}}$	f_{H}
1	1	0	0	0	64 MHz	32 MHz
1	0	0	0	0	48 MHz	24 MHz
0	1	0	0	0	32 MHz	32 MHz
0	0	0	0	0	24 MHz	24 MHz
0	1	0	0	1	16 MHz	16 MHz
0	0	0	0	1	12 MHz	12 MHz
0	1	0	1	0	8 MHz	8 MHz
0	0	0	1	0	6 MHz	6 MHz
0	1	0	1	1	4 MHz	4 MHz
0	0	0	1	1	3 MHz	3 MHz
0	1	1	0	0	2 MHz	2 MHz
0	1	1	0	1	1 MHz	1 MHz
Other than above					Setting prohibited	

Note: Set the same value as 000 C 2 H to 010 C 2 H when the boot swap operation is used because 000 C 2 H is replaced by 010 C 2 H .
Caution:
Be sure to set bit 5 to 1 and bit 4 to 0 .

26. 34.4.1 Pin characteristics (pages 1181, 1182)

ncorrect:

Fixed typo in Note 3 in pages 1181 and 1182

27. 34.4.2 Supply current characteristics (pages 1186 to 1195)

Incorrect:
Fixed typo in Notes and typical values of IDD2 and IDD3 in pages 1186 to 1195

28. 34.5 AC Characteristics (pages 1196, 1197)

Old:
Specifications of the external system clock frequency and external system clock input high-level width, low-level width in page 1196 to 1197 extended

29. 34.6.1 Serial array unit (pages 1198 to 1221)

Incorrect:

Fixed typo in 34.6.1 Serial array unit in pages 1198 to 1221

30. 34.6.2 Serial Interface IICA (page 1222)

Incorrect:
Fixed typo in 34.6.2 Serial interface IICA in page 1222

31. 34.7.1 A/D converter characteristics (pages 1223 to 1226)
 Old:

Specifications of "34.7.1 A/D converter characteristics" in pages 1223 to 1226 extended

32. 34.7.2 Temperature Sensor/Internal Reference Voltage

 Characteristics (page 1227)Incorrect:
Fixed typo in 34.7.2 Temperature Sensor/Internal Reference Voltage Characteristics in page 1227

33. 34.7.5 POR circuit characteristics (page 1228)

ncorrect:

Fixed typo in 34.7.5 POR circuit characteristics in page 1228

Correct
Refer to pages 5 and 6 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)".

Correct
Refer to pages 10 to 16 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)".

New:
Refer to page 20 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $\mathrm{T}_{\mathrm{A}}=-40$ to $\left.+85^{\circ} \mathrm{C}\right)^{\prime \prime}$.

Correct:
Refer to pages 27 to 54 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)".

Correct:
Refer to pages 55 to 58 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$)".

New:
Refer to pages 59 to 62 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)".

Correct

Refer to page 63 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)"

Correct:
Refer to page 64 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)".

34. Supply Voltage Rise Time

Old:
Specifications in Supply Voltage Rise Time in page 1231 added

35. 34.9 Data Memory STOP Mode Low Supply Voltage Data Retention

 Characteristics (page 1231)Old:
Specifications in Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics in page 1231 extended

36. Chapter 35 ELECTRICAL SPECIFICATIONS (G: TA $=\mathbf{- 4 0}$ to $\mathbf{+ 1 0 5 ^ { \circ }} \mathbf{C}$)

 Old:Specifications in Chapter 35 ELECTRICAL SPECIFICATIONS (G: $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$) fixed

New:
Refer to page 66 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $T_{A}=-40$ to $+85^{\circ} \mathrm{C}$)".

New:
Refer to page 67 in Technical Update Exhibit "Chapter 34 ELECTRICAL SPECIFICATIONS (A, D: $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)".

New:
Refer to pages 1 to 58 in Technical Update Exhibit "Chapter 35 ELECTRICAL SPECIFICATIONS (G : $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$)".

37. Incorrect descriptions of reset processing time/standby mode release time revised
 Incorrect descriptions of reset processing time revised (page 1049)

Incorrect:

Figure 23-4 HALT Mode Release by Reset (1/2)

> (Omitted)
(2) When high-speed on-chip oscillator clock is used as CPU clock

(Omitted)

Reset processing time when HALT mode or STOP mode is released
Reset processing time: 387 to $720 \mu \mathrm{~s}$ (When LVD is used)
155 to $407 \mu \mathrm{~s}$ (When LVD off)

Figure 23-4 HALT Mode Release by Reset (2/2)
(3) When subsystem clock is used as CPU clock (Omitted)

Reset processing time when HALT mode or STOP mode is released
Reset processing time: 387 to $720 \mu s$ (When LVD is used)
155 to 407 us (When LVD off)

Correct:
Figure 23-4 HALT Mode Release by Reset (1/2)
(Omitted)
(2) When high-speed on-chip oscillator clock is used as CPU clock
(Omitted)
Note: Refer to Chapter 24 RESET FUNCTION for the reset processing time. For details about the reset processing time for power-on-reset (POR) circuit and voltage detector (LVD), refer to Chapter 25 POWER-ON-RESET CIRCUIT.

Figure 23-4 HALT Mode Release by Reset (2/2)
(3) When subsystem clock is used as CPU clock (Omitted)

Note: Refer to Chapter 24 RESET FUNCTION for the reset processing time. For details about the reset processing time for power-on-reset (POR) circuit and voltage detector (LVD), refer to Chapter 25 POWER-ON-RESET CIRCUIT.

Incorrect descriptions of reset processing time revised (pages 1052 to 1054)

Incorrect:
(2) STOP mode release

The STOP mode can be released by the following two sources.
(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the STOP mode is released. After the oscillation stabilization time has elapsed, if interrupt acknowledgement is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgement is disabled, the next address instruction is executed.

Figure 23-5 STOP Mode Release by Interrupt Request Generation (1/2)
(1) When high-speed system clock (X1 oscillation) is used as CPU clock
(Omitted)

Note Wait time for STOP mode release
 High-speed system clock (X1 oscillation): 3-clock

Correct:
(2) STOP mode release

The STOP mode can be released by the following two sources.
(a) Release by unmasked interrupt request

When an unmasked interrupt request is generated, the STOP mode is released. After the oscillation stabilization time has elapsed, if interrupt acknowledgement is enabled, vectored interrupt servicing is carried out. If interrupt acknowledgement is disabled, the next address instruction is executed

Figure 23-5 STOP Mode Release by Interrupt Request Generation (1/2)
(1) When high-speed system clock (X1 oscillation) is used as CPU clock
(Omitted)

Note 1. For details of the standby release signal, see Figure 21-1 Basic Configuration of Interrupt Function.

Note 2. STOP mode release time
Supply of the clock is stopped:

- When FRQSEL4 $=0: 18 \mu$ s to "whichever is longer 65μ s or the oscillation stabilization time (set by OSTS)"
- When FRQSEL4 = 1: 18μ s to "whichever is longer 135μ s or the oscillation stabilization time (set by OSTS)"

Wait:

- When vectored interrupt servicing is carried out: 10 to 11 clocks
- When vectored interrupt servicing is not carried out: 4 to 5 clocks

Caution: To reduce the oscillation stabilization time after release from the STOP mode while CPU operates based on the high-speed system clock (X1 oscillation), switch the clock to the high-speed on-chip oscillator clock temporarily before executing the STOP instruction.

Remark 1. The clock supply stop time varies depending on the temperature conditions and STOP mode period.
Remark 2. The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.

Figure 23-5 STOP Mode Release by Interrupt Request Generation (2/2)
(2) When high-speed system clock (external clock input) is used as CPU clock
(Omitted)
(3) When high-speed on-chip oscillator clock is used as CPU clock (Omitted)

Note STOP mode release time:

- High-speed system clock (external clock input): 19.1 to $31.98 \mu \mathrm{~s}$
- High-speed on-chip oscillator clock:19.1 to 31.98 us

Figure 23-5 STOP Mode Release by Interrupt Request Generation (2/2)
(2) When high-speed system clock (external clock input) is used as CPU clock
(Omitted)

Note 1. For details of the standby release signal, see Figure 21-1 Basic Configuration of Interrupt Function

Note 2. STOP mode release time
Supply of the clock is stopped:

- When FRQSEL4 $=0: 18 \mu \mathrm{~s}$ to $65 \mu \mathrm{~s}$
- When FRQSEL4 $=1: 18 \mu$ s to $135 \mu \mathrm{~s}$

Wait:

- When vectored interrupt servicing is carried out: 7 clocks
-When vectored interrupt servicing is not carried out: 1 clock
(3) When high-speed on-chip oscillator clock is used as CPU clock

(Omitted)

Note 1. For details of the standby release signal, see Figure 21-1 Basic Configuration of Interrupt Function.

Note 2. STOP mode release time
Supply of the clock is stopped:

- When FRQSEL4 $=0: 18 \mu \mathrm{~s}$ to $65 \mu \mathrm{~s}$
- When FRQSEL4 $=1: 18 \mu$ s to $135 \mu \mathrm{~s}$

Wait:

- When vectored interrupt servicing is carried out: 7 clocks
-When vectored interrupt servicing is not carried out: 1 clock
Remark 1. The clock supply stop time varies depending on the temperature conditions and STOP mode period.
Remark 2. The broken lines indicate the case when the interrupt request that has released the standby mode is acknowledged.
(b) Release by reset signal generation

When the reset signal is generated, STOP mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 23-6 STOP Mode Release by Reset
(1) When high-speed system clock is used as CPU clock

> (Omitted)
(2) When high-speed on-chip oscillator clock is used as CPU clock

> (Omitted)

Reset processing time when HALT mode or STOP mode is released

Reset processing time: 387 to 720μ s (When LVD is used)

 155 to 407 us (When LVD off)(b) Release by reset signal generation

When the reset signal is generated, STOP mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.

Figure 23-6 STOP Mode Release by Reset
(1) When high-speed system clock is used as CPU clock

(Omitted)

(2) When high-speed on-chip oscillator clock is used as CPU clock
(Omitted)
Note: Refer to Chapter 24 RESET FUNCTION for the reset processing time. For details about the reset processing time for power-on-reset (POR) circuit and voltage detector (LVD), refer to Chapter 25 POWER-ON-RESET CIRCUIT.

Explanations of SNOOZE mode shift time added (page 1055)

Incorrect:
23.2.3 SNOOZE mode
(1) SNOOZE mode setting and operating statuses

(Omitted)

The operating statuses in the SNOOZE mode are shown below.

Correct:
23.2.3 SNOOZE mode
(1) SNOOZE mode setting and operating statuses

(Omitted)

In SNOOZE mode transition, wait status to be only following time. When FRQSEL4 $=0: 18 \mu$ s to $65 \mu \mathrm{~s}$ When FRQSEL4 $=1: 18 \mu$ s to $135 \mu s$

Remark: Transition time from STOP mode to SNOOZE mode varies depending on the temperature conditions and the STOP mode period.

Transition time from SNOOZE mode to normal operation:

- When vectored interrupt servicing is carried out:

HS (High-speed main) mode: "4.99 μ s to $9.44 \mu \mathrm{~s}$ " +7 clocks
LS (Low-speed main) mode: " $1.10 \mu \mathrm{~s}$ to $5.08 \mu \mathrm{~s}$ " +7 clocks
LV (Low-voltage main) mode: " $16.58 \mu \mathrm{~s}$ to $25.40 \mu \mathrm{~s}$ " +7 clocks

- When vectored interrupt servicing is not carried out:

HS (High-speed main) mode: " 4.99μ s to $9.44 \mu \mathrm{~s}$ " +1 clock
LS (Low-speed main) mode: " $1.10 \mu \mathrm{~s}$ to $5.08 \mu \mathrm{~s}$ " +1 clock
LV (Low-voltage main) mode: " 16.58μ s to $25.40 \mu \mathrm{~s}$ " +1 clock

The operating statuses in the SNOOZE mode are shown next

Incorrect descriptions of reset processing time revised (pages 1060, 1061)

Incorrect:
Figure 24-2 Timing of Reset by RESET Input

Figure 24-3Timing of ResetDue to Exeation of lllegal Instuction orWatchdog Timer Overflow

Correct
Figure 24-2 Timing of Reset by RESET Input

Release from the reset state is automatic in case of a reset due to a watchdog time overflow, execution of an illegal instruction, detection of a RAM parity error, or detection of illegal memory access. After reset processing, program execution starts with the high-speed on-chip oscillator clock as the operating clock.

Figure 24-3 Timing of Reset Due to Watchdog Timer Overflow, Execution of Illegal Instruction,
Detection of RAM Parity Error, or Detection of Illegal Memory Access
Wait for oscillation accuracy stabilization

Figure 24-4 Timing of Reset in STOP mode by RESET Input

Note When P130 is set to high-level output before reset is effected, the output signal of P130 can be dummy-output as a reset signal to an external device, because P130 outputs a low level when reset is effected. To release a reset signal to an external device, set P130 to high-level output by software.

Remark For the reset timing of the power-on-reset circuit and voltage detector, see Chapter 25 POWER-ON-RESET CIRCUIT and Chapter 26 VOLTAGE DETECTOR.

Notes:
1: When P130 is set to high-level output before reset is effected, the output signal of P130 can be dummy-output as a reset signal to an external device, because P130 outputs a low level when reset is effected. To release a reset signal to an external device, set P130 to high-level output by software.
2. Reset processing time when an external reset is released:

The first reset processing time after POR is released:
0.672 ms (TYP.), 0.832 ms (max.) (When LVD is used)
0.399 ms (TYP.), 0.519 ms (max.) (When LVD is off)

The second and subsequent reset processing time after POR is released:
0.531 ms (TYP.), 0.675 ms (max.) (When LVD is used)
0.259 ms (TYP.), 0.362 ms (max.) (When LVD is off)

After power is supplied, a voltage stabilization wait time of about 0.99 ms (TYP.) and up to 2.30 ms (MAX.) is required before reset processing starts after the external reset is released.

3. The state of P40 is as follows:

- High-impedance during the external reset period or reset period by the POR.
- High level during other types of reset or after receiving a reset signal (connected to the on-chip pull-up resistor).
Reset by POR and LVD circuit supply voltage detection is automatically released when VDD \geq VPOR or VDD \geq VLVD after the reset. After reset processing, execution of the program with the high-speed on-chip oscillator clock as the operating clock starts. For details, see Chapter 25 POWER-ON-RESET CIRCUIT or Chapter 26 VOLTALGE DETECTOR.

Incorrect descriptions of reset processing time revised (pages 1072, 1073)

Incorrect:
Figure 25-2. Timing of Generation of Internal Reset Signal by
Power-on-reset Circuit and Voltage Detector (1/2)
(1) When LVD is OFF (option byte $000 \mathrm{C} 1 \mathrm{H} / 010 \mathrm{C} 1 \mathrm{H}: \mathrm{VPOC2}=1 \mathrm{~B}$)

Notes 4. Reset processing time: 155 to 407 us

Correct:
Figure 25-2. Timing of Generation of Internal Reset Signal by Power-on-reset Circuit and Voltage Detector (1/2)
(1) When using an external reset by the RESET pin

Note 4. Before the MCU starts normal operation, it waits until the voltage becomes stable (voltage stabilization wait time after the voltage reaches VPOR (1.51 V, TYP.), and also requires the following "reset processing time when an external reset is released" after the RESET signal is set to 1 (high level).

Reset processing time when an external reset is released: 0.672 ms (TYP.), 0.832 ms (max.) (When LVD is used) 0.399 ms (TYP.), 0.519 ms (max.) (When LVD is off)

Note 5. The second and subsequent reset processing time after POR is released: 0.531 ms (TYP.), 0.675 ms (max.) (When LVD is used) 0.259 ms (TYP.), 0.362 ms (max.) (When LVD is off)
(Go on to the next page)

Notes 5. Reset processing time: 387 to 720 us
(2) LVD is interrupt \& reset mode (option byte $000 \mathrm{C} 1 \mathrm{H} / 010 \mathrm{C} 1 \mathrm{H}:$ LVIMDS1, LVIMDS0 $=1,0$)

(Omitted)
Note 5. Before the MCU starts normal operation, it requires the voltage stabilization wait time + POR processing time after the voltage reaches VPOR (1.51 V , TYP.), and also requires the following "LVD reset processing time" after the voltage reaches the LVD detection level (VLVDH).
LVD reset processing time: 0 ms (TYP.) to 0.0701 ms (max.)
(Go on to the next page)

(3) When LVD is in reset mode (option byte 000C1H LVIMDS1, LVIMDS0 $=1,1$)

Note 4. Before the MCU starts normal operation, it requires the voltage stabilization wait time + POR processing time after the voltage reaches VPOR (1.51 V, TYP.), and also requires the following "LVD reset processing time" after the voltage reaches the LVD detection level (VLVDH).

LVD reset processing time: 0 ms (TYP.) to 0.0701 ms (max.)

Note 5. When supply voltage falls and returns after only an internal reset occurs by the voltage detector (LVD), it requires the following processing time after the voltage reaches the LVD detection level (VLVDH).
LVD reset processing time: 0.0511 ms (TYP.) to 0.0701 ms (max.)

38. 27.3.6 Invalid memory access detection function (page 1105)

 Incorrect:Figure 27-10 Invalid memory access detection function

Correct

Figure 27-10 Invalid memory access detection function

Note: Code flash memory and RAM address of each product are as follows.

Products	Code flash memory (00000 H to xxxxxH)	$\begin{gathered} \text { RAM } \\ \text { (yyyyyH to FFEFFH) } \end{gathered}$
$\begin{gathered} \text { R5F104xA } \\ (x=\text { A to C Eto G) } \end{gathered}$	$\begin{gathered} 16384 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to } 03 \text { FFFH }) \end{gathered}$	2560×8 bit (FF500H to FFEFFH)
$\begin{gathered} \text { R5F104xC } \\ \left(\mathrm{x}=\text { A to } \mathrm{C} \text { E to } \mathrm{G}, \mathrm{~s}_{2} \mathrm{~L}\right) \end{gathered}$	$\begin{gathered} 32768 \times 8 \mathrm{bit} \\ (00000 \mathrm{H} \text { to 07FFFH) } \end{gathered}$	$\begin{gathered} 4096 \times 8 \mathrm{bit} \\ \text { (FEFOOH to FFEFFH) } \end{gathered}$
$\begin{gathered} \text { R5F104XD } \\ (x=A \text { to } C, E \text { to } G, J, L) \end{gathered}$	$\begin{gathered} 49152 \times 8 \mathrm{bit} \\ (00000 \mathrm{H} \text { to OBFFFH) } \end{gathered}$	$\begin{gathered} 5632 \times 8 \text { bit } \\ \text { (FEg00H to FFEFFH) } \end{gathered}$
$\begin{gathered} \text { R5F104xE } \\ (x=\text { A to C E to G, } \mathrm{J}, \mathrm{~L}) \end{gathered}$	$\begin{gathered} 65536 \times 8 \text { bit } \\ \text { (00000H to OFFFFH) } \end{gathered}$	$\begin{gathered} 5632 \times 8 \text { bit } \\ \text { (FE900H to FFEFFH) } \end{gathered}$
	$\begin{aligned} & 98304 \times 8 \mathrm{bit} \\ & (00000 \mathrm{H} \text { to } 17 \mathrm{FFFH}) \end{aligned}$	$\begin{gathered} 12288 \times 8 \mathrm{bit} \\ \text { (FCFOOH to FFEFFH) } \end{gathered}$
$\begin{gathered} \text { R5F104xG } \\ \left(x=A \text { to } C_{s} \text { E to } G_{m}, M_{2} P\right) \end{gathered}$	$\begin{gathered} 131072 \times 8 \text { bit } \\ \text { (00000H to 1FFFFH) } \end{gathered}$	$\begin{gathered} 16384 \times 8 \mathrm{bit} \\ \text { (FBFOOH to FFEFFH) } \end{gathered}$
$\begin{gathered} \text { R5F104xH } \\ (\mathrm{x}=\mathrm{E} \text { to G } \mathrm{G}, \mathrm{M}, \mathrm{M}) \end{gathered}$	$\begin{aligned} & 196608 \times 8 \mathrm{bit} \\ & \text { (00000H to 2FFFFH) } \end{aligned}$	$\begin{gathered} 20480 \times 8 \mathrm{bit} \\ \text { (FAFOOH to FFEFFH) } \end{gathered}$
$\begin{gathered} \text { R5F104xJ } \\ (x=F, G, d, M, P) \end{gathered}$	$\begin{gathered} 262144 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to 3FFFFH) } \end{gathered}$	$\begin{gathered} 24576 \times 8 \mathrm{bit} \\ \text { (FgFOOH to FFEFFH) } \end{gathered}$

Note: Code flash memory area, RAM area, and the detected lowest address of each product are as follows.

Products	Code flash memory (00000 H to xxxxxH)	RAM (zzzzzH to FFEFFH)	Detected lowest address for read/instruction fetch (execution) (yyyyyH)
$\begin{gathered} \text { R5F104xA } \\ (\mathrm{x}=\mathrm{A} \text { to } \mathrm{C}, \mathrm{E} \text { to } \mathrm{G}) \end{gathered}$	$\begin{gathered} 16384 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to } 03 F F F H) \end{gathered}$	$\begin{gathered} 2560 \times 8 \text { bit } \\ \text { (FF500H to FFEFFH) } \end{gathered}$	10000 H
$\begin{gathered} \text { R5F104xC } \\ (\mathrm{x}=\mathrm{A} \text { to } \mathrm{C}, \mathrm{E} \text { to } \mathrm{G}, \mathrm{~J}, \mathrm{~L}) \end{gathered}$	$\begin{gathered} 32768 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to } 07 \mathrm{FFFH}) \end{gathered}$	$\begin{aligned} & 4096 \times 8 \text { bit } \\ & \text { (FEFOOH to FFEFFH) } \end{aligned}$	10000 H
$\begin{gathered} \text { R5F104xD } \\ (\mathrm{x}=\mathrm{A} \text { to } \mathrm{C}, \mathrm{E} \text { to } \mathrm{G}, \mathrm{~J}, \mathrm{~L}) \end{gathered}$	$\begin{gathered} 49152 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to OBFFFH }) \end{gathered}$	$\begin{gathered} 5632 \times 8 \text { bit } \\ (\text { FE900H to FFEFFH) } \end{gathered}$	10000H
$\begin{gathered} \text { R5F104xE } \\ (\mathrm{x}=\mathrm{A} \text { to } \mathrm{C}, \mathrm{E} \text { to } \mathrm{G}, \mathrm{~J}, \mathrm{~L}) \end{gathered}$	$\begin{gathered} 65536 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to OFFFFH }) \end{gathered}$	$\begin{gathered} 5632 \times 8 \mathrm{bit} \\ (\mathrm{FE} 900 \mathrm{H} \text { to FFEFFH) } \end{gathered}$	10000H
$\begin{gathered} \mathrm{R} 5 \mathrm{~F} 104 \times F \\ (\mathrm{x}=\mathrm{A} \text { to } \mathrm{C}, \mathrm{E} \text { to } \mathrm{G}, \mathrm{~J}, \mathrm{~L}, \mathrm{M}, \mathrm{P}) \end{gathered}$	$\begin{gathered} 98304 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to } 17 \mathrm{FFFH}) \end{gathered}$	$\begin{gathered} 12288 \times 8 \text { bit } \\ \text { (FCFOOH to FFEFFH) } \end{gathered}$	20000H
$\begin{gathered} \text { R5F104xG } \\ (\mathrm{x}=\mathrm{A} \text { to } \mathrm{C}, \mathrm{E} \text { to } \mathrm{G}, \mathrm{~J}, \mathrm{~L}, \mathrm{M}, \mathrm{P}) \end{gathered}$	$\begin{gathered} 131072 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to } 1 \text { FFFFH }) \end{gathered}$	$\begin{gathered} 16384 \times 8 \text { bit } \\ \text { (FBFOOH to FFEFFH) } \end{gathered}$	20000 H
$\begin{gathered} R 5 \mathrm{~F} 104 \mathrm{xH} \\ (\mathrm{x}=\mathrm{E} \text { to } \mathrm{G}, \mathrm{~J}, \mathrm{~L}, \mathrm{M}, \mathrm{P}) \end{gathered}$	$\begin{gathered} 196608 \times 8 \mathrm{bit} \\ (00000 \mathrm{H} \text { to } 2 \text { FFFFFH }) \end{gathered}$	$\begin{gathered} 20480 \times 8 \text { bit } \\ (\text { FAFOOH to FFEFFH) } \end{gathered}$	30000 H
$\begin{gathered} \text { R5F104xJ } \\ (x=F, G, J, L, M, P) \end{gathered}$	$\begin{gathered} 262144 \times 8 \text { bit } \\ (00000 \mathrm{H} \text { to } 3 \text { FFFFH }) \end{gathered}$	$\begin{gathered} 24576 \times 8 \text { bit } \\ \text { (F9F00H to FFEFFH) } \end{gathered}$	40000 H

39. Cautions of flash memory programming by self-programming

 added (page 1142)
Incorrect:

30.7 Flash Memory Programming by Self-Programming
(Omitted)
Caution 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.
Caution 2. To prohibit an interrupt during self-programming, in the same way as in the normal operation mode, execute the self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the El instruction, and then execute the self-programming library.

Caution 3. When enabling RAM parity error resets (RPERDIS $=0$), be sure to initialize the RAM area to use +10 bytes before overwriting.

Correct

30.7 Flash Memory Programming by Self-Programming

(Omitted)

Caution 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.
Caution 2. To prohibit an interrupt during self-programming, in the same way as in normal operation mode, execute the self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the El instruction, and then execute the self-programming library.
Caution 3. When enabling RAM parity error resets (RPERDIS $=0$), make sure to initialize the RAM area to use +10 bytes before overwriting

Caution 4. The high-speed on-chip oscillator needs to keep oscillating during self-programming. When the high-speed on-chip oscillator is stopped, oscillate the high-speed on-chip oscillator clock (HIOSTOP $=0$) and execute the flash self-programming library after $30 \mu \mathrm{~s}$ elapsed when the FRQSEL4 in the user option byte $(000 \mathrm{C} 2 \mathrm{H})$ is 0 ; otherwise execute the flash self-programming library after 80μ s elapsed.

CHAPTER 34 ELECTRICAL SPECIFICATIONS (A, D: TA = -40 to +85 ${ }^{\circ} \mathrm{C}$)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_{A}=-40$ to $+85^{\circ} \mathrm{C}$)" and "D: Industrial applications ($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)".

Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. With products not provided with an EVdDo, EVDD1, EVsso, or EVss1 pin, replace EVdDo and EVdD1 with Vdd, or replace EVsso and EVss1 with Vss.

Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 With functions for each product.

34.1 Absolute Maximum Ratings

Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVddo, EVdD1	EVddo = EVdD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\begin{gathered} -0.3 \text { to EVDDO }+0.3 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{gathered}$	V
	V_{12}	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V13	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, $\overline{\text { RESET }}$	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	$\begin{aligned} & \text { P00 to P06, P10 to P17, P30, P31, } \\ & \text { P40 to P47, P50 to P57, P60 to P67, } \\ & \text { P70 to P77, P80 to P87, P100 to P102, } \\ & \text { P110, P111, P120, P130, P140 to P147 } \end{aligned}$	-0.3 to EVddo +0.3 and -0.3 to Vdd +0.3 Note 2	V
	Vo2	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAl1	ANI16 to ANI20	-0.3 to EVdDo +0.3 and -0.3 to $\operatorname{AVREF}(+)+0.3$ Notes 2, 3	V
	VAI2	ANI0 to ANI14	$\begin{gathered} -0.3 \text { to } \operatorname{VDD}+0.3 \\ \text { and }-0.3 \text { to } \operatorname{AVREF}(+)+0.3 \text { Notes } 2,3 \end{gathered}$	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to $1 \mu \mathrm{~F}$). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.
Note 3. Do not exceed $\operatorname{AVREF}(+)+0.3 \mathrm{~V}$ in case of A / D conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. $A V_{\text {REF }}(+)$: + side reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Absolute Maximum Ratings

(2/2)

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	IOH1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	$\mathrm{IOH2}$	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins 170 mA	$\begin{aligned} & \text { P00 to P04, P40 to P47, P102, P120, P130, } \\ & \text { P140 to P145 } \end{aligned}$	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +85	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

34.2 Oscillator Characteristics

34.2.1 X1, XT1 characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/ crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0	
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$	1.0		8.0	
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.
Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

34.2.2 On-chip oscillator characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fiH			1		32	MHz
High-speed on-chip oscillator clock frequency accuracy		-20 to $+85^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	-1.0		+1.0	\%
			$1.6 \mathrm{~V} \leq \mathrm{VdD}<1.8 \mathrm{~V}$	-5.0		+5.0	\%
		-40 to $-20^{\circ} \mathrm{C}$	$1.8 \mathrm{~V} \leq \mathrm{VdD}<5.5 \mathrm{~V}$	-1.5		+1.5	\%
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$	-5.5		+5.5	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

34.3 DC Characteristics

34.3.1 Pin characteristics

(TA = -40 to $+85{ }^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			$\begin{aligned} & \hline-10.0 \\ & \text { Note } 2 \end{aligned}$	mA
		Total of P00 to P04, P40 to P47, P102, P120, P130, P140 to P145 (When duty $\leq 70 \%$ Note 3)	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$			-55.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}$			-10.0	mA
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			-5.0	mA
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			-2.5	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty $\leq 70 \%$ Note 3)	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$			-80.0	mA
			$2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}$			-19.0	mA
			$1.8 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$			-10.0	mA
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			-5.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$			$\begin{gathered} -135.0 \\ \text { Note } 4 \end{gathered}$	mA
	IOH2	Per pin for P20 to P27, P150 to P156	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\begin{gathered} \hline-0.1 \\ \text { Note } 2 \end{gathered}$	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDDo, EVDD1, VDD pins to an output pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$ Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \approx-8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.
Note 4. -100 mA for industrial applications (R5F104xxDxx).

P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IoL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		$\begin{aligned} & \text { Total of P00 to P04, P40 to P47, } \\ & \text { P102, P120, P130, P140 to P145 } \\ & \text { (When duty } \leq 70 \% \text { Note } 3 \text {) } \end{aligned}$	$4.0 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$			70.0	mA
			$2.7 \mathrm{~V} \leq$ EVddo $<4.0 \mathrm{~V}$			15.0	mA
			$1.8 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$			9.0	mA
			1.6 V S EVdDo < 1.8 V			4.5	mA
		```Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty \leq 70% Note 3)```	$4.0 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$			80.0	mA
			2.7 V S EVDDo < 4.0 V			35.0	mA
			$1.8 \mathrm{~V} \leq$ EVddo $<2.7 \mathrm{~V}$			20.0	mA
			1.6 V S EVdDo < 1.8 V			10.0	mA
		Total of all pins   (When duty $\leq 70 \%$ Note 3 )				150.0	mA
	IoL2	Per pin for P20 to P27, P150 to P156				$0.4$   Note 2	mA
		Total of all pins   (When duty $\leq 70 \%$ Note 3 )	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			5.0	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from $70 \%$ to $\mathrm{n} \%$ ).

- Total output current of pins $=(\mathrm{IoL} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IoL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \approx 8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSS} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )
(3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	$\mathrm{VIH1}$	P00 to P06, P10 to P17, P30,   P31, P40 to P47, P50 to P57,   P64 to P67, P70 to P77,   P80 to P87, P100 to P102, P110,   P111, P120, P140 to P147	Normal input buffer	0.8 EVddo		EVdDo	V
	$\mathrm{V}_{\mathrm{IH} 2}$	$\begin{aligned} & \text { P01, P03, P04, P10, P14 to P17, } \\ & \text { P30, P31, P43, P44, P50, } \\ & \text { P53 to P55, P80, P81, P142, } \\ & \text { P143 } \end{aligned}$	TTL input buffer $4.0 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	2.2		EVdDo	V
			TTL input buffer $3.3 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}$	2.0		EVdDo	V
			$\begin{aligned} & \text { TTL input buffer } \\ & 1.6 \mathrm{~V} \leq \text { EVDDo < } 3.3 \mathrm{~V} \end{aligned}$	1.5		EVdDo	V
	Vінз	P20 to P27, P150 to P156		0.7 VDD		Vdo	V
	VIH4	P60 to P63		0.7 EVddo		6.0	V
	V $\mathrm{H}_{5}$	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 VdD		Vod	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDDO	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P31, P43, P44, P50, P53 to P55, P80, P81, P142, P143	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{EVDDO}^{5} \leq 5.5 \mathrm{~V}$	0		0.8	V
			TTL input buffer $3.3 \mathrm{~V} \leq$ EVDDO $<4.0 \mathrm{~V}$	0		0.5	V
			TTL input buffer $1.6 \mathrm{~V} \leq$ EVDDO $<3.3 \mathrm{~V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 VdD	V
	VIL4	P60 to P63		0		0.3 EVdDo	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2 Vdo	V

Caution The maximum value of Viн of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVddo, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	VoH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \text { IOH1 }=-10.0 \mathrm{~mA} \end{aligned}$	EVDDo-1.5			V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-3.0 \mathrm{~mA} \end{aligned}$	EVDDo-0.7			V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{lOH} 1=-1.5 \mathrm{~mA} \end{aligned}$	EVDDo-0.5			V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{IOH} 1=-1.0 \mathrm{~mA} \end{aligned}$	EVDDo-0.5			V
	VoH2	P20 to P27, P150 to P156	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { IoH } 2=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			V
Output voltage, low	VoL1	```P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147```	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=20.0 \mathrm{~mA} \end{aligned}$			1.3	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \text { EVDD0 } \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOL} 1=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IoL} 1=0.3 \mathrm{~mA} \end{aligned}$			0.4	V
	Vol2	P20 to P27, P150 to P156	$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \text { loL2 }=400 \mu \mathrm{~A} \end{aligned}$			0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \text { EVDDO } \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=15.0 \mathrm{~mA} \end{aligned}$			2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=5.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \text { EVDDO } \leq 5.5 \mathrm{~V}, \\ & \text { lol3 }=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=2.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=1.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}$ )
(5/5)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,   P64 to P67, P70 to P77,   P80 to P87, P100 to P102, P110,   P111, P120, P140 to P147	V I $=$ EVDD0				1	$\mu \mathrm{A}$
	ILIH2	$\frac{\mathrm{P} 20 \text { to } \mathrm{P} 27, \mathrm{P} 137, \mathrm{P} 150 \text { to } \mathrm{P} 156,}{\text { RESET }}$	V I $=\mathrm{VDD}$				1	$\mu \mathrm{A}$
	ІІІн3	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, EXCLK, XT1, XT2, } \\ & \text { EXCLKS) } \end{aligned}$	V I $=\mathrm{VDD}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILLL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	V I $=\mathrm{EV}$ sso				-1	$\mu \mathrm{A}$
	ILIL2	$\begin{aligned} & \frac{\mathrm{P} 20 \text { to P27, P137, P150 to P156, }}{\text { RESET }} \end{aligned}$	V I $=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILLL3	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, EXCLK, XT1, XT2, } \\ & \text { EXCLKS) } \end{aligned}$	V I $=\mathrm{V}$ ss	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\mathrm{V}_{\mathrm{I}}=$ EVsso, In input port		10	20	100	k $\Omega$

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 34.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products
( $\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=0 \mathrm{~V}$ )

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode Note 5	$\begin{array}{\|l} \hline \mathrm{fHOco}=64 \mathrm{MHz}, \\ \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \\ \hline \mathrm{fHOco}=32 \mathrm{MHz}, \\ \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{array}$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		2.4		mA
						VDD $=3.0 \mathrm{~V}$		2.4		
					Basic operation	VDD $=5.0 \mathrm{~V}$		2.1		
						VDD $=3.0 \mathrm{~V}$		2.1		
			HS (high-speed main) mode Note 5	$\begin{aligned} & \mathrm{fHOCO}=64 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		5.2	8.7	mA
						VDD $=3.0 \mathrm{~V}$		5.2	8.7	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		4.8	8.1	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.8	8.1	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		4.1	6.9	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.1	6.9	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		3.8	6.3	
						VDD $=3.0 \mathrm{~V}$		3.8	6.3	
				$\begin{aligned} & \text { fHoco }=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		2.8	4.6	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		2.8	4.6	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fHOco}=8 \mathrm{MHz}, \\ & \mathrm{fIH}=8 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=3.0 \mathrm{~V}$		1.3	2.0	mA
						VDD $=2.0 \mathrm{~V}$		1.3	2.0	
			LV (low-voltage main) mode Note 5	$\begin{aligned} & \mathrm{fHOco}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=3.0 \mathrm{~V}$		1.3	1.8	mA
						$\mathrm{VDD}=2.0 \mathrm{~V}$		1.3	1.8	
			HS (high-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.3	mA
						Resonator connection		3.5	5.5	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.3	
						Resonator connection		3.5	5.5	
				$\begin{aligned} & f M x=10 \mathrm{MHz} \text { Note } 2, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	1.9	mA
						Resonator connection		1.2	2.0	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.2	1.9	
						Resonator connection		1.2	2.0	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & T_{A}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	$\mu \mathrm{A}$
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	6.7	
						Resonator connection		4.8	6.7	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	7.5	
						Resonator connection		4.8	7.5	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.4	8.9	
						Resonator connection		5.4	8.9	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode: $\quad 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz LV (low-voltage main) mode: $\quad 1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fhoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=0 \mathrm{~V}$ )
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2   Note 2	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.80	3.09	mA
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.80	3.09	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.54	2.40	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.54	2.40	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.62	2.40	
					VDD $=3.0 \mathrm{~V}$		0.62	2.40	
				$\begin{aligned} & \mathrm{fHOco}=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.44	1.83	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.44	1.83	
				fносо $=16 \mathrm{MHz}$, fif $=16 \mathrm{MHz}$ Note 4	$\mathrm{VdD}=5.0 \mathrm{~V}$		0.40	1.38	
					VDD $=3.0 \mathrm{~V}$		0.40	1.38	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=3.0 \mathrm{~V}$		260	710	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		260	710	
			LV (low-voltage main) mode Note 7	$\begin{aligned} & \text { fhoco }=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.0 \mathrm{~V}$		420	700	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		420	700	
			HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fmx }=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	1.55	mA
					Resonator connection		0.49	1.74	
				$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 3, \\ & V_{D D}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	1.55	
					Resonator connection		0.49	1.74	
				$\begin{aligned} & f_{M x}=10 \mathrm{MHz} \text { Note } 3, \\ & V_{D D}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	0.86	
					Resonator connection		0.30	0.93	
				$\begin{aligned} & \text { fmx }=10 \mathrm{MHz} \text { Note } 3, \\ & \text { VdD }=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	0.86	
					Resonator connection		0.30	0.93	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		95	550	$\mu \mathrm{A}$
					Resonator connection		145	590	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		95	550	
					Resonator connection		145	590	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & T_{A}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.25	0.57	$\mu \mathrm{A}$
					Resonator connection		0.44	0.76	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.36	1.17	
					Resonator connection		0.59	1.36	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.49	1.97	
					Resonator connection		0.72	2.16	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.97	3.37	
					Resonator connection		1.16	3.56	
	IDD3   Note 6	STOP mode   Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.51	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.24	0.51	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.29	1.10	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.41	1.90	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.90	3.30	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode:	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to 100-pin products
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )
(1/2)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply current Note 1	IdD1	Operating mode	HS (high-speed main) mode Note 5	$\begin{aligned} & \mathrm{fHOco}=64 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	$\mathrm{VdD}=5.0 \mathrm{~V}$		2.6		mA
						VDD $=3.0 \mathrm{~V}$		2.6		
				$\begin{aligned} & \mathrm{fHOco}=32 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	$\mathrm{VdD}=5.0 \mathrm{~V}$		2.3		
						Vdo $=3.0 \mathrm{~V}$		2.3		
			HS (high-speed main) mode Note 5	$\text { fносо = } 64 \mathrm{MHz} \text {, }$   $\mathrm{fiH}=32 \mathrm{MHz}$ Note 3	Normal operation	Vdo $=5.0 \mathrm{~V}$		5.8	10.2	mA
						Vdo $=3.0 \mathrm{~V}$		5.8	10.2	
				$\begin{aligned} & \mathrm{fHoco}=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		5.4	9.6	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		5.4	9.6	
				fносо $=48 \mathrm{MHz}$, fiH $=24 \mathrm{MHz}$ Note 3	Normal operation	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		4.5	7.8	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.5	7.8	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VdD $=5.0 \mathrm{~V}$		4.2	7.4	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.2	7.4	
				$\begin{aligned} & \mathrm{fHoco}=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		3.1	5.3	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		3.1	5.3	
			LS (low-speed main) mode Note 5	$\mathrm{fHOCO}=8 \mathrm{MHz}$, $\mathrm{fIH}=8 \mathrm{MHz}$ Note 3	Normal operation	VDD $=3.0 \mathrm{~V}$		1.4	2.3	mA
						Vdo $=2.0 \mathrm{~V}$		1.4	2.3	
			LV (low-voltage main) mode Note 5	$\begin{aligned} & \mathrm{fHOCO}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	Vdo $=3.0 \mathrm{~V}$		1.4	1.9	mA
						$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		1.4	1.9	
			HS (high-speed main) mode Note 5	$\begin{aligned} & \mathrm{fMx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.7	6.2	mA
						Resonator connection		3.9	6.4	
				$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.7	6.2	
						Resonator connection		3.9	6.4	
				$\begin{aligned} & f M x=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.2	3.6	
						Resonator connection		2.3	3.7	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.2	3.6	
						Resonator connection		2.3	3.7	
			LS (low-speed main) mode Note 5	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.3	2.2	mA
						Resonator connection		1.3	2.3	
				$\begin{aligned} & \mathrm{fmX}=8 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		1.3	2.2	
						Resonator connection		1.3	2.3	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.0	7.1	$\mu \mathrm{A}$
						Resonator connection		5.0	7.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.0	7.1	
						Resonator connection		5.0	7.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.1	8.8	
						Resonator connection		5.1	8.8	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.5	10.5	
						Resonator connection		5.5	10.5	
				$\begin{aligned} & \text { fsus }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		6.5	14.5	
						Resonator connection		6.5	14.5	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode:	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Remark 1. fMx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to 100-pin products
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2   Note 2	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco = } 64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.88	3.32	mA
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.88	3.32	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.62	2.63	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.62	2.63	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.68	2.57	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.68	2.57	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.50	2.00	
					VDD $=3.0 \mathrm{~V}$		0.50	2.00	
				$\begin{aligned} & \text { fHOCO = } 16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.44	1.49	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.44	1.49	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \mathrm{fHoco}=8 \mathrm{MHz}, \\ & \mathrm{fiH}=8 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=3.0 \mathrm{~V}$		290	800	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		290	800	
			LV (low-voltage main) mode Note 7	$\begin{aligned} & \mathrm{fHoco}=4 \mathrm{MHz}, \\ & \mathrm{fiH}=4 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=3.0 \mathrm{~V}$		440	755	$\mu \mathrm{A}$
					$\mathrm{V} D \mathrm{D}=2.0 \mathrm{~V}$		440	755	
			HS (high-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmx}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.31	1.63	mA
					Resonator connection		0.50	1.85	
				$\begin{aligned} & \mathrm{fmX}=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VdD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.31	1.63	
					Resonator connection		0.50	1.85	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	0.89	
					Resonator connection		0.30	0.97	
				$\begin{aligned} & \text { fmx }=10 \mathrm{MHz} \text { Note } 3, \\ & \text { VdD }=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	0.89	
					Resonator connection		0.30	0.97	
			LS (low-speed main) mode Note 7	$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		110	580	$\mu \mathrm{A}$
					Resonator connection		160	630	
				$\begin{aligned} & \mathrm{fmx}=8 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=2.0 \mathrm{~V} \end{aligned}$	Square wave input		110	580	
					Resonator connection		160	630	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.28	0.66	$\mu \mathrm{A}$
					Resonator connection		0.47	0.85	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.34	0.66	
					Resonator connection		0.53	0.85	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.37	2.35	
					Resonator connection		0.56	2.54	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.61	4.08	
					Resonator connection		0.80	4.27	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.55	8.09	
					Resonator connection		1.74	8.28	
	IDD3   Note 6	STOP mode   Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19	0.57	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.25	0.57	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.33	2.26	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.52	3.99	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.46	8.00	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDO, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz
LS (low-speed main) mode:	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz
LV (low-voltage main) mode:	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency ( 64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency ( 32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

## (3) Peripheral Functions (Common to all products)

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		$\mu \mathrm{A}$
RTC operating current	IRTC Notes 1, 2, 3				0.02		$\mu \mathrm{A}$
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		$\mu \mathrm{A}$
Watchdog timer operating current	IWdT Notes 1, 2, 5	$\mathrm{fiL}=15 \mathrm{kHz}$			0.22		$\mu \mathrm{A}$
A/D converter operating current	IAdC Notes 1, 6	When conversion at maximum speed	Normal mode, $\mathrm{A} V_{\text {REFP }}=\mathrm{VDD}=5.0 \mathrm{~V}$		1.3	1.7	mA
			Low voltage mode, $\mathrm{A} \mathrm{~V}_{\text {Refp }}=\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V}$		0.5	0.7	mA
A/D converter reference voltage current	IAdREF Note 1				75.0		$\mu \mathrm{A}$
Temperature sensor operating current	ITMPS Note 1				75.0		$\mu \mathrm{A}$
D/A converter operating current	Idac Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating current	ICmP Notes 1, 12, 13	$\begin{aligned} & \text { VDD }=5.0 \mathrm{~V}, \\ & \text { Regulator output voltage }=2.1 \mathrm{~V} \end{aligned}$	Window mode		12.5		$\mu \mathrm{A}$
			Comparator high-speed mode		6.5		$\mu \mathrm{A}$
			Comparator low-speed mode		1.7		$\mu \mathrm{A}$
		$\begin{aligned} & \text { VDD }=5.0 \mathrm{~V}, \\ & \text { Regulator output voltage }=1.8 \mathrm{~V} \end{aligned}$	Window mode		8.0		$\mu \mathrm{A}$
			Comparator high-speed mode		4.0		$\mu \mathrm{A}$
			Comparator low-speed mode		1.3		$\mu \mathrm{A}$
LVD operating current	ILVD Notes 1, 7				0.08		$\mu \mathrm{A}$
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	Ibgo Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, $\mathrm{A} \mathrm{~V}_{\text {REFP }}=\mathrm{VDD}=3.0 \mathrm{~V}$		1.20	1.44	
		CSI/UART operation			0.70	0.84	
		DTC operation			3.10		

Note 1. Current flowing to VDD.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IdD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
Note 8. Current flowing during programming of the data flash.
Note 9. Current flowing during self-programming.
Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode.
Note 11. Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
Note 12. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fcLk: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

### 34.4 AC Characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(1/2)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum instruction execution time)	Tcy	Main system clock (fmain) operation	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{S}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
			LV (low-voltage main) mode	$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
		Subsystem clock (fSUB) operation		$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	28.5	30.5	31.3	$\mu \mathrm{s}$
		In the self programming mode	HS (high-speed main) mode	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.03125		1	$\mu \mathrm{s}$
				$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	0.0625		1	$\mu \mathrm{S}$
			LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.125		1	$\mu \mathrm{s}$
			LV (low-voltage main) mode	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	0.25		1	$\mu \mathrm{s}$
External system clock frequency	fex	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 2.7 \mathrm{~V}$			1.0		16.0	MHz
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			1.0		8.0	MHz
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock input high-level width, low-level width	texh, texL	$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			24			ns
		$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 2.7 \mathrm{~V}$			30			ns
		$1.8 \mathrm{~V} \leq \mathrm{VDD}<2.4 \mathrm{~V}$			60			ns
		$1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}$			120			ns
	tEXHS, tEXLS				13.7			$\mu \mathrm{s}$
TIOO to TI03, TI10 to TI13 input high-level width, low-level width	tilin, till				$\begin{gathered} 1 / \text { fMCK }+10 \\ \text { Note } \end{gathered}$			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	100			ns
				$1.8 \mathrm{~V} \leq \mathrm{EV}$ dDo $<2.7 \mathrm{~V}$	300			ns
				$1.6 \mathrm{~V} \leq$ EVddo $<1.8 \mathrm{~V}$	500			ns
Timer RJ input highlevel width, low-level width	tTJIH, tTJIL	TRJIO		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	40			ns
				$1.8 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$	120			ns
				$1.6 \mathrm{~V} \leq$ EVddo $<1.8 \mathrm{~V}$	200			ns

Note The following conditions are required for low voltage interface when EVDDO < VDD
$1.8 \mathrm{~V} \leq$ EVDDO $<2.7 \mathrm{~V}$ : MIN. 125 ns
$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$ : MIN. 250 ns

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number $(m=0,1), n$ : Channel number ( $\mathrm{n}=0$ to 3 ))
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVsS} 1=0 \mathrm{~V}$ )
(2/2)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdih,   tTDIL	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1		3/f¢Lk			ns
Timer RD forced cutoff signal input low-level width	ttdsil	P130/INTP0	2 MHz < fcLk $\leq 32 \mathrm{MHz}$	1			$\mu \mathrm{s}$
			fcLk $\leq 2 \mathrm{MHz}$	1/fcLk + 1			
Timer RG input high-level width, low-level width	ttgir,   ttGIL	TRGIOA, TRGIOB		2.5/fflk			ns
TO00 to TO03,   TO10 to TO13,   TRJIOO, TRJOO,   TRDIOAO, TRDIOA1,   TRDIOB0, TRDIOB1,   TRDIOC0, TRDIOC1,   TRDIODO, TRDIOD1,   TRGIOA, TRGIOB   output frequency	fto	HS (high-speed main) mode	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			16	MHz
			$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			8	MHz
			$1.8 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVdDo $<1.8 \mathrm{~V}$			2	MHz
		LS (low-speed main) mode	$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
		LV (low-voltage main) mode	$1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$			2	MHz
PCLBUZO, PCLBUZ1 output frequency	fPCL	HS (high-speed main) mode	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$			16	MHz
			$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			8	MHz
			$1.8 \mathrm{~V} \leq$ EVDDO $<2.7 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
		LS (low-speed main) mode	$1.8 \mathrm{~V} \leq$ EVDDO $\leq 5.5 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$			4	MHz
			$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$			2	MHz
Interrupt input high-level width, low-level width	tinth, tintL	INTP0	$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{s}$
		INTP1 to INTP11	$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1			$\mu \mathrm{s}$
Key interrupt input low-level width	tKR	KR0 to KR7	$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	250			ns
			$1.6 \mathrm{~V} \leq$ EVdDo $<1.8 \mathrm{~V}$	1			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	tRSL			10			$\mu \mathrm{s}$

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs VdD (HS (high-speed main) mode)


Tcy vs VDD (LS (low-speed main) mode)

_When the high-speed on-chip oscillator clock is selected

-     -         - During self programming
_....... When high-speed system clock is selected

TCY vs VDD (LV (low-voltage main) mode)


## AC Timing Test Points



External System Clock Timing


TI/TO Timing

TIO0 to TI03, TI 10 to TI 13


TO00 to TO03, TO10 to TO13,
TRJIOO, TRJOO,


TRDIOA0, TRDIOA1
TRDIOB0, TRDIOB1,
TRDIOC0, TRDIOC1,
TRDIOD0, TRDIOD1,
TRGIOA, TRGIOB


TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1




Interrupt Request Input Timing


Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing


### 34.5 Peripheral Functions Characteristics

AC Timing Test Points


### 34.5.1 Serial array unit

(1) During communication at same potential (UART mode)
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		LV (low-voltage main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate Note 1		$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$   Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3		fMCK/6 Note 2		fМск/6		fMck/6	bps
				5.3		1.3		0.6	Mbps
		$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$   Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3		fMCK/6 Note 2		fMck/6		fMck/6	bps
				5.3		1.3		0.6	Mbps
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \text { EVDDO } \leq 5.5 \mathrm{~V} \\ & \begin{array}{l} \text { Theoretical value of the } \\ \text { maximum transfer rate } \\ \text { fMCK }=\text { fcLK Note } 3 \end{array} \end{aligned}$		fMCK/6 Note 2		fmCK/6 Note 2		fMck/6	bps
				5.3		1.3		0.6	Mbps
		$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$   Theoretical value of the maximum transfer rate fmck $=$ fclk Note 3		-		fmck/6 Note 2		fMck/6	bps
				-		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 $=1$.
Note 2. The following conditions are required for low voltage interface when EVDDO < VDD.
$2.4 \mathrm{~V} \leq$ EVDDo < 2.7 V: MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq$ EVddo < 2.4 V : MAX. 1.3 Mbps
$1.6 \mathrm{~V} \leq$ EVDDo $<1.8 \mathrm{~V}$ : MAX. 0.6 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:
HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

## UART mode connection diagram (during communication at same potential)



UART mode bit width (during communication at same potential) (reference)


Remark 1. $q$ : UART number ( $q=0$ to 3 ), $g$ : PIM and POM number ( $g=0,1,5,14$ )
Remark 2. fмСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13))
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, VSs $=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 $\geq 2 /$ ffLk	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	62.5		250		500		ns
			$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	83.3		250		500		ns
SCKp high-low-level width	tкH1,\|tKL1	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tксү1/2-7		tксу1/2-50		tкç1/2-50		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		tксу1/2-10		tксу1/2-50		tкcy1/2-50		ns
Slp setup time (to SCKp $\uparrow$ ) Note 1	tsik1	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		23		110		110		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		33		110		110		ns
SIp hold time (from SCKp $\uparrow$ ) Note 2	tks11	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		10		10		10		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tksO1	$\mathrm{C}=20 \mathrm{pF}$ Note 4			10		10		10	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register $g$ ( PIMg ) and port output mode register g ( POMg ).

Remark 1. This value is valid only when CSIOO's peripheral I/O redirect function is not used.
Remark 2. $p$ : CSI number $(p=00)$, $m$ : Unit number $(m=0)$, $n$ : Channel number $(n=0)$, $g$ : PIM and POM numbers $(g=1)$
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$ )
(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) ( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 $\geq 4 / \mathrm{fcLK}$	$2.7 \mathrm{~V} \leq$ EvDDo $\leq 5.5 \mathrm{~V}$	125		500		1000		ns
			$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	250		500		1000		ns
			$1.8 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	500		500		1000		ns
			$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1000		1000		1000		ns
			$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	-		1000		1000		ns
SCKp high-llow-level width	tKH1,tKL1	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tкCr1/2-12		tксү1/2-50		tкç1/2-50		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		tkcrı/2-18		tкcy1/2-50		tксү1/2-50		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tkcri/2-38		tксү1/2-50		tксү1/2-50		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tkcrı1/2-50		tKCY1/2-50		tкč1/2-50		ns
		$1.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		tксү1/2-100		tк¢ү1/2-100		tк¢¢1/2-100		ns
		$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		-		tк¢ү1/2-100		tkcrı1/2-100		ns
Slp setup time (to SCKp $\uparrow$ ) Note 1	tsik1	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		44		110		110		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		44		110		110		ns
		$2.4 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		75		110		110		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		110		110		110		ns
		$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		220		220		220		ns
		$1.6 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		-		220		220		ns
SIp hold time (from SCKp $\uparrow$ ) Note 2	tks 11	$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		19		19		19		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		-		19		19		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tkso1	$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V} \\ & \mathrm{C}=30 \mathrm{pF} \text { Note } 4 \end{aligned}$			25		25		25	ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \text { EVDDo } \leq 5.5 \mathrm{~V} \\ & \mathrm{C}=30 \mathrm{pF} \text { Note } 4 \end{aligned}$			-		25		25	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register $\mathbf{g}$ ( PIMg ) and port output mode register $\mathbf{g}$ (POMg).

Remark 1. $\mathrm{p}:$ CSI number $(p=00,01,10,11,20,21,30,31)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0$ to 3$)$, g : PIM number ( $\mathrm{g}=0,1,3$ to 5,14 )
Remark 2. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 ))
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 5	tKCY2	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	20 MHz < fMCK	8/fmck		-		-		ns
			fmck $\leq 20 \mathrm{MHz}$	6/fmck		6/fMck		6/fMck		ns
		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	$16 \mathrm{MHz}<\mathrm{fmCK}$	8/fmck		-		-		ns
			fmck $\leq 16 \mathrm{MHz}$	6/fmск		6/fmck		6/fmck		ns
		$2.4 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		6/fmск and 500		6/fmck and 500		6/fмск and 500		ns
		$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		6/fmck and 750		6/fмск and 750		6/fmск and 750		ns
		$1.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		6/fmCK and 1500		6/fmCK and 1500		6/fmck and 1500		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		-		6/fMCK and 1500		6/fMCK and 1500		ns
SCKp high-/   low-level width	tKH2, tKL2	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tKcy2/2-7		tKcy2/2-7		tKcy2/2-7		ns
		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		tkcy2/2-8		tkcy2/2-8		tKcy2/2-8		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		tксү2/2-18		tксу2/2-18		tкcy2/2-18		ns
		$1.7 \mathrm{~V} \leq$ EVDDO $\leq 5.5 \mathrm{~V}$		tкcy2/2-66		tксү2/2-66		tKcy2/2-66		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		-		tKCY2/2-66		tкcy2/2-66		ns
Slp setup time (to SCKp $\uparrow$ )   Note 1	tsIK2	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		1/fmск + 20		1/fмск +30		1/fмск +30		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ dDo $\leq 5.5 \mathrm{~V}$		1/fMCK +30		1/fmCK +30		1/fмск + 30		ns
		$1.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		1/fmск + 40		1/fмск +40		1/fmск + 40		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}$		-		1/fМСК + 40		1/fмск + 40		ns
SIp hold time (from SCKp $\uparrow$ )   Note 2	tKSI2	$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		1/fmCK + 31		1/fмㄷ + 31		1/fmск + 31		ns
		$1.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		1/fмск +250		1/fмск + 250		1/fмск +250		ns
		$1.6 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		-		1/fmCK + 250		1/fmсk +250		ns
Delay time from SCKp $\downarrow$ to SOp output Note 3	tKSO2	$\mathrm{C}=30 \mathrm{pF}$ Note 4	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} \leq 5.5 \mathrm{~V}$		$\begin{gathered} 2 / \mathrm{fmCK} \\ +44 \end{gathered}$		$\begin{aligned} & 2 / f m с к \\ & +110 \end{aligned}$		$\begin{aligned} & 2 / \mathrm{fmck} \\ & +110 \end{aligned}$	ns
			$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		$\begin{gathered} 2 / \text { fмск } \\ +75 \end{gathered}$		$\begin{aligned} & 2 / \mathrm{fmCK} \\ & +110 \end{aligned}$		$\begin{aligned} & 2 / \mathrm{fm} \mathrm{~m} \mathrm{~K} \\ & +110 \end{aligned}$	ns
			$1.8 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		$\begin{aligned} & 2 / \mathrm{fmск} \\ & +100 \end{aligned}$		$\begin{aligned} & 2 / \mathrm{fmck} \\ & +110 \end{aligned}$		$\begin{aligned} & \text { 2/fmck } \\ & +110 \end{aligned}$	ns
			$1.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		$\begin{aligned} & \text { 2/fmck } \\ & +220 \end{aligned}$		$\begin{aligned} & \text { 2/fmck } \\ & +220 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +220 \end{aligned}$	ns
			$1.6 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		-		$2 / \mathrm{fmCK}$ +220		$\begin{aligned} & 2 / \mathrm{fmck} \\ & +220 \end{aligned}$	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad$ C is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register $\mathbf{g}$ ( PIMg ) and port output mode register $\mathbf{g}$ ( POMg ).

Remark 1. $p$ : CSI number $(p=00,01,10,11,20,21,30,31)$, $m$ : Unit number $(m=0,1)$,
n : Channel number ( $\mathrm{n}=0$ to 3 ), g : PIM number ( $\mathrm{g}=0,1$, 3 to 5,14 )
Remark 2. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13))
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX	
$\overline{\mathrm{SSIOO}}$ setup time	tSSIK	DAPmn $=0$	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	120		120		120		ns
			$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	200		200		200		ns
			$1.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	400		400		400		ns
			$1.6 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	-		400		400		ns
		DAPmn = 1	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fмск + 120		1/fМСК +120		1/fмск + 120		ns
			$1.8 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fMck + 200		1/fmCK + 200		1/fMCK + 200		ns
			$1.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fмск + 400		1/fмск +400		1/fmск +400		ns
			$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	-		1/fmCK +400		1/fMCK +400		ns
$\overline{\mathrm{SSIOO}}$ hold time	tKSSI	DAPmn $=0$	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fмСК + 120		1/fмск +120		1/fmск + 120		ns
			$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	1/fмск +400		1/fмек +400		1/fмск +400		ns
			$1.6 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	-		1/fМСК +400		1/fмСK +400		ns
		DAPmn = 1	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	120		120		120		ns
			$1.8 \mathrm{~V} \leq$ EVDDO $\leq 5.5 \mathrm{~V}$	200		200		200		ns
			$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	400		400		400		ns
			$1.6 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$	-		400		400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register $g$ (PIMg) and port output mode register $g$ (POMg).

Remark p: CSI number $(p=00)$, m: Unit number $(m=0)$, $n$ : Channel number $(n=0), g$ : PIM number $(g=3,5)$
CSI mode connection diagram (during communication at same potential)


CSI mode connection diagram (during communication at same potential)
(Slave Transmission of slave select input function (CSIOO))


Remark 1. p : CSI number ( $\mathrm{p}=00,01,10,11,20,21,30,31$ )
Remark 2. m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)


Remark 1. $p$ : CSI number ( $p=00,01,10,11,20,21,30,31$ )
Remark 2. m: Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13)
(5) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )
(1/2)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{\leq} 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}_{\mathrm{D}}^{<}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		250 Note 1		250 Note 1		250 Note 1	kHz
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$		-		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{\leq 5.5 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{\leq 5.5 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1150		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1850		1850		1850		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	-		1850		1850		ns
Hold time when SCLr = " H "	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{\leq 5.5 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1150		1150		1150		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	1850		1850		1850		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \text { DDO }<1.8 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	-		1850		1850		ns

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)
(5) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSS} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmck +85 Note 2		1/fmck + 145 Note 2		1/fmck + 145 Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO}^{\leq 5.5 \mathrm{~V},} \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmck + 145 Note 2		1/fmck + 145 Note 2		1/fmck + 145 Note 2		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \text { DDO }<2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmck + 230 Note 2		1/fmck + 230 Note 2		1/fmck + 230 Note 2		ns
		$\begin{aligned} & 1.7 \mathrm{~V} \leq E V_{\mathrm{DDO}}<1.8 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	$1 /$ fmck + 290 Note 2		1/fmck + 290 Note 2		1/fmck + 290 Note 2		ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EVDDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	-		1/fmck + 290 Note 2		1/fmCK + 290 Note 2		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{\leq} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO}^{<} 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	ns
		$\begin{aligned} & 1.7 \mathrm{~V} \leq \mathrm{EV} \text { DDO }<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	ns
		$\begin{aligned} & 1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<1.8 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}=5 \mathrm{k} \Omega \end{aligned}$	-		0	405	0	405	ns

Note 1. The value must also be equal to or less than fMCK/4.
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVdd tolerance (When 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register $\mathbf{g}$ (PIMg) and port output mode register $h$ (POMh).
(Remarks are listed on the next page.)

## Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)



Simplified $I^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SDAr, SCLr) load capacitance
Remark 2. r: IIC number ( $r=00,01,10,11,20,21,30,31$ ), $g$ : PIM number ( $g=0,1,3$ to 5,14 ), $h$ : POM number ( $\mathrm{h}=0,1,3$ to $5,7,14$ )
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0,1$ ), n : Channel number ( $\mathrm{n}=0$ to 3 ), $\mathrm{mn}=00$ to 03,10 to 13 )
(6) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (UART mode)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSS} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		fmck/6 Note 1		fmck/6 Note 1		$\mathrm{fmCK}^{\prime} 6$ Note 1	bps
			Theoretical value of the maximum transfer rate fmck $=$ fcLk Note 4		5.3		1.3		0.6	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		fmck/6 Note 1		fmck/6 Note 1		fmck/6 Note 1	bps
			Theoretical value of the maximum transfer rate fmck $=$ fclk Note 4		5.3		1.3		0.6	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		fмск/6   Notes 1, 2, 3		fмск/6   Notes 1, 2		fмск/6   Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fmck $=$ fcLk Note 4		5.3		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 $=1$.
Note 2. Use it with EVDDo $\geq \mathrm{Vb}$.
Note 3. The following conditions are required for low voltage interface when EVDDO < VDD.
$2.4 \mathrm{~V} \leq$ EVDDO < 2.7 V: MAX. 2.6 Mbps
$1.8 \mathrm{~V} \leq$ EVdDo < 2.4 V: MAX. 1.3 Mbps
Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V})$
LS (low-speed main) mode: $\quad 8 \mathrm{MHz}(1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
LV (low-voltage main) mode: $\quad 4 \mathrm{MHz}(1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g ( PIMg ) and port output mode register g ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 3 ), $g$ : PIM and POM number ( $g=0,1,5,14$ )
Remark 3. fМск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 )
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIORO) is 1.
(6) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (UART mode)
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{E} \mathrm{~V}_{\mathrm{DDO}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \\ & \mathrm{~V}=2.7 \mathrm{~V} \end{aligned}$		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=2.3 \mathrm{~V} \end{aligned}$		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate $\mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega,$ $V_{b}=1.6 \mathrm{~V}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$

Baud rate error (theoretical value $)=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-C_{b} \times R_{b} \times \ln \left(1-\frac{2.2}{V_{b}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. The smaller maximum transfer rate derived by using $\mathrm{fMCK} / 6$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$

$$
\text { Maximum transfer rate }=\frac{1}{\left\{-\mathrm{Cb} \times \mathrm{Rb}_{\mathrm{b}} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{\mathrm{b}}}\right)\right\} \times 3}[\mathrm{bps}]
$$

$$
\text { Baud rate error (theoretical value) }=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{2.0}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{} \times 100[\%]
$$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
Note 5. Use it with EVDDO $\geq \mathrm{Vb}$.

Note 6. The smaller maximum transfer rate derived by using $\mathrm{f} M \mathrm{CK} / 6$ or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\} \times 3}[\mathrm{bps}]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100[\%]$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the TxDq pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For ViH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## UART mode connection diagram (during communication at different potential)



UART mode bit width (during communication at different potential) (reference)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (TxDq) pull-up resistance,
$\mathrm{Cb}[\mathrm{F}]$ : Communication line ( TxDq ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $q$ : UART number ( $q=0$ to 3 ), $g$ : PIM and POM number ( $g=0,1,5,14$ )
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ( $\mathrm{mn}=00$ to 03,10 to 13 ))
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIORO) is 1.
(7) Communication at different potential (2.5 V, 3 V ) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )
(1/2)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tкCY1 $\geq 2 /$ ffLk	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{0} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}, 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	200		1150		1150		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	300		1150		1150		ns
SCKp high-level width	tKH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tксү1/2-50		tксү1/2-50		tkcy $1 / 2-50$		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tkcy $1 / 2-120$		tкcy1/2-120		tkcy1/2-120		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tксү1/2-7		tксү1/2-50		tkcrı1/2-50		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tк¢¢1/2-10		tксү1/2-50		tkcy $1 / 2-50$		ns
SIp setup time (to SCKp $\uparrow$ ) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		58		479		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		121		479		479		ns
Slp hold time (from SCKp $\uparrow$ ) Note 1	tks11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		10		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		10		10		10		ns
Delay time from SCKp $\downarrow$ to SOp output Note 1	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			60		60		60	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			130		130		130	ns

(Notes, Caution, and Remarks are listed on the next page.)
(7) Communication at different potential (2.5 V, 3 V ) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSIOO only)
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.7 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVsS} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp $\downarrow$ ) Note 2	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}=20 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$	23		110		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	33		110		110		ns
Slp hold time (from SCKp $\downarrow$ ) Note 2	tksı11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	10		10		10		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	10		10		10		ns
Delay time from SCKp $\uparrow$ to SOp output Note 2	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		10		10		10	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=20 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		10		10		10	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVdd tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For ViH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$ : Communication line (SCKp, SOp ) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SCKp, SOp ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $p$ : CSI number $(p=00)$, m: Unit number $(m=0)$, $n$ : Channel number $(n=0), g$ : PIM and POM number $(g=3,5)$
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number (mn = 00))
Remark 4. This value is valid only when CSIOO's peripheral I/O redirect function is not used.
(8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}$ )
(1/3)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkCY1 $\geq$ 4/fcLk	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	300		1150		1150		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	500		1150		1150		ns
			$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note, } \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1150		1150		1150		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tkcy1/2-75		tkcrı1/2-75		tkcy1/2-75		ns
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \\ & \hline \end{aligned}$		tkcy $1 / 2$ - 170		tkcy1/2-170		tк¢ү1/2-170		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note, } \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tkcy1/2-458		tк¢ү1/2-458		tkCy1/2-458		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \\ & \hline \end{aligned}$		tkcy1/2-12		tkcy1/2-50		tkcy $1 / 2$ - 50		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tkcy1/2-18		tксү1/2-50		tксү1/2-50		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note, } \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$		tксү1/2-50		tксү1/2-50		tксү1/2-50		ns

Note Use it with EVDDO $\geq \mathrm{Vb}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVdd tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For Vis and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed two pages after the next page.)
(8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVSS} 0=\mathrm{EVsS} 1=0 \mathrm{~V}\right)$
(2/3)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp $\uparrow$ ) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	81		479		479		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	177		479		479		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	479		479		479		ns
Slp hold time (from SCKp $\uparrow$ ) Note 1	tks 11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
Delay time from SCKp $\downarrow$ to SOp output Note 1	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		100		100		100	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		195		195		195	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		483		483		483	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.
Note 2. Use it with EVDDo $\geq \mathrm{V}_{\mathrm{b}}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVdD tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g$ ( PIMg ) and port output mode register $g(\mathrm{POMg})$. For $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{VIL}^{\prime}$, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
(8) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (master mode, SCKp... internal clock output)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVSS} 0=\mathrm{EVsS} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Slp setup time (to SCKp $\downarrow$ ) Note 1	tsik1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	44		110		110		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	44		110		110		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}=5.5 \mathrm{k} \Omega \end{aligned}$	110		110		110		ns
Slp hold time (from SCKp $\downarrow$ ) Note 1	tks 11	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	19		19		19		ns
Delay time from SCKp $\uparrow$ to SOp output Note 1	tksO1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		25		25		25	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		25		25		25	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{Cb}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}^{2}=5.5 \mathrm{k} \Omega \end{aligned}$		25		25		25	ns

Note 1. When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. Use it with EVDDo $\geq \mathrm{V}_{\mathrm{b}}$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVdd tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For $\mathrm{V}_{\mathrm{IH}}$ and $\mathrm{VIL}^{\prime}$, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## CSI mode connection diagram (during communication at different potential



Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$ : Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $p$ : CSI number $(p=00,01,10,20,30,31)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number ( $\mathrm{g}=0,1,3$ to 5,14 )
Remark 3. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number $(\mathrm{mn}=00)$ )
Remark 4. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)


CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)


Remark 1. $p$ : CSI number $(p=00,01,10,20,30,31)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number ( $\mathrm{g}=0,1,3$ to 5,14 )
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
(9) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (CSI mode) (slave mode, SCKp... external clock input)
(TA $=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSs} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V} \end{aligned}$	$24 \mathrm{MHz}<$ fmck	14/fмск		-		-		ns
			20 MHz < fmck $\leq 24 \mathrm{MHz}$	12/ғмск		-		-		ns
			$8 \mathrm{MHz}<$ fмck $\leq 20 \mathrm{MHz}$	10/fмск		-		-		ns
			$4 \mathrm{MHz}<$ fмck $\leq 8 \mathrm{MHz}$	8/fмск		16/fмск		-		ns
			fmck $\leq 4 \mathrm{MHz}$	6/fмск		10/fмск		10/fmск		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$	24 MHz < fmск	20/fмск		-		-		ns
			$20 \mathrm{MHz}<$ fmck $\leq 24 \mathrm{MHz}$	16/ғмск		-		-		ns
			16 MHz < fmck $\leq 20 \mathrm{MHz}$	14/fмск		-		-		ns
			$8 \mathrm{MHz}<$ fmck $\leq 16 \mathrm{MHz}$	12/fмск		-		-		ns
			$4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$	8/fмск		16/fмск		-		ns
			fmck $\leq 4 \mathrm{MHz}$	6/fмск		10/fмск		10/fмск		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \\ & \text { Note } 2 \end{aligned}$	24 MHz < fmck	48/ғмск		-		-		ns
			20 MHz < fmck $\leq 24 \mathrm{MHz}$	36/ғмск		-		-		ns
			16 MHz < fmck $\leq 20 \mathrm{MHz}$	32/fмск		-		-		ns
			$8 \mathrm{MHz}<$ fmck $\leq 16 \mathrm{MHz}$	26/ғмск		-		-		ns
			$4 \mathrm{MHz}<\mathrm{fmCK} \leq 8 \mathrm{MHz}$	16/ғмск		16/fмск		-		ns
			$\mathrm{fmCk}^{5} 4 \mathrm{MHz}$	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	$\begin{array}{\|l\|l\|} \hline \text { tkH2, } \\ \text { tKLL2 } \end{array}$	$4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		$\begin{gathered} \text { tксү2/2 } \\ -12 \end{gathered}$		$\begin{gathered} \text { tкCy2/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tксү2/2 } \\ -50 \end{gathered}$		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDO $<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		$\begin{gathered} \text { tксү2/2 } \\ -18 \end{gathered}$		$\begin{gathered} \text { tкCY2/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tксү2/2 } \\ -50 \end{gathered}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}$ Note 2		$\begin{gathered} \text { tkCy2/2 } \\ -50 \end{gathered}$		$\begin{gathered} \text { tкCY2/2 } \\ -50 \end{gathered}$		$\begin{gathered} \mathrm{t} \mathrm{KCY} 2 / 2 \\ -50 \end{gathered}$		ns
Slp setup time (to SCKp $\uparrow$ ) Note 3	tsıк2	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		$\begin{aligned} & \text { 1/fмск } \\ & +20 \end{aligned}$		$\begin{aligned} & 1 / \text { fмск } \\ & +30 \end{aligned}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +30 \end{gathered}$		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		$\begin{gathered} \text { 1/fмск } \\ +20 \end{gathered}$		$\begin{gathered} 1 / \text { fмск } \\ +30 \end{gathered}$		$\begin{aligned} & 1 / \text { fмск } \\ & +30 \end{aligned}$		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$ Note 2		$\begin{gathered} 1 / \mathrm{fmck} \\ +30 \end{gathered}$		$\begin{aligned} & 1 / \mathrm{fmск} \\ & +30 \end{aligned}$		$\begin{aligned} & \text { 1/fмск } \\ & +30 \end{aligned}$		ns
Slp hold time (from SCKp $\uparrow$ ) Note 4	tksı2			$\begin{gathered} \text { 1/fuck } \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +31 \end{gathered}$		$\begin{gathered} 1 / \mathrm{fmck} \\ +31 \end{gathered}$		ns
Delay time from SCKp $\downarrow$ to SOp output Note 5	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & \text { 2/fмск } \\ & +120 \end{aligned}$		$\begin{aligned} & 2 / f m с к \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f m с к \\ & +573 \end{aligned}$	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & \text { 2/fмск } \\ & +214 \end{aligned}$		$\begin{aligned} & \hline 2 / f m c k \\ & +573 \end{aligned}$		$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDo}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \mathrm{~b} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rv}_{\mathrm{V}}=5.5 \mathrm{k} \Omega \end{aligned}$			$\begin{aligned} & \text { 2/fмск } \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f m с к \\ & +573 \end{aligned}$		$\begin{aligned} & 2 / f m c k \\ & +573 \end{aligned}$	ns

(Notes, Cautions, and Remarks are listed on the next page.)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. Use it with EVDDO $\geq \mathrm{V}_{\mathrm{b}}$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp $\downarrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 5. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp $\uparrow$ " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (when 64- to 100-pin products)) mode for the SOp pin by using port input mode register $g$ ( PIMg ) and port output mode register $g(\mathrm{POMg})$. For VIH and VIL, see the DC characteristics with TTL input buffer selected.

## CSI mode connection diagram (during communication at different potential)



Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$ : Communication line ( SOp ) pull-up resistance, $\mathrm{Cb}_{\mathrm{b}}[\mathrm{F}]$ : Communication line ( SOp ) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. $p$ : CSI number $(p=00,01,10,20,30,31)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0$ to 3$)$, $\mathrm{g}: \mathrm{PIM}$ and POM number $(\mathrm{g}=0,1,3$ to 5,14$)$
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ( $\mathrm{mn}=00,01,02,10,12,13$ )
Remark 4. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)


CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1 , or DAPmn = 1 and CKPmn =0.)


Remark 1. $p$ : CSI number $(p=00,01,10,20,30,31)$, $m$ : Unit number $(m=0,1), n$ : Channel number $(n=0$ to 3$)$,
$\mathrm{g}:$ PIM and POM number ( $\mathrm{g}=0,1,3$ to 5,14 )
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.
(10) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
(TA = -40 to $+85{ }^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )
(1/2)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDo}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1550		1550		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	475		1550		1550		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	1150		1550		1550		ns
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1150		1550		1550		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDo}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tHIGH	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	245		610		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	200		610		610		ns
		$\begin{aligned} & \hline 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \\ & \hline \end{aligned}$	675		610		610		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	600		610		610		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	610		610		610		ns

(10) Communication at different potential ( $1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$ ) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
(TA $=-40$ to $+85{ }^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq$ EVDD0 $=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVss $0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDo}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
Data hold time (transmission)	thd: DAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	305	0	305	0	305	ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}_{0}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, R_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	355	0	355	0	355	ns
		$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V} \text { Note } 2, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	405	0	405	0	405	ns

Note 1. The value must also be equal to or less than fMCK/4.
Note 2. Use it with EVDDo $\geq \mathrm{Vb}$.
Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVdd tolerance (When 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VdD tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the SCLr pin by using port input mode register $g$ ( PIMg ) and port output mode register $g$ ( POMg ). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

## Simplified $I^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)



Simplified ${ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)


Remark 1. $\mathrm{Rb}[\Omega]$ : Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[F]$ : Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$ : Communication line voltage
Remark 2. r: IIC number ( $r=00,01,10,11,20,30,31$ ), $g$ : PIM, POM number ( $g=0,1,3$ to 5,14 )
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ( $m=0,1$ ), n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,01,02,10,12,13)$

### 34.5.2 Serial interface IICA

(1) $I^{2} \mathrm{C}$ standard mode
(TA = -40 to $+85{ }^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLAO clock frequency	fscl	Standard mode:$\text { fcLk } \geq 1 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	kHz
			$1.8 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	kHz
			$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	0	100	0	100	0	100	kHz
			$1.6 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	-		0	100	0	100	kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		-		4.7		4.7		$\mu \mathrm{s}$
Hold time Note 1	thi: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVdDo} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		-		4.0		4.0		$\mu \mathrm{s}$
Hold time when SCLA0 = "L"	tıow	$2.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		-		4.7		4.7		$\mu \mathrm{s}$
Hold time when SCLAO = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EVDDO}^{\leq 5.5 \mathrm{~V}}$		4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$		-		4.0		4.0		$\mu \mathrm{s}$

(Notes, Cautions, and Remarks are listed on the next page.)
(1) $\mathrm{I}^{2} \mathrm{C}$ standard mode
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	250		250		250		ns
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	250		250		250		ns
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	250		250		250		ns
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	-		250		250		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	0	3.45	0	3.45	0	3.45	$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	-		0	3.45	0	3.45	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.0		4.0		4.0		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ do $\leq 5.5 \mathrm{~V}$	-		4.0		4.0		$\mu \mathrm{s}$
Bus-free time	tbuF	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$	4.7		4.7		4.7		$\mu \mathrm{S}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	4.7		4.7		4.7		$\mu \mathrm{S}$
		$1.7 \mathrm{~V} \leq \mathrm{EV}$ Ddo $\leq 5.5 \mathrm{~V}$	4.7		4.7		4.7		$\mu \mathrm{s}$
		$1.6 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			4.7		4.7		$\mu \mathrm{S}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (ІОн1, ІоL1, Vон1, Voli) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of $\mathrm{Rb}_{\mathrm{b}}$ (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $\mathrm{Cb}=400 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega$
(2) $\mathrm{I}^{2} \mathrm{C}$ fast mode
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fCLK $\geq 3.5 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	0	400	0	400	0	400	kHz
			$1.8 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$	0	400	0	400	0	400	kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq$ EVDDo 05.5 V		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ do $\leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Hold time when SCLA0 = "L"	tLow	$2.7 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh	$2.7 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu: DAT	$2.7 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		100		100		100		ns
		$1.8 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		100		100		100		ns
Data hold time (transmission) Note 2	thD: DAT	$2.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		0	0.9	0	0.9	0	0.9	$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		0	0.9	0	0.9	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		0.6		0.6		0.6		$\mu \mathrm{s}$
Bus-free time	tbuF	$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$
		$1.8 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		1.3		1.3		1.3		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of tHD: DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (IOH1, IOL1, Voн1, Voli) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of $\mathrm{Rb}_{\mathrm{b}}$ (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: $\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega$
(3) $\mathrm{I}^{2} \mathrm{C}$ fast mode plus
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode plus: fCLK $\geq 10 \mathrm{MHz}$	$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	0	1000					kHz
Setup time of restart condition	tsu: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		0.26						$\mu \mathrm{s}$
Hold time Note 1	thD: STA	$2.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		0.26						$\mu \mathrm{s}$
Hold time when SCLA0 = "L"	tLow	$2.7 \mathrm{~V} \leq$ EVddo $\leq 5.5 \mathrm{~V}$		0.5		-				$\mu \mathrm{s}$
Hold time when SCLA0 = "H"	thigh	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		0.26		-				$\mu \mathrm{s}$
Data setup time (reception)	tsu: dat	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		50		-				ns
Data hold time (transmission) Note 2	thi: DAT	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		0	0.45	-				$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto	$2.7 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		0.26		-				$\mu \mathrm{s}$
Bus-free time	tbuF	$2.7 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		0.5		-				$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIORO2) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, Vol1) must satisfy the values in the redirect destination.

Note 3. The maximum value of Cb (communication line capacitance) and the value of $\mathrm{Rb}_{\mathrm{b}}$ (communication line pull-up resistor) at that time in each mode are as follows.
Fast mode plus: $\mathrm{C}_{\mathrm{b}}=120 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.1 \mathrm{k} \Omega$

## IICA serial transfer timing



Remark $n=0,1$

### 34.6 Analog Characteristics

### 34.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage   Input channel	Reference voltage (+) = AVREFP   Reference voltage (-) = AVrefm	Reference voltage (+) = VDD   Reference voltage (-) = Vss	Reference voltage (+) = VBGR   Reference voltage (-)= AVREFM
ANIO to ANI14	Refer to 34.6.1 (1).	Refer to 34.6.1 (3).	Refer to 34.6.1 (4).
ANI16 to ANI20	Refer to 34.6.1 (2).		
Internal reference voltage   Temperature sensor output voltage	Refer to 34.6.1 (1).		-

(1) When reference voltage ( + ) $=$ AVREFPIANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage ( - ) $=$ AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage ( + ) = AVREFP, Reference voltage ( - ) $=A V_{\text {Refm }}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution   AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$		1.2	$\pm 3.5$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4		1.2	$\pm 7.0$	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2 to ANI14	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
		10-bit resolution   Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{S}$
			$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{S}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution   AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			$\pm 0.25$	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4			$\pm 0.50$	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution   AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			$\pm 0.25$	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 4			$\pm 0.50$	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution   AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			$\pm 2.5$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4			$\pm 5.0$	LSB
Differential linearity error Note 1	DLE	10-bit resolution   AVREFP $=$ VDD Note 3	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			$\pm 1.5$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$ Note 4			$\pm 2.0$	LSB
Analog input voltage	Vain	ANI2 to ANI14		0		AV REFP	V
		Internal reference voltage ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		Vbgr Note 5			V
		Temperature sensor output voltage ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VTMPS25 Note 5			V

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When AVREFP < VDD, the MAX. values are as follows.

Overall error:
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP = Vdd.
Integral linearity error/ Differential linearity error: Add $\pm 0.5$ LSB to the MAX. value when AVREFP $=$ VDD.
Note 4. Values when the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
Note 5. Refer to 34.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(2) When reference voltage $(+)=$ AVREFPIANIO (ADREFP1 $=0$, ADREFPO $=1$ ), reference voltage $(-)=$ AVrefmlANI1 (ADREFM = 1), target pin: ANI16 to ANI20
(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVrefp, Reference voltage (-) = AVrefm = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution   $E V_{D D O} \leq A V_{\text {REFP }}=$ VdD Notes 3,4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$		1.2	$\pm 5.0$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5		1.2	$\pm 8.5$	LSB
Conversion time	tconv	10-bit resolution   Target ANI pin: ANI16 to ANI20	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V} \mathrm{DD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution   EVdDo $\leq$ AVREFP $=$ VdD Notes 3,4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			$\pm 0.35$	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			$\pm 0.60$	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution   EVdDo $\leq$ AVREFP $=$ VdD Notes 3,4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ Refp $\leq 5.5 \mathrm{~V}$			$\pm 0.35$	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			$\pm 0.60$	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution   EVdDO $\leq$ AVrefp $=$ Vdd Notes 3,4	$1.8 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			$\pm 3.5$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			$\pm 6.0$	LSB
Differential linearity error Note 1	DLE	10-bit resolution   EVDDO $\leq$ AVREFP $=$ VDD Notes 3,4	$1.8 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			$\pm 2.0$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$ Note 5			$\pm 2.5$	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AV REFP and EVdoo	V

Note 1. Excludes quantization error ( $\pm 1 / 2 \mathrm{LSB}$ ).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When EVDDO $\leq \operatorname{AVREFP} \leq \operatorname{VDD}$, the MAX. values are as follows.
Overall error: $\quad$ Add $\pm 1.0$ LSB to the MAX. value when $\operatorname{AVREFP}=$ VDD.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP = VdD.
Integral linearity error/ Differential linearity error: Add $\pm 0.5$ LSB to the MAX. value when AVREFP = VDD.
Note 4. When AVREFP < EVDDo $\leq \operatorname{VDD}$, the MAX. values are as follows.
Overall error:
Add $\pm 4.0$ LSB to the MAX. value when AVrefp = Vdd.
Zero-scale error/Full-scale error: Add $\pm 0.20 \%$ FSR to the MAX. value when AVREFP $=$ VDD.
Integral linearity error/ Differential linearity error: Add $\pm 2.0$ LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
(3) When reference voltage $(+)=\operatorname{VDD}(\operatorname{ADREFP} 1=0$, ADREFPO $=0)$, reference voltage $(-)=\operatorname{Vss}$ (ADREFM $=0$ ), target pin: ANIO to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDD}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V , Reference voltage ( + ) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1.2	$\pm 7.0$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3		1.2	$\pm 10.5$	LSB
Conversion time	tconv	10-bit resolution   Target pin: ANIO to ANI14, ANI16 to ANI20	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	57		95	$\mu \mathrm{s}$
		10-bit resolution   Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 0.60$	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			$\pm 0.85$	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 0.60$	\%FSR
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			$\pm 0.85$	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 4.0$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			$\pm 6.5$	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 2.0$	LSB
			$1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$ Note 3			$\pm 2.5$	LSB
Analog input voltage	VAIN	ANIO to ANI14		0		Vdd	V
		ANI16 to ANI20		0		EVddo	V
		Internal reference voltage ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		Vbgr ${ }^{\text {Note }} 4$			V
		Temperature sensor output voltage ( $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VTMPS25 Note 4			V

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. When the conversion time is set to $57 \mu \mathrm{~s}$ (min.) and $95 \mu \mathrm{~s}$ (max.).
Note 4. Refer to 34.6.2 Temperature sensor characteristicslinternal reference voltage characteristic.
(4) When reference voltage ( + ) = Internal reference voltage (ADREFP1 $=1$, ADREFP0 $=0$ ), reference voltage ( - ) = AVrefm/ANI1 (ADREFM = 1), target pin: ANIO, ANI2 to ANI14, ANI16 to ANI20
( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{EVDD}=\mathrm{EVDD1} \leq \mathrm{VDD}, \mathrm{Vss}=\mathrm{EVsso}=\mathrm{EVss} 1=0 \mathrm{~V}$, Reference voltage
$(+)=$ Vbgr Note 3, Reference voltage ( - ) = AVrefm = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8			bit
Conversion time	tconv	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 0.60$	\% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 2.0$	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			$\pm 1.0$	LSB
Analog input voltage	VAIN			0		VbGR Note 3	V

Note 1. Excludes quantization error ( $\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 34.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
Note 4. When reference voltage $(-)=\mathrm{Vss}$, the MAX. values are as follows.
Zero-scale error: $\quad$ Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage $(-)=$ AVREFM.
Integral linearity error:
Differential linearity error: Add $\pm 0.5$ LSB to the MAX. value when reference voltage ( - ) = AVREFM. Add $\pm 0.2$ LSB to the MAX. value when reference voltage $(-)=A V R E F M$.

### 34.6.2 Temperature sensor characteristics/internal reference voltage characteristic

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVsS} 1=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VBGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the   temperature		-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tAMP		5			$\mu \mathrm{~s}$

### 34.6.3 D/A converter characteristics

(TA = -40 to $+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVss} 0=\mathrm{EVSs} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			$\pm 2.5$	LSB
		Rload $=8 \mathrm{M} \Omega$	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			$\pm 2.5$	LSB
Settling time	tset	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			3	$\mu \mathrm{s}$
			$1.6 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{s}$

### 34.6.4 Comparator

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $\left.+85^{\circ} \mathrm{C}, 1.6 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVss} 0=\mathrm{EVsS} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EVddo-1.4	V
	Ivemp			-0.3		EVddo + 0.3	V
Output delay	td	$\begin{array}{\|l\|} \hline \text { VDD }=3.0 \mathrm{~V} \\ \text { Input slew rate }>50 \mathrm{mV} / \mu \mathrm{s} \end{array}$	Comparator high-speed mode, standard mode			1.2	$\mu \mathrm{S}$
			Comparator high-speed mode, window mode			2.0	$\mu \mathrm{s}$
			Comparator low-speed mode, standard mode		3.0	5.0	$\mu \mathrm{s}$
High-electric-potential reference voltage	VTW+	Comparator high-speed m	window mode		0.76 VdD		V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mo	window mode		0.24 VdD		V
Operation stabilization wait time	tcmp			100			$\mu \mathrm{s}$
Internal reference voltage Note	VBGR	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS	igh-speed main) mode	1.38	1.45	1.50	V

Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

### 34.6.5 POR circuit characteristics

( $\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time Note 1	1.46	1.50	1.54	V
Minimum pulse width Note 2	TPW		300			$\mu \mathrm{~s}$

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 34.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).


### 34.6.6 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode
( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVDo	Power supply rise time	3.98	4.06	4.14	V
			Power supply fall time	3.90	3.98	4.06	V
		VLVD1	Power supply rise time	3.68	3.75	3.82	V
			Power supply fall time	3.60	3.67	3.74	V
		VLVD2	Power supply rise time	3.07	3.13	3.19	V
			Power supply fall time	3.00	3.06	3.12	V
		VLVD3	Power supply rise time	2.96	3.02	3.08	V
			Power supply fall time	2.90	2.96	3.02	V
		VLVD4	Power supply rise time	2.86	2.92	2.97	V
			Power supply fall time	2.80	2.86	2.91	V
		VLVD5	Power supply rise time	2.76	2.81	2.87	V
			Power supply fall time	2.70	2.75	2.81	V
		VLVD6	Power supply rise time	2.66	2.71	2.76	V
			Power supply fall time	2.60	2.65	2.70	V
		VLVD7	Power supply rise time	2.56	2.61	2.66	V
			Power supply fall time	2.50	2.55	2.60	V
		VLVD8	Power supply rise time	2.45	2.50	2.55	V
			Power supply fall time	2.40	2.45	2.50	V
		VLVD9	Power supply rise time	2.05	2.09	2.13	V
			Power supply fall time	2.00	2.04	2.08	V
		VLVD10	Power supply rise time	1.94	1.98	2.02	V
			Power supply fall time	1.90	1.94	1.98	V
		VLVD11	Power supply rise time	1.84	1.88	1.91	V
			Power supply fall time	1.80	1.84	1.87	V
		VLVD12	Power supply rise time	1.74	1.77	1.81	V
			Power supply fall time	1.70	1.73	1.77	V
		VLVD13	Power supply rise time	1.64	1.67	1.70	V
			Power supply fall time	1.60	1.63	1.66	V
Minimum pulse width		tLW		300			$\mu \mathrm{S}$
Detection delay time						300	$\mu \mathrm{s}$

(2) LVD Detection Voltage of Interrupt \& Reset Mode
( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	Vlvdao	VPOC2, VPOC1, VPOC0 $=0,0,0$, falling reset voltage		1.60	1.63	1.66	V
	VLVdA1	LVIS1, LVIS0 $=1,0$	Rising release reset voltage	1.74	1.77	1.81	V
			Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
			Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3	LVIS1, LVIS0 $=0,0$	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	Vlvdbo	VPOC2, VPOC1, VPOC0 $=0,0,1$, falling reset voltage		1.80	1.84	1.87	V
	VLVDB1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
			Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
			Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
			Falling interrupt voltage	3.00	3.06	3.12	V
	Vlvdco	VPOC2, VPOC1, VPOC0 $=0,1,0$, falling reset voltage		2.40	2.45	2.50	V
	VLVDC1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
			Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
			Falling interrupt voltage	2.60	2.65	2.70	V
	Vlvdc3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
			Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDDo	VPOC2, VPOC1, VPOC0 $=0,1,1$, falling reset voltage		2.70	2.75	2.81	V
	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
			Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
			Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
			Falling interrupt voltage	3.90	3.98	4.06	V

### 34.6.7 Power supply voltage rising slope characteristics

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SvDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VdD reaches the operating voltage range shown in 34.4 AC Characteristics.

### 34.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+85^{\circ} \mathrm{C}$, Vss $\left.=0 \mathrm{~V}\right)$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply   voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.


### 34.8 Flash Memory Programming Characteristics

( $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$1.8 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$		1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	$\mathrm{T}_{\mathrm{A}}=8{ }^{\circ} \mathrm{C}$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years	$\mathrm{TA}_{\mathrm{A}}=8{ }^{\circ} \mathrm{C}$	100,000			
		Retained for 20 years	$\mathrm{TA}=85^{\circ} \mathrm{C}$	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

### 34.9 Dedicated Flash Memory Programmer Communication (UART)

( $\mathrm{T} A=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.
Uransfer rate		During serial programming	115,200		$1,000,000$

### 34.10 Timing for Switching Flash Memory Programming Modes

( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, 1.8 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$ )

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsulnit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOLO pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			$\mu \mathrm{s}$
How long the TOOLO pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tHD	POR and LVD reset must end before the external reset ends.	1			ms


$<1>$ The low level is input to the TOOL0 pin.
<2> The external reset ends (POR and LVD reset must end before the external reset ends.).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external and internal resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
thD: How long to keep the TOOLO pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)

## CHAPTER 35 ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105 ${ }^{\circ} \mathrm{C}$ )

This chapter describes the electrical specifications for the products " G : Industrial applications ( $\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ )".

Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
Caution 2. With products not provided with an EVDDo, EVDD1, EVsso, or EVss1 pin, replace EVdDo and EVDD1 with Vdd, or replace EVsso and EVss1 with Vss.
Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 With functions for each product.

There are following differences between the products " G : Industrial applications ( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}$ )" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	TA $=-40$ to $+85^{\circ} \mathrm{C}$	$\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$
Operating mode Operating voltage range	HS (high-speed main) mode:   $2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz   $2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz LS (low-speed main) mode:   $1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 8 MHz LV (low-voltage main) mode:   $1.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 4 MHz	HS (high-speed main) mode only: $\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 32 \mathrm{MHz} \\ & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz} \end{aligned}$
High-speed on-chip oscillator clock accuracy	$\begin{aligned} & 1.8 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}: \\ & \pm 1.0 \% @ \mathrm{TA}_{\mathrm{A}}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 1.5 \% @ \mathrm{TA}_{\mathrm{A}}=-40 \text { to }-20^{\circ} \mathrm{C} \\ & 1.6 \mathrm{~V} \leq \mathrm{VDD}<1.8 \mathrm{~V}: \\ & \pm 5.0 \% @ \mathrm{~T}_{\mathrm{A}}=-20 \text { to }+85^{\circ} \mathrm{C} \\ & \pm 5.5 \% @ \mathrm{~T}_{\mathrm{A}}=-40 \text { to }-20^{\circ} \mathrm{C} \end{aligned}$	$\begin{array}{\|l} 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}: \\ \pm 2.0 \% @ T_{\mathrm{A}}=+85 \text { to }+105^{\circ} \mathrm{C} \\ \pm 1.0 \% @ T_{\mathrm{A}}=-20 \text { to }+85^{\circ} \mathrm{C} \\ \pm 1.5 \% @ T_{A}=-40 \text { to }-20^{\circ} \mathrm{C} \end{array}$
Serial array unit	UART CSI: fclk/2 (16 Mbps supported), fclk/4 Simplified $I^{2}$ C communication	UART   CSI: fCLK/4   Simplified $\mathrm{I}^{2} \mathrm{C}$ communication
IICA	Standard mode   Fast mode   Fast mode plus	Standard mode Fast mode
Voltage detector	- Rising: 1.67 V to 4.06 V (14 stages)   - Falling: 1.63 V to 3.98 V (14 stages)	- Rising: 2.61 V to 4.06 V (8 stages)   - Falling: 2.55 V to 3.98 V (8 stages)

Remark The electrical characteristics of the products G: Industrial applications (TA $=-40$ to $+105^{\circ} \mathrm{C}$ ) are different from those of the products "A: Consumer applications, and D: Industrial applications". For details, refer to $\mathbf{3 5 . 1}$ to $\mathbf{3 5 . 1 0}$.

### 35.1 Absolute Maximum Ratings

## Absolute Maximum Ratings

(1/2)

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVddo, EVdD1	EVddo = EVdD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	Viregc	REGC	$\begin{gathered} -0.3 \text { to }+2.8 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 1 \end{gathered}$	V
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,   P40 to P47, P50 to P57, P64 to P67,   P70 to P77, P80 to P87, P100 to P102,   P110, P111, P120, P140 to P147	$\begin{gathered} -0.3 \text { to EVDDO }+0.3 \\ \text { and }-0.3 \text { to VDD }+0.3 \text { Note } 2 \end{gathered}$	V
	$\mathrm{V}_{12}$	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	V13	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, $\overline{\text { RESET }}$	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	$\begin{aligned} & \text { P00 to P06, P10 to P17, P30, P31, } \\ & \text { P40 to P47, P50 to P57, P60 to P67, } \\ & \text { P70 to P77, P80 to P87, P100 to P102, } \\ & \text { P110, P111, P120, P130, P140 to P147 } \end{aligned}$	-0.3 to EVddo +0.3 and -0.3 to Vdd +0.3 Note 2	V
	Vo2	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAl1	ANI16 to ANI20	-0.3 to EVdDo +0.3 and -0.3 to $\operatorname{AVREF}(+)+0.3$ Notes 2, 3	V
	VAI2	ANI0 to ANI14	$\begin{gathered} -0.3 \text { to } \operatorname{VDD}+0.3 \\ \text { and }-0.3 \text { to } \operatorname{AVREF}(+)+0.3 \text { Notes } 2,3 \end{gathered}$	V

Note 1. Connect the REGC pin to Vss via a capacitor ( 0.47 to $1 \mu \mathrm{~F}$ ). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.
Note 2. Must be 6.5 V or lower.
Note 3. Do not exceed $A V R E F(+)+0.3 \mathrm{~V}$ in case of $A / D$ conversion target pin.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
Remark 2. AVREF (+): + side reference voltage of the A/D converter.
Remark 3. Vss: Reference voltage

Absolute Maximum Ratings
(2/2)

Parameter	Symbols	Conditions		Ratings	Unit
Output current, high	Ioh1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins -170 mA	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	IoH2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IoL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	TA	In normal operation mode		-40 to +105 Note	${ }^{\circ} \mathrm{C}$
		In flash memory programming mode			
Storage temperature	Tstg			-65 to +150	${ }^{\circ} \mathrm{C}$

Note $\quad$ Total operating time in +85 to $+105^{\circ} \mathrm{C}: 10,000$ hours

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

### 35.2 Oscillator Characteristics

### 35.2.1 X1, XT1 characteristics

( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/ crystal resonator	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	1.0		20.0	MHz
		$2.4 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$	1.0		16.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.
Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator.

### 35.2.2 On-chip oscillator characteristics

( $\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$ )

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency   Notes 1, 2	fiH			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to $+85{ }^{\circ} \mathrm{C}$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-1.0		+1.0	\%
accuracy		-40 to $-20^{\circ} \mathrm{C}$	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	-1.5		+1.5	\%
		+85 to $+100^{\circ} \mathrm{C}$	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	-2.0		+2.0	\%
Low-speed on-chip oscillator clock frequency	fil				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	\%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte $(000 \mathrm{C} 2 \mathrm{H})$ and bits 0 to 2 of the HOCODIV register.
Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

### 35.3 DC Characteristics

### 35.3.1 Pin characteristics

$\left(\mathrm{TA}=-40\right.$ to $+105{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVSs} 1=0 \mathrm{~V}\right)$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	$\mathrm{lOH1}$	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$			$\begin{gathered} -3.0 \\ \text { Note } 2 \end{gathered}$	mA
		$\begin{aligned} & \text { Total of P00 to P04, P40 to P47, } \\ & \text { P102, P120, P130, P140 to P145 } \\ & \text { (When duty } \leq 70 \% \text { Note 3) } \end{aligned}$	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq$ EVdDo $<4.0 \mathrm{~V}$			-10.0	mA
			$2.4 \mathrm{~V} \leq$ EVdDo $<2.7 \mathrm{~V}$			-5.0	mA
		```Total of P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty 5 70% Note 3)```	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			-30.0	mA
			$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			-19.0	mA
			$2.4 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			-10.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			-60.0	mA
	IOH 2	Per pin for P20 to P27, P150 to P156	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-0.1 Note 2	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDDo, EVDD1, VDD pins to an output pin.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $\mathrm{n} \%$).

- Total output current of pins $=(\mathrm{IOH} \times 0.7) /(\mathrm{n} \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOH}=-10.0 \mathrm{~mA}$
Total output current of pins $=(-10.0 \times 0.7) /(80 \times 0.01) \approx-8.7 \mathrm{~mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{EVSS} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IoL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				$\begin{gathered} 15.0 \\ \text { Note } 2 \end{gathered}$	mA
		Total of P00 to P04, P40 to P47,	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			40.0	mA
		2, P120, P130, P140 to P145	$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			15.0	mA
		ty	$2.4 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			9.0	mA
		Total of P05, P06, P10 to P17,	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$			40.0	mA
		P30, P31, P50 to P57,	$2.7 \mathrm{~V} \leq$ EVDDo $<4.0 \mathrm{~V}$			35.0	mA
		P80 to P87, P100, P101, P110, P111, P146, P147 (When duty $\leq 70 \%$ Note 3)	$2.4 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$			20.0	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)				80.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty $\leq 70 \%$ Note 3)	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			5.0	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
Note 2. However, do not exceed the total current value.
Note 3. Specification under conditions where the duty factor $\leq 70 \%$.
The output current value that has changed to the duty factor $>70 \%$ the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to $n \%$).

- Total output current of pins $=(\operatorname{loL} \times 0.7) /(n \times 0.01)$
<Example> Where $\mathrm{n}=80 \%$ and $\mathrm{IOL}=10.0 \mathrm{~mA}$
Total output current of pins $=(10.0 \times 0.7) /(80 \times 0.01) \approx 8.7 \mathrm{~mA}$
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.
A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $\left.+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \mathrm{VSS}=\mathrm{EVSS} 0=\mathrm{EVsS} 1=0 \mathrm{~V}\right)$
(3/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVddo		EVddo	V
	VIH2	$\begin{aligned} & \text { P01, P03, P04, P10, P14 to P17, } \\ & \text { P30, P31, P43, P44, P50, } \\ & \text { P53 to P55, P80, P81, P142, } \\ & \text { P143 } \end{aligned}$	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$	2.2		EVddo	V
			TTL input buffer $3.3 \mathrm{~V} \leq \text { EVDDO }<4.0 \mathrm{~V}$	2.0		EVddo	V
			TTL input buffer $2.4 \mathrm{~V} \leq \text { EVDDO }<3.3 \mathrm{~V}$	1.5		EVddo	V
	VIH3	P20 to P27, P150 to P156		0.7 Vdd		VDD	V
	VIH4	P60 to P63		0.7 EVddo		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0.8 VDD		VDD	V
Input voltage, low	VIL1	$\begin{aligned} & \text { P00 to P06, P10 to P17, P30, } \\ & \text { P31, P40 to P47, P50 to P57, } \\ & \text { P64 to P67, P70 to P77, } \\ & \text { P80 to P87, P100 to P102, P110, } \\ & \text { P111, P120, P140 to P147 } \end{aligned}$	Normal input buffer	0		0.2 EVdDo	V
	VIL2	$\begin{aligned} & \text { P01, P03, P04, P10, P14 to P17, } \\ & \text { P30, P31, P43, P44, P50, } \\ & \text { P53 to P55, P80, P81, P142, } \\ & \text { P143 } \end{aligned}$	TTL input buffer $4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	0		0.8	V
			TTL input buffer $3.3 \mathrm{~V} \leq \text { EVDDO }<4.0 \mathrm{~V}$	0		0.5	V
			TTL input buffer $2.4 \mathrm{~V} \leq \text { EVDDO }<3.3 \mathrm{~V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVddo	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, $\overline{\text { RESET }}$		0		0.2 Vdd	V

Caution The maximum value of Viн of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVddo, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVsS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}\right)$
(4/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-3.0 \mathrm{~mA} \end{aligned}$	EVddo - 0.7			V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 1=-2.0 \mathrm{~mA} \end{aligned}$	EVdDo - 0.6			V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \text { ІО } 1=-1.5 \mathrm{~mA} \end{aligned}$	EVdDo - 0.5			V
	Voh2	P20 to P27, P150 to P156	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{IOH} 2=-100 \mu \mathrm{~A} \end{aligned}$	VDD - 0.5			V
Output voltage, low	VoL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=8.5 \mathrm{~mA} \end{aligned}$			0.7	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=3.0 \mathrm{~mA} \end{aligned}$			0.6	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=1.5 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 1=0.6 \mathrm{~mA} \end{aligned}$			0.4	V
	VoL2	P20 to P27, P150 to P156	$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 2=400 \mu \mathrm{~A} \end{aligned}$			0.4	V
	Vol3	P60 to P63	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=15.0 \mathrm{~mA} \end{aligned}$			2.0	V
			$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=5.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=3.0 \mathrm{~mA} \end{aligned}$			0.4	V
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{loL} 3=2.0 \mathrm{~mA} \end{aligned}$			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N -ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+10{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}\right)$
(5/5)

Items	Symbol	Conditions			MIN.	TYP.	MAX.	Unit
Input leakage current, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	V I $=$ EVDD0				1	$\mu \mathrm{A}$
	ILIH2	$\frac{\mathrm{P} 20 \text { to P27, P137, P150 to P156, }}{\frac{\text { RESET }}{}}$	V I $=\mathrm{VDD}$				1	$\mu \mathrm{A}$
	ІІІн3	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, EXCLK, XT1, XT2, } \\ & \text { EXCLKS) } \end{aligned}$	V I $=\mathrm{VDD}$	In input port or external clock input			1	$\mu \mathrm{A}$
				In resonator connection			10	$\mu \mathrm{A}$
Input leakage current, low	ILLL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	V I $=\mathrm{EV}$ sso				-1	$\mu \mathrm{A}$
	ILIL2		V I $=\mathrm{Vss}$				-1	$\mu \mathrm{A}$
	ILIL3	$\begin{aligned} & \text { P121 to P124 } \\ & \text { (X1, X2, EXCLK, XT1, XT2, } \\ & \text { EXCLKS) } \end{aligned}$	V I $=\mathrm{V}$ ss	In input port or external clock input			-1	$\mu \mathrm{A}$
				In resonator connection			-10	$\mu \mathrm{A}$
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	$\mathrm{V}_{\mathrm{I}}=$ EVsso, In input port		10	20	100	k Ω

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

35.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products
($\mathrm{TA}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+10{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq$ EVdDo $\leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=$ EVsso $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operating mode	HS (high-speed main) mode Note 5	$\begin{array}{\|l} \hline \mathrm{fHOco}=64 \mathrm{MHz}, \\ \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \\ \hline \mathrm{fHOco}=32 \mathrm{MHz}, \\ \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{array}$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		2.4		mA
						VDD $=3.0 \mathrm{~V}$		2.4		
					Basic operation	VDD $=5.0 \mathrm{~V}$		2.1		
						VDD $=3.0 \mathrm{~V}$		2.1		
			HS (high-speed main) mode Note 5	$\begin{aligned} & \mathrm{fHOCO}=64 \mathrm{MHz}, \\ & \mathrm{fIH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		5.2	9.3	mA
						Vdo $=3.0 \mathrm{~V}$		5.2	9.3	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		4.8	8.7	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.8	8.7	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \text { fiH }=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		4.1	7.3	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.1	7.3	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		3.8	6.7	
						VDD $=3.0 \mathrm{~V}$		3.8	6.7	
				$\begin{aligned} & \text { fHoco = } 16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	VDD $=5.0 \mathrm{~V}$		2.8	4.9	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		2.8	4.9	
			HS (high-speed main) mode Note 5	$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 2, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.7	mA
						Resonator connection		3.5	5.8	
				$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.3	5.7	
						Resonator connection		3.5	5.8	
				$\begin{aligned} & f M x=10 \mathrm{MHz} \text { Note } 2, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.4	
						Resonator connection		2.1	3.5	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 2, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.0	3.4	
						Resonator connection		2.1	3.5	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & T_{A}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	$\mu \mathrm{A}$
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.7	6.1	
						Resonator connection		4.7	6.1	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	6.7	
						Resonator connection		4.8	6.7	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		4.8	7.5	
						Resonator connection		4.8	7.5	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.4	8.9	
						Resonator connection		5.4	8.9	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		7.2	21.0	
						Resonator connection		7.3	21.1	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz
$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 16 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq$ EVDD $0 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=$ EVsso $=0 \mathrm{~V}$)
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IdD2 Note 2	HALT mode	HS (high-speed main) mode Note 7	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.80	4.36	mA
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.80	4.36	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.54	3.67	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.54	3.67	
				$\begin{aligned} & \mathrm{fHOco}=48 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.62	3.42	
					VDD $=3.0 \mathrm{~V}$		0.62	3.42	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.44	2.85	
					VDD $=3.0 \mathrm{~V}$		0.44	2.85	
				$\begin{aligned} & \text { fносо }=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{VdD}=5.0 \mathrm{~V}$		0.40	2.08	
					Vdo $=3.0 \mathrm{~V}$		0.40	2.08	
			HS (high-speed main) mode Note 7	$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 3, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	2.45	mA
					Resonator connection		0.49	2.57	
				$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.28	2.45	
					Resonator connection		0.49	2.57	
				$\begin{aligned} & \text { fmx }=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VdD}=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	1.28	
					Resonator connection		0.30	1.36	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.19	1.28	
					Resonator connection		0.30	1.36	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.25	0.57	$\mu \mathrm{A}$
					Resonator connection		0.44	0.76	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.36	1.17	
					Resonator connection		0.59	1.36	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.49	1.97	
					Resonator connection		0.72	2.16	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.97	3.37	
					Resonator connection		1.16	3.56	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		3.20	17.10	
					Resonator connection		3.40	17.50	
	IDD3 Note 6	STOP mode Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.18	0.51	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.24	0.51	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.29	1.10	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.41	1.90	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				0.90	3.30	
			$\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$				3.10	17.00	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD and EVDDO, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz

$$
2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
$$

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{A}=25^{\circ} \mathrm{C}$
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to 100-pin products
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+10{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq$ EVDDo $=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)
(1/2)

Parameter	Symbol	Conditions					MIN.	TYP.	MAX.	Unit
Supply current Note 1	IdD1	Operating mode	HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		2.6		mA
						VDD $=3.0 \mathrm{~V}$		2.6		
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \mathrm{fiH}=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Basic operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		2.3		
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		2.3		
			HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fHoco }=64 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VdD}=5.0 \mathrm{~V}$		5.8	10.9	mA
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		5.8	10.9	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		5.4	10.3	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		5.4	10.3	
				$\begin{aligned} & \text { fHoco }=48 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	Vdd $=5.0 \mathrm{~V}$		4.5	8.2	
						$\mathrm{VDD}=3.0 \mathrm{~V}$		4.5	8.2	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	V do $=5.0 \mathrm{~V}$		4.2	7.8	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		4.2	7.8	
				$\begin{aligned} & \text { fHoco }=16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 3 \end{aligned}$	Normal operation	$\mathrm{VDD}=5.0 \mathrm{~V}$		3.1	5.6	
						$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		3.1	5.6	
			HS (high-speed main) mode Note 5	$\begin{aligned} & \text { fmx }=20 \mathrm{MHz} \text { Note } 2, \\ & \text { Vdo }=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.7	6.6	mA
						Resonator connection		3.9	6.7	
				$\begin{aligned} & \text { fmx }=20 \mathrm{MHz} \text { Note 2, } \\ & \text { VdD }=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		3.7	6.6	
						Resonator connection		3.9	6.7	
				$\begin{aligned} & \text { fmx }=10 \mathrm{MHz} \text { Note } 2, \\ & \text { VDD }=5.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.2	3.9	
						Resonator connection		2.3	4.0	
				$\begin{aligned} & \text { fmx }=10 \mathrm{MHz} \text { Note } 2, \\ & \text { VdD }=3.0 \mathrm{~V} \end{aligned}$	Normal operation	Square wave input		2.2	3.9	
						Resonator connection		2.3	4.0	
			Subsystem clock operation	$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.0	7.1	$\mu \mathrm{A}$
						Resonator connection		5.0	7.1	
				fsub $=32.768 \mathrm{kHz}$ Note 4	Normal operation	Square wave input		5.0	7.1	
				$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		Resonator connection		5.0	7.1	
				fsub $=32.768 \mathrm{kHz}$ Note 4	Normal operation	Square wave input		5.1	8.8	
				$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$		Resonator connection		5.1	8.8	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		5.5	10.5	
						Resonator connection		5.5	10.5	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{TA}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		6.5	14.5	
						Resonator connection		6.5	14.5	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 4 \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Normal operation	Square wave input		13.0	58.0	
						Resonator connection		13.0	58.0	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDo, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDo, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 3. When high-speed system clock and subsystem clock are stopped.
Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

$$
\begin{array}{ll}
\text { HS (high-speed main) mode: } & 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 32 \mathrm{MHz} \\
& 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
\end{array}
$$

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fhoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is $T_{A}=25^{\circ} \mathrm{C}$
(2) Flash ROM: 96 to $\mathbf{2 5 6} \mathrm{KB}$ of $\mathbf{3 0}$ - to 100-pin products
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)
(2/2)

Parameter	Symbol	Conditions				MIN.	TYP.	MAX.	Unit
Supply current Note 1	IDD2 Note 2	HALT mode	HS (high-speed main) mode Note 7	fносо $=64 \mathrm{MHz}$, $\mathrm{fiH}=32 \mathrm{MHz}$ Note 4	$\mathrm{VDD}=5.0 \mathrm{~V}$		0.88	4.86	mA
					VdD $=3.0 \mathrm{~V}$		0.88	4.86	
				$\begin{aligned} & \text { fHoco }=32 \mathrm{MHz}, \\ & \text { fiH }=32 \mathrm{MHz} \text { Note } 4 \end{aligned}$	$\mathrm{V} D \mathrm{D}=5.0 \mathrm{~V}$		0.62	4.17	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.62	4.17	
				$\begin{aligned} & \text { fHOCO }=48 \mathrm{MHz}, \\ & \mathrm{fIH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VdD $=5.0 \mathrm{~V}$		0.68	3.82	
					VdD $=3.0 \mathrm{~V}$		0.68	3.82	
				$\begin{aligned} & \text { fHoco }=24 \mathrm{MHz}, \\ & \mathrm{fiH}=24 \mathrm{MHz} \text { Note } 4 \end{aligned}$	VDD $=5.0 \mathrm{~V}$		0.50	3.25	
					VDD $=3.0 \mathrm{~V}$		0.50	3.25	
				$\begin{aligned} & \text { fHoco = } 16 \mathrm{MHz}, \\ & \mathrm{fiH}=16 \mathrm{MHz} \text { Note } 4 \end{aligned}$	Vdo $=5.0 \mathrm{~V}$		0.44	2.28	
					$\mathrm{V} D \mathrm{D}=3.0 \mathrm{~V}$		0.44	2.28	
			HS (high-speed main) mode Note 7	$\begin{aligned} & f M x=20 \mathrm{MHz} \text { Note } 3, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.37	2.65	mA
					Resonator connection		0.50	2.77	
				$\begin{aligned} & \text { fMx }=20 \mathrm{MHz} \text { Note } 3, \\ & V D D=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.37	2.65	
					Resonator connection		0.50	2.77	
				$\begin{aligned} & f M x=10 \mathrm{MHz} \text { Note } 3, \\ & V D D=5.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	1.36	
					Resonator connection		0.30	1.46	
				$\begin{aligned} & \mathrm{fmx}=10 \mathrm{MHz} \text { Note } 3, \\ & \mathrm{VDD}=3.0 \mathrm{~V} \end{aligned}$	Square wave input		0.21	1.36	
					Resonator connection		0.30	1.46	
			Subsystem clock operation	$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.28	0.66	$\mu \mathrm{A}$
					Resonator connection		0.47	0.85	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.34	0.66	
					Resonator connection		0.53	0.85	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+50^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.37	2.35	
					Resonator connection		0.56	2.54	
				$\begin{aligned} & \text { fsuB }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+70^{\circ} \mathrm{C} \end{aligned}$	Square wave input		0.61	4.08	
					Resonator connection		0.80	4.27	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+85^{\circ} \mathrm{C} \end{aligned}$	Square wave input		1.55	8.09	
					Resonator connection		1.74	8.28	
				$\begin{aligned} & \text { fsub }=32.768 \mathrm{kHz} \text { Note } 5, \\ & \mathrm{~T}_{\mathrm{A}}=+105^{\circ} \mathrm{C} \end{aligned}$	Square wave input		6.00	51.00	
					Resonator connection		6.00	51.00	
	$\begin{array}{\|l\|} \hline \text { IDD3 } \\ \text { Note } 6 \end{array}$	STOP mode Note 8	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$				0.19	0.57	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$				0.25	0.57	
			$\mathrm{T}_{\mathrm{A}}=+50^{\circ} \mathrm{C}$				0.33	2.26	
			$\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$				0.52	3.99	
			$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$				1.46	8.00	
			$\mathrm{T}_{\mathrm{A}}=+100^{\circ} \mathrm{C}$				5.50	50.00	

(Notes and Remarks are listed on the next page.)

Note 1. Total current flowing into VDD, EVDDo, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDO, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
Note 2. During HALT instruction execution by flash memory.
Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
Note 4. When high-speed system clock and subsystem clock are stopped.
Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $\quad 2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz}$ to 32 MHz

$$
2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} @ 1 \mathrm{MHz} \text { to } 16 \mathrm{MHz}
$$

Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
Remark 3. fiH: High-speed on-chip oscillator clock frequency (32 MHz max.)
Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

(3) Peripheral Functions (Common to all products)

(T A $=-40$ to $+105{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVdDo}=\mathrm{EVdD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscillator operating current	IFIL Note 1				0.20		$\mu \mathrm{A}$
RTC operating current	IRTC Notes 1, 2, 3				0.02		$\mu \mathrm{A}$
12-bit interval timer operating current	IIT Notes 1, 2, 4				0.02		$\mu \mathrm{A}$
Watchdog timer operating current	IWDT Notes 1, 2, 5	fil $=15 \mathrm{kHz}$			0.22		$\mu \mathrm{A}$
A/D converter operating current	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, $\mathrm{A} V_{\text {REFP }}=\mathrm{VDD}=5.0 \mathrm{~V}$		1.3	1.7	mA
			Low voltage mode, $\mathrm{A} \mathrm{~V}_{\text {Refp }}=\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V}$		0.5	0.7	mA
A/D converter reference voltage current	IAdREF Note 1				75.0		$\mu \mathrm{A}$
Temperature sensor operating current	ITMPS Note 1				75.0		$\mu \mathrm{A}$
D/A converter operating current	Idac Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating current	Icmp Notes 1, 12, 13	$\begin{aligned} & \text { VDD }=5.0 \mathrm{~V}, \\ & \text { Regulator output voltage }=2.1 \mathrm{~V} \end{aligned}$	Window mode		12.5		$\mu \mathrm{A}$
			Comparator high-speed mode		6.5		$\mu \mathrm{A}$
			Comparator low-speed mode		1.7		$\mu \mathrm{A}$
		$\begin{aligned} & \text { VDD }=5.0 \mathrm{~V}, \\ & \text { Regulator output voltage }=1.8 \mathrm{~V} \end{aligned}$	Window mode		8.0		$\mu \mathrm{A}$
			Comparator high-speed mode		4.0		$\mu \mathrm{A}$
			Comparator low-speed mode		1.3		$\mu \mathrm{A}$
LVD operating current	ILVD Notes 1, 7				0.08		$\mu \mathrm{A}$
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	Ibgo Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNoz Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion operations are performed, Low voltage mode, $\mathrm{A} \mathrm{~V}_{\text {REFP }}=\mathrm{VDD}=3.0 \mathrm{~V}$		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

Note 1. Current flowing to VdD.
Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IdD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).
The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
Note 8. Current flowing during programming of the data flash.
Note 9. Current flowing during self-programming.
Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode.
Note 11. Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
Note 12. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.

Remark 1. fiL: Low-speed on-chip oscillator clock frequency
Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
Remark 3. fcLK: CPU/peripheral hardware clock frequency
Remark 4. Temperature condition of the TYP. value is $\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

35.4 AC Characteristics

$\left(\mathrm{TA}=-40\right.$ to $+105{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVSs} 1=0 \mathrm{~V}\right)$
(1/2)

Note The following conditions are required for low voltage interface when EVDDO < VDD

$$
2.4 \mathrm{~V} \leq \mathrm{EVDDO}<2.7 \mathrm{~V}: \text { MIN. } 125 \mathrm{~ns}
$$

Remark fмск: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number $(m=0,1), n$: Channel number ($\mathrm{n}=0$ to 3))
$\left(\mathrm{TA}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(2/2)

Minimum Instruction Execution Time during Main System Clock Operation

Tcy vs Vdd (HS (high-speed main) mode)

AC Timing Test Points

External System Clock Timing

TI/TO Timing

TIO0 to TI03, TI 10 to TI 13

TO00 to TO03, TO10 to TO13,
TRJIOO, TRJOO,

TRDIOA0, TRDIOA1
TRDIOB0, TRDIOB1,
TRDIOC0, TRDIOC1,
TRDIOD0, TRDIOD1,
TRGIOA, TRGIOB

TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1

Interrupt Request Input Timing

Key Interrupt Input Timing

$\overline{\text { RESET }}$ Input Timing

35.5 Peripheral Functions Characteristics

AC Timing Test Points

35.5.1 Serial array unit

(1) During communication at same potential (UART mode)
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD} 1 \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate Note 1		$2.4 \mathrm{~V} \leq \mathrm{EV}$ doo $\leq 5.5 \mathrm{~V}$		fmCk/12 Note 2	bps
		Theoretical value of the maximum transfer rate fMCK $=$ fCLK Note 3		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 $=1$.
Note 2. The following conditions are required for low voltage interface when EVDDO < VDD. $2.4 \mathrm{~V} \leq$ EVDDo < 2.7 V : MAX. 1.3 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fCLK) are:
HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$ $16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q : UART number ($\mathrm{q}=0$ to 3), g : PIM and POM number ($\mathrm{g}=0,1,5,14$)
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output)
($\mathrm{TA}_{\mathrm{A}}=-\mathbf{4 0}$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time	tKCY1	tксү1 \geq 4/ffLk	$2.7 \mathrm{~V} \leq$ Evodo $\leq 5.5 \mathrm{~V}$	250		ns
			$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	500		ns
SCKp high-/low-level width	tKH1, tKL1	$4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		tкcrı1/2-24		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$		tkcrı1/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tкcrı1/2-76		ns
SIp setup time (to SCKp \uparrow) Note 1	tsik1	$4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$		66		ns
		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		66		ns
		$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}_{0} \leq 5.5 \mathrm{~V}$		113		ns
SIp hold time (from SCKp \uparrow) Note 2	tks11			38		ns
Delay time from SCKp \downarrow to SOp output Note 3	tkso1	$\mathrm{C}=30 \mathrm{pF}$ Not			50	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn = 0 and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. $\quad \mathrm{C}$ is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remark 1. p : CSI number $(p=00,01,10,11,20,21,30,31)$, m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$, g : PIM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. fмск: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+10{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX	
SCKp cycle time Note 5	tKcy2	$4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} \leq 5.5 \mathrm{~V}$	20 MHz < fMCK	16/fмск		ns
			fmck $\leq 20 \mathrm{MHz}$	12/fmCK		ns
		$2.7 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$	16 MHz < fMCK	16/fmск		ns
			fmck $\leq 16 \mathrm{MHz}$	12/fmск		ns
		$2.4 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		12/ғмск and 1000		ns
SCKp high-/low-level width	tKH2, tKL2	$4.0 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		tKcy2/2-14		ns
		$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		tKcy2/2-16		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$		tкcy2/2-36		ns
SIp setup time (to SCKp \uparrow) Note 1	tSIK2	$2.7 \mathrm{~V} \leq$ EVDDO $\leq 5.5 \mathrm{~V}$		1/fmск + 40		ns
		$2.4 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		1/fмск + 60		ns
SIp hold time (from SCKp \uparrow) Note 2	tKSI2			1/fmск + 62		ns
Delay time from SCKp \downarrow to SOp output Note 3	tKsO2	$\mathrm{C}=30 \mathrm{pF} \text { Note } 4$	$2.7 \mathrm{~V} \leq$ EVdDo $\leq 5.5 \mathrm{~V}$		2/fMCK + 66	ns
			$2.4 \mathrm{~V} \leq$ EVDDo $\leq 5.5 \mathrm{~V}$		2/fмск +113	ns

Note 1. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The SIp hold time becomes "from SCKpl" when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. C is the load capacitance of the SOp output lines.
Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps .

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register \mathbf{g} (POMg).

Remark 1. $\mathrm{p}: \operatorname{CSI}$ number $(\mathrm{p}=00,01,10,11,20,21,30,31)$, m : Unit number ($\mathrm{m}=0,1$),
n : Channel number ($\mathrm{n}=0$ to 3), g : PIM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SSIOO setup time	tssik	DAPmn $=0$	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	240		ns
			$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	400		ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	1/fмск + 240		ns
			$2.4 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	1/fмск +400		ns
$\overline{\mathrm{SSIOO}}$ hold time	tkssı	DAPmn $=0$	$2.7 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	1/fмск + 240		ns
			$2.4 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}$	1/fmск +400		ns
		DAPmn $=1$	$2.7 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}$	240		ns
			$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}$	400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number $(p=00)$, m: Unit number $(m=0)$, n : Channel number $(n=0)$, g: PIM number $(g=3,5)$
CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSIOO))

Remark 1. p: CSI number ($\mathrm{p}=00,01,10,11,20,21,30,31$)
Remark 2. m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (during communication at same potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn =0.)

Remark 1. p : CSI number ($p=00,01,10,11,20,21,30,31$)
Remark 2. m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)
(4) During communication at same potential (simplified ${ }^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+105{ }^{\circ} \mathrm{C}, \mathbf{2 . 4 ~ V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \text { DDO } \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \text { DDo } \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}=3 \mathrm{k} \Omega \end{aligned}$	4600		ns
Hold time when SCLr = "H"	thigh	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	4600		ns
Data setup time (reception)	tsu: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}^{5} 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmCk + 220 Note 2		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	1/fmCK + 580 Note 2		ns
Data hold time (transmission)	thD: DAT	$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}_{\mathrm{D}} \leq 5.5 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDD} \leq 5.5 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=3 \mathrm{k} \Omega \end{aligned}$	0	1420	ns

Note 1. The value must also be equal to or less than fMCK/4.
Note 2. Set the fmск value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VdD tolerance (When 30- to 52-pin products)/EVdD tolerance (When 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register $g(\mathrm{PIMg})$ and port output mode register h (POMh).
(Remarks are listed on the next page.)

Simplified $\mathrm{I}^{2} \mathrm{C}$ mode connection diagram (during communication at same potential)

Simplified $I^{2} \mathrm{C}$ mode serial transfer timing (during communication at same potential)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (SDAr) pull-up resistance, $\mathrm{Cb}[F]$: Communication line (SDAr, SCLr) load capacitance
Remark 2. r: IIC number ($r=00,01,10,11,20,21,30,31$), g : PIM number ($g=0,1,3$ to 5,14), h : POM number ($\mathrm{h}=0,1,3$ to $5,7,14$)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register $m n(S M R m n)$. m : Unit number ($m=0,1$), n : Channel number ($\mathrm{n}=0$ to 3), $\mathrm{mn}=00$ to 03,10 to 13)
(5) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode)
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+10{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
Transfer rate		reception	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		fmck/12 Note 1	bps
			Theoretical value of the maximum transfer rate fmCK $=$ fclk Note 3		2.6	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		fmck/12 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK $=$ fcLk Note 3		2.6	Mbps
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		fmck/12 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fmck $=$ fcLk Note 3		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 $=1$.
Note 2. The following conditions are required for low voltage interface when EVDDO < VDD.
$2.4 \mathrm{~V} \leq$ EVDDo $<2.7 \mathrm{~V}$: MAX. 1.3 Mbps
Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: $32 \mathrm{MHz}(2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$
$16 \mathrm{MHz}(2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V})$

Caution Select the TTL input buffer for the RxDq pin and the N -ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the TxDq pin by using port input mode register \mathbf{g} (PIMg) and port output mode register $g(\mathrm{POMg})$. For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb [V]: Communication line voltage
Remark 2. q : UART number ($\mathrm{q}=0$ to 3), g : PIM and POM number ($\mathrm{g}=0,1,5,14$)
Remark 3. fмСк: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13)
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIORO) is 1.
(5) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (UART mode)
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)
(2/2)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
Transfer rate		transmission	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV}_{\mathrm{DDO}} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$		Note 1	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=2.7 \mathrm{~V} \end{aligned}$		2.6 Note 2	Mbps
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$		Note 3	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega, \\ & \mathrm{~V}=2.3 \mathrm{~V} \end{aligned}$		1.2 Note 4	Mbps
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}^{2}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$		Note 5	bps
			Theoretical value of the maximum transfer rate $\begin{aligned} & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{b}}=1.6 \mathrm{~V} \end{aligned}$		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}$ and $2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$

Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb}_{\mathrm{b}} \times \mathrm{Rb}_{\mathrm{b}} \times \ln \left(1-\frac{2.2}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{} \times 100[\%]$

$$
\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }
$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
Note 3. The smaller maximum transfer rate derived by using fMcK/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.7 \mathrm{~V} \leq \mathrm{EVDD} 0<4.0 \mathrm{~V}$ and $2.3 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.7 \mathrm{~V}$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Note 5. The smaller maximum transfer rate derived by using fMcK/12 or the following expression is the valid maximum transfer rate.
Expression for calculating the transfer rate when $2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}$ and $1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$
Maximum transfer rate $=\frac{1}{\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\} \times 3}[\mathrm{bps}]$
Baud rate error (theoretical value) $=\frac{\frac{1}{\text { Transfer rate } \times 2}-\left\{-\mathrm{Cb} \times \mathrm{Rb} \times \ln \left(1-\frac{1.5}{\mathrm{~V}_{\mathrm{b}}}\right)\right\}}{\left(\frac{1}{\text { Transfer rate }}\right) \times \text { Number of transferred bits }} \times 100$ [\%]

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 6. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the TxDq pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For ViH and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. $\mathrm{Rb}[\Omega]$: Communication line (TxDq) pull-up resistance,
$\mathrm{Cb}[\mathrm{F}]$: Communication line (TxDq) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. q : UART number ($q=0$ to 3), g : PIM and POM number ($g=0,1,5,14$)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00$ to 03,10 to 13))
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIORO) is 1.
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)
($\mathrm{T} A=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSS} 0=\mathrm{EVSS} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	tKCY1 \geq 4/fcLk	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	600		ns
			$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1000		ns
			$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	2300		ns
SCKp high-level width	tkH1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		tксү1/2-150		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tксү1/2-340		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tксү1/2-916		ns
SCKp low-level width	tkL1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$		tксү1/2-24		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		tксү1/2-36		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		tксү1/2-100		ns

Caution Select the TTL input buffer for the SIp pin and the N -ch open drain output (VDD tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register \mathbf{g} (PIMg) and port output mode register g (POMg). For VIн and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed two pages after the next page.)
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)
$\left(\right.$ TA $=-40$ to $+105{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$
(2/3)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp \uparrow) ${ }^{\text {Note }}$	tsIK1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	162		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	354		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	958		ns
SIp hold time (from SCKp \uparrow) Note	tkSI1	$\begin{aligned} & \hline 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \\ & \hline \end{aligned}$	38		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	38		ns
Delay time from SCKp \downarrow to SOp output Note	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}=1.4 \mathrm{k} \Omega \end{aligned}$		200	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		390	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rb}^{2}=5.5 \mathrm{k} \Omega \end{aligned}$		966	ns

Note \quad When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For Vis and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the page after the next page.)
(6) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (master mode, SCKp... internal clock output)
$\left(\right.$ TA $=-40$ to $+105{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKpl) Note	tsIK1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}^{2}=1.4 \mathrm{k} \Omega \end{aligned}$	88		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}^{2}=2.7 \mathrm{k} \Omega \end{aligned}$	88		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	220		ns
SIp hold time (from SCKpl) Note	tkSI1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	38		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	38		ns
Delay time from SCKp \uparrow to SOp output Note	tkso1	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$		50	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		50	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		50	ns

Note \quad When DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register $g(P I M g)$ and port output mode register $g(P O M g)$. For Vis and VIL, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential

Remark 5. $\mathrm{Rb}[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SCKp, SOp) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 6. p : CSI number $(\mathrm{p}=00,01,10,20,30,31)$, m : Unit number $(m=0,1), n$: Channel number $(\mathrm{n}=0$ to 3$)$, $\mathrm{g}: \mathrm{PIM}$ and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 7. fMCK: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
n : Channel number ($\mathrm{mn}=00$)
Remark 8. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn =1.)

CSI mode serial transfer timing (master mode) (during communication at different potential)
(When DAPmn = 0 and CKPmn =1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p : CSI number $(p=00,01,10,20,30,31)$, m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$, $\mathrm{g}:$ PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
(7) Communication at different potential (1.8 V, $2.5 \mathrm{~V}, 3 \mathrm{~V}$) (CSI mode) (slave mode, SCKp... external clock input)
$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+10{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time Note 1	tкç2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 4.0 \mathrm{~V} \end{aligned}$	24 MHz < fmCK	28/fмск		ns
			20 MHz < $\mathrm{fmck}^{5} \mathbf{2 4 \mathrm { MHz }}$	24/fмск		ns
			$8 \mathrm{MHz}<$ fmck $\leq 20 \mathrm{MHz}$	20/fмск		ns
			$4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$	16/fмск		ns
			fmck $\leq 4 \mathrm{MHz}$	12/fмск		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V} \end{aligned}$	24 MHz < fmck	40/fмск		ns
			20 MHz < $\mathrm{fmCK}^{5} \mathbf{2 4 \mathrm { MHz }}$	32/fмск		ns
			$16 \mathrm{MHz}<$ fmck $\leq 20 \mathrm{MHz}$	28/fмск		ns
			$8 \mathrm{MHz}<$ fмск $\leq 16 \mathrm{MHz}$	24/fмск		ns
			$4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$	16/fмск		ns
			fmck $\leq 4 \mathrm{MHz}$	12/fмск		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V} \end{aligned}$	24 MHz < fmck	96/fмск		ns
			$20 \mathrm{MHz}<$ fмск $\leq 24 \mathrm{MHz}$	72/fмск		ns
			16 MHz < fmck $\leq 20 \mathrm{MHz}$	64/fмск		ns
			$8 \mathrm{MHz}<$ fмск $\leq 16 \mathrm{MHz}$	52/fмск		ns
			$4 \mathrm{MHz}<$ fmck $\leq 8 \mathrm{MHz}$	32/fмск		ns
			fmck $\leq 4 \mathrm{MHz}$	20/fмск		ns
SCKp high-/low-level width	tKH2, tkL2	$4.0 \mathrm{~V} \leq \mathrm{EV}$ DDo $\leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		tксү2/2-24		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		tксү2/2-36		ns
		$2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$		tксү2/2-100		ns
Slp setup time (to SCKp \uparrow) Note 2	tsIK2	$4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}$		1/fмск + 40		ns
		$2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}$		1/fмск + 40		ns
		$2.4 \mathrm{~V} \leq \mathrm{EVDDo} \leq 3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{Vb} \leq 2.0 \mathrm{~V}$		1/fмск + 60		ns
Slp hold time (from SCKp \uparrow) Note 3	tksı2			1/fMck + 62		ns
Delay time from SCKp \downarrow to SOp output Note 4	tkso2	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=1.4 \mathrm{k} \Omega \end{aligned}$			2/fмск + 240	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDD0}<4.0 \mathrm{~V}, 2.3 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$			2/fмск + 428	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=30 \mathrm{pF}, \mathrm{Rv}=5.5 \mathrm{k} \Omega \end{aligned}$			2/fmck +1146	ns

(Notes, Cautions, and Remarks are listed on the next page.)

Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
Note 2. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp setup time becomes "to SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 3. When DAPmn $=0$ and CKPmn $=0$, or DAPmn $=1$ and CKPmn $=1$. The Slp hold time becomes "from SCKp \downarrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.
Note 4. When DAPmn $=0$ and CKPmn = 0 , or DAPmn $=1$ and CKPmn $=1$. The delay time to SOp output becomes "from SCKp \uparrow " when DAPmn $=0$ and CKPmn $=1$, or DAPmn $=1$ and CKPmn $=0$.

Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (when 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SOp) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SOp) load capacitance, $\mathrm{V}[\mathrm{V}]$: Communication line voltage
Remark 2. p : CSI number $(p=00,01,10,20,30,31)$, m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$, g : PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 3. fМСК: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
m : Unit number, n : Channel number ($\mathrm{mn}=00,01,02,10,12,13$)
Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1 , or DAPmn = 1 and CKPmn =0.)

Remark 1. p : CSI number $(p=00,01,10,20,30,31)$, m : Unit number $(m=0,1), n$: Channel number $(n=0$ to 3$)$,
$\mathrm{g}:$ PIM and POM number ($\mathrm{g}=0,1,3$ to 5,14)
Remark 2. CSIO1 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.
(8) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+105{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)
(1/2)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fscl	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		400 Note 1	kHz
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDo} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$		100 Note 1	kHz
Hold time when SCLr = "L"	tıow	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{Vb} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1200		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDD}_{0}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	4600		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{Vb}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	4650		ns
Hold time when SCLr = "H"	tHIGH	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	620		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	500		ns
		$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \end{aligned}$	2700		ns
		$\begin{aligned} & \hline 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	2400		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EV} \mathrm{DDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1830		ns

(8) Communication at different potential ($1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3 \mathrm{~V}$) (simplified $\mathrm{I}^{2} \mathrm{C}$ mode)
($\mathrm{TA}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD0}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmск + 340 Note 2		ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EVDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	1/fmck + 340 Note 2		ns
		$\begin{array}{\|l} \hline 4.0 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDo} \leq 5.5 \mathrm{~V}, \\ 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \\ \hline \end{array}$	1/fmck + 760 Note 2		ns
		$\begin{array}{\|l} \hline 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDO}<4.0 \mathrm{~V}, \\ 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \\ \hline \end{array}$	1/fmck + 760 Note 2		ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V} \leq 2.0 \mathrm{~V}, \\ & \mathrm{Cb}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	1/fmck +570 Note 2		ns
Data hold time (transmission)	thd: dAT	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{EV} \mathrm{VDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{EV} \text { DDo }<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{V} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	770	ns
		$\begin{aligned} & \hline 4.0 \mathrm{~V} \leq \mathrm{EVDDO} \leq 5.5 \mathrm{~V}, \\ & 2.7 \mathrm{~V} \leq \mathrm{V} \leq 4.0 \mathrm{~V}, \\ & \mathrm{Cb}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.8 \mathrm{k} \Omega \\ & \hline \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.7 \mathrm{~V} \leq \mathrm{E} \mathrm{VDDO}<4.0 \mathrm{~V}, \\ & 2.3 \mathrm{~V} \leq \mathrm{Vb} \leq 2.7 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=2.7 \mathrm{k} \Omega \end{aligned}$	0	1420	ns
		$\begin{aligned} & 2.4 \mathrm{~V} \leq \mathrm{EVDDO}<3.3 \mathrm{~V}, \\ & 1.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{b}} \leq 2.0 \mathrm{~V}, \\ & \mathrm{C}_{\mathrm{b}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{b}}=5.5 \mathrm{k} \Omega \end{aligned}$	0	1215	ns

Note 1. The value must also be equal to or less than fmck/4.
Note 2. Set the fmCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVdd tolerance (When 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (Vdd tolerance (When 30- to 52-pin products)/EVDD tolerance (When 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIt and Vil, see the DC characteristics with TTL input buffer selected.
(Remarks are listed on the next page.)

Simplified $I^{2} \mathrm{C}$ mode connection diagram (during communication at different potential)

Simplified ${ }^{2} \mathrm{C}$ mode serial transfer timing (during communication at different potential)

Remark 1. $\mathrm{Rb}_{\mathrm{b}}[\Omega]$: Communication line (SDAr, SCLr) pull-up resistance, $\mathrm{Cb}[\mathrm{F}]$: Communication line (SDAr, SCLr) load capacitance, $\mathrm{Vb}[\mathrm{V}]$: Communication line voltage
Remark 2. r: IIC number ($r=00,01,10,11,20,30,31$), g : PIM, POM number ($g=0,1,3$ to 5,14)
Remark 3. fмск: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number ($m=0,1$), n : Channel number $(\mathrm{n}=0,2), \mathrm{mn}=00,01,02,10,12,13$)

35.5.2 Serial interface IICA

$\left(\mathrm{TA}=-40\right.$ to $+105{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVSs} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	HS (high-speed main) mode				Unit
			Standard mode		Fast mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fcLk $\geq 3.5 \mathrm{MHz}$	-	-	0	400	kHz
		Standard mode: fcLk $\geq 1 \mathrm{MHz}$	0	100	-	-	kHz
Setup time of restart condition	tsu: STA		4.7		0.6		$\mu \mathrm{s}$
Hold time Note 1	thD: STA		4.0		0.6		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ "L"	tıow		4.7		1.3		$\mu \mathrm{s}$
Hold time when SCLA0 $=$ " ${ }^{\text {" }}$	thigh		4.0		0.6		$\mu \mathrm{s}$
Data setup time (reception)	tsu: dAt		250		100		ns
Data hold time (transmission) Note 2	thi: DAT		0	3.45	0	0.9	$\mu \mathrm{s}$
Setup time of stop condition	tsu: sto		4.0		0.6		$\mu \mathrm{s}$
Bus-free time	tBuF		4.7		1.3		$\mu \mathrm{s}$

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.
Note 2. The maximum value (MAX.) of thD: DAT is during normal transfer and a wait state is inserted in the $\overline{\mathrm{ACK}}$ (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIORO) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.
Standard mode: $\quad \mathrm{Cb}_{\mathrm{b}}=400 \mathrm{pF}, \mathrm{Rb}_{\mathrm{b}}=2.7 \mathrm{k} \Omega$
Fast mode:

$$
\mathrm{Cb}=320 \mathrm{pF}, \mathrm{Rb}=1.1 \mathrm{k} \Omega
$$

IICA serial transfer timing

Remark $\quad n=0,1$

35.6 Analog Characteristics

35.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVrefm	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = VBGR Reference voltage (-)=AVREFM
ANIO to ANI14	Refer to 35.6.1 (1).	Refer to 35.6.1 (3).	Refer to 35.6.1 (4).
ANI16 to ANI20	Refer to 35.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 35.6.1 (1).		-

(1) When reference voltage (+) $=$ AVREFPIANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage (-) $=$ AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage
(TA $=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$, Reference voltage (+) = AVREFP,
Reference voltage (-) = AVREFM $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AVREFP $=$ VdD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$		1.2	± 3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2 to ANI14	$3.6 \mathrm{~V} \leq \mathrm{Vdo} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
			$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{S}$
			$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AVREFP $=$ VDD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 0.25	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AVREFP $=$ VdD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 0.25	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVRefp $=$ Vdd Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP $=$ VdD Note 3	$2.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 1.5	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVrefp	V
		Internal reference voltage output ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		Vbgr Note 4			V
		Temperature sensor output voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VTMPS25 Note 4			V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When AVrefp < Vdd, the MAX. values are as follows.

Overall error:	Add ± 1.0 LSB to the MAX. value when AVREFP $=$ VDD.
Zero-scale error/Full-scale error:	Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP $=$ VDD.
Integral linearity error/ Differential linearity error:	Add ± 0.5 LSB to the MAX. value when AVREFP $=$ VDD.

Note 4. Refer to 35.6.2 Temperature sensor characteristics/internal reference voltage characteristic.
(2) When reference voltage $(+)=$ AVREFP/ANIO (ADREFP1 $=0$, ADREFPO $=1$), reference voltage $(-)=$ AVrefmlANI1 (ADREFM = 1), target pin: ANI16 to ANI20
(TA = -40 to +105 ${ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}, 2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$,
Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVrefp, Reference voltage (-) = AVrefm $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDDO $\leq A V_{\text {REFP }}=V_{D D}$ Notes 3,4	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq 5.5 \mathrm{~V}$		1.2	± 5.0	LSB
Conversion time	tconv	10-bit resolution Target ANI pin: ANI16 to ANI20	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDDO $\leq A V_{\text {REFP }}=V_{D D}$ Notes 3,4	$2.4 \mathrm{~V} \leq \mathrm{AV}$ REFP $\leq 5.5 \mathrm{~V}$			± 0.35	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVdDo \leq AVREFP $=$ VdD Notes 3,4	$2.4 \mathrm{~V} \leq \mathrm{AVREFP} \leq 5.5 \mathrm{~V}$			± 0.35	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDDO \leq AV REFP $=$ VdD Notes 3, 4	$2.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVdDo \leq AVRefp $=$ Vdd Notes 3,4	$2.4 \mathrm{~V} \leq \mathrm{AV}_{\text {REFP }} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AV Refp and EVddo	V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\%FSR) to the full-scale value.
Note 3. When EVDDo $\leq \operatorname{AVREFP} \leq$ Vdd, the MAX. values are as follows.
Overall error: \quad Add ± 1.0 LSB to the MAX. value when $\operatorname{AVREFP}=\operatorname{VDD}$.
Zero-scale error/Full-scale error: Add $\pm 0.05 \%$ FSR to the MAX. value when AVREFP $=$ VdD. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = Vdd.
Note 4. When AVrefp < EVDDo $\leq \operatorname{VDD}$, the MAX. values are as follows.

Overall error:	Add ± 4.0 LSB to the MAX. value when $A V$ REFP $=$ VDD.
Zero-scale error/Full-scale error:	Add $\pm 0.20 \%$ FSR to the MAX. value when $A V_{R E F P}=$ VDD.
Integral linearity error/ Differential linearity error:	Add ± 2.0 LSB to the MAX. value when AVREFP $=$ VDD.

(3) When reference voltage $(+)=\operatorname{VDD}(\operatorname{ADREFP} 1=0$, ADREFPO $=0)$, reference voltage $(-)=\operatorname{Vss}$ (ADREFM $=0$), target pin: ANIO to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage
(TA = -40 to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD1} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso = EVss1 = 0 V , Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$		1.2	± 7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANIO to ANI14, ANI16 to ANI20	$3.6 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	2.125		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	3.1875		39	$\mu \mathrm{S}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$	2.375		39	$\mu \mathrm{s}$
			$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	3.5625		39	$\mu \mathrm{s}$
			$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 0.60	\%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Analog input voltage	Vain	ANIO to ANI14		0		Vdd	V
		ANI16 to ANI20		0		EVddo	V
		Internal reference voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		Vbgr Note 3			V
		Temperature sensor output voltage ($2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS (high-speed main) mode)		VTMPS25 ${ }^{\text {Note }} 3$			V

Note 1. Excludes quantization error ($\pm 1 / 2$ LSB).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 35.6.2 Temperature sensor characteristicslinternal reference voltage characteristic.
(4) When reference voltage (+) = Internal reference voltage (ADREFP1 $=1$, ADREFP0 $=0$), reference voltage (-) = AVrefm/ANI1 (ADREFM = 1), target pin: ANIO, ANI2 to ANI14, ANI16 to ANI20

Reference voltage (+) = Vbgr Note 3, Reference voltage (-) = AVrefm = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8			bit
Conversion time	tconv	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$	17		39	$\mu \mathrm{s}$
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			± 0.60	\% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			± 1.0	LSB
Analog input voltage	Vain			0		VbGR Note 3	V

Note 1. Excludes quantization error ($\pm 1 / 2 \mathrm{LSB}$).
Note 2. This value is indicated as a ratio (\% FSR) to the full-scale value.
Note 3. Refer to 35.6.2 Temperature sensor characteristicslinternal reference voltage characteristic.
Note 4. When reference voltage $(-)=$ Vss, the MAX. values are as follows.
Zero-scale error: \quad Add $\pm 0.35 \%$ FSR to the MAX. value when reference voltage $(-)=\operatorname{AV}$ REFM.
Integral linearity error:
Differential linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (-()$=A V_{\text {REFM }}$. Add ± 0.2 LSB to the MAX. value when reference voltage $(-)=A V_{\text {REFM }}$.

35.6.2 Temperature sensor characteristics/internal reference voltage characteristic

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=\mathrm{EVSs} 0=\mathrm{EVsS} 1=0 \mathrm{~V}$, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register $=80 \mathrm{H}, \mathrm{TA}=+25^{\circ} \mathrm{C}$		1.05		V
Internal reference voltage	VBGR	Setting ADS register $=81 \mathrm{H}$	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Operation stabilization wait time	tAMP		5			$\mu \mathrm{~s}$

35.6.3 D/A converter characteristics

(TA $=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVss} 0=\mathrm{EVss} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss = EVsso $=\mathrm{EVss} 1=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload $=4 \mathrm{M} \Omega$	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
		Rload $=8 \mathrm{M} \Omega$	$2.4 \mathrm{~V} \leq \mathrm{VdD} \leq 5.5 \mathrm{~V}$			± 2.5	LSB
Settling time	tset	Cload $=20 \mathrm{pF}$	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$			3	$\mu \mathrm{S}$
			$2.4 \mathrm{~V} \leq \mathrm{VdD}<2.7 \mathrm{~V}$			6	$\mu \mathrm{s}$

35.6.4 Comparator

$\left(\mathrm{TA}_{\mathrm{A}}=-40\right.$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDDO}=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EVddo-1.4	V
	Ivcmp			-0.3		EVddo + 0.3	V
Output delay	td	$\begin{aligned} & \mathrm{VDD}=3.0 \mathrm{~V} \\ & \text { Input slew rate }>50 \mathrm{mV} / \mu \mathrm{S} \end{aligned}$	Comparator high-speed mode, standard mode			1.2	$\mu \mathrm{s}$
			Comparator high-speed mode, window mode			2.0	$\mu \mathrm{s}$
			Comparator low-speed mode, standard mode		3.0	5.0	$\mu \mathrm{s}$
High-electric-potential reference voltage	VTW+	Comparator high-speed mo	, window mode		0.76 VDD		V
Low-electric-potential reference voltage	VTW-	Comparator high-speed mo	, window mode		0.24 VDD		V
Operation stabilization wait time	tcmp			100			$\mu \mathrm{s}$
Internal reference voltage Note	VBGR	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, HS	igh-speed main) mode	1.38	1.45	1.50	V

Note \quad Not usable in sub-clock operation or STOP mode.

35.6.5 POR circuit characteristics

($\mathrm{T} \mathrm{A}=-40$ to $+105^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time Note 1	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW		300			$\mu \mathrm{s}$

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 35.4 AC Characteristics.
Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

35.6.6 LVD circuit characteristics

(1) LVD Detection Voltage of Reset Mode and Interrupt Mode
($\mathrm{TA}_{\mathrm{A}}=-40$ to $+10{ }^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter		Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	Supply voltage level	VLVD0	Power supply rise time	3.90	4.06	4.22	V
			Power supply fall time	3.83	3.98	4.13	V
		VLVD1	Power supply rise time	3.60	3.75	3.90	V
			Power supply fall time	3.53	3.67	3.81	V
		VLVD2	Power supply rise time	3.01	3.13	3.25	V
			Power supply fall time	2.94	3.06	3.18	V
		VLVD3	Power supply rise time	2.90	3.02	3.14	V
			Power supply fall time	2.85	2.96	3.07	V
		VLVD4	Power supply rise time	2.81	2.92	3.03	V
			Power supply fall time	2.75	2.86	2.97	V
		VLVD5	Power supply rise time	2.70	2.81	2.92	V
			Power supply fall time	2.64	2.75	2.86	V
		VLVD6	Power supply rise time	2.61	2.71	2.81	V
			Power supply fall time	2.55	2.65	2.75	V
		VLVD7	Power supply rise time	2.51	2.61	2.71	V
			Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width		tLw		300			$\mu \mathrm{s}$
Detection delay time						300	$\mu \mathrm{s}$

(2) LVD Detection Voltage of Interrupt \& Reset Mode
($\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{VPDR} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Interrupt and reset mode	VLVdDo	VPOC2, VPOC1, VPOC0 $=0,1,1$, falling reset voltage		2.64	2.75	2.86	V
	VLVDD1		Rising release reset voltage	2.81	2.92	3.03	V
			Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 $=1,0$ LVIS1, LVIS0 $=0,1$	Rising release reset voltage	2.90	3.02	3.14	V
			Falling interrupt voltage	2.85	2.96	3.07	V
	VLvDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

35.6.7 Power supply voltage rising slope characteristics

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SvDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 35.4 AC Characteristics.

35.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40\right.$ to $+10{ }^{\circ} \mathrm{C}$, Vss $\left.=0 \mathrm{~V}\right)$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

35.8 Flash Memory Programming Characteristics

($\mathrm{T}_{\mathrm{A}}=-40$ to $+10{ }^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $=0 \mathrm{~V}$)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4 \mathrm{~V} \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$		1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years	$\mathrm{T}_{\mathrm{A}}=8{ }^{\circ} \mathrm{C}$	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year	$\mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1,000,000		
		Retained for 5 years	$\mathrm{TA}_{\mathrm{A}}=8{ }^{\circ} \mathrm{C}$	100,000			
		Retained for 20 years	$\mathrm{TA}=85^{\circ} \mathrm{C}$	10,000			

Note 1. 1 erase +1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
Note 2. When using flash memory programmer and Renesas Electronics self programming library
Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

35.9 Dedicated Flash Memory Programmer Communication (UART)

($\mathrm{TA}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V}$, Vss $\left.=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		$1,000,000$	bps

35.10 Timing for Switching Flash Memory Programming Modes

$$
\left(\mathrm{TA}_{\mathrm{A}}=-40 \text { to }+105^{\circ} \mathrm{C}, 2.4 \mathrm{~V} \leq \mathrm{EVDD} 0=\mathrm{EVDD} 1 \leq \mathrm{VDD} \leq 5.5 \mathrm{~V} \text {, Vss }=\mathrm{EVss} 0=\mathrm{EVss} 1=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tSUINIT	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOLO pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			$\mu \mathrm{S}$
How long the TOOLO pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tHD	POR and LVD reset must end before the external reset ends.	1			ms

$<1>$ The low level is input to the TOOL0 pin.
<2> The external reset ends (POR and LVD reset must end before the external reset ends.).
$<3>$ The TOOLO pin is set to the high level.
$<4>$ Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external and internal resets end.
tsu: How long from when the TOOLO pin is placed at the low level until a pin reset ends
thD: How long to keep the TOOLO pin at the low level from when the external and internal resets end (excluding the processing time of the firmware to control the flash memory)

[^0]: 2. Set the HOCODIV register while the high-speed on-chip oscillator clock (fir) is selected as the CPU/peripheral hardware clock (fclk).
 3. After the frequency has been changed using the HOCODIV register and the following transition time has been elapsed, the frequency is switched.

 - The device operates at the frequency for the duration of 3 clocks before the frequency has been changed. - The CPU/peripheral hardware clock waits for maximum 3 clocks at the frequency after the frequency has been changed.

