Date: Dec. 3, 2014

RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A041A/E	Rev.	1.00
Title	Correction for Incorrect Description Notice RL78/G14 Descriptions in the Hardware User's Manual Rev. 3.10 Changed	Information Category	Technical Notification		

This document describes misstatements found in the RL78/G14 User's Manual: Hardware Rev.3.10 (R01UH0186EJ0310).

Corrections

Applicable Item	Applicable Page	Contents
1.2 Ordering Information Deletion of R5F104JK and R5F104JL from 52-pin	Page 8	Content change
1.3.7 52-pin products deletion of note2.	Page 19	Content change
1.6 Outline of Functions Deletion of 52-pin information	Pages 48 to 50	Content change
2.1.15 52-pin (Code Flash Memory 96 KB to 512 KB) Deletion of ROM 384KB and 512KB information	Page 84	Content change
	Pages 131, 132, 136, Deletion of R5F104JK and R5F104JL information	137, 138, 143, 148, 1958, 981, 1086,
Content change		
6.3.3 Timer mode register mn		
Figure 6-12 the count clock selection	1134 and 1304	
17.3.12 Serial output register m (SOm)	Page 303	Incorrect descriptions revised
Figure 17 - 19 Reset value of serial output register m (SOm)	Page 708	Incorrect descriptions revised
19.5.3 DTC Pending Instruction	Page 982	Incorrect descriptions revised
21.4.4 Interrupt servicing during division instruction	Page 1021	Specifications added
21.4.5 Interrupt request hold	Page 1022	Incorrect descriptions revised
33.2 Operation List	Page 1153	Specifications added

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

No.	Corrections and Applicable Items		Pages in this document for corrections
	Document No. ${ }^{\text {N }}$ English	R01UH0186EJ0310	
1	1.2 Ordering Information Deletion of R5F104JK and R5F104JL from 52-pin	Page 8	p. 3
2	1.3.7 52 -pin products deletion of note2.	Page 19	p. 4
3	1.6 Outline of Functions Deletion of 52-pin information	Pages 48-50	p.5-7
4	2.1.15 52-pin (Code Flash Memory 96 KB to 512 KB) Deletion of ROM 384 KB and 512 KB information	Page 84	p. 8
5	Deletion of R5F104JK and R5F104JL information	$\begin{aligned} & \hline \text { Pages 131, 132, } \\ & \text { 136, 137, 138, 143, } \\ & \text { 148, 193, 958, 981, } \\ & 1086,1134 \text { and } \\ & 1304 \end{aligned}$	p.9-14
6	6.3.3 Timer mode register mn Figure 6-12 the count clock selection	Page 303	p. 15
7	17.3.12 Serial output register m (SOm) Figure 17-19 Reset value of serial output register m (SOm)	Page 708	p. 16
8	19.5.3 DTC Pending Instruction	Page 981	p. 17
9	$\begin{array}{l}\text { 21.4.4 Interrupt } \\ \text { instruction }\end{array}$ servicing during division	Page 1021	p. 18
10	21.4.5 Interrupt request hold	Page 1022	p. 19
11	33.2 Operation List	Page 1153	p. 20

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/G14 User's Manual: Hardware Rev.3.10 Correction for Incorrect Description Notice

Document Number	Date	Description
TN-RL*-A041A/E	Dec. 3, 2014	First edition issued No. 1 to 11 in corrections (This notice)

1. 1.2 Ordering Information Deletion of R5F104JK and R5F104JL from 52-pin (page 8)

Incorrect:

Pin count	Package	Fields of Application Note 1	Ordering Part Number
			(Omitted)
52 pins	52-pin plastic LQFP $(10 \times 10 \mathrm{~mm}$, 0.65 mm pitch)	A	R5F104JCAFA\#V0, R5F104JDAFA\#V0, R5F104JEAFA\#V0, R5F104JFAFA\#V0, R5F104JGAFA\#V0, R5F104JHAFA\#V0, R5F104JJAFA\#V0 R5F104JCAFA\#X0, R5F104JDAFA\#X0, R5F104JEAFA\#X0, R5F104JFAFA\#X0, R5F104JGAFA\#X0, R5F104JHAFA\#X0, R5F104JJAFA\#X0 R5F104JKAFA\#30 Note2 R5F104JLAFA\#30 ${ }^{\text {Note2 }}$ R5F104JKAFA\#5 $0^{\text {Note2 }}$ R5F104JLAFA\#5 $0^{\text {Note2 }}$
		D	R5F104JCDFA\#V0, R5F104JDDFA\#V0, R5F104JEDFA\#V0, R5F104JFDFA\#V0, R5F104JGDFA\#V0, R5F104JHDFA\#V0, R5F104JJDFA\#V0 R5F104JCDFA\#X0, R5F104JDDFA\#X0, R5F104JEDFA\#X0, R5F104JFDFA\#X0, R5F104JGDFA\#X0, R5F104JHDFA\#X0, R5F104JJDFA\#X0
		G	```R5F104JCGFA\#V0, R5F104JDGFA\#V0, R5F104JEGFA\#V0, R5F104JFGFA\#V0, R5F104JGGFA\#V0, R5F104JHGFA\#V0, R5F104JJGFA\#V0 R5F104JCGFA\#X0, R5F104JDGFA\#X0, R5F104JEGFA\#X0, R5F104JFGFA\#X0, R5F104JGGFA\#X0, R5F104JHGFA\#X0, R5F104JJGFA\#X0 R5F104JKGFA\#30 \({ }^{\text {Note2 }}\). R5F104JLGFA\#3 \(0^{\text {Note } 2}\) R5F104JKGFA\#50 Note2 R5F104JLGFA\#50 Note2```

Correct:

Pin count	Package	Fields of Application Note 1	Ordering Part Number
			(Omitted)
52 pins	52-pin plastic LQFP $(10 \times 10 \mathrm{~mm}$, 0.65 mm pitch)	A	R5F104JCAFA\#V0, R5F104JDAFA\#V0, R5F104JEAFA\#V0, R5F104JFAFA\#V0, R5F104JGAFA\#V0, R5F104JHAFA\#V0, R5F104JJAFA\#V0 R5F104JCAFA\#X0, R5F104JDAFA\#X0, R5F104JEAFA\#X0, R5F104JFAFA\#X0, R5F104JGAFA\#X0, R5F104JHAFA\#X0, R5F104JJAFA\#X0
		D	R5F104JCDFA\#V0, R5F104JDDFA\#V0, R5F104JEDFA\#V0, R5F104JFDFA\#V0, R5F104JGDFA\#V0, R5F104JHDFA\#V0, R5F104JJDFA\#V0 R5F104JCDFA\#X0, R5F104JDDFA\#X0, R5F104JEDFA\#X0, R5F104JFDFA\#X0, R5F104JGDFA\#X0, R5F104JHDFA\#X0, R5F104JJDFA\#X0
		G	R5F104JCGFA\#V0, R5F104JDGFA\#V0, R5F104JEGFA\#V0, R5F104JFGFA\#V0, R5F104JGGFA\#V0, R5F104JHGFA\#V0, R5F104JJGFA\#V0 R5F104JCGFA\#X0, R5F104JDGFA\#X0, R5F104JEGFA\#X0, R5F104JFGFA\#X0, R5F104JGGFA\#X0, R5F104JHGFA\#X0, R5F104JJGFA\#X0

(Omitted)

2. 1.3.7 52-pin products deletion of note2. (page 19)

Incorrect:

1.3.7 52-pin products
 - 52-pin plastic LQFP ($10 \times 10 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch)

Note 1. Mounted on the 96 KB or more code flash memory products. Note 2. Mounted on the 384 KB or more code flash memory products.

Correct:
1.3.7 52-pin products
-52-pin plastic LQFP (10 $\times 10 \mathrm{~mm}, 0.65 \mathrm{~mm}$ pitch $)$

Note 1. Mounted on the 96 KB or more code flash memory products.

3. 1.6 Outline of Functions

Deletion of 52-pin information (Pages 48 to 50)

ncorrect:

[48-pin, 52-pin, 64 -pin products (code flash memory 384 KB to 512 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0,1 (PIORO, 1) are set to 00 H .

Item		48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Gx } \\ (x=K, L) \end{gathered}$	$\begin{aligned} & \text { R5F104JX } \\ & (x=K, k) \end{aligned}$	$\begin{gathered} \text { R5F104LX } \\ (x=K, L) \end{gathered}$
Code flash memory (KB)		384 to 512	384 to 512	384 to 512
Data flash memory (KB)		8	8	8
RAM (KB)		32 to $48{ }^{\text {Note }}$	$32.1048{ }^{\text {Note }}$	32 to $48{ }^{\text {Note }}$
Address space		1 MB		
(Omitted)				
I/O port	Total	44	48	58
	CMOS I/O	34	38	48
	CMOS input	5	5	5
	CMOS output	1	1.	1
	N -ch open-drain I/O (6 V tolerance)	4	4	4
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)		
	Watchdog timer	1 channel		
	Real-time clock(RTC)	1 channel		
	12-bit interval timer	1 channel		
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels		
	RTC output	1 - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)		

(Note is listed on the next page.)

Correct:
[48-pin, 64-pin products (code flash memory 384 KB to 256 KB)]
Caution This outline describes the functions at the time when Peripheral I/O redirection register 0,1 (PIORO, 1) are set to 00H.

Item		48-pin	64-pin
		$\begin{gathered} \text { R5F104Gx } \\ (x=K, L) \end{gathered}$	R5F104L $(x=K, L)$
Code flash memory (KB)		384 to 512	384 to 512
Data flash memory (KB)		8	8
RAM (KB)		32 to 48 Note	32 to $48{ }^{\text {No }}$
Address space		1 MB	
(Omitted)			
I/O port	Total	44	58
	CMOS I/O	34	48
	CMOS input	5	5
	CMOS output	1	1
	N -ch open-drain I/O (6 V tolerance)	4	4
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)	
	Watchdog timer	1 channel	
	Real-time clock(RTC)	1 channel	
	12-bit interval timer	1 channel	
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels	
	RTC output	1 - 1 Hz (subsystem clock: fsub $=32.768 \mathrm{kHz}$)	

(Note is listed on the next page.)

ncorrect:

Note The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F104 xL ($\mathrm{X}=\mathrm{G}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{P}$): Start address F3F00H For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Correct:
Note The flash library uses RAM in self-programming and rewriting of the data flash memory The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xL ($x=G, L, M, P$): Start address F3F00H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Incorrect:

Item		48-pin	52-pin	64-pin
		$\begin{gathered} \text { R5F104Gx } \\ (x=K, L) \\ \hline \end{gathered}$	$\begin{aligned} & \text { R5F104JX } \\ & (x=K, L) \end{aligned}$	$\begin{aligned} & \text { R5F104Lx } \\ & (x=K, L) \\ & \hline \end{aligned}$
Clock output/buzzer output		2	2	2
		-2.44 kHz, $4.88 \mathrm{kHz}, 9.76 \mathrm{kHz}, 1.25 \mathrm{MHz}, 2.5 \mathrm{MHz}, 5 \mathrm{MHz}, 10 \mathrm{MHz}$ (Main system clock: fMAIN $=20 \mathrm{MHz}$ operation) - $256 \mathrm{~Hz}, 512 \mathrm{~Hz}, 1.024 \mathrm{kHz}, 2.048 \mathrm{kHz}, 4.096 \mathrm{kHz}, 8.192 \mathrm{kHz}$, $16.384 \mathrm{kHz}, 32.768 \mathrm{kHz}$ (Subsystem clock: fSUB $=32.768 \mathrm{kHz}$ operation)		
8/10-bit resolution A/D converter		10 channels	12 channels	12 channels
D/A converter		2 channels		
Comparator		2 channels		
Serial interface		[48-pin, 52-pin products] - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I2C: 2 channels - CSI: 1 channel/UART: 1 channel/simplified I2C: 1 channel - CSI: 2 channels/UART: 1 channel/simplified I2C: 2 channels [64-pin products] - CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I2C: 2 channels - CSI: 2 channels/UART: 1 channel/simplified I2C: 2 channels - CSI: 2 channels/UART: 1 channel/simplified I2C: 2 channels		
	$1^{2} \mathrm{C}$ bus	1 channel	1 channel	1 channel
Data transfer controller (DTC)		32 sources		33 sources
Event link controller (ELC)		Event input: 22 Event trigger output: 9		
Vectored interrupt sources	Internal	24	24	24
	External	10	12	13
Key interrupt		6	8	8
Reset		- Reset by RESETpin - Internal reset by watchdog timer - Internal reset by power-on-reset - Internal reset by voltage detector - Internal reset by illegal instruction execution Note - Internal reset by RAM parity error - Internal reset by illegal-memory access		
Power-on-reset circuit		- Power-on-reset: $1.51 \pm 0.03 \mathrm{~V}$ - Power-down-reset: $1.50 \pm 0.03 \mathrm{~V}$		
Voltage detector		1.63 V to 4.06 V (14 stages)		
On-chip debug function		Provided		
Power supply voltage		VDD $=1.6$ to 5.5 V		
		$\mathrm{TA}=-40$ to $+85^{\circ} \mathrm{C}$ (A: Consumer applications, D: Industrial applications), $\mathrm{T}_{\mathrm{A}}=-40$ to $+105^{\circ} \mathrm{C}$ (G: Industrial applications)		

(Omitted)

Correct:

4. 2.1.15 52-pin (Code Flash Memory 96 KB to 512 KB) Deletion of ROM 384KB and 512KB information (Page 84)

Incorrect:
2.1.15 52-pin (Code Flash Memory 96 KB to 512 KB)

Function Name	Pin Type	I/O		Alternate Function	Function
(Omitted)					
P10	8-1-8	I/O	Input port	SCK11/SCL11/TRDIOD1	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. (Omitted)
P11	7-1-8			$\begin{aligned} & \text { SI11/SDA11/TRDIOC1l } \\ & \text { (RxDO 1) Note3 } \end{aligned}$	
P12	7-6-6			SO11/TRDIOB1/IVREF1/ (INTP5)/(TxD0 1) Note3	
(Omitted)					

Note 1. Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).
Note 2. Each pin can be specified as either digital or analog by setting the A/D port configuration register (ADPC).
Note 3. Mounted on the 384 KB or more code flash memory products
Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0,1 (PIORO, 1).

Correct:
2.1.15 52-pin (Code Flash Memory 96 KB to 256 KB)

	Pin Type	I/O	After Reset Release	Alternate Function	Function
(Omitted)					
P10	8-1-8	I/O	Input port	SCK11/SCL11/TRDIOD1	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units. (Omitted)
P11	7-1-8			SI11/SDA11/TRDIOC1	
P12	7-6-6			SO11/TRDIOB1/IVREF1/ (INTP5)	
(Omitted)					

Note 1. Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).
Note 2. Each pin can be specified as either digital or analog by setting the A/D port configuration register (ADPC).

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0,1 (PIORO, 1).
5. Deletion of R5F104JK and R5F104JL information)
(the corresponding page is indicated below.)

3.1 Memory Space (Page 131)

Incorrect:
Figure 3-9 Memory Map (R5F104xK ($\mathrm{x}=\mathrm{G}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{P})$)

3.1 Memory Space (Page 132)

Incorrect:

Remark of Correspondence Between Address Values and Block Numbers

 in Flash Memory (Page 136)Incorrect:
Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory (3/4)

(Omitted)

Remark R5F104xK ($x=\mathbf{G}, \mathbf{J}, \mathbf{L}, \mathbf{M}$): Block numbers 00 H to 17 FH

Remark of Correspondence Between Address Values and Block Numbers in Flash Memory (Page 137)

Incorrect:
Table 3-4 Correspondence Between Address Values and Block Numbers in Flash Memory (4/4)
(Omitted)

Remark R5F104xL $(x=G, \mathbf{J}, \mathbf{M}, \mathbf{P})$: Block numbers 00H to 1FFH

3.1 Memory Space (Page 131)

Correct:
Figure 3-9 Memory Map (R5F104xK (x=G, L, M, P))

3.1 Memory Space (Page 132)

Correct:
Figure 3-10 Memory Map (R5F104xL (x=G, L, M, P))

Remark of Correspondence Between Address Values and Block Numbers in Flash Memory (Page 136)

Correct:
Table 3-3 Correspondence Between Address Values and Block Numbers in Flash Memory (3/4) (Omitted)

Remark R5F104xK ($x=G, L, M, P$): Block numbers $00 H$ to 17 FH

Remark of Correspondence Between Address Values and Block Numbers in Flash Memory (Page 137)

Correct:
Table 3-4 Correspondence Between Address Values and Block Numbers in Flash Memory (4/4)

(Omitted)

Remark R5F104xL ($x=G, L, M, P$): Block numbers 00H to 1FFH

3.1.1 Internal program memory space (page 138)

Incorrect:
Table 3-5 Internal ROM Capacity

Part Number	Internal ROM	
	Structure	Capacity
R5F104xA ($\mathrm{x}=\mathrm{A}$ to C, E to G)	Flash memory	$16384 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 03FFFH)
R5F104xC (x = A to C, E to G, J, L)		$32768 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 07FFFH)
R5F104xD ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)		$49152 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 0BFFFH)
R5F104xE ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)		$65536 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 0FFFFH)
R5F104xF (x = A to C, E to G, J, L, M, P)		$98304 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 17FFFH)
R5F104xG ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L, M, P)		$131072 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 1FFFFH)
R5F104xH (x = E to G, J, L, M, P)		$196608 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 2FFFFH)
R5F104xJ (x = F, G , J , L, M, P)		$262144 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 3FFFFH)
		$393216 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 5FFFFH)
R5F104xL ($x=G$, J, L, M. ${ }^{\text {P }}$)		$524288 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 7FFFFH)

(Omitted)

3.1.3 Internal data memory space (page 143)

Incorrect:

Part Number	Internal RAM
R5F104xA (x = A to C, E to G)	$2560 \times 8 \mathrm{bits}($ FF500H to FFEFFH)
R5F104xC ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)	$4096 \times 8 \mathrm{bits}($ FEFOOH to FFEFFH)
R5F104xD ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)	5632×8 bits(FE900H to FFEFFH)
R5F104xE (x = A to C, E to G, J, L)	
R5F104xF ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L, M, P)	$12288 \times 8 \mathrm{bits}(\mathrm{FCFOOH}$ to FFEFFH)
R5F104xG (x = A to C, E to G, J, L, M, P)	$16384 \times 8 \mathrm{bits}(\mathrm{FBFOOH}$ to FFEFFH)
R5F104xH (x = E to G, J, L, M, P)	$20480 \times 8 \mathrm{bits}($ FAFOOH to FFEFFH)
R5F104xJ (x = F, G , J , L, M, P)	$24576 \times 8 \mathrm{bits}(\mathrm{F9FOOH}$ to FFEFFH)
	$32768 \times 8 \mathrm{bits}(\mathrm{F7FOOH}$ to FFEFFH)
	$49152 \times 8 \mathrm{bits}(\mathrm{F} 3 \mathrm{FOOH}$ to FFEFFH)

(Omitted)

3.1.1 Internal program memory space (page 138)

Correct:

Part Number	Internal ROM	
	Structure	Capacity
R5F104xA ($\mathrm{x}=\mathrm{A}$ to C, E to G)	Flash memory	$16384 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 03FFFH)
R5F104xC ($\mathrm{x}=\mathrm{A}$ to C, E to $\mathrm{G}, \mathrm{J}, \mathrm{L}$)		$32768 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 07FFFH)
R5F104xD ($\mathrm{x}=\mathrm{A}$ to C, E to $\mathrm{G}, \mathrm{J}, \mathrm{L}$)		$49152 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to OBFFFH)
R5F104xE ($\mathrm{x}=\mathrm{A}$ to C, E to $\mathrm{G}, \mathrm{J}, \mathrm{L}$)		$65536 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 0FFFFH)
R5F104xF ($\mathrm{x}=\mathrm{A}$ to C, E to $\mathrm{G}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)		$98304 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 17FFFH)
R5F104xG ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L, M, P)		131072×8 bits(00000H to 1FFFFH)
R5F104xH ($\mathrm{x}=\mathrm{E}$ to $\mathrm{G}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)		$196608 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 2FFFFH)
R5F104xJ ($\mathrm{x}=\mathrm{F}, \mathrm{G}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)		$262144 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 3FFFFH)
R5F104xK ($\mathrm{x}=\mathrm{G}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)		393216×8 bits(00000H to 5FFFFH)
R5F104xL ($\mathrm{x}=\mathrm{G}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)		$524288 \times 8 \mathrm{bits}(00000 \mathrm{H}$ to 7FFFFH)

3.1.3 Internal data memory space (page 143)

Correct:
Table 3-8 Internal RAM Capacity

Part Number	Internal RAM
R5F104xA ($\mathrm{x}=\mathrm{A}$ to C, E to G)	2560×8 bits(FF500H to FFEFFFH)
R5F104xC ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)	$4096 \times 8 \mathrm{bits}($ FEFOOH to FFEFFH)
R5F104xD ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)	$5632 \times 8 \mathrm{bits}($ FE900H to FFEFFH)
R5F104xE ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)	
R5F104xF ($x=$ A to C, E to G, J, L, M, P)	$12288 \times 8 \mathrm{bits}(\mathrm{FCFOOH}$ to FFEFFH)
R5F104xG (x = A to C, E to G, J, L, M, P)	$16384 \times 8 \mathrm{bits}(\mathrm{FBFOOH}$ to FFEFFH)
R5F104xH ($\mathrm{x}=\mathrm{E}$ to G, J, L, M, P)	$20480 \times 8 \mathrm{bits}($ FAFOOH to FFEFFH)
R5F104xJ (x = F, G , J , L, M, P)	24576×8 bits(F9FOOH to FFEFFH)
R5F104xK ($\mathrm{x}=\mathrm{G}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)	$32768 \times 8 \mathrm{bits}(\mathrm{F7FOOH}$ to FFEFFH)
R5F104xL ($\mathrm{x}=\mathrm{G}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)	$49152 \times 8 \mathrm{bits}($ F3FOOH to FFEFFH)

(Omitted)

3.2.1 Control registers (page 148)

Incorrect:

(Omitted)

Caution 4. The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD ($x=A$ to C, E to G, J, L): Start address FE900H
R5F104xE ($x=A$ to C, E to G, J, L): Start address FE900H
R5F104xJ ($x=F, G, J, L, M, P$): \quad Start address F9F00H
R5F104xL ($\mathrm{X}=\mathrm{G}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{P}$): : Start address F3F00H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).
Caution 5. The internal RAM area in the following products cannot be used as stack memory when using the on-chip debugging trace function.

R5F104xJ ($x=$ A to C, E to G, J, L): FA300H to FA6FFH
R5F104×L ($\mathrm{X}=\mathrm{G}, \mathrm{J}, \mathrm{L}_{2} \mathrm{M}_{2}$ P): \quad F4300H to F46FFH

4.3 Registers Controlling Port Function (page 193)

Incorrect:

(Omitted)

Note 1. 30-pin and 32-pin products only.
Note 2. R5F104xF (x = A to C, E to G, J, L, M, P), R5F104xG ($x=A$ to C, E to G, J, L, M, P), R5F104xH ($x=E$ to G, J, L, M, P), R5F104xJ ($x=F, G, J, L, M, P$), R5F104xK ($x=$ =

3.2.1 Control registers (page 148)

Correct:
(Omitted)
Caution 4. The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD (x = A to C, E to G, J, L): Start address FE900H R5F104xE (x = A to C, E to G, J, L): Start address FE900H R5F104xJ ($x=$ F , G, J, L, M, P): Start address F9F00H
R5F104xL ($x=G, L, M, P$): Start address F3F00H
For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).
Caution 5. The internal RAM area in the following products cannot be used as stack memory when using the on-chip debugging trace function

R5F104xJ ($x=A$ to C, E to G, J, L): FA300H to FA6FFH
R5F104xL ($x=G, L, M, P$): \quad F4300H to F46FFH

4.3 Registers Controlling Port Function (page 193)

Correct:
(Omitted)
Note 1. 30-pin and 32-pin products only.
Note 2. R5F104xF ($x=A$ to C, E to G, J, L, M, P), R5F104xG ($x=A$ to C, E to G, J, L, M, P), R5F104xH ($x=E$ to G, J, L, M, P), R5F104xJ ($x=F, G, J, L, M, P$), R5F104xK ($x=G$, L, M, P), R5F104xL ($x=G, L, M, P$) only.

19.3.1 Allocation of DTC Control Data Area and DTC Vector Table Area

 (Page 958)Incorrect:

(Omitted)

Caution 3. The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the self-programming and data-flash functions.

R5F104xD ($x=A$ to C, E to G, J, L): FE900H to FED09H R5F104xE ($x=$ A to C, E to G, J, L): FE900H to FED09H
R5F104xJ ($x=A$ to C, E to G, J, L): F9F00H to FA309H
R5F104×L ($\mathrm{X}=\mathrm{G}, \mathrm{J}, \mathrm{L}_{2} \mathrm{M}_{2}$ R): \quad F3F00H to F4309H
Caution 4. The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the on-chip debugging trace function.

$$
\begin{array}{ll}
\text { R5F104xJ }(x=A \text { to } C, E \text { to } G, J, L): & \text { FA300H to FA6FFH } \\
\text { R5F104xL }(x=\text { G J, LM, P): } & \text { F4300H to F46FFF }
\end{array}
$$

19.5.2 Allocation of DTC Control Data Area and DTC Vector Table Area (Page 981)

Incorrect:
(Omitted)
The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the self-programming and data-flash functions.

$$
\begin{array}{ll}
\text { R5F104xD }(x=A \text { to } C, E \text { to } G, J, L): & \text { FE900H to FED09H } \\
\text { R5F104xE }(x=A \text { to C, E to G, J, L): } & \text { FE900H to FED09H } \\
\text { R5F104x }(x=A \text { to C, E to G, J, L): } & \text { F9F00H to FA309H } \\
\text { R5F104xL (} x=\text { G J, L M, P): } & \text { F3F00H to F4309H }
\end{array}
$$

The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the on-chip debugging trace function.

$$
\begin{array}{ll}
\text { R5F104xJ }(x=A \text { to C, E to G, J, L): } & \text { FA300H to FA6FFH } \\
\text { R5F104xL }(x=G, J, M, ~ R): & \text { F4300H to F46FFH }
\end{array}
$$ enabled (RPERDIS $=0$) using the RAM parity error detection function.

19.3.1 Allocation of DTC Control Data Area and DTC Vector Table Area

 (Page 958)
Correct:

(Omitted)

Caution 3. The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the self-programming and data-flash functions.

R5F104xD (x = A to C, E to G, J, L): FE900H to FED09H
R5F104xE ($x=A$ to C, E to G, J, L): FE900H to FED09H
R5F104xJ ($x=$ A to C, E to G, J, L): F9F00H to FA309H
R5F104xL ($x=G, L, M, P$):
F9F00H to FA309H
F3F00H to F 4309 H
Caution 4. The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the on-chip debugging trace function.

R5F104xJ ($x=A$ to C, E to G, J, L): FA300H to FA6FFH
R5F104xL $(x=G, L, M, P)$: $\quad F 4300 H$ to $F 46 F F H$

19.5.2 Allocation of DTC Control Data Area and DTC Vector Table Area (Page 981)

Correct:

(Omitted)

The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the self-programming and data-flash functions.

R5F104xD ($x=A$ to C, E to G, J, L):	FE900H to FED09H
R5F104xE $(x=A$ to C, E to G, J, L):	FE900H to FED09H
R5F104xJ $(x=A$ to C, E to G J, L):	F9F00H t FA309H
R5F104x $(x=G)$ F3F00H to F4309H	

R5F104xJ ($x=A$ to C, E to G , J, L): \quad F9F00H to FA309H
R5F104xL ($x=G, L, M, P$):
F3F00H to F4309H
The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the on-chip debugging trace function.

$$
\text { R5F104xJ (} \mathrm{x}=\mathrm{A} \text { to } \mathrm{C}, \mathrm{E} \text { to } \mathrm{G}, \mathrm{~J}, \mathrm{~L} \text {): }
$$

FA300H to FA6FFH
R5F104xL ($x=G, L, M, P$)
F4300H to F46FFH
Initialize the DTRLD register to 00 H even in normal mode when parity error resets are enabled (RPERDIS $=0$) using the RAM parity error detection function.

RENESAS TECHNICAL UPDATE TN-RL*-A041A/E

27.3.6 Invalid memory access detection function (Page 1086)

Incorrect:
(Omitted)
Note The code flash memory, RAM, and lowest detection address of each product are as follows.

The code flash memory, RAM, and lowest detection address of each product are as follows.			
Products	Code Flash Memory (00000H to xxxxxH)	RAM (zzzzzH to FFEFFH)	Lowest Detection Address (yyyyyH) when Reading/Fetching (Executing) Instructions
R5F104xA(x=A to C, E to G)	$\begin{aligned} & 16384 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to 03FFFH) } \end{aligned}$	$\begin{aligned} & 2560 \times \underset{\sim}{8} \text { bit }_{\text {b }} \\ & \text { (FF500H FFEFFH) } \end{aligned}$	10000 H
R5F104xC(x=A to C,E to G,J,L)	$\begin{aligned} & 32768 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 07 \mathrm{FFFH}) \end{aligned}$	$\begin{aligned} & 4096 \times 8 \text { bit }^{2} \\ & \text { (FEFOOH to FFEFFH) } \end{aligned}$	10000 H
R5F104xD (x=A to C,E to G,J,L)	$\begin{aligned} & 49152 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to OBFFFH) } \end{aligned}$	$\begin{aligned} & 5632 \times \mathbf{8} \mathbf{b i t} \\ & \text { (FE900H to FFEFFH) } \end{aligned}$	10000H
R5F104xE(x=A to C,E to G, J, L)	$\begin{aligned} & 65536 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 0 \mathrm{FFFFH}) \end{aligned}$	$\begin{aligned} & 5632 \times \mathbf{~ b i t}^{\text {(FE900H to FFEFFH) }} \end{aligned}$	10000 H
$\begin{aligned} & \text { R5F104xF } \\ & (x=A \text { to } C, E \text { to } G, J, L, M, P) \end{aligned}$	$\begin{aligned} & 98304 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 17 \mathrm{FFFH}) \end{aligned}$	$\begin{aligned} & 12288 \times 8 \mathrm{bit}^{2} \\ & \text { (FCFOOH to FFEFFH) } \end{aligned}$	20000H
$\begin{aligned} & \text { R5F104xG } \\ & (x=A \text { to } C, E \text { to } G, J, L, M, P) \end{aligned}$	$\begin{aligned} & 131072 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 1 \text { FFFFH }) \end{aligned}$	$\begin{aligned} & 16384 \times \underset{\sim}{8} \text { bit }^{\prime} \\ & \text { (FBFOOH to FFEFFH) } \end{aligned}$	20000H
R5F104xH(x=E to G, J,L,M, P)	$\begin{aligned} & 196608 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 2 \text { FFFFH }) \end{aligned}$	$\begin{aligned} & 20480 \times 8 \text { bit } \\ & \text { (FAFOOH to FFEFFH) } \end{aligned}$	30000 H
R5F104xJ(x=F,G,J,L,M, P)	$\begin{aligned} & 262144 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to 3FFFFH) } \end{aligned}$	$\begin{aligned} & 24576 \times \underset{8}{8 \text { bit }^{2}} \\ & \text { (F9F00H to FFEFFH) } \end{aligned}$	40000 H
R5F104xK ($\mathrm{x}=\mathrm{G}$, J,L,M, P)	$\begin{aligned} & 393216 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 5 \mathrm{FFFFH}) \end{aligned}$	$\begin{aligned} & 32768 \times \text { 8 bit } \\ & \text { (F7FOOH to FFEFFH) } \end{aligned}$	60000H
R5F104xL($\mathrm{X}=\mathrm{G}, \mathrm{J}, \mathrm{LM}$ M, P)	$\begin{aligned} & 524688 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to 7FFFFH) } \end{aligned}$	$\begin{aligned} & 49152 \times \underset{\text { 8 bit }}{ } \\ & \text { (F3F00H to FFEFFH) } \end{aligned}$	80000H

27.3.6 Invalid memory access detection function (Page 1086)

Correct:
(Omitted)
Note The code flash memory, RAM, and lowest detection address of each product are as follows.

Products	Code Flash Memory (00000 H to xxxxxH)	RAM (zzzzzH to FFEFFH)	Lowest Detection Address (yyyyyH) when Reading/Fetching (Executing) Instructions
R5F104xA(x=A to C, E to G)	$\begin{aligned} & 16384 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to 03FFFH }) \end{aligned}$	$\begin{aligned} & 2560 \times 8 \text { bits } \\ & \text { (FF500H to FFEFFH) } \end{aligned}$	10000H
R5F104xC(x=A to C,E to G,J,L)	$\begin{aligned} & 32768 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 07 \mathrm{FFFH}) \end{aligned}$	4096×8 bits (FEFOOH to FFEFFH)	10000H
R5F104xD(x=A to C,E to G,J,L)	$\begin{aligned} & 49152 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 0 \mathrm{BFFFH}) \end{aligned}$	$\begin{aligned} & 5632 \times 8 \text { bits } \\ & \text { (FE900H to FFEFFH) } \end{aligned}$	10000H
R5F104xE(x=A to C,E to G,J,L)	$\begin{aligned} & 65536 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to OFFFFH) } \\ & \hline \end{aligned}$	$\begin{aligned} & 5632 \times 8 \text { bits } \\ & \text { (FE900H to FFEFFH) } \end{aligned}$	10000H
R5F104xF ($\mathrm{x}=\mathrm{A}$ to C, E to $\mathrm{G}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)	$\begin{aligned} & 98304 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 17 \mathrm{FFFH}) \end{aligned}$	$\begin{aligned} & 12288 \times 8 \text { bits } \\ & \text { (FCFOOH to FFEFFH) } \end{aligned}$	20000 H
$\begin{aligned} & \text { R5F104xG } \\ & (x=A \text { to C,E to } G, J, L, M, P) \end{aligned}$	$\begin{aligned} & 131072 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 1 \text { FFFFH }) \end{aligned}$	$\begin{aligned} & 16384 \times 8 \text { bits } \\ & \text { (FBFOOH to FFEFFH) } \end{aligned}$	20000 H
R5F104xH(x=E to G,J,L,M,P)	$\begin{aligned} & 196608 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 2 F F F F H) \end{aligned}$	$\begin{aligned} & 20480 \times 8 \text { bits } \\ & \text { (FAFOOH to FFEFFH) } \end{aligned}$	30000 H
R5F104xJ(x=F,G,J,L,M, P)	$\begin{aligned} & 262144 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to 3FFFFH }) \end{aligned}$	24576×8 bits (F9F00H to FFEFFH)	40000H
R5F104xK(x=G,L,M,P)	$\begin{aligned} & 393216 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 5 \text { FFFFH }) \\ & \hline \end{aligned}$	$\begin{aligned} & 32768 \times 8 \text { bits } \\ & \text { (F7FOOH to FFEFFH) } \end{aligned}$	60000 H
R5F104xL(x=G,L,M,P)	$\begin{aligned} & 524688 \times 8 \text { bits } \\ & (00000 \mathrm{H} \text { to } 7 \text { FFFFH }) \\ & \hline \end{aligned}$	49152×8 bits (F3F00H to FFEFFH)	80000H

31.3 Securing of User Resources (Page 1134)

Incorrect:

(Omitted)

Note 1. Address differs depending on products as follows.

Products (code flash memory capacity)	Address of Note 1.
R5F104xA ($\mathrm{x}=\mathrm{A}$ to C, E to G)	03FFFFH
R5F104xC (x = A to C, E to G, J, L)	07FFFH
R5F104xD ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)	0BFFFH
R5F104xE ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)	0FFFFFH
R5F104xF ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L, M, P)	17FFFFH
R5F104xG ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L, M, P)	1FFFFH
R5F104xH (x = E to G, J, L, M, P)	2FFFFH
R5F104xJ (x = F, G , J , L, M, P)	3FFFFH
R5F104xK ($x=\mathrm{G}_{2}$ J, , M, M, P)	5FFFFH
R5F104xL ($\mathrm{X}=\mathrm{G}, \mathrm{J}, \mathrm{L}_{2} \mathrm{M}$, P)	7FFFFH

(Omitted)

36.7 52-pin products (Page 1304)

Incorrect:
R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA
R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA,
R5F104JHDFA, R5F104JJDFA
R5F104JCGFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA

R5F104GKGNA R5F104GLGNA

25F104JKGFA, R5F104JLGFA

31.3 Securing of User Resources (Page 1134)

Correct:
(Omitted)
Note 1. Address differs depending on products as follows.

Products (code flash memory capacity)	Address of Note 1.
R5F104xA (x = A to C, E to G)	03FFFFH
R5F104xC ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L)	07FFFH
R5F104xD (x = A to C, E to G, J, L)	0BFFFH
R5F104xE (x = A to C, E to G, J, L)	0FFFFFH
R5F104xF (x = A to C, E to G, J, L, M, P)	17FFFH
R5F104xG ($\mathrm{x}=\mathrm{A}$ to C, E to G, J, L, M, P)	1FFFFFH
R5F104xH ($\mathrm{x}=\mathrm{E}$ to G, J, L, M, P)	2FFFFFH
R5F104xJ ($\mathrm{x}=\mathrm{F}, \mathrm{G}, \mathrm{J}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)	3FFFFH
R5F104xK ($x=\mathrm{G}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)	5FFFFH
R5F104xL ($x=\mathrm{G}, \mathrm{L}, \mathrm{M}, \mathrm{P}$)	7FFFFH

(Omitted)

36.7 52-pin products (Page 1304)

Correct:
R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA
R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA R5F104JHDFA, R5F104JJDFA
R5F104JCGFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA
(Omitted)

6. 6.3.3 Timer mode register mn (TMRmn) Figure 6-12 the count clock selection (Page 303)

ncorrect:

Figure 6-12 Format of Timer mode register mn (TMRmn) (1/4)
Address: \quad F0190H, $\mathrm{FO191H}$ (TMR00) to F0196H, F0197H (TMR03), After reset: 0000H R/W F01D0H, F01D1H (TMR10) to F01D6H, F01D7H (TMR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
$\begin{gathered} \text { TMRmn } \\ (\mathrm{n}=2) \end{gathered}$	$\begin{aligned} & \text { CKS } \\ & \mathrm{mn} 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { CKS } \\ & \text { mn0 } \\ & \hline \end{aligned}$	0	$\begin{gathered} \mathrm{CCS} \\ \mathrm{mn} \end{gathered}$	$\begin{array}{\|c} \hline \text { MAS } \\ \text { TERmn } \end{array}$	$\begin{array}{\|l\|} \hline \text { STS } \\ \mathrm{mn} 2 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { STS } \\ & \mathrm{mn} 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline \text { STS } \\ \text { mn0 } \\ \hline \end{array}$	$\begin{gathered} \text { CIS } \end{gathered}$	$\begin{gathered} \hline \mathrm{CIS} \\ \mathrm{mn0} \\ \hline \end{gathered}$	0	0	$\begin{gathered} \hline \mathrm{MD} \\ \mathrm{mn} 3 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{MD} \\ & \mathrm{mn2} \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{MD} \\ \mathrm{mn} 1 \end{array}$	$\begin{gathered} \hline \mathrm{MD} \\ \mathrm{mnO} \end{gathered}$

(Omitted)

CCS mn	Selection of count clock ($\mathrm{f}_{\text {TCLK }}$) of channel n
0	Operation clock (f $\mathrm{f}_{\text {MCK }}$) specified by the CKSmn0 and CKSmn1 bits
1	Valid edge of input signal input from the TImn pin
Count clock ($\mathrm{f}_{\text {TLLK }}$) is used for the counter, output controller, and interrupt controller.	

(Omitted)

Correct:
Figure 6-12 Format of Timer mode register mn (TMRmn) (1/4)
Address: $\mathrm{F0190H}, \mathrm{FO191H}$ (TMR00) to F0196H, F0197H (TMR03), After reset: 0000H R/W F01D0H, F01D1H (TMR10) to F01D6H, F01D7H (TMR13)

Sy	15	14	13	12	11	10	9	8	7	6	5		3	2		
TMRmn	11	mno	0	$\begin{gathered} \mathrm{CC} \\ \mathrm{mi} \end{gathered}$	$\overline{M A S}$	mn2	mn1	mno	mn1	mno	0	0	n3	$\begin{array}{\|c} \hline \mathrm{MD} \\ \mathrm{mn} 2 \\ \hline \end{array}$	$\overline{M D}$	

(Omitted)

CCS mn	Selection of count clock ($\mathrm{f}_{\text {TCLK }}$) of channel n
0	Operation clock ($\mathrm{f}_{\text {MCK }}$) specified by the CKSmn0 and CKSmn1 bits
1	Valid edge of input signal input from the TImn pin When using unit 0:
In channel 0, Valid edge of input signal selected by TIS0 In channel 1, Valid edge of input signal selected by TIS0 In channel 3, Valid edge of input signal selected by ISC	

Count clock ($\mathrm{f}_{\text {TCLK }}$) is used for the counter, output controller, and interrupt controller.

7. 17.3.12 Serial output register m (SOm)

Figure 17-19 Reset value of serial output register m (SOm) (Page 708)

Incorrect:

Figure 17-19 Format of Serial output register m (SOm)

Address: F0128H, F0129H After reset: OFOFH R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
soo	0	0	0	0	$\begin{array}{\|c\|} \hline \text { CKO } \\ 03 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ 02 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ 01 \\ \hline \end{array}$	$\begin{gathered} \hline \text { CKO } \\ 00 \end{gathered}$	0	0	0	0	$\begin{aligned} & \hline \text { SO } \\ & 03 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{SO} \\ & 02 \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { SO } \\ 01 \\ \hline \end{array}$	SO 00

Address: F0168H, F0169H After reset: 0F0FH Note R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO1	0	0	0	0	$\begin{array}{\|c\|} \hline \text { CKO } \\ 13 \end{array}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ 12 \end{array}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ 11 \end{array}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ 10 \\ \hline \end{array}$	0	0	0	0	SO	$\begin{aligned} & \hline \mathrm{SO} \\ & 12 \end{aligned}$	$\begin{aligned} & \hline \text { SO } \\ & 11 \end{aligned}$	SO 10

(Omitted)
Note The register value becomes $\mathbf{3 0 3 0 H}$ after a reset for the 30 to 64 -pin products
(Omitted)

Correct:

> Figure 17-19 Format of Serial output register m (SOm)

Address: F0128H, F0129H After reset: 0F0FH R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOO	0	0	0	0	$\begin{array}{\|c\|} \hline \text { CKO } \\ 03 \end{array}$	$\begin{gathered} \text { CKO } \\ 02 \end{gathered}$	$\begin{gathered} \mathrm{CKO} \\ 01 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ 00 \\ \hline \end{array}$	0	0	0	0	$\begin{aligned} & \hline \text { SO } \\ & 03 \end{aligned}$	$\begin{aligned} & \hline \text { SO } \\ & 02 \end{aligned}$	SO	SO 00

Address: F0168H, F0169H After reset: 0F0FH Note R/W

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO1	0	0	0	0	CKO 13	$\begin{array}{\|c} \hline \text { CKO } \\ \hline 12 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ \hline 11 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { CKO } \\ 10 \\ \hline \end{array}$	0	0	0	0	SO 13	$\begin{aligned} & \hline \text { SO } \\ & 12 \\ & \hline \end{aligned}$	SO	SO

(Omitted)
Note The register value becomes 0303H after a reset for the 30 to 64 -pin products.

8. 19.5.3 DTC Pending Instruction (Page 982)

Incorrect:

(Omitted)

Even if a DTC transfer request is generated, DTC transfer is held pending immediately after the following instructions. Also, the DTC is not activated between PREFIX instruction code and the instruction immediately after that code.

- Call/return instruction
- Unconditional branch instruction
- Conditional branch instruction
- Read access instruction for code flash memory
- Bit manipulation instructions for IFxx, MKxx, PRxx, and PSW, and an 8-bit manipulation instruction that has the ES register as operand
- Instruction for accessing the data flash memory

Caution 1. When a DTC transfer request is acknowledged, all interrupt requests are held pending until DTC transfer is completed.
Caution 2. While the DTC is held pending by the DTC pending instruction, all interrupt requests are held pending.

Correct:

(Omitted)

Even if a DTC transfer request is generated, DTC transfer is held pending immediately after the following instructions. Also, the DTC is not activated between PREFIX instruction code and the instruction immediately after that code.

Call/return instruction

Unconditional branch instruction

- Conditional branch instruction

Read access instruction for code flash memory

- Bit manipulation instructions for IFxx, MKxx, PRxx, and PSW, and an 8-bit manipulation instruction that has the ES register as operand
Instruction for accessing the data flash memory
Instruction of Multiply, Divide, Multiply \& Accumulate (excluding MULU)
Caution 1. When a DTC transfer request is acknowledged, all interrupt requests are held pending until DTC transfer is completed.
Caution 2. While the DTC is held pending by the DTC pending instruction, all interrupt requests are held pending.

9. 21.4.4 Interrupt servicing during division instruction (Page 1021)

Incorrect:

The RL78/G14 handles interrupts during the DIVHU/DIVWU instruction in order to enhance the interrupt response when a division instruction is executed.

Correct:
The RL78/G14 handles interrupts during the DIVHU/DIVWU instruction in order to enhance the interrupt response when a division instruction is executed.
(Omitted)

Caution Disable interrupts when executing the DIVHU or DIVWU instruction in an interrupt servicing routine.
Alternatively, unless they are executed in the RAM area, note that execution of a DIVHU or DIVWU instruction is possible even with interrupts enabled as long as a NOP instruction is added immediately after the DIVHU or DIVWU instruction in the assembly language source code. The following compilers automatically add a NOP instruction immediately after any DIVHU or DIVWU instruction output during the build process.

- V. 1.71 and later versions of the CA78K0R (Renesas Electronics compiler), for both C and assembly language source code
- Service pack 1.40 .6 and later versions of the EWRL78 (IAR compiler), for C language source code
- GNURL78 (KPIT compiler), for C language source code

10. 21.4.5 Interrupt request hold (Page 1022)

Incorrect:
There are instructions where, even if an interrupt request is issued while the instructions are being executed, interrupt request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, \#byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- CLR1 PSW. bit
- RETB
-RETI
- POP PSW
- BTCLR PSW. bit, \$addr20
- EI
- DI
- SKC
- SKNC
- SKZ
- SKNZ
- SKH

SKNH

- Write instructions for the IF0L, IFOH, IF1L, IF1H, IF2L, IF2H, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H registers

Correct:

There are instructions where, even if an interrupt request is issued while the instructions are being executed, interrupt request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, \#byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- CLR1 PSW. bit
- RETB
- RETI
- POP PSW
- BTCLR PSW. bit, \$addr20
- El
- DI
- SKC
- SKNC
- SKZ
- SKNZ
- SKH
- SKNH
- MULHU
- MULH
- MACHU
- MACH
- Write instructions for the IFOL, IFOH, IF1L, IF1H, IF2L, IF2H, MKOL, MKOH, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H registers

11. 33.2 Operation List (Page 1153)

Incorrect:
Table 33-16 Operation List (12/18)

(Omitted)

Note 1. Number of CPU clocks (fcLk) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.
Note 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

Remark 1. Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.
Remark 2. MACR indicates the multiplication and accumulation register (MACRH, MACRL).

Correct:

Table 33-16 Operation List (12/18)

(Omitted)

Note 1. Number of CPU clocks (fclk) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.
Note 2. Number of CPU clocks (fclk) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.

Remark 1. Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.
Remark 2. MACR indicates the multiplication and accumulation register (MACRH, MACRL).
Caution Disable interrupts when executing the DIVHU or DIVWU instruction in an interrupt servicing routine.
Alternatively, unless they are executed in the RAM area, note that execution of a DIVHU or DIVWU instruction is possible even with interrupts enabled as long as a NOP instruction is added immediately after the DIVHU or DIVWU instruction in the assembly language source code. The following compilers automatically add a NOP instruction immediately after any DIVHU or DIVWU instruction output during the build process.

- V. 1.71 and later versions of the CA78K0R (Renesas Electronics compiler), for both C and assembly language source code
- Service pack 1.40 .6 and later versions of the EWRL78 (IAR compiler), for C language source code
- GNURL78 (KPIT compiler), for C language source code

