RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A041A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice RL78/G14 Descriptions in the Hardware Use Rev. 3.10 Changed	Information Category	Technical Notification			
		Lot No.				
Applicable Product			Reference Document	RL78/G14 User's Man Rev.3.10 R01UH0186EJ0310 (\$		

This document describes misstatements found in the RL78/G14 User's Manual: Hardware Rev.3.10 (R01UH0186EJ0310).

Corrections

Applicable Item	Applicable Page	Contents
1.2 Ordering Information Deletion of R5F104JK and R5F104JL from 52-pin	Page 8	Content change
1.3.7 52-pin products deletion of note2.	Page 19	Content change
1.6 Outline of Functions Deletion of 52-pin information	Pages 48 to 50	Content change
2.1.15 52-pin (Code Flash Memory 96 KB to 512 KB) Deletion of ROM 384KB and 512KB information	Page 84	Content change
Deletion of R5F104JK and R5F104JL information	Pages 131, 132, 136, 137, 138, 143, 148, 193, 958, 981, 1086, 1134 and 1304	Content change
6.3.3 Timer mode register mn Figure 6 - 12 the count clock selection	Page 303	Incorrect descriptions revised
17.3.12 Serial output register m (SOm) Figure 17 - 19 Reset value of serial output register m (SOm)	Page 708	Incorrect descriptions revised
19.5.3 DTC Pending Instruction	Page 982	Incorrect descriptions revised
21.4.4 Interrupt servicing during division instruction	Page 1021	Specifications added
21.4.5 Interrupt request hold	Page 1022	Incorrect descriptions revised
33.2 Operation List	Page 1153	Specifications added

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

No.	Corrections and	19	Pages in this document	
110.	Document No.	English	R01UH0186EJ0310	for corrections
1	1.2 Ordering Information Deletion of R5F104JK and R5F104J 52-pin		Page 8	p.3
2	1.3.7 52-pin products deletion of r	note2.	Page 19	p.4
3	1.6 Outline of Functions Deletion of 52-pin information		Pages 48-50	p.5-7
4	2.1.15 52-pin (Code Flash Memo 512 KB) Deletion of ROM 384KB and 512KB	-	Page 84	p.8
5	Deletion of R5F104JK and R5F104J information	L	Pages 131, 132, 136, 137, 138, 143, 148, 193, 958, 981, 1086, 1134 and 1304	p.9-14
6	6.3.3 Timer mode register mn Figure 6 - 12 the count clock selection	on	Page 303	p.15
7	17.3.12 Serial output register m (SO Figure 17 - 19 Reset value of serial register m (SOm)		Page 708	p.16
8	19.5.3 DTC Pending Instruction		Page 981	p.17
9	21.4.4 Interrupt servicing dur instruction	ing division	Page 1021	p.18
10	21.4.5 Interrupt request hold		Page 1022	p.19
11	33.2 Operation List		Page 1153	p.20

Incorrect: Bold with underline: Correct: Gray hatched

Revision History

RL78/G14 User's Manual: Hardware Rev.3.10 Correction for Incorrect Description Notice

Document Number	Date	Description
TN-RL*-A041A/E	Dec. 3, 2014	First edition issued No.1 to 11 in corrections (This notice)

Incorrect:

1. <u>1.2 Ordering Information</u> <u>Deletion of R5F104JK and R5F104JL from 52-pin (page 8)</u>

Date: Dec. 3, 2014

Correct:

Pin Package count	Fields of Application Note 1	Ordering Part Number	Pin count	Package	Fields of Application Note 1	Ordering Part Number
52 pins LQFP (10 × 10 mm, 0.65 mm pitch)	A D G	(Omitted) R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JCAFA#V0, R5F104JFAFA#V0, R5F104JCAFA#V0, R5F104JHAFA#V0, R5F104JJAFA#V0 R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JGAFA#X0, R5F104JHAFA#X0, R5F104JJAFA#X0 R5F104JGAFA#X0 , R5F104JHAFA#X0, R5F104JJAFA#X0 R5F104JCBFA#V0 , R5F104JLAFA#30 ^{Note2} R5F104JCBFA#V0 , R5F104JDDFA#V0, R5F104JCBFA#V0, R5F104JDDFA#V0, R5F104JCBFA#V0, R5F104JDDFA#V0, R5F104JCBFA#V0, R5F104JDDFA#V0, R5F104JCDFA#X0, R5F104JDDFA#V0, R5F104JCDFA#X0, R5F104JDDFA#X0, R5F104JCDFA#X0, R5F104JDDFA#X0, R5F104JCBFA#X0, R5F104JDDFA#X0, R5F104JCGFA#V0, R5F104JDGFA#V0, R5F104JCGFA#V0, R5F104JDGFA#V0, R5F104JCGFA#V0, R5F104JDGFA#V0, R5F104JCGFA#V0, R5F104JDGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#V0, R5F104JCGFA#X0, R5F104JDGFA#X0, R5F104JCGFA#X0, R5F104	52 pins	52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)	A D G	R5F104JCAFA#V0, R5F104JDAFA#V0, R5F104JCAFA#V0, R5F104JFAFA#V0, R5F104JGAFA#V0, R5F104JHAFA#V0, R5F104JJAFA#V0 R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JCAFA#X0, R5F104JDAFA#X0, R5F104JGAFA#X0, R5F104JHAFA#X0, R5F104JJAFA#X0 R5F104JCDFA#V0, R5F104JDDFA#V0, R5F104JGDFA#V0, R5F104JHDFA#V0, R5F104JGDFA#V0, R5F104JHDFA#V0, R5F104JGDFA#V0, R5F104JHDFA#X0, R5F104JGDFA#X0, R5F104JHDFA#X0, R5F104JGDFA#X0, R5F104JHDFA#X0, R5F104JGDFA#X0, R5F104JHDFA#X0, R5F104JGDFA#X0, R5F104JHDFA#X0, R5F104JGGFA#V0, R5F104JHDFA#X0, R5F104JGGFA#V0, R5F104JHDFA#X0, R5F104JGGFA#V0, R5F104JHGFA#V0, R5F104JGGFA#V0, R5F104JHGFA#V0, R5F104JGGFA#V0, R5F104JHGFA#V0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JJGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JHGFA#X0, R5F104JGGFA#X0, R5F104JHGFA#X0, R5F104JHGFA#X0,

Note 2. Mounted on the 384 KB or more code flash memory products.

3. <u>1.6 Outline of Functions</u> <u>Deletion of 52-pin information (Pages 48 to 50)</u>

Incorrect:

[48-pin, 52-pin, 64-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1(PIOR0, 1) are set to 00H.

				(1/2		
		48-pin	52-pin	64-pin		
	Item	R5F104Gx	.R5F104Jx	R5F104Lx		
		(x = K, L)	(x = K, L)	(x = K, L)		
Code flash	memory (KB)	384 to 512	384 to 512	384 to 512		
	memory (KB)	8	8	8		
RAM (KB)		32 to 48 Note	32 to 48 Note	32 to 48 Note		
Address sp	ace	1 MB	•	•		
		(Omitted)				
I/O port	Total	44	48	58		
	CMOS I/O	34		48		
	CMOS input	5	5	5		
	CMOS output	1	1	1		
	N-ch open-drain I/O (6 V tolerance)	4	4	4		
Timer	16-bit timer	8 channels	8 channels			
			(TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2			
		channels, Timer RG: 1 channel)				
Watchdog timer		1 channel				
Real-time clock(RTC) 12-bit interval timer		1 channel				
		1 channel				
	Timer output		Timer outputs: 14 channels			
		PWM outputs: 9 cl	hannels			
	RTC output	1				
		 1 Hz (subsystem 	 1 Hz (subsystem clock: fsub = 32.768 kHz) 			

(Note is listed on the next page.)

Date: Dec. 3, 2014

Correct:

[48-pin, 64-pin products (code flash memory 384 KB to 256 KB)] Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1(PIOR0, 1) are set to 00H.

			(1/2)		
		48-pin	64-pin		
	Item	R5F104Gx	R5F104Lx		
		(x = K, L)	(x = K, L)		
Code flash	memory (KB)	384 to 512	384 to 512		
Data flash r	memory (KB)	8	8		
RAM (KB)		32 to 48 Note	32 to 48 Note		
Address sp	ace	1 MB			
		(Omitted)			
I/O port	Total	44	58		
	CMOS I/O	34	48		
	CMOS input	5	5		
	CMOS output	1	1		
	N-ch open-drain I/O	4	4		
	(6 V tolerance)				
Timer	16-bit timer	8 channels			
		(TAU: 4 channels, Timer RJ: 1 channel, Timer RD: 2			
		channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel	1 channel		
Real-time clock(RTC)		1 channel			
12-bit interval timer		1 channel			
Timer output		Timer outputs: 14 channels	Timer outputs: 14 channels		
		PWM outputs: 9 channels			
	RTC output	1			
		 1 Hz (subsystem clock: fsue 	a = 32.768 kHz)		

(Note is listed on the next page.)

Date: Dec. 3, 2014

Incorrect:

Note The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xL (x = G, J, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Correct:

Note The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

Date: Dec. 3, 2014

Item

Incorrect:

Correct:

				(2/2)		
		48-pin	_ 52- pin_	64-pin		
Item		R5F104Gx	R5F104Jx	R5F104Lx		
		(x = K, L)	_(x = K. L)_	(x = K, L)		
Clock output/buzzer o	utput	2	2	2		
		• 2.44 kHz, 4.88 kHz, 9	• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz			
		(Main system clock: f	MAIN = 20 MHz operation)		
		• 256 Hz, 512 Hz, 1.02	4 kHz, 2.048 kHz, 4.096 k	Hz, 8.192 kHz,		
		16.384 kHz, 32.768 kH	lz			
		(Subsystem clock: fS	UB = 32.768 kHz operation	n)		
8/10-bit resolution A/E) converter	10 channels	_12_channels_	12 channels		
D/A converter		2 channels				
Comparator		2 channels				
Serial interface		[48-pin, 52-pin produc	ts]			
		 CSI: 2 channels/UAR 	T (UART supporting LIN-b	ous): 1		
		channel/simplified I2C	2 channels			
			: 1 channel/simplified I2C:			
			T: 1 channel/simplified I20	C: 2 channels		
		[64-pin products]				
		 CSI: 2 channels/UAR 	T (UART supporting LIN-b	ous): 1		
		channel/simplified I2C: 2 channels				
		 CSI: 2 channels/UART: 1 channel/simplified I2C: 2 channels 				
		CSI: 2 channels/UART: 1 channel/simplified I2C: 2 channels				
	I ² C bus	1 channel	<u>1.channel</u>	1 channel		
Data transfer controlle	(-)	32 sources		33 sources		
Event link controller (E	ELC)	Event input: 22				
		Event trigger output: 9				
Vectored interrupt	Internal	24	24	24		
sources	External	10	12	13		
Key interrupt		6	8	8		
Reset		Reset by RESET pin				
		 Internal reset by wate 	chdog timer			
		 Internal reset by pow 				
		 Internal reset by voltage detector 				
		 Internal reset by illegal instruction execution Note 				
		 Internal reset by RAM parity error 				
		Internal reset by illegal-memory access				
Power-on-reset circuit		• Power-on-reset: 1.51 ±0.03 V				
		• Power-down-reset: 1.50 ±0.03 V				
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug function	n	Provided				
Power supply voltage		V_{DD} = 1.6 to 5.5 V TA = -40 to +85°C (A: Consumer applications, D: Industrial				
Operating ambient ter	nperature		Consumer applications, D:	Industrial		
		applications),				
		$T_A = -40$ to +105°C (G: Industrial applications)				

(Omitted)

Clock output/buzzer output 2 2 • 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz. 32.768 kHz (Subsystem clock: fSUB = 32.768 kHz operation) 8/10-bit resolution A/D converter 10 channels 12 channels D/A converter 2 channels Comparator 2 channels Serial interface [48-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I2C: 2 channels CSI: 1 channel/UART: 1 channel/simplified I2C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I2C: 2 channels [64-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I2C: 2 channels • CSI: 2 channels/UART: 1 channel/simplified I2C: 2 channels • CSI: 2 channels/UART: 1 channel/simplified I2C: 2 channels I²C bus 1 channel 1 channel Data transfer controller (DTC) 32 sources 33 sources Event input: 22 Event link controller (ELC) Event trigger output: 9 Vectored interrupt Internal 24 24 sources 10 13 External 6 Key interrupt 8 Reset Reset by RESET pin · Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector · Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access Power-on-reset: 1.51 ±0.03 V Power-on-reset circuit Power-down-reset: 1.50 ±0.03 V Voltage detector 1.63 V to 4.06 V (14 stages) On-chip debug function Provided Power supply voltage VDD = 1.6 to 5.5 V Operating ambient temperature TA = -40 to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to $+105^{\circ}C$ (G: Industrial applications)

48-pin

R5F104Gx

(x = K, L)

(2/2)

64-pin

R5F104Lx

(x = K, L)

(Omitted)

(c) 2014. Renesas Electronics Corporation. All rights reserved.

4. <u>2.1.15 52-pin (Code Flash Memory 96 KB to 512 KB)</u> Deletion of ROM 384KB and 512KB information (Page 84)

Incorrect:

2.1.15 52-pin (Code Flash Memory 96 KB to 512 KB)

					(1/2)	
Function Name	Pin Type	I/O	After Reset Release	Alternate Function	Function	
(Omitted)						
P10 P11	8-1-8 7-1-8	I/O	Input port	SCK11/SCL11/TRDIOD1 SI11/SDA11/TRDIOC1((RxD0_1) ^{Note3}	Port 1. 8-bit I/O port. Input/output can be specified in 1-bit units.	
P12	7-6-6			SO11/TRDIOB1/IVREF1/ (INTP5)/(TxD0_1) ^{Note3}	(Omitted)	
	(Omitted)					

- Note 1. Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).
- Note 2. Each pin can be specified as either digital or analog by setting the A/D port configuration register (ADPC).
- Note 3. Mounted on the 384 KB or more code flash memory products.
- Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0, 1(PIOR0, 1).

Date: Dec. 3, 2014

Correct:

2.1.15 52-pin (Code Flash Memory 96 KB to 256 KB)

					(1/2)		
	Pin Type	I/O	After Reset Release	Alternate Function	Function		
				(Omitted)			
P10	8-1-8	I/O	Input	SCK11/SCL11/TRDIOD1	Port 1.		
P11	7-1-8		port	SI11/SDA11/TRDIOC1	8-bit I/O port.		
P12	7-6-6			SO11/TRDIOB1/IVREF1/ (INTP5)	Input/output can be specified in 1-bit units. (Omitted)		
(Omitted)							

(1/2)

Note 1. Each pin can be specified as either digital or analog by setting port mode control register x (PMCx) (Can be specified in 1-bit units).

Note 2. Each pin can be specified as either digital or analog by setting the A/D port configuration register (ADPC).

Remark Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection registers 0, 1(PIOR0, 1).

RENESAS TECHNICAL UPDATE TN-RL*-A041A/E	Date: Dec. 3, 2014		
5. <u>Deletion of R5F104JK and R5F104JL information</u> (the corresponding page is indicated below.)			
3.1 Memory Space (Page 131) Incorrect: Figure 3 - 9 Memory Map (R5F104xK (x = G, J, L, M, P)). 3.1 Memory Space (Page 132) Incorrect: Figure 3 - 10 Memory Map (R5F104xL (x = G, J, L, M, P)).	3.1 Memory Space (Page 131) Correct: Figure 3 - 9 Memory Map (R5F104xK (x = G, L, M, P)) 3.1 Memory Space (Page 132) Correct: Figure 3 - 10 Memory Map (R5F104xL (x = G, L, M, P))		
Remark of Correspondence Between Address Values and Block Numbers in Flash Memory (Page 136) Incorrect: Table 3 - 3 Correspondence Between Address Values and Block Numbers in Flash Memory (3/4) (Omitted) Remark R5F104xK (x = G, J, L, M, P): Block numbers 00H to 17FH	Remark of Correspondence Between Address Values and Block Numbers in Flash Memory (Page 136) Correct: Table 3 - 3 Correspondence Between Address Values and Block Numbers in Flash Memory (3/4) (Omitted) Remark R5F104xK (x = G, L, M, P): Block numbers 00H to 17FH		
Remark of Correspondence Between Address Values and Block Numbers in Flash Memory (Page 137) Incorrect: Table 3 - 4 Correspondence Between Address Values and Block Numbers in Flash Memory (4/4) (Omitted) Remark R5F104xL (x = G, J, L, M, P): Block numbers 00H to 1FFH	Remark of Correspondence Between Address Values and Block Numbers in Flash Memory (Page 137) Correct: Table 3 - 4 Correspondence Between Address Values and Block Numbers in Flash Memory (4/4) (Omitted) Remark R5F104xL (x = G, L, M, P): Block numbers 00H to 1FFH		

3.1.1 Internal program memory space (page 138)

Incorrect:

Table 3 - 5 Internal ROM Capacity						
Part Number	Internal ROM					
Fait Nulliber	Structure	Capacity				
R5F104xA (x = A to C, E to G)	Flash memory	16384 × 8bits(00000H to 03FFFH)				
R5F104xC (x = A to C, E to G, J, L)		32768 × 8bits(00000H to 07FFFH)				
R5F104xD (x = A to C, E to G, J, L)		49152 × 8bits(00000H to 0BFFFH)				
R5F104xE (x = A to C, E to G, J, L)		65536 × 8bits(00000H to 0FFFFH)				
R5F104xF (x = A to C, E to G, J, L, M, P)		98304 × 8bits(00000H to 17FFFH)				
R5F104xG (x = A to C, E to G, J, L, M, P)		131072 × 8bits(00000H to 1FFFFH)				
R5F104xH (x = E to G, J, L, M, P)		196608 × 8bits(00000H to 2FFFH)				
R5F104xJ (x = F, G ,J , L, M, P)		262144 × 8bits(00000H to 3FFFFH)				
R5F104xK.(x.=.G., J. L. M. P)]	393216 × 8bits(00000H to 5FFFFH)				
R5F104xL (x = G, J, L, M, P)		524288 × 8bits(00000H to 7FFFH)				

(Omitted)

3.1.3 Internal data memory space (page 143)

Incorrect:

Table 3 - 8 Inter	nal RAM Capacity
Part Number	Internal RAM
R5F104xA (x = A to C, E to G)	2560 × 8bits(FF500H to FFEFFH)
R5F104xC (x = A to C, E to G, J, L)	4096 × 8bits(FEF00H to FFEFFH)
R5F104xD (x = A to C, E to G, J, L)	5632 × 8bits(FE900H to FFEFFH)
R5F104xE (x = A to C, E to G, J, L)	
R5F104xF (x = A to C, E to G, J, L, M, P)	12288 × 8bits(FCF00H to FFEFFH)
R5F104xG (x = A to C, E to G, J, L, M, P)	16384 × 8bits(FBF00H to FFEFFH)
R5F104xH (x = E to G, J, L, M, P)	20480 × 8bits(FAF00H to FFEFFH)
R5F104xJ (x = F, G ,J , L, M, P)	24576 × 8bits(F9F00H to FFEFFH)
R5F104xK (x = G, J, L, M, P)	32768 × 8bits(F7F00H to FFEFFH)
R5F104xL (x = G, J, L, M, P)	49152 × 8bits(F3F00H to FFEFFH)

(Omitted)

3.1.1 Internal program memory space (page 138)

Correct:

Table 3 - 5 Internal ROM Capacity

Part Number		Internal ROM
Fait Nulliber	Structure	Capacity
R5F104xA (x = A to C, E to G)	Flash memory	16384 × 8bits(00000H to 03FFFH)
R5F104xC (x = A to C, E to G, J, L)		32768 × 8bits(00000H to 07FFFH)
R5F104xD (x = A to C, E to G, J, L)		49152 × 8bits(00000H to 0BFFFH)
R5F104xE (x = A to C, E to G, J, L)		65536 × 8bits(00000H to 0FFFFH)
R5F104xF (x = A to C, E to G, J, L, M, P)		98304 × 8bits(00000H to 17FFFH)
R5F104xG (x = A to C, E to G, J, L, M, P)		131072 × 8bits(00000H to 1FFFFH)
R5F104xH (x = E to G, J, L, M, P)		196608 × 8bits(00000H to 2FFFH)
R5F104xJ (x = F, G ,J , L, M, P)		262144 × 8bits(00000H to 3FFFFH)
R5F104xK (x = G, L, M, P)		393216 × 8bits(00000H to 5FFFFH)
R5F104xL (x = G, L, M, P)		524288 × 8bits(00000H to 7FFFFH)

(Omitted)

3.1.3 Internal data memory space (page 143)

Correct:

Table 3 - 8 Internal RAM Capacity

Part Number	Internal RAM
R5F104xA (x = A to C, E to G)	2560 × 8bits(FF500H to FFEFFH)
R5F104xC (x = A to C, E to G, J, L)	4096 × 8bits(FEF00H to FFEFFH)
R5F104xD (x = A to C, E to G, J, L)	5632 × 8bits(FE900H to FFEFFH)
R5F104xE (x = A to C, E to G, J, L)	
R5F104xF (x = A to C, E to G, J, L, M, P)	12288 × 8bits(FCF00H to FFEFFH)
R5F104xG (x = A to C, E to G, J, L, M, P)	16384 × 8bits(FBF00H to FFEFFH)
R5F104xH (x = E to G, J, L, M, P)	20480 × 8bits(FAF00H to FFEFFH)
R5F104xJ (x = F, G ,J , L, M, P)	24576 × 8bits(F9F00H to FFEFFH)
R5F104xK (x = G, L, M, P)	32768 × 8bits(F7F00H to FFEFFH)
R5F104xL (x = G, L, M, P)	49152 × 8bits(F3F00H to FFEFFH)

(Omitted)

3.2.1 Control registers (page 148)

Incorrect:

(Omitted)

Caution 4. The flash library uses RAM in self-programming and rewriting of the memory. The target products and start address of the RAM areas us flash library are shown below. R5F104xD (x = A to C, E to G, J, L): Start address FE900H R5F104xE (x = A to C, E to G, J, L): Start address FE900H R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H R5F104xL (x = G, J, L, M, P): Start address F3F00H For the RAM areas used by the flash library, see Self RAM list Self-Programming Library for RL78 Family (R20UT2944). Caution 5. The internal RAM area in the following products cannot be used as stac when using the on-chip debugging trace function. R5F104xJ (x = A to C, E to G, J, L): FA300H to FA6FFH R5F104xL (x = G, J, L, M, P) F4300H to F46FFH

4.3 Registers Controlling Port Function (page 193)

Incorrect:

(Omitted)

- Note 1. 30-pin and 32-pin products only.
- Note 2. R5F104xF (x = A to C, E to G, J, L, M, P), R5F104xG (x = A to C, E to G, J, L, M, P), R5F104xH (x = E to G, J, L, M,P), R5F104xJ (x = F, G, J, L, M, P), R5F104xK (x = G, J, L, M, P), R5F104xL (x = G, J, L, M, P) only.

Date: Dec. 3, 2014

3.2.1 Control registers (page 148)

Correct:

	(Omitted)
e data flash used by the	Caution 4. The flash library uses RAM in self-programming and rewriting of the data flash memory. The target products and start address of the RAM areas used by the flash library are shown below.
	R5F10 4 xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	R5F104xL (x = G, L, M, P): Start address F3F00H
st of Flash	For the RAM areas used by the flash library, see Self RAM list of Flash
	Self-Programming Library for RL78 Family (R20UT2944).
ack memory	Caution 5. The internal RAM area in the following products cannot be used as stack memory
-	when using the on-chip debugging trace function.
	R5F104xJ (x = A to C, E to G, J, L): FA300H to FA6FFH
	R5F104xL (x = G, L, M, P): F4300H to F46FFH

4.3 Registers Controlling Port Function (page 193)

Correct:

(Omitted)

Note 1. 30-pin and 32-pin products only.

Note 2. R5F104xF (x = A to C, E to G, J, L, M, P), R5F104xG (x = A to C, E to G, J, L, M, P), R5F104xH (x = E to G, J, L, M,P), R5F104xJ (x = F, G, J, L, M, P), R5F104xK (x = G, L, M, P), R5F104xL (x = G, L, M, P) only.

19.3.1 Allocation of DTC Control Data Area and DTC Vector Table Area (Page 958)

Incorrect:

(Omitted)

Caution 3. The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the self-programming and data-flash functions. R5F104xD (x = A to C, E to G, J, L): FE900H to FED09H R5F104xE (x = A to C, E to G, J, L): FE900H to FED09H R5F104xJ (x = A to C, E to G, J, L): F9F00H to FA309H R5F104xL (x = G, J, L, M, P): F3F00H to F4309H Caution 4. The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the on-chip debugging trace function. R5F104xJ (x = A to C, E to G, J, L): FA300H to FA6FFH R5F104xL (x = G, J, L, M, P): F4300H to F46FFH

19.5.2 Allocation of DTC Control Data Area and DTC Vector Table Area (Page 981)

Incorrect:

(Omitted)

- The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the self-programming and data-flash functions.
 - R5F104xD (x = A to C, E to G, J, L): R5F104xE (x = A to C, E to G, J, L): R5F104xJ (x = A to C, E to G, J, L): R5F104xL (x = G, J, L, M, P):

FE900H to FED09H F9F00H to FA309H F3F00H to F4309H

FE900H to FED09H

The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the on-chip debugging trace function.

R5F104xJ (x = A to C. E to G. J. L): FA300H to FA6FFH R5F104xL (x = G, J, L, M, P): F4300H to F46FFH

Initialize the DTRLD register to 00H even in normal mode when parity error resets are enabled (RPERDIS = 0) using the RAM parity error detection function.

Date: Dec. 3, 2014

19.3.1 Allocation of DTC Control Data Area and DTC Vector Table Area (Page 958)

Correct:

(Omitted)

Caution 3. The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the self-programming and data-flash functions. R5F104xD (x = A to C, E to G, J, L): FE900H to FED09H

R5F104xE (x = A to C, E to G, J, L): FE900H to FED09H R5F104xJ (x = A to C, E to G, J, L): F9F00H to FA309H R5F104xL(x = G, L, M, P): F3F00H to F4309H

Caution 4. The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the on-chip debugging trace function.

R5F104xJ (x = A to C, E to G, J, L): FA300H to FA6FFH R5F104xL (x = G. L. M. P): F4300H to F46FFH

19.5.2 Allocation of DTC Control Data Area and DTC Vector Table Area (Page 981)

Correct:

(Omitted)

The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the self-programming and data-flash functions.

R5F104xD (x = A to C, E to G, J, L): FE900H to FED09H R5F104xE (x = A to C, E to G, J, L): FE900H to FED09H R5F104xJ (x = A to C, E to G, J, L): F9F00H to FA309H R5F104xL (x = G, L, M, P): F3F00H to F4309H

The internal RAM area in the following products cannot be used as the DTC control data area or DTC vector table area when using the on-chip debugging trace function.

R5F104xJ (x = A to C. E to G. J. L): FA300H to FA6FFH F4300H to F46FFH

Initialize the DTRLD register to 00H even in normal mode when parity error resets are enabled (RPERDIS = 0) using the RAM parity error detection function.

R5F104xL(x = G, L, M, P):

27.3.6 Invalid memory access detection function (Page 1086)

Incorrect:

27.3.6 Invalid memory access detection function (Page 1086)

Correct:

(Omitted)

(Omitted)

Note The code flash memory, RAM, and lowest detection address of each product are as follows. Note The code flash memory, RAM, and lowest detection address of each product are as follows.

10110W5.				10110W5.			
Products	Code Flash Memory (00000H to xxxxxH)	RAM (zzzzzH to FFEFFH)	Lowest Detection Address (yyyyyH) when Reading/Fetching (Executing) Instructions	Products	Code Flash Memory (00000H to xxxxxH)	RAM (zzzzzH to FFEFFH)	Lowest Detection Address (yyyyyH) when Reading/Fetching (Executing) Instructions
R5F104xA(x=A to C, E to G)	16384 × 8 bits (00000H to 03FFFH)	2560 × _ 8_bit _ (FF500H to FFEFFH)	10000H	R5F104xA(x=A to C, E to G)	16384 × 8 bits (00000H to 03FFFH)	2560 × 8 bits (FF500H to FFEFFH)	10000H
R5F104xC(x=A to C,E to G,J,L)	32768 × 8 bits (00000H to 07FFFH)	4096 × <u>8 bit</u> (FEF00H to FFEFFH)	10000H	R5F104xC(x=A to C,E to G,J,L)	32768 × 8 bits (00000H to 07FFFH)	4096 × 8 bits (FEF00H to FFEFFH)	10000H
R5F104xD(x=A to C,E to G,J,L)	49152 × 8 bits (00000H to 0BFFFH)	5632 × <u>8 bit</u> (FE900H to FFEFFH)	10000H	R5F104xD(x=A to C,E to G,J,L)	49152 × 8 bits (00000H to 0BFFFH)	5632 × 8 bits (FE900H to FFEFFH)	10000H
R5F104xE(x=A to C,E to G,J,L)	65536 × 8 bits (00000H to 0FFFFH)	5632 × <u>8 bit</u> (FE900H to FFEFFH)	10000H	R5F104xE(x=A to C,E to G,J,L)	65536 × 8 bits (00000H to 0FFFFH)	5632 × 8 bits (FE900H to FFEFFH)	10000H
R5F104xF (x=A to C,E to G,J,L,M,P)	98304 × 8 bits (00000H to 17FFFH)	12288 × <u>8 bit</u> (FCF00H to FFEFFH)	20000H	R5F104xF (x=A to C,E to G,J,L,M,P)	98304 × 8 bits (00000H to 17FFFH)	12288 × 8 bits (FCF00H to FFEFFH)	20000H
R5F104xG (x=A to C,E to G,J,L,M,P)	131072 × 8 bits (00000H to 1FFFFH)	16384 × _ 8 bit _ (FBF00H to FFEFFH)	20000H	R5F104xG (x=A to C,E to G,J,L,M,P)	131072 × 8 bits (00000H to 1FFFFH)	16384 × 8 bits (FBF00H to FFEFFH)	20000H
R5F104xH(x=E to G,J,L,M,P)	196608 × 8 bits (00000H to 2FFFFH)	20480 × _ 8 bit (FAF00H to FFEFFH)	30000H	R5F104xH(x=E to G,J,L,M,P)	196608 × 8 bits (00000H to 2FFFFH)	20480 × 8 bits (FAF00H to FFEFFH)	30000H
R5F104xJ(x=F,G,J,L,M,P)	262144 × 8 bits (00000H to 3FFFFH)	24576 × _ 8 bit _ (F9F00H to FFEFFH)	40000H	R5F104xJ(x=F,G,J,L,M,P)	262144 × 8 bits (00000H to 3FFFFH)	24576 × 8 bits (F9F00H to FFEFFH)	40000H
R5F104xK(x=G,J.L.M.P)	393216 × 8 bits (00000H to 5FFFFH)	32768 × <u>8 bit</u> (F7F00H to FFEFFH)	60000H	R5F104xK(x=G,L,M,P)	393216 × 8 bits (00000H to 5FFFFH)	32768 × 8 bits (F7F00H to FFEFFH)	60000H
R5F104xL(x=G.J.L.M.P)	524688 × 8 bits (00000H to 7FFFFH)	49152 × <u>8 bit</u> (F3F00H to FFEFFH)	80000H	R5F104xL(x=G,L,M,P)	524688 × 8 bits (00000H to 7FFFFH)	49152 × 8 bits (F3F00H to FFEFFH)	80000H

31.3 Securing of User Resources (Page 1134)

Incorrect:

(Omitted)

Note 1. Address differs depending on products as follows.

Products (code flash memory capacity)	Address of Note 1.
R5F104xA (x = A to C, E to G)	03FFFH
R5F104xC (x = A to C, E to G, J, L)	07FFFH
R5F104xD (x = A to C, E to G, J, L)	0BFFFH
R5F104xE (x = A to C, E to G, J, L)	0FFFFH
R5F104xF (x = A to C, E to G, J, L, M, P)	17FFFH
R5F104xG (x = A to C, E to G, J, L, M, P)	1FFFFH
R5F104xH (x = E to G, J, L, M, P)	2FFFFH
R5F104xJ (x = F, G ,J , L, M, P)	3FFFFH
R5F104xK(x = G, J, L, M, P)	5FFFH
R5F104xL (x = G, J, L, M, P)	7FFFH

(Omitted)

36.7 52-pin products (Page 1304)

Incorrect:

R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA R5F104JHGFA, R5F104JJGFA **R5F104GKGNA, R5F104JLGFA R5F104JKGFA, R5F104JLGFA**

(Omitted)

Date: Dec. 3, 2014

31.3 Securing of User Resources (Page 1134)

Correct:

(Omitted)

Note 1. Address differs depending on products as follows.

 , danced amere depending on products do renow	0.
Products (code flash memory capacity)	Address of Note 1.
R5F104xA (x = A to C, E to G)	03FFFH
R5F104xC (x = A to C, E to G, J, L)	07FFFH
R5F104xD (x = A to C, E to G, J, L)	0BFFFH
R5F104xE (x = A to C, E to G, J, L)	0FFFFH
R5F104xF (x = A to C, E to G, J, L, M, P)	17FFFH
R5F104xG (x = A to C, E to G, J, L, M, P)	1FFFFH
R5F104xH (x = E to G, J, L, M, P)	2FFFFH
R5F104xJ (x = F, G ,J , L, M, P)	3FFFFH
R5F104xK (x = G, L, M, P)	5FFFH
R5F104xL (x = G, L, M, P)	7FFFH

(Omitted)

36.7 52-pin products (Page 1304)

Correct:

R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA

6. <u>6.3.3 Timer mode register mn (TMRmn)</u> Figure 6 - 12 the count clock selection (Page 303)

Incorrect:

Figure 6 - 12 Format of Timer mode register mn (TMRmn) (1/4)

Address: F0190H, F0191H (TMR00) to F0196H, F0197H (TMR03), After reset: 0000H R/W F01D0H, F01D1H (TMR10) to F01D6H, F01D7H (TMR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn (n=2)	CKS	CKS	0	CCS	MAS	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n=2)	mn1	mn0	0	mn	TERmn	mn2	mn1	mn0	mn1	mn0	0	U	mn3	mn2	mn1	mn0

(Omitted)

CCS mn	Selection of count clock (f_{TCLK}) of channel n
0	Operation clock ($f_{\mbox{\scriptsize MCK}}$) specified by the CKSmn0 and CKSmn1 bits
1	Valid edge of input signal input from the TImn pin
Cour	nt clock (f_{TCLK}) is used for the counter, output controller, and interrupt controller.

(Omitted)

Date: Dec. 3, 2014

Correct:

Figure 6 - 12 Format of Timer mode register mn (TMRmn) (1/4)

Address: F0190H, F0191H (TMR00) to F0196H, F0197H (TMR03), After reset: 0000H R/W F01D0H, F01D1H (TMR10) to F01D6H, F01D7H (TMR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn (n=2)	CKS mn1	CKS mn0	0	CCS mn	MAS TERmn	STS mn2	STS mn1	STS mn0	CIS mn1	CIS mn0	0	0	MD mn3	MD mn2	MD mn1	MD mn0

(Omitted)

CCS mn	Selection of count clock (f_{TCLK}) of channel n
0	Operation clock ($f_{\mbox{\scriptsize MCK}}$) specified by the CKSmn0 and CKSmn1 bits
1	Valid edge of input signal input from the TImn pin When using unit 0: In channel 0, Valid edge of input signal selected by TIS0 In channel 1, Valid edge of input signal selected by TIS0 In channel 3, Valid edge of input signal selected by ISC
Cour	nt clock (f_{TCLK}) is used for the counter, output controller, and interrupt controller.

7. <u>17.3.12 Serial output register m (SOm)</u> Figure 17 - 19 Reset value of serial output register m (SOm) (Page 708) Incorrect: Figure 17 - 19 Format of Serial output register m (SOm) Address: F0128H, F0129H After reset: 0F0FH R/W Symbol 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 CKO CKO CKO CKO 03 02 01 00 SO 03 SO 02 SO 01 SO SO0 0 0 0 0 0 0 0 0 00 Address: F0168H, F0169H After reset: 0F0FH Note R/W Symbol 15 14 13 12 11 5 10 9 8 7 6 3 2 0 4 1 CKO CKO CKO CKO 13 12 11 10 SO 13 SO 12 SO 11 SO1 SO 0 0 0 0 0 0 0 0 10 (Omitted)

Note The register value becomes **3030H** after a reset for the 30 to 64-pin products.

(Omitted)

Date: Dec. 3, 2014

Correct:

Figure 17 - 19 Format of Serial output register m (SOm)																
Address: F0128H, F0129H After reset: 0F0FH R/W																
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO0	0	0	0	0	CKO 03	CKO 02	CKO 01	CKO 00	0	0	0	0	SO 03	SO 02	SO 01	SO 00
Address: F0	168H	l, F01	69H		After	reset:	0F0	FH ^{Not}	e		R/W					
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SO1	0	0	0	0	CKO 13	CKO 12	CKO 11	CKO 10	0	0	0	0	SO 13	SO 12	SO 11	SO 10

Note The register value becomes 0303H after a reset for the 30 to 64-pin products.

(Omitted)

8. 19.5.3 DTC Pending Instruction (Page 982)

Incorrect:

(Omitted)

Even if a DTC transfer request is generated, DTC transfer is held pending immediately after the following instructions. Also, the DTC is not activated between PREFIX instruction code and the instruction immediately after that code.

- · Call/return instruction
- · Unconditional branch instruction
- · Conditional branch instruction
- · Read access instruction for code flash memory
- Bit manipulation instructions for IFxx, MKxx, PRxx, and PSW, and an 8-bit manipulation instruction that has the ES register as operand
- · Instruction for accessing the data flash memory
- Caution 1. When a DTC transfer request is acknowledged, all interrupt requests are held pending until DTC transfer is completed.
- Caution 2. While the DTC is held pending by the DTC pending instruction, all interrupt requests are held pending.

Date: Dec. 3, 2014

Correct:

(Omitted)

Even if a DTC transfer request is generated, DTC transfer is held pending immediately after the following instructions. Also, the DTC is not activated between PREFIX instruction code and the instruction immediately after that code.

- Call/return instruction
- Unconditional branch instruction
- · Conditional branch instruction
- · Read access instruction for code flash memory
- Bit manipulation instructions for IFxx, MKxx, PRxx, and PSW, and an 8-bit manipulation instruction that has the ES register as operand
- · Instruction for accessing the data flash memory
- · Instruction of Multiply, Divide, Multiply & Accumulate (excluding MULU)
- Caution 1. When a DTC transfer request is acknowledged, all interrupt requests are held pending until DTC transfer is completed.
- Caution 2. While the DTC is held pending by the DTC pending instruction, all interrupt requests are held pending.

9. 21.4.4 Interrupt servicing during division instruction (Page 1021)

Incorrect:

The RL78/G14 handles interrupts during the DIVHU/DIVWU instruction in order to enhance the interrupt response when a division instruction is executed.

Date: Dec. 3, 2014

Correct:

The RL78/G14 handles interrupts during the DIVHU/DIVWU instruction in order to enhance the interrupt response when a division instruction is executed.

Caution Disable interrupts when executing the DIVHU or DIVWU instruction in an interrupt servicing routine.

Alternatively, unless they are executed in the RAM area, note that execution of a DIVHU or DIVWU instruction is possible even with interrupts enabled as long as a NOP instruction is added immediately after the DIVHU or DIVWU instruction in the assembly language source code. The following compilers automatically add a NOP instruction immediately after any DIVHU or DIVWU instruction output during the build process.

- V. 1.71 and later versions of the CA78K0R (Renesas Electronics compiler), for both C and assembly language source code
- Service pack 1.40.6 and later versions of the EWRL78 (IAR compiler), for C language source code
- GNURL78 (KPIT compiler), for C language source code

10. 21.4.5 Interrupt request hold (Page 1022)

Incorrect:

There are instructions where, even if an interrupt request is issued while the instructions are being executed, interrupt request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

• MOV PSW, #byte

- MOV PSW, A • MOV1 PSW. bit. CY
- SET1 PSW. bit
- SETTESW. DI
- CLR1 PSW. bit
- RETB • RETI
- KEII
- POP PSW
- BTCLR PSW. bit, \$addr20
- El
- DI
- SKC
- SKNC
- SKZ
- SKNZ
- SKH
- SKNH
- Write instructions for the IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H registers

Correct:

There are instructions where, even if an interrupt request is issued while the instructions are being executed, interrupt request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, #byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- CLR1 PSW. bit
- RETB
- RETI
- POP PSW
- BTCLR PSW. bit, \$addr20
- El
- DI
- SKC
- SKNC
- SKZ
- SKNZ
- SKH
- SKNH
- MULHU
- MULH
- MACHU
- MACH
- Write instructions for the IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, and PR12H registers

11. 33.2 Operation List (Page 1153)

Incorrect:

Table 33 - 16 Operation List (12/18)

(Omitted)

- Note 1. Number of CPU clocks (f_{CLK}) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.
- Note 2. Number of CPU clocks (f_{CLK}) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- Remark 1. Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.
- Remark 2. MACR indicates the multiplication and accumulation register (MACRH, MACRL).

Date: Dec. 3, 2014

Correct:

Table 33 - 16 Operation List (12/18)

(Omitted)

- Note 1. Number of CPU clocks (f_{CLK}) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.
- Note 2. Number of CPU clocks (f_{CLK}) when the code flash memory is accessed, or when the data flash memory is accessed by an 8-bit instruction.
- Remark 1. Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.
- Remark 2. MACR indicates the multiplication and accumulation register (MACRH, MACRL).

Caution Disable interrupts when executing the DIVHU or DIVWU instruction in an interrupt servicing routine.

Alternatively, unless they are executed in the RAM area, note that execution of a DIVHU or DIVWU instruction is possible even with interrupts enabled as long as a NOP instruction is added immediately after the DIVHU or DIVWU instruction in the assembly language source code. The following compilers automatically add a NOP instruction immediately after any DIVHU or DIVWU instruction output during the build process.

- V. 1.71 and later versions of the CA78K0R (Renesas Electronics compiler), for both C and assembly language source code
- Service pack 1.40.6 and later versions of the EWRL78 (IAR compiler), for C language source code
- GNURL78 (KPIT compiler), for C language source code

