RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A001A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice RL78/G13 Descriptions in the Hardware Use Rev. 1.00 Changed	r's Manual	Information Category	Technical Notification			
		Lot No.		RL78/G13 User's Manual: Hardware Rev. 1.00 R01UH0146EJ0100 (Sep. 2011)			
Applicable Product	RL78/G13 Group R5F100xxx, R5F101xxx	All lot	Reference Document				

This document describes misstatements found in the RL78 hardware user's manual Rev. 1.00 (R01UH0146EJ0100).

Corrections

Applicable Page	Applicable Item	Contents
Pages 4, 17, 1055	64-pin plastic TQFP (7 x 7)	Incorrect descriptions deleted
Pages 439 to 444	Count registers in real-time clock	Incorrect descriptions deleted
Page 460	Interval timer control register (ITMC)	Explanations added
Page 483	Timing chart when A/D voltage comparator is used	Explanations added
Pages 489 to 491	A/D conversion time selection, there is stabilization wait time (6/8) to (8/8)	Incorrect descriptions revised
Pages 493, 497	Notes when entering A/D converter standby mode	Explanations added
Pages 842, 844	Maskable interrupt request acknowledgment	Incorrect descriptions revised
Pages 894, 896	Timing chart of voltage detector (LVD)	Incorrect descriptions revised
Pages 897 to 899	Voltage detector (LVD) interrupt and reset mode	Incorrect descriptions revised
Page 1005	Number (4) of the supply current characteristics in the Electrical Specifications chapter (section 29.4.2) is the same for all RL78/G13 Group products.	Explanations added

Incorrect: Bold with underline; Correct: Gray hatched

Document Improvement

The above corrections will be made for the next revision of the hardware user's manual around February, 2012. Contact a Renesas Electronics sales department details on the publishing schedule.

Corrections in the hardware User's manual

	Applicable Iter	n	Rev 1.00	After Rev 2.00 ^{Note}			
No	Document No.	Japanese	R01UH0146JJ0100	R01UH0146JJ0200			
	Document No.	English	R01UH0146EJ0100	R01UH0146EJ0200			
1	Incorrect descriptions of 64- TQFP (7 x 7) deleted	oin plastic	_	\checkmark			
2	Incorrect descriptions of cou real-time clock deleted	nt registers, in	_	\checkmark			
3	Explanations of interval time register (ITMC) added	r control	_	\checkmark			
4	Explanations of timing chart voltage comparator is used a		_	\checkmark			
5	Incorrect descriptions of A/D time selection, there is stabil time (6/8) to (8/8) revised		- v				
6	Explanations when entering standby mode added	A/D converter	_	\checkmark			
7	Incorrect descriptions of mas request acknowledgment op		_	\checkmark			
8	Incorrect descriptions of volta (LVD) timing chart revised	age detector	_	\checkmark			
9	Incorrect descriptions of volta (LVD) interrupt and reset mo		_				
10	Number (4) of the supply cur characteristics in the Electric Specifications chapter (section same for all RL78/G13 Grou	al on 29.4.2) is the	_	\checkmark			

Note A revised hardware user's manual is scheduled to be released around February, 2012.

Remarks $\sqrt{\cdot}$: Corrected

-: Items should be corrected

1. <u>Descriptions of related information according to discontinued development of 64-pin plastic</u> <u>TQFP (7 x 7) package deleted</u>

Order information of 64-pin plastic TQFP (7 x 7) deleted (page 4)

Incorrect:

(2/3)

Pin count	Package	Data flash	Part Number						
			(Omitted)						
			R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA,						
		Mounted	R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA,						
	64-pin plastic LQFP (12x12)		R5F100LLAFA						
	04-pill plastic LQFF (12x12)	Not	R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA						
		mounted	R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA						
		mounteu	R5F101LLAFA						
			R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB						
		Mounted	R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LKAFB						
	64-pin plastic LQFP (fine pitch)		R5F100LLAFB						
64 pins	(10 × 10)	Not	R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB						
04 pins		mounted	R5F101LGAFB, R5F101LHAFB, R5F101LJAFB, R5F101LKAFB						
		mounted	R5F101LLAFB						
		Mounted	R5F100LCAFC, R5F100LDAFC, R5F100LEAFC, R5F100LFAFC						
	64-pin plastic TQFP	Mounted	R5F100LGAFC, R5F100LHAFC, R5F100LJAFC						
	(fine_pitch) (7 × 7)	Not	R5F101LCAFC, R5F101LDAFC, R5F101LEAFC, R5F101LFAFC						
		mounted	R5F101LGAFC, R5F101LHAFC, R5F101LJAFC						
		Mounted	R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG						
		Mounted	R5F100LGABG, R5F100LHABG, R5F100LJABG						
	64-pin plastic FBGA (4 × 4)	Not	R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG						
		mounted	R5F101LGABG, R5F101LHABG, R5F101LJABG						

ct:			(2
Pin count	Package	Data flash	Part Number
			(Omitted)
	64 pip plastic LOED (12:42)	Mounted	R5F100LCAFA, R5F100LDAFA, R5F100LEAFA, R5F100LFAFA, R5F100LGAFA, R5F100LHAFA, R5F100LJAFA, R5F100LKAFA, R5F100LLAFA
	64-pin plastic LQFP (12x12)	Not mounted	R5F101LCAFA, R5F101LDAFA, R5F101LEAFA, R5F101LFAFA, R5F101LGAFA, R5F101LHAFA, R5F101LJAFA, R5F101LKAFA, R5F101LLAFA
64 pins	64-pin plastic LQFP (fine pitch)	Mounted	R5F100LCAFB, R5F100LDAFB, R5F100LEAFB, R5F100LFAFB, R5F100LGAFB, R5F100LHAFB, R5F100LJAFB, R5F100LKAFB, R5F100LLAFB
	(10 × 10)	Not mounted	R5F101LCAFB, R5F101LDAFB, R5F101LEAFB, R5F101LFAFB, R5F101LGAFB, R5F101LHAFB, R5F101LJAFB, R5F101LKAFB, R5F101LLAFB
		Mounted	R5F100LCABG, R5F100LDABG, R5F100LEABG, R5F100LFABG R5F100LGABG, R5F100LHABG, R5F100LJABG
	64-pin plastic FBGA (4 × 4)	Not mounted	R5F101LCABG, R5F101LDABG, R5F101LEABG, R5F101LFABG R5F101LGABG, R5F101LHABG, R5F101LJABG

Pin configuration of 64-pin plastic TQFP (7 x 7) deleted (page 17)

Incorrect:

1.3.11 64-pin products

• 64-pin plastic LQFP (12 × 12)

• 64-pin plastic LQFP (fine pitch) (10 × 10)

• 64-pin plastic TQFP (fine pitch) (7 \times 7)

(Omitted)

Correct:

- 1.3.11 64-pin products
- 64-pin plastic LQFP (12 × 12)
- 64-pin plastic LQFP (fine pitch) (10 × 10)

(Omitted)

Package drawings of 64-pin plastic TQFP (7 x 7) deleted (page 1055)

Incorrect:

R5F100LCAFC, R5F100LDAFC, R5F100LEAFC, R5F100LFAFC, R5F100LGAFC, R5F100LHAFC, R5F100LJAFC R5F101LCAFC, R5F101LDAFC, R5F101LEAFC, R5F101LFAFC, R5F101LGAFC, R5F101LHAFC, R5F101LJAFC

64-PIN PLASTIC TQFP (7x7)

Under development

Correct: Applicable page deleted

2. Incorrect descriptions of count registers in real-time clock deleted

Incorrect description of second count register (SEC) in real-time clock deleted (page 439)

Incorrect:

(5) Second count register (SEC)

The SEC register is an 8-bit register that takes a value of 0 to 59 (decimal) and indicates the count value of seconds.

It counts up when the sub-count register overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (fRTC) later. Set a decimal value of 00 to 59 to this register in BCD code. If a value outside the range is set, the register value returns to the normal value after 1 period.

The SEC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Correct:

(5) Second count register (SEC)

The SEC register is an 8-bit register that takes a value of 0 to 59 (decimal) and indicates the count value of seconds. It counts up when the sub-count register overflows. When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (fRTC) later. Set a decimal value of 00 to 59 to this register in BCD code.

The SEC register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Incorrect description of minute count register (MIN) in real-time clock deleted (page 439)

Incorrect:

(6) Minute count register (MIN)

The MIN register is an 8-bit register that takes a value of 0 to 59 (decimal) and indicates the count value of minutes. It counts up when the second counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frc) later. Even if the second count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 59 to this register in BCD code. **If a value outside the range is set, the register value**

returns to the normal value after 1 period.

The MIN register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Correct:

(6) Minute count register (MIN)

The MIN register is an 8-bit register that takes a value of 0 to 59 (decimal) and indicates the count value of minutes.

It counts up when the second counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frc) later. Even if the second count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 59 to this register in BCD code.

The MIN register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Incorrect description of hour count register (HOUR) in real-time clock deleted (page 440)

Incorrect:

(7) Hour count register (HOUR)

The HOUR register is an 8-bit register that takes a value of 00 to 23 or 01 to 12 and 21 to 32 (decimal) and indicates the count value of hours.

It counts up when the minute counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (f_{RTC}) later. Even if the minute count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Specify a decimal value of 00 to 23, 01 to 12, or 21 to 32 by using BCD code according to the time system specified using bit 3 (AMPM) of real-time clock control register 0 (RTCC0). If the AMPM bit value is changed, the values of the HOUR register change according to the specified time system. **If a value outside the range is set, the register value returns to**

the normal value after 1 period.

The HOUR register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 12H.

However, the value of this register is 00H if the AMPM bit (bit 3 of the RTCC0 register) is set to 1 after reset.

Correct:

(7) Hour count register (HOUR)

The HOUR register is an 8-bit register that takes a value of 00 to 23 or 01 to 12 and 21 to 32 (decimal) and indicates the count value of hours.

It counts up when the minute counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frc) later. Even if the minute count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Specify a decimal value of 00 to 23, 01 to 12, or 21 to 32 by using BCD code according to the time system specified using bit 3 (AMPM) of real-time clock control register 0 (RTCC0). If the AMPM bit value is changed, the values of the HOUR register change according to the specified time system.

The HOUR register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 12H.

However, the value of this register is 00H if the AMPM bit (bit 3 of the RTCC0 register) is set to 1 after reset.

Incorrect description of day count register (DAY) in real-time clock deleted (page 442)

Incorrect:

(8) Day count register (DAY)

The DAY register is an 8-bit register that takes a value of 1 to 31 (decimal) and indicates the count value of days. It counts up when the hour counter overflows.

This counter counts as follows.

(Omitted)

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frc) later. Even if the hour count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 31 to this register in BCD code. If a value outside the range is set, the register value

returns to the normal value after 1 period.

The DAY register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 01H.

Correct:

(8) Day count register (DAY)

The DAY register is an 8-bit register that takes a value of 1 to 31 (decimal) and indicates the count value of days. It counts up when the hour counter overflows.

This counter counts as follows.

(Omitted)

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (fRTC) later. Even if the hour count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 31 to this register in BCD code.

The DAY register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 01H.

Incorrect description of week count register (WEEK) in real-time clock deleted (page 443)

Incorrect:

(9) Week count register (WEEK)

The WEEK register is an 8-bit register that takes a value of 0 to 6 (decimal) and indicates the count value of weekdays. It counts up in synchronization with the day counter.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frtc) later. Set a decimal

value of 00 to 06 to this register in BCD code. If a value outside the range is set, the register value returns to the

normal value after 1 period.

The WEEK register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Correct:

(9) Week count register (WEEK)

The WEEK register is an 8-bit register that takes a value of 0 to 6 (decimal) and indicates the count value of weekdays.

It counts up in synchronization with the day counter.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (fRTC) later. Set a decimal value of 00 to 06 to this register in BCD code.

The WEEK register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Incorrect description of month count register (MONTH) in real-time clock deleted (page 444)

Incorrect:

(10) Month count register (MONTH)

The MONTH register is an 8-bit register that takes a value of 1 to 12 (decimal) and indicates the count value of months. It counts up when the day counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (fRTC) later. Even if the day count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 12 to this register in BCD code. **If a value outside the range is set, the register**.

value returns to the normal value after 1 period.

The MONTH register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 01H.

Correct:

(10) Month count register (MONTH)

The MONTH register is an 8-bit register that takes a value of 1 to 12 (decimal) and indicates the count value of months. It counts up when the day counter overflows.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frc) later. Even if the day count register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 01 to 12 to this register in BCD code.

The MONTH register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 01H.

Incorrect description of year count register (YEAR) in real-time clock deleted (page 444)

Incorrect:

(11) Year count register (YEAR)

The YEAR register is an 8-bit register that takes a value of 0 to 99 (decimal) and indicates the count value of years. It counts up when the month count register (MONTH) overflows.

Values 00, 04, 08, ..., 92, and 96 indicate a leap year.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frc) later. Even if the MONTH register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 99 to this register in BCD code. If a value outside the range is set, the register value returns to the normal value after 1 period.

The YEAR register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Correct:

(11) Year count register (YEAR)

The YEAR register is an 8-bit register that takes a value of 0 to 99 (decimal) and indicates the count value of years. It counts up when the month count register (MONTH) overflows.

Values 00, 04, 08, ..., 92, and 96 indicate a leap year.

When data is written to this register, it is written to a buffer and then to the counter up to 2 clocks (frtc) later. Even if the

MONTH register overflows while this register is being written, this register ignores the overflow and is set to the value written. Set a decimal value of 00 to 99 to this register in BCD code.

The YEAR register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

3. Caution of interval timer control register (ITMC) in 12-bit interval timer added (page 460)

Incorrect:

(3) Interval timer control register (ITMC)

(Omitted)

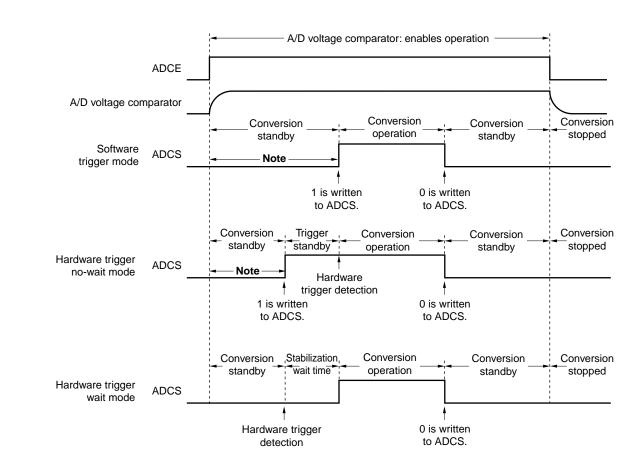
Cautions 1. Before changing the RINTE bit from 1 to 0, use the interrupt mask flag register to disable the INTIT interrupt servicing. When the operation starts (from 0 to 1) again, clear the ITIF flag, and then enable the interrupt servicing.

- 2. The value read from the RINTE bit is applied one count clock cycle after setting the RINTE bit.
- 3. Only change the setting of the ITCMP11 to ITCMP0 bits when RINTE = 0. However, it is possible to change the settings of the ITCMP11 to ITCMP0 bits at the same time as when changing RINTE from 0 to 1 or 1 to 0.

Correct:

(3) Interval timer control register (ITMC)

(Omitted)


- Cautions 1. Before changing the RINTE bit from 1 to 0, use the interrupt mask flag register to disable the INTIT interrupt servicing. When the operation starts (from 0 to 1) again, clear the ITIF flag, and then enable the interrupt servicing.
 - 2. The value read from the RINTE bit is applied one count clock cycle after setting the RINTE bit.
 - 3. When setting the RINTE bit after returned from standby mode and entering standby mode again, confirm that the written value of the RINTE bit is reflected, or wait that more than one clock of the count clock has elapsed after returned from standby mode. Then enter standby mode.
 - 4. Only change the setting of the ITCMP11 to ITCMP0 bits when RINTE = 0. However, it is possible to change the settings of the ITCMP11 to ITCMP0 bits at the same time as when changing RINTE from 0 to 1 or 1 to 0.

4. Added Explanations of timing chart when A/D voltage comparator is used (page 483)

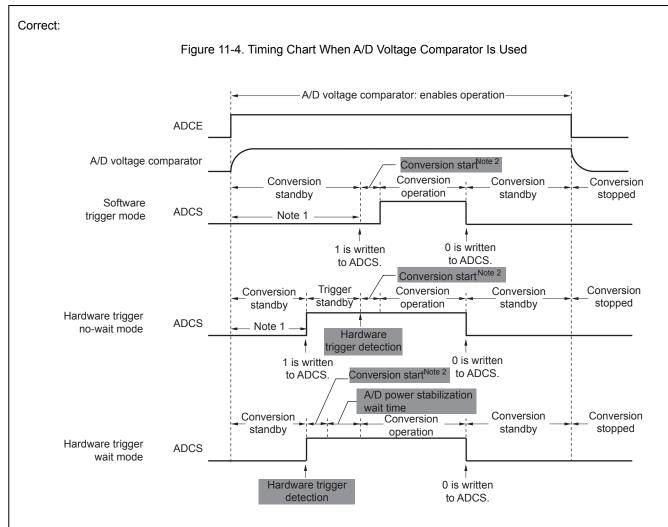

```
Incorrect:
```

Figure 11-4. Timing Chart When A/D Voltage Comparator Is Used

Note (Omitted)

Note 1. (Omitted)

2. The following time is the maximum amount of time necessary to start conversion.

	ADMC)	Conversion	Conversion Start Time	(Number of fclk Clocks)
FR2	FR1	FR0	Clock (f _{AD})	Software trigger mode/ Hardware trigger no wait mode	Hardware trigger wait mode
0	0	0	fськ/ 64	63	
0	0	1	fclк/ 32	31	
0	1	0	fclк/16	15	
0	1	1	fськ/8	7	
1	0	0	fськ/6	5	1
1	0	1	fclк/5	4	
1	1	0	fськ/4	3	
1	1	1	fськ/2	1	

Remark fclk: CPU/peripheral hardware clock frequency

5. <u>Incorrect descriptions of Table 11-3 A/D Conversion Time Selection (6/8) to (8/8) when there</u> is stabilization wait time (pages 489 to 491)

Incorrect:

Table 11-3. A/D Conversion Time Selection (6/8)

(6) 2.7 V \leq VDD < 3.6 V

When there is stabilization wait time (hardware trigger wait mode)

A/D	Convert	er Mode ADM0)	e Registe	er O			Сс	onversion Ti	me Selectic	n		(fAD)
FR2	FR1	FR0	LV1	LV0	Mode	fclk =	fclk =	fclk =	fclk =	fclk =	fclk =	Conversion Clock (fAD)
						1 MHz	2 MHz	4 MHz	8 MHz	16 MHz	32 MHz	0 0
0	0	0						Setting	Setting	Setting prohibited	54 μs	fclк/64
0	0	1						prohibited	prohibited	54 μs	27 μs	fclк/32
0	1	0				Setting	Setting		54 μs	27 μs	13.5 μ s	fclк/16
0	1	1	_	0	Normal	prohibited	prohibited	54 μs	27 μs	13.5 μs	6.75 μs	fclк/8
1	0	0	0	0	1	40.5	40.5 μs	20.25 μs	10.125 μs	5.0625 μs	fclк/6	
1	0	1						33.75 μ s	16.875 μs	8.4375 μs		fclк/5
1	1	0					54 μs	27 μs	13.5 μs	6.75 μs	Setting	fclк/4
1	1	1				54 μs	27 μs	13.5 μs	6.75 μs	Setting prohibited	prohibited	fclк/2
0	0	0							Setting	Setting prohibited	50 μs	fclк/64
0	0	1						Setting	prohibited	prombiled 50 μs	25 μs	fclк/32
0	1	0				0	Setting	prohibited	50 μs	25 μs	12.5 μs	fclк/16
0	1	1			Normal	Setting prohibited	prohibited	50 µs	25 μs	12.5 μs	6.25 μs	fclк/8
1	0	0	0	1	2	profilbited		37.5 μs	18.75 μs	9.375 μs	4.6875 <i>μ</i> s	fськ/6
1	0	1						31.25 μs	15.625 μs	7.8125 μs		fclк/5
1	1	0					50 μs	25 μs	12.5 μs	6.25 μs	Setting	fськ/4
1	1	1				50 μs	25 μs	12.5 μs	6.25 μs	Setting prohibited	prohibited	fськ/2
0	0	0						Setting	Setting	Setting prohibited	<u>54</u> _μs	fc∟к/64
0	0	1						prohibited	prohibited	54_μs	27_µs	fclк/32
0	1	0				Setting	Setting	54	<u>54</u> μs	<u>27</u> _μs		fclк/16
0	1	1	1	0	Low-	prohibited	prohibited	<u>54</u> μs	<u>27</u> _μs			fclк/8
1	0	0		0	Voltage			<u>40.5</u> μs			0.111	fclк/6
1	0	1			1			<u>33.75</u> .μs	Setting	Setting	Setting prohibited	fс∟к/5
1	1	0					<u>54</u> _μs	27_µs	prohibited	prohibited		fclк/4
1	1	1				54.µs	27_µs	Setting prohibited				fclк/2
0	0	0						Setting	Setting	Setting prohibited	<u>50</u> _μs	fclк/64
0	0	1	1					prohibited	prohibited	<u>50</u> μs	<u>25</u> μs	fclк/32
0	1	0				Cotting	Setting		<u>50</u> μs	<u>25</u> μs		fclк/16
0	1	1	4	1 1	Low-	Setting prohibited	prohibited	<u>50</u> μs	<u>25</u> μs		1	fськ/8
1	0	0			Voltage			<u>37.5</u> μs				fclк/6
1	0	1		2			31.25 μs		Setting	Setting prohibited	fclĸ/5	
1	1	0					<u>50</u> μs	<u>25</u> μs	Setting prohibited	prohibited	Promoted	fськ/4
1	1	1				50 μs	25 µs	Setting prohibited				fськ/ 2

Incorrect:

Table 11-3. A/D Conversion Time Selection (7/8)

(7) 1.8 V \leq VDD < 2.7 V

When there is stabilization wait time (hardware trigger wait mode)

A/E	D Conver	rter Mode (ADM0)	-	er O			C	onversion T	ime Selectio	on		sion (AD)		
FR2	FR1	FR0	LV1	LV0	Mode	fclk = 1 MHz	fclk = 2 MHz	fclk = 4 MHz	fclk = 8 MHz	fclk = 16 MHz _(Note)	fclk = 32 MHz	Conversion Clock (fAD)		
0	0	0										fclк/64		
0	0	1										fclк/32		
0	1	0										fcьк/16		
0	1	1		0	Normal	Setting	Setting	Setting	Setting	Setting	Setting	fclк/8		
1	0	0	0	0	1	prohibited	prohibited	prohibited	prohibited	prohibited	prohibited	fськ/6		
1	0	1										fськ/5		
1	1	0												fськ/4
1	1	1										fclк/2		
0	0	0				Setting	Setting	Setting	Setting	Setting	Setting	fclк/64		
0	0	1				prohibited	prohibited	prohibited	prohibited	prohibited	prohibited	fclк/32		
0	1	0										fclк/16		
0	1	1			Normal							fclк/8		
1	0	0	0	1	2							fclк/6		
1	0	1										fclk/5		
1	1	0										fськ/4		
1	1	1										fclк/2		
0	0	0						Setting	Setting	Setting prohibited	<u>54</u> .μs	fclк/64		
0	0	1						prohibited	prohibited	<u>54</u> μs	<u>27</u> _μs	fclк/32		
0	1	0				Setting	Setting		54 µs	27.µs		fcьк/16		
0	1	1	1	0	Low-	prohibited	prohibited	54 μs	<u>27 µs</u>			fclк/8		
1	0	0		0	Voltage 1			40.5 μs			Setting	fськ/6		
1	0	1						<u>33.75</u> μs	Setting	Setting	prohibited	fс∟к/5		
1	1	0					<u>54</u> μs	<u>27.</u> µs	prohibited	prohibited	prombited	fclк/4		
1	1	1				<u>54</u> _μs	27_µs	Setting prohibited				fськ/2		
0	0	0						Setting	Setting	Setting prohibited	<u>50</u> μs	fc∟к/64		
0	0	1						prohibited	prohibited	50 μs	25_µs	fclк/ 32		
0	1	0				Setting	Setting		<u>50</u> μs	<u>25</u> μs		fclк/16		
0	1	1	4	1 1	Low-	prohibited	prohibited	50 μs	<u>25</u> μs			fclк/8		
1	0	0			Voltage 2			<u>37.5</u> μs			Sotting	fськ/6		
1	0	1						<u>31.25 μ</u> s	Sotting	Setting prohibited		fськ/5		
1	1	0					<u>50</u> μs	<u>25</u> μs	Setting prohibited			fськ/4		
1	1	1				<u>50</u> _μs	25 μs	Setting prohibited	Promoted			fclк/2		

Note (Omitted)

Incorrect:

Table 11-3. A/D Conversion Time Selection (8/8)

(8) 1.6 V \leq VDD < 1.8 V

When there is stabilization wait time (hardware trigger wait mode)

A/D	Convert	er Mode (ADM0)	e Regist	er 0			Co	onversion Ti	me Selectio	n		lon AD)												
FR2	FR1	FR0	LV1	LV0	Mode	fclk = 1 MHz	fclk = 2 MHz	fclk= 4 MHz	fclk = 8 MHz	fCLK = 16 MHz (Note 2)	fclk = 32 MHz	Conversion Clock (fAD)												
0	0	0										fclк/64												
0	0	1										fclк/32												
0	1	0										fclк/16												
0	1	1	0	0	Normal	Setting	Setting	Setting	Setting	Setting	Setting	fськ/8												
1	0	0	0	0	1	prohibited	prohibited	prohibited	prohibited	prohibited	prohibited	fclк/6												
1	0	1										fс∟к/5												
1	1	0										fськ/4												
1	1	1										fclк/2												
0	0	0										fclк/64												
0	0	1										fclк/32												
0	1	0										fclк/16												
0	1	1			Normal	Setting	Setting	Setting	Setting	Setting	Setting	fclк/8												
1	0	0	0	1	2	2	2	2	2	2	2	2	2	2	2	2	2	prohibited	prohibited	prohibited	prohibited	prohibited	prohibited	fclк/6
1	0	1										fськ/5												
1	1	0										fськ/4												
1	1	1										fclк/2												
0	0	0					Setting	Setting	Setting prohibited	108 <i>µ</i> s		fc⊥к/64												
0	0	1				Setting	prohibited	prohibited	108. <i>µ</i> s			fclк/32												
0	1	0					prohibited		108. <i>µ</i> s				fclк/16											
0	1	1			Low-		108 <i>µ</i> s				Setting	fclк/8												
1	0	0	1	0	Voltage 1		81. <i>µ</i> s		o #*	Setting	prohibited	fськ/6												
1	0	1				135.µs		Setting	Setting prohibited	prohibited		fclк/5												
1	1	0				108.µs	Setting	prohibited	promotied			fclк/4												
1	1	1				Setting prohibited	prohibited					fclк/2												
0	0	0					Setting	Setting	Setting prohibited	100. <i>µ</i> s		fс∟к/64												
0	0	1				Setting	prohibited	prohibited	100 <i>.µ</i> s			fclк/32												
0	1	0				prohibited		100. <i>µ</i> s				fclк/16												
0	1	1	1	1			100. <i>µ</i> s				Setting	fclк/8												
1	0	0			Voltage 2		-		Setting	Setting	prohibited	fclк/6												
1	0	1				125.µs	Setting	Setting	prohibited	prohibited		fськ/5												
1	1	0				100. <i>µ</i> s	prohibited	prohibited				fськ/4												
1	1	1				Setting prohibited						fclк/2												

Note (Omitted)

RENESAS

Correct:

Table 11-3. A/D Conversion Time Selection (6/8)

(6) 2.7 V \leq VDD < 3.6 V

When there is stabilization wait time (hardware trigger wait mode)

A/D	Converte (er Mode ADM0)	e Registe	er O			Со	onversion T	ime Selectio	n		rsion (fAD)
FR2	FR1	FR0	LV1	LV0	Mode	fclk =	fclk =	fclk =	fclk =	fclk =	fclk =	Conversion Clock (f ^{AD)}
						1 MHz	2 MHz	4 MHz	8 MHz	16 MHz	32 MHz	0
0	0	0						Setting	Setting prohibited	Setting prohibited	54 μs	fс∟к/64
0	0	1				Normal Setting prohibited 54	o	prohibited	-	54 μs	27 μs	fclк/32
0	1	0					Setting		54 μs	27 μs	13.5 μs	fclк/16
0	1	1	0	0			54 μs	27 μs	13.5 μs	6.75 μs	fclк/8	
1	0	0	U	U	1			40.5 μs	20.25 μs	10.125 μs	5.0625 μs	fськ/6
1	0	1						33.75 μs	16.875 μs	8.4375 μs		fс∟к/5
1	1	0					54 μs	27 μs	13.5 μs	6.75 μs	Setting	fськ/4
1	1	1				54 μs	27 μs	13.5 μs	6.75 μs	Setting prohibited	prohibited	fс∟к/2
0	0	0							Setting	Setting prohibited	50 μs	fclк/64
0	0	1						Setting	prohibited	50 μs	25 μs	fclк/32
0	1	0				Setting	Setting	prohibited	50 μs	25 μs	12.5 μs	fclк/16
0	1	1	•		Normal	prohibited	prohibited	50 μs	25 μs	12.5 μs	6.25 μs	fclк/8
1	0	0	0	1	2	promotion		37.5 μs	18.75 μs	9.375 μs	4.6875 <i>μ</i> s	fськ/6
1	0	1						31.25 μs	15.625 μs	7.8125 μs	Setting	fськ/5
1	1	0					50 μs	25 μs	12.5 μs	6.25 μs		fськ/4
1	1	1				50 μs	25 μs	12.5 μs	6.25 μs	Setting prohibited	prohibited	fс∟к/2
0	0	0						Setting	Setting	Setting prohibited	42 µs	fclк/64
0	0	1					Setting	prohibited	prohibited	42 µs	21 μs	fclк/32
0	1	0				Setting			42 μs	21 μs		fclк/16
0	1	1			Low-	prohibited	prohibited	42 μs	21 μs			fclк/8
1	0	0	1	0	Voltage			31.5 μs				fськ/6
1	0	1			1			26.25 μs		Setting	Setting prohibited	fськ/5
1	1	0					42 μs	21 μs	Setting prohibited	prohibited	prombiled	fськ/4
1	1	1				42 µs	21 μs	Setting prohibited				fclk/2
0	0	0							Setting	Setting prohibited	38 µs	fclк/64
0	0	1						Setting prohibited	prohibited	38 μs	19 µs	fclк/32
0	1	0				0	Setting	promotou	38 μs	19 μs		fclк/16
0	1	1		1	Low-	Setting prohibited	prohibited	38 µs	19 μs		-	fськ/8
1	0	0	1		Voltage 2			28.5 μs			Cotting	fськ/6
1	0	1			2			23.7 <u>5</u> µs	us Setting	Setting	Setting prohibited	fськ/5
1	1	0					38 μs	19 μs	Setting prohibited	prohibited	prombled	fс∟к/4
1	1	1				38 µs	19 μs	Setting prohibited				fс∟к/2

Correct:

Table 11-3. A/D Conversion Time Selection (7/8)

(7) 1.8 V \leq VDD < 2.7 V

When there is stabilization wait time (hardware trigger wait mode)

A/D Co	onverter N	Mode Re	gister 0 (ADM0)			C	Conversion [·]	Time Select	ion		×	
FR2	FR1	FR0	LV1	LV0	Mode	fclk =	fclk =	fclk =	fclk =	fclk =	fclk =	on Clock	
FR2	FRI	FRU	LVI	LVU		1 MHz	2 MHz	4 MHz	8 MHz	16 MHz ^{Note}	32 MHz	0	
x	x	x	0	0	Normal 1			Setting	prohibited			-	
x	x	x	0	1	Normal 2	Setting prohibited					-		
0	0	0						Setting	Setting	Setting prohibited	42 μs	fclк/64	
0	0	1						prohibited	prohibited	42 μs	21 μs	fclк/32	
0	1	0				Setting	Setting	-	42 μs	21 μs		fclк/16	
0	1	1		•			prohibited	prohibited	42 μs	21 μs			fськ/8
1	0	0	1	0		-		31.5 μs		c	Setting	fclк/6	
1	0	1						26.25 μs	0 - #1	Setting	Setting prohibited	fс∟к/5	
1	1	0					42 μs	21 μs	Setting prohibited	prohibited	profibiled	fс∟к/4	
1	1	1				42 μs	21 µs	Setting prohibited	promoteu			fськ/2	
0	0	0						Setting	Setting	Setting prohibited	38 μ s	fс⊥к/ 64	
0	0	1						prohibited	prohibited	38 μs	19 μs	fclк/32	
0	1	0				Setting	Setting		38 µs	19 μs		fськ/16	
0	1	1	1	1	Low-	prohibited	prohibited	38 µs	19 μs			fclк/8	
1	0	0	1	1	Voltage 2	-		28.5 μs			Sotting	fськ/6	
1	0	1						28.75 μs	Cotting	Setting	Setting prohibited	fclк/5	
1	1	0					38 μs	19 μs	Setting prohibited	prohibited	prohibited	fclк/4	
1	1	1				38 μs	19 µs	Setting prohibited	promoted			fськ/2	

Note (Omitted)

Correct:

Table 11-3. A/D Conversion Time Selection (8/8)

(8) 1.6 V \leq VDD < 1.8 V

When there is stabilization wait time (hardware trigger wait mode)

A/D	Convert	er Mode (ADM0)	e Regist	er 0			Co	onversion Ti	me Selectio	n		sion (fAD)
FR2	FR1	FR0	LV1	LV0	Mode	fc∟ĸ = 1 MHz	fclk = 2 MHz	fclк= 4 MHz	fclk= 8 MHz	fCLK = 16 MHz Note 2	fclк = 32 MHz	Conversion Clock (fAD)
x	x	x	0	0	Normal 1	Setting prohibited	_	x	x	x	0	0
x	x	x	0	1	Normal 2	Setting prohibited	_	x	x	x	0	1
0	0	0					Setting	Setting	Setting prohibited	84 <i>μ</i> s		fськ/64
0	0	1				Setting	prohibited	prohibited	84 <i>μ</i> s			fclк/32
0	1	0				prohibited		84 <i>µ</i> s				fclк/16
0	1	1		0	Low- Voltage 1		84 <i>μ</i> s				Setting	fclk/8
1	0	0	1	0			63 <i>μ</i> s		0	Setting	prohibited	fclк/6
1	0	1					105 <i>µ</i> s		Setting	Setting prohibited	prohibited	
1	1	0				84 <i>μ</i> s	Setting prohibited	prohibited	prombiled			fськ/4
1	1	1				Setting prohibited						fclк/2
0	0	0					Setting	Setting	Setting prohibited	76 <i>μ</i> s		fclк/64
0	0	1				Setting	prohibited	prohibited	76 <i>µ</i> s			fclк/32
0	1	0				prohibited		76 <i>μ</i> s				fclк/16
0	1	1	1	1	Low-		76 <i>μ</i> s				Setting	fclk/8
1	0	0			Voltage 2				Setting	Setting	prohibited	fськ/6
1	0	1			99 70 Se	95 <i>μ</i> s	Sotting	Setting	Ŭ	prohibited		fс∟к/5
1	1	0				76 <i>μ</i> s	Setting	Setting prohibited	d prohibited			fськ/4
1	1	1				Setting prohibited		pronibited				fclк/2

Note (Omitted)

6. Note when entering A/D converter standby mode added

Note on A/D converter mode register 2 (ADM2) added (page 493)

Incorrect:

(4) A/D converter mode register 2 (ADM2)

(Omitted)

Caution Only rewrite the value of the ADM2 register while conversion operation is stopped (which is indicated by the ADCS bit of A/D converter mode register 0 (ADM0) being 0).

Correct:

(4) A/D converter mode register 2 (ADM2)

(Omitted)

Cautions 1. Only rewrite the value of the ADM2 register while conversion operation is stopped (which is indicated by the ADCS bit of A/D converter mode register 0 (ADM0) being 0).

2. When entering STOP mode or HALT mode while the CPU is operating on the subsystem clock, do not set ADREFP1 to 1. When selecting internal reference voltage (ADREFP1, ADREFP0 = 1, 0), the current value of A/D converter reference voltage current (I_{ADREF}) shown in 29.4.2 Supply current characteristics is added.

rrect:								
	Figu	ure 11-11. Forn	nat of Analog	g Input Chann	el Specificatio	on Register (A	DS) (2/2)	
Address	: FFF31H Afte	r reset: 00H R/	W					
Symbol	7	6	5	4	3	2	1	0
ADS	ADISS	0	0	ADS4	ADS3	ADS2	ADS1	ADS0
				(Omitted)			
tions 1. B	e sure to clear	bits 5 and 6 to	o 0.					
				(Omitted)			
	-	P as the + side	e reference v	oltage source	of the A/D co	nverter, do no	t select ANI0	as an A/D
CC	onversion char	nnel.						
7. lf	using AVREF	M as the – side	e reference v	oltage source	of the A/D co	nverter, do no	t select ANI1	as an A/D
CC	onversion char	nnel.						
8. lf	ADISS is set t	o 1, the interna	al reference	voltage (1.45 V	/) cannot be	used for the +	side referenc	e voltage sou
ect:								
	Fiau	ure 11-11. Forn	nat of Analo	a Input Chann	el Specificatio	on Register (A	DS) (2/2)	
Address		r reset: 00H R/		0		5 (
Symbol	7	6	5	4	3	2	1	0
		6 0	5 0	4 ADS4	3 ADS3	2 ADS2	1 ADS1	0 ADS0
Symbol	7			ADS4	ADS3			
Symbol ADS	7 ADISS	0	0		ADS3			
Symbol ADS	7 ADISS		0	ADS4 (Omitted	ADS3)			
Symbol ADS tions 1. B	7 ADISS e sure to clear	0 ⁻ bits 5 and 6 to	0	ADS4 (Omitted (Omitted	ADS3)	ADS2	ADS1	ADS0
Symbol ADS tions 1. B 6. If	7 ADISS e sure to clear using AVREFF	0 ⁻ bits 5 and 6 to P as the + side	0	ADS4 (Omitted (Omitted	ADS3)	ADS2	ADS1	ADS0
Symbol ADS tions 1. B 6. If	7 ADISS e sure to clear using AVREFF proversion char	0 ⁻ bits 5 and 6 to P as the + side nnel.	0 o 0. e reference v	ADS4 (Omitted (Omitted	ADS3)) of the A/D co	ADS2	ADS1 t select ANI0	ADS0 as an A/D
Symbol ADS tions 1. B 6. If cc 7. If	7 ADISS e sure to clear using AVREFF onversion char using AVREFF	0 ⁻ bits 5 and 6 to P as the + side nnel. M as the – side	0 o 0. e reference v	ADS4 (Omitted (Omitted	ADS3)) of the A/D co	ADS2	ADS1 t select ANI0	ADS0 as an A/D
Symbol ADS tions 1. B 6. If cc 7. If	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char	0 - bits 5 and 6 to P as the + side nnel. M as the – side nnel.	0 o 0. e reference v e reference v	ADS4 (Omitted (Omitted roltage source	ADS3) of the A/D co of the A/D co	ADS2 nverter, do no	ADS1 t select ANI0 t select ANI1	ADS0 as an A/D as an A/D
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If	7 ADISS e sure to clear using AVREFf onversion char using AVREFf onversion char ADISS is set t	0 - bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna	0 c 0. e reference v e reference v al reference	ADS4 (Omitted (Omitted roltage source roltage source	ADS3) of the A/D co of the A/D co /) cannot be i	ADS2 nverter, do no onverter, do no used for the +	ADS1 t select ANI0 t select ANI1 side reference	ADS0 as an A/D as an A/D ce voltage sou
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W	7 ADISS e sure to clear using AVREFF onversion char using AVREFf onversion char ADISS is set to 'hen entering S	0 • bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna	0 c 0. e reference v e reference v al reference • HALT mode	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage sou
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W 1.	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char ADISS is set to 'hen entering S When setting	0 bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna STOP mode or ADISS to 1, th	0 c 0. e reference v e reference v al reference HALT mode ne current va	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP alue of the A/D	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage sou
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W	7 ADISS e sure to clear using AVREFF onversion char using AVREFf onversion char ADISS is set to 'hen entering S	0 • bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna	0 c 0. e reference v e reference v al reference • HALT mode	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage s to not set A
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W 1.	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char ADISS is set to 'hen entering S When setting	0 • bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna	0 c 0. e reference v e reference v al reference HALT mode ne current va	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP alue of the A/D	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage so to not set AD
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W 1.	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char ADISS is set to 'hen entering S When setting	0 bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna STOP mode or ADISS to 1, th	0 c 0. e reference v e reference v al reference HALT mode ne current va	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP alue of the A/D	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage sou
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W 1.	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char ADISS is set to 'hen entering S When setting	0 bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna STOP mode or ADISS to 1, th	0 c 0. e reference v e reference v al reference HALT mode ne current va	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP alue of the A/D	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage sou
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W 1.	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char ADISS is set to 'hen entering S When setting	0 bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna STOP mode or ADISS to 1, th	0 c 0. e reference v e reference v al reference HALT mode ne current va	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP alue of the A/D	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage sou
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W 1.	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char ADISS is set to 'hen entering S When setting	0 bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna STOP mode or ADISS to 1, th	0 c 0. e reference v e reference v al reference HALT mode ne current va	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP alue of the A/D	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage sou
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W 1.	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char ADISS is set to 'hen entering S When setting	0 bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna STOP mode or ADISS to 1, th	0 c 0. e reference v e reference v al reference HALT mode ne current va	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP alue of the A/D	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage sou
Symbol ADS tions 1. B 6. If cc 7. If cc 8. If 9. W 1.	7 ADISS e sure to clear using AVREFF onversion char using AVREFF onversion char ADISS is set to 'hen entering S When setting	0 bits 5 and 6 to P as the + side nnel. M as the – side nnel. o 1, the interna STOP mode or ADISS to 1, th	0 c 0. e reference v e reference v al reference HALT mode ne current va	ADS4 (Omitted coltage source voltage source voltage (1.45 v e while the CP alue of the A/D	ADS3) of the A/D co of the A/D co /) cannot be i U is operating	ADS2 nverter, do no onverter, do no used for the + g on the subsy	ADS1 t select ANI0 t select ANI1 side reference rstem clock, c	ADS0 as an A/D as an A/D ce voltage sou

7. Incorrect descriptions of maskable interrupt request acknowledgement operation revised

<u>Revised incorrect description of time from generation of maskable interrupt until servicing in Table 16-4.</u> (page 842)

Incorrect:

16.4.1 Maskable interrupt request acknowledgment

(Omitted)

Table 16.4 Time from Generation of Maskable Interrupt Until Servicing

	Minimum Time	Maximum Time ^{Note}
Servicing time	9 clocks	14 clocks

Note If an interrupt request is generated just before the RET instruction, the wait time becomes longer.

Remark 1 clock: 1/fclk (fclk: CPU clock)

Correct:

16.4.1 Maskable interrupt request acknowledgment

(Omitted)

Table 16.4 Time from Generation of Maskable Interrupt Until Servicing

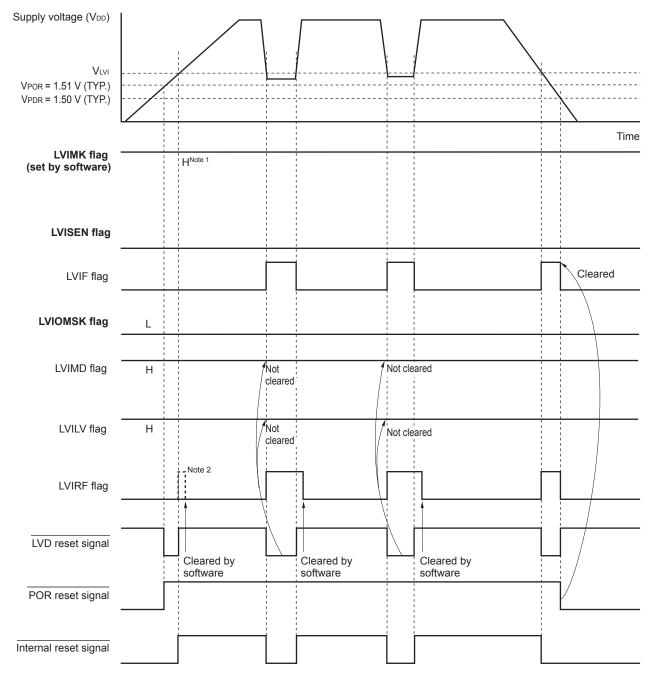
	Minimum Time	Maximum Time ^{Note}		
Servicing time	9 clocks	16 clocks		

Note Maximum time does not apply when an instruction from the internal RAM area is executed.

Remark 1 clock: 1/fcLK (fcLK: CPU clock)

Г

correct:					
	Figure 16-9. Interrup	t Request Acknowle	dgment Timing (Max	kimum Time)	
			6 clocks	6 clocks	_
CPU processing	Instruction		RET instruction	PSW and PC saved, jump to interrupt servicing	Interrupt servicing program
xxIF					
			14 clocks		-
Remark 1 clock: 1/fc	ак (fcik: CPU clock)				
orrect:					
	Figure 16-9. Interrup	t Request Acknowle	dgment Timing (Ma)	kimum Time)	
			8 clocks	6 clocks	x
CPU processing	Instruction		Instruction immediately before interrupt	PSW and PC saved, jump to interrupt servicing	Interrupt servicing program
××IF		_ /_/_((//			
		4	16 clocks	*	
Remark 1 clock: 1/fci	∟к (fc∟к: CPU clock)				

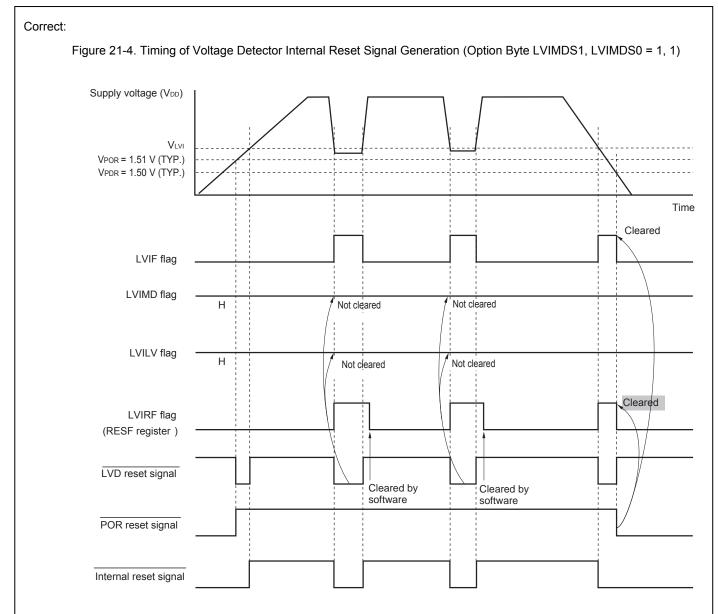


8. Incorrect descriptions of voltage detector (LVD) timing chart revised

Figure 21-4. Incorrect descriptions of timing of voltage detector internal reset signal generation revised (page 894)

Incorrect:

Figure 21-4. Timing of Voltage Detector Internal Reset Signal Generation (Option Byte LVIMDS1, LVIMDS0 = 1, 1)


Notes 1. The LVIMK flag is set to "1" by reset signal generation.

2. LVIRF flag is bit 0 of the reset control flag register (RESF).

The LVIRF flag may become 1 from the beginning due to the power-on waveform.

For details of the RESF register, see CHAPTER 19 RESET FUNCTION.

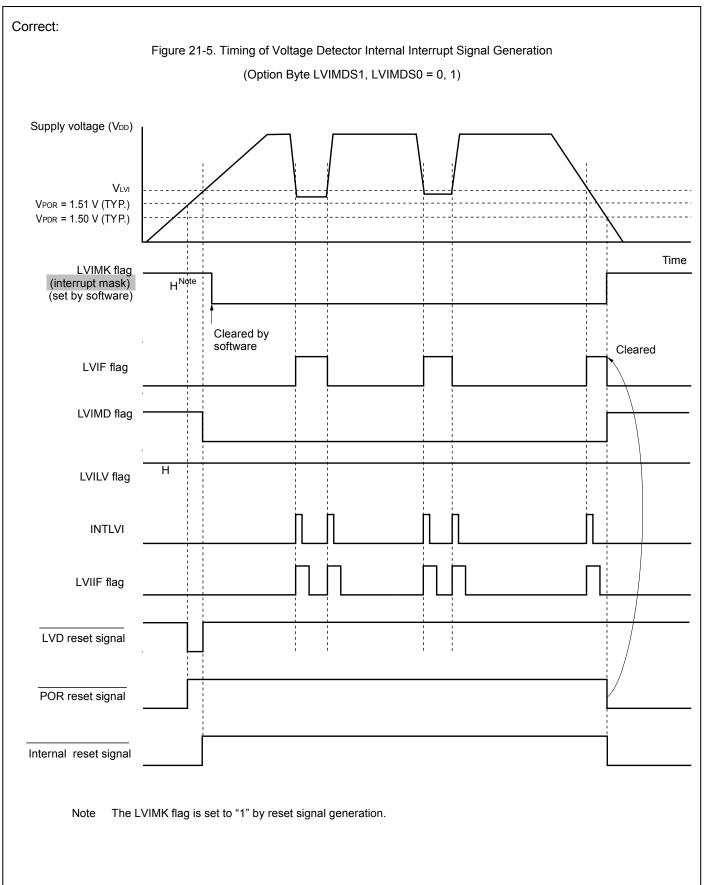


Figure 21-5. Incorrect description of voltage detector internal interrupt signal generation timing revised (page 896) Incorrect: Figure 21-5. Timing of Voltage Detector Internal Interrupt Signal Generation (Option Byte LVIMDS1, LVIMDS0 = 0, 1) Supply voltage (VDD) V_{LVI} VPOR = 1.51 V (TYP.) VPDR = 1.50 V (TYP.) Time LVIMK flag HNote 1 (set by software) Cleared by software LVISEN flag Cleared LVIF flag LVIOMSK flag L LVIMD flag Н LVILV flag INTLVI LVIIF flag Note 2 LVIRF flag LVD reset signal Cleared by software POR reset signal Internal reset signal Notes 1. The LVIMK flag is set to "1" by reset signal generation. 2. LVIRF flag is bit 0 of the reset control flag register (RESF). The LVIRF flag may become 1 from the beginning due to the power-on waveform. For details of the RESF register, see CHAPTER 19 RESET FUNCTION.

9. Incorrect description of voltage detector (LVD) interrupt and reset mode revised

Incorrect description of when used as interrupt and reset mode revised (page 897)

Incorrect:

21.4.3 When used as interrupt and reset mode

When starting operation

Specify the operation mode (the interrupt and reset (LVIMDS1, LVIMDS0 = 1, 0)) and the detection voltage (VLVIH, VLVIL) by using the option byte 000C1H/010C1H.

(Omitted)

Figure 21-6 shows the timing of the internal reset signal and interrupt signal generated by the voltage detector. Caution The LVIRF flag may become 1 from the beginning due to the power-on waveform. For details of the RESF register, see CHAPTER 19 RESET FUNCTION.

Correct:

21.4.3 When used as interrupt and reset mode

When starting operation

Specify the operation mode (the interrupt and reset (LVIMDS1, LVIMDS0 = 1, 0)) and the detection voltage (VLVIH, VLVIL) by using the option byte 000C1H/010C1H.

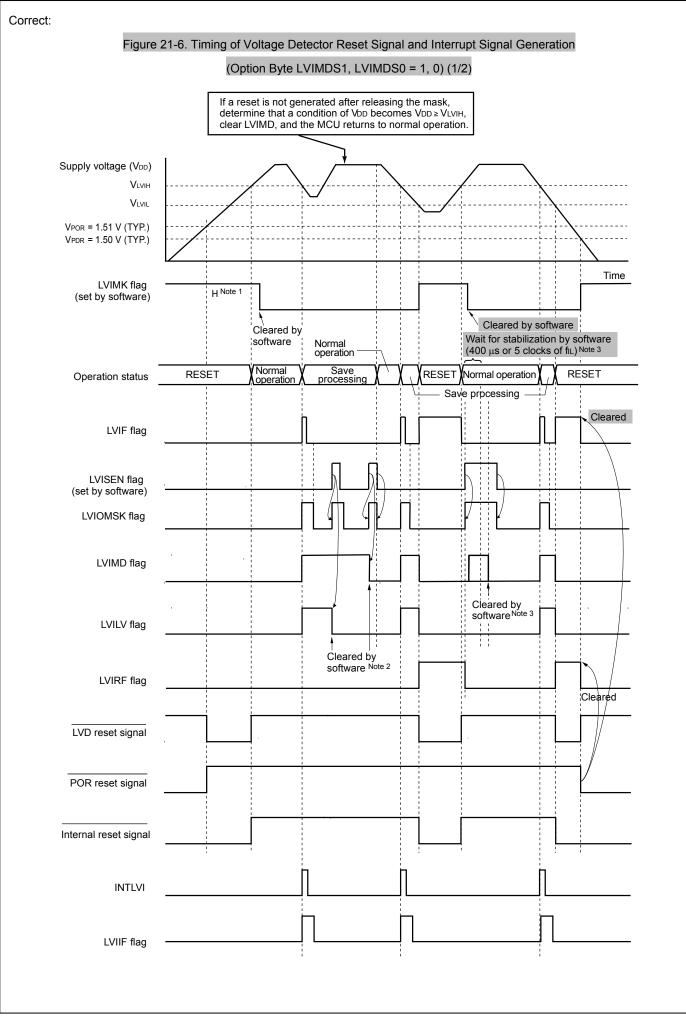
(Omitted)

Figures 21-6 shows the Timing of Voltage Detector Reset Signal and Interrupt Signal Generation.

Perform the processing according to figure 21-7 Processing Procedure After an Interrupt Is Generated and figure 21-8

Initial Setting of Interrupt and Reset Mode.

Incorrect description of timing of voltage detector reset signal and interrupt signal generation revised (page 898) Incorrect: Figure 21-6. Timing of Voltage Detector Reset Signal and Interrupt Signal Generation (Option Byte LVIMDS1, LVIMDS0 = 1, 0) Supply voltage (VDD) VLVIH VLVIL VPOR = 1.51 V (TYP.) VPDR = 1.50 V (TYP.) Time LVIMK flag (set by software) Note 1 Cleared by software Normal operation Normal operation Operation status RESET RESET RESET Save processing LVIF flag LVISEN flag (set by software) Cleared LVIOMSK flag LVIMD flag LVILV flag Note 2 LVIRF flag Cleared LVD reset signal Cleared by Cleared by software software POR reset signal Internal reset signal INTLVI LVIIF flag

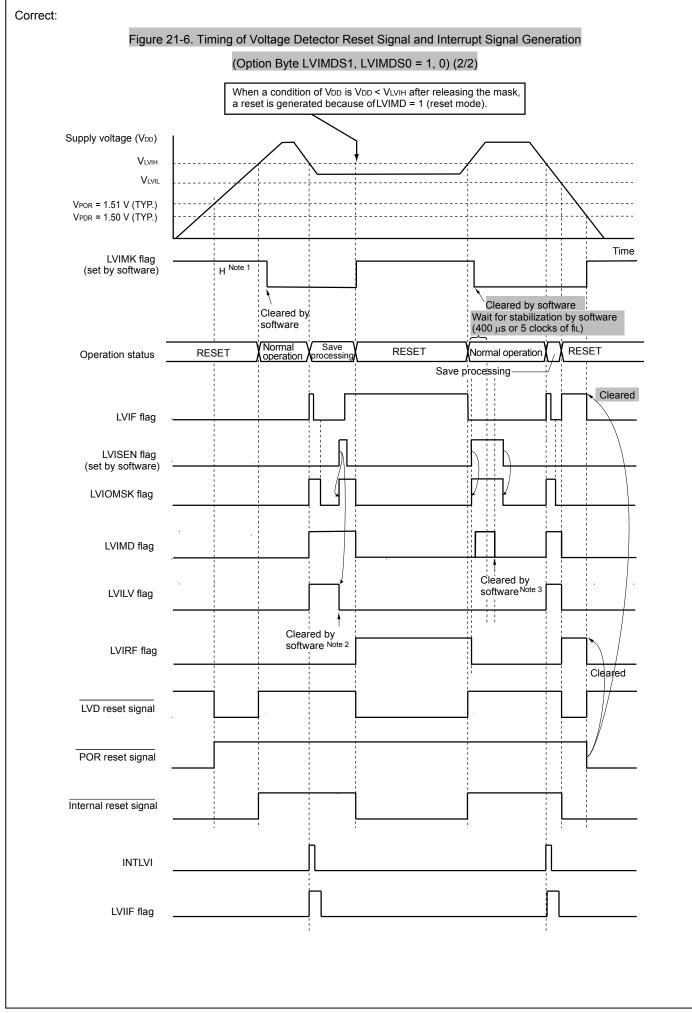

Notes 1. The LVIMK flag is set to "1" by reset signal generation.

2. LVIRE flag is bit 0 of the reset control flag register (RESF). The LVIRE flag may become 1 from the beginning due to the power-on waveform. For details of the RESE register, see CHAPTER 19 RESET. FUNCTION.

Remark VPOR: POR power supply rise detection voltage

VPDR: POR power supply fall detection voltage

Notes 1. The LVIMK flag is set to "1" by reset signal generation.


2. After an interrupt is generated, perform the processing according to figure 21-7 Processing Procedure After an Interrupt Is Generated in interrupt and reset mode.

3. After a reset is released, perform the processing according to figure 21-8 Initial Setting of Interrupt and Reset Mode in interrupt and reset mode.

Remark VPOR: POR power supply rise detection voltage

VPDR: POR power supply fall detection voltage

Notes 1. The LVIMK flag is set to "1" by reset signal generation.

2. After an interrupt is generated, perform the processing according to figure 21-7 Processing Procedure After an Interrupt Is Generated in interrupt and reset mode.

3. After a reset is released, perform the processing according to figure 21-8 Initial Setting of Interrupt and Reset Mode in interrupt and reset mode.

Remark VPOR: POR power supply rise detection voltage

VPDR: POR power supply fall detection voltage



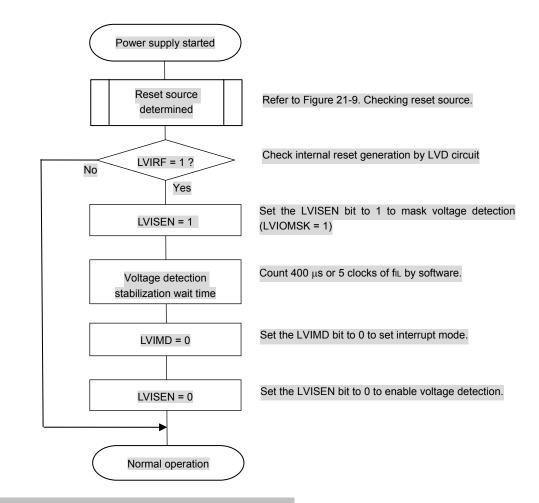


Figure 21-8. Explanations of initial setting of interrupt and reset mode added (page 899)

When setting an interrupt and reset mode (LVIMDS1, LVIMDS0 = 1, 0), voltage detection stabilization wait time for 400 μ s or 5 clocks of fiL is necessary after LVD reset is released (LVIRF = 1). After waiting until voltage detection stabilizes, (0) clear the LVIMD bit for initialization. While voltage detection stabilization wait time is being counted and when the LVIMD bit is rewritten, set LVISEN to 1 to mask a reset or interrupt generation by LVD.

Figure 21-8. shows the procedure for initial setting of interrupt and reset mode.

Remark fil: Low-speed on-chip oscillator clock frequency

10. <u>Added common item for all RL78/G13 products in 29.4.2 Supply current characteristics of</u> Electrical specifications (page 1005)

Incorrect:

(4) Common to RL78/G13 all products

(TA = -40 to +85°C, 1.6 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
RTC operating	Notes 1, 2 IRTC	fsuв = 32.768 kHz	Real-time clock operation		0.02		μA
current			Interval timer operation		0.02		
Watchdog timer operating current	Notes 2,3 IWDT	fı∟ = 15 kHz			0.22		μA
A/D converter	Notes 4	When conversion	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
operating current		at maximum speed	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
Temperature sensor operating current	ITMPS				75		μA
LVD operating current	ILVI Notes 5				0.08		μA
BGO operating current	Notes 6 IBGO				2.50	12.20	mA

Note (Omitted)

Correct:

(4) Common to RL78/G13 all products

(TA = -40 to +85°C, 1.6 V ≤ EVDD0 = EVDD1 ≤ VDD ≤ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
RTC operating	Notes 1, 2 IRTC	fsuв = 32.768 kHz	Real-time clock operation		0.02		μA
current			Interval timer operation		0.02		
Watchdog timer operating current	Notes 2,3 IWDT	f⊩ = 15 kHz			0.22		μA
A/D converter	Notes 4	When conversion	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
operating	-	at maximum	Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
current		speed					
A/D converter	IADREF				75		μA
reference							
voltage current							
Temperature	ITMPS				75		μA
sensor operating							
current							
LVD operating current	Notes 5 ILVI				0.08		μA
BGO operating current	Notes 6 IBGO				2.50	12.20	mA

Note (Omitted)

Issued Document History

RL78/G13 Incorrect description notice, issued document history

Document Number	Issue Date	Description
TN-RL*-A001A/E	Dec. 5, 2011	First edition issued Incorrect descriptions of No.1 to No.10 revised

