RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A006A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice RL78/G12 Descriptions in the Hardware Use Rev. 1.10 Changed	Information Category	Technical Notification			
		Lot No.				
Applicable Product	RL78/G12 R5F102xxx, R5F103xxx	All lots	Reference Document	RL78/G12 User's Manual: Hardware Rev.1.10 R01UH0200EJ0110 (Sep. 2012)		

This document describes misstatements found in the RL78/G12 User's Manual: Hardware Rev.1.10 (R01UH0200EJ0110).

Corrections

Applicable Item	Applicable Page	Contents
1.4 Pin Configuration (Top View) 1.4.3 30-pin products	Page 8	Incorrect descriptions revised
Internal data memory space / Control registers / General-purpose registers	Pages 38, 48 and 50	Incorrect descriptions revised
4.3 Registers Controlling Port Function Figure 4-40. Format of Peripheral I/O Redirection Register (PIOR)	Page 134	Incorrect descriptions revised
6.7.3 Operation as frequency divider	Page 239	Incorrect descriptions revised
11. 6. 3 SNOOZE mode function	Pages 467	Specifications changed
17.2.2 STOP mode	Pages 663 and 664	Incorrect descriptions revised
17.2.3 SNOOZE mode	Page 666	Incorrect descriptions revised
Figure 23-3 Format of Option Byte (000C2H)	Page 721	Specifications extended
28.3.1 Pin characteristics	Pages 775 and 776	Incorrect descriptions revised
28.3.2 Supply current characteristics	Pages 779 to 783	Incorrect descriptions revised
28.4 AC characteristics	Page 784	Specifications extended
28.5.1 Serial array unit	Pages 786 to 806	Specifications changed
28.5.2 Serial interface IICA	Page 807	Specifications changed
28.6.1 A/D converter characteristics	Pages 808 to 810	Specifications extended
28.6.2 Temperature Sensor/Internal Reference Voltage Characteristics	Page 811	Specifications changed
28.6.3 POR circuit characteristics	Page 811	Specifications changed
Power supply voltage rising slope characteristics	-	Specifications added
28.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 814	Specifications extended
Chapter 29 ELECTRICAL SPECIFICATIONS (G: T _A = -40 to +105°C) (TARGET VALUES)	-	Specifications added

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

Corrections in the User's Manual: Hardware

No.	Corrections and Applicable Ite	Pages in this document	
	Document No. English	R01UH0200EJ0110	for corrections
1	1.4 Pin Configuration (Top View) 1.4.3 30-pin products	Page 8	Page 3
2	Internal data memory space / Control registers / General-purpose registers	Pages 38, 48 and 50	Page 4
3	4.3 Registers Controlling Port Function Figure 4-40. Format of Peripheral I/O Redirection Register (PIOR)	Page 134	Pages 5 and 6
4	6.7.3 Operation as frequency divider	Page 239	Page 7
5	11. 6. 3 SNOOZE mode function	Pages 467	Pages 8 and 9
6	17.2.2 STOP mode	Pages 663 and 664	Page 10
7	17.2.3 SNOOZE mode	Page 666	Page 11
8	Figure 23-3 Format of Option Byte (000C2H)	Page 721	Page 12
9	28.3.1 Pin characteristics	Pages 775 and 776	Page 13
10	28.3.2 Supply current characteristics	Pages 779 to 783	Page 13
11	28.4 AC characteristics	Page 784	Page 13
12	28.5.1 Serial array unit	Pages 786 to 806	Page 13
13	28.5.2 Serial interface IICA	Page 807	Page 13
14	28.6.1 A/D converter characteristics	Pages 808 to 810	Page 13
15	28.6.2 Temperature Sensor/Internal Reference Voltage Characteristics	Page 811	Page 13
16	28.6.3 POR circuit characteristics	Page 811	Page 13
17	Power supply voltage rising slope characteristics	-	Page 14
18	28.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 814	Page 14
19	Chapter 29 ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to +105°C) (TARGET VALUES)	-	Page 14

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/G12 User's Manual: Hardware Rev.1.10 Correction for Incorrect Description Notice

Document Number	Date	Description
TN-RL*-A006A/E	Aug. 1, 2013	First edition issued No.1 to 19 in corrections (This notice)

1. <u>1.4 Pin Configuration (Top View)</u> <u>1.4.3 30-pin products</u>

Incorrect:

• 30-pin plastic SSOP (7.62 mm (300))

Note Provided in the R5F102 products.

Caution Connect the REGC pin to Vss via capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.5 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR). Date: Aug. 1, 2013

Correct:

• 30-pin plastic SSOP (7.62 mm (300))

Note Provided only in R5F102 products

Caution Connect the REGC pin to Vss via capacitor (0.47 to 1 μ F).

Remarks 1. For pin identification, see 1.5 Pin Identification.

 Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register (PIOR).

2. <u>Internal data memory space / Control registers /</u> <u>General-purpose registers</u>

Incorrect:

- Cautions 1. It is prohibited to use the general-purpose register space (FFEE0H to FFEFH) for fetching instructions or as a stack area.
 - 2. When self-programming is performed or the data flash memory is rewritten, the stack used for each library and the RAM address used for the data buffer and DMA transfer should not be set to the RAM area of the following products. For details, refer to **RL78 Family sh Library Type04** User's Manual.

R5F10266 : FFE20H_FFEA1H , FFEE0H_FFEFFH

(The stack used for the data flash library should be set to FFEA2H to FFEDFH and the RAM address used for the data buffer and DMA transfer should be set to FFE00H to **FFE19H.**) R5F102mn, R5F103mn :FFE20H-**FFEA1H**

Remark m: Pin count (m = 6, 7, A), n: ROM capacitance (n = 7, 8, 9, A)

3. Use of the RAM areas of the following products is prohibited, because these areas are used for self-programming library and data flash library. (Refer to figure 3-3 to figure 3-5, Memory Map)

R5F102m8, R5F103m8: FFC00H to **FFC80H** R5F102m9, R5F103m9: FFB00H**-FFC80H** R5F102mA, R5F103mA: FF900H**-FFC80H**

Remarks m: Pin count (m = 6, 7)

Correct:

- Cautions 1. It is prohibited to use the general-purpose register space (FFEE0H to FFEFFH) for fetching instructions or as a stack area.
 - 2. When self-programming is performed or the data flash memory is rewritten, the stack used for each library and the RAM address used for the data buffer and DMA transfer should not be set to the RAM area of the following products. For details, refer to RL78 Family Data Flash Library Type04 User's Manual.

R5F10266 : FFE20H to FFEA1H , FFEE0H to FFEFFH

(The stack used for the data flash library should be set to FFEA2H to FFEDFH and the RAM address used for the data buffer and DMA transfer should be set to FFE00H to FFE1FH.) R5F102mn, R5F103mn :FFE20H to FFEFFH

Remark m: Pin count (m = 6, 7, A), n: ROM capacitance (n = 7, 8, 9, A)

3. Use of the RAM areas of the following products is prohibited, because these areas are used for self-programming library and data flash library. (Refer to figure 3-3 to figure 3-5, Memory Map)

R5F102m8, R5F103m8: FFC00H to FFC89H R5F102m9, R5F103m9: FFB00H to FFC89H R5F102mA, R5F103mA: FF900H to FFC89H

Remark m: Pin count (m = 6, 7)

3. <u>4.3 Registers Controlling Port Function</u> Figure 4-40. Format of Peripheral I/O Redirection Register (PIOR)

Incorrect:

Figure 4-40. Format of Peripheral I/O Redirection Register (PIOR)

Address : F0077H After reset : 00H R/W

Symbol	7	6	5	4	3	2	1	0
PIOR	0	0	0	0	PIOR3	PIOR2	PIOR1	PIOR0

20-, 24-pin products

Dit	Function	Settin	g value
DIL	Function	0	1
PIOR3 ^{Note 1}	SCK01	P42	P02 ^{Note 2}
	SI01	P125	P00 ^{Note.2}
	SO01	P41	P01 ^{Note.2}
	SCL01	P42	P02 ^{Note.2}
	SDA01	P41	P01 ^{Note.2}
PIOR2	TI02	P41	P122
	TI03	P42	P121
PIOR1	RxD0	P11	P61
	TxD0	P12	P60
PIOR0	INTP2	P13	P122
	INTP3	P14	P121

Notes 1. R5F102 products

2. Provided only in 24-pin products

Date: Aug. 1, 2013

Correct:

Figure 4-40. Format of Peripheral I/O Redirection Register (PIOR)

Address :	F0077H	After res	set : 00H	R/W				
Symbol	7	6	5	4	3	2	1	0
PIOR	0	0	0	0	PIOR3 Notes 1, 2	PIOR2	PIOR1	PIOR0

20-, 24-pin products

Dit	Function	Settin	ig value
BIL	Function	0	1
PIOR3 ^{Notes 1, 2}	SCK01	P42	P02
	SI01	P125	P00
	SO01	P41	P01
	SCL01	P42	P02
	SDA01	P41	P01
PIOR2 Note 3	TI02	P41	P122
	TI03	P42	P121
PIOR1	RxD0	P11	P61
	TxD0	P12	P60
PIOR0	INTP2	P13	P122
	INTP3	P14	P121

Notes 1. Provided only in R5F102 products.

2. Provided only in 24-pin products.

3. If the PIOR2 bit is set to "1" in 20-, 24-pin products, using output of timer from the TO02 and TO03 is prohibited.

Figure 4-40. Format of Peripheral I/O Redirection Register (PIOR)

Address :	F0077H	After reset	:00H R	W				
Symbol	7	6	5	4	3	2	1	0
PIOR	0	0	0	0	PIOR3	PIOR2	PIOR1	PIOR0

30-pin products

Dit	Eurotion	Sett	ting value
BI	Function	0	1
PIOR3	—	(fixed)	_
PIOR2	SCLA0	P60	P14
	SDAA0	P61	P13
PIOR1	TxD2 ^{Note 1}	P13	—
	RxD2 ^{Note 1}	P14	_
	SCL20 ^{Note 1}	P15	_
	SDA20 ^{Note 1}	P14	_
	SI20 ^{Note 1}	P14	_
	SO20 ^{Note 1}	P13	_
	SCK20 ^{Note 1}	P15	—
	TxD0	P12	P17
	RxD0	P11	P16
	SCL00	P10	_
	SDA00	P11	-
	SI00	P11	-
	SO00	P12	_
	SCK00	P10	_
PIOR0	TI02/TO02	P17	P15
	TI03/TO03	P31	P14
	TI04/TO04 ^{Note_1}	_	P13
	TI05/TO05 ^{Note_1}	_	P12
	TI06/TO06 ^{Note_1}	_	P11
	TI07/TO07 ^{Note_1}	_	P10

Notes 1. R5F102 products

2. Provided only in 24-pin products

Date: Aug. 1, 2013

Figure 4-40. Format of Peripheral I/O Redirection Register (PIOR)

Address	: F0077H	After res	et : 00H	R/W						
Symbol	7	6	5	4		3		2	1	0
PIOR	0	0	0	0	P	PIOR3 otes 1, 2	Ρ	IOR2	PIOR1	PIOR0
:	30-pin prod	lucts	r			1				
		Bit		Function			S	Setting va	lue	
		2				0			1	
	PIOR3		_			Fixed	b	Setting	g prohibited	
	PIOR2		SCLA	0		P60		P14		
			SDAA	.0		P61		P13		
	PIOR1		TxD2	Note 1		P13		-		
			RxD2	Note 1		P14	·14 –			
			SCL2	SCL20 ^{Note 1}			_			
			SDA2	SDA20 ^{Note 1}				_		
			SI20 ^N	SI20 ^{Note 1}				Ι		
			SO20	SO20 ^{Note 1}				_		
			SCK2	SCK20 ^{Note 1} TxD0				١		
			TxD0					P17		
			RxD0			P11		P16		
			SCL0	0 ^{Note 1}		P10		-		
			SDA0	0 ^{Note 1}		P11		-		
			SI00			P11		_		
			SO00			P12		_		
			SCK0	0		P10		-		
	PIOR0		TI02/1	002		P17		P15		
			TI03/1	003		P31		P14		
			TI04/1	004		_		P13		
			TI05/1	005		_		P12		
			TI06/1	006		_		P11		
			TI07/1	007		_		P10		

Notes 1. Provided only in R5F102 products.2. Provided only in 24-pin products.

Date: Aug. 1, 2013

4. 6.7.3 Operation as frequency divider

Incorrect:

6.7.3 Operation as frequency divider (channel 0 of unit 0 only)

The timer array unit can be used as a frequency divider that divides a clock input to the TI00 pin and outputs the result from the TO00 pin.

The divided clock frequency output from TO00 can be calculated by the following expression.

- When rising edge/falling edge is selected:
 Divided clock frequency = Input clock frequency/{(Set value of TDR00 + 1) × 2}
- When both edges are selected: Divided clock frequency ≅ Input clock frequency/(Set value of TDR00 + 1)

(omitted)

The period of the TO00 output clock includes a sampling error of one period of the operation clock.

Clock period of TO00 output = Ideal TO00 output clock period \pm Operation clock period (error)

The TDR00 register can be rewritten at any time. The new value of the TDR00 register becomes valid during the next count period.

(omitted)

Correct:

6.7.3 Operation as frequency divider (channel 0 only in 30-pin products)

The timer array unit can be used as a frequency divider that divides a clock input to the TI00 pin and outputs the result from the TO00 pin.

The divided clock frequency output from TO00 can be calculated by the following expression.

- When rising edge/falling edge is selected: Divided clock frequency = Input clock frequency/{(Set value of TDR00 + 1) × 2}
- When both edges are selected:
 Divided clock frequency ≅ Input clock frequency/(Set value of TDR00 + 1)

(omitted)

The period of the TO00 output clock includes a sampling error of one period of the operation clock.

Clock period of TO00 output = Ideal TO00 output clock period \pm Operation clock period (error)

The TDR00 register can be rewritten at any time. The new value of the TDR00 register becomes valid during the next count period.

(omitted)

5. 11.6.3 SNOOZE mode function (only UART0 reception)

Incorrect:

SNOOZE mode makes UART operate reception by RxD0 pin input detection while the STOP mode. Normally UART stops communication in the STOP mode. But, using the SNOOZE mode makes reception data unless the CPU operation.

Only UART0 can be set to the SNOOZE mode.

When using the SNOOZE mode function, set the SWC0 bit of serial standby control register 0 (SSC0) to 1 before switching to the STOP mode.

- Cautions 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fCLK.
 - 2. The maximum transfer rate when using UART0 in the SNOOZE mode is 9600 bps.

Correct:

SNOOZE mode makes UART operate reception by RxD0 pin input detection while the STOP mode. Normally UART stops communication in the STOP mode. But, using the SNOOZE mode makes reception UART operate unless the CPU operation by detecting RxD0 pin input. Only following channels can be set to the SNOOZE mode.

When using UART0 in SNOOZE mode, execute the following settings before entering STOP mode (Refer to Flowcharts of SNOOZE mode operation in Figure 11-93 and Figure 11-95).

- In SNOOZE mode, UART reception baud rate must be set differently from normal operation. Refer to Table 11-3 to set registers SPS0 and SDR01 [15:9].
- Set bits EOC01 and SSEC0 to enable or disable the error interrupt (INTSRE0) when a communication error occurs.
- Set the SWC0 bit in the serial standby control register m (SSC0) to 1 just before entering STOP mode. After initialization, set the SS01 bit to 1 in the serial channel start register 0 (SS0).

When the MCU detects the RxD0 pin edge input (input the start bit) after entering STOP mode, the UART reception is started.

- Cautions: 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock (fiH) is selected for fcLk.
 - 2. The transfer rate in SNOOZE mode is 4800 bps only.
 - 3. When the SWC0 bit is 1, UART0 can be used only when the reception is started in STOP mode. If UART0 is used with other SNOOZE function or interrupts concurrently and the reception is started in state other than STOP mode as described below, the UART0 cannot receive data correctly and may cause a framing error or parity error.

• The case the UART0 reception is started from the moment the SWC0 bit is set to 1 before the MCU enters STOP mode

The case the UART0 reception is started in SNOOZE mode

• The case the UART0 reception is started from the moment the MCU exits STOP mode and enters normal mode using interrupts before the SWC0 bit is set to 0

4. When the SSEC0 bit is 1, if a parity error, framing error, or overrun error occurs, flags PEF01, FEF01, or OVF01 is not set, nor an error interrupt (INTSRE0) is generated. To set the SSEC0 bit to 1, clear flags PEF01, FEF01, and OVF01 before setting the SWC0 bit to 1, and read bits 7 to 0 (RxD0) in the SDR01 register.

Table 11-3 UART Reception Baud Rate Setting in SNOOZE Mode

High-speed on-chip oscillator	UART reception baud rate in SNOOZE mode								
(fін)		Bau	d rate: 4800 bps						
	Operating clock	SDR01	Maximum	Minimum					
	(f мск)	[15:9]	acceptable value	acceptable value					
24 MHz ± 1.0% ^(note)	f _{с∟к} /2⁵	79	1.60%	-2.18%					
16 MHz ± 1.0% ^(note)	$f_{CLK}/2^4$	105	2.27%	-1.53%					
12 MHz ± 1.0% ^(note)	$f_{CLK}/2^4$	79	1.60%	-2.19%					
8 MHz ± 1.0% ^(note)	$f_{CLK}/2^3$	105	2.27%	-1.53%					
6 MHz ± 1.0% ^(note)	$f_{CLK}/2^3$	79	1.60%	-2.19%					
4 MHz ± 1.0% ^(note)	$f_{CLK}/2^2$	105	2.27%	-1.53%					
3 MHz ± 1.0% ^(note)	$f_{CLK}/2^2$	79	1.60%	-2.19%					
2 MHz ± 1.0% ^(note)	f _{ськ} /2	105	2.27%	-1.54%					
1 MHz ± 1.0% ^(note)	f _{cLK}	105	2.27%	-1.57%					

Note: When the high-speed on-chip oscillator clock accuracy is at ± 1.5% or ± 2.0%, the acceptable range is limited as follows:

• f_{IH} ± 1.5%: Subtract 0.5% from the maximum acceptable value of f_{IH} ± 1.0%, and add 0.5% to the minimum acceptable value of f_{IH} ± 1.0%.

• f_{IH} ± 2.0%: Subtract 1.0% from the maximum acceptable value of f_{IH} ± 1.0%, and add 1.0% to the minimum acceptable value of f_{IH} ± 1.0%.

Remarks: Maximum and minimum acceptable values in the above table are the baud rate acceptable values in UART reception. Make sure to set the baud rate for transmission within this range.

6. 17.2.2 STOP mode

Incorrect:

Figure 17-5. STOP Mode Release by Interrupt Request Generation (1) When high-speed system clock (X1 oscillation) is used as CPU clock (omitted)

Notes 2. Time for STOP mode release

Supply of the clock is stopped: 18.96 μ s to "whichever is longer 28.95 μ s and the oscillation stabilization time (set by OSTS)" Wait

- · When vectored interrupt servicing is carried out: 10 to 11 clock
- · When vectored interrupt servicing is not carried out: 4 to 5 clock

 (2) When high-speed system clock (external clock input) is used as CPU clock
 (3) When high-speed on-chip oscillator clock is used as CPU clock (omitted)

Notes 2. STOP mode release time

Supply of the clock is stopped:19.08 to 32.99 μ s Wait

- · When vectored interrupt servicing is carried out: 7 clock
- · When vectored interrupt servicing is not carried out: 1 clock

Date: Aug. 1, 2013

Correct:

Figure 17-5 STOP Mode Release by Interrupt Request Generation (1/2) (1) When high-speed system clock (X1 oscillation) is used as CPU clock (omitted)

Notes2. STOP mode release time Supply of the clock is stopped: 18 µs to "whichever is longer 65 µs or the oscillation stabilization time (set by OSTS)"

Wait

- When vectored interrupt servicing is carried out: 10 to 11 clocks
- When vectored interrupt servicing is not carried out: 4 to 5 clocks

Remark: The time to stop clock supply varies depending on the temperature conditions and STOP mode time.

(2) When high-speed system clock (external clock input) is used as CPU clock (3) When high-speed on-chip oscillator clock is used as CPU clock

(omitted)

Notes: 2. STOP mode release time Supply of the clock is stopped: 18 to 65 µs

Wait

- When vectored interrupt servicing is carried out: 7 clocks
- When vectored interrupt servicing is not carried out: 1 clock

Remark: The time to stop clock supply varies depending on the temperature conditions and STOP mode time.

7. 17.2.3 SNOOZE Mode

Incorrect: In SNOOZE mode rerease, wait status to be only following time.

From STOP to SNOOZE

HS (high-speed main) mode : 18.96 to 28.95 μ s LS (low-speed main) mode : 20.24 to 28.95 μ s

From SNOOZE to normal operation

- When vectored interrupt servicing is carried out: HS (high-speed main) mode : 6.79 to 12.4 μ s + 7 clock LS (low-speed main) mode : 2.58 to 7.8 μ s + 7 clock
- When vectored interrupt servicing is not carried out: HS (high-speed main) mode : 6.79 to 12.4 μ s + 1 clock LS (low-speed main) mode : 2.58 to 7.8 μ s + 1 clock

Date: Aug. 1, 2013

Correct:

The MCU transits from STOP mode to SNOOZE mode or from SNOOZE mode to normal operation after time shown below elapses.

Transit time from STOP mode to SNOOZE mode: 18 to 65 µs

Remark: The transit time from STOP mode to SNOOZE mode varies depending on the temperature conditions and STOP mode time.

Transit time from SNOOZE mode to normal operation:

•	When vectored interrupt servicing	g is carried out:
	HS (High-speed main) mode	: "6.65 to 9.44 µs" + 7 clocks
	LS (Low-speed main) mode	: "1.10 to 5.08 µs" + 7 clocks

 When vectored interrupt servicing is not carried out: HS (High-speed main) mode : "6.65 to 9.44 μs" + 1 clock LS (Low-speed main) mode : "1.10 to 5.08 μs" + 1 clock

8. Figure 23-3 Format of Option Byte (000C2H)

Old:	F	igure 23-	of Option By	/te (000C2H)		
Address: 000	0C2H	•					
7	6	5	4	3	2	1	0
CMODE1	CMODE1 C5MODE0		0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0

	CMODE0	Setting of flash operation mode					
CMODE1			Operating Frequency	Operating Voltage			
			Range	Range			
1	0	LS (low speed main) mode	1 to 8 MHz	1.8 to 5.5 V			
4	1	HS (high speed main) mode	1 to 16 MHz	2.4 to 5.5 V			
1	I	no (nigh speed main) mode	1 to 24 MHz	2.7 to 5.5 V			
Other than above		Setting prohibited					

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
1	0	1	1	4 MHz
1	1	0	1	1 MHz
	Other that	an above	Setting prohibited	

Caution: Be sure to set bit 5 to "1" and bit 4 to "0".

Date: Aug. 1, 2013

	New:	F	iaure 23-	3 Format	of Option By	/te (000C2H))	
	Address: 00	DC2H	-				, ,	0
_	1	6	5	4	3	2	1	0
	CMODE1	CMODE0	1	0	FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0

	CMODE0	Setting of flash operation mode				
CMODE1			Operating Frequency	Operating Voltage		
			Range	Range		
1	0	LS (Low-speed main) mode	1 to 8 MHz	1.8 to 5.5 V		
1	1	HS (High speed main) mode	1 to 16 MHz	2.4 to 5.5 V		
	'	no (nigh-speed main) mode	1 to 24 MHz	2.7 to 5.5 V		
Other than above		Setting prohibited				

FRQSEL3	FRQSEL2	FRQSEL1	FRQSEL0	Frequency of the high-speed on-chip oscillator
0	0	0	0	24 MHz
1	0	0	1	16 MHz
0	0	0	1	12 MHz
1	0	1	0	8 MHz
0	0	1	0	6 MHz
1	0	1	1	4 MHz
0	0	1	1	3 MHz
1	1	0	0	2 MHz
1	1	0	1	1 MHz
Other than above				Setting prohibited

Cautions 1. Be sure to set bit 5 to "1" and bit 4 to "0"

2. The ranges of operation frequency and operation voltage vary depending on the flash operation mode. For details, see 28.4 or 29.4 AC Characteristics.

9. 28.3.1 Pin characteristics Correct: Incorrect: Refer to pages 5 and 6 in Technical Update Exhibit "Chapter 28 ELECTRICAL Fixed typo in Note 3 in pages 775 and 776 SPECIFICATIONS (A, D: T_A = -40 to + 85°C)" (MCYG-AB-13-0155). 10. 28.3.2 Supply current characteristics Correct: Incorrect: Refer to pages 9 to 14 in Technical Update Exhibit "Chapter 28 ELECTRICAL Fixed typo in Notes and typical values of IDD2 and IDD3 in pages 779 to 783 SPECIFICATIONS (A, D: T_A = -40 to + 85°C)" (MCYG-AB-13-0155). AC Characteristics 11 28 4 Old: New: Specifications of the external system clock frequency and external system clock input Refer to page 15 in Technical Update Exhibit "Chapter 28 ELECTRICAL SPECIFICATIONS (A, high-level width, low-level width in page 784 extended D: $T_A = -40$ to + 85°C)" (MCYG-AB-13-0155). 12.28.5.1 Serial array unit Correct: Refer to pages 18 to 39 in Technical Update Exhibit "Chapter 28 ELECTRICAL Incorrect: SPECIFICATIONS (A, D: TA = -40 to + 85°C)" (MCYG-AB-13-0155). Fixed typo in 28.5.1 Serial array unit in pages 786 to 806 13. 28.5.2 Serial Interface IICA Correct: Incorrect: Refer to page 40 in Technical Update Exhibit "Chapter 28 ELECTRICAL SPECIFICATIONS (A, Fixed typo in 28.5.2 Serial interface IICA in page 807 D: T_A = -40 to + 85°C)" (MCYG-AB-13-0155). 14 28 6 1 A/D converter characteristics Old: New: Specifications of "28.6.1 A/D converter characteristics" in pages 808 to 810 extended Refer to pages 41 to 44 in Technical Update Exhibit "Chapter 28 ELECTRICAL SPECIFICATIONS (A. D: T_A = -40 to + 85°C)" (MCYG-AB-13-0155). 15 28 6 2 Temperature Sensor/Internal Reference Voltage Characteristics Incorrect: Correct: Fixed typo in 28.6.2 Temperature Sensor/Internal Reference Voltage Characteristics in page Refer to page 45 in Technical Update Exhibit "Chapter 28 ELECTRICAL SPECIFICATIONS 811 (A, D: $T_A = -40$ to + 85°C)" (MCYG-AB-13-0155). 16 28 6 3 POR circuit characteristics Incorrect: Correct: Fixed typo in 28.6.3 POR circuit characteristics in page 811 Refer to page 45 in Technical Update Exhibit "Chapter 28 ELECTRICAL SPECIFICATIONS (A, D: $T_A = -40$ to + 85°C)" (MCYG-AB-13-0155).

Date: Aug. 1, 2013

Date: Aug. 1, 2013

17. Power supply voltage rising slope characteristics Old: Specifications in Power supply voltage rising slope characteristics added	New: Refer to page 47 in Technical Update Exhibit "Chapter 28 ELECTRICAL SPECIFICATIONS (A, D: T _A = −40 to + 85°C)" (MCYG-AB-13-0155).
 18. 28.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics Old: Specifications in Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics in page 814 extended 	New: Refer to page 48 in Technical Update Exhibit "Chapter 28 ELECTRICAL SPECIFICATIONS (A, D: T _A = −40 to + 85°C)" (MCYG-AB-13-0155).
 19. Chapter 29 ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C) (TARGET VALUES) Old: Specifications in Chapter 29 ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C) (TARGET VALUES) added 	New: Refer to pages 2 to 44 in Technical Update Exhibit "Chapter 29 ELECTRICAL SPECIFICATIONS (G: T _A = −40 to +105°C) (TARGET VALUES)" (MCYG-AB-13-0156).

To our valued customers:		M C Y G - A B - 1 3 - 0 1 5 5 - 1
	PI 78/C12	July 24, 2013
	Technical Update Exhibit Chapter 28 ELECTRICAL SPECIFICATIONS (A, D: TA = -40 to +85°C)	Hiroshi Uchimura
		Manager
		1 st Solution Business Unit
		3 rd MCU Business Division
		Brand Strategy Department
		Renesas Electronics Corporation

(Rep. Takehiro Furukawa)

Thank you for your continued support for Renesas Electronics products.

Please be advised that the misstatements found in the following User's Manual have been fixed.

The second and following pages in this document include "Chapter 28 ELECTRICAL SPECIFICATIONS (A, D: $T_A = -40$ to $+85^{\circ}$ C)" which has been updated by the Correction for incorrect description notice RL78/G12 Descriptions in the User's Manual: Hardware Rev.1.10 changed (TN-RL*-A006A/E).

1. Applicable products:

<u>RL78/G12</u>

R5F102xxA, R5F103xxA R5F102xxD, R5F103xxD

2. Reference documents:

Correction for incorrect description notice RL78/G12 Descriptions in the User's Manual: Hardware Rev.1.10 changed (TN-RL*-A006A/E) RL78/G12 User's Manual: Hardware Rev.1.10 (R01UH0200EJ0110)

CHAPTER 28 ELECTRICAL SPECIFICATIONS (A, D: TA = -40 to +85°C)

This chapter describes the electrical specifications for the products "A: Consumer applications ($T_A = -40$ to $+85^{\circ}C$)" and "D: Industrial applications ($T_A = -40$ to $+85^{\circ}C$)".

- Cautions 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 2. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions Mounted According to Product.

28.1 Absolute Maximum Ratings

(T_A = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			–0.5 to + 6.5	V
REGC terminal input	VIREGC	REGC		–0.3 to +2.8	V
voltage ^{Note1}				and -0.3 to V _{DD} + 0.3 Note 2	
Input Voltage	VI1	Other than P60, P6	51	–0.3 to V _{DD} + 0.3 ^{Note 3}	V
	V _{I2}	P60, P61 (N-ch op	en drain)	–0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V_{DD} + $0.3^{\text{Note 3}}$	V
Analog input voltage	Vai	20-, 24-pin product	ts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	pin products: ANI0 to ANI3, ANI16 to ANI19		
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14	-100	mA
			30-pin products: P10 to P17, P30, P31, P50, P51, P147		
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	IOL2	Per pin	P20 to P23	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та			-40 to +85	°C
Storage temperature	Tstg			–65 to +150	°C

Notes 1. 30-pin products only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed $AV_{REF}(+) + 0.3 V$ in case of A/D conversion target pin.
- 5. 24-pin products only.

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - **2.** AV_{REF}(+) : + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

28.2 Oscillator Characteristics

28.2.1 X1 oscillator characteristics

Conditions TYP. Parameter Resonator MIN. MAX. Unit X1 clock oscillation Ceramic resonator / crystal $2.7~V \leq V_{\text{DD}} \leq 5.5~V$ 1.0 20.0 MHz frequency $(f_X)^{Note}$ oscillator $1.8~V \leq V_{\text{DD}} < 2.7~V$ 1.0 8.0

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

28.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Paramotors	Conditions		MIN	TVD	MAY	Linit
Oscillators	Falameters	Conditions		IVIIIN.	IIF.	WAA.	Unit
High-speed on-chip oscillator clock frequency ^{Notes 1, 2}	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	$T_A = -20 \text{ to } +85^{\circ}\text{C}$	-1.0		+1.0	%
clock frequency accuracy			T_A = -40 to -20°C	-1.5		+1.5	%
		R5F103 products		-5.0		+5.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H/010C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

28.3 DC Characteristics

28.3.1 Pin characteristics

Parameter	Symbol	mbolConditions20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P14720-, 24-pin products: Total of P40 to P42 30-pin products: Total of P00, P01, P40, P120 (When duty $\leq 70\%^{Note 3}$)20-, 24-pin products: Total of P00 to P03^Note 4, P10 to P14 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty $\leq 70\%^{Note 3}$)20-, 24-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty $\leq 70\%^{Note 3}$)Total of all pins		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-10.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-30.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		30-pin products:	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-4.5	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-80.0	mA
		Total of P00 to P03 ^{Note 4} , P10 to P14	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty \leq 70% ^{Note 3})	$1.8~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				-100	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the VDD pin to an output pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor ≤ 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and IoH = -10.0 mA

Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- **4.** 24-pin products only.
- Caution P10 to P12, P41 for 20-pin products, P01, P10 to P12, P41 for 24-pin products, and P00, P10 to P15, P17, P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/4)

(T _A = −40 to +85°C, [•]	1.8 V ≤ V	$V_{DD} \leq 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}$					(2/4)
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	current, low ^{Note 1} IoL1 20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42 30-pin products:					20.0 Note 2	mA
		Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		Per pin for P60, P61				15.0 Note 2	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			60.0	mA
		Total of P40 to P42 30-pin products: Total of P00, P01, P40, P120 (When duty \leq 70% ^{Note 3})	$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA
			$1.8~V \leq V_{DD} < 2.7~V$			1.8	mA
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			80.0	mA
		Total of P00 to P03 ^{Note 4} ,	$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty $\leq 70\%$ ^{Note 3})	$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			5.4	mA
		Total of all pins (When duty $\leq 70\%^{\text{Note}}$ ³)				140	mA
	Iol2	Per pin for P20 to P23				0.4	mA
		Total of all pins				1.6	mA

950C 4 9 V < V--<u>م ۱</u>

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

4. 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(3/4)

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	Normal input buffer		0.8VDD		Vdd	V
		20-, 24-pin products: P00 to P0 P40 to P42	03 ^{Note 2} , P10 to P14,				
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147	0 to P17, P30, P31,				
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		VDD	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	1.5		Vdd	V
	VIH3	Normal input buffer		0.7Vdd		Vdd	V
		P20 to P23					
	VIH4	P60, P61		0.7Vdd		6.0	V
	VIH5	P121, P122, P125 ^{Note 1} , P137,	EXCLK, RESET	0.8Vdd		VDD	V
Input voltage, low	VIL1	Normal input buffer		0		0.2V _{DD}	V
		20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147					
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$1.8~V \leq V_{\text{DD}} < 3.3~V$	0		0.32	V
	VIL3	P20 to P23		0		0.3VDD	V
	VIL4	P60, P61		0		0.3V _{DD}	V
	VIL5	P121, P122, P125 ^{Note 1} , P137,	EXCLK, RESET	0		0.2V _{DD}	V
Output voltage, high	Vон1	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -10.0 \ mA \end{array} \end{array} \label{eq:VDD}$	VDD-1.5			V
		P40 to P42 30-pin products:	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$ IOH1 = -3.0 mA	VDD-0.7			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$\label{eq:VDD} \begin{array}{l} 2.7 \mbox{ V} \leq \mbox{ V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ \mbox{I}_{\mbox{DH1}} = -2.0 \mbox{ mA} \end{array}$	V _{DD} -0.6			V
		F 14/	$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -1.5 \ mA \end{array}$	VDD-0.5			V
	Vон2	P20 to P23	Іон2 = –100 <i>µ</i> А	VDD-0.5			V

Notes 1. 20, 24-pin products only.

2. 24-pin products only.

- Caution The maximum value of V_{IH} of pins P10 to P12, P41 for 20-pin products, P01, P10 to P12, P41 for 24-pin products, and P00, P10 to P15, P17, P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

(4/4)

Parameter	Symbol	,	Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	20-, 24-pin products P00 to P03 ^{Note} , P10	4-pin products: b P03 ^{Note} , P10 to P14, 0L1 = 2				1.3	V
		P40 to P42 30-pin products: P0	0, P01,	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 8.5 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.7	V
		P10 to P17, P30, F P50, P51, P120, P	931, P40, 147	$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ I_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$			0.6	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\label{eq:VDD} \begin{array}{l} 1.8 \mbox{ V} \leq \mbox{V}_{\mbox{DD}} \leq 5.5 \mbox{ V}, \\ I_{\mbox{DL1}} = 0.6 \mbox{ mA} \end{array}$			0.4	V
	V _{OL2}	P20 to P23		IoL2 = 400 μ/Α			0.4	V
	Vol3	P60, P61		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ mA \end{array} \end{array} \label{eq:VDD}$			2.0	V
				$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \end{array} \label{eq:eq:VDD}$			0.4	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD_delta}$			0.4	V
				$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array}$			0.4	V
Input leakage current, high	Ішні	Other than P121, P122	VI = VDD				1	μA
	Іцн2	P121, P122 (X1, X2/EXCLK)	VI = VDD	Input port or external clock input			1	μA
				When resonator connected			10	μA
Input leakage current, low		Other than P121, P122	VI = Vss				-1	μA
	Ilil2	P121, P122 (X1, X2/EXCLK)	VI = Vss	Input port or external clock input			-1	μA
				When resonator connected			-10	μA
On-chip pull-up resistance	Ru	20-, 24-pin product: P00 to P03 ^{Note} , P10 P40 to P42, P125, RESET	s:) to P14,	Vı = Vss, input port	10	20	100	kΩ
		30-pin products: P0 P10 to P17, P30, F P50, P51, P120, P	00, P01, 231, P40, 147					

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

28.3.2 Supply current characteristics

(1) 20-, 24-pin products

(T _A = −40 to	+85°C, 1	I.8 V ≤ V d	o ≤ 5.5 V, Vss =	= 0 V)						(1/2)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS(High-speed	f⊪ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current ^{Note 1}		mode	main) mode ^{Note 4}		operation	V _{DD} = 3.0 V		1.5		
					Normal	V _{DD} = 5.0 V		3.3	5.0	mA
					operation	V _{DD} = 3.0 V		3.3	5.0	
				f⊪ = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.7	mA
						V _{DD} = 3.0 V		2.5	3.7	
			LS(Low-speed	f⊮ = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA
			main) mode ^{Note 4}			V _{DD} = 2.0 V		1.2	1.8	
	HS(High-speed	$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.4	mA		
			main) mode ^{Note4}	V _{DD} = 5.0 V		Resonator connection		3.0	4.6	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.4	mA
				V _{DD} = 3.0 V		Resonator connection		3.0	4.6	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6	mA
				V _{DD} = 5.0 V		Resonator connection		1.8	2.6	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.6	mA
				V _{DD} = 3.0 V		Resonator connection		1.8	2.6	
			LS(Low-speed	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.1	1.7	mA
			main) mode ^{Note 4}	V _{DD} = 3.0 V		Resonator connection		1.1	1.7	
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V		Resonator connection		1.1	1.7	

050C 4 0 V - V < F F V V **~** \ /

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped

4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

```
VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz
```

LS(Low speed main) mode: V_{DD} = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(T _A = −40 to	+85°C, 1.	8 V ≤ V d	o ≤ 5.5 V, V ss =	= 0 V)					(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS(High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1210	μA
current ^{Note 1}		mode	main) mode ^{Note}		V _{DD} = 3.0 V		440	1210	
				f⊮ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	950	μA
					V _{DD} = 3.0 V		400	950	
			LS(Low-speed	f⊪ = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		270	542	μA
			main) mode ^{Note} 6		V _{DD} = 2.0 V		270	542	
			HS(High-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μA
			main) mode ^{Note}	V _{DD} = 5.0 V	Resonator connection		450	1170	
			•	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μA
			V _{DD} = 3.0 V	Resonator connection		450	1170		
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	590	μA
				V _{DD} = 5.0 V	Resonator connection		260	660	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	590	μA
				V _{DD} = 3.0 V	Resonator connection		260	660	
			LS(Low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
			main) mode ^{Note 6}	V _{DD} = 3.0 V	Resonator connection		150	416	
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	360	μA
				V _{DD} = 2.0 V	Resonator connection		150	416	
	IDD3 Note 5	STOP	T _A = -40°C				0.19	0.50	μA
		mode	T _A = +25°C				0.24	0.50	
			T _A = +50°C				0.32	0.80	
			T _A = +70°C				0.48	1.20	
			T _A = +85°C				0.74	2.20	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C

(2) 30-pin products

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(T _A = −40 to	+85°C, 1	I.8 V ≤ V d	o ≤ 5.5 V, Vss =	= 0 V)						(1/2)
Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS(High-speed	$f_{IH} = 24 \text{ MHz}^{Note 3}$	Basic	V _{DD} = 5.0 V		1.5		mA
current ^{Note 1}		mode	main) mode ^{Note 4}		operation	V _{DD} = 3.0 V		1.5		
					Normal	V _{DD} = 5.0 V		3.7	5.5	mA
					operation	V _{DD} = 3.0 V		3.7	5.5	
				f⊮ = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.7	4.0	mA
						V _{DD} = 3.0 V		2.7	4.0	
			LS(Low-speed	f⊮ = 8 MHz ^{Note 3}		V _{DD} = 3.0 V		1.2	1.8	mA
			main) mode ^{Note 4}			V _{DD} = 2.0 V		1.2	1.8	
			HS(High-speed	$f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Square wave input		3.0	4.6	mA
			main) mode ^{Note 4}	V _{DD} = 5.0 V		Resonator connection		3.2	4.8	
				$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		3.0	4.6	mA
				V _{DD} = 3.0 V		Resonator connection		3.2	4.8	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA
				V _{DD} = 5.0 V		Resonator connection		1.9	2.7	
				$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.9	2.7	mA
				V _{DD} = 3.0 V		Resonator connection		1.9	2.7	
			LS(Low-speed	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.1	1.7	mA
			main) mode ^{Note 4}	V _{DD} = 3.0 V		Resonator connection		1.1	1.7	
				$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$		Square wave input		1.1	1.7	mA
				V _{DD} = 2.0 V		Resonator connection		1.1	1.7	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped

4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(2) 30-pin products

$(T_A = -$	-40 to +85°C	$1.8 V \le V_{DD} \le 5.5 V. V_{SS} = 0 V$
(17-	40 10 100 0	(100)

(T _A = −40 to	+85°C, 1.	8 V ≤ V⊳	D ≤ 5.5 V , Vss =	0 V)					(2/2)
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	1280	μA
current ^{Note 1}		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	1280	
				f _{IH} = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1000	μA
					V _{DD} = 3.0 V		400	1000	
			LS (Low-speed	f _{IH} = 8 MHz ^{Note 4}	V _{DD} = 3.0 V		260	530	μA
			main) mode ^{Note 6}		V _{DD} = 2.0 V		260	530	
			HS (High-speed	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μA
			main) mode ^{Note 6}	V _{DD} = 5.0 V	Resonator connection		450	1170	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1000	μA
			V _{DD} = 3.0 V	Resonator connection		450	1170		
			f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	600	μA	
				V _{DD} = 5.0 V	Resonator connection		260	670	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	600	μA
				V _{DD} = 3.0 V	Resonator connection		260	670	
			LS (Low-speed	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	330	μA
			main) mode ^{Note 6}	V _{DD} = 3.0 V	Resonator connection		145	380	
				f _{MX} = 8 MHz ^{Note 3}	Square wave input		95	330	μA
				V _{DD} = 2.0 V	Resonator connection		145	380	
	IDD3 ^{Note 5}	STOP	T _A = -40°C				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	
$T_A = +$	T _A = +50°C				0.30	1.10			
	$T_A = +50$ $T_A = +70$	T _A = +70°C				0.46	1.90		
			T _A = +85°C				0.75	3.30	

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.
- 6. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

LS(Low speed main) mode: VDD = 1.8 V to 5.5 V @1 MHz to 8 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3				0.02		μA
Watchdog timer operating current	WDT Notes 1, 2, 4	f⊩ = 15 kHz			0.22		μA
A/D converter	IADC	When conversion	Normal mode, $AV_{REFP} = V_{DD} = 5.0 V$		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.50	0.70	mA
A/D converter reference voltage operation current	ADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	LVD Notes 1, 6				0.08		μA
Self- programming operating current	FSP Notes 1, 8				2.00	12.20	mA
BGO operating current	BGO Notes 1, 7				2.00	12.20	mA
SNOOZE	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	0.60	mA
operating current			The A/D conversion operations are performed, Low voltage mode, AV_{REFP} = V_{DD} = 3.0 V		1.20	1.44	mA
		CSI/UART operatio	n		0.70	0.84	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ITMKA and IFIL when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- 5. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. Refer to shift time to the SNOOZE mode, see 17.2.3 SNOOZE mode.

Remarks 1. fiL: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

28.4 AC Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Items	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8~V \le V_{\text{DD}} \le 5.5~V$	0.125		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
			LS (Low- speed main) mode	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	0.125		1	μS
External main system clock	fEX	$2.7~V \le V_{\text{DD}} \le 5$.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2$	7 V		1.0		16.0	MHz
		$1.8 \text{ V} \leq V_{\text{DD}} < 2$	4 V		1.0		8.0	MHz
External main system clock	texh, texl	$2.7~V \le V_{\text{DD}} \le 5$	5.5 V		24			ns
input high-level width, low-		$2.4~V \leq V_{\text{DD}} < 2$.7 V		30			ns
		$1.8~V \leq V_{\text{DD}} < 2$.4 V		60			ns
TI00 to TI07 input high-level width, low-level width	tr⊪, tr∟				1/fмск + 10			ns
TO00 to TO07 output	fто	$4.0~V \leq V_{\text{DD}} \leq 5$	5.5 V				12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8 \text{ V} \leq V_{\text{DD}} < 2$	7 V				4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0 V \le V_{DD} \le 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$1.8~V \leq V_{\text{DD}} < 2$	7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	t kR				250			ns
RESET low-level width	t RSL				10			μS

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n), and the Timer clock select register 0 (TPS0). n: Channel number (n = 0 to 7))

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Point

External main system clock timing

TI/TO timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET input timing

28.5 Peripheral Functions Characteristics

AC Timing Test Point

28.5.1 Serial array unit

(1) During communication at same potential (UART mode) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (lov main)	v-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
Transfer rate				fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate $f_{CLK} = f_{MCK}^{Note2}$		4.0		1.3	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

```
2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:
HS (high-speed main) mode: 24 MHz (2.7 V \leq V<sub>DD</sub> \leq 5.5 V)
16 MHz (2.4 V \leq V<sub>DD</sub> \leq 5.5 V)
```

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg)

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

(2) During communication at same potential (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	tkCY1	tκcγ1 ≥ 2/fcLκ	83.3		250		ns
SCK00 high - / low-level width	tкнı, tк∟ı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	t ксү1/2–7		tксү1/2–50		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	tксү1/2–10		tксү1/2–50		ns
SI00 setup time (to SCK00↑) ^{Note 1}	tsıĸı	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	23		110		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	33		110		ns
SI00 hold time (to SCK00↑) ^{Note2}	tksi1		10		10		ns
Delay time from SCK00↓ to SO00 output ^{Note 3}	tkso1	C = 20 pF ^{Note 4}		10		10	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 setup time becomes "to SCK00 \downarrow " when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 2. When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The SI00 hold time becomes "from SCK00↓" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - **3.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1. The delay time to SO00 output becomes "from SCK00∱" when DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
 - 4. C is the load capacitance of the SCK00 and SO00 output lines.

Caution Select the normal input buffer for the SI00 pin and the normal output mode for the SO00 and SCK00 pins by using port input mode register 1 (PIM1) and port output mode register 1 (POM1).

- Remarks 1. This specification is valid only when CSI00's peripheral I/O redirect function is not used.
 - 2. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKS00 bit of serial mode register (SMR00), and the Serial clock select register 0 (SPS0).

(3)	During communication at same potential (CSI mo	de) (master mode	e, SCKp inter	nal clock outpu	t)
$(T_A = -$	-40 to $+85^{\circ}$ C. 1.8 V $<$ Vpp < 5.5 V. Vss = 0 V)				

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	$t_{\rm KCY1} \ge 4/f_{\rm CLK}$	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	167		500		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	250		500		ns
			$1.8~V \leq V_{\text{DD}} \leq 5.5~V$	_		500		ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–12		tксү1/2-50		ns
	tĸ∟ı	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–18		tксү1/2-50		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–38		tксү1/2-50		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		tксү1/2-50		ns
SIp setup time (to SCKp↑)	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		44		110		ns
Note 1		$2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		44		110		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		75		110		ns
		$1.8 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		-		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	t KSI1			19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note4}			25		25	ns

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).
- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3: "1, 3" is for the R5F102 products only.)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3; "1, 3" is for the R5F102 products only.)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	8/fмск		-		ns
			fмск ≤ 20 MHz	6/fмск		6/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	8/f мск		-		ns
			fмск ≤ 16 MHz	6/fмск		6/ f мск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		6/fмск		6/ f мск		ns
				and 500		and 500		
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		6/fмск		ns
						and 750		
SCKp high-/low-level	t кн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-7		tксү2/2-7		ns
width	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2-8		tксү2/2-8		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–18		tксү2/2-18		ns
		$1.8~V \leq V_{\text{DD}} \leq 5.5~V$		-		tксү2/2-18		ns
SIp setup time	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск +		1/fмск +		ns
(to SCKp↑) ^{Note 1}				20		30		
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск +		1/fмск +		ns
				30		30		
		$1.8 V \leq V DD \leq 5.5 V$		_		1/fмск + 30		ns
SIp hold time	tksi2			1/f _{мск} +		1/f _{мск} +		ns
(from SCKp↑) Note 2			Γ	31		31		
Delay time from SCKp↓ to	tkso2	C = 30 pF ^{Note4}	$2.7~V \leq V_{DD} \leq 5.5~V$		2/f _{мск} + 44		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$		2/fмск + 75		2/f _{мск} + 110	ns
			$1.8~V \le V_{\text{DD}} \le 5.5~V$		_		2/fмск + 110	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (T_A = -40 to +85°C, 1.8 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

- Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 4. C is the load capacitance of the SOp output lines.
 - 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode register 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(Remarks are listed on the next page.)

- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3; "1, 3" is for the R5F102 products only.)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3; "1, 3" is for the R5F102 products only.)

(5)	During communication at same potential (simplified I ² C mode)
$(T_A = -40 \text{ to } +$	85°C, 1.8 V ≤ V _{DD} ≤ 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	Unit	
			LS (low-speed	main) Mode	
			MIN.	MAX.	
SCLr clock frequency	fscl	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$		400 Note 1	kHz
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$		300 Note 1	kHz
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "L"	t∟ow	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Hold time when SCLr = "H"	tнigн	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1150		ns
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1550		ns
		C_b = 100 pF, R_b = 5 k Ω			
Data setup time (reception)	tsu:dat	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	1/fмск + 145		ns
		C_b = 100 pF, R_b = 3 k Ω	Note 2		
		$1.8~V \leq V_{\text{DD}} < 2.7~V,$	1/fмск + 230		ns
		C_b = 100 pF, R_b = 5 k Ω	Note 2		
Data hold time (transmission)	thd:dat	$1.8~V \leq V_{\text{DD}} \leq 5.5~V,$	0	355	ns
		C_b = 100 pF, R_b = 3 k Ω			
		$1.8 V \le V_{DD} < 2.7 V$,	0	405	ns
		C _b = 100 pF, R _b = 5 kΩ			

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- 2. Set the $t_{SU:DAT}$ value to keep the hold time of SCLr = "L" and SCLr = "H".
- Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

 $\label{eq:Remarks 1.} \begin{array}{ll} R_b \left[\Omega \right] : Communication line (SDAr) pull-up resistance \\ C_b \left[F \right] : Communication line (SCLr, SDAr) load capacitance \end{array}$

- 2. r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4. 5)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number (m = 0, 1), n: Channel number (0, 1, 3)
- **4.** Simplified I^2C mode is supported only by the R5F102 products.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

	$TA = -40$ (0 +05 C, 1.0 V \leq VDD \leq 5.5 V, VSS = 0 V)													
Parameter Symbol		Conditions				igh-speed n) Mode	LS (low-speed main) Mode		Unit					
		MIN. MA				MAX.	MIN.	MAX.						
Transfer rate ^{Note4}		Reception	$4.0 V \leq V_{DD}$	$0.5 \le 5.5 \text{ V}, 2.7 \text{ V} \le V_b \le 4.0 \text{ V}$		fмск/6 Note1		fмск/6 Note1	bps					
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps					
			2.7 V ≤ V _D	$_{DD}$ < 4.0 V, 2.3 V \leq Vb \leq 2.7 V		fмск/6 Note1		fмск/6 Note1	bps					
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps					
			1.8 V ≤ V	$_{\text{ND}}$ < 3.3 V, 1.6 V \leq V $_{\text{b}}$ \leq 2.0 V		fмск/6 Notes1, 2		fмск/6 Notes1, 2	bps					
						Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note3}$		4.0		1.3	Mbps			
		Transmission	$4.0 \text{ V} \leq \text{V}_{\text{D}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}}$			Note4		Note4	bps					
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.8 Note5		2.8 Note5	Mbps					
			$2.7 \text{ V} \leq \text{V}_{\text{D}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}}$ $1.8 \text{ V} \leq \text{V}_{\text{D}}$ $1.6 \text{ V} \leq \text{V}_{\text{b}}$, ≤ 4.0 V, s ≤ 2.7 V,		Note6		Note6	bps					
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$		1.2 Note7		1.2 Note7	Mbps					
						Notes 2, 8		Notes 2, 8	bps					
										Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note9		0.43 Note9

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- **2.** Use it with $V_{DD} \ge V_b$.
- 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq V_{DD} \leq 5.5 V)

4. The smaller maximum transfer rate derived by using f_{MCK}/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 4 above to calculate the maximum transfer rate under conditions of the customer.
- 6. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}$$

$$\frac{1}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- 8. The smaller maximum transfer rate derived by using fMcκ/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq V_DD < 3.3 V, 1.6 V \leq V_b \leq 2.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{(\text{Transfer rate})} \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 8 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 in 20-, 24-pin products is valid the communication at different potential only when peripheral I/O redirect function is not used.

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCK00... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (hig main)	HS (high-speed main) Mode		LS (low-speed main) Mode	
				MIN.	MAX.	MIN.	MAX.	
SCK00 cycle time	t ксү1	tксү1≥2/fc∟к		200		1150		ns
			$\label{eq:V_b} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		ns
SCK00 high-level width	t кн1	$4.0~V \leq V_{\text{DD}} \leq 5.$	5 V, 2.7 V \leq V _b \leq 4.0 V,	t ксү1/ 2 –		t ксү1/ 2 -		ns
		C _b = 20 pF, R _b =	= 1.4 kΩ	50		50		
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V \leq Vb \leq 2.7 V, = 2.7 k\Omega	tксү1/2 – 120		tксү1/2 – 120		ns
SCK00 low-level width	tĸ∟1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5. \\ C_b = 20 \ pF, \ R_b = \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, = 1.4 kΩ	tксү1/2 – 7		tксү1/2 – 50		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 20 \text{ pF}$	$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 20 \text{ pE} \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega$			tксү1/2 – 50		ns
SI00 setup time (to SCK00↑) ^{Note 1}	tsik1	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.$ $C_{\text{b}} = 20 \text{ pF. } \text{R}_{\text{b}} = 10 \text{ pF}$	58		479		ns	
		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF. R _b =	$\label{eq:VD} \begin{split} 2.7 \ V &\leq V_{DD} < 4.0 \ V, \ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$			479		ns
SI00 hold time (from SCK00↑) ^{Note 1}	tksi1	$4.0 V \le V_{DD} \le 5.$	5 V, 2.7 V \leq V _b \leq 4.0 V,	10		10		ns
		$2.7 V \le V_{DD} < 4.$	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$	10		10		ns
Delay time from SCK00↓ to	tkso1	$4.0 V \le V_{DD} \le 5.$ C _b = 20 pF R _b =	$5 \text{ V}, 2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V},$ = 1 4 kO		60		60	ns
SO00 output ^{Note 1}		$2.7 V \le V_{DD} < 4.$ C _b = 20 pF. R _b =	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V},$ = 2.7 kΩ		130		130	ns
SI00 setup time (to SCK00↓) ^{Note 2}	tsıĸı	$4.0 \text{ V} \le \text{V}_{\text{DD}} \le 5.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	5 V, 2.7 V ≤ V _b ≤ 4.0 V, = 1.4 kΩ	23		110		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V \leq Vb \leq 2.7 V, = 2.7 k\Omega	33		110		ns
SI00 hold time (from SCK00↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5. \\ C_{b} = 20 \ pF, \ R_{b} = \end{array}$	5 V, 2.7 V \leq Vb \leq 4.0 V, = 1.4 k\Omega	10		10		ns
		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V \leq Vb \leq 2.7 V, = 2.7 kΩ	10		10		ns
Delay time from SCK00↑ to	t _{KSO1}	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5. \\ C_b = 20 \ pF, \ R_b = \end{array}$	5 V, 2.7 V \leq V _b \leq 4.0 V, = 1.4 kΩ		10		10	ns
SO00 output ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4.$ $C_{\text{b}} = 20 \text{ pF}, \text{ R}_{\text{b}} = 10 \text{ pF}$	0 V, 2.3 V \leq V _b \leq 2.7 V, = 2.7 kΩ		10		10	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(Notes, Caution, and Remarks are listed on the next page.)

- **Notes 1.** When DAP00 = 0 and CKP00 = 0, or DAP00 = 1 and CKP00 = 1
 - **2.** When DAP00 = 0 and CKP00 = 1, or DAP00 = 1 and CKP00 = 0.
- Caution Select the TTL input buffer for the SI00 pin and the N-ch open drain output (VDD tolerance) mode for the SO00 pin and SCK00 pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- **Remarks 1.** R_b [Ω]:Communication line (SCK00, SO00) pull-up resistance, C_b [F]: Communication line (SCK00, SO00) load capacitance, V_b [V]: Communication line voltage
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKS00 bit of serial mode register (SMR00), and the Serial clock select register 0 (SPS0).

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter Symbol		Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	t ксү1 ≥	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	300		1150		ns
		4/fськ	$2.7~V \leq V_b \leq 4.0~V,$					
			C_b = 30 pF, R_b = 1.4 k Ω					
			$2.7 \text{ V} \le V_{\text{DD}} \le 4.0 \text{ V},$	500		1150		ns
			$2.3~V \leq V_b \leq 2.7~V,$					
			C_b = 30 pF, R_b = 2.7 k Ω					
			$1.8 \text{ V} \le V_{\text{DD}} < 3.3 \text{ V},$	1150		1150		ns
			$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note}},$					
			C_b = 30 pF, R_b = 5.5 k Ω					
SCKp high-level width	t кн1	$4.0 V \leq V$	$.0~V \leq V_{\text{DD}} \leq 5.5~V,$			tксү1/2-75		ns
		$2.7 \text{ V} \leq \text{V}$	$2.7~V \leq V_b \leq 4.0~V,$					
		C _b = 30 p	C_b = 30 pF, R_b = 1.4 k Ω					
		$2.7 V \leq V_1$	$2.7 \text{ V} \leq V_{\text{DD}} < 4.0 \text{ V},$			tксү1/2–170		ns
		$2.3~V \leq V_b \leq 2.7~V,$						
		C_b = 30 pF, R_b = 2.7 k Ω						
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V},$		tксү1/2 –458		tксү1/2–458		ns
		1.6 V ≤ V	$1.6~V \leq V_b \leq 2.0~V^{\text{Note}},$					
		C_b = 30 pF, R_b = 5.5 k Ω						
SCKp low-level width	t ĸ∟1	$4.0 V \leq V$	$DD \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V,$	tксү1/2-12		tксү1/2-50		ns
		C_b = 30 pF, R_b = 1.4 k Ω						
		2.7 V ≤ V	$2.7 \text{ V} \le \text{V}_{\text{DD}} \le 4.0 \text{ V},$			tксү1/2–50		ns
		$2.3~V \leq V_b \leq 2.7~V,$						
		C_b = 30 pF, R_b = 2.7 k Ω						
		1.8 V ≤ V	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V},$			tксү1/2–50		ns
		1.6 V ≤ V	$_{\text{b}} \leq 2.0 \text{ V}^{\text{Note}},$					
		C _b = 30 p	F, R _b = 5.5 kΩ					

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Note Use it with $V_{DD} \ge V_b$.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Communication at different potential is not allowed in CSI01, CSI11.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions		HS (high-speed main) Mode		LS (low-speed main) Mode	
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsiĸ1		81		479		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	177		479		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{\mbox{Note 2}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VDD} \begin{array}{ c c c c c } \hline 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V \ ^{\text{Note 2}}, \\ \hline C_{b} = 30 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	19		19		ns
Delay time from SCKp↓ to	tkso1	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		100		100	ns
SOp output Note 1		$\label{eq:2.7} \fbox{$2.7$ V \le V_{DD}$ $<$ 4.0$ V, 2.3 V \le V_{b}$ \le 2.7$ V,} \\ \fbox{C_{b} $=$ 30$ pF, R_{b} $=$ 2.7$ k} \Omega \end{tabular}$		195		195	ns
		$\label{eq:VDD} \hline \begin{array}{l} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{\mbox{Note 2}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		483		483	ns

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V})$

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

2. Use it with $V_{DD} \ge V_b$.

(Cautions and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter	Symbol	bol Conditions		h-speed Mode	LS (low-speed main) Mode		Unit
			MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	44		110		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	44		110		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{\mbox{Note 2}}, \\ C_b \mbox{ = } 30 \ pF, \ R_b \mbox{ = } 5.5 \ k\Omega \end{array}$	110		110		ns
SIp hold time (from SCKp↓) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		ns
		$\label{eq:VDD} \begin{split} 1.8 \ V \leq V_{DD} \mbox{ < } 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{\mbox{Note 2}}, \\ C_b \mbox{ = } 30 \ pF, \ R_b \mbox{ = } 5.5 \ k\Omega \end{split}$	19		19		ns
Delay time from SCKp↑ to	tkso1	$\begin{array}{l} 4.0 \; V \leq V_{DD} \leq 5.5 \; V, \; 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		25		25	ns
SOp output ^{Note 1}		$\label{eq:VDD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		25		25	ns
		$\label{eq:VDD} \begin{split} 1.8 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V^{\mbox{Note 2}}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		25		25	ns

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- **Notes 1.** When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **2.** Use it with $V_{DD} \ge V_b$.
- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - $2. \quad \mbox{Communication at different potential is not allowed in CSI01, CSI11.}$
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

(9)	Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)
(Т₄	$= -40$ to $+85^{\circ}$ C. 1.8 V $\leq V_{DD} \leq 5.5$ V. Vss $= 0$ V)

Parameter	Symbol	Co	onditions	HS (high-spe Mod	eed main) le	ed main) LS (low-speed ma e Mode		Unit
				MIN.	MAX.	MIN.	MAX.	
SCKp cycle time Note 1	tkcy2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < $f_{MCK} \le$ 24 MHz	12/ f мск		-		ns
		$2.7~V \leq V_b \leq 4.0~V$	8 MHz < $f_{MCK} \le 20$ MHz	10/fмск		-		ns
			4 MHz < $f_{MCK} \le 8$ MHz	8/fмск		16/ f мск		ns
			fмск ≤4 MHz	6/fмск		10/fмск		ns
		$2.7~\text{V} \leq \text{V}_\text{DD} < 4.0~\text{V},$	20 MHz < fmck \leq 24 MHz	16/fмск		-		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < fмск ≤ 20 MHz	14/fмск		-		ns
			8 MHz < $f_{MCK} \le 16$ MHz	12/fмск		-		ns
			4 MHz < $f_{MCK} \le 8$ MHz	8/f мск		16/fмск		ns
			fмск ≤4 MHz	6/fмск		10/fмск		ns
		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 3.3 V ,	20 MHz < fмск ≤ 24 MHz	36/f мск		-		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < fmck \leq 20 MHz	32/f мск		-		ns
		Note 2	8 MHz < $f_{MCK} \le 16$ MHz	26/fмск		-		ns
			4 MHz < $f_{MCK} \le 8$ MHz	16/fмск		16/fмск		ns
			fмск ≤4 MHz	10/fмск		10/fмск		ns
SCKp high-/low-level	t кн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	tkcy2/2 - 12		tксү2/2 – 50		ns
width	tkl2	$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_b \leq 2.7~V$	tkcy2/2 - 18		tксү2/2 – 50		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_{b} \leq 2.0~V^{\text{Note 2}}$	tkcy2/2 - 50		tксү2/2 – 50		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_b \leq 4.0~V$	1/fмск + 20		1/fмск + 30		ns
(to SCKp↑) ^{Note 3}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_b \leq 2.7~V$	1/fмск + 20		1/fмск + 30		ns
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	$1.6~V \leq V_b \leq 2.0~V^{\text{Note 2}}$	1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) ^{Note 4}	tksi2			1/fмск + 31		1/fмск + 31		ns
Delay time from	tkso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	$2.7~V \leq V_{\text{b}} \leq 4.0~V,$		2/fмск +		2/fмск +	ns
SCKp↓ to SOp		C _b = 30 pF, R _b = 1.4	C _b = 30 pF, R _b = 1.4 kΩ		120		573	
output ^{Note 5}		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	$2.3~V \leq V_{b} \leq 2.7~V,$		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 2.7	kΩ		214		573	
		$1.8~V \leq V_{\text{DD}} < 3.3~V,$	1.6 V \leq V_b \leq 2.0 V $^{\text{Note 2}}$,		2/fмск +		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5	kΩ		573		573	

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- $\textbf{2.} \quad \textbf{Use it with } V_{\text{DD}} \geq V_{\text{b}}.$
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_H and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Communication at different potential is not allowed in CSI01, CSI11.

CSI mode connection diagram (during communication at different potential)

- Remarks 1.
 R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance,

 V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number, n: Channel number (mn = 00, 10)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

|--|

Parameter	Symbol	Conditions	HS (hig main)	h-speed Mode	LS (low main)	/-speed Mode	Unit
			MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, \; 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$		400 ^{Note1}		300 ^{Note1}	kHz
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 100 \ p\text{F}, \ R_{b} = 2.7 \ k\Omega \end{array}$		400 ^{Note1}		300 ^{Note1}	kHz
		$\begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$		300 ^{Note1}		300 ^{Note1}	kHz
Hold time when SCLr = "L"	t∟ow	$\begin{array}{l} \mbox{4.0 V} \le V_{\text{DD}} \le 5.5 \mbox{ V}, \mbox{2.7 V} \le V_{b} \le 4.0 \mbox{ V}, \\ \mbox{C}_{b} = 100 \mbox{ pF}, \mbox{ R}_{b} = 2.8 \mbox{ k}\Omega \end{array}$	1150		1550		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	1150		1550		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	1550		1550		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; \text{V}, \; 2.7 \; \text{V} \leq V_{\text{b}} \leq 4.0 \; \text{V}, \\ \\ C_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k}\Omega \end{array}$	675		610		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$	600		610		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} = 100 \ p\text{F}, \ R_{b} = 5.5 \ k\Omega \end{array}$	610		610		ns
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	1/fмск + 190 Note3		1/fмск + 190 Note3		ns
		$\begin{array}{l} 2.7 \ V \leq V_{DD} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 Note3		1/fмск + 190 Note3		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	1/fмск + 190 Note3		1/fмск + 190 Note3		ns
Data setup time (transmission)"	thd:dat	$\begin{array}{l} \label{eq:VDD} 4.0 \; V \leq V_{\text{DD}} \leq 5.5 \; V, 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	0	355	0	355	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	355	0	355	ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{b} \leq 2.0 \ V, \\ \\ C_{b} = 100 \ pF, \ R_{b} = 5.5 \ k\Omega \end{array}$	0	405	0	405	ns

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

- **2.** Use it with $V_{DD} \ge V_b$.
- 3. Set the $t_{SU:DAT}$ value to keep the hold time of SCLr = "L" and SCLr = "H".
- Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Communication at different potential is not allowed in IIC01, IIC11.

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number (m = 0,1), n: Channel number (n = 0))
 - 4. Simplified I^2C mode is supported only by the R5F102 products.

28.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS	HS (high-speed main) Mode			
			LS	(low-spee	d main) M	ode	
			Standa	d Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fc⊥κ≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time Note 1	thd:sta		4.0		0.6		μS
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μS
Hold time when SCLA0 = "H"	t HIGH		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μS
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS

$(T_A = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1 in 30-pin products only. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

28.6 Analog Characteristics

28.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage						
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (–) = AV _{REFM}					
ANI0 to ANI3	Refer to 28.6.1 (1).	Refer to 28.6.1 (3).	Refer to 28.6.1 (4).					
ANI16 to ANI22	Refer to 28.6.1 (2).							
Internal reference voltage	Refer to 28.6.1 (1).		-					
Temperature sensor output voltage								

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

$(T_A = -40 \text{ to } +85^{\circ}C,$, 1.8 V \leq AVREFP \leq	\leq VDD \leq 5.5 V, Vss	s = 0 V, Reference	voltage (+) = AVREFF	, Reference voltage	e (-) =
AVREFM = 0 V)						

Parameter	Symbol	Cor	nditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±3.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}			1.2	$\pm 7.0^{\text{Note 4}}$	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI2, ANI3	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
			$1.8~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
		10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: Internal	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μS
		temperature sensor	$2.4~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
		output voltage					
		(HS (high-speed main)					
- Notos 1.2		mode)					
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.25	%FSR
		AVREFP = VDD				±0.50 ^{Note 4}	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.25	%FSR
		AV _{REFP} = V _{DD} ^{Note 3}				±0.50 ^{Note 4}	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±2.5	LSB
		AV _{REFP} = V _{DD} ^{Note 3}				$\pm 5.0^{\text{Note 4}}$	LSB
Differential linearity error	DLE	10-bit resolution				±1.5	LSB
Note 1		AV _{REFP} = V _{DD} ^{Note 3}				$\pm 2.0^{\text{Note 4}}$	LSB
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage	9		VBGR Note 5		V
		(2.4 V \leq VDD \leq 5.5 V, HS	(high-speed main) mode)				
		Temperature sensor output voltage		VTMPS25 Note 5			V
	1	$(2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{HS})$	(high-speed main) mode)				

(Notes are listed on the next page.)

- **Notes 1.** Excludes quantization error ($\pm 1/2$ LSB).
 - 2. This value is indicated as a ratio (%FSR) to the full-scale value.
 - 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.05%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.
 - 4. Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).
 - 5. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.
- (2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{AV}_{REFP} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V})$

Parameter	Symbol	Con	ditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution			1.2	±5.0	LSB
		AV _{REFP} = V _{DD} ^{Note 3}			1.2	$\pm 8.5^{\text{Note 4}}$	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target ANI pin:	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI22	$1.8~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
				57		95	μS
Zero-scale error Notes 1, 2	EZS	10-bit resolution			±0.35	%FSR	
		AV _{REFP} = V _{DD} ^{Note 3}				±0.60 ^{Note 4}	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution				±0.35	%FSR
		$AV_{REFP} = V_{DD} Note 3$				±0.60 ^{Note 4}	%FSR
Integral linearity error	ILE	10-bit resolution				±3.5	LSB
Note 1		AV _{REFP} = V _{DD} ^{Note 3}			$\pm 6.0^{\text{ Note 4}}$	LSB	
Differential linearity error	DLE	10-bit resolution	10-bit resolution			±2.0	LSB
Note 1		AV _{REFP} = V _{DD} ^{Note 3}				$\pm 2.5^{\text{Note 4}}$	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP	V
						and V_{DD}	

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **3.** When AV_{REFP} \leq V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.
- 4. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = V_{ss} (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
					1.2	±10.5 ^{Note 3}	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI3,	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μs
		ANI16 to ANI22	$1.8~V \leq V\text{DD} \leq 5.5~V$	17		39	μS
				57		95	μs
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: internal reference	$2.7 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	3.5625		39	μS
		voltage, and temperature sensor output voltage (HS	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution				±0.60	%FSR
						±0.85	%FSR
					Note 3		
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution				±0.60	%FSR
						±0.85	%FSR
						Note 3	
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
						± 6.5 Note 3	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
						± 2.5 Note 3	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		Vdd	V
		Internal reference voltage			$V_{\text{BGR}} \stackrel{\text{Note 4}}{\rightarrow}$		V
		$(2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{HS} (high$	n-speed main) mode)				
		Temperature sensor output v	voltage		VTMPS25 Note	4	V
		$(2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{HS}$ (high	i-speed main) mode)				

$(T_{A} = -40 \text{ to } \pm 85^{\circ}\text{C} = 1$	8 V < Vnn < 5	5 V Vss – 0 V	Reference voltage (+) - Vpp	Reference voltage (_) - Vss)
(1A = -40 10 + 65 C, 1	$.0 V \ge V D U \ge 0$.	\mathbf{v} , \mathbf{v} ss = \mathbf{v} \mathbf{v}	, Reference voltage $(+) = v_{DD}$,	Reference voltage $(-) = vss$

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- **2.** This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).
- 4. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AV_{REFM} (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = VBGR ^{Note}	³ , Reference voltage (–) = AVREFM
^{Note 4} = 0 V, HS (high-speed main) mode)	

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	EZS	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}^{\text{ Note 3}}$	V

Notes 1. Excludes quantization error (±1/2 LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 28.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

28.6.2 Temperature sensor characteristics

(T_A = -40 to +85°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Reference output voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

28.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.47	1.51	1.55	V
	VPDR	Power supply fall time	1.46	1.50	1.54	V
Minimum pulse width Note	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

28.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVD0	Power supply rise time	3.98	4.06	4.14	V
		Power supply fall time	3.90	3.98	4.06	V
	VLVD1	Power supply rise time	3.68	3.75	3.82	V
		Power supply fall time	3.60	3.67	3.74	V
	VLVD2	Power supply rise time	3.07	3.13	3.19	V
		Power supply fall time	3.00	3.06	3.12	V
	VLVD3	Power supply rise time	2.96	3.02	3.08	V
		Power supply fall time	2.90	2.96	3.02	V
	VLVD4	Power supply rise time	2.86	2.92	2.97	V
		Power supply fall time	2.80	2.86	2.91	V
	VLVD5	Power supply rise time	2.76	2.81	2.87	V
		Power supply fall time	2.70	2.75	2.81	V
	VLVD6	Power supply rise time	2.66	2.71	2.76	V
		Power supply fall time	2.60	2.65	2.70	V
	VLVD7	Power supply rise time	2.56	2.61	2.66	V
		Power supply fall time	2.50	2.55	2.60	V
	VLVD8	Power supply rise time	2.45	2.50	2.55	V
		Power supply fall time	2.40	2.45	2.50	V
	VLVD9	Power supply rise time	2.05	2.09	2.13	V
		Power supply fall time	2.00	2.04	2.08	V
	VLVD10	Power supply rise time	1.94	1.98	2.02	V
		Power supply fall time	1.90	1.94	1.98	V
	VLVD11	Power supply rise time	1.84	1.88	1.91	V
		Power supply fall time	1.80	1.84	1.87	V
Minimum pulse width	t∟w		300			μS
Detection delay time					300	μS

LVD detection	voltage of	interrupt &	reset mode
$(T_140 + 0 + 8)$			$V_{\alpha\alpha} = 0 V$

(1 = -40 t0 + 65)	C, VPDR	\geq V DD :	$\leq 5.5 \text{ V}, \text{ Vss} = 0 \text{ V}$					
Parameter	Symbol		Cond	itions	MIN.	TYP.	MAX.	Unit
Interrupt and reset	VLVDB0	VPOC2,	VPOC1, VPOC0 = 0, 0, 1, fall	ing reset voltage	1.80	1.84	1.87	V
mode	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2,	VPOC1, VPOC0 = 0, 1, 0, fall	ing reset voltage	2.40	2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, fall	ing reset voltage	2.70	2.75	2.81	V
	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising reset release voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

28.6.5 Power supply voltage rising slope characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 28.4 AC Characteristics.

28.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is affected, but data is not retained when a POR reset is affected.

28.8 Flash Memory Programming Characteristics

Parameter	Symbol	Conditio	MIN.	TYP.	MAX.	Unit	
System clock frequency	fclĸ			1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years	T _A = 85°C	1,000			Times
Data flash memory rewritable times		Retained for 1 year	T _A = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	T _A = 85°C	100,000			
		Retained for 20 years	T _A = 85°C	10,000			

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- **Notes 1.** 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are a period of time in which the next rewrite is performed after a rewrite.
 - 2. When using flash memory programmer or library program from Renesas
 - **3.** This shows the flash memory characteristics. This is a result obtained from Renesas Electronics reliability test.

28.9 Dedicated Flash Memory Programmer Communication (UART)

$TA = -40 \ 10 + 65^{\circ}C, \ 1.0 \ V \le VDD \le 5.5 \ V, \ VSS = 0 \ V$								
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit		
Transfer rate		During serial programming	115,200		1,000,000	bps		

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{ V}_{\text{SS}} = 0 \text{ V})$

28.10 Timing Specs for Switching Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	tно	POR and LVD reset must end before the external reset ends.	1			ms

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends.
 - thD: How long to keep the TOOL0 pin at the low level from when the external reset ends. (excluding the processing time of the firmware to control the flash memory)

To our valued customers:	RL78/G12 Technical Update Exhibit	M C Y G - A B - 1 3 - 0 1 5 6 - 1 July 24, 2013 Hiroshi Uchimura
	Chapter 29 ELECTRICAL SPECIFICATIONS (G: T _A = -40 to +105°C) (TARGET VALUES)	Manager 1 st Solution Business Unit 3 rd MCU Business Division Brand Strategy Department Renesas Electronics Corporation

(Rep. Takehiro Furukawa)

Thank you for your continued support for Renesas Electronics products.

Please be advised that the misstatements found in the following User's Manual have been fixed.

The second and following pages in this document include "Chapter 29 ELECTRICAL SPECIFICATIONS (G: $T_A = -40$ to $+105^{\circ}$ C) (TARGET VALUES)" which has been updated by the Correction for incorrect description notice RL78/G12 Descriptions in the User's Manual: Hardware Rev.1.10 changed (TN-RL*-A006A/E).

1. Applicable products:

RL78/G12

R5F102xxG

2. Reference documents:

Correction for incorrect description notice RL78/G12 Descriptions in the User's Manual: Hardware Rev.1.10 changed (TN-RL*-A006A/E) RL78/G12 User's Manual: Hardware Rev.1.10 (R01UH0200EJ0110)

CHAPTER 29 ELECTRICAL SPECIFICATIONS (G: TA = -40 to +105°C) (TARGET VALUES)

This chapter describes the electrical specifications for the products "G: Industrial applications (TA = -40 to +105°C)".

- Cautions 1. The specifications in this chapter show target values, which may change after device evaluation.
 - 2. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
 - 3. The pins mounted depend on the product. Refer to 2.1 Port Function to 2.2.1 Functions Mounted According to Product.

There are following differences between the products "G: Industrial applications ($T_A = -40$ to $+105^{\circ}$ C)" and the products "A: Consumer applications, and D: Industrial applications".

Parameter	Appli	cation
	A: Consumer applications, D: Industrial applications	G: Industrial applications
Operating ambient temperature	T _A = -40 to +85°C	T _A = -40 to +105°C
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:
Operating voltage range	$2.7~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 24 MHz	$2.7~V \leq V_{\text{DD}} \leq 5.5~V@1~\text{MHz}$ to 24 MHz
	$2.4~V \leq V_{\text{DD}} \leq 5.5~V \textcircled{0}1~\text{MHz}$ to 16 MHz	$2.4~V \leq V_{\text{DD}} \leq 5.5~V \textcircled{0}1~\text{MHz}$ to 16 MHz
	LS (low-speed main) mode:	
	$1.8~V \le V_{\text{DD}} \le 5.5~V \textcircled{0}1~MHz$ to $8~MHz$	
High-speed on-chip oscillator	In the R5F102 products, 1.8 V \leq V_{DD} \leq 5.5 V :	In the R5F102 products, 2.4 V \leq V_{DD} \leq 5.5 V :
clock accuracy	±1.0%@ T _A = -20 to +85°C	±2.0%@ T _A = +85 to +105°C
	±1.5%@ T _A = -40 to -20°C	±1.0%@ T _A = -20 to +85°C
	In the R5F103 products, 1.8 V \leq V_{DD} \leq 5.5 V :	±1.5%@ T _A = -40 to -20°C
	±5.0%@ T _A = -40 to +85°C	
Serial array unit	UART	UART
	CSI: fclk/2 (supporting 12 Mbps), fclk/4	CSI: fclk/4
	Simplified I ² C communication	Simplified I ² C communication
Voltage detector	Rise detection voltage:	Rise detection voltage:
	1.88 V to 4.06 V (12 levels)	2.61 V to 4.06 V (8 levels)
	Fall detection voltage:	Fall detection voltage:
	1.84 V to 3.98 V (12 levels)	2.55 V to 3.98 V (8 levels)

Remark The electrical characteristics of the products G: Industrial applications (T_A = -40 to +105°C) are different from those of the products "A: Consumer applications and D: Industrial applications". For details, refer to 29.1 to 29.10.

29.1 Absolute Maximum Ratings

(T_A = 25°C)

Parameter	Symbols		Conditions	Ratings	Unit
Supply Voltage	VDD			-0.5 to + 6.5	V
REGC terminal input	VIREGC	REGC		-0.3 to +2.8	V
voltage ^{Note1}				and -0.3 to V _{DD} + 0.3 Note 2	
Input Voltage	VI1	Other than P60, F	·61	-0.3 to V _{DD} + 0.3 ^{Note 3}	V
	VI2	P60, P61 (N-ch or	pen drain)	-0.3 to 6.5	V
Output Voltage	Vo			-0.3 to V _{DD} + 0.3 ^{Note 3}	V
Analog input voltage	Vai	20-, 24-pin produc	cts: ANI0 to ANI3, ANI16 to ANI22	-0.3 to V _{DD} + 0.3	V
		30-pin products: A	NIO to ANI3, ANI16 to ANI19	and -0.3 to AVREF(+)+0.3 ^{Notes 3, 4}	
Output current, high	Іон1	Per pin	Other than P20 to P23	-40	mA
		Total of all pins	All the terminals other than P20 to P23	-170	mA
			20-, 24-pin products: P40 to P42	-70	mA
			30-pin products: P00, P01, P40, P120		
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14	-100	mA
			30-pin products: P10 to P17, P30, P31, P50, P51, P147		
	Іон2	Per pin	P20 to P23	-0.5	mA
		Total of all pins	1	-2	mA
Output current, low	IOL1	Per pin	Other than P20 to P23	40	mA
		Total of all pins	All the terminals other than P20 to P23	170	mA
			20-, 24-pin products: P40 to P42 30-pin products: P00, P01, P40, P120	70	mA
			20-, 24-pin products: P00 to P03 ^{Note 5} , P10 to P14, P60, P61 30-pin products: P10 to P17, P30, P31, P50, P51, P60, P61, P147	100	mA
	IOL2	Per pin	P20 to P23	1	mA
		Total of all pins	1	5	mA
Operating ambient temperature	Та			-40 to +105 Note 6	°C
Storage temperature	Tstg			-65 to +150	°C

Notes 1. 30-pin products only.

- 2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F). This value determines the absolute maximum rating of the REGC pin. Do not use it with voltage applied.
- 3. Must be 6.5 V or lower.
- 4. Do not exceed AVREF(+) + 0.3 V in case of A/D conversion target pin.
- 5. 24-pin products only.
- 6. Total operating time in Ta = +85°C to +105°C : 10,000 hours

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

- **Remarks 1.** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.
 - 2. AVREF(+): + side reference voltage of the A/D converter.
 - 3. Vss : Reference voltage

29.2 Oscillator Characteristics

29.2.1 X1 oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation	Ceramic resonator /	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	1.0		20.0	MHz
frequency (fx) ^{Note}	Crystal oscillator	$2.4~V \leq V_{\text{DD}} < 2.7~V$	1.0		8.0	

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator, refer to 5.4 System Clock Oscillator.

29.2.2 On-chip oscillator characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Oscillators	Parameters	Con	ditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		24	MHz
High-speed on-chip oscillator		R5F102 products	T _A = -20 to +85°C	-1.0		+1.0	%
clock frequency accuracy			T_A = -40 to -20°C	-1.5		+1.5	%
			T _A = +85 to +105°C	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Notes 1. High-speed on-chip oscillator frequency is selected by bits 0 to 3 of option byte (000C2H) and bits 0 to 2 of HOCODIV register.

2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

29.3 DC Characteristics

29.3.1 Pin characteristics

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				-3.0 Note 2	mA
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147					
		20-, 24-pin products:	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-9.0	mA
		Total of P40 to P42	$2.7~V \leq V_{\text{DD}} < 4.0~V$			-6.0	mA
		30-pin products: Total of P00, P01, P40, P120 (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-4.5	mA
		20-, 24-pin products: Total of P00 to P03 ^{Note 4} , P10 to P14	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-27.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-18.0	mA
		30-pin products: Total of P10 to P17, P30, P31, P50, P51, P147 (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			-10.0	mA
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				-36.0	mA
	Іон2	Per pin for P20 to P23				-0.1	mA
		Total of all pins				-0.4	mA

Notes 1. value of current at which the device operation is guaranteed even if the current flows from the V_{DD} pin to an output pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor ≤ 70%. If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

- Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$
 - <Example> Where n = 80% and I_{OH} = -10.0 mA
 - Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \cong -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Caution P10 to P12, P41 for 20-pin products, P01, P10 to P12, P41 for 24-pin products, and P00, P10 to P15, P17, P50 for 30-pin products do not output high level in N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1/4)

(T _A = -40 to +105°C	, 2.4 V ≤	$V \le V_{DD} \le 5.5 V, V_{SS} = 0 V$ (2)							
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Output current, low ^{Note 1}	Iol1	20-, 24-pin products: Per pin for P00 to P03 ^{Note 4} , P10 to P14, P40 to P42				8.5 Note 2	mA		
		30-pin products: Per pin for P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147							
		Per pin for P60, P61				15.0 Note 2	mA		
		20-, 24-pin products: Total of P40 to P42 30-pin products: Total of P00, P01, P40, P120 (When duty \leq 70% ^{Note 3})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			25.5	mA		
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			9.0	mA		
			$2.4~\text{V} \leq \text{V}_\text{DD} < 2.7~\text{V}$			1.8	mA		
		20-, 24-pin products: Total of P00 to P03 ^{Note 4} ,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			40.0	mA		
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			27.0	mA		
		P10 to P14, P60, P61 30-pin products: Total of P10 to P17, P30, P31, P50, P51, P60, P61, P147 (When duty \leq 70% ^{Note 3})	$2.4~V \leq V_{\text{DD}} < 2.7~V$			5.4	mA		
		Total of all pins (When duty $\leq 70\%^{Note 3}$)				65.5	mA		
	Iol2	Per pin for P20 to P23				0.4	mA		
		Total of all pins				1.6	mA		

405°C 2 4 V < V <u> </u> 40 4

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the Vss pin.

2. However, do not exceed the total current value.

3. The output current value under conditions where the duty factor \leq 70%.

If duty factor > 70%: The output current value can be calculated with the following expression (where n represents the duty factor as a percentage).

• Total output current of pins = $(I_{OL} \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \cong 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

- 4. 24-pin products only.
- Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit	
Input voltage, high	VIH1	Normal input buffer	0.8Vdd		VDD	V	
		20-, 24-pin products: P00 to P0 P40 to P42					
		30-pin products: P00, P01, P1 P40, P50, P51, P120, P147					
	VIH2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	2.2		VDD	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	2.0		VDD	V
		30-pin products: P01, P10, P11, P13 to P17	$2.4~V \leq V_{\text{DD}} < 3.3~V$	1.5		Vdd	V
	Vінз	Normal input buffer	0.7Vdd		VDD	V	
		P20 to P23					
	VIH4	P60, P61	0.7Vdd		6.0	V	
	VIH5	P121, P122, P125 ^{Note 1} , P137,	0.8VDD		Vdd	V	
Input voltage, low	VIL1	Normal input buffer		0		0.2V _{DD}	V
		20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42					
		30-pin products: P00, P01, P10 P40, P50, P51, P120, P147					
	VIL2	TTL input buffer	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	0		0.8	V
		20-, 24-pin products: P10, P11	$3.3~V \leq V_{\text{DD}} < 4.0~V$	0		0.5	V
		30-pin products: P01, P10, P11, P13 to P17	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P23		0		0.3VDD	V
	VIL4	P60, P61		0		0.3VDD	V
	VIL5	P121, P122, P125 ^{Note 1} , P137, EXCLK, RESET		0		0.2VDD	V
Output voltage, high	VoH1 20-, 24-pin product P00 to P03 ^{Note 2} , F P40 to P42 30-pin products: P00, P01, P10 to P31, P40, P50, P P147	20-, 24-pin products: P00 to P03 ^{Note 2} , P10 to P14, P40 to P42 30-pin products:	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OH1}} = -3.0 \ mA \end{array}$	VDD-0.7			V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \text{I}_{\text{OH1}} = -2.0 \ \text{mA} \end{array}$	VDD-0.6			V
		P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147	$2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OH1}} = -1.5 \text{ mA}$	V _{DD} -0.5			V
	V _{OH2}	P20 to P23	Іон2 = –100 <i>µ</i> А	VDD-0.5			V

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(3/4)

Notes 1. 20, 24-pin products only.

- **2.** 24-pin products only.
- Caution The maximum value of V_H of pins P10 to P12, P41 for 20-pin products, P01, P10 to P12, P41 for 24-pin products, and P00, P10 to P15, P17, P50 for 30-pin products is V_{DD} even in N-ch open-drain mode. High level is not output in the N-ch open-drain mode.
- **Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol		Conditio	ns	MIN.	TYP.	MAX.	Unit
Output voltage, low	Vol1	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$4.0 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 8.5 \text{ mA}$			0.7	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 3.0 \ mA \end{array} \label{eq:DD}$			0.6	V
				$\begin{array}{l} 2.7 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 1.5 \ mA \end{array} \label{eq:DD}$			0.4	V
				$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 0.6 \ mA \end{array} \end{array} \label{eq:DD}$			0.4	V
	Vol2					0.4	V	
	Vol3	P60, P61		$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 15.0 \ mA \end{array} \end{array} \label{eq:VDD}$			2.0	V
				$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 5.0 \ mA \end{array} \end{array} \label{eq:eq:electropy}$			0.4	V
				$\begin{array}{l} 2.7 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}, \\ \\ I_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$			0.4	V
				$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \\ I_{\text{OL1}} = 2.0 \ mA \end{array} \label{eq:DD}$			0.4	V
Input leakage current, high	Ішні	Other than P121, VI = VDD P122					1	μA
	ILIH2 P121, P (X1, X2/	P121, P122 (X1, X2/EXCLK)	21, P122 V _I = V _{DD} 1, X2/EXCLK)	Input port or external clock input			1	μA
				When resonator connected			10	μA
Input leakage current, low		Other than P121, P122	ier than P121, Vi = Vss 22				-1	μA
	ILIL2 P121, P122 (X1, X2/EXCLK)	VI = VSS	Input port or external clock input			-1	μA	
				When resonator connected			-10	μA
On-chip pull-up resistance	nip pull-up Ru 20-, 24-pin products: P00 to P03 ^{Note} , P10 to P14, P40 to P42, P125, RESET		s: 9 P42,	Vi = Vss, input port	10	20	100	kΩ
30-pin products: P00, P01, P10 to P17, P30, P31, P40, P50, P51, P120, P147								

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(4/4)

Note 24-pin products only.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

29.3.2 Supply current characteristics

(1) 20-, 24-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

(T _A = −40 to	+105°C,	2.4 V ≤ V	$DD \leq 5.5 V, Vss$	= 0 V)						(1/2)
Parameter	Symbol	Conditions						TYP.	MAX.	Unit
Supply IDD1 Operating HS (High-spe	HS (High-speed	f⊩ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA		
current ^{Note 1}	current ^{Note 1} mode main) mode ^{Note 4}		operation	V _{DD} = 3.0 V		1.5				
			Normal	V _{DD} = 5.0 V		3.3	5.3	mA		
					operation	V _{DD} = 3.0 V		3.3	5.3	
	$f_{\text{IH}} = 16 \text{ MHz}^{\text{Note 3}}$ $f_{\text{MX}} = 20 \text{ MHz}^{\text{Note 2}}$ $V_{\text{DD}} = 5.0 \text{ V}$ $f_{\text{MX}} = 20 \text{ MHz}^{\text{Note 2}}$ $V_{\text{DD}} = 3.0 \text{ V}$	f⊪ = 16 MHz ^{Note 3}		V _{DD} = 5.0 V		2.5	3.9	mA		
				V _{DD} = 3.0 V		2.5	3.9			
		$f_{MX} = 20 \text{ MHz}^{Note 2},$		Square wave input		2.8	4.7	mA		
		V _{DD} = 5.0 V		Resonator connection		3.0	4.8			
		$f_{MX} = 20 \text{ MHz}^{Note 2},$	^{e2} , Square wave in	Square wave input		2.8	4.7	mA		
		V _{DD} = 3.0 V		Resonator connection		3.0	4.8			
fмx = Vpp	f_{MX} = 10 MHz ^{Note 2} ,		Square wave input		1.8	2.8	mA			
	V _{DD} = 5.0 V		Resonator connection		1.8	2.8				
	f _{MX} = 10	$f_{MX} = 10 \text{ MHz}^{Note 2},$		Square wave input		1.8	2.8	mA		
	V _{DD} = 3.0 V		Resonator connection		1.8	2.8				

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped
- 4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(1) 20-, 24-pin products

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

$(1A = -40 \ \text{to} + 103 \ \text{c}, 2.4 \ \text{v} \le \text{vbb} \le 3.5 \ \text{v}, \text{vss} = 0 \ \text{v}) $									
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	f _{IH} = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2230	μA
current ^{Note 1}	ent ^{Note 1} mode main) mode ^{No}	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	2230		
				f⊪ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1650	μA
					V _{DD} = 3.0 V		400	1650	
		f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA		
				V _{DD} = 5.0 V	Resonator connection		450	2000	
				$f_{MX} = 20 \text{ MHz}^{\text{Note 3}},$ $V_{\text{DD}} = 3.0 \text{ V}$	Square wave input		280	1900	μA
					Resonator connection		450	2000	
			f_{MX} = 10 MHz ^{Note 3} ,	Square wave input		190 1010	μA		
				V _{DD} = 5.0 V	Resonator connection		260	1090	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	1010	μA
				V _{DD} = 3.0 V	Resonator connection		260	1090	
	IDD3 Note 5	STOP	T _A = -40°C				0.19	0.50	μA
		mode	T _A = +25°C				0.24	0.50	
			T _A = +50°C				0.32	0.80	
			T _A = +70°C			0.48	1.20		
		T _A = +85°C				0.74	2.20		
			T _A = +105°C				1.50	10.20	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or V_{SS}. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.

 Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS(High speed main) mode: V_{DD} = 2.7 V to 5.5 V @1 MHz to 24 MHz

VDD = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C

(0/0)

(2) 30-pin products

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_S$	s = 0 V)
--	----------

(1A = -40 10)	+105.0, 2	.4 V \ VDD	\leq 5.5 V, VSS	= 0 V)						(1/2)
Parameter	Symbol			Conditions	;		MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operating	HS (High-	f⊪ = 24 MHz ^{Note 3}	Basic	V _{DD} = 5.0 V		1.5		mA
current ^{Note 1}	mode	speed main) mode ^{Note 4}		operation	V _{DD} = 3.0 V		1.5			
				Normal	V _{DD} = 5.0 V		3.7	5.8	mA	
					operation	V _{DD} = 3.0 V		3.7	5.8	
				$f_{H} = 16 \text{ MHz}^{\text{Note 3}}$		V _{DD} = 5.0 V		2.7	4.2	mA
						V _{DD} = 3.0 V		2.7	4.2	
				f_{MX} = 20 MHz ^{Note 2} ,		Square wave input		3.0	4.9	mA
				$V_{DD} = 5.0 \text{ V}$ $f_{MX} = 20 \text{ MHz}^{\text{Note 2}},$		Resonator connection		3.2	5.0	
						Square wave input		3.0	4.9	mA
				V _{DD} = 3.0 V		Resonator connection		3.2	5.0	
				$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	1	Square wave input		1.9	2.9	mA
			V _{DD} = 5.0 V		Resonator connection		1.9	2.9		
				f_{MX} = 10 MHz ^{Note 2} ,		Square wave input		1.9	2.9	mA
		V	V _{DD} = 3.0 V		Resonator connection		1.9	2.9		

Notes 1. Total current flowing into VDD, including the input leakage current flowing when the level of the input pin is fixed to VDD or VSS. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. When high-speed on-chip oscillator clock is stopped.
- 3. When high-speed system clock is stopped

4. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS(High speed main) mode: VDD = 2.7 V to 5.5 V @1 MHz to 24 MHz

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - **3.** Temperature condition of the TYP. value is $T_A = 25^{\circ}C$.

(1/2)

(2) 30-pin products

$T_A = -40$ to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0	V)
---	----

$(1A = -40 \ \text{to} + 103 \ \text{c}, 2.4 \ \text{v} \le \text{vbb} \le 3.5 \ \text{v}, \text{vss} = 0 \ \text{v}) $									
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply	IDD2 Note 2	HALT	HS (High-speed	f⊪ = 24 MHz ^{Note 4}	V _{DD} = 5.0 V		440	2300	μA
current Note 1		mode	main) mode ^{Note 6}		V _{DD} = 3.0 V		440	2300	
				f⊪ = 16 MHz ^{Note 4}	V _{DD} = 5.0 V		400	1700	μA
					V _{DD} = 3.0 V		400	1700	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		280	1900	μA
				V _{DD} = 5.0 V	Resonator connection		450	2000	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input	put 280	280	1900	μA
				V _{DD} = 3.0 V	Resonator connection		450	2000	
		f _{MX} = 10 MHz ^{Note 3} ,	Square wave input 190	190	1020	μA			
				V _{DD} = 5.0 V	Resonator connection		260	1100	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		190	1020	μA
				V _{DD} = 3.0 V	Resonator connection		260	1100	
	IDD3 Note 5	STOP	T _A = -40°C				0.18	0.50	μA
		mode	T _A = +25°C				0.23	0.50	
			T _A = +50°C				0.30	1.10	
	T _A = +70°C	T _A = +70°C				0.46	1.90		
		T _A = +85°C				0.75	3.30		
			T _A = +105°C				2.94	15.30	

Notes 1. Total current flowing into V_{DD}, including the input leakage current flowing when the level of the input pin is fixed to V_{DD} or Vss. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.

- 2. During HALT instruction execution by flash memory.
- 3. When high-speed on-chip oscillator clock is stopped.
- 4. When high-speed system clock is stopped.
- 5. Not including the current flowing into the 12-bit interval timer and watchdog timer.

 Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (High speed main) mode: V_{DD} = 2.7 V to 5.5 V @1 MHz to 24 MHz

V_{DD} = 2.4 V to 5.5 V @1 MHz to 16 MHz

- Remarks 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
 - 2. fin: high-speed on-chip oscillator clock frequency
 - 3. Except STOP mode, temperature condition of the TYP. value is TA = 25°C.

(2/2)

(3) Peripheral functions (Common to all products)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
Low-speed onchip oscillator operating current	IFIL Note 1				0.20		μA
12-bit interval timer operating current	ITMKA Notes 1, 2, 3			0.02		μA	
Watchdog timer operating current	IWDT Notes 1, 2, 4	f⊩ = 15 kHz	fı∟ = 15 kHz				μA
A/D converter		When conversion	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.30	1.70	mA
operating current	Notes 1, 5	at maximum speed	Low voltage mode, $AV_{REFP} = V_{DD} = 3.0 V$		0.50	0.70	mA
A/D converter reference voltage operation current	ADREF Note 1				75.0		μA
Temperature sensor operating current	ITMPS Note 1				75.0		μA
LVD operating current	ILVD Notes 1, 6				0.08		μA
Self-programming operating current	IFSP Notes 1, 8				2.00	12.20	mA
BGO operating current	IBGO Notes 1, 7				2.00	12.20	mA
SNOOZE operating	ISNOZ Note 1	ADC operation	The mode is performed Note 9		0.50	1.10	mA
current			The A/D conversion operations are performed, Low voltage mode, AV_{REFP} = V_{DD} = 3.0 V		1.20	2.04	mA
		CSI/UART operation	<u></u>		0.70	1.54	mA

Notes 1. Current flowing to the VDD.

- 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- 3. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of the values of IDD1, IDD2 or IDD3 and ITMKA and IFIL when the 12-bit interval timer operates.
- 4. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The current value of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer operates.
- **5.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of the values of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- 6. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of the values of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- 7. Current flowing only during data flash rewrite.
- 8. Current flowing only during self programming.
- 9. Refer to shift time to the SNOOZE mode, see 17.2.3 SNOOZE mode.

Remarks 1. fiL: Low-speed on-chip oscillator clock frequency

2. Temperature condition of the TYP. value is $T_A = 25^{\circ}C$

29.4 AC Characteristics

Items	Symbol		Condition	S	MIN.	TYP.	MAX.	Unit
Instruction cycle (minimum	Тсү	Main system	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
instruction execution time)		clock (fMAIN) operation	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
		During self	HS (High-	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	0.04167		1	μS
		programming	speed main) mode	$2.4~V \leq V_{\text{DD}} < 2.7~V$	0.0625		1	μS
External main system clock	fex	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$			1.0		20.0	MHz
frequency		$2.4~V \leq V_{\text{DD}} < 2$	$2.4 \text{ V} \leq V_{\text{DD}} < 2.7 \text{ V}$				16.0	MHz
External main system clock	texн, texL	$2.7~V \leq V_{\text{DD}} \leq 5.4$	24			ns		
input high-level width, low- level width		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			30			ns
TI00 to TI07 input high-level width, low-level width	t⊓∺, tr⊫		1/fмск + 10			ns		
TO00 to TO07 output	fто	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V$					12	MHz
frequency		$2.7~V \leq V_{\text{DD}} < 4.0~V$					8	MHz
		$2.4~V \leq V_{\text{DD}} < 2.7~V$					4	MHz
PCLBUZ0, or PCLBUZ1	f PCL	$4.0~V \leq V_{\text{DD}} \leq 5$.5 V				16	MHz
output frequency		$2.7~V \leq V_{\text{DD}} < 4$.0 V				8	MHz
		$2.4~V \leq V_{\text{DD}} < 2$.7 V				4	MHz
INTP0 to INTP5 input high- level width, low-level width	tinth, tintl				1			μS
KR0 to KR9 input available width	t kR				250			ns
RESET low-level width	t RSL				10			μS

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Remark fmck: Timer array unit operation clock frequency

(Operation clock to be set by the CKS0n bit of timer mode register 0n (TMR0n), and the Timer clock select register 0 (TPS0). n: Channel number (n = 0 to 7))

TCY VS VDD (HS (high-speed main) mode)

10 1.0 Cycle time T_{CY} [μ s] When the high-speed on-chip oscillator clock is selected During self programming When high-speed system clock is selected _ _ _ . _ . 0.1 0.0625 0.04167 0.01 0 3.0 2.4 2.7 0 1.0 5.0 5.5 6.0 2.0 4.0 Supply voltage VDD [V]

Minimum Instruction Execution Time during Main System Clock Operation

AC Timing Test Point

External main system clock timing

TI/TO timing

Interrupt Request Input Timing

Key Interrupt Input Timing

RESET input timing

29.5 Peripheral Functions Characteristics

AC Timing Test Point

29.5.1 Serial array unit

(1) During communication at same potential (UART mode)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

<u>.</u>					
Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
Transfer rate ^{Note 1}				fмск/12	bps
		Theoretical value of the maximum transfer rate f_{CLK} = $f_{\text{MCK}} ^{\text{Note2}}$		2.0	Mbps

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

- 2. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:
 - HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V) 16 MHz (2.4 V \leq V_{DD} \leq 5.5 V)
- Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg)

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remarks 1. q: UART number (q = 0 to 2), g: PIM, POM number (g = 0, 1)

2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time	tkCY1	$t_{\text{KCY1}} \geq 4/f_{\text{CLK}} \qquad 2.7 \text{ V} \leq V_{\text{DD}} \leq 5.5 \text{ V}$		334		ns
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	500		ns
SCKp high-/low-level width	t кн1,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–24		ns
	t ĸ∟1	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–36		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tксү1/2–76		ns
SIp setup time (to SCKp↑) Note 1	tsik1	$4.0~V \leq V_{\text{DD}} \leq 5.5$	V	66		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5$	V	66		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5$	V	113		ns
SIp hold time (from SCKp [↑]) Note 2	tksi1			38		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 30 pF ^{Note4}			50	ns

(2)	During communication at same p	ootential (CSI mode) (master mode, SCM	(p internal clock output)
(T _A = -	-40 to +105°C, 2.4 V \leq V _{DD} \leq 5.5	V, Vss = 0 V)		

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode registers 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

Remarks 1. p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)

Parameter	Symbol	Conditi	HS (high-speed	main) Mode	Unit	
				MIN.	MAX.	
SCKp cycle time Note4	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$	20 MHz < fмск	16/ f мск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} \leq 5.5~V$	16 MHz < fмск	16/ f мск		ns
			fмск \leq 16 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	$2.4~V \leq V_{\text{DD}} \leq 5.5~V$			ns
			and 1000			
SCKp high-/low-level width	t кн2,	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$		tксү2/2–14		ns
	tĸ∟2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		tĸcy2/2–16		ns
		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		tkcy2/2–36		ns
SIp setup time (to SCKp↑)	tsik2	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 40		ns
Note 1		$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	C = 30 pF ^{Note4}	$2.7~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 66	ns
SOp output Note 3			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$		2/fмск + 113	ns

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+105^{\circ}C$, 2.4 V $\leq V_{DD} \leq 5.5$ V, Vss = 0 V)

Notes 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 4. C is the load capacitance of the SOp output lines.
- 5. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp and SCKp pins by using port input mode registers 1 (PIM1) and port output mode registers 0, 1, 4 (POM0, POM1, POM4).

CSI mode connection diagram (during communication at same potential)

(Remarks are listed on the next page.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- **Remarks 1.** p: CSI number (p = 00, 01, 11, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3)
 - fMCK: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number (m = 0, 1), n: Channel number (n = 0, 1, 3))

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$									
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit				
			MIN.	MAX.					
SCLr clock frequency	fsc∟	C_b = 100 pF, R_b = 3 k Ω		100 ^{Note 1}	kHz				
Hold time when SCLr = "L"	t LOW	C_b = 100 pF, R_b = 3 k Ω	4600		ns				
Hold time when SCLr = "H"	tніgн	C_b = 100 pF, R_b = 3 k Ω	4600		ns				
Data setup time (reception)	tsu:dat	C_b = 100 pF, R_b = 3 k Ω	1/f _{MCK} + 580 ^{Note 2}		ns				
Data hold time (transmission)	thd:dat	C _b = 100 pF, R _b = 3 kΩ	0	1420	ns				

(4) During communication at same potential (simplified I²C mode)

Notes 1. The value must also be equal to or less than fmck/4.

2. Set the $t_{SU:DAT}$ value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the N-ch open drain output (VDD tolerance) mode for SDAr by using port output mode register h (POMh).

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remarks 1. R_b [Ω]:Communication line (SDAr) pull-up resistance,

Cb [F]: Communication line (SCLr, SDAr) load capacitance

- **2.** r: IIC number (r = 00, 01, 11, 20), h: = POM number (h = 0, 1, 4, 5)
- fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number (m = 0, 1), n: Channel number (0, 1, 3))

Parameter	Symbol		Conditions		HS (high-sı Mo	peed main) ode	Unit
					MIN.	MAX.	
Transfer rate ^{Note4}		Reception	$4.0 \ V \le V_{DD} \le 5.0 \ V_{DD} = $.5 V, 2.7 V \leq V_b \leq 4.0 V		fмск/12 Note1	bps
				$\label{eq:linear} \begin{array}{l} Theoretical value of the maximum \\ transfer rate \\ f_{MCK} = f_{CLK} \\ \hline \\ \textbf{Note2} \\ \hline \\ \textbf{2.7 V} \leq V_{DD} < 4.0 \ \text{V}, \ \textbf{2.3 V} \leq V_b \leq \textbf{2.7 V} \end{array}$		2.0	Mbps
			$2.7 \text{ V} \le \text{V}_{\text{DD}} < 4$			fмск/12 Note1	bps
			Theoretical value of the maximum transfer rate fмск = fclк		2.0	Mbps	
			2.4 V \leq V_{DD} < 3.3 V, 1.6 V \leq V_b \leq 2.0 V			fмск/12 Notes1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK}^{Note2}$		2.0	Mbps
		Transmission	$4.0~V \le V_{DD} \le 5$.5 V, 2.7 V \leq V _b \leq 4.0 V		Note 3	bps
				Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 1.4 \text{ k}\Omega, V_b = 2.7 \text{ V}$		2.0 Note 4	Mbps
			$2.7~V \leq V_{\text{DD}} < 4$.0 V, 2.3 V \leq V _b \leq 2.7 V,		Note 5	bps
				Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 6	Mbps
			$2.4~V \leq V_{\text{DD}} < 3$.3 V, 1.6 V \leq V _b \leq 2.0 V		Note 7	bps
	$\begin{bmatrix} 2.7 & V \leq VD & (3.5 & V) \\ The trans C_b = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$		Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 8	Mbps	

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Notes 1. Transfer rate in the SNOOZE mode is 4800 bps only.

2. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

HS (high-speed main) mode: 24 MHz (2.7 V \leq V_{DD} \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

3. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- 5. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq VDD < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}$$

$$\frac{1}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- 7. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.4 V \leq VDD < 3.3 V, 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 7 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (V_{DD} tolerance) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

- **Remarks 1.** R_b[Ω]: Communication line (TxDq) pull-up resistance, C_b[F]: Communication line (TxDq) load capacitance, V_b[V]: Communication line voltage
 - 2. q: UART number (q = 0 to 2), g: PIM and POM number (g = 0, 1)
 - fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number, n: Channel number (mn = 00 to 03, 10, 11))
 - **4.** UART0 in 20-, 24-pin products is valid the communication at different potential only when peripheral I/O redirect function is not used.

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (1/3)

Parameter	Symbol		Conditions		d main) Mode	Unit
				MIN.	MAX.	
SCKp cycle time	tkcy1	$t_{\text{KCY1}} \ge 4/f_{\text{CLK}}$	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	600		ns
			$2.7~V \leq V_{b} \leq 4.0~V,$			
			C_b = 30 pF, R_b = 1.4 k Ω			
			$2.7~\text{V} \leq \text{V}_{\text{DD}} < 4.0~\text{V},$	1000		ns
			$2.3~V \leq V_b \leq 2.7~V,$			
			C _b = 30 pF, R _b = 2.7 kΩ			
			$2.4 V \le V_{DD} < 3.3 V,$	2300		ns
			$1.6~V \leq V_b \leq 2.0~V,$			
			C _b = 30 pF, R _b = 5.5 kΩ			
SCKp high-level width	t кн1	$4.0 \ V \le V_{\text{DD}} \le 5.5 \ V, \ 2.7 \ V \le V_{\text{b}} \le 4.0 \ V,$		tксү1/2 –150		ns
		C _b = 30 pF, R _b =	= 1.4 kΩ			
		$2.7 \text{ V} \leq V_{\text{DD}} < 4.$	0 V, 2.3 V \leq V _b \leq 2.7 V,	tксү1/2-340		ns
		C _b = 30 pF, R _b =	= 2.7 kΩ			
		$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 3.$	$3 V, 1.6 V \le V_b \le 2.0 V,$	tксү1/2-916		ns
		C _b = 30 pF, R _b =	= 5.5 kΩ			
SCKp low-level width	tĸ∟1	$4.0~V \leq V_{\text{DD}} \leq 5.$	5 V, 2.7 V \leq V _b \leq 4.0 V,	tксү1/2 –24		ns
		C _b = 30 pF, R _b =	= 1.4 kΩ			
		$2.7 \text{ V} \leq \text{V}_{\text{DD}}$ < 4.	$0 \text{ V}, 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$	tксү1/2 –36		ns
		$C_b = 30 \text{ pF}, R_b = 2.7 \text{ k}\Omega$				
		$2.4 V \le V_{DD} < 3.$	$3 \text{ V}, 1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$	tксү1/2 –100		ns
		C _b = 30 pF, R _b =	= 5.5 kΩ			

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_H and V_L, see the DC characteristics with TTL input buffer selected.

- 2. Communication at different potential is not allowed in CSI01, CSI11.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - 2. p: CSI number (p = 00, 20)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (2/3)

Parameter	Symbol	Conditions	HS (high-spee	Unit	
			MIN.	MAX.	
SIp setup time (to SCKp↑) _{Note}	tsik1		162		ns
		$\label{eq:VD} \begin{array}{c} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	354		ns
		$\label{eq:VD} \begin{array}{c} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	958		ns
SIp hold time (from SCKp↑) ^{Note}	tksii		38		ns
		$\label{eq:VD} \begin{array}{l} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note}	tĸso1			200	ns
		$\label{eq:VD} \begin{array}{c} 2.7 \; V \leq V_{DD} < 4.0 \; V, \; 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		390	ns
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		966	ns

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Cautions and Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output) (3/3)

Parameter Symbol		Conditions	HS (high-speed	Unit	
			MIN.	MAX.	
SIp setup time (to SCKp \downarrow) Note	tsik1	$\begin{array}{l} \label{eq:VDD} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq V_{\text{b}} \leq 4.0 \ \text{V}, \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 1.4 \ \text{k}\Omega \end{array}$	88		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	88		ns
		$\begin{array}{l} 2.4 \ V \leq V_{\text{DD}} < 3.3 \ V, \ 1.6 \ V \leq V_{\text{b}} \leq 2.0 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 5.5 \ k\Omega \end{array}$	220		ns
SIp hold time f (from SCKp↓) ^{Note}	tksii	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq V_{\text{b}} \leq 4.0 \ \text{V}, \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 1.4 \ \text{k}\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	38		ns
		$\label{eq:VDD} \begin{array}{l} \mbox{2.4 V} \le V_{\text{DD}} < 3.3 \mbox{ V}, \ 1.6 \mbox{ V} \le V_{\text{b}} \le 2.0 \mbox{ V}, \\ \mbox{C}_{\text{b}} = 30 \mbox{ pF}, \ R_{\text{b}} = 5.5 \mbox{ k} \Omega \end{array}$	38		ns
Delay time from SCKp↑ to SOp output ^{Note}	tkso1	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq V_{\text{b}} \leq 4.0 \ \text{V}, \\ C_{\text{b}} = 30 \ \text{pF}, \ R_{\text{b}} = 1.4 \ \text{k}\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{array}{c} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 30 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$		50	ns
		$\label{eq:VDD} \begin{array}{l} \mbox{2.4 V} \le V_{\text{DD}} < 3.3 \mbox{ V}, \mbox{ 1.6 V} \le V_{b} \le 2.0 \mbox{ V}, \\ \mbox{C}_{b} = 30 \mbox{ pF}, \mbox{ R}_{b} = 5.5 \mbox{ k}\Omega \end{array}$		50	ns

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Note When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

- Cautions 1. Select the TTL input buffer for the SIp pin and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin and SCKp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_H and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Communication at different potential is not allowed in CSI01, CSI11.
- **Remarks 1.** R_b [Ω]: Communication line (SCKp, SOp) pull-up resistance, C_b [F]: Communication line (SCKp, SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

CSI mode connection diagram (during communication at different potential)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

Parameter	Symbol	Conditions		HS (high-spe Mod	HS (high-speed main) Mode	
				MIN.	MAX.	
SCKp cycle time Note 1	t ксү2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,$	20 MHz < $f_{MCK} \le$ 24 MHz	24/f мск		ns
		$2.7~V \leq V_b \leq 4.0~V$	$8 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	20/f мск		ns
			4 MHz < $f_{MCK} \le 8$ MHz	16/f мск		ns
			fмск ≤4 MHz	12/fмск		ns
		$2.7~V \leq V_{\text{DD}} < 4.0~V,$	20 MHz < $f_{MCK} \le$ 24 MHz	32/f мск		ns
		$2.3~V \leq V_b \leq 2.7~V$	16 MHz < $f_{MCK} \le 20$ MHz	28/f мск		ns
			8 MHz < fmck \leq 16 MHz	24/fмск		ns
			4 MHz < $f_{MCK} \le 8$ MHz	16/f мск		ns
			fмск ≤4 MHz	12/fмск		ns
		$2.4~V \leq V_{\text{DD}} < 3.3~V,$	20 MHz < $f_{MCK} \le$ 24 MHz	72/f мск		ns
		$1.6~V \leq V_b \leq 2.0~V$	16 MHz < $f_{MCK} \le 20$ MHz	64/f мск		ns
			8 MHz < fmck \leq 16 MHz	52/f мск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	32/f мск		ns
			fмск ≤4 MHz	20/f мск		ns
SCKp high-/low-level	t кн2,	$4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ V, \ 2.7 \ V \leq V_{\text{b}} \leq 4.0 \ V$		tkcy2/2 - 24		ns
width	tĸ∟2	$2.7~V \leq V_{\text{DD}}$ < 4.0 V, 2.3 V $\leq V_{\text{b}} \leq 2.7~V$		tkcy2/2 - 36		ns
		$2.4~V \leq V_{DD}$ < 3.3 V, 1.6 V $\leq V_b \leq 2.0~V$		tkcy2/2 - 100		ns
SIp setup time	tsik2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7$	$V \le V_b \le 4.0 V$	1/fмск + 40		ns
(to SCKp↑) ^{Note 2}		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V, 2.3	$V \leq V_b \leq 2.7 V$	1/fмск + 40		ns
		$2.4~V \leq V_{\text{DD}}$ < 3.3 V, 1.6 V $\leq V_{b} \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp \downarrow to	tkso2	$4.0~V \leq V_{\text{DD}} \leq 5.5~V,~2.7$	$V \leq V_b \leq 4.0 V,$		2/fмск +	ns
SOp output Note 4		C _b = 30 pF, R _b = 1.4 kΩ	2		240	
		$2.7 \text{ V} \le \text{V}_{\text{DD}}$ < 4.0 V, 2.3	$V \leq V_b \leq 2.7 V$,		2/fмск +	ns
		C _b = 30 pF, R _b = 2.7 kΩ	2		428	
		$2.4 \text{ V} \le \text{V}_{\text{DD}} < 3.3 \text{ V}, 1.6 \text{ V}_{\text{DD}}$	$V \leq V_b \leq 2.0 V$,		2/fмск +	ns
		C _b = 30 pF, R _b = 5.5 kΩ			1146	

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input) ($T_A = -40$ to $+105^{\circ}$ C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V)

Notes 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps

- 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- **4.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp[↑]" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Cautions 1. Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (V_{DD} tolerance) mode for the SOp pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.
 - 2. Communication at different potential is not allowed in CSI01, CSI11.

(Remarks are listed on the next page.)

CSI mode connection diagram (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SOp) pull-up resistance, C_b [F]: Communication line (SOp) load capacitance, V_b [V]: Communication line voltage
 - **2.** p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number, n: Channel number (mn = 00, 10))

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark p: CSI number (p = 00, 20), m: Unit number (m = 0, 1), n: Channel number (n = 0)

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \ V \leq V_{\text{DD}} \leq 5.5 \ \text{V}, \ 2.7 \ \text{V} \leq V_{\text{b}} \leq 4.0 \ \text{V}, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 2.8 \ \text{k}\Omega \end{array}$		100 ^{Note1}	kHz
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ \text{pF}, \ R_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		100 ^{Note1}	kHz
		2.4 V \leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, C _b = 100 pF R _b = 5.5 kQ		100 ^{Note1}	kHz
Hold time when SCLr = "L"	t LOW		4600		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	4600		ns
		2.4 V \leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, C _b = 100 pF, R _b = 5.5 k Ω	4650		ns
Hold time when SCLr = "H"	t ніgн	$\begin{array}{l} 4.0 \ V \leq V_{DD} \leq 5.5 \ V, \ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{array}$	2700		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ p\text{F}, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	2400		ns
		$\label{eq:VDD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1830		ns
Data setup time (reception)	tsu:dat		1/f _{мск} + 760 ^{Note2}		ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	1/f _{мск} + 760 ^{Note2}		ns
		$\label{eq:VD} \begin{array}{l} 2.4 \ V \leq V_{DD} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fмск + 570 ^{Note2}		ns
Data setup time (transmission)"	thd:dat		0	1420	ns
		$\label{eq:VDD} \begin{array}{l} 2.7 \ V \leq V_{\text{DD}} < 4.0 \ V, \ 2.3 \ V \leq V_{\text{b}} \leq 2.7 \ V, \\ C_{\text{b}} = 100 \ pF, \ R_{\text{b}} = 2.7 \ k\Omega \end{array}$	0	1420	ns
		2.4 V \leq V _{DD} < 3.3 V, 1.6 V \leq V _b \leq 2.0 V, C _b = 100 pF R _b = 5.5 kQ	0	1215	ns

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Notes 1. The value must also be equal to or less than $f_{MCK}/4$.

2. Set the $t_{SU:DAT}$ value to keep the hold time of SCLr = "L" and SCLr = "H".

Cautions 1. Select the TTL input buffer and the N-ch open drain output (VDD tolerance) mode for the SDAr pin and the N-ch open drain output (VDD tolerance) mode for the SCLr pin by using port input mode register 1 (PIM1) and port output mode register 1 (POM1). For V_{IH} and V_{IL}, see the DC characteristics with TTL input buffer selected.

2. Communication at different potential is not allowed in IIC01, IIC11.

(Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remarks 1.** R_b [Ω]: Communication line (SDAr, SCLr) pull-up resistance, C_b [F]: Communication line (SDAr, SCLr) load capacitance, V_b [V]: Communication line voltage
 - **2.** r: IIC Number (r = 00, 20)
 - fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn), and the Serial clock select register m (SPSm). m: Unit number (m = 0,1), n: Channel number (n = 0))

29.5.2 Serial interface IICA

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit		
			Standa	rd Mode	Fast	Mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode: fcLk≥ 3.5 MHz			0	400	kHz
		Normal mode: fcLk≥ 1 MHz	0	100			kHz
Setup time of restart condition	tsu:sta		4.7		0.6		μS
Hold time Note 1	thd:sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	t LOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	t HIGH		4.0		0.6		μS
Data setup time (reception)	tsu:dat		250		100		ns
Data hold time (transmission) ^{Note 2}	thd:dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu:sto		4.0		0.6		μS
Bus-free time	t BUF		4.7		1.3		μS

$(T_A = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le V_{DD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Notes 1. The first clock pulse is generated after this period when the start/restart condition is detected.

- 2. The maximum value (MAX.) of the:DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.
- Caution The values in the above table are applied even when bit 2 (PIOR2) in the peripheral I/O redirection register (PIOR) is 1 in 30-pin products only. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Normal mode:	C_b = 400 pF, Rb = 2.7 k Ω
Fast mode:	C_b = 320 pF, Rb = 1.1 k Ω

29.6 Analog Characteristics

29.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Input channel		Reference Voltage	
	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = Vss	Reference voltage (+) = V _{BGR} Reference voltage (–) = AV _{REFM}
ANI0 to ANI3	Refer to 29.6.1 (1).	Refer to 29.6.1 (3).	Refer to 29.6.1 (4).
ANI16 to ANI22	Refer to 29.6.1 (2).		
Internal reference voltage	Refer to 29.6.1 (1).		-
Temperature sensor output voltage			

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2, ANI3, internal reference voltage, and temperature sensor output voltage

(T_A = -40 to +105°C, 2.4 V \leq AV_{REFP} \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AV_{REFP}, Reference voltage (-) = AV_{REFM} = 0 V)

Parameter	Symbol	Condition	S	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution, AV _{REFP} = V _{DD}	Note 3		1.2	±3.5	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2, ANI3	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
10 Ta vc se		10-bit resolution Target pin: Internal reference	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V\text{DD} \leq 5.5~V$	3.5625		39	μS
	voltage, and temperature sensor output voltage	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS	
	(HS (high-speed r	(HS (high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	EZS	10-bit resolution, AVREFP = VDD	10-bit resolution, AV _{REFP} = V _{DD} ^{Note 3}			±0.25	%FSR
Full-scale error ^{Notes 1, 2}	EFS	10-bit resolution, AV _{REFP} = V _{DD}	Note 3			±0.25	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution, AV _{REFP} = V _{DD}	Note 3			±2.5	LSB
Differential linearity error	DLE	10-bit resolution, AV _{REFP} = V _{DD}	Note 3			±1.5	LSB
Note 1							
Analog input voltage	VAIN	ANI2, ANI3		0		AVREFP	V
		Internal reference voltage			$V_{\text{BGR}}^{\text{ Note 4}}$		V
		(HS (high-speed main) mode)					
		Temperature sensor output vol (HS (high-speed main) mode)	tage	2		VTMPS25 Note 4	

Notes 1. Excludes quantization error (±1/2 LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} < V_{DD}, the MAX. values are as follows. Overall error: Add ±1.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AV_{REFP} = V_{DD}.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AV_{REFP} = V_{DD}.

4. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(2) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI22

 $(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}, \text{V}_{\text{SS}} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{\text{REFP}}, \text{Reference voltage (-)} = \text{AV}_{\text{REFM}} = 0 \text{ V})$

Parameter	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution, AV _{REFP} = V _{DD} ^{No}	te 3		1.2	±5.0	LSB
Conversion time	t CONV	10-bit resolution 3.6 Target ANI pin: ANI16 to ANI22 2.7 2.4	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.125		39	μS
			$2.7~V \leq V \text{DD} \leq 5.5~V$	3.1875		39	μS
			$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Zero-scale error Notes 1, 2	Ezs	10-bit resolution, AV _{REFP} = V _{DD} ^{No}	te 3			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution, AV _{REFP} = V _{DD} ^{No}	te 3			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution, AV _{REFP} = V _{DD} ^{No}	te 3			±3.5	LSB
Differential linearity error ^{Note 1}	DLE	10-bit resolution, $AV_{REFP} = V_{DD}^{Note 3}$				±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI22		0		AVREFP and VDD	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

- 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- 3. When AV_{REFP} ≤ V_{DD}, the MAX. values are as follows. Overall error: Add ±4.0 LSB to the MAX. value when AV_{REFP} = V_{DD}. Zero-scale error/Full-scale error: Add ±0.20%FSR to the MAX. value when AV_{REFP} = V_{DD}. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AV_{REFP} = V_{DD}.

(3) When reference voltage (+) = V_{DD} (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI3, ANI16 to ANI22, internal reference voltage, and temperature sensor output voltage

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error ^{Note 1}	AINL	10-bit resolution			1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V\text{DD} \leq 5.5~V$	2.125		39	μS
		Target pin: ANI0 to ANI3,	$2.7~V \leq V\text{DD} \leq 5.5~V$	3.1875		39	μS
		ANI16 to ANI22	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μS
Conversion time	t CONV	10-bit resolution	$3.6~V \leq V \text{DD} \leq 5.5~V$	2.375		39	μS
		Target pin: internal reference	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	3.5625		39	μS
		voltage, and temperature	$2.4~V \leq V \text{DD} \leq 5.5~V$	17		39	μs
		(high-speed main) mode)					
Zero-scale error ^{Notes 1, 2}	Ezs	10-bit resolution	·			±0.60	%FSR
Full-scale error ^{Notes 1, 2}	Ers	10-bit resolution				±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	10-bit resolution				±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution				±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI3, ANI16 to ANI2	2	0		Vdd	V
		Internal reference voltage (HS (high-speed main) mode)			VBGR Note 3		V
		Temperature sensor output v (HS (high-speed main) mode)	Temperature sensor output voltage (HS (high-speed main) mode)		VTMPS25 Note 3		

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, Reference voltage (+) = V_{DD}, Reference voltage (-) = V_{SS})

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM (ADREFM = 1), target pin: ANI0, ANI2, ANI3, and ANI16 to ANI22

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V},$	Vss = 0 V, Reference voltage (+) = VBGR	^{Note 3} , Reference voltage (–) = AVREFM
^{Note 4} = 0 V, HS (high-speed main) mode)		

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		bit
Conversion time	t CONV	8-bit resolution	17		39	μs
Zero-scale error ^{Notes 1, 2}	Ezs	8-bit resolution			±0.60	%FSR
Integral linearity error ^{Note 1}	ILE	8-bit resolution			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution			±1.0	LSB
Analog input voltage	VAIN		0		$V_{\text{BGR}}^{\text{ Note 3}}$	V

Notes 1. Excludes quantization error ($\pm 1/2$ LSB).

2. This value is indicated as a ratio (%FSR) to the full-scale value.

3. Refer to 29.6.2 Temperature sensor/internal reference voltage characteristics.

4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (–) = AV_{REFM}. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (–) = AV_{REFM}. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (–) = AV_{REFM}.

29.6.2 Temperature sensor characteristics

(T_A = -40 to +105°C, 2.4 V \leq V_{DD} \leq 5.5 V, V_{SS} = 0 V, HS (high-speed main) mode

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Reference output voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.50	V
Temperature coefficient	Fvtmps	Temperature sensor output voltage that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tамр		5			μs

29.6.3 POR circuit characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection voltage	VPOR	Power supply rise time	1.45	1.51	1.57	V
	VPDR	Power supply fall time	1.44	1.50	1.56	V
Minimum pulse width Note	Tpw		300			μs

Note Minimum time required for a POR reset when V_{DD} exceeds below V_{PDR}. This is also the minimum time required for a POR reset from when V_{DD} exceeds below 0.7 V to when V_{DD} exceeds V_{POR} while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

29.6.4 LVD circuit characteristics

LVD Detection Voltage of Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Detection supply voltage	VLVD0	Power supply rise time	3.90	4.06	4.22	V
		Power supply fall time	3.83	3.98	4.13	V
	VLVD1	Power supply rise time	3.60	3.75	3.90	V
		Power supply fall time	3.53	3.67	3.81	V
	VLVD2	Power supply rise time	3.01	3.13	3.25	V
		Power supply fall time	2.94	3.06	3.18	V
	VLVD3	Power supply rise time	2.90	3.02	3.14	V
		Power supply fall time	2.85	2.96	3.07	V
	VLVD4	Power supply rise time	2.81	2.92	3.03	V
		Power supply fall time	2.75	2.86	2.97	V
	VLVD5	Power supply rise time	2.70	2.81	2.92	V
		Power supply fall time	2.64	2.75	2.86	V
	VLVD6	Power supply rise time	2.61	2.71	2.81	V
		Power supply fall time	2.55	2.65	2.75	V
	VLVD7	Power supply rise time	2.51	2.61	2.71	V
		Power supply fall time	2.45	2.55	2.65	V
Minimum pulse width	tLW		300			μs
Detection delay time					300	μS

LVD detection voltage of interrupt & reset mode

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ V}_{PDR} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol		Cond	MIN.	TYP.	MAX.	Unit	
Interrupt and reset	VLVDD0	VPOC2,	VPOC1, VPOC1 = 0, 1, 1, falli	ng reset voltage	2.64	2.75	2.86	V
mode	VLVDD1		LVIS1, LVIS0 = 1, 0	Rising reset release voltage	2.81	2.92	3.03	V
				Falling interrupt voltage	2.75	2.86	2.97	V
	VLVDD2	LVIS1, LVIS0 = 0, 1	LVIS1, LVIS0 = 0, 1 Rising reset release voltage	Rising reset release voltage	2.90	3.02	3.14	V
				Falling interrupt voltage	2.85	2.96	3.07	V
	VLVDD3		LVIS1, LVIS0 = 0, 0	Rising reset release voltage	3.90	4.06	4.22	V
				Falling interrupt voltage	3.83	3.98	4.13	V

29.6.5 Power supply voltage rising slope characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until V_{DD} reaches the operating voltage range shown in 29.4 AC Characteristics.

29.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, \text{ Vss} = 0 \text{ V}$	')					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is affected, but data is not retained when a POR reset is affected.

29.8 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
System clock frequency	fclk			1		24	MHz
Code flash memory rewritable times Notes 1, 2, 3	Cerwr	Retained for 20 years	T _A = 85°C	1,000			Times
Data flash memory rewritable times		Retained for 1 year	T _A = 25°C		1,000,000		
Notes 1, 2, 3		Retained for 5 years	T _A = 85°C	100,000			
		Retained for 20 years	T _A = 85°C	10,000			

Notes 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are a period of time in which the next rewrite is performed after a rewrite.

- 2. When using flash memory programmer or library program from Renesas
- **3.** This shows the flash memory characteristics. This is a result obtained from Renesas Electronics reliability test.

29.9 Dedicated Flash Memory Programmer Communication (UART)

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{ V}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

29.10 Timing Specs for Switching Flash Memory Programming Modes

	,					
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μS
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = 0 \text{ V})$

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends.).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.
- **Remark** tsuinit: The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until an external reset ends.
 - thD: How long to keep the TOOL0 pin at the low level from when the external reset ends. (excluding the processing time of the firmware to control the flash memory)

