
Microcontroller Technical Information

Document No. ZBG-CD-10-0030 1/3

Date issued Sep 13, 2010 CA850

V850 C Compiler Package

Usage Restrictions
Issued by MCU Tool Product Marketing Department

MCU Software Division

MCU Business Unit

Renesas Electronics Corporation

 Usage restriction

 Upgrade

 Document modification

Related documents

CA850 Ver. 3.20 C Language: U18513EJ1 (1st edition)

CA850 Ver. 3.20 Assembly Language: U18514EJ1 (1st edition)

CA850 Ver. 3.20 Operation: U18512EJ1 (1st edition)

CA850 Ver. 3.20 Link Directives: U18515EJ1 (1st edition)

PM+ Ver. 6.30 User’s Manual: U18416EJ1 (1st edition)

CA850 Ver. 2.50 Coding Technique: U16076EJ1 (1st edition)

Notification

classification

 Other notification

1. Affected product

CA850 (part number: CA703000)

2. New restrictions

Restrictions No. 111 and No. 112 for the CA850 have been added.

 No. 111 Restriction on incorrect compare operation optimization while casting

 No. 112 Restriction on incorrect move optimization of assignment sentence

3. Workarounds

The workarounds below are available for these restrictions. See attachments 1 for details.

CA850:

 No. 111 Insert '__asm("¥n");' before the line where incorrect comparison operation optimization

occurs.

 No. 112 Insert '__asm("¥n");' before the line which the checktool output.

4. Removed restrictions

The restrictions below have been removed. See attachments 1 and 2 for details.

CA850:

 No. 104 Incorrect number of loop executions

 No. 105 Incorrect string literals

 No. 106 Restriction involving format specifiers for the sscanf, fscanf, and scanf functions

 No. 107 Restriction involving the character string parameter for the atoi, atol, strtol, and strtoul

functions

 No. 108 Restriction involving initialization of a structure that includes a bit field among its

members

 No. 109 Restriction involving nested conditionally assembled pseudo instructions

 No. 110 Restriction involving assignment within switch and if statements

Other package tools:

 No. 9 Restriction on acquiring information on included C source files handled by PM+

5. Modification schedule

New restrictions described in this document will be corrected in CA850 V3.46, which will be released

at the end of September 2010.

6. List of restrictions

A list of restrictions in the CA850, including the revision history and detailed information, is described

on attachment 1, and a list of restrictions in other package tools is described on attachment 2.

ZBG-CD-10-0030 2/3

7. Document revision history

V850 C Compiler Package CA850 - Usage Restrictions

Document Number Issued on Description

SBG-TT-0003-E November 2, 2001 Newly created.

SBG-TT-0064-E February 5, 2002 Addition of new restrictions (No. 68 to No. 71)

SBG-TT-0074-E March 7, 2002 Addition of new restriction (No. 72)

SBG-TT-0154-E July 12, 2002 Addition of new restrictions (No. 73 to No. 79)

SBG-TT-0218-E October 10, 2002 Correction of restrictions

(No. 2, No. 3, No. 14, No. 28, No. 43, No. 44, No. 60, No. 71, No. 73,

No. 74, No. 75, No. 76, No. 77, No. 78, and No. 79)

SBG-DT-03-0027-E January 31, 2003 Addition of new condition for restriction (No. 56)

Addition of new restrictions (No. 80 to No. 82)

SBG-DT-03-0167-E June 10, 2003 Addition of new restrictions (No. 83 to No. 87)

Addition of new restrictions to other package tools (No. 1 and No. 2)

SBG-DT-03-0218-E July 23, 2003 Correction of restrictions

(No. 9, No. 10, No. 11, No. 19, No. 36, No. 37, No. 56, No. 80, No.

81, No. 83, No. 84, No. 85, No. 86, No. 87, and a part of No. 61)

SBG-DT-03-0254-E September 26, 2003 Correction of erroneous descriptions

 [Correction] in No. 9, No. 10, No. 11, No. 19, No. 36, and No. 37

SBG-DT-04-0005 January 9, 2004 Addition of new restrictions (No. 88 and No. 89)

SBG-DT-04-0119 March 24, 2004 Addition of new restriction (No. 90)

ZBG-CD-04-0009 May 28, 2004 Correction of restrictions

(No. 1, No. 35, No. 59, No. 61, No. 88, No. 89, and No. 90)

Addition of new restriction (No. 91)

ZBG-CD-04-0070 September 22, 2004 Addition of new restriction (No. 92)

ZBG-CD-05-0026 March 30, 2005 Addition of new restriction (No. 93)

Addition of new restriction to other package tools (No. 3)

Correction of restrictions (No. 47, No. 48, No. 91, No. 92)

Correction of erroneous description (No. 13)

ZBG-CD-05-0062 June 29, 2005 Addition of new restrictions (No. 94 to No. 95)

Correction of erroneous description (No. 7)

ZBG-CD-05-0077 September 1, 2005 Addition of new restrictions to other package tools (No. 4 to No. 6)

ZBG-CD-05-0112 December 5, 2005 Addition of new restriction (No. 97)

Addition of new restriction to other package tools (No. 7)

ZBG-CD-06-0044 May 31, 2006 Addition of new restriction to other package tools (No. 8)

Correction of restrictions (No. 94 and No. 97)

Correction of restrictions to other package tools (No. 3 to No. 7)

ZBG-CD-07-0067 September 27, 2007 Addition of new restrictions (No. 98 to No. 103)

ZBG-CD-09-0025 May 21, 2009 Addition of new restrictions (No. 104 to No. 110)

Addition of new restriction to other package tools (No. 9)

Correction of restrictions (No. 93, No. 98 to No. 103)

Correction of restriction to other package tools (No. 8)

ZBG-CD-10-0030 Sep 13, 2010 Addition of new restrictions (No. 111 and No. 112)

Correction of restrictions (No. 104 to No. 110)

Correction of restriction to other package tools (No. 9)

ZBG-CD-10-0030 3/3

ZBG-CD-10-0030 Attachment 1 - 1/78

List of Usage Restrictions in CA850

1. Product History

Version
No. Restrictions and Changes/Additions to Specifications

V2.41 2.50 2.6x 2.70 2.72 3.00 3.10 3.20 3.30 3.4x

1 Restriction on file name including space          

2 Restriction on length of assembly source          

3 Restriction on length of variable name          

4 Restriction on precision during floating-point constant

operation

         

5 Restriction on invalid processing of specific constant

operation (Windows version only)

         

6 Restriction on structures used with conditional operator

in function parameters

         

7 Restriction on indirect function calling          

8 Restriction involving meaningless function definition          

9 Restriction on number after preprocessor directive          

10 Restriction on invalid identifier after preprocessor

directive

         

11 Restriction on declaring union with struct          

12 Restriction on extra () in function prototype          

13 Restriction on using extern when defining structure          

14 Restriction on initialization with character string          

15 Restriction on switch statement at the end of infinite

loop

         

16 Restriction on debugging information symbol          

17 Restriction on successive assignment expressions          

18 Restriction on register assignment of runtime library          

19 Restriction on section file and global variables          

20 Restriction on system call ext_tsk          

21 Restriction on section allocation          

22 Restriction on section file with variable defined in

assembly source

         

23 Restriction on section file with tentative definition of

external variables of same name in multiple files

         

24 Restriction on operation including pointer constant          

25 Restriction on accessing bits of the peripheral I/O

register

         

26 Restriction on volatile specification for nested

structures and unions

         

27 Restriction on NOT operator used with constant 0          

28 Restriction on assembler optimization in V850E mode          

29 Restriction on specifying optimization option          

30 Restriction on object file size during optimization          

: Applicable, : Not applicable, : Not relevant, *: Check tool available

ZBG-CD-10-0030 Attachment 1 - 2/78

Version
No. Restrictions and Changes/Additions to Specifications

V2.41 2.50 2.6x 2.70 2.72 3.00 3.10 3.20 3.30 3.4x

31 Restrictions on debugging during optimization          

32 Restriction on using _rcopy function in loop          

33 Restriction on address of structure member          

34 Restriction on bit field          

35 Restriction on .option nomacro pseudo instruction          

36 Restriction on specifying only  (tilde) in macro          

37 Restriction on  (tilde) when macro is nested          

38 Restriction on invalid instruction sal          

39 Restriction on file name for linker directive file          

40 Restriction on referencing specific symbols and

reserved symbols in C source

         

41 Restriction on specifying linker option -r (applies to

UNIX version CA850 only)

         

42 Restriction on warning message related to EP-relative

segment

         

43 Restriction on warning message related to segment          

44 Restriction on object file name in archive file          

45 Restriction on size of rompsec section displayed by -m

option of romp850

         

46 Restriction on output file path specification option of

performance checker

         

47 Restriction on output file path specification option of

cross-reference tool

         

48 Restriction on output file path specification option of

memory layout visualization tool

         

49 Restriction on 1-bit manipulation using &, |, or ~          

50 Restriction on unsigned short in structure packing          

51 Restriction on assignment of a union including indirect

assignment

         

52 Restriction on creating a relinkable object          

53 Restriction on -Wi,-O4 specifications for switch

statement

         

54 Restriction on global and static functions having the

same name

         

55 Restriction on string literal in a function          

56 Restriction on variable initialization          

57 Restriction on declaring a pointer to a function that has

a structure as its parameter

         

58 Restriction on label subtraction in sld or sst

instruction displacement

         

59 Restriction on internal ROM checking by ROMization

processor

         

60 Restriction on temporary file directory          

: Applicable, : Not applicable, : Not relevant, *: Check tool available

ZBG-CD-10-0030 Attachment 1 - 3/78

Version
No. Restrictions and Changes/Additions to Specifications

V2.41 2.50 2.6x 2.70 2.72 3.00 3.10 3.20 3.30 3.4x

61 Restriction on multibyte characters in a command file          

62 Restriction on structure pointer for structure packing          

63 Restriction on assignment to and reference of a

structure

         

64 Restriction on optimization for two functions          

65 Restriction on allocating unsigned char variable to

tidata_word section

         

66 Restriction on constant expression in preprocessing          

67 Restriction whereby code is moved due to assembler

optimization

         

68 Restriction whereby the compiler stops during

optimization

         

69 Restriction on project manager during building          

70 Restriction on static function written in #pragma

section

         

71 Restriction on pointer constant when accessing

address with offset

         

72 Restriction on optimization for if statement          

73 Restriction on optimization for switch statement          

74 Restriction on initialization of bit field          

75 Restriction on initialization of automatic array          

76 Restriction on ov flag in machine-dependent

optimization module

         

77 Restriction on shift in machine-dependent optimization

module

         

78 Restriction on union containing integer and pointer          

79 Restriction on compound assignment of values to bit

field members when structured packing is specified

         

80 Restriction on optimization for union containing integer

and pointer

         

81 Restriction on packed structure parameter  *        

82 Restriction on data swap include function          

83 Restriction on inlining a function with structure as

parameter

 *        

84 Restriction on function pointer  *        

85 Restriction on included function __sasf()          

86 Restriction on conversion from float to short or

unsigned short

 *        

87 Restriction on interrupt function  *        

88 Restriction on generating code for complex

expressions

 * *       

89 Restriction on parameter of inline function  * *       

90 Restriction on optimization for loop processing  * *       

: Applicable, : Not applicable, : Not relevant, *: Check tool available

ZBG-CD-10-0030 Attachment 1 - 4/78

Version
No. Restrictions and Changes/Additions to Specifications

V2.41 2.50 2.6x 2.70 2.72 3.00 3.10 3.20 3.30 3.4x

91 Restriction that an undefined-symbol error occurs due

to if and goto statements

         

92 Restriction on flash/external ROM re-link function

during linking

   *      

93 Restriction whereby error E2288 is output          

94 Restriction on security ID and option byte          

95 Restriction on floating point constants and integer type          

96 Restriction on input conversion for I/O function in

standard library

         

97 Restriction on assignment in machine-dependent

optimization module

 * * * * *    

98 Restriction whereby data in an automatic variable area

is illegally deleted

 * * * * * *   

99 Restriction on address specification with -U option of

hx850

         

100 Restriction whereby strcmp() and strncmp()

operations differ

         

101 Restriction on string literal with 65 or more characters          

102 Restriction on optimization with assembler          

103 Restriction whereby an assignment statement for an

automatic variable whose address is acquired by a

function is deleted illegally

 * * * * * *   

104 Incorrect number of loop executions  * * * * * * * * 

105 Incorrect string literals  * * * * * * * * 

106 Restriction involving format specifiers for the sscanf,

fscanf, and scanf functions

         

107 Restriction involving the character string parameter for

the atoi, atol, strtol, and strtoul functions

         

108 Restriction involving initialization of a structure that

includes a bit field among its members

 * * * * * * * * 

109 Restriction involving nested conditionally assembled

pseudo instructions

         

110 Restriction involving assignment within switch and if

statements

 * * * * * * * * 

111 Restriction on incorrect compare operation optimization

while casting

   * * * * * * *

112 Restriction on incorrect move optimization of

assignment sentence

 * * * * * * * * *

: Applicable, : Not applicable, : Not relevant, *: Check tool available

ZBG-CD-10-0030 Attachment 1 - 5/78

2. Details of Usage Restrictions

No. 1 Restriction on file name including space

[Description]

A file or directory name including a space must not be used.

[Workaround]

Do not use a name or directory name including a space.

[Correction]

This restriction has been removed in Ver. 2.70.

No. 2 Restriction on length of assembly source

[Description]

If one line of the assembly source output from a C source program handling a very long variable name exceeds

1,024 characters, an error occurs.

[Workaround]

Shorten the variable name to keep the length of each line to within 1,023 characters.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 3 Restriction on length of variable name

[Description]

If a variable name of 1,022 characters is specified with the -g option and the source file is compiled, an error

occurs in the assembler because the assembler handles this variable name as 1,023 characters.

[Workaround]

Shorten the variable name.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 4 Restriction on precision during floating-point constant operation

[Description]

If a floating-point operation that might be inadvertently executed is specified for compilation that involves casting to

an integer, the precision drops very slightly, and the value might become invalid as a result of casting to an integer.

No problem occurs if floating point data is handled without casting it.

Example:

 (long)(1.12 * 100);

[Workaround]

Change the above statement as follows:

 float f = 1.12;

 (long)(f * 100);

Or,

float f;

(long)(f = 1.12 * 100);

[Correction]

This problem will not be corrected, so regard it as a specification.

ZBG-CD-10-0030 Attachment 1 - 6/78

No. 5 Restriction on invalid processing of specific constant operation (Windows version only)

[Description]

If the expression 2147483648/1 or 2147483648%-1 is generated as a result of optimization flow analysis, a

Windows dialog box saying “The program has performed an invalid operation and will be shut down.” is displayed

during compilation.

Example:

void f(){

 int int_min = -2147483648;

 unsigned int ans1 = int_min/-1;

 unsigned int ans2 = int_min%-1;

}

[Workaround]

Change the above code as follows:

(1) Directly write the calculation result.

void f(){

 unsigned int ans1 = 2147483648;

 unsigned int ans2 = 0;

}

(2) Assign 2147483648 to an external variable other than a const variable.

int int_min = -214783648;

void f(){

 unsigned int ans1 = int_min/-1;

 unsigned int ans2 = int_min%-1;

}

[Correction]

This restriction has been removed in Ver. 2.40.

No. 6 Restriction on structures used with conditional operator in function parameters

[Description]

The correct branch code is not generated if a structure used with a conditional operator in a parameter.

Example:

typedef struct {int i;}S;

S ss1, ss2;

int j;

void func(){

 func_call((j>10)?ss1:ss2);

}

[Workaround]

Change the above statement to the following if statement:

if (j > 10){

 func_call(ss1);

}else {

 func_call(ss2);

}

[Correction]

This problem will not be corrected, so regard it as a specification.

ZBG-CD-10-0030 Attachment 1 - 7/78

No. 7 Restriction on indirect function calling

[Description]

If an indirect function call requires an offset, an internal compiler error occurs.

Message:

C2000: internal: gen_binary(): OP_CALL : left-child's operator is wrong

C5211: syntax error at line <num> in intermediate file

Example:

struct S {;

int dummy;

int func_body[0x100];

 } sobj;

void f() {

 ((void(*)())sobj.func_body)();

}

[Workaround]

Separate the offset calculation from the call as follows:

void f(){

 void (*fp)() = (void(*)())&sobj.func_body;

 fp();

}

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 8 Restriction involving meaningless function definition

[Description]

An error is not output for a meaningless function definition.

Example:

typedef int INTFN();

 INTFN f{return(0);}

[Workaround]

Avoid writing meaningless function definitions.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 9 Restriction on number after preprocessor directive

[Description]

An error is not output for a number specified after a preprocessor directive.

Example: #if0

[Workaround]

Avoid writing the code such as above.

[Correction]

This restriction has been removed in Ver. 2.60.

ZBG-CD-10-0030 Attachment 1 - 8/78

No. 10 Restriction on invalid identifier after preprocessor directive

[Description]

An error is not output for an invalid identifier specified after a preprocessor directive.

Example: #if $$$

[Workaround]

Avoid writing the code such as above.

[Correction]

This restriction has been removed in Ver. 2.60.

No. 11 Restriction on declaring union with struct

[Description]

An error is not output if a union is declared with struct.

Example:

union uu { char a; int b; };

struct uu uu;

[Workaround]

Avoid writing the code such as above.

[Correction]

This restriction has been removed in Ver. 2.60.

No. 12 Restriction on extra () in function prototype

[Description]

A syntax error is output for an extra () in a function prototype.

Example:

typedef int Int;

void f1((Int));

[Workaround]

Modify the code as follows:

typedef int Int;

void f1(Int);

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 13 Restriction on using extern when defining structure

[Description]

A syntax error is output when using extern to define a structure.

Example: extern struct tag { int i; };

[Workaround]

Remove extern.

 struct tag { int i;};

[Correction]

This restriction has been removed in Ver. 2.20.

ZBG-CD-10-0030 Attachment 1 - 9/78

No. 14 Restriction on initialization with character string

[Description]

Because the code of a string literal is not output for a character string cast to a data type other than char or

unsigned char, an internal error is output and the compiler is terminated.

Message:

C7308: undefined block number(xx) reference in opcode(xx)

Example:

struct S {

 long l;

} sobj = { (long)”string”};

[Workaround]

Change the code as follows:

char c[] = “string”;

struct S {

 long l;

} sobj = { (long)c};

[Correction]

This restriction has been removed in Ver. 2.50.

No. 15 Restriction on switch statement at the end of infinite loop

[Description]

If an infinite loop ends with a switch statement when -Ot or -g is specified (including when the statements

following the switch statement are deleted as unnecessary processing), an internal error is output. This occurs

only when a switch statement is used to branch from a switch statement to a jump table.

Message:

C6101: illegal intermediate file(operator)

[Workaround]

Do one of the following:

(1) Specify the -Xcase=ifelse option to avoid outputting the code to branch from a switch statement to a

jump table.

(2) Specify the -Xcase=binary option to avoid outputting the code to branch from a switch statement to a

jump table.

(3) Specify _asm(“\n”) at the end of the infinite loop.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 16 Restriction on debugging information symbol

[Description]

If optimization is not specified and the output of debugging information -g is specified, the linker outputs the

message “undefined symbol” if an external or static variable is allocated to a register and the allocated area ends

with either of the following:

 Multiplication by 2n + 1

 Multiplication by 2n  1

[Workaround]

Do one of the following:

(1) Specify an optimization option (-Os or -Ot).

ZBG-CD-10-0030 Attachment 1 - 10/78

(2) Declare the external or static variable as volatile.

[Correction]

This restriction has been removed in Ver. 2.40.

No. 17 Restriction on successive assignment expressions

[Description]

When the following conditions are met, the required code is inadvertently deleted.

(1) There are insufficient temporary registers in the global optimization processing that occurs when the -Os or -

Ot option is specified

(2) If (1) has occurred, temporary registers are saved to the stack and restored from the stack when required in

the code generation phase after global optimization. If the C code below is detected at this time, the restore

processing code is not generated.

(3) This bug occurs only when conditions (1) and (2) are both met, because, during the machine-dependent

optimization phase after the code generation phase, necessary code is treated as an unnecessary instruction

string and deleted.

Example:

<val> <op2>= (<val_1>) <op1> <imm_1>;

<val> <op2>= (<val_2>) <op1> <imm_2>;

 :

<val> <op2>= (<val_n-1>) <op1> <imm_n-1>;

<val> <op2>= (<val_n>) <op1> <imm_n>;

Explanation:

<op1>, <op2>: Operators

<val>: Variable

<imm>: Immediate value

<val_n>: Variable or variable + operator

<n>: 5 to 10 or more (depends on function scale and variable usage conditions)

op1: +, &, |, ^, -

“-” is only applicable in cases when the add instruction is used with sign inversion.

Left-right inversion of the op1 operand might also occur.

op2: +, *, &, |, ^,

val: Variable identical to non-volatile int, unsigned, long, or unsigned long

Example:

x = a;

x |= b & 0x000000f0;

x |= c & 0x00000f00;

x |= d & 0x0000f000;

x |= e & 0x000f0000;

x |= f & 0x00f00000; /* Code is not output */

x |= g & 0x0f000000; /* Code is not output */

x |= h & 0xf0000000; /* Code is not output */

[Workaround]

Do one of the following:

(1) Do not specify optimization options (-Os or -Ot) in source files containing the above C code.

ZBG-CD-10-0030 Attachment 1 - 11/78

(2) Modify the C code as follows:

x = a |

 b & 0x000000f0 |

 c & 0x00000f00 |

 d & 0x0000f000 |

 e & 0x000f0000 |

 f & 0x00f00000 |

 g & 0x0f000000 |

 h & 0xf0000000;

[Correction]

This restriction has been removed in Ver. 2.40.

No. 18 Restriction on register assignment of runtime library

[Description]

Because the multiplication/division operation is output by the runtime library, the register assignment is invalid,

possibly causing the value of the r6 or r7 register to be corrupted.

This is true when the following five conditions are met:

(1) A V850 core device is specified.

(2) -Os or -Ot is specified.

(3) Either the multiplier in a multiplication expression or the divisor in a division expression is one of the following:

 An addition or subtraction expression involving a signed char or unsigned char variable and a constant

that is in the range 16384 to 16383.

 A multiplication expression involving one of the following combinations where one operand is a variable and

the other is a constant that is in the range for the specified data type:

- signed char and signed char

- signed char and unsigned char

- unsigned char and signed char

(4) The constant in (3) is assigned to a register.

(5) The variable or constant of the multiplication or division expression in (3) is assigned to r6 or r7 when the

operation is performed.

Example:

char s,t;

 void func(int a, int b){

 int c;

 c = (s - 0xaa) * t;

 if (b < 0xaa) c = 0;

 func2(c);

 }

[Workaround]

Specify one of the following options:

 -Wo,-preg0 (specifies that registers not be assigned to parameter registers)

 -Wo,-XTm (specifies that mulh/divh not be output)

[Correction]

This restriction has been removed in Ver. 2.40.

ZBG-CD-10-0030 Attachment 1 - 12/78

No. 19 Restriction on section file and global variables

[Description]

A warning message might not be output if a section mismatch occurs for a global variable in the section file and

source file.

[Workaround]

Modify the section file so as not to cause inconsistency between sections.

[Correction]

This restriction has been removed in Ver. 2.60.

No. 20 Restriction on system call ext_tsk

[Description]

When a task of a real-time OS is written by specifying #pragma rtos_task and the system call ext_tsk is

used in the task, an error might occur if the task is compiled with the -g option specified, resulting in abnormal

termination.

Example:

extern int func1(void);

#pragma rtos_task usrtsk

void usrtsk(int Param)

{

 int i;

 i = func1();

 ext_tsk();

 }

[Workaround]

Use a function pointer to indirectly call ext_tsk.

extern int func1(void);

#pragma rtos_task usrtsk

void usrtsk(int Param)

{

 int i;

 void (*ext_tsk_ptr)() = ext_tsk;

 i = func1();

 (*ext_tsk_ptr)();

 }

[Correction]

This restriction has been removed in Ver. 2.30.

No. 21 Restriction on section allocation

[Description]

In the tidata section allocation specification by the #pragma section directive or in a char array of a structure

or access to a char member specified by sf850 to be located in the tidata section, a linker error occurs if the

displacement value of the sst or sld instruction used to access the array or member is exceeded.

[Workaround]

Do one of the following:

(1) Do not use the char member or char array of a structure that causes the linker error.

(2) Do not assign the char member or char array of a structure that causes the linker error to the tidata section.

ZBG-CD-10-0030 Attachment 1 - 13/78

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 22 Restriction on section file with variable defined in assembly source

[Description]

In an application where a variable is defined in the assembly source and that variable is referenced in the C source,

an error occurs during linking if the section file is generated by sf850.

[Workaround]

Delete the variable in the assembly source from the section file.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 23 Restriction on section file with tentative definition of external variables of same name in multiple files

[Description]

If a section file is generated by sf850 when the tentative definitions of external variables of the same name are in

multiple files, symbols might be defined in duplicate during linking.

Message:

ld850: fatal error: symbol “_xxxx” multiply defined.

[Workaround]

If multiple tentative definitions of external variables of the same name exist, be sure to declare the variables using

extern in the file that references them.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 24 Restriction on operation including pointer constant

[Description]

Invalid code is output as a result of an operation including a pointer constant and multiple expressions.

Example:

int i1;

int i2;

char c;

c = (char *)10 + il + i2 + 10;

[Workaround]

Enclose the expressions in parentheses and then cast the pointer.

Example:

c = (char *)(10 + il + i2 + 10);

[Correction]

This restriction has been removed in Ver. 2.40.

No. 25 Restriction on accessing bits of the peripheral I/O register

[Description]

The code generator (cgen) might output invalid code when a variable or expression that is assigned to a bit of a

peripheral register is assigned to a register.

ZBG-CD-10-0030 Attachment 1 - 14/78

Example:

void func(unsigned char a)

{

int i = 8;

while(i){

P0.0 = a;

a >>= 1;

i--;

};

}

[Workaround]

Assign values instead of variables to a bit of the peripheral I/O register.

Example:

void func(unsigned char a)

{

int i = 8;

while(i){

if(a & 0x1){

 P0.0 = 1;

} else {

P0.0 = 0;

}

 a >>= 1;

 i--;

};

}

[Correction]

This restriction has been removed in Ver. 2.40.

No. 26 Restriction on volatile specification for nested structures and unions

[Description]

If a structure (or union) member nested in a structure (or union) is accessed using a pointer declared as volatile

and if it is written as the left operand of a compound assignment operator, volatile becomes invalid.

Example:

typedef union {

struct {

unsigned char a0;

unsigned char a1;

unsigned short a2;

}a;

unsigned long c;

}T;

#define s(*(volatile T *)(0x0100000)

s.a.a1 |= 0x1; {

[Workaround]

Change the compound assignment operator to a simple assignment operator.

ZBG-CD-10-0030 Attachment 1 - 15/78

Example:

s.a.a1 = s.a.a1 | 0x1;

[Correction]

This restriction has been removed in Ver. 2.40.

No. 27 Restriction on NOT operator used with constant 0

[Description]

The not instruction is output by the NOT operator if it is used with the constant 0 when the optimization option -Os

or -Ot is specified.

Example:

a = 0;

a ^= b;

[Workaround]

Modify the code so that the same value is assigned to the variable that would be when using the NOT operator

with the constant 0.

a = b;

[Correction]

This restriction has been removed in Ver. 2.40.

No. 28 Restriction on assembler optimization in V850E mode

[Description]

Although V850E is supported, optimization of the assembler is not executed in the V850E mode.

[Workaround]

There is no workaround.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 29 Restriction on specifying optimization option

[Description]

If the level of the optimization option specified during compilation is raised, the number of phases to be executed

during compilation (such as the optimization and compilation) increases. If the -Ot option is specified, the size of

the intermediate file created between these phases increases, sometimes causing a fatal error in some cases.

[Workaround]

Lower the optimization level by using -Os.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 30 Restriction on object file size during optimization

[Description]

When an optimization option is specified, the size of an object file including debugging information might

significantly increase.

[Workaround]

Either lower the optimization level or use the -g option, which outputs the debugging information only to the file to

be debugged.

[Correction]

This problem will not be corrected, so regard it as a specification.

ZBG-CD-10-0030 Attachment 1 - 16/78

No. 31 Restrictions on debugging during optimization

[Description]

The following restrictions apply when an optimization option is specified for debugging the source:

(1) When the value of a variable is referenced, a temporary value might be obtained in the middle of calculation

instead of the correct value.

(2) If an element of an array, a member of a structure, or a user-defined pointer is assigned to a register,

variables might be illegally displayed or modified in the Variable window of the debugger.

(3) If an element an automatic array or a member of a structure is not used, the area might be deleted. In this

case, variables might be illegally displayed or modified in the Variable window of the debugger. The stack

might be destroyed when a variable is modified.

[Workaround]

There is no workaround.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 32 Restriction on using _rcopy function in loop

[Description]

When the _rcopy function is used in a loop such as a while statement, an internal error occurs if the optimization

option -Os or higher is specified.

Example 1:

while (_rcopy(&_S_romp, -1) < 0) {

 ;

}

Example 2:

for (; ;) {

 ret = _rcopy (&_S_romp, -1);

 if (ret == 0) {

 break;

 }

}

[Workaround]

Create a function block that calls the _rcopy function and call this function in the loop.

void main(void)

{

 while (dummy()< 0){

 ;

 }

}

int dummy(){

 return rcopy(&_S_romp, -1);

}

[Correction]

This restriction has been removed in Ver. 2.30.

ZBG-CD-10-0030 Attachment 1 - 17/78

No. 33 Restriction on address of structure member

[Description]

If either of the conditions below is satisfied when a structure is packed, data access follows the data alignment of

the device and the accessed address is masked. As a result, data will be missing or lost when accessing the

address of the structure member.

Conditions:

(1) The device does not support misaligned access

(2) The device supports misaligned access but misaligned access is prohibited

Example:

struct test {

 char c; /* offset 0 */

 int i; /* offset 1-4 */

} test;

int *ip, i;

void func(){

 i = *ip; /* Accessed from a masked address */

}

void func2(){

 ip = &(test.i);

}

[Workaround]

There is no workaround.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 34 Restriction on bit field

[Description]

If the width of a bit field is less than the data type of a member when the bit field is accessed during structure

packing, the bit field is read as having the width of the data type of that member. Consequently, an area outside

the object (an area where there is no data) is also accessed. This access is usually executed correctly but it might

be invalid if I/O is mapped.

Example:

struct S {

 int x:21;

} sobj; /* 3 bytes */

sobj.x = 1;

[Workaround]

There is no workaround.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 35 Restriction on .option nomacro pseudo instruction

[Description]

The mov instruction in the specified range of the .option nomacro pseudo instruction might result in a syntax

error.

ZBG-CD-10-0030 Attachment 1 - 18/78

Example:

.text

.option nomacro

mov 0x12345678, r10

[Workaround]

Remove the relevant mov instruction from the specified range of the .option nomacro pseudo instruction.

[Correction]

This restriction has been removed in Ver. 2.70.

No. 36 Restriction on specifying only  (tilde) in macro

[Description]

The assembler is terminated abnormally if only  is specified in a macro.

Example:

.macro MACRO

~

.endm

MACRO

[Workaround]

Do not specify the above sort of code.

[Correction]

This restriction has been removed in Ver. 2.60.

No. 37 Restriction on  (tilde) when macro is nested

[Description]

‘ (tilde)’ might cause an error when a macro is nested.

Example:

.macro inc.w var, reg

 ld.w var, reg

 add 1, reg

 st.w reg, var

.endm

.macro aaa rnum

 ld.w [r~rnum], r30

 add 1, r30

 st.w r30, [r~rnum]

.endm

.macro bbb rnum

 inc.w [r~rnum], r30

.endm

.set pathreg, 25

.text

.globl f

f:

 aaa $pathreg -- OK

 bbb $pathreg -- Error

.macro MACRO

ZBG-CD-10-0030 Attachment 1 - 19/78

[Workaround]

Do not nest a macro.

[Correction]

This restriction has been removed in Ver. 2.60.

No. 38 Restriction on invalid instruction sal

[Description]

If a sal instruction, which does not exist in the device, is specified, the assembler does not output an error but

outputs invalid code. The compiler does not output this instruction.

Example: sal 3, r10

[Workaround]

There is no workaround. Do not specify the sal instruction in source code.

[Correction]

This restriction has been removed in Ver. 2.40.

No. 39 Restriction on file name for linker directive file

[Description]

In the file name specification of a mapping directive, a linker error occurs if a file name specified in braces begins

with A, F, H, L, or V (or the lowercase equivalent), and the second character is a number.

Message:

ld850: syntax error: line num: string is illegal in file specification field.

[Workaround]

Use file names that do not satisfy the above conditions.

[Correction]

This restriction has been removed in Ver. 2.30.

No. 40 Restriction on referencing specific symbols and reserved symbols in C source

[Description]

Target-specific symbols such as _gp_DATA and reserved symbols such as _stext cannot be referenced in the C

source.

[Workaround]

Do not use a target-specific symbol or reserved symbol in the C source.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 41 Restriction on specifying linker option -r (applies to UNIX version only)

[Description]

If the -r option is specified during linking in the UNIX version CA850 and the following conditions are satisfied, a

core dump might occur:

(1) A TEXT section does not exist.

(2) Data is allocated to the .sdata or .sbss section.

(3) A section with an allocation attribute (?A is specified by a link directive) exists as well as an odd-sized

section without an initial value ($NOBITS).

(4) A relocatable object is created using the -r option of the ld850, and linking is performed again.

ZBG-CD-10-0030 Attachment 1 - 20/78

[Workaround]

Do one of the following:

(1) Do not specify the –r option of the ld850.

(2) Specify an even number as the size of a section without an initial value.

Example:

 Before correction:

#pragma section sidata begin

static unsigned char a;

#pragma section sidata end

static unsigned long b;

After correction:

#pragma section sidata begin

static unsigned char a;

static unsigned char dummy;  Add a dummy

#pragma section sidata end

static unsigned long b;

(3) Initialize the char variable.

Example:

Before correction:

#pragma section sidata begin

static unsigned char a;

#pragma section sidata end

static unsigned long b;

After correction:

#pragma section sidata begin

static unsigned char a = 0;  Initialize the variable

#pragma section sidata end

static unsigned long b;

[Correction]

This restriction has been removed in Ver. 2.30.

No. 42 Restriction on warning message related to EP-relative segment

[Description]

The Id850 outputs a warning message if the following conditions are satisfied:

(1) A V850E device is specified.

(2) The start address of the internal RAM in the device is not 0x03xxxxxx.

(3) An SEDATA or SIDATA segment exists.

Message:

ld850: warning: segment "SIDATA" (0x03xxxxxx-0x03xxxxxx) must be in

EP-relative-address-able range (0x0xxxxxxxc000-0x0xxxxxxx).

[Workaround]

Check the link map and confirm that SEDATA and SIDATA segments are allocated before and after the internal

RAM address, and ignore the above message.

[Correction]

This restriction has been removed in Ver. 2.40.

ZBG-CD-10-0030 Attachment 1 - 21/78

No. 43 Restriction on warning message related to segment

[Description]

If a device with a 28-bit space, such as the V850E/MA1 or V850E/IA1, is specified and a section is allocated, and if

the value of an address masked with 26 bits overlaps an allocation-prohibited address, the warning message

below is output. Although a message is output, the created object does not contain errors.

Message:

ld850: warning: segment "XXXX" overflowed highest address of target machine.

Example:

If the internal ROM ranges from 0x00000000 to 0x0003ffff and external memory starts from 0x00100000,

allocating the area of 0x00040000 to 0x000fffff is prohibited.

For the following areas, however, the above message is irrelevant because these areas can be allocated:

AREA1: 0x?4040000 to 0x?40fffff

AREA2: 0x?8040000 to 0x?80fffff

AREA3: 0x?c040000 to 0x?c0fffff

Specifically, addresses of AREA1, AREA2, and AREA3 immediately after the internal ROM and before the

external memory are output unnecessarily.

[Workaround]

There is no workaround.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 44 Restriction on object file name in archive file

[Description]

If an object file name in the archive file has 15 characters or more, the following problems occur:

(1) Mapping cannot be performed as specified by the linker directive file.

(2) An invalid file name is displayed in the link map and error message.

[Workaround]

Specify an object file name within 15 characters when creating an archive file.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 45 Restriction on size of rompsec section displayed by -m option of romp850

[Description]

In the memory map displayed using the -m option of romp850, the total size of the rompsec section is incorrect.

The displayed size is larger than the actual size because the size of the copy information section has been added.

[Workaround]

Subtract the size of the copy information section from the size of the rompsec section or output the dump

information using dump850 to obtain the correct size.

[Correction]

This restriction has been removed in Ver. 2.30.

ZBG-CD-10-0030 Attachment 1 - 22/78

No. 46 Restriction on output file path specification option of performance checker

[Description]

If the folder to which the analysis result of a specified output file is to be output is specified by the path specification

option -o, the result is not output to the specified folder but to the current folder (the executed folder). If the -all

option is specified, the -o option outputs the analysis result to the specified folder.

[Workaround]

Execute analysis in the folder to which the result is to be output.

[Correction]

This issue does not apply to Ver. 2.50.

No. 47 Restriction on output file path specification option of cross-reference tool

[Description]

If the folder to which the analysis result of a specified output file is to be output is specified by the path specification

option -o, the result is not output to the specified folder but to the current folder (the executed folder). If the -all

option is specified, the -o option outputs the analysis result to the specified folder.

[Workaround]

Execute analysis in the folder to which the result is to be output.

[Correction]

This restriction has been removed in Ver. 3.00.

No. 48 Restriction on output file path specification option of memory layout visualization tool

[Description]

If the folder to which the analysis result of a specified output file is to be output is specified by the path specification

option -o, the result is not output to the specified folder but to the current folder (the executed folder). If the -all

option is specified, the -o option outputs the analysis result to the specified folder.

[Workaround]

Execute analysis in the folder to which the result is to be output.

[Correction]

This restriction has been removed in Ver. 3.00.

No. 49 Restriction on 1-bit manipulation using &, |, or ~

[Description]

When an optimization option -Os or -Ot is specified, if 1-bit manipulation using &, |, or ~ is performed on a short

int variable assigned to a register under the following two conditions, invalid code will be output.

(1) The variable is non-volatile and automatic (not including static variables and parameters)

(2) A signed int or signed long variable is declared before the target variable is assigned to the register

Example:

void f(void){

int i;

short s = 0;

i = g(&s);

switch(i){

 case 100:

s & = 0xfffe;

break;

 case 200:

ZBG-CD-10-0030 Attachment 1 - 23/78

s |= 1;

break;

 case 300:

s ^ = 1;

break;

}

i = i / s;

}

[Workaround]

Specify the -Wo,-XTb option. (This option limits the range affected by bit manipulation instructions)

[Correction]

This restriction has been removed in Ver. 2.40.

No. 50 Restriction on unsigned short in structure packing

[Description]

Invalid code will be output if the V850E is specified as the target device, structure packing is used, and an

unsigned short member is assigned to an odd address. This bug does not apply to a short member.

Example:

#pragma pack(1)

struct s {

 unsigned char a;

 unsigned short b;

}*x;

 x->b = 512;

[Workaround]

Change the unsigned short member to a short member.

Note that the variables vary depending on the type.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 51 Restriction on assignment of a union including indirect assignment

[Description]

When optimizing the deletion of redundant assignment statements in a basic block, the assignment in (1) is illegally

deleted when the assignment instructions are written in the following order:

(1) Assignment for a union that does not use the address operator &

(2) Indirect assignment for an undefined address

The following code might apply to undefined addresses:

 A pointer

 A variable other than a pointer that is used as a pointer by casting

 An absolute address

Remark Undefined address: Because a pointer is a variable, it is not assigned a value just by

declaring it. Therefore, the address pointed to by a pointer is also undefined.

(3) Reference or assignment to a member of the union described in (1).

(4) Assignment to a member of the union described in (1)

ZBG-CD-10-0030 Attachment 1 - 24/78

Example:

typedef union{

 unsigned char a[2];

 unsigned short b;

} U;

U t;

unsigned short *p;

t.a[1] = 1; /* The code on this line is illegally deleted */

*p = 0;

t.b >>= 4;

t.a[1] = 3;

[Workaround]

Specify the -Wo,-Nce option. (This option suppresses propagation of copying and optimization of deletion of

common subexpressions.)

[Correction]

This restriction has been removed in Ver. 2.41.

No. 52 Restriction on creating a relinkable object

[Description]

When sections with the same name that should therefore be relocated exist in each of a number of input files

during linking, if they are allocated to different sections using a linker directive file at the stage in which a relinkable

object is created by specifying the -r option, an object file having invalid relocation information will be created. If

this object file is linked, the instructions in the file will be illegally overwritten because the relocation information is

wrong.

Example:

USRTEXT : !LOAD ?RX {

 .USRTEXT1 = $PROGBITS ?AX .USRTEXT{a.o(libusr.a)};

 .USRTEXT2 = $PROGBITS ?AX .USRTEXT{b.o(libusr.a)};

 .USRTEXT3 = $PROGBITS ?AX .USRTEXT{c.o(libusr.a)};

 .USRTEXT4 = $PROGBITS ?AX .USRTEXT{d.o(libusr.a)};

};

 [Workaround]

Specify the linker directive file so that the relocation information section is allocated to each input file separately.

The section name of the relocation information is .rela + section-name, and the section attribute is $RELA ?N.

USRTEXT : !LOAD ?RX {

 .USRTEXT1 = $PROGBITS ?AX .USRTEXT{a.o(libusr.a)};

 .USRTEXT2 = $PROGBITS ?AX .USRTEXT{b.o(libusr.a)};

 .USRTEXT3 = $PROGBITS ?AX .USRTEXT{c.o(libusr.a)};

 .USRTEXT4 = $PROGBITS ?AX .USRTEXT{d.o(libusr.a)};

};

 .rela.USRTEXT1 = $RELA ?N .rela.USRTEXT{a.o(libusr.a)};

 .rela.USRTEXT2 = $RELA ?N .rela.USRTEXT{b.o(libusr.a)};

 .rela.USRTEXT3 = $RELA ?N .rela.USRTEXT{c.o(libusr.a)};

 .rela.USRTEXT4 = $RELA ?N .rela.USRTEXT{d.o(libusr.a)};

[Correction]

This restriction has been removed in Ver. 2.41.

ZBG-CD-10-0030 Attachment 1 - 25/78

No. 53 Restriction on -Wi,-O4 specification for switch statement

[Description]

If the -Wi,-O4 option is specified, the V850E device is specified, and a switch statement is used as table jump

codeNote, optimization is performed incorrectly and the code is illegally deleted.

Note In the CA850, table jump code is output when the following two conditions are satisfied for a switch

statement:

 The number of case labels is 4 or more.

 The difference between the max. and min. values of the label is up to three times the number of case

labels.

[Workaround]

Specify the -Ol option instead of the -Wi,-O4 option.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 54 Restriction on global and static functions having the same name

[Description]

Even though global and static functions with the same name exist, a duplicate definition error is not output. Instead,

an invalid error message is output.

(1) An internal error (C7318: illegal label (xxxx)) is output.

(2) The invalid debugging information symbol (Gxxxx) is judged as an undefined-symbol error during linking.

Example:

static void func(){}

void func(){}

[Workaround]

Do not define global and static functions with the same name.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 55 Restriction on string literal in a function

[Description]

When a string literal is defined in a function, an internal error occurs if its length exceeds 8,200 characters.

Message:

C2000: internal: string literal too long

Example:

void func(void)

{

 char *p = “abcde…”; /* When exceeding 8200 characters */

}

[Workaround]

When defining a string literal, ensure that it does not exceed 8,200 characters.

[Correction]

This restriction has been removed in Ver. 2.41.

ZBG-CD-10-0030 Attachment 1 - 26/78

No. 56 Restriction on variable initialization

[Description]

When either of the following conditions is satisfied, the error message below is output and compilation might stop.

(1) There are too many variable initializations.

(2) The code includes the debugging information output option -g and variable initializations.

A large amount of the following information is included:

 File names (including the names of include files)

 Function names

 Variable names

 Enumeration tag names and enumerator names

 Structure tag names, union tag names, and member names

 typedef names

 Label names

Message:

C7317: illegal block no (xxxxxxxx)

[Workaround]

Divide the file to reduce the number of initializations per compilation, or reduce the amount of the above

information.

[Correction]

This restriction has been removed in Ver. 2.60.

No. 57 Restriction on declaring a pointer to a function that has a structure as its parameter

[Description]

When debugging is specified (when the -g option is specified), if a pointer to a function that has a structure as its

parameter is declared but the structure is not defined, the .Gxxxx symbol in the debugging information causes the

following error to be output by the linker (id850).

Message:

ld850: fatal error: undefined symbol.

Example: void *(*x)(struct SSS *);

[Workaround]

Define the structure used before the pointer to the function is declared.

Example:

struct SSS {

 unsigned char s;

 unsigned char t;

}sss_obj;

void *(*x)(struct SSS *);

[Correction]

This restriction has been removed in Ver. 2.41.

No. 58 Restriction on label subtraction in sld or sst instruction displacement

[Description]

When the subtraction of one label from another is specified for the displacement in the sld or sst instruction, and

the expression value varies according to instruction unrolling by the assembler, the instruction might be invalid.

The CA850 does not create the code that causes this bug.

ZBG-CD-10-0030 Attachment 1 - 27/78

Example:

LAB1:

 sld.w LAB2 – LAB1, r10

 :

 mov LAB2 – LAB1, r11 -- The instruction might be unrolled.

LAB2:

[Workaround]

Write the immediate value instead of a subtraction of one label from another.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 59 Restriction on internal ROM checking by ROMization processor

[Description]

When using the ROMization processor (romp850), the following warning message is output when it should not be,

or not output when it should be, depending on whether a .text section exists and its allocated address. Note that

the output object has no problem.

Message:

Warning: rompsec section overflowed highest address of target machine.

[Workaround]

Output the map by using the -m option of the romp850 and confirm that the rompsec section does not exceed the

internal ROM. If does not exceed the ROM, ignore the above warning message.

[Correction]

This restriction has been removed in Ver. 2.70.

No. 60 Restriction on temporary file directory

[Description]

If a relative path is specified for the temporary file directory in the project manager, the command file (pm*.cmd)

for the project manager might remain in the temporary file directory.

[Workaround]

Delete the command file after the project manager is exited.

Do not specify a relative path for the temporary file directory.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 61 Restriction on multibyte characters in a command file

[Description]

When a multibyte character is used in the command files for the following commands, the CA850 fails to identify

delimiters in character strings, causing an erro:

 (1) as850 (Corrected in Ver. 2.60.)

 (2) ar850 (Corrected in Ver. 2.50.)

 (3) dis850 (Corrected in Ver. 2.70.)

 (4) dump850 (Corrected in Ver. 2.70.)

 (5) hx850 (Corrected in Ver. 2.50.)

 (6) romp850 (Corrected in Ver. 2.60.)

ZBG-CD-10-0030 Attachment 1 - 28/78

[Workaround]

Do not use multibyte characters in a command file.

When using the project manager, do not use multibyte characters for options, because they are specified by a

command file.

[Correction]

This restriction has been removed in Ver. 2.70.

No. 62 Restriction on structure pointer for structure packing

[Description]

Invalid code might be output when structure packing (-Xpack) is used, and

 a structure pointer to be packed is declared as register

or

 the optimization option -Os or -Ot is specified and the structure pointer to be packed is assigned to the register.

Example:

struct test {

struct test *next ;

} ;

struct test list[20];

struct test *Head = &list[0] ;

func() {

 int i;

 struct test *pp ;

 pp = Head ;

 for (i = 0 ; pp != 0 ; i++) {

 pp = pp->next ;/* The code on this line is invalid */

 }

}

[Workaround]

Delete the register declaration for the structure pointer and do not specify the optimization option.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 63 Restriction on assignment to and reference of a structure

[Description]

When the V850E is specified as the target device and the optimization options -Os and -OI are specified,

optimization in which an unsigned short structure member is assigned a value or referenced might be executed

incorrectly. As a result, the code might be illegally deleted.

Example 1:

unsigned int Testflg = 0;

struct test {

 unsigned char b1:3;

 unsigned short s1:2;

 unsigned short s2:2;

ZBG-CD-10-0030 Attachment 1 - 29/78

 unsigned char b2:2;

 unsigned long l:2;

} ;

void func(struct test arg1)

{

 struct test ausrt1 = arg1 ;

 ausrt1.b1 = 2;

 ausrt1.s1 = 2;

 ausrt1.b2 = 2; /* The code on this line is illegally deleted */

 ausrt1.s2 = 2;

 ausrt1.l = 2;

 if (ausrt1.b2 != 2) {

 Testflg++ ;

 }

}

main() {

 struct test arg;

 func(arg);

}

The following assembler code will be output to the relevant section.

: ausrt1.b2 = 2;

 :

st.b r10, -3+.A4[sp] … (1) * Memory overview

: ausrt1.s2 = 2; 4+A4[sp] 3+A4[sp]

ld.hu -4+.A4[sp], r15 … (2)  

mov 0x40, r16

and 0xffffff9f, r15

or r16, r15  st.b 3+.A4[sp]

st.h r15, -4+.A4[sp] … (3)  ld.hu 4+.A4[sp]

When there is an st instruction that writes data to memory (1), if the ld instruction that reads data in memory

(2) and a code that reads a part of the memory in (1) are successively executed, the memory usage for (2) is

illegally checked. As a result, the code in (1) is illegally deleted.

Example 2:

union test {

 char c[4];

 unsigned short us;

 unsigned int ui;

};

void func() {

 union test test;

ZBG-CD-10-0030 Attachment 1 - 30/78

 test.c[1] = test.c[0] = 2;/* The code on this line is illegally deleted */

 test.ui = ((unsigned)test.us & (unsigned)0xffffe7ff) | 0x1000;

 func3(test);

}

The code in (1) will be illegally deleted in the same manner as in Example 1.

: test.c[1] = test.c[2] = 2;

mov 2, r10

st.b r10, -6+.A4[sp]

st.b r10, -7+.A4[sp] … (1)

: test.ui = ((unsigned)test.us & (unsigned)0xffffe7ff) | 0x10000;

ld.hu -8+.A4[sp], r14

and 0xffffe7ff, r14

or 0x10000, r14

st.w r14, -8+.A4[sp]

[Workaround]

Specify -Wi,+stld_trans_opt=OFF to suppress the optimization that causes this bug, or remove the

optimization option -Ol.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 64 Restriction on optimization for two functions

[Description]

When the optimization option -Os or -Ot is specified, if the conditions below are satisfied, optimization for two

functions might be executed incorrectly. As a result, the code might be illegally deleted.

(1) In the function called first (f3), a parameter of the called function (f2) is an address (pointer).

(2) In the function called first (f3), the value of the variable that assigns an address to the pointer is assigned

before calling the function (f2).

(3) In the function called next (f2), a parameter of the called function (f1) is a value.

(4) In the function called next (f2), a line or part of a line of the code is moved immediately before the called

function due to optimization (such as global optimization or loop optimization).

(5) In the function f2, the parameter of the function f1 is not referenced after the function f1 is called.

Example:

int f1(int i){

 i++;

 return i;

}

void f2(int* p, int i){

 int j = 0; … (4)

if(i == 0){

volatile int vi = f1(*p); … (3)

 for(; j < 255; j++)

 ;

 }

}

ZBG-CD-10-0030 Attachment 1 - 31/78

void f3(void){

 int i = 1; /* The code on this line is illegally deleted */

 int* p = &i; … (2)

 f2(p, 0); … (1)

}

(A) (1) to (3) correspond to the bug conditions (1) to (3).

(B) Because the code in (4) is moved to the address immediately before (3) by the global optimization, this

applies to condition (4).

Because the code in (4) is only used in the if statement block, this code is moved to the address

immediately before (3) in the if statement by optimization.

(C) Because there is no function reference in addresses after (3), this applies to condition (5).

[Workaround]

Specify -Wp,-f- -Wo,-Ni to suppress the optimization that causes this bug, or do not specify the optimization

option.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 65 Restriction on allocating unsigned char variable to tidata_word section

[Description]

When the V850E is specified as the target device and an unsigned char variable is allocated to the

tidata_word section, invalid code might be output, causing a linker error.

Example:

#pragma section tidata_word begin

char dummy[128];

struct test {

 unsigned char a;

 unsigned short b;

 unsigned int c;

} test_u;

#pragma section tidata_word end

unsigned char ua;

void func() {

 ua = test_u.a * ua; /* The code on this line is invalid */

}

[Workaround]

Allocate the relevant unsigned char variable to the tidata_byte section.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 66 Restriction on constant expression in preprocessor directive

[Description]

Processing becomes invalid if a constant expression that includes multiplication is specified for an #if

preprocessor directive.

ZBG-CD-10-0030 Attachment 1 - 32/78

Example:

#define A 1

#define B 2

void main(){

#if (A * B) == 2

 func1();

#else

 func2(); /* Condition judgment is illegally performed and invalid code

will be output */

#endif

}

[Workaround]

There is no workaround.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 67 Restriction whereby code is moved due to assembler optimization

[Description]

When the conditions below are satisfied, the code for rewriting the stack pointer will be moved due to optimization

by the assembler, and a malfunction might occur depending on the timing at which interrupt servicing occurs.

Conditions:

(1) The V850E is specified as the target device.

This condition applies to all devices including the V850E if the V850E common object file creation option -cn

is specified.

(2) The optimization option -Os or -Ot is specified or the optimization option -O is specified as an assembler

option.

(3) When the debugging information output option -g is not specified.

(4) The CPU bug prevention option (the compiler option -Xv850patch or the assembler option -p) is not specified.

Example:

 Assembler code

addi 4, sp, r15

ld.w 0x4[r15], r16

st.w r16, 0x0[r14]

ld.w 0x8[r15], r17

add 8, sp - - Stack pointer rewriting code

jmp [lp]

 Assembler code after assembler optimization

addi 4, sp, r15

ld.w 0x4[r15], r16

add 8, sp - - Code moves to this location … 1

st.w r16, 0x0[r14] - - … 2

ld.w 0x8[r15], r17 - - … 3

jmp [lp]

If interrupt servicing occurs between 1 and 2 or 2 and 3, the subsequent operation will be invalid.

ZBG-CD-10-0030 Attachment 1 - 33/78

[Workaround]

Specify +Oa- as a compiler option or +O as an assembler option.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 68 Restriction whereby the compiler stops during optimization

[Description]

When the optimization option -Os or -Ot is specified, the compiler abnormally stops during optimization for a

source file that includes a function that satisfies the following conditions:

(1) Only directly accesses to an address

(2) There is no parameter other than a structure.

(3) There is no return value.

 Example:

#define ADDRESS ((unsigned char*)0x100000)

void func(void)

{

 *ADDRESS = ((*ADDRESS >> 4) & 0x0f) | ((*ADDRESS << 4) & 0xf0);

}

[Workaround]

Specify -Wo,-Nj to suppress the optimization that causes this bug, or do not specify the optimization option.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 69 Restriction on project manager during building

[Description]

The project manager freezes during building and commands will no longer be accepted.

[Workaround]

There is no workaround.

In such a case, shut down and restart the project manager.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 70 Restriction on static function written in #pragma section

[Description]

When a prototype of a static function is declared and defined in a #pragma section, the following error

message will be output:

 Message:

E2211: redeclaration of function name

 Example:

#pragma section ... begin

static void func();

static void func(){ /* Overloading error */

 :

}

#pragma section ... end

ZBG-CD-10-0030 Attachment 1 - 34/78

[Workaround]

Declare the prototype and define a static function outside the #pragma section.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 71 Restriction on pointer constant when accessing address with offset

[Description]

During expression transformation through the compiler’s basic optimization, if the value of the pointer constant

exceeds 24 bits when indirectly accessing an address with an offset, invalid code will be output.

 Example:

void func(int adr)

{

 *((volatile unsigned char *)0x4002000 + adr) = 0xff;

}

Expression transformation:

(1) When accessing an address with an offset, the address will be calculated using “address (0x4002000) +

offset (adr)”

(2) This expression is transformed to the access expression address[offset] through the basic

optimization.

(3) The address (0x4002000) stored in an area is moved to another area so that the value will be used in

calculation in (1) when the expression is transformed in (2).

During the processing in (3), the address is stored in an area smaller than the original area. As a result, the

overflowed data is lost.

Output code example:

mov 255, r12

st.b r12, 8192[r11]

 This value is invalid.

[Workaround]

Calculate the address in advance and modify the source code before assigning the value so that the address does

not have an offset.

Example of preventive code:

void func(int adr)

*((volatile unsigned char *)(0x4002000 + adr)) = 0xff;

}

[Correction]

This restriction has been removed in Ver. 2.50.

Note, however, that if the conditions under which this restriction applies occur in Ver. 2.41, the following error

message will be output and compilation will stop.

 Message:

 E2179: compiler restriction: offset out of range [24bit]

ZBG-CD-10-0030 Attachment 1 - 35/78

No. 72 Restriction on optimization for if statement

[Description]

When optional optimization (-Ol) or the powerful optimization option -Wi,-O4 is specified and, if a bit field is

related to the conditional expression in an if statement and the branch condition in the conditional expression can

be determined during compilation, invalid code might be output.

 Example:

void func()

{

 struct st {

 int x:30;

 } st;

 int k = 1;

 int st.x = 80;

 k = (st.x == 50); if (k != 0) f(1);

 k = (st.x != 50); if (k != 1) f(2);

 k = (st.x != 70); if (k != 1) f(3); /* A code to call f(3) is output */

 k = (st.x != 70); if (k == 0) f(4);

 }

In the above example, none of the conditions in the if statement are satisfied and therefore all the code to call

f(x) can be removed by optimization. However, due to invalid optimization, the code to call f(3) is output.

[Workaround]

Specify -Wi,+data_flow_opt=0 to suppress the optimization that causes this bug, or do not specify -Ol or -

Wi,-O4.

[Correction]

This restriction has been removed in Ver. 2.41.

No. 73 Restriction on optimization for switch statement

[Description]

If the following conditions are satisfied, a variable to which a register should not be assigned by optimization is

assigned a register. As a result, invalid code might be output.

(1) The optimization option -Os or -Ot is specified.

(2) The switch statement outputs a table branch code.

Table branch code will be output in either the following cases:

 -Xcase=table is specified.

 -Xcase=ifelse or -Xcase=binary is not specified, and the following conditions are satisfied:

 The number of case labels is 4 or more

 The difference between the maximum and minimum values of the label is up to three times the

number of case labels

(3) The switch statement satisfies one of the following conditions:

 The values of the case labels are not consecutive. The order of the case labels does not matter.

 Multiple case labels branch to the same address.

 The case label processing continues without inserting a break statement.

ZBG-CD-10-0030 Attachment 1 - 36/78

Example:

When the optimization option -Ot is specified and compilation is executed … Condition (1)

void g(void);

int i;

void f(void){

 i = 0;

 do {

 switch(i){

 case 0:  The number of case labels is 4 and the difference between the max.

 i++; and min. value of the case label is 3. Therefore, table branch code

 break; is output. … Condition (2)

 case 1:

 g();

 i++;  Case label processing continues without inserting break

 case 2: … Condition (3)

 i++;

 case 3:

 g();

 i++;

 break;

 default:

 g();

 break;

 }

 } while(i < 4);

}

[Workaround]

Do one of the following:

(1) Remove the optimization option to reset to the default optimization.

(2) Specify -Xcase=ifelse (in CA850 Ver. 2.40 or later).

(3) Specify -Xcase=binary (in CA850 Ver. 2.40 or later).

[Correction]

This restriction has been removed in Ver. 2.50.

No. 74 Restriction on initialization of bit field

[Description]

Invalid code will be output if 32 is specified as the number of bits in a bit field and that field is then initialized.

When initialization is not executed, the following message will be output instead of invalid code.

 W2172: constant out of range

 Example:

int func(){

 struct {

 unsigned int x:32; /* 32-bit bit field */

 } s1 = {0x12345678};/* Initialization */

}

[Workaround]

Specify a 32-bit data type instead of 32 bits.

ZBG-CD-10-0030 Attachment 1 - 37/78

 Example:

int func(){

 struct {

 unsigned int x;

 } s1 = {0x12345678};

}

[Correction]

This restriction has been removed in Ver. 2.50.

No. 75 Restriction on initialization of automatic array

[Description]

If the following conditions are satisfied, invalid code will be output for initialization of an automatic array:

(1) The optimization option -Os or -Ot is specified.

(2) An automatic array is initialized.

(3) 32 or more initial values for the automatic array in (2) are omitted.

 Example:

int a[37] = {1, 2, 3, 4, 5}; /* The 6th and subsequent values (32 values) are

omitted */

[Workaround]

Do one of the following:

(1) Remove the optimization option to reset to the default optimization.

(2) Specify 0 for omitted initializers to make the number of omitted values 31 or less.

 Example:

int a[37] = { 1, 2, 3, 4, 5, 0 }; /* The 7th and subsequent values (31 values) are

omitted */

[Correction]

This restriction has been removed in Ver. 2.50.

No. 76 Restriction on ov flag in machine-dependent optimization module

[Description]

If the following conditions are satisfied, invalid code will be output in the machine-dependent optimization module:

(1) The optimization option -Ol or powerful optimization -Wi,-O4 is specified.

(2) During data flow optimization, the following operation (add, addi, sub, subr, or cmp) exists in the

machine-dependent optimization module.

 Addition of NaNs results in an underflow and the result is a negative value.

Example: 0x7fffffff + 0x1 = 0x80000000

 Addition of negative values results in an underflow and the result is a NaN.

Example: 0x80000000 + 0x80000000 = 0x0

 A negative value is subtracted from a non-negative value and the result is a negative value (same as

comparison)

Example: 0x7fffffff  0x80000000 = 0xffffffff

(3) A conditional branch or conditional assignment (<, <=, >, >=) references the ov flag in (2).

(4) The conditions in (2) and (3) are not detected in the global optimization module.

[Workaround]

Do one of the following:

(1) Specify -Wi,+data_flow_opt=0 to suppress data flow optimization that causes this bug.

ZBG-CD-10-0030 Attachment 1 - 38/78

(2) Remove -Ol or -Wi,-O4.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 77 Restriction on shift in machine-dependent optimization module

[Description]

If the following conditions are satisfied, the equal sign comparison between the values shifted to the right

arithmetically might be converted to a logical right shift.

(1) The optimization option -Os or -Ot is specified.

(2) Two values are shifted to the right arithmetically.

(3) The number of bits by which each value is shifted differs.

(4) After being shifted, the two values are not referenced.

(5) Both values are negative.

Example: When a = 2 and b = 4 (two values are negative).

int func(int a, int b) {

 a >>= 1; /* Arithmetic right shift */

 b >>= 2; /* Arithmetic right shift */

 if(a==b) return 1; /* Equal sign comparison */

 else return 0;

}

[Workaround]

Do one of the following:

(1) Specify -Wi,+hole4_opt=0 to suppress the optimization that causes the bug.

This is an option to suppress peephole optimization of 4 instructions.

(2) Remove the optimization option.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 78 Restriction on union containing integer and pointer

[Description]

A compiler error will be output if an integer constant is assigned using a union containing an integer and pointer.

 C5102: internal: internal error in 'IvarNode::IvarNode()'

This bug occurs when the following conditions are satisfied:

(1) The optimization option -Os or -Ot is specified.

(2) There is a union containing an int(long) or unsigned int(long) and a pointer.

(3) An integer constant is assigned to the integer in the union in (2).

(4) After assignment, an indirect reference, indirect assignment, or structure assignment is executed using the

pointer in the union in (2).

(5) The integer constant in (3) can be optimized by propagation of copying in the basic block to the pointer

access position in (4).

 Example:

struct S {

 int a[10];

} s;

union {

 int i;

ZBG-CD-10-0030 Attachment 1 - 39/78

 int* p;

 struct S* sp;

} u;

volatile int vi;

void f(void){

 u.i = 0x100; /* Indirect reference */

 vi = *u.p;

 u.i = 0x200; /* Indirect assignment */

 *u.p = vi;

 u.i = 0x300; /* Structure assignment */

 s = *u.sp;

}

[Workaround]

Specify the address instead of the pointer.

 Example:

struct S {

 int a[10];

} s;

 union {

 int i;

 int* p;

 struct S* sp;

} u;

volatile int vi;

void f(void){

 u.i = 0x100; /* Indirect reference */

 vi = *(int*)0x100;

 u.i = 0x200; /* Indirect assignment */

 (int)0x200 = vi;

 u.i = 0x300; /* Structure assignment */

 s = *(struct S*)0x300;

}

[Correction]

This restriction has been removed in Ver. 2.50.

No. 79 Restriction on compound assignment of values to bit field members when structure packing is specified

[Description]

When structure packing is specified, the result of a compound assignment of values to bit field members will be

invalid if the following conditions are satisfied:

(1) The bit field members to be assigned a variable using compound assignment extend over a 32-bit boundary.

(2) The element of the structure array cannot be resolved.

Example: When compiled with packing value 1 (-Xpack = 1)

struct S{

 short s1:7;

 short s2:7;

 short s3:7;

 short s4:7;

 short s5:7; /* Extends over a 32-bit boundary */

ZBG-CD-10-0030 Attachment 1 - 40/78

 short s6:7;

}sobj[10];

int i = 1; /* Variable */

void f1(){

 sobj[i].s1 = 1;

 sobj[i].s5 = 1;

 sobj[i].s6 = 1;

 sobj[i].s1 += 1;

 sobj[i].s5 += 1; /* Compound assignment */

 sobj[i].s6 += 1;

}

Caution The following case is not affected by this bug because the element is resolved during compilation.

struct S2{

 short s1:7;

 short s2:7;

 short s3:7;

 short s4:7;

 short s5:7;

 short s6:7;

}sobj2[10];

const int i = 5; /* const: Constant */

void f2(){

 sobj2[i].s1 = 1;

 sobj2[i].s5 = 1;

 sobj2[i].s6 = 1;

 sobj2[i].s1 += 1;

 sobj2[i].s5 += 1;

 sobj2[i].s6 += 1;

[Workaround]

Do one of the following:

(1) Change the compound assignment to a simple assignment.

 Example:

 sobj[i].s5 = sobj[i].s5 + 1;

(2) Specify the bit field members so they do not extend over a 32-bit boundary.

Example:

struct S{

 short s1:7;

 short s2:7;

 short s3:7;

 short s4:7;

 short dummy:4; /* Dummy member */

 short s5:7; /* Does not extend over a 32-bit boundary */

 short s6:7;

}sobj[10];

[Correction]

This restriction has been removed in Ver. 2.50.

ZBG-CD-10-0030 Attachment 1 - 41/78

No. 80 Restriction on optimization for union containing integer and pointer

[Description]

If the conditions below are satisfied, an error occurs in the optimization module and the optimization module stops

without outputting an error message. This issue do not apply if the optimization module ends normally without

causing an error.

(1) Optimization is specified.

-Og, -O, -Os, or -Ot (in Ver. 2.50)

-Os or -Ot (in Ver. 2.41 or earlier)

(2) A union containing a pointer and 4-byte integer is specified.

(3) Optimization that propagates copying from the integer to the pointer in the basic block occurs for the union

in (2).

(4) The element propagated as a result of optimization in (3) is not an integer constant.

(5) Indirect access by the pointer of the propagated address occurs or a structure is transferred.

Example:

If compilation is performed with optimization option -Os specified … Condition (1)

typedef union{

 unsigned char *p; Union containing pointer and 4-byte integer … Condition (2)

 unsigned long a;

}TEST;

int e;

char

func(unsigned long data){

 register TEST s;

 s.a = data;

 if (*(s.p) > 0x00) {

 if (*(s.p) != 0xFF){

 e++;

 }

 }

 return(1);

}

[Workaround]

Do one of the following:

(1) Lower the optimization level to:

-Od or -Ob (in Ver. 2.50)

Default optimization level (in Ver. 2.41 or earlier)

(2) Specify the -Wo,-Nc option to suppress propagation of copying in the basic block.

[Correction]

This restriction has been removed in Ver. 2.60.

Variable data is copied to variable s.p
… Condition (3)

Variable data is not an integer constant
… Condition (4)

Variable s.p is referenced indirectly
… Condition (5)

ZBG-CD-10-0030 Attachment 1 - 42/78

No. 81 Restriction on packed structure parameter

[Description]

An invalid stack frame is generated if the conditions below are satisfied. The parameter register area must be

allocated at the top of the stack, but it is allocated in the middle of the stack.

If a structure is specified as a return value, note that the parameter in the conditions below is expressed in the

format that the return value of the structure is inserted in the 1st parameter, that is, 1st parameter = return value,

2nd parameter = 1st parameter of a function, 3rd parameter = 2nd parameter of a function.

(1) Structure packing is used. (The -Xpack option is used, or #pragma pack is written.)

(2) Multiple packed structures with 5 or more bytes are specified for the parameter of a function.

(3) The function in (2) cannot use a variable number of parameters.

(4) The packed structure specified for the 2nd or subsequent parameter is allocated extending over the 16th

and 17th byte boundary in the parameter area of the stack frame.

Consequently, the structure of condition (4) is allocated at an invalid location and invalid code will be output in

response to the following accesses:

 Access as the structure

 Access of the structure member extending over the 16th and 17th byte boundary in the parameter area of

the stack frame.

Example:

#pragma pack(1) … Condition (1)

typedef struct {

 char c;

 int i;

} ST;

void f(int i, ST st1, ST st2) { … Conditions (2) and (3)

 g(st2.c, st2.i);

}

The stack is allocated as shown below.

0xnnnn014 Parameter st2.i (highest byte) Set using the called function

Boundary of 16th and 17th byte Register variable register The called function recognizes
 … Condition (4) area st2.i is in this area

0xnnnn010

0xnnnn00f

0xnnnn00d

Parameter st2.i
(lower 3 bytes)

 Area accessed by st2.i

0xnnnn00c Parameter st2.c

0xnnnn009

Alignment hole

0xnnnn005

 Parameter st1.i

 Set using the called function (f)

0xnnnn004 Parameter st1.c

0xnnnn000

 Parameter i

  Stack pointer (sp)

ZBG-CD-10-0030 Attachment 1 - 43/78

[Workaround]

Do one of the following:

(1) Do not use packing of the relevant structure.

(2) Use the parameter as a pointer to the structure.

[Correction]

This restriction has been removed in Ver. 2.60.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 82 Restriction on data swap include function

[Description]

If the following conditions are satisfied, the code generator outputs the error message below and the compiler

stops.

(1) The V850E is specified as the device used.

(2) Any of the include functions __bsh, __bsw, or __hsw is used.

(An include function that can be used only when the V850E is specified as the device is used.)

(3) A specific register is assigned to the parameter in (2).

(4) The result of (2) is assigned to multiple locations.

(5) One or more assigned locations in (4) are different registers from the one in (3).

(6) The register in (3) is used later.

Message:

 C6202:internal: register overflow

Example 1:

 int gi;

 void func1() {

 int i1, i2;

 i1 = i2 = __bsw(gi);

 d_func(i1,i2);

 }

Example 2:

 int gi;

 void func2() {

 volatile int i1, i2;

 if(i1 = i2 = __bsw(gi)){

 e_func(i1+i2);

 } else {

 e_func(i1-i2);

 }

}

[Workaround]

Specify volatile for a variable to which the return value of the relevant include function is assigned. At this time,

do not use the relevant include function in the middle of an expression.

Example 1:

int gi;

void func1() {

volatile int i1, i2; /* Specify volatile for the variable of the return

value */

ZBG-CD-10-0030 Attachment 1 - 44/78

i1 = i2 = __bsw(gi);

d_func(i1,i2);

}

Example 2:

void func2() {

 volatile int i1, i2;

 i1 = i2 = __bsw(gi); /* Move the include function outside the

expression */

 if(i1){

 e_func(i1+i2);

 } else {

 e_func(i1-i2);

 }

 }

The following workarounds may be effective to avoid this bug because the register assignment conditions are

changed:

(1) Change the optimization level

(2) Change the order of the expression and insert a variable.

[Correction]

This restriction has been removed in Ver. 2.50.

No. 83 Restriction on inlining a function with structure as parameter

[Description]

If the following conditions are satisfied, the code corresponding to the parameter is illegally deleted.

(1) The function to be inlined has a structure as a parameter.

(2) A member of the structure used as a parameter in (1) satisfies the following conditions:

<1> The member is an array, structure, or union, and is defined as the second or a later member.

<2> An element of the member in <1> is accessed.

<3> The member does not use the object of the structure in <1> or another member.

If structure packing is specified and the structure used as a parameter is not aligned to 4 bytes, this bug does not

occur even if all these conditions are satisfied.

Example:

struct S{

 int dummy1;

 int dummy2;

 int buf[1]; /* Condition (2)-<1> */

};

struct S sobj;

int num;

static void sub(struct S sobj){ /* Condition (1) */

 int i = 0;

 num = sobj.buf[i]; /* Condition (2)-<2> */

} /* Condition (2)-<3> */

func(){

 sub(sobj);

}

ZBG-CD-10-0030 Attachment 1 - 45/78

Compilation result:

_func:

 add -.S5, sp

 ld.w -4+.A5[sp], r11  The value is not passed as a parameter.

 st.w r11, $_num

 # 19: }

 mov r0, r10

 add .S5, sp --1

 jmp [lp]

[Workaround]

Specify the -Wp,-a- option to suppress deletion of unreferenced parameters in a function to be inlined.

[Correction]

This restriction has been removed in Ver. 2.60.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 84 Restriction on function pointer

[Description]

If the following conditions are satisfied, an invalid value might be assigned to a function pointer:

(1) A mask register is used. (The -Xmask_reg option is specified.)

(2) 254 or more variable or function names are included in a single compilation unit (including extern

symbols).

(3) A function pointer is used.

(4) The address of a function is assigned to the function pointer in (3).

Example:

 The -Xmask_reg option is specified /* Condition (1) */

 …

(253 functions) /* Condition (2) */

 …

int func254() {return 254;}

 …

int (*funcp)(); /* Condition (3) */

void main() {

 funcp = &func254; /* Condition (4) */

}

[Workaround]

Do one of the following:

(1) Remove the -Xmask_reg option.

(2) Keep the number of variable and function names to within 253 in a single compilation unit.

[Correction]

This restriction has been removed in Ver. 2.60.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

ZBG-CD-10-0030 Attachment 1 - 46/78

No. 85 Restriction on included function __sasf()

[Description]

If the following conditions are satisfied, invalid code is output for __sasf().

(1) The V850E is specified as the device.

(2) A mask register is used. (The -Xmask_reg option is specified.)

(3) The function __sasf() is used.

(4) The first parameter of __sasf() is an unsigned short or unsigned char variable allocated to a

tidata or tibss section

(5) The second parameter of __sasf() is a conditional expression.

Example:

The V850E device and the -Xmask_reg option are is specified /* Conditions (1), (2) */

int gj, i1;

#pragma section tidata begin

unsigned short tus;

#pragma section tidata end

void func() {

 gj = __sasf(tus, i1 > 0); /* Conditions (3), (4), (5) */

}

 Compilation result:

 ld.w $_i1, r13

 cmp r0, r13  Flag is set due to sasf

 sld.h %_tus, r14

 and r21, r14  Flag is cleared due to sasf

 sasf 0xf, r14

 st.w r14, $_gj

[Workaround]

Make sure that the first parameter of __sasf is an automatic variable that is volatile and has a basic data type.

Example:

int gj, i1;

#pragma section tidata begin

unsigned short tus;

#pragma section tidata end

void func() {

 volatile unsigned short a=tus; /* volatile automatic variable that

has a basic data type */

 gj = __sasf(a, i1 > 0);

}

[Correction]

This restriction has been removed in Ver. 2.60.

No. 86 Restriction on conversion from float to short or unsigned short

[Description]

Invalid code is output if the conditions in (1) or (2) are satisfied.

(1) <1> A float is converted to a short or unsigned short.

ZBG-CD-10-0030 Attachment 1 - 47/78

<2> The value after the type conversion is referenced from multiple locations.

<3> The first reference of <2> is for assignment.

<4> The second or a later reference of <2> is just for assignment to a register.

(2) <1> A float is converted to a short or unsigned short.

<2> The value after the type conversion is referenced from multiple locations.

<3> The first reference of <2> is for assignment.

<4> The second or a later reference of <2> is as the operand of an expression.

<5> The debugging information output option -g is specified.

 Example:

float f = 70000.0;

short s;

short func() {

 return s = f; /* Conditions (1)-<1>, (1)-<2>, (1)-<3>, and (1)-<4> */

}

Compilation result:

ld.w $_f, r11

mov r11, r6

jarl ___trnc.sw, lp

mov r6, r11

st.h r11, $_s

mov r11, r10  The return value remains an int.

[Workaround]

Specify the -Wo,-Xer option to suppress continuous use of the same register.

[Correction]

This restriction has been removed in Ver. 2.60.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 87 Restriction on interrupt function

[Description]

If the following conditions are satisfied, the callt instruction to call run-time execution of a function

prologue/epilogue is illegally output to an interrupt function, and execution cannot be returned by reti:

(1) The V850E is specified as the device used.

(2) One of the following options is specified:

<1> -Xpro_epi_runtime=on

<2> An optimization option is specified.

 -Os (in Ver. 2.41 or earlier)

 An option other than -Ot is specified, or optimization is not specified (in Ver. 2.50).

(3) An interrupt function is used

(for which the __interrupt or __multi_interrupt qualifier is specified).

(4) The total size of the parameter area, dynamic variable area, and register area for operation in a stack frame is

smaller than 4 bytes or is 125 bytes or larger.

 (The size can be confirmed by checking the value of .R number output at the end of the function in the

assembly list.)

ZBG-CD-10-0030 Attachment 1 - 48/78

(5) The compiler uses any of r25 to r29 or lp (r31) in the function and does not use r20 to r24.

Caution This bug does not occur when -Xpro_epi_runtime=off is specified.

Example:

Checking the total size of the parameter area, automatic variable area, and register area for operation in the

assemble list

The .R symbol is defined after the function.

.set .S20, 0xd4

.set .F20, 0xd4

.set .A20, 0x80

.set .T20, 0x0

.set .P20, 0x0

.set .R20, 0xc0  This value

.set .X20, 0xc0

[Workaround]

Specify the following option:

 -Xpro_epi_runtime=off

[Correction]

This restriction has been removed in Ver. 2.60.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 88 Restriction on generating code for complex expressions

[Description]

Invalid code might be generated or a compiler error (E3228: illegal operand (must be register))

might be output when executing a complex expression that includes many operations (at least four operators are

included) if the expression satisfies the conditions below.

This bug might occur even if the number of operators is less than 4, because expressions are combined internally

by optimization and might then satisfy the conditions below.

This bug is more likely to occur when the number of temporary registers is insufficient upon code generation and

the stack must be used instead. However, this does not mean that this bug always occurs, because the

occurrence of this bug depends on the number of registers used and the amount of stack space used upon code

generation.

This bug might occur under the conditions below. The conditions vary according to the CPU used (V850 core or

V850E/V850ES core) and the version of the CA850 used.

Conditions:

(1) When using a V850E/V850ES core and CA850 Ver. 2.40 or 2.41, or when using a V850 core and CA850

Ver. 2.40, 2.41, 2.50, or 2.60

(a) The operation references a packed member of a structure, and the member is

(a-1) a 2-byte member aligned to an odd address: See Example 1.

(a-2) a 4-byte member aligned to an address that cannot be divided by 4: See Example 2.

(b) The operation is referenced from a structure pointer that uses structure packing, the packing value

for the structure is 1, and a 2- or 4-byte member is referenced: See Example 1.

ZBG-CD-10-0030 Attachment 1 - 49/78

This bug might occur if (a-1), (a-2), or (b) is satisfied.

(2) When using a V850E/V850ES core and CA850 Ver. 2.50 or 2.60

(a) The operation references a packed member of a structure, and:

(a-1) the member is a 2- or 4-byte member aligned to an odd address: See Example 1.

(a-2) the structure is allocated to the tidata section, and the member is a 2-byte member

allocated to an odd address or a 4-byte member allocated to an address that cannot be

divided by 4: See Examples 1 and 2.

(b) The operation is referenced from a structure pointer that uses structure packing, the packing value

for the structure is 1, and a 2- or 4-byte member is referenced: See Example 3.

(c) The operation uses the result of the included function __sasf().

This bug might occur if (a-1), (a-2), (b), or (c) is satisfied.

Caution The term structure includes bit fields. Bit field members are affected according to their data

types, not bit widths. For example, int a:8; is a 4-byte data type, and short b:8; is a 2-

byte data type.

Example 1:

/* Example of a member aligned to an odd address */

#pragma pack(1)

struct {

char pad1;

...
/*

Up to here, the total size of members from the start is an odd number. */

short mem; /* odd address */

};

Example 2:

/* Example of a member aligned to an address that cannot be divided by 4 (1) */

#pragma pack(1)

struct {

char pad1;

...
/*

Up to here, the total size of members from the start is a (multiple of 4 +

1)

*/

int mem; /* odd address */

};

/* Example of a member aligned to an address that cannot be divided by 4 (2) */

#pragma pack(1)

struct {

short pad1;

char pad2;

...
/*

Up to here, the total size of members from the start is a (multiple of 4 + 3).

*/

int mem;

};

ZBG-CD-10-0030 Attachment 1 - 50/78

Example 3:

/* Example when the packing value is 1 and a 2- or 4-byte member is referenced by

a structure pointer */

#pragma pack(1)

struct {

char c;

int i;

} *pst1;

int i1, i2, i3, i4;

int func() {

return((~i1) << ((~i2)<<(((i3)+(i4)) << (pst1->i))));

/* pst1->i is applicable. */

}

[Workaround]

Temporarily store the member and the result of the included function __sasf() in the expression that might cause

this bug in a local variable declared as volatile, and use the local variable for the expression.

Example:

/* When bug applies to st1.i in the parameters of return */

#pragma pack(1)

struct {

char c;

int i;

} st1;

int i1, i2, i3, i4, i5;

int func() {

 return((~i1) << ((~i2)<<(((i3)+(i4)) << (i5 + st1.i))));

}

/* Modification to prevent bug */

#pragma pack(1)

struct {

char c;

int i;

} st1;

int i1, i2, i3, i4, i5;

int func() {

volatile int tmp = st1.i;

 return((~i1) << ((~i2)<<(((i3)+(i4)) << i5 + tmp)));

}

Temporarily store the value of st1.i in a
variable declared as volatile, and use the
variable where applies.

ZBG-CD-10-0030 Attachment 1 - 51/78

[Correction]

This restriction has been removed in Ver. 2.70.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 89 Restriction on parameter of inline function

[Description]

Invalid code is generated if an inline function satisfies the following conditions:

 The address of a parameter of the inline function is acquired, the address is cast to a pointer whose type

differs from the parameter, and the parameter is referenced.

 The parameter above is not used at any other location.

The address resulting from typecasing becomes invalid where the inline function is expanded.

If #pragma inline is specified for a function in the program, this bug might apply to the function. In addition,

depending on the combination of the optimization options -Os and -Ot and options related to inline expansion, the

inline function might be expanded and this bug might occur.

Example of code that causes the bug:

#pragma inline subfunc

unsigned int s;

static void

subfunc(int i) { /* this function is inlined */

 s = *((unsigned int*)&i); /* cast */

}

void

func(int ii) {

 subfunc(ii);

}

void

main(void) {

 int t = 2;

 func(t);

 printf("%x\n", s); /* references the parameter */

}

[Workaround]

Do one of the following:

(1) Suppress inline expansion.

(a) When using CA850 Ver. 2.40 or Ver. 2.41, do (a-1) or (a-2).

(a-1) Remove #pragma inline and specify an optimization option other than -Os or -Ot.

(a-2) Specify the options below if you do not remove #pragma inline or change the optimization options.

Which option to specify varies depending on whether #pragma inline is specified and the

combination of optimization options.

ZBG-CD-10-0030 Attachment 1 - 52/78

 #pragma inline Specified #pragma inline Not Specified

When the optimization option

other than -Os and -Ot is

specified

This bug does not apply.

((a-1))

When the optimization option

-Ot is specified

Specify all the following options:

-Wp,-N0

-Wp,-G0

-Wp,-Sn

When the optimization option

-Os is specified

Specify all the following options:

-Wp,-N0

-Wp,-G0

-Wp,-Sn

-Wp,-Sn

How to specify options in PM and PM+:

 In the Compiler Options dialog box, click the Optimization2 tab and then input 0 in the Code

Threshold text box for specifying the -Wp,-N0 option, and 0 in the Stack Threshold field for

specifying the -Wp,-G0 option. To specify the -Wp,-Sn option, click the Others tab and input

-Wp,-Sn in the Any Option text box.

(b) When using CA850 Ver. 2.50 or Ver. 2.60, do (b-1) or (b-2).

(b-1) Remove #pragma inline and specify an optimization option other than -Ot.

(b-2) Specify the options below if you do not remove #pragma inline or change the optimization options.

Which option to specify varies depending on whether #pragma inline is specified and the

combination of optimization options.

 #pragma inline Specified #pragma inline Not Specified

When the optimization option

other than -Os and -Ot is

specified

This bug does not apply.

((b-1))

When the optimization option

-Ot is specified
-Wp,-no_inline

When the optimization option

-Os is specified

-Wp,-no_inline

This bug does not apply.

((b-1))

How to specify options in PM and PM+:

In the Compiler Options dialog box, click the Detail of Optimization tab and specify No

Expansion [-Wp,-no_inline] in the Control of Inline Expansion drop-down list.

(2) Assign the parameter of the inline function to another variable before using the parameter.

(3) Specify the -Wp,-a- option to suppress deletion of unreferenced parameters.

 When specifying settings in PM or PM+, open the Compiler Options dialog box, click the Others tab, and

input -Wp,-a- in the Any Option text box.

[Correction]

This restriction has been removed in Ver. 2.70.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 90 Restriction on optimization for loop processing

[Description]

When a for loop, while loop, do-while loop, or if-goto loop is executed while the following conditions are

satisfied, the loop is executed only once even if the loop count is set to two or more.

ZBG-CD-10-0030 Attachment 1 - 53/78

Conditions:

1. When using CA850 Ver. 2.40 or Ver. 2.41

(a) The level of the specified optimization option is -Os/-Ot or higher.

(b) An unsigned int variable is used as the loop variable.

(c) The value of the loop variable is any of the following:

 Loop initial value: 0xfffe or lower

 Loop end value: 0xffff0002 or higher

 Loop increment: 0xfffe or lower

 Loop initial value: 0xffff0002 or higher

 Loop end value: 0xfffe or lower

 Loop decrement: 0xfffe or lower

(d) <, , >, or  is used for loop variable comparison.

(e) None of the following are performed:

 Processing to assign a value to the loop variable inside the loop (excluding addition to or subtracting

from the loop variable)

 Branching from outside the loop to inside the loop

 Branching from inside the loop to outside the loop

2. When using CA850 Ver. 2.50, Ver. 2.60, or Ver. 2.61

(a) The specified optimization option is -O, -Os, or -Ot.

(b) An unsigned int variable is used as the loop variable.

(c) The value of the loop variable is any of the following:

 Loop initial value: 0x3ffffffe or lower

 Loop end value: 0xc0000002 or higher

 Loop increment: 0x3ffffffe or lower

 Loop initial value: 0xc0000002 or higher

 Loop end value: 0x3ffffffe or lower

 Loop decrement: 0x3ffffffe or lower

(d) <, , >, or  is used for loop variable comparison.

(e) None of the following are performed:

 Processing to assign a value to the loop variable inside the loop (excluding addition to or subtracting

from the loop variable)

 Branching from outside the loop to inside the loop

 Branching from inside the loop to outside the loop

Example:

void

main(void) {

unsigned int i;

for(i=0; i<0xffffff00; i+=0x1111) {

:

(processing)

 :

 }

}

ZBG-CD-10-0030 Attachment 1 - 54/78

[Workaround]

Do one of the following:

(1) Specify -Wo,-No to suppress the optimization of loop expansion not executed or executed once.

(2) Declare the unsigned int type loop variable as volatile.

(3) Lower the optimization level.

(4) Use != for the loop comparison.

[Correction]

This restriction has been removed in Ver. 2.70.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 91 Restriction that an undefined-symbol error occurs due to if and goto statements

[Description]

If the following conditions are satisfied, an undefined-symbol error is output for the label not defined by the user

during linking, as shown below. (The label name varies depending on the application used.)

ld850: CA850 error F4452: undefined symbol.

.G38 (referenced in ".\main.o")

Conditions:

(1) The optimization option level is -Ob (the default) or higher.

(2) The debugging information generation option -g is specified.

(3) An if statement includes a statement to assign two constants to the same variable, and a goto statement

is specified without using else at the end of the if statement. There is no other code in the if statement.

(4) && and || are not used in the if statement condition.

(5) An if statement includes a statement to assign two constants to a variable, and the two constants satisfy

the conditions below.

If “a” is a constant to which a value is assigned when the if statement conditions are satisfied, and “b” is a

constant to which a value is assigned when the if statement conditions are not satisfied, and any of (a) to (d)

is satisfied when these constants are signed integers, or any of (e) to (h) is satisfied when these constants are

unsigned integers, the restriction applies. However, these conditions assume that the values of “a” and “b” are

not floating-point numbers or pointers (although the indirect assignment of an integer pointer is regarded as a

target for the conditions).

(a) a = 0 and 32768  b  32767

(b) b  a = 2n, and 32768  a  32767

(c) b = 0 and 32768  a  32767

(d) 32768  a  b  32767 or a  b = 2n, and 32768  b  32767

(e) b = 0 and a  32767

(f) a  b  32767 or a  b = 2n, and b  32767

(g) a = 0 and b  32767

(h) b  a  32767 or b  a = 2n, and a  32767

ZBG-CD-10-0030 Attachment 1 - 55/78

Example 1:

int i;

:

 :

if(i){

i = 0; /* condition (5)-(a)*/

goto label; /* condition (3)*/

}

i = 1; /* condition (5)-(b)*/

label:

Even if a goto statement is not used explicitly, a goto statement might be output internally depending on the

optimization status of the compiler. If the conditions are satisfied in such a case, the restriction applies.

Example 2:

if(num == 2){

return 2;

}

if(num == 3){

return 0;

}

return 0;

The above code internally outputs the code below, which satisfies the conditions, so the restriction applies.

Example 3:

unsigned char tmp;

if(num == 2){

tmp = 2; /* condition (5)-(a)*/

goto label; /* condition 3 */

}

if(num == 3){

tmp = 0; /* condition (5)-(b) */

goto label; /* condition (3) */

}

tmp = 0;

label:

return tmp;

[Workaround]

Specify the compiler option -Wo,-Nx to suppress setf optimization.

[Correction]

This issue has been corrected Ver. 2.72.

ZBG-CD-10-0030 Attachment 1 - 56/78

No. 92 Restriction on flash/external ROM re-link function during linking

[Description]

If the condition below is satisfied when flash/external ROM relinking is used in CA850 Ver. 2.70, an unresolved-

relocation error below might occur or invalid code might be output without returning an error when linking a load

module on the flash memory side.

ld850: CA850 error F4163: output section ".tibss.word" overflowed or

illegal label reference for symbol "symbol" in file "file.o"(value: 0xffff9048,

input section: .text, offset: 0x00000002, type: R_V850_REGWBYTE). "symbol" is

allocated in section ".tibss.word" (file: a.out).

Condition:

An external symbol in a load module on the boot side is referenced relative to tp (the text pointer) or ep (the

element pointer) from a load module on the flash memory side.

When flash/external ROM relinking is used, a load module on the boot side and a load module on the flash

memory side are created. When an external symbol in the load module on the boot side is referenced from the

load module on the flash memory side, the offset is calculated based on the base pointer of the load module on the

boot side and code is generated using the value. However, the value of tp, gp, or ep, which is used as the base

pointer, becomes invalid due to this bug, so any offset values that were calculated using tp or ep also become

invalid.

This bug does not apply to code that performs gp-relative reference because the offset values based on gp are

calculated in a different way from the offset values based on tp and ep.

[Workaround]

There is no workaround.

[Correction]

This issue has been corrected in Ver. 2.72.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 93 Restriction whereby error E2288 is output

[Description]

If the conditions below are satisfied, error message E2288 is output and the CA850 is abnormally terminated.

E2288: return type mismatch xxxx (yyyy)

Conditions:

1. A function’s data type does not match the data type of the value it returns.

 Error E2288 is output if code is specified in which the function’s data type and the data type of the return

value type do not match.

2. Structure packing is specified (-Xpack).

3. The function’s data type is struct or union.

In PM+, the error message is displayed and the execution results in error, but the error count is incorrect.

Example:

struct S sobj;

struct S func1(){

 return &sobj; /* Error E2288 */

}

ZBG-CD-10-0030 Attachment 1 - 57/78

[Workaround]

Correct the function’s data type and the data type of the return value type.

[Correction]

This issue has been corrected in Ver. 3.20.

No. 94 Restriction on security ID and option byte

[Description]

If the following conditions are satisfied, the target values listed below become 0.

Conditions:

1. A device that has a security ID or option byte is specified.

2. The linker’s -B option is specified.

3. The security ID or option byte is not defined in the assembler source file.

Target values:

1. The security ID specified using the -Xsid option.

2. Initial value of the security ID when -Xsid is omitted (in Ver. 3.00 only).

 The default value is 0xffffffffffffffffffff.

3. Initial value of the option byte.

 The default value is registered in the device file.

[Workaround]

Define the security ID and option byte in the assembler source file.

The security ID and option byte must be defined in the device file.

Example:

#--

SECURITY_ID

#--

.section "SECURITY_ID"

.word 0xffffffff --0-3 byte code,Address is 0x70-0x73

.word 0xffffffff --4-7 byte code,Address is 0x74-0x77

.hword 0xffff --8-9 byte code,Address is 0x78-0x79

#--

OPTION_BYTES

#--

.section "OPTION_BYTES"

.hword 0x0000 --0-1 byte code,Address is 0x7a-0x7b

.hword 0x0000 --2-3 byte code,Address is 0x7c-0x7d

.hword 0x0000 --4-5 byte code,Address is 0x7e-0x7f

[Correction]

This issue has been corrected in Ver. 3.10.

No. 95 Restriction on floating point constants and integer type

[Description]

When a floating point value is converted to an int value, the range that can be expressed with integer values is

the signed int or signed long type area, and, if the value is converted to an unsigned int or unsigned

long while the range is exceeded, a compiler error might result.

E2519: invalid has occurred at compile time.

ZBG-CD-10-0030 Attachment 1 - 58/78

Example:

unsigned int ui = 2147483647.0; /* OK */

unsigned int ui = 2147483648.0; /* Error */

[Workaround]

Specify an integer.

Example:

unsigned int ui = 2147483648;

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 96 Restriction on input conversion for I/O function in standard library

[Description]

When input conversion processing is performed for printf, sprintf, vprintf, or vsprintf, which are I/O

functions in the standard library, the precision specified for the conversion specifier g,G is incremented.

Example:

printf("%.2g", 12.3456789);

/* The result should be 12, but 12.3 is output */

[Workaround]

There is no workaround.

[Correction]

This problem will not be corrected, so regard it as a specification.

No. 97 Restriction on assignment in machine-dependent optimization module

[Description]

When specifying optimization optionsNote, if an if statement or switch statement that assigns the same value to

three or more variables exists in a basic block, the value of the variable to which a value is assigned first might be

undefined as a result of optimization.

Note One of the following sets of options is specified when using a CA850 earlier than Ver. 2.50:

Option for object size optimization + optional optimization (-Os -Ol)

Option for object size optimization + advanced optimization (-Os -Wi,-O4)

Option for object size optimization + optional optimization + advanced optimization (-Os -Ol -Wi,-O4)

Option for execution speed optimization + optional optimization (-Ot -Ol)

Option for execution speed optimization + advanced optimization (-Ot -Wi,-O4)

Option for execution speed optimization + optional optimization + advanced optimization (-Ot -Ol -Wi,-

O4)

 One of the following sets of options is specified when using CA850 Ver. 2.50 or later.

Option for object size optimization (-Os)

Option for execution speed optimization (-Ot)

Option for Level 1 Advanced optimization + advanced optimization (-O -Wi,-O4)

ZBG-CD-10-0030 Attachment 1 - 59/78

Example 1:

if(Conditional expression){

 a1 = x;

 b1 = x;

 c1 = x;

}

else{

 a1 = y;

 b1 = y;

 c1 = y;

}

Example 2:

switch(conditional expression){

 case 0:

 a1 = x;

 b1 = x;

 c1 = x;

 break;

 case 1:

 a1 = y;

 b1 = y;

 c1 = y;

 break;

 default:

 a1 = z;

 b1 = z;

 c1 = z;

 break;

}

[Workaround]

Specify the following options to suppress the optimization that causes this bug:

-Wi,+cf_reg_trans_opt1=0

-Wi,+cf_reg_trans_opt2=0

-Wi,+cf_forward_reg_trans_opt=0

-Wi,+cf_reverse_reg_trans_opt=0

-Wi,+abs_ptn_opt=0

[Correction]

This issue has been corrected in Ver. 3.10.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 98 Restriction whereby data in an automatic variable area is illegally deleted

[Description]

If the following conditions are satisfied, some elements (of an array) or members (of a structure or union) in an

automatic variable area are deleted and indirect referencing for that automatic variable might be performed

incorrectly.

Same variable group

x and y are constants or variables.

Same variable group

x and y are constants or variables.

ZBG-CD-10-0030 Attachment 1 - 60/78

Conditions:

(1) The second or a later element of an automatic array or the second or a later member of an automatic

structure or union is directly referenced or its address is acquired

(2) That automatic variable is placed at the lowest address of the automatic variable area in that function.

In such a case, indirect referencing for an automatic variable placed at an address lower than the one referenced

in (1) is performed incorrectly.

Example:

In this case, only the 8-byte area from str[4] to str[11] is allocated. Consequently, indirect referencing for

str[0] to str[3] might be performed incorrectly.

[Workaround]

Assign the start address of the automatic variable to an external pointer that is modified with volatile.

Example:

[Correction]

This issue has been corrected in Ver. 3.20.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

char val;
char *p;

void func(){

 char str[12];

/* Initialize the pointer by assigning the address of array str[4] to it */

 p = &str[4];
 .
 .
 .

 /* Indirectly references str[0] to str[3] by using p*/
 val = *(p–1);  This indirect reference is incorrect
 }

Elements or members are deleted illegally.

Acquired address

0 1 2 4 5 3 6 7 10 98 11

char val;
 char *p;
char * volatile dmy;

void func(){

 char str[12];

/* Initialize the pointer by assigning the address of array str[4] to it */

 p = &str[4];
 .
 .
 .

/* Assigns the start address of the array str to a dummy external pointer
modified with volatile*/
 dmy = &str[0];
 /* Indirectly references str[0] to str[3] by using p */
 val = *(p–1);  This indirect reference is correct
 }

ZBG-CD-10-0030 Attachment 1 - 61/78

No. 99 Restriction on address specification with -U option of hx850

[Description]

Error F8651 occurs if the following conditions are satisfied:

Conditions:

(1) The option -Ustart,size or -Unum,start,size is specified.

(2) The hex conversion area is specified for the option in (1), and the specified area includes an address higher

than the start address of a peripheral I/O register area.

F8651: specified address area(addr1 - addr2) overlaps I/O area (addr3 - addr4)

[Workaround]

There is no workaround.

[Correction]

This issue has been corrected in Ver. 3.20.

No. 100 Restriction whereby strcmp() and strncmp() operations differ

[Description]

When character strings are compared, the characters are interpreted as follows:

 strcmp() function: Signed

 strncmp()function: Unsigned

Consequently, the result of strcmp() and strncmp() operations differ. This restriction do not apply when the

compared characters are ASCII codes (0x00 to 0x7f).

Example:

[Workaround]

There is no workaround.

[Correction]

This issue has been modified in Ver. 3.20 so that the strcmp() function will interpret character strings as unsigned.

No. 101 Restriction on string literal with 65 or more characters

[Description]

The following assembler error will be output if the second character of a string literal with 65 or more characters is

\\:

E3249: illegal syntax

To count the number of characters included in character strings, \0 is added at the end of the string literal and an

escape character is handled as two characters. For example, escape characters such as \\ and \0 are handled

as two characters. The following example causes an assembly error because it includes a string literal with 65 or

more characters.

strcmp("aaa", "aa\x80");
/* 0x80 is interpreted as a negative number (= a > 0x80) */
/* -> An integer greater than 0 (225 in the above code) is returned.*/

strncmp("aaa", "aa\x80", 3);
/* 0x80 is interpreted as a positive number (= a < 0x80) */
/* -> An integer less than 0 (-31 in the above code) is returned. */

ZBG-CD-10-0030 Attachment 1 - 62/78

Example:

[Workaround]

Do one of the following:

For the following character string,

”a\\aa”;

1. Replace \\ with another character in the array declaration, and replace this character with \\ upon execution.

Example:

2. Initialize the char array with characters.

Example:

3. Write the above character string in the assembler.

Example:

[Correction]

This issue has been corrected in Ver. 3.20.

char a[]=”a\\aa”;

/* E3249 error */

Character string count:

a\\aa\0

 10th 20th 30th 40th 50th 60th 65th

char a[]="axaa";

 void main() {

 a[1] = '\\';

char a[] = { 'a','\\','a','a','a','a','a','a','a',

 'a','a','a','a','a','a','a','a','a','a',

 'a','a','a','a','a','a','a','a','a','a',

 'a','a','a','a','a','a','a','a','a','a',

 'a','a','a','a','a','a','a','a','a','a',

 'a','a','a','a','a','a','a','a','a','a',

.sdata

.globl _a, 62
_a:
.str "a\\aa\0"

ZBG-CD-10-0030 Attachment 1 - 63/78

No. 102 Restriction on optimization with assembler

[Description]

As a result of specifying the pseudo instruction .option volatile or .option nooptimize, which is

functionally equivalent to .option volatile, in assembler code, instructions that are placed in an area not

subject to assembler optimization might be rearranged (optimized) as a result of expanding instructions.

When accessing a variable modified with volatile is specified in C, the pseudo instruction .option volatile

and an instruction that accesses the variable are output. At that time, instructions newly generated through

instruction expansion due to assembler optimization might be rearranged. Deletion and rearrangement of memory

access instructions are not performed. With the C source files, the code is executed normally according to the

ANSI-C volatile-type qualifier specifications.

Conditions:

If the following conditions are satisfied, the order of instructions might be changed and output.

(1) If the code is written in C

(a) The optimization option -Og, -O, -Os, or -Ot is specified.

(b) A variable modified with volatile is defined in another file.

(c) There are variables that satisfy either of the following conditions:

  const variables for which the location is not specified.

(-Xsconst[=num] option, specification with a section file, nor #pragma section is specified)

  There are variables for which the location is specified in any of the following ways:

 The directive #pragma section is used to specify data or const sections, based on the

section type.

 The option -Gnum is used to allocate a variable larger than the size specified with num to

a .data or .bss section.

 A section file is used to specify data or const, based on the section type, and the variable

name is specified.

 The option -Xsconst[=num] is used to allocate a variable larger than the size specified with

num to a .const section.

(d) Accessing variables that satisfy conditions (b) and (c) is specified.

In this case, the restriction applies to the code of (d).

(2) If the code is written in assembly language

(a) The optimization option -O is specified.

(b) An assembly language instruction to be expanded is written in a range specified with the pseudo

instruction .option volatile or .option nooptimize.

(c) The labels in the instruction that satisfies condition (b) have not been defined so far (up to that line).

In this case, the restriction applies to the code of (d).

Example:

.bss

.globl _Label1, 1

.lcomm _Label1, 1, 1  _Label1 is defined in the same file

.option data _Label2  _Label2 is defined in another file

.option volatile
st.b r13, $_Label1
.option novolatile

.option volatile
st.b r14, $_Label2
.option novolatile

ZBG-CD-10-0030 Attachment 1 - 64/78

In the above example, an instruction that references _Label1 and _Label2 is expanded into two

instructions, as shown below. Among instructions that reference _Label2, instructions newly generated

through instruction expansion might be rearranged.

[Workaround]

Suppress the assembler optimization.

(1) For C source files

Specify the option -Wa,+O.

When using PM+, select the Tool menu, Compiler Options, the Others tab, and then input -Wa,+O in the

AnyOption text box.

(2) For assembler source files

Do not specify the option -O. When using PM+, select the Tool menu, Assembler Options, and then clear

the Do Optimization check box.

[Correction]

This issue has been corrected in Ver. 3.20.

No. 103 Restriction whereby an assignment statement for an automatic variable whose address is acquired by a

function is deleted illegally

[Description]

If the following conditions are satisfied, an assignment statement for an automatic variable whose address is

acquired by a function might be deleted illegally:

Conditions:

(1) The CA850 earlier than Ver. 2.50 is used:

(a) The optimization option -Os or -Ot is specified.

(b) One of the following is executed:

 The address of an automatic variable is assigned to an external 32-bit integer variable and then a

function is called (example 1).

 The address of an automatic variable is assigned to an external variable whose address cannot be

identified statically and then a function is called (example 2)

(2) The CA850 Ver. 2.50 or later is used:

(a) An optimization option of -Og or a higher level is specified.

(b) One of the following is executed:

 The address of an automatic variable is assigned to an external 32-bit integer variable and then a

function is called (example 1).

 The address of an automatic variable is assigned to an external variable whose address cannot be

identified statically and then a function is called (example 2)

.option volatile
movhi 0x0, gp, r1
st.b r13, 0x0[r1]
.option novolatile

.option volatile
movhi 0x0, gp, r1
st.b r14, 0x0[r1]

.option novolatile

.option volatile
movhi 0x0, gp, r1
st.b r13, 0x0[r1]
.option novolatile

movhi 0x0, gp, r1  This one is moved

.option volatile
st.b r14, 0x0[r1]
.option novolatile

Case where instructions are not rearranged: Case where instructions are rearranged:

ZBG-CD-10-0030 Attachment 1 - 65/78

Example 1:

Example 2:

[Workaround]

Do one of the following:

(1) Workaround using an option

(a) The CA850 earlier than Ver. 2.50 is used

Do not specify the optimization option -Os or -Ot.

(b) The CA850 Ver. 2.50 or later is used

Specify the optimization option -Ob or -Od.

(2) Workaround by modifying the source

Declare the automatic variable whose address is acquired as volatile.

Example:

[Correction]

This issue has been corrected in Ver. 3.20.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 104 Incorrect number of loop executions

[Description]

If all of the following conditions are satisfied, a loop might execute the incorrect number of times:

Conditions:

(1) -Og, -O, -Os, or -Ot is specified as the optimization option.

(2) The loop counter is not declared as volatile.

(3) The loop termination condition involves comparing the loop counter to a constant.

(4) A constant is added to or subtracted from the loop counter within the loop.

(5) The loop counter is used within the loop as described in (A) or (B).

 (A) Conditions a to e are satisfied (example 1):

a. The loop counter is used to index an array.

b. The elements of the array in a are structures, unions, or arrays.

c. The size of the elements of the array in a is not a power of 2.

d. The size of the elements of the array in a is within 65,534 bytes.

int a;

void func1(void){
 int val;
 a = &val;
 val = 1;  Illegally deleted
 func2();
}

int* ary[10];

 void func1(int i){
 int val;
 ary[i] = &val;
 val = 1;  Illegally deleted
 func2();
}

volatile int val;

ZBG-CD-10-0030 Attachment 1 - 66/78

e. The product of the constant used for the loop termination condition in (3) and the size of an

element of the array in a is too large to store in a 32-bit integer.

(B) Conditions f to i are satisfied (example 2):

f. The loop counter is used as one multiplier in an expression with a constant.

g. The constant in f is not a power of 2.

h. The constant in f is in the range from 65,534 to 65,534.

i. The product of the constant used for the loop termination condition in (3) and the constant in f

is too large to store in a 32-bit integer.

* Loop counter: This controls when a loop ends.

Example 1:

INT_MAX*12 (which equals 0x5FFFFFFF4) is too large to store in a 32-bit integer, so this code

might apply to this restriction.

Example 2:

INT_MAX*100 (which equals 0x31FFFFFF9C) is too large to store in a 32-bit integer, so this code

might apply to this restriction.

[Workaround]

Do one of the following:

(1) Change the constant in the loop termination condition as follows:

 The product of this constant and the size of an element in an array indexed using the loop counter is not

too large to store in a 32-bit integer.

 The product of this constant and a constant multiplied with the loop counter is not too large to store in a

32-bit integer.

struct {
 int s1;
 int s2;
 int s3; // The elements of the array "ary” are structures.
} ary[100]; // The size (12 bytes) is not a power of 2 and
 // is within 65,534 bytes.

int i; // The loop counter i is not declared as volatile.
for (i = 0; i < INT_MAX; i ++){ // The loop termination condition involves
 // comparing the loop counter to a constant.
 // A constant is added to the loop counter i.

 ary[i].s1 = 1; // The loop counter i is used to index the array.
 …
}

volatile int vi;

int i = 0; // The loop counter i is not declared as volatile.
while (i < INT_MAX){ // The loop termination condition involves
 // comparing the loop counter to a constant.
 vi = i * 100; // The loop counter i is used as one multiplier
 // in an expression with a constant.
 … // The constant is in the range from -65,534 to 65,534.

 i++ ; // A constant is added to the loop counter i.
}

ZBG-CD-10-0030 Attachment 1 - 67/78

(2) Declare the loop counter as volatile.

Modify with volatile the automatic variable whose address is acquired.

Before modification:

After modification:

(3) Specify -Od or -Ob as the optimization option.

[Correction]

This issue has been corrected in Ver. 3.40.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 105 Incorrect string literals

[Description]

If the following conditions are satisfied, the contents of the string literal become incorrect:

Conditions:

(1) ASCII code 0x00 is used in a string literal.

(2) An ASCII code from 0x30 through 0x37 immediately follows 0x00 in (1).

Example: When the ASCII code following the ASCII code 0x00 is 0x37

The correct output is 0x00, 0x37, 0x00, respectively, but 0x07 and 0x00 are output.

[Workaround]

Do one of the following:

(1) Initialize strings without using string literals.

(2) Specify the ASCII code for a character other than 0x30 to 0x37 after 0x00, and then dynamically replace

that character.

int i;
for (i = 0; i < INT_MAX; i ++){

 ary[i].s1 = 1;
 …
}

volatile int i;
for (i = 0; i < INT_MAX; i ++){

 ary[i].s1 = 1;
 …
}

char string1[] = "\x00\x37";
char string2[] = "\000\067"; // (37)16 = (67)8
char string3[] = "\x00" "7"; // (37)16 = ’7 ’

char string4[] = {'\x00', '\x37', '\0'};

char string5[] = "\x00*";
string5[1] = '\x37';

ZBG-CD-10-0030 Attachment 1 - 68/78

[Correction]

This issue has been corrected in Ver. 3.40.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 106 Restriction involving format specifiers for the sscanf, fscanf, and scanf functions

[Description]

If conditions (1) to (3) are satisfied, the parameter for the format specifier described in (3) is overwritten:

Conditions:

(1) The sscanf, fscanf, or scanf function is used.

(2) There are less entered fields than format specifiers.

(3) The first extra format specifier character is s, e, f, g, E, F, G, or [] (examples 1 and 2).

If conditions (4) and (5) are satisfied, the parameter for the format specifier described in (5) is overwritten.

Conditions:

(4) The sscanf, fscanf, or scanf function is used.

(5) [] are used as format specifier characters, and the character pattern enclosed by them is not in the

entered fields (example 3).

Example 1: When first extra format specifier is f

The input field aaaa is stored in ary1 as a character string. However, there is no input field for the format

specifiers %f and %f after %s. In this case, the value of the parameter f1 for the first extra format specifier is

overwritten.

Expected values: ary1 = "aaaa", f1 = 2.0, f2 = 3.0

Output result: ary1 = "aaaa", f1 = 0.0, f2 = 3.0

Example 2: When first extra format specifier is s

The input field 1 is stored in data1 as a decimal integer. The input field 2 is stored in data2 as a decimal

integer. However, there is no input field for the format specifiers %d %d following after %s.

In this case, the value of the parameter ary2 for the first extra format specifier is overwritten.

Expected values: data1 = 1, data2 = 2, ary2 = "test"

Output result: data1 = 1, data2 = 2, ary2 = "\0"

char ary1[5];
float f1 = 2.0, f2 = 3.0;

sscanf ("aaaa", "%s %f %f", ary1, &f1, &f2);

  First extra format specifier

int data1, data2;
char ary2[5]="test";

sscanf ("1 2", "%d %d %s", &data1, &data2, ary2);

  First extra format specifier

ZBG-CD-10-0030 Attachment 1 - 69/78

Example 3: When the character pattern enclosed by [] is not in the entered fields

The input field aaaa is stored in ary2 as a string literal. Next, the code searches for a in the input field bbbb

and attempts to store the result in ary3, but the character is not found. In this case, the value of ary3 is

overwritten.

Expected values: ary3 = "aaaa", ary4 = "test", ary5 = "test"

Output result: ary3 = "aaaa", ary4 = "\0", ary5 = "test"

[Workaround]

There is no workaround.

[Correction]

This issue has been corrected in Ver. 3.40.

No. 107 Restriction involving the character string parameter for the atoi, atol, strtol, and strtoul functions

[Description]

If conditions (1) to (5) below are satisfied, the return value might be invalid. For the strtol and strtoul

functions, the global variable errno is not set to ERANGE:

Conditions:

(1) The atoi, atol, strtol, or strtoul function is used.

(2) For the atoi or atol function, the character string parameter exceeds 32 bits when expressed as a

decimal number.

 For the strtol or strtoul function, the first character string parameter exceeds 32 bits when

expressed using the base specified as the third parameter.

(3) When the portion of the character string parameter in (2) from the first character to a given character is

converted to a number and compared to the absolute value of the lower 32 bits of the value that results

when the portion of the same character string from the first character to the character following the given

character above is converted to a number, the latter value is greater than the former.

(4) The comparison in (3) includes all characters in the string.

(5) For the atoi, atol, or strtol function, the lower 32 bits of the number to which the character string

was converted in (2) are within the range from LONG_MIN to LONG_MAX after adding a sign.

Example 1: When the strtoul function is used

char ary3[5] = "test";
char ary4[5] = "test";
char ary5[5] = "test";

sscanf ("aaaa bbbb cccc", "%s %[a] %s", ary3, ary4, ary5);

  Format specifier that does not match the entered field

char *p;
unsigned long ul;

ul = strtoul("123456789", &p, 16);

ZBG-CD-10-0030 Attachment 1 - 70/78

The hexadecimal value 0x123456789 exceeds 32 bits, and the comparison in (3) includes all characters in

the string.

Example: If the character string 12345678 is converted to hexadecimal (0x12345678) and the value is

compared to the lower 32 bits of the value that results when the string including the next number

(9) is converted to hexadecimal (0x123456789), the latter is greater than the former.

 In other words, 0x12345678 < 0x23456789.

Expected values: ul = ULONG_MAX errno = ERANGE

Output result: ul = 0x23456789

Example 2: When the strtol function is used

The hexadecimal value 0x-123456789 exceeds 32 bits, and the comparison in (3) includes all characters in

the string.

Expected values: l = LONG_MIN errno = ERANGE

Output result: l = DCBA9877(-0x23456789)

Example 3: When the atoi function is used

The decimal value 5368709120 (which equals 0x140000000) exceeds 32 bits, and the comparison in (3)

includes all characters in the string.

Example: If the character string "536870912" is converted to decimal (536870912, which equals

0x20000000) and the value is compared to the lower 32 bits of the value that results when the

string including the next number ("5368709120") is converted to decimal (5368709129, which

equals 0x140000000), the latter is greater than the former.

 In other words, 0x20000000 < 0x40000000.

Expected values: i = LONG_MAX

Output result: i = 1073741824(0x40000000)

[Workaround]

There is no workaround.

[Correction]

This issue has been corrected in Ver. 3.40.

signed int i;

i = atoi("5368709120");

char *p;
signed long l;

l = strtol("-123456789", &p, 16);

ZBG-CD-10-0030 Attachment 1 - 71/78

No. 108 Restriction involving initialization of a structure that includes a bit field among its members

[Description]

If conditions (1) and (2) are satisfied, the bit field is not correctly initialized (example 1):

Conditions:

(1) A structure is used that includes a bit field immediately followed by another structure (or union) as

members.

(2) Both of the members included in the structure in 1 are initialized using initial values.

If conditions (3) to (5) are satisfied, the bit field might not be correctly initialized (example 2).

(3) An automatic array of structures is used.

(4) The structure in 3 includes a bit field and an element that is at least 126 bytes among its members.

(5) The initializer for this element is omitted, and the element is implicitly initialized to 0.

Example 1:

The higher 4 bits of data.bitf are not initialized.

Expected values: data.bitf = 0xFFF

Output result: data.bitf = 0xFF

data.str

data.bitf Not initialized.

1 byte

Upper

0

7

data.str

data.bitf Not initialized.

1 byte

data.str

data.bitf Not initialized.

1 byte

Upper

0

7

struct {
 int bitf : 12 ; // A bit field is used.
 struct { // A structure follows the bit field.
 int s ;
 } str ;
} data = { 0xFFF, { 2 } } ; // Both members of the structure that includes the
 // bit field are initialized.

ZBG-CD-10-0030 Attachment 1 - 72/78

Example 2:

The offset of the code used to set data[1].bitf to 1 ends up too low. data[0].ary[30] is initialized to

1. data[1].bitf ends up undefined.

Expected values: data[0].ary[30] = 0

 data[1].bitf = 1

Output result: data[0].ary[30] = 1

 data[1].bitf is undefined.

[Workaround]

Do one of the following:

(1) Initialize the structure by assigning values to its members.

For example 1:

ary[31]

data[1]

Initialized to 1.

data[0]

4 bytes

ary[0]

bitf

ary[31]

ary[30]

ary[29]

Upper

0

31

ary[31]

data[1]

Initialized to 1.

data[0]

4 bytes

ary[0]

bitf

ary[31]

ary[30]

ary[29]

ary[31]

data[1]

Initialized to 1.

data[0]

4 bytes

ary[0]

bitf

ary[31]

ary[30]

ary[29]

Upper

0

31

void func(void)
{
 struct {
 int bitf : 25; // A bit field is used.
 int ary[32]; // The following element is at least 126 bytes.
 } data[2] = { { 1 }, { 1 } }; // The automatic array of structures data is used.
 … // ary is implicitly initialized to 0.
}

struct {
 int bitf : 12 ;
 struct {
 int s ;
 } str ;
} data ; // Not initialized
…
data.bitf = 0xFFF ; // Changed to assignment
data.str.s = 2 ;

ZBG-CD-10-0030 Attachment 1 - 73/78

(2) Declare the bit field in a separate structure within the main structure.

For example 1:

[Correction]

This issue has been corrected in Ver. 3.40.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 109 Restriction involving nested conditionally assembled pseudo instructions

[Description]

If the following conditions are satisfied, the error message F3510 is output:

Conditions:

(1) An .elseif or .elseifn pseudo instruction is used.

(2) The condition in (1) evaluates to true.

(3) There is an .elseif or .else pseudo instruction that corresponds to the pseudo instruction in (1).

(4) There is a pseudo instruction that is conditionally assembled nested within the block that corresponds to

the pseudo instruction in (1).

Example:

struct {
 struct {
 int bitf : 12 ;
 } str2 ; // Structure within the structure
 struct {
 int s ;
 } str ;
} data = { { 0xFFF }, { 2 } } ;

.set FLAG1, 0

.set FLAG2, 1

.set FLAG3, 1

.set FLAG4, 0

.if FLAG1 == 1
 .set TEMP, 1
.elseif FLAG2 == 1 -- Satisfies conditions (1) and (2)
 .if FLAG3 == 1 -- Satisfies condition (4)
 .set TEMP, 2
 .endif
.elseif FLAG4 == 1 -- Satisfies condition (3)
 .set TEMP, 3
.endif

Nested

ZBG-CD-10-0030 Attachment 1 - 74/78

[Workaround]

When nesting a conditionally assembled pseudo instruction, use either block 1 or 2, below.

(1) .if pseudo instruction block

(2) .elseif pseudo instruction block that ends with .endif

[Correction]

This issue has been corrected in Ver. 3.40.

No. 110 Restriction involving assignment within switch and if statements

[Description]

If the following conditions are satisfied, the processing within switch or if statements might become incorrect as

a result of optimization by the ca850:

Conditions:

(1) The C source code satisfies conditions (A) to (C) (example 1).

(A) For a version earlier than 2.50, the compiler optimization option -Os or –Ot is specified in addition to -Ol,

but –Wi,–O4 is not specified.

 For Ver. 2.50 or later, the compiler optimization option -Os or -Ot is specified, but –Wi,–O4 is not

specified.

(B) Parallel processing is performed to assign a value to the same variable in a switch or if statement.

(C) After the assignment in (B), execution jumps back to the same position.

Example 1:

.if FLAG1 == 1
 .set TEMP, 1
.else
 .if FLAG2 == 1
 .if FLAG3 == 1
 .set TEMP, 2
 .endif
 .elseif FLAG4 == 1
 .set TEMP, 3
 .endif
.endif

Nested

.if FLAG1 == 1
 .set TEMP, 1
.elseif FLAG4 == 1
 .set TEMP, 3
.elseif FLAG2 == 1
 .if FLAG3 == 1
 .set TEMP, 2
 .endif
.endif

Nested

int func(int val) {
 int res;
 switch (val) {
 case 0xA: res = 0x1; break;
 case 0xB: res = 0x2; break;
 case 0xC: res = 0x3; break;
 case 0xD: res = 0x3; break;
 case 0xE: res = 0x3; break;
 default: res = 0x3; break;
 }
 return res;
}

Parallel processing to assign a value to
the same variable (res).

After a value is assigned to res, execution
jumps back to the same position.

ZBG-CD-10-0030 Attachment 1 - 75/78

(2) The assembly language output according to the C source code in (1) satisfies all of the following conditions

(example 2):

(a) The mov or ld directive is used to transfer data to the same register at the end of multiple basic blocks

(Block A).

(b) Block A combines everything into one block (Block B).

(c) There are no directives (or output code) in Block B, which contains information used by the compiler.

 At least one information item is included.

(d) In Block C (the block following Block B), the data is transferred to a register other than the one used in

Block A.

(e) Among the blocks directly combined into Block C, there is a block (Block D) that performs the same

transfer as that performed in Block A.

Remark A basic block is group of directives that are processed in order and ends with a directive that

causes execution to jump.

Example 2:

[Workaround]

Do one of the following:

(1) Insert __asm("\n");. (The check tool outputs the position where this insertion is required.)

(2) Specify –O or lower as the optimization option.

(3) Specify the -Wi,–O4 option.

 …
mov xxx, r12

…
mov yyy, r12

…
mov zzz, r12

…
mov www, r12

Only information
used by the compiler

mov r12, r10

Block (A)

Block (B)

Block (C)

Block (D)

int func(int val) {
 int res;
 switch (val) {
 case 0xA: res = 0x1; break;
 case 0xB: res = 0x2; break;
 case 0xC: res = 0x3; break;
 case 0xD: res = 0x3; break;
 case 0xE: res = 0x3; break;
 default: res = 0x3; break;
 }
 __asm("\n");
 return res;
}

Insert __asm("\n");.

ZBG-CD-10-0030 Attachment 1 - 76/78

[Correction]

This issue has been corrected in Ver. 3.40.

A tool used to check whether this restriction applies is available.

Contact an NEC Electronics sales representative or distributor for details.

No. 111 Restriction on incorrect compare operation optimization while casting

[Description]

No.111 occurs when the following conditions are satisfied:

Conditions:

(1) Compare operation(<, <=, >, >=, ==, !=) between integer operands.

(2) Either operand is casted as shown below:
・signed char ->unsigned char
・signed char ->unsigned short
・unsigned char ->signed char
・signed short ->unsigned short
・unsigned short ->signed short
・unsigned short ->signed char

(3) After casting the operand, its type is the same as the type of the other operand.

(4) Other operand is treated as constant by way of compiler optimization.

(5) Comparison used in (1) occurs between constant in (4) and before casting of (2). This will always be true or

always be false).

Example :

In this example, even if the result of comparison operation depends on its operands, CA850 incorrectly interprets the

comparison result as always false. This results in eliminating both the if-sentence and if-true-block.

[Workaround]

Insert '__asm("¥n");' before the line where incorrect comparison operation optimization occurs.

Checktool will identify the line number. When a function that has incorrect comparison operation optimization is

inlined, checktool will identify the function name and its line number.

short s; unsigned short us;
s = -1;
…
if (s == (short)us)

short s; unsigned short us;
s = -1;
…
__asm("¥n");
if (s == (short)us)

ZBG-CD-10-0030 Attachment 1 - 77/78

[Correction]

This issue will be corrected in Ver. 3.46.

A tool used to check whether this restriction applies is available.

Contact an Renesas Electronics sales representative or distributor for details.

No. 112 Restriction on incorrect move optimization of assignment sentence

[Description]

No.112 occurs when the following conditions are satisfied, resulting in moving the statement assigning variable X

in Basic Block 1 to the back of the sentence assigning variable X in Basic Block 2 incorrectly:

Conditions:

(1) Optimization level is –Og or higher (-Og, -O, -Os, -Ot, and associated code optimizations)

(2) Control flow of function consists of Basic Blocks like (a)～(e).

(a) Either non-volatile automatic variable X or non-volatile argument variable X is

assigned in both Basic Block 1 and 2, then referenced in Basic Block 3.

(b) The value assigned to variable X in Basic Block 2 is either volatile variable

expression or peripheral I/O register expression.

(c) The path from Basic Block 1 is the only one merging into Basic Block 2.

(d) After Basic Block 2, both path-merging-into Basic Block 3 and path-not exist.

(e) No indirect access to variable X between Basic Block 1 and 3.

Note : A basic block is code that has one entry point,

one exit point, and no jump instructions contained within it.

Example :

int g, a[10];
volatile int v1, v2;
void func(void) {
 int i1 = 0, i2 = 0;
 if(!g){
 int i;
 i1 = v1;
 i2 = v2;
 for(i = 0; i < 10; i++)
 if(i1 < a[i] && a[i] < i2)
 g = a[i];
 }
}

ZBG-CD-10-0030 Attachment 1 - 78/78

Control flow of the example code is as follows.

[Workaround]

Insert '__asm("¥n");' before the line which the checktool output.

[Correction]

This issue will be corrected in Ver. 3.46.

A tool used to check whether this restriction applies is available.

Contact an Renesas Electronics sales representative or distributor for details.

 if(!g){
 int i;
 i1 = v1;
 i2 = v2;

__asm("\n");
 for(i = 0; i < 10; i++)
 if(i1 < a[i] && a[i] < i2)
 g = a[i];
 }

ZBG-CD-10-0030 Attachment 2 - 1/5

List of Usage Restrictions in Other Package Tools

1. Product History

Version
No. Restrictions and Changes/Additions to Specifications

V2.41 2.50 2.6x 2.70 2.72 3.00 3.10 3.20 3.30 3.4x

1 Restriction on replacement using regular expression

in PM+

         

2 Restriction on square brackets in PM+         

3 Restriction on linking .prw file with PM+         

4 Restriction on system call display by stk850 (RX850

and RX850 Pro)

         

5 Restriction on specifying stack size of system calls

with stk850 (RX850)

         

6 Restriction on handling of command file using PM+         

7 Restriction on linking system calls of RX850 or RX850

Pro from library in PM+

         

8 Restriction on include files handled by PM+         

9 Restriction on acquiring information on included C

source files handled by PM+

         

: Applicable, : Not applicable, : Not relevant

2. Details of Usage Restrictions

No. 1 Restriction on replacement using regular expression in PM+

[Description]

With PM+, if replacement processing of a character string is performed using the regular expression ^, which

indicates the line head, and $, which indicates the end of the line, the linefeed codes that exist before and after

the relevant character string are included in the replacement target.

Example:

When Regular Expression is selected in the Replace String dialog box and replacement of ^xyz with ABC is

executed, the line feed is also replaced as shown below.

abc

xyz

abc



abcABC

abc

[Workaround]

Do not use a regular expression for replacement.

[Correction]

This issue has been corrected in PM+ Ver. 5.20 (included with CA850 Ver. 2.70).

ZBG-CD-10-0030 Attachment 2 - 2/5

No. 2 Restriction on square brackets in PM+

[Description]

With PM+, if a square bracket is used in the file name, path name, or project group name, the workspace cannot

be loaded and individual options cannot be set.

[Workaround]

Do not use square brackets for the file name, path name, or project group name.

[Correction]

This issue has been corrected in PM+ Ver. 5.20 (included with CA850 Ver. 2.70).

No. 3 Restriction on linking .prw file with PM+

[Description]

The .prw files are linked with PM+, but, if a workspace file whose name contains a space is double-clicked, the

file might not be opened normally.

[Workaround]

Open the workspace file by using the PM+ Open Workspace menu.

[Correction]

This issue has been corrected in PM+ Ver. 6.10.

No. 4 Restriction on system call display by stk850 (RX850 and RX850 Pro)

[Description]

The stack size of system calls of the RX850 and RX850 Pro is unknown and displayed as ?.

The stack size of system calls of RX850 V3.20 and RX850 Pro V3.20 is 0, so this restriction does not affect the

stack calculation result.

[Workaround]

Use the system calls with their stack size unknown, or set the additional margin for the stack to 0.

[Correction]

This issue has been corrected in stk850 Ver. 2.11.

No. 5 Restriction on specifying stack size of system calls with stk850 (RX850)

[Description]

In RX850 V3.20, the stack size of the following system calls is 0, but 12 may be added to the margin.

 ter_tsk

 rel_wai

 get_blk

 pget_blk

 tget_blk

 rel_blk

If restriction No. 4 applies, the stack size of the system call is unknown and calculated as 0, so No. 5 do not

apply.

Restriction No. 5 applies when the size of the above system calls is not specified for the additional margin with

the stk850 but the function is not displayed in the Unknown Functions field.

[Workaround]

Change the additional stack size margin for the relevant system call to 0.

[Correction]

This issue has been corrected in stk850 Ver. 2.11.

ZBG-CD-10-0030 Attachment 2 - 3/5

No. 6 Restriction on handling of command file using PM+

[Description]

If a source file is selected in the Project Window and then compiled while the Use Command File check box is

selected in the Compiler Options dialog box or Assembler Options dialog box, the corresponding command

file is deleted. As a result, either of the following error messages is output at the next build or rebuild:

F1303: cannot open file 'xxxx.cca'

F3503: can not open file xxxx.cas

[Workaround]

Re-generate the file required for building by selecting Export Makefile in the PM+ Project menu.

[Correction]

This issue has been corrected in CA850 Ver. 3.10 and PM+ Ver. 6.11.

No. 7 Restriction on linking system calls of RX850 or RX850 Pro from library in PM+

[Description]

If all the conditions below are satisfied, linking of system calls of the RX850 or RX850 Pro results in a linking

error, and the following error message is output:

F4452: undefined symbol.

Conditions:

(1) The RX850 or RX850 Pro is used

(2) A library is specified in the Linker Options dialog box.

(3) System calls are used in the library specified in (2).

(4) The system calls of (3) are not used in a program registered as a source file

[Workaround]

Do the following:

(1) In the Linker Options dialog box, click the Library tab and specify the library of the RX850 or RX850 Pro

in the Library[-l] text box.

Example:

When using RX850 Ver. 3.20 and the user library name is libusr.a:

 usr;rx

(2) In the Linker Options dialog box, click the Library tab and specify the library path of the RX850 or

RX850 Pro in the Library Search Path[-L] text box.

Example:

When using RX850 Pro Ver. 3.20:

 C:\Program Files\NEC Electronics Tools\RX850 Pro\V3.20\lib850e\r32

(3) Clear the following check boxes in the RX850 Pro Settings dialog box. [RX850 Pro only]

 Link a Nucleus Library (U)

 Link a Interface Library (R)

[Correction]

This issue has been corrected in CA850 Ver. 3.10 and PM+ Ver. 6.11.

ZBG-CD-10-0030 Attachment 2 - 4/5

No. 8 Restriction on include files handled by PM+

[Description]

If a file name that includes a space is specified as an include file in a source file, the include file and all the

following include files are handled as follows:

 Not registered to the Include Files folder in the Project window

 Not registered to a makefile

 Not made to be the target of the dependency during build

This issue also applies to include files specified in the portion to be false as a result of conditional compilation.

This issue only applies to the specification of include files in a source file, which are analyzed by PM+, but not to

actual processing during compilation.

Example:

#include “C:\i n c\test.h”

[Workaround]

Specify file names that do not include spaces.

[Correction]

This issue has been corrected in CA850 Ver. 3.20 and PM+ Ver. 6.31.

No. 9 Restriction on acquiring information on included C source files handled by PM+

[Description]

If

1. The number of double quotation marks (") at the beginning of the source file (before a given #include

statement) is odd, or

2. A < is specified at the beginning of the source file (before a given #include statement) and no > is

specified afterwards:

Header files added by the #include statements might be treated as described below. However, these

problems will not affect the processing when the project is rebuilt.

 Not added to the Include Files folder in the Project window

 Not added to a makefile

 Not treated as dependencies when building the project

Example 1:

In the above code, this restriction applies to usr1.h and the header file included using usr1.h.

This restriction does not apply to usr2.h.

Example 2:

In the above code, this restriction applies to usr3.h and the header file included using usr3.h.

This restriction does not apply to usr4.h.

/*xxx"""xxx*/
#include "usr1.h"  3 double quotation marks before the #include statement
/*xxx"xxx*/
#include "usr2.h"  6 double quotation marks before the #include statement

/*xxxx><xxx*/
#include <usr3.h>  < is used before #include, but it is not followed by >.
#include <usr4.h>  < is used before #include, and it is followed by >.

ZBG-CD-10-0030 Attachment 2 - 5/5

[Workaround]

Do one of the following:

1. If the number of double quotation marks (") at the beginning of the source file (before a given #include

statement) is odd, add another to make the number even.

2. If a < is specified at the beginning of the source file (before a given #include statement) and no > is

specified afterwards, add one.

[Correction]

This issue will be corrected in the PM+ module included in CA850 Ver. 3.40.

	3. Workarounds
	4. Removed restrictions
	5. Modification schedule
	6. List of restrictions
	7. Document revision history
	V850 C Compiler Package CA850 - Usage Restrictions

	List of Usage Restrictions in CA850
	List of Usage Restrictions in Other Package Tools

