
Microcontroller Technical Information

Document No. ZMT-F35-11-0001 1/2
Date issued April 7, 2011

CC78K0
78K0 C Compiler

Usage Restrictions

Issued by MCU Tool Product Marketing Department
MCU Software Division
MCU Business Unit
Renesas Electronics Corporation

√ Usage restriction
 Upgrade
 Document modification

Related documents

CC78K0 Ver. 3.70 Language: U17200EJ1V0UM00
CC78K0 Ver. 3.70 Operation: U17201EJ1V0UM00
78K0 C Compiler CC78K0 Ver. 4.10 Operating
Precautions: ZUD-CD-10-0202

Notification
classification

 Other notification

1. Affected products

CC78K0 V4.10 or earlier (For details, see 1. Product History on the Attachment.)

2. New restrictions

The following restrictions have been added. See the attachment for details.

• No. 75 Macro expansion using the ## operator results in an error

• No. 76 Symbol information for an interrupt function is not output to the assembler source

3. Workarounds

The following workarounds are available for these restrictions. See the attachment for details.

• No. 75 Do either of the following:
 1. Do not use the ## operator.

 2. Place a function-like macro parameter immediately after the ## operator.

• No. 76 Define the interrupt function or output the object module file.

4. Modification schedule

No. 75 and No. 76 will be removed in the next revision.

5. List of restrictions

A list of restrictions in the CC78K0, including the revision history and detailed information, is

described on the attachment.

6. Revision history

CC78K0 78K0 C Compiler Usage Restrictions Revision History

Document Number Date Issued Description

SBG-DT-03-0307 December 17, 2003 Newly created.

SBG-DT-04-0110 March 12, 2004 Addition of restrictions No. 17 to No. 19

ZBG-CD-04-0072 October 4, 2004 Addition of restrictions No. 20 to No. 24

ZBG-CD-05-0001 January 12, 2005 Addition of restriction No. 25

ZBG-CD-05-0054 August 31, 2005 Addition of conditions for restriction No. 21

Addition of restrictions No. 26 to No. 54

ZBG-CD-07-0038 June 28, 2007 Addition of restrictions No. 55 to No. 64

ZBG-CD-10-0024 August 16, 2010 Addition of restrictions No. 65 to No. 74

ZMT-F35-11-0001 April 7, 2011 Addition of restrictions No. 75 and No. 76

ZMT-F35-11-0001 2/2

ZMT-F35-11-0001 Attachment - 1/60

List of Restrictions in CC78K0

1. Product History

Version No. Bugs and Changes/Addition to Specifications

3.50 3.60 3.70 4.00 4.10

1 If a character string includes a null character, the character string

following the null character is invalid.

2 Invalid code might be output if the address of a function allocated to the

flash memory is referenced.

3 An #if constant expression might not be processed correctly.

4 If floating point values are read before integers by using scanf or

sscanf, the integers cannot be input correctly.

5 Invalid code might be output if a structure pointer is assigned to a

register and data is passed between members pointed to by the pointer.

6 Invalid code might be output if a negative floating point constant is type-
cast to an unsigned int.

7 Invalid code might be output if a logical OR or AND operation is

performed on floating point constants.

8 Invalid code might be output if an array declared as register is used

as a function parameter.

9 If variables that have the same name are declared in multiple files while
#pragma section is used, the variables might not be allocated to the

correct section.

10 Invalid code might be output if a logical OR or AND operation is

performed on a floating point constant and integer constant.

11 Initializing an external variable declared as extern in a block does

not cause an error. In addition, the debugging information output to the

assembler source is incorrect.

× × ×

12 Linking a variable that has the same name to a variable declared as
extern in a block might be invalid.

× × × ×

13 If a data type defined by using typedef (typedef name) is specified

in a function prototype declaration or a declaration using a const or

volatile modifier, the typedef expansion is invalid, and an error

might result.

× × ×

14 A multidimensional array that has an undefined size might not work

properly.

× × × ×

15 If a function whose parameters cannot be referenced is referenced, no

error occurs, but invalid code is output.

× ×

16 The signed type bit field is handled as an unsigned bit field. × × × × ×

17 Information of the startup routine and standard library of an older

version of the CC78K0 might not be passed on to the new file.

×

18 Invalid code might be output as the result of a simple assignment

operation in which the left and right operands are type-cast to a pointer

for a structure, union, or array.

×*

19 Invalid code might be output as the result of the memcpy function if

#pragma inline is specified.
×

×: Applicable, : Not applicable, −: Not relevant, *: Check tool available

ZMT-F35-11-0001 Attachment - 2/60

Version No. Bugs and Changes/Addition to Specifications

3.50 3.60 3.70 4.00 4.10

20 Invalid code might be output as the result of an operation that uses a
signed char and constant.

× ×*

21 Invalid code might be output as the result of an operation for a
(signed) int and an unsigned short.

× ×*

22 If a conditional expression is followed by a simple assignment

expression, debugging information is output to an invalid position.

× ×

23 The stack information of the cprep2 function is invalid. × ×

24 W0503 is output if the array name of an automatic variable is

referenced.

× × × ×

25 If a static variable is initialized to a floating point constant, the initial

value becomes invalid.

× ×*

26 Invalid code might be output if a function pointer is referenced using an

asterisk (*) in code other than a function call.

× ×*

27 If the -QR option is specified, an sreg variable might be redundantly

allocated to the saddr area used by the compiler.
× ×*

28 Invalid code might be output if the number of bits shifted by a shift
operator (<<, >>, <<=, or >>=) is a constant that is 256 or larger.

× ×*

29 Invalid code might be output if the constant 0xffff or 0xfffe is

added to or subtracted from a long or unsigned long.
× ×*

30 An error is output if a floating point number starting with 0e or 0E is

specified.

× ×

31 Invalid code might be output as the result of an expression in which the
result of performing a runtime library operation on a long is type-cast to

a signed int, unsigned int, signed short, or unsigned

short.

× ×*

32 Invalid code might be output for one side of a binary operation. × ×*

33 If both operands of a logical operation (&& or ||) are of the floating

point type, and an expression that causes a side effect such as an

increment/decrement operation or a function call is specified as the

second operand, the comparison order becomes invalid.

× ×*

34 An error is output if an expression starting with a unary plus or unary

minus operator, or an expression in which operators that have the same
priority are specified in succession, is specified as an #if constant

expression.

× ×

35 If one operand of a relational operation is a constant that cannot be
expressed by signed long, the comparison result might be invalid.

× ×*

36 The operation result is not output as the int type but as the operand’s

type, depending on the types of the operands in logical negation

operations, relational operations, or equality operations.

× ×*

37 An error is output if an increment or decrement expression of a floating

point type is specified and the operand is a dereferenced pointer.

× ×

×: Applicable, : Not applicable, −: Not relevant, *: Check tool available

ZMT-F35-11-0001 Attachment - 3/60

Version No. Bugs and Changes/Addition to Specifications

3.50 3.60 3.70 4.00 4.10

38 Invalid code might be output by an expression in which an expression of
the format “address of char or unsigned char array + unsigned

char” is type-cast to a pointer for an int, unsigned int, short, or

unsigned short, and 0 is assigned to the value referenced by the

pointer.

× ×*

39 Invalid code might be output if a char or unsigned char expression

is specified in a return statement for a function that returns a pointer.
× ×*

40 An error might be output if the result of performing a runtime library
operation on a long is type-cast to a char or unsigned char and a

relational or equality operation is performed with a constant that can be
expressed by char or unsigned char.

× ×

41 When initializing an array whose size is not defined, if elements in the

initializer braces are enclosed inconsistently, an area of invalid size is

allocated.

× × × ×

42 If a character string conversion function in the standard library is

executed, error handling becomes invalid.

× × ×

43 The operation becomes invalid when output conversion is specified by

an I/O function in the standard library.

× × × × ×

44 The incorrect size is output for the minimum value −32768 of an int or

short.
× × × × ×

45 If a function name or a function pointer is specified as the second and

third operands of a conditional operation, an error is output, and then

the function is called.

× × × ×

46 An error is output if an external pointer is initialized to a variable
containing the operator ->.

× ×

47 Error due to a mismatch between the parameter type and the identifier

type in a function definition.

× × × × ×

48 A parameter whose type is not declared in the identifier list in a function
definition is not handled as an int, which causes an error.

× × × × ×

49 The # operator cannot be used to expand a macro to a string literal. × × × × ×

50 If an unsigned long static variable is initialized to a floating point

constant that is 0x80000000 or larger, the initial value becomes invalid.

× ×*

51 Invalid code might be output for an expression that includes a function
call and a struct or union.

× ×*

52 Invalid code might be output for the assignment expression a = b

binary operator c;.
× ×*

53 An error is output if an element of an array member of a structure at a
constant address is referenced by using the dot operator (.).

× ×

54 An error is output for a function definition that has a certain pattern. × ×

55 Invalid code might be output if a 1-byte static array element, which uses
an unsigned char value returned by a function as an array subscript,

is specified for the code of the assignment destination of a compound

assignment, increment, or decrement operation.

× ×* ×*

×: Applicable, : Not applicable, −: Not relevant, *: Check tool available

ZMT-F35-11-0001 Attachment - 4/60

Version No. Bugs and Changes/Addition to Specifications

3.50 3.60 3.70 4.00 4.10

56 A constant expression that includes multiple binary operators, which

use the result of a binary operator causing an overflow, might be

replaced with invalid values.

× ×* ×*

57 Invalid code might be output as the result of an operation that includes

an increment or decrement operation.

× ×* ×*

58 The result of a seizeof operation for a function parameter that has an

array might be invalid.

× ×* ×*

59 Invalid code might be output as the result of a compound assignment
operation of a division or remainder operation if the -qc option is not

specified.

× ×* ×*

60 Invalid code might be output when there is a bit field where the bit width
assigned to a saddr area is from 2 bits to 7 bits, and the maximum

constant value of the bit field is assigned to an expression, the

assignment destination being re-evaluated with the same expression.

× ×* ×*

61 The error E0705 or invalid code might be output if a norec function that

has enum parameters is called.
× ×* ×*

62 No error occurs if an identical function whose parameters include a

different structure or union is declared multiple times.

× ×* ×*

63 Invalid code might be output if a pointer that points to a structure of 256
bytes or more is a register variable.

× ×* ×*

64 Work areas used by the compiler are corrupted if the static model
option -sm and the expansion specification option -zm2 are specified.

× × ×

65 Invalid code might be output when referencing 1-byte data pointed to by
a pointer to which ++ or -- has been suffixed.

× ×* ×* ×*

66 Invalid code is output if the last element of an initializer list for a char,

signed char, or unsigned char array is a character string and one

or more constants or character constants are placed before the

character string.

× ×* ×* ×*

67 Invalid code is output if referencing a pointer that has an offset obtained

by subtracting one pointer from another.

× ×* ×* ×*

68 Invalid code is output if the -qc option has not been specified (sign

extension is specified to be int type).
 ×* ×*

69 Invalid code is output as the result of the BCD operation function
adbcdw or sbbcdw.

× × × ×

70 An error occurs if the -ng option is specified and a branch instruction is

used in a function that includes the asm statement.
× × × ×

71 The line number is not output for a statement that immediately follows a
nested if statement and is outside that statement’s conditional block.

× × × ×

72 Invalid code is output when a value is assigned to a long variable in an

interrupt function.

× ×* ×* ×*

73 Bank function calling code might not be output. − − ×* ×*

74 Invalid code might be output if using a 1-byte parameter or auto

variable for a norec function.
× ×* ×* ×*

×: Applicable, : Not applicable, −: Not relevant, *: Check tool available

ZMT-F35-11-0001 Attachment - 5/60

Version No. Bugs and Changes/Addition to Specifications

3.50 3.60 3.70 4.00 4.10

75 Macro expansion using the ## operator results in an error × × × × ×

76 Symbol information for an interrupt function is not output to the

assembler source

× × × × ×

×: Applicable, : Not applicable, −: Not relevant, *: Check tool available

ZMT-F35-11-0001 Attachment - 6/60

2. Details of Usage Restrictions

No. 1 If a character string includes a null character, the character string following the null character is

invalid.

Description:

If a character string includes a null character, the character string following the null character is invalid.

Example:
const char str[] = "test\0TEST";

No memory is allocated for the character string following the null character.

Workaround:

Change the code as follows:
const char str[] = {‘t’,’e’,’s’,’t’,’\0’,’T’,’E’,’S’,’T’};.

Correction:

This issue has been corrected in V3.50.

No. 2 Invalid code might be output if the address of a function allocated to the flash memory is

referenced.

Description:

Invalid code might be output if the address of a function allocated to the flash memory is referenced.

Example:
#pragma ext_table 0x2000

#pragma ext_func func1 1

#pragma ext_func func2 2

int func1(int, int);

int func2(int, int);

int (*func_b1)(int, int) = &func1;

__sreg int (*func_b2)(int, int) = &func2;

void func()

{

func_b1 = func1; /* normal code */

func_b2 = func2; /* invalid code */

}

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V3.50.

ZMT-F35-11-0001 Attachment - 7/60

No. 3 An #if constant expression might not be processed correctly.

Description:
An #if constant expression might not be processed correctly.

Example:
#define a

#if a

int i;

#endif

void func()

{

i++;

}

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V3.50.

No. 4 If floating point values are read before integers by using scanf or sscanf, the integers cannot

be input correctly.

Description:
If floating point values are read before integers by using scanf or sscanf, the integers cannot be

input correctly.

Example:
void func()

{

int i;

float f;

sscanf("1.2 10", "%f%d", &f, &i);

}

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V3.50.

ZMT-F35-11-0001 Attachment - 8/60

No. 5 Invalid code might be output if a structure pointer is assigned to a register and data is passed

between members pointed to by the pointer.

Description:

Invalid code might be output if a structure pointer is assigned to a register and data is passed between

members pointed to by the pointer.

Example:
struct tag {

int a;

int b;

};

void func()

{

register struct tag *sp;

sp->b = sp->a;

}

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V3.50.

No. 6 Invalid code might be output if a negative floating point constant is type-cast to an unsigned

int.

Description:
Invalid code might be output if a negative floating point constant is type-cast to an unsigned int.

Example:
unsigned long ans;

float f1 = -3.8f;

void func()

{

int a;

ans = f1;

a = ((unsigned long)(-3.8f) != ans);

}

Workaround:
Type-cast a constant to a signed int before type-casting the constant to an unsigned int.

Example:
a = ((unsigned long)(long)(-3.8f) != ans);

Correction:

This issue has been corrected in V3.50.

ZMT-F35-11-0001 Attachment - 9/60

No. 7 Invalid code might be output if a logical OR or AND operation is performed on floating point

constants.

Description:

Invalid code might be output if a logical OR or AND operation is performed on floating point constants.

Example:
void func()

{

int r1, r2;

float f1 = 17, f2 = 16;

r1 = f1 || f2;

r2 = f1 && f2;

}

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V3.50.

No. 8 Invalid code might be output if an array declared as register is used as a function parameter.

Description:
Invalid code might be output if an array declared as register is used as a function parameter.

Example:
void func(register char a[])

{

register char *p;

p = (char *)a;

}

Workaround:

Specify the parameter as a pointer.

Example:
void func(register char *a)

{

 register char *p;

 p = a;

}

Correction:

This issue has been corrected in V3.50.

ZMT-F35-11-0001 Attachment - 10/60

No. 9 If variables that have the same name are declared in multiple files while #pragma section is

used, the variables might not be allocated to the correct section.

Description:
If variables that have the same name are declared in multiple files while #pragma section is used,

the variables might not be allocated to the correct section.

Example:
--- a.c ---

#include "a1.h"

#include "a2.h"

#include "a3.h"

--- a1.h ---

#pragma section @@DATA DAT1

int a;

#pragma section @@DATA DAT2

--- a2.h ---

#pragma section @@DATA DAT3

int b;

#pragma section @@DATA DAT4

--- a3.h ---

#pragma section @@DATA DAT5

extern int a; /* same when int a; */

#pragma section @@DATA DAT6

Workaround:
Do not declare variables that have the same name in multiple files if #pragma section is used.

Correction:

This issue has been corrected in V3.50.

No. 10 Invalid code might be output if a logical OR or AND operation is performed on a floating point

constant and integer constant.

Description:

Invalid code might be output if a logical OR or AND operation is performed on a floating point

constant and integer constant.

Example:
void func()
{
int rval;
int cZero = 0;

rval = 0.0F || cZero; /* invalid code in Windows version */
rval = cZero || 0.0F; /* invalid code in UNIX version */
}

Workaround:

Do not specify a floating point constant for the logical OR or AND operation.

Correction:

This issue has been corrected in V3.50.

ZMT-F35-11-0001 Attachment - 11/60

No. 11 Initializing an external variable declared as extern in a block does not cause an error. In

addition, the debugging information output to the assembler source is incorrect.

Description:
Because initializing an external variable declared as extern in a block is not compliant with the ANSI

C specifications, it should cause an error, but the code does not. The compiler interprets the code as

defining an external variable that has an initial value and outputs the code.

The compiler outputs the correct debugging information to the object file, but the debugging

information output to the assembler source is incorrect.

Example:
int i;

void f(void) {

 extern int i = 2;

}

Workaround:
There is no workaround.

Correction:

This issue has been corrected in V4.00.

No. 12 Linking a variable that has the same name to a variable declared as extern in a block might be

invalid.

Description:
Linking a variable that has the same name to a variable declared as extern in a block is invalid in any

of the following cases:
(1) If a variable declared as extern in a block and a variable declared as static outside that block

or the subsequent blocks have the same name

No error occurs and linking is not performed, so, if this variable is referenced, invalid code is

output.

Example:
void f(void) {
 extern int i;
 i = 1; /* Invalid code is output */
}

 static int i;

(2) If a variable declared as extern in a block and a variable not declared as static outside that

block or the subsequent blocks have the same name

Linking is not performed and invalid code is output.

Example:
void f(void) {
 extern int i;
 i = 1; /* Invalid code is output */
}

 int i;

ZMT-F35-11-0001 Attachment - 12/60

(3) If a variable declared as extern in a block and a variable not declared as extern outside the

block before the extern variable have the same name, and an automatic variable that has the

same name is declared in the block containing the extern variable

The variable outside the block and the variable declared as extern in the block are not linked,

and invalid code is output.

Example:
int i = 1;
void f(void) {
 int i;
 {
 extern int i;
 i = 1; /* Invalid code is output */
 }

 }

(4) If a variable declared as extern in a block and a variable declared as extern in another block have

the same name

Linking is not performed, and invalid code is output.

Example:
void f1(void) {
 extern int i;
 i = 2;
}
void f2(void){
 extern int i;
 i = 3;
}

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V4.10.

No. 13 If a data type defined by using typedef (typedef name) is specified in a function prototype

declaration or a declaration using a const or volatile modifier, the typedef expansion is

invalid, and an error might result.

Description:
If a data type defined by typedef (typedef name) is specified in a function prototype declaration or

a declaration using a const or volatile modifier, the typedef expansion is invalid, and an error

might result.

Example 1:
typedef int FTYPE();

FTYPE func;

int func(void); /* E0713 Redefined 'func' */

Example 2:
typedef int VTYPE[2];

typedef int *VPTYPE[3];

const VTYPE *a;

ZMT-F35-11-0001 Attachment - 13/60

const int (*a)[2]; /* E0713 Redefined 'a' */

volatile VPTYPE b[2];

volatile int *volatile b[2][3]; /* E0713 Redefined 'b' */

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V4.00.

No. 14 A multidimensional array that has an undefined size might not work properly.

Description:

A multidimensional array that has an undefined size might not work properly.

Example 1:
char c[][3]={{1},2,3,4,5}; /* Invalid code */

Example 2:
char c[][2][3]={"ab","cd","ef"}; /* Error (E0756) */

Workaround:

Define the size of the multidimensional array.

Correction:

This issue has been corrected in V4.10.

No. 15 If a function whose parameters cannot be referenced is referenced, no error occurs, but invalid

code is output.

Description:

For a function returning the address of a function that has parameters, those parameters cannot be

referenced. If referencing is attempted, no error occurs, but invalid code is output.

Example:
char *c;
int *i;
void (*f1(int *))(char *);
void (*f2(void))(char *);
void (*f3(int *))(void);

void main() {
 (*f1(i))(c); /* Correct code (W0510) */
 (*f1(i))(i); /* Incorrect code */
 (*f2())(c); /* Correct code (W0509) */
 (*f2())(); /* Incorrect code (W0509) */
 (*f3(i))(); /* Correct code (W0509) */
 (*f3(i))(i); /* Incorrect code */

}

The warning W0509 or W0510 is output for correct code. Nothing is output for code that should

produce a warning. However, the output code is normal.

void (*f4())(int p) {
 p++; /* Incorrect code */
}

No error is output for code that should cause an error and invalid code is generated.

ZMT-F35-11-0001 Attachment - 14/60

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V3.70.

No. 16 The signed type bit field is handled as an unsigned bit field.

Description:
The signed type bit field is handled as an unsigned bit field.

Workaround:

There is no workaround.

Correction:

This will not be corrected, so regard it as a specification.

No. 17 Information of the startup routine and standard library of an older version of the CC78K0 might

not be passed on to the new file.

Description:

If a project file created using an older version of the CC78K0 is loaded, information of the startup

routine and standard library might not be passed on to the new file.

Workaround:

Set up the startup routine and standard library again.

Correction:

This issue has been corrected in V3.60.

No. 18 Invalid code might be output as the result of a simple assignment operation in which the left and

right operands are type-cast to a pointer for a structure, union, or array.

Description:

Invalid code might be output if all the following conditions are satisfied:

(1) Simple assignment operation

(2) The left and right operands are both dereferenced data that uses a structure, union, array, or

pointer.

(3) The left and right operands both reference a symbol address.
(4) The operands are 4-byte data (long, float, double, or long double).

Example:
typedef union {

 unsigned long l;

} uni;

unsigned int a[10], b[10];

void func(void)

{

 ((uni*)(&b)) -> l = ((uni*)(&a)) -> l;

}

ZMT-F35-11-0001 Attachment - 15/60

Workaround:

Modify the program so that the operation is processed using a temporary variable.

Example 1:
 uni *tmp1, *tmp2;

 tmp1 = (uni*)&a;

 tmp2 = (uni*)&b;

 tmp2->l = tmp1->l;

Example 2:
 long tmp3;

 tmp3 = ((uni*)(&a))->l;

 ((uni*)(&b))->l = tmp3;

Correction:

This issue has been corrected in V3.60.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 19 Invalid code might be output as the result of the memcpy function if #pragma inline is

specified.

Description:

Invalid code might be output if all the following conditions are satisfied:
(1) #pragma inline is specified.

(2) The memcpy function is used.

(3) The third parameter of the memcpy function in (2) is not a constant and uses the HL register.

Example:
#pragma inline

int s[100];

void func(void)

{

 int *t;

 int u;

 memcpy(s, t, u);

}

Workaround:

Do either of the following:
(1) Do not specify #pragma inline if the memcpy function is used.

(2) If #pragma inline is specified, specify a constant for the third parameter of the memcpy function.

Correction:

This issue has been corrected in V3.60.

ZMT-F35-11-0001 Attachment - 16/60

No. 20 Invalid code might be output as the result of an operation that uses a signed char and

constant.

Description:
Invalid code might be output if one of the conditions (1) to (5) is satisfied when the -QC1 option is

specified, or if condition 6 is satisfied when the -QC1 or -QC2 option is specified.

Conditions:
(1) The right-shift operator >> is used, the left operand is a constant from 128 to 255, and the right

operand is a signed char.

(2) The operator /, %, <, <=, >, >=, /=, or %= is used, either the left or right operand is a constant

from 128 to 255, and the other operand is a signed char.

(3) A binary operator operation is performed, in which either the left or right operand is a constant
from 128 to 255 and the other operand is a signed char, and the obtained result is converted to

a data type that is longer than 2 bytes.

(4) A binary operator operation is performed, in which either the left or right operand is a constant
from 128 to 255 and the other operand is a signed char, the obtained result is used as the left

operand for the right-shift operator >>, and the operator has a signed char as the right operand.

(5) A binary operator operation is performed, in which either the left or right operand is a constant
from 128 to 255 and the other operand is a signed char, the obtained result is used as the

operand on either side of the operator /, %, <, <=, >, >=, /=, or %=, and the operator has a

signed char on the other side.

(6) A binary operator operation is performed, in which either the left or right operand is a constant that
uses at least one of the operators <<, >>, &, ^, or |, the constant is from −128 to 255, the

obtained result is from −128 to −1, and the data type of the other operand is longer than 2 bytes.

Example 1:
 signed char a;
 if(a < 179/2){b++;}

Example 2:
 int i, j;
 i = j & (-127 | 4);

Workaround:
Type-cast the relevant constant to a signed char.

Example 1:
 if(a < (signed int)179/2){b++;}

Example 2:
 i = j & ((signed int)-127 | 4);;

ZMT-F35-11-0001 Attachment - 17/60

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 21 Invalid code might be output as the result of an operation for a (signed) int and an unsigned

short.

Description:

If either condition below is satisfied, a signed operation is performed for an unsigned operation, which

might cause an invalid result.
Condition 1: In a relational operation (<, >, <=, or >=), division operation (/), remainder operation (%),

or compound assignment operation (%= or /=), the data type on one side is a (signed)

int and that on the other side is an unsigned short.

Example 1:
unsigned short us1, us2;

void func1()

{

 us1 /= 0x5555;

 us2 %= 0x5555;

}

Example 2:
unsigned short us1, us2;

signed int si1;

void func2()

{

 us2 = us1 / si1;

}

Example 3:
int si, x;

unsigned short us;

void func3()

{

 if (si > us) x++;

}

Condition 2: In a compound assignment operation (%= or /=) or binary operation, the data type on one

side is a (signed) int, that on the other side is an unsigned short, and the data type

of the result is converted to a data type of 2 bytes or longer.

Example:
long l;

unsigned short us;

signed int si;

void func4()

{

 l = us + si;

}

ZMT-F35-11-0001 Attachment - 18/60

Workaround:
Change the data type from unsigned short to unsigned int.

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 22 If a conditional expression is followed by a simple assignment expression, debugging

information is output to an invalid position.

Description:
If a static 1-byte variable that cannot be assigned to the saddr area is referenced by a conditional

expression and a constant is assigned to the same 1-byte variable in the simple assignment

expression immediately after the conditional expression, debugging information is output to an invalid

position. This does not affect the output code itself.

Example:
C Source Code Corresponding Assembler

Output

if(TEST >= 10)

{

 TEST = 0;

}

 movw de,#_TEST

 mov a,[de]

 cmp a,#0AH ; 10

 bc $?L0003 ;(1)

 callt [@@clra0]

 mov [de],a

 br $?L0003

A comparison instruction is
output to the location for an
assignment statement.

Even if a breakpoint is specified at the position of TEST = 0; by using the

debugger, the break occurs at (1) in the above program. That is, the break does
not occur if the if statement is evaluated to be true, but occurs at the conditional

expression.

Workaround:

Specify a breakpoint at a relevant location in the assembler code, by using the mixed display in the

Source window of the debugger.

Correction:

This issue has been corrected in V3.70.

No. 23 The stack information of the cprep2 function is invalid.

Description:

In the function information output by the compiler, usually the amount of the stack used by a run-time

library function is added to the stack information of a function, including the run-time library functions.
If the program includes the cprep2 function, however, 2 bytes too many are added.

ZMT-F35-11-0001 Attachment - 19/60

Workaround:

There is no workaround.
If the program includes the cprep2 function, subtract 2 bytes from the amount of the stack used.

Correction:

This issue has been corrected in V3.70.

No. 24 W0503 is output if the array name of an automatic variable is referenced.

Description:

W0503 is output if the array name of an uninitialized automatic variable is referenced.
 W0503 Possible use of ‘variable-name’ before definition

Note:

Initialization refers to the assignment of a value to a variable when the variable is declared, not later.

Array name refers to, for example, the a in int a[2]. Indexes, operators, and other code are not

included in array names.

Example:
void func(void)

{

 int a[2];

 int *b;

 a[0] = 0;

 a[1] = 0;

 b = a; /* W0503 is output to this line */

}

Workaround:

If W0503 is output, check the location. You can ignore the message if the variable is initialized in the

statement.

Correction:

This issue has been corrected in V4.10.

No. 25 If a static variable is initialized to a floating point constant, the initial value becomes invalid.

Description:

If a variable other than the following is initialized to a floating point constant, the initial value becomes

invalid:
• long, unsigned long, or a floating point variable

• long, unsigned long, or a floating point member of a structure or union

• long, unsigned long, or a floating point element of an array

Example 1: signed char a1[3] = {1.0*100};

Example 2: #define VAR 1.0*100

 signed char frame02 = VAR;

ZMT-F35-11-0001 Attachment - 20/60

Workaround:

Do either of the following:

(1) Initialize the static variable to an integer constant.

Specify the following for the above example 1:
signed char a1[3] = {100};

(2) Type-cast the relevant floating point constant to an integer constant.

Specify the following for the above example 1:
signed char a1[3] = {(signed char)(1.0*100)};

Specify the following for the above example 2:
#define VAR 1.0*100

signed char frame02 = (signed char)(VAR);

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 26 Invalid code might be output if a function pointer is referenced using an asterisk (*) in code other

than a function call.

Description:

Invalid code might be output if a function pointer is referenced using an asterisk (*) in code other than

a function call.

Example:
void (*fp)();

int x;

void func()

{

 if (*fp) x++;

}

Workaround:

Do not append an asterisk (*) to a function pointer.

Example:
if (*fp) x++;

↓
if (fp) x++;

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

ZMT-F35-11-0001 Attachment - 21/60

No. 27 If the -QR option is specified, an sreg variable might be redundantly allocated to the saddr

area used by the compiler.

Description:
If the -QR option is specified, an sreg variable might be redundantly allocated to the saddr area used

by the compiler.

Example:
#pragma interrupt INTP0 inter

__boolean b1;

void func()

{

 b1 = 1;

}

void inter()

{ func();

}

--- Another file ---
__sreg char sc[152];

Workaround:
Do not specify the -QR option.

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 28 Invalid code might be output if the number of bits shifted by a shift operator (<<, >>, <<=, or

>>=) is a constant that is 256 or larger.

Description:
Invalid code might be output if the number of bits shifted by a shift operator (<<, >>, <<=, or >>=) is a

constant that is 256 or larger.

Example:
int i1, i2;

char c1, c2;

void func()

{

 i1 = i2 << 257;

 i2 <<= 257;

 c1 = c2 << 257;

 c2 <<= 257;

}

Workaround:

Make the number of shifted bits and data width the same.

ZMT-F35-11-0001 Attachment - 22/60

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 29 Invalid code might be output if the constant 0xffff or 0xfffe is added to or subtracted from a

long or unsigned long.

Description:
Invalid code might be output if the constant 0xffff or 0xfffe is added to or subtracted from a long

or unsigned long.

Example:
unsigned long l1, l2;

void func()

{

l1 = l2 + 0xffff;

}

Workaround:

Use a temporary variable as follows:
long ltmp = 0xffff;

l1 = l2 + ltmp;

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 30 An error is output if a floating point number starting with 0e or 0E is specified.

Description:
An error is output if a floating point number starting with 0e or 0E is specified.

Example:
float f1;

void func()

{

f1 = 0e0;

}

Workaround:
Specify 0 or 0.0 at the beginning of a floating point number.

Correction:

This issue has been corrected in V3.70.

ZMT-F35-11-0001 Attachment - 23/60

No. 31 Invalid code might be output as the result of an expression in which the result of performing a
runtime library operation on a long is type-cast to a signed int, unsigned int, signed

short, or unsigned short.

Description:

Invalid code might be output if all the following conditions are satisfied:

(1) A normal model is specified.
(2) A 2-byte equality operation (== or !=) or a 2-byte unsigned relational operation (< or >=) in

which the left operand is referenced by an automatic variable, or a 2-byte unsigned relational
operation (<= or >) in which the right operand is referenced by a parameter, automatic variable,

or pointer.
(3) The operand on the other side is a long on which a runtime library operation is performed that

has been type-cast to a signed int, unsigned int, signed short, or unsigned short.

Example:
int *ip;

long l;

void func()

{

if (*ip == (int)(l * 5)) l = 0;

}

Workaround:

Do either of the following:

(1) Do not type-cast the operation result:
if (*ip == (l * 5)) l = 0;

(2) Use a temporary variable as follows:
int tmp;

tmp = l * 5;

if (*ip == tmp) l = 0;

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 32 Invalid code might be output for one side of a binary operation.

Description:

If one of the following conditions is satisfied, the result of a logical or conditional operation that has

been saved might not be restored normally, which results in invalid code being output.

Condition 1: All the following conditions are satisfied:

(1) The code includes a binary operation.

(2) One operand of the binary operation specified in (1) references the result of a logical operation
(&& or ||) or conditional operation (?:).

(3) The result of the other operand of the binary operation specified in (1) remains in a register.
(4) Only the leaf function is used in a normal model (for the conditional operations).

ZMT-F35-11-0001 Attachment - 24/60

Example:
int func1(), func2();

int x, i;

void func()

{

if (func1() == (i && func2())) x++;

} /* (3) (1) (2) Corresponding to the above number */

Condition 2: All the following conditions are satisfied:

(1) The code includes a binary operation.

(2) One operand of the binary operation specified in (1) references the result of a logical operation
(&& or ||).

(3) The result of the other operand of the binary operation specified in (1) remains in _@RTARGx

(parameter in the run-time library function).

Example:
float f1, f2;

long l;

int x;

void func()

{

if (++f1 == (l && f2)) x++;

} /* (3) (1) (2) Corresponding to the above number */

Condition 3: All the following conditions are satisfied:

(1) The code includes a binary operation.

(2) One operand of the binary operation specified in (1) references the result of a compound

assignment.

(3) The result of the other operand of the binary operation specified in (1) remains in a register.

Example:
int ifunc(), i;

void func()

{

int *ip1, *ip2;

i = *ip1 == (*ip2 += ifunc());

} /* (3) (1) (2) Corresponding to the above number */

Workaround:

Use the corresponding workaround below.

For condition 1:

Use a temporary variable for at least one operand of the binary operation.
int tmp;

tmp = func1(); /* Assign to a temporary variable */

if (tmp == (i && func2())) x++;

ZMT-F35-11-0001 Attachment - 25/60

For condition 2:

Use a temporary variable for at least one operand of the binary operation.
float tmp;

tmp = ++f1; /* Assign to a temporary variable */

if (tmp == (l && f2)) x++;

For condition 3:

Use a temporary variable for at least one operand of the binary operation.
int tmp;

tmp = *ip1; /* Assign to a temporary variable */

i = tmp == (*ip2 += ifunc());

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 33 If both operands of a logical operation (&& or ||) are of the floating point type, and an

expression that causes a side effect such as an increment/decrement operation or a function

call is specified as the second operand, the comparison order becomes invalid.

Description:
If both operands of a logical operation (&& or ||) are of the floating point type, and an expression that

causes a side effect such as an increment/decrement operation or a function call is specified as the

second operand, the comparison order becomes invalid.

Example:
int x;

float f1, f2;

void func()

{

 if (f1 || f2++) {

 x = 1;

 }

 else {

 x = 2;

 }

}

Remark Incorrect output: f2++ is executed for if(f1 || f2++) regardless of whether f1 is true

or false.
 Correct output: f2++ is executed for if(f1 || f2++) only if f1 is false.

ZMT-F35-11-0001 Attachment - 26/60

Workaround:

Modify the source code as follows:
if (f1) {

 x = 1;

}

else if (f2++) {

 x = 1;

}

else {

 x = 2;

}

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 34 An error is output if an expression starting with a unary plus or unary minus operator, or an

expression in which operators that have the same priority are specified in succession, is
specified as an #if constant expression.

Description:

The E0501 error is output if an expression starting with a unary plus or unary minus operator, or an

expression in which operators that have the same priority are specified in succession, is specified as
an #if constant expression.

Example:
#if !~0

int i;

#endif

#if -1

int j;

#endif

Workaround:

Use parentheses as follows:
#if !~0 #if -1

 ↓ ↓
#if !(~0) #if (-1)

Correction:

This issue has been corrected in V3.70.

ZMT-F35-11-0001 Attachment - 27/60

No. 35 If one operand of a relational operation is a constant that cannot be expressed by signed

long, the comparison result might be invalid.

Description:

Invalid code might be output if one operand of a relational operation is a constant that cannot be
expressed by signed long, and either of the following conditions is satisfied:

Condition 1: The other operand can be handled as a constant, and expressed by signed long.

Example:
int x1,x2,x3,x4,x5,x6, i;

void func1()

{

 x1 = (i << 31) < 0x80000001;

 x2 = (i * 0) > 0x90000020;

 x3 = (i % 1) <= 0xa0000300;

 x4 = (i & 0) >= 0xb0004000;

 x5 = (i | 0xffff) < 0xc0050000;

 x6 = (i++, 300) > 0xffffffff;

}

Condition 2: One operand is a constant that is 0xffffff80 or larger, and the other operand is a
boolean, bit, or signed char.

Example:
int x1, x2, x3, i;

char cfunc(), c1, c2;

void func2()

{

 x1 = c1 < 0xffffff80;

 x2 = cfunc() > 0xffffff91;

 x3 = (c1 + c2) <= 0xffffffa2;

}

Workaround:

Workaround for condition 1:

Specify expressions that can be handled as constants by using constants.
x1 = (i << 31) < 0x80000001; → x1 = 0 < 0x80000001;

x2 = (i * 0) > 0x90000020; → x2 = 0 > 0x90000020;

x3 = (i % 1) <= 0xa0000300; → x3 = 0 <= 0xa0000300;

x4 = (i & 0) >= 0xb0004000; → x4 = 0 >= 0xb0004000;

x5 = (i | 0xffff) < 0xc0050000; → x5 = 0xffff < 0xc0050000;

x6 = (i++, 300) > 0xffffffff; → i++;

 x6 = 300 > 0xd0600000;

Workaround for condition 2:
Type-cast boolean, bit, or signed char expressions to unsigned long.

x1 = c1 < 0xffffff80; → x1 = (unsigned long)c1 < 0xffffff80;

x2 = cfunc() > 0xffffff91; → x2 = (unsigned long)cfunc() > 0xffffff91;

x3 = (c1 + c2) <= 0xffffffa2; → x3 = (unsigned long)(c1 + c2) <= 0xffffffa2;

ZMT-F35-11-0001 Attachment - 28/60

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 36 The operation result is not output as the int type but as the operand’s type, depending on the

types of the operands in logical negation operations, relational operations, or equality operations.

Description:

Either of the following operations occurs:

(1) If the type of a logical negation operation, relational operation, or equality operation is any of the
following, the result is not output as the int type but as the operand’s type:

- unsigned int, unsigned short, pointer (2-byte pointer), array

- unsigned char with -QC specified

(2) If the right operand of the logical operator && is the floating point constant ±0.0, the result

becomes the floating point type instead of the int type (unless the static model is used).

Example:
unsigned int ui1, ui2;

int xi1, xi2, xi3, i1;

void func()

{

xi1 = !ui1 > i1;

xi2 = (ui1 == ui2) > i1;

xi3 = (ui1 && 0.0) > i1;

}

Workaround:

(1) Type-cast the result of a logical negation operation, relational operation, or equality operation to
an int.

 xi1 = !ui1 > i1;

 xi2 = (ui1 == ui2) > i1;

 ↓
 xi1 = (int)!ui1 > i1;

 xi2 = (int)(ui1 == ui2) > i1;

(2) Do not use the floating point constant ±0.0 as the right operand of the logical operator &&.
 xi3 = (ui1 && 0.0) > i1;

 ↓
 xi3 = (ui1 && 0) > i1;

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

ZMT-F35-11-0001 Attachment - 29/60

No. 37 An error is output if an increment or decrement expression of a floating point type is specified

and the operand is a dereferenced pointer.

Description:

The E0105 error might be output if an increment or decrement expression of a floating point type is
specified, while the result of a 4-byte data operation is retained in _@RTARG0 and _@RTARG4, and the

operand is a dereferenced pointer.

Example:
float *pf1;

int x;

void func()

{

 long l1, l2, l3, l4;

 x = (l1 & l2) < ((l3 - l4) + (*pf1)++);

}

Workaround:

Use a temporary variable as follows:
float tmp;

tmp = (*pf1)++;

x = (l1 & l2) < ((l3 - l4) + tmp);

Correction:

This issue has been corrected in V3.70.

No. 38 Invalid code might be output by an expression in which an expression of the format “address of
char or unsigned char array + unsigned char” is type-cast to a pointer for an int,

unsigned int, short, or unsigned short, and 0 is assigned to the value referenced by

the pointer.

Description:
Invalid code might be output by an expression in which an expression of the format “address of char

or unsigned char array + unsigned char” is type-cast to a pointer for an int, unsigned int,

short, or unsigned short, and 0 is assigned to the value referenced by the pointer.

Example:
unsigned char table[10], idx;

void func()

{

unsigned char dummy;

 *((short *)(table + idx)) = 0x0;

}

Workaround:

Use a temporary variable as follows:
*((short *)(table + idx)) = 0x0;

 ↓
short *tmp;

tmp = (short *)(table + idx);

ZMT-F35-11-0001 Attachment - 30/60

*tmp = 0x0;

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 39 Invalid code might be output if a char or unsigned char expression is specified in a return

statement for a function that returns a pointer.

Description:
Invalid code might be output if a char or unsigned char expression is specified in a return

statement for a function that returns a pointer.

Example:
struct t {

char c1;

char c2;

char c3;

} st = { 0x40, 0x01, 0x00 };

char *func()

{

return st.c1;

}

Workaround:
Explicitly type-cast the return statement.

return st.c1;

 ↓
return (char *)st.c1;

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 40 An error might be output if the result of an expression in which the result of performing a runtime
library operation on a long is type-cast to a char or unsigned char and a relational or

equality operation is performed with a constant that can be expressed by char or unsigned

char.

Description:

The C0101 or C0104 error might be output if the result of an expression in which the result of
performing a runtime library operation on a long is type-cast to char or unsigned char and a

relational or equality operation is performed with a constant that can be expressed by char or

unsigned char.

This problem occurs when an operand is an unsigned char (for a relational operation), or when an

operand is a char or unsigned char and the constant is not 0 (for an equality operation).

ZMT-F35-11-0001 Attachment - 31/60

Example:
long l1;

int x;

void func()

{

 if ((char)(l1 & 1) == 1) x++;

}

Workaround:

Use a temporary variable as follows:
char tmp;

tmp = (char)(l1 & 1);

if (tmp ==1) x++;

 Correction:

This issue has been corrected in V3.70.

No. 41 When initializing an array whose size is not defined, if elements in the initializer braces are

enclosed inconsistently, an area of invalid size is allocated.

Description:

When initializing an array whose size is not defined, if elements in the initializer braces are enclosed

inconsistently, an area of invalid size is allocated

Example:
struct t {

int a;

int b;

} x[] = {1, 2, {3, 4}};

Workaround:

Do either of the following:

(1) Make sure the enclosing braces are consistent.
struct t {

int a;

int b;

} x[] = {{1, 2}, {3, 4}};

(2) Define the size of the array.
struct t {

int a;

int b;

} x[2] = {1, 2, {3, 4}};

Correction:

This issue has been corrected in V4.10.

ZMT-F35-11-0001 Attachment - 32/60

No. 42 If a character string conversion function in the standard library is executed, error handling

becomes invalid.

Description:

If a character string conversion function in the standard library is executed, error handling becomes

invalid.
(1) If a character string cannot be converted by using the strtod function

 If a character string that cannot be converted is specified, the position indicated by p is incorrect.

Example 1:
#include <stdlib.h>

double d;

char *p;

static char *string = " XXX";

int x;

void func()

{

 d = strtod(string, &p);

 if (string == p) x++;

}

Remark Incorrect output: The position indicated by p is the top of "XXX"

 Correct output: The position of p is the top of " XXX"

(2) If a character string cannot be converted by using the strtol function, errno is not set.

 If conversion cannot be performed as shown below, errno is not set to the ERANGE macro.

Example 2:
#include <stdlib.h>

#include <errno.h>

long l;

static char *string1 = "99999999999";

static char *string2 = "-99999999999";

int x;

void func()

{

errno = 0;

l = strtol(string1, NULL, 0);

if (errno == ERANGE) x++;

errno = 0;

l = strtol(string2, NULL, 0);

if (errno == ERANGE) x++;

}

ZMT-F35-11-0001 Attachment - 33/60

(3) When the strtoul function is used and the character string to be converted starts with +, the

conversion is not performed normally.
 If a character string that cannot be converted is specified, errno is not set to the ERANGE macro.

Example 3:
#include <stdlib.h>

#include <errno.h>

unsigned long ul;

char *p;

static char *string = "99999999999";

int x;

void func()

{

ul = strtoul(" +12", &p, 10);

if (ul == 12L) x++;

errno = 0;

ul = strtoul(string, NULL, 0);

if (errno == ERANGE) x++;

}

(4) When the strncpy function is used and the length of the copied character string is less than the

number specified by the third parameter, null characters are not copied for the insufficient length.

Example 4:
#include <string.h>

char string1[] = "aaaaaaaaaa";

char string2[] = "bbbb\0bbbb";

void func()

{

 strncpy(string1, string2, 8);

}

Remark Incorrect output: “bbbb\0aaaaa”

 Correct output: If the length is less than the specified number of characters,
 null characters are used as filler and “bbbb\0\0\0\0aa” is returned.

Workaround:

There is no workaround.

Correction:

This issue has been corrected in V4.00.

ZMT-F35-11-0001 Attachment - 34/60

No. 43 The operation becomes invalid when output conversion is specified by an I/O function in the

standard library.

Description:
When output conversion is specified by printf, sprintf, vprintf, or vsprintf, the result

becomes invalid in the following cases:

(1) If the precision is specified as .2 for the conversion specifier d, i, o, u, or X, the 0 flag is not

ignored.

Example:
#include <stdio.h>

void func()

{

 printf("%04.2d\n", 77);

}

Remark Incorrect output: “0077”

 Correct output: “ 77”

(2) For the conversion specifier g or G, the specified number of significant digits is increased by 1.

Example:
#include <stdio.h>

void func()

{

 printf("%.2g", 12.3456789);

}

Remark Incorrect output: “12.3”

 Correct output: “12”

Workaround:

There is no workaround.

Correction:

This will not be corrected, so regard it as a specification.

ZMT-F35-11-0001 Attachment - 35/60

No. 44 The incorrect size is output for the minimum value −32768 of an int or short.

Description:
The size of the minimum value −32768 of an int or short becomes 4.

Example:
int x;

void func()

{

 x = sizeof(-32768);

}

Remark Incorrect output: 4 is assigned to x.

 Correct output: 2 is assigned to x.

Workaround:
Write the code as −32767−1.

Correction:

This will not be corrected, so regard it as a specification.

No. 45 If a function name or a function pointer is specified as the second and third operands of a

conditional operation, an error is output, and then the function is called.

Description:

If a function name or a function pointer is specified as the second and third operands of a conditional

operation, the E0307 error is output, and then the function is called.

Example:
void f1(), f2();

int x;

void func()

{

 (x ? f1 : f2)();

}

Workaround:
Specify an if statement instead of the conditional operator.

(x ? f1 : f2)();

 ↓
if (x) {

 f1();

}

else {

 f2();

}

Correction:

This issue has been corrected in V4.10.

ZMT-F35-11-0001 Attachment - 36/60

No. 46 An error is output if an external pointer is initialized to a variable containing the operator ->.

Description:
The E0750 error is output if an external pointer is initialized to a variable containing the operator ->.

Example:
struct t {

 int i;

} b;

int *ip1 = &(&b)->i;

Workaround:

Specify the following:
int *ip1 = &(&b)->i;

 ↓
int *ip1 = &b.i;

Correction:

This issue has been corrected in V3.70.

No. 47 Error due to a mismatch between the parameter type and the identifier type in a function

definition

Description:

Because argument promotion is not performed for the identifier type in a function definition, the

parameter type and the identifier type in the function definition do not match, which causes the E0747

error.

Example:
int fn_char(int);

int fn_char(c)

char c;

{

 return 98;

}

Workaround:

Make the parameter type and the identifier type the same in the function definition.

Correction:

This will not be corrected, so regard it as a specification.

ZMT-F35-11-0001 Attachment - 37/60

No. 48 A parameter whose type is not declared in the identifier list in a function definition is not handled
as an int, which causes an error.

Description:

A parameter whose type is not declared in the identifier list in a function definition is not handled as an
int, which causes the E0706 error.

Example:
void func(x1, x2, f, x3, lp, fp)

int (*fp)();

long *lp;

float f;

{

 ...
}

Workaround:

Declare the types of all parameters in a function definition.

Correction:

This will not be corrected, so regard it as a specification.

No. 49 The # operator cannot be used to expand a macro to a string literal.

Description:

Expansion is not executed correctly under either of the following conditions:

Condition 1: ‘”’ cannot be expanded to a string literal by using the # operator, which causes a

compile-time error.

Example:
#include <string.h>

#define str(a) (# a)

int x;

void func()

{

 if (strcmp(str('"'), "'\"'") == 0) x++;

}

Remark Incorrect output: A compile-time error occurs.
 Correct output: if (strcmp(("’\"’") , "’\"’") == 0) x++;

ZMT-F35-11-0001 Attachment - 38/60

Condition 2: Nested macros that contain the # operator cannot be expanded to the correct string literals.

Example:
#define str(a) #a

#define xstr(a) str(a)

#define EXP 1

char *p;

void func()

{

 p = xstr(12EEXP);

}

Remark Incorrect output: p = ("12E1");

 Correct output: p = ("12EEXP");

Workaround:

There is no workaround.

Correction:

This will not be corrected, so regard it as a specification.

No. 50 If an unsigned long static variable is initialized to a floating point constant that is 0x80000000

or larger, the initial value becomes invalid.

Description:
If an unsigned long static variable is initialized to a floating point constant that is 0x80000000 or

larger, the initial value becomes invalid.

Example:
unsigned long ul = 2200000000.0;

Workaround:

Do either of the following:
(1) Initialize the unsigned long static variable to an integer constant.

unsigned long ul = 2200000000;

(2) Type-cast the floating point constant to an appropriate integer type.
unsigned long ul = (unsigned long) 2200000000.0;

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 51 Invalid code might be output for an expression that includes a function call and a struct or

union.

Description:
Invalid code might be output for an expression that includes a function call and a struct or union if

one of the following conditions is satisfied:

Condition 1: Either of the following conditions is satisfied:
(1) An expression exists that includes a function call and a struct or union assignment.

(2) A struct or union is used as a parameter to call a function by using a pointer.

ZMT-F35-11-0001 Attachment - 39/60

Example:
struct t {

char c[16];

} st1, st2;

int x, i, idx;

int ifunc();

void (*fp[3])();

void func()

{

x = ifunc() + (st1 = st2, i);

fp[idx](st1);

}

Condition 2: Either of the following conditions is satisfied:

(1) Function calling by a function pointer occurs.
(2) The first parameter is a struct or union of three or four bytes and its value remains

in a register.

The C0101 error is output when using an older function interface.

Example:
void (*fp)();

struct {

char a;

char b;

char c;

char d;

} st1, st2;

void func()

{

fp(st1 = st2);

}

Workaround:

Do either of the following:

Workaround for condition 1:
(1) Do not specify a struct or union assignment in an expression that includes function calls.

x = ifunc() + (st1 = st2, i);

 ↓
st1 = st2;

x = ifunc() + i;

(2) To call a function, use the struct or union pointer, instead of the struct or union

parameter.
fp[idx](st1);

 ↓
struct t *sp1;

sp1 = &st1;

fp[idx](sp1);

ZMT-F35-11-0001 Attachment - 40/60

Workaround for condition 2: Do not specify a struct or union assignment as the first parameter of

a function call.
fp(st1 = st2);

 ↓
st1 = st2;

fp(st1);

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 52 Invalid code might be output for the assignment expression a = b binary operator c;.

Description:
Invalid code might be output for the assignment expression a = b binary operator c; if all the

following conditions are satisfied:
(1) The binary operator is +, -, *, &, ^, |, or <<.

(2) a is an identifier, and b and c are identifiers or constants.

(3) Operand a is an int, unsigned int, short, or unsigned short.

(4) One of operands b and c is a char or unsigned char, and the other is a long or unsigned

long.

Example:
char c1=0x12, c2=0x56;

int i1=0x34, i2=0x78;

void func()

{

 /* (2) (1) Corresponding to the above numbers */

 i2 = c2 ^ 0x1ffff;

} /* (3) (4) */

Workaround:
Type-cast the long or unsigned long operand to the type of the assignment destination.

i2 = c2 ^ 0x1ffff;

 ↓
i2 = c2 ^ (int)0x1ffff;

Correction:

This issue has been corrected in V3.70.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 53 An error is output if an element of an array member of a structure at a constant address is
referenced by using the dot operator (.).

Description:

The C0101 error is output if an element of an array member of a structure at a constant address is
referenced by using the dot operator (.).

ZMT-F35-11-0001 Attachment - 41/60

Example:
struct st {

 char b[4];

} str;

char c;

void test(void)

{

 c = (*(struct st *)0x3E00).b[2];

}

Workaround:
Use the arrow operator (->).

c = (*(struct st *)0x3E00).b[2];

 ↓
c = ((struct st *)0x3E00)->b[2];

Correction:

This issue has been corrected in V3.70.

No. 54 An error is output for a function definition that has a certain pattern.

Description:
The E0705 error is output if the -QR option is specified in a normal model and a function that has four

parameters of 1 byte, 1 byte, 2 bytes, and 2 bytes long, listed in that order from the first parameter,

satisfies one of the following conditions:
(1) The function is noauto.

(2) All parameters are declared as register.

(3) The -QV option is specified
Example: When -QRV option is specified

void f(char p1, char p2, int p3, int p4)

{

 ...
}

Workaround:

Change the declaration order for the parameters so that 1-byte, 1-byte, 2-byte, and 2-byte parameters

are not listed in that order from the first parameter.

Correction:

This issue has been corrected in V3.70.

No. 55 Invalid code might be output if a 1-byte static array element, which uses an unsigned char

value returned by a function as an array subscript, is specified for the code of the assignment

destination of a compound assignment, increment, or decrement operation.

Description:
Invalid code might be output if a 1-byte static array element, which uses an unsigned char value

returned by a function as an array subscript, is specified for the code of the assignment destination of

a compound assignment, increment, or decrement operation.

ZMT-F35-11-0001 Attachment - 42/60

Example 1:
------- C source------------
 unsigned char a1[10];

 unsigned char func1(viod);

 void func()

{

 a1[func1()]++;

}

------- ASM source --------
_func:

 ; push hl is not output

; line 5 : ary1[func1()]++;

call !_func1

 movw hl,#_ary1

 mov a,[hl+c]

inc a

mov [hl+c],a

; line 6 : }

 ; pop hl is not output

 ret

Example 2:
 ------- C source ------------

 signed char a2[10];

unsigned char func1(void);

signed char c1;

struct t1 {

char m1;

} a3[10];

void func()

{

a2[func1()] &= c1; /* Invalid code */

a3[func1()].m1 |= 0x55; /* Invalid code */

}

 -------- ASM source ----------
_func:

 ; push hl is not output

; line 9 : a2[func1()] &= c1;

 call !_func1

 movw hl,#_a2

 mov a,[hl+c]

 and a,!_c1

 mov [hl+c],a

; line 10 : a3[func1()].m1 |= 0x55;

 call !_func1

 movw hl,#_a3

 mov a,[hl+c]

 or a,#055H ; 85

ZMT-F35-11-0001 Attachment - 43/60

 mov [hl+c],a

line 11 : }

 ; pop hl is not output

 ret

Workaround:

Define a dummy local variable.

Example 1:
 unsigned char a1[10];

 unsigned char func1(void);

 void func()

 {

 unsigned char dummy; /* Define a dummy variable */

 a1[func1()]++;

 }

Example 2:
 signed char a2[10];

unsigned char func1(void);

signed char c1;

struct t1 {

char m1;

} a3[10];

 void func()

 {

unsigned char dummy; /* Define a dummy variable */

 a2[func1()] &= c1;

a3[func1()].m1 |= 0x55;

 }

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 56 A constant expression that includes multiple binary operators, which use the result of a binary

operator causing an overflow, might be replaced with invalid values.

Description:

A constant expression that includes multiple binary operators, which use the result of a binary operator

causing an overflow, might be replaced with invalid values.

Example:
long l1 = (10000 * 10000) / 10000;

long l2 = (30464 << 4) / 2;

long l3 = (30464 << 5) / 2;

long l4 = (65535U * 41200U) / 256L;

short s1 = (65535U * 41200U) / 100000;

void func()

{

l1 = (10000 * 10000) / 10000;

ZMT-F35-11-0001 Attachment - 44/60

l2 = (30464 << 4) / 2;

l3 = (30464 << 5) / 2;

l4 = (65535U * 41200U) / 256L;

s1 = (65535U * 41200U) / 100000;

}

Workaround:

Write constant expressions that do not include multiple binary operators.

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 57 Invalid code might be output as the result of an operation that includes an increment or

decrement operation.

Description:

(1) Invalid code might be output if an operand of a binary operation includes an increment or

decrement operation for a bit field.

Example 1:
struct {

 int i : 9;

} *p;

int i;

int g(void);

void f(void)

{

 i = g() + p->i++;

}

(2) Invalid code might be output if an increment or decrement operator is suffixed to the left operand

in a comma operation while the operation result remains in a register.

Example 2:
unsigned char c0, c1, c2, c3, c4;

void func()

{

 c0 = (c1 + c2) + (c3++, c4);

}

Workaround:

(1) Divide the expressions of an increment/decrement operation and a binary operation.

(2) Divide the expressions of a post-increment/decrement operation and a comma operation.

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

ZMT-F35-11-0001 Attachment - 45/60

No. 58 The result of a seizeof operation for a function parameter that has an array might be invalid.

Description:
The result of a seizeof operation for a function parameter that has an array might be invalid, or the

error E0529 might be output.
Example:

int x;
void func1(short a[])
{
 x = sizeof(a); /* E0529: Sizeof returns zero */
}

void func2(short b[10])
{
 x = sizeof(b);
}

Workaround:

Change the function parameter type to a function pointer.

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 59 Invalid code might be output as the result of a compound assignment operation of a division or
remainder operation if the -qc option is not specified.

Description:

Invalid code might be output as the result of a compound assignment operation of a division or
remainder operation when the -qc option is not specified, the left operand is a pointer to a char or

unsigned char variable, and the right operand is a variable that can be expressed with 1 byte,

stored in a stack, and whose offset is 256 or more.

Example:
char *p;

void f(unsigned char uc)

{

 char a[256];

 *p /= uc;

}

Workaround:
Specify the -qc option, or keep the number of array elements to 255 or less.

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

ZMT-F35-11-0001 Attachment - 46/60

No. 60 Invalid code might be output if there is a bit field where the bit width assigned to an saddr area

is from 2 bits to 7 bits, the maximum constant of the bit field is assigned to an expression, and

the assignment destination is re-evaluated with the same expression.

Description:
Invalid code might be output if there is a bit field where the bit width assigned to an saddr area is

from 2 bits to 7 bits, the maximum constant of the bit field is assigned to an expression, and the

assignment destination is re-evaluated with the same expression.

Example:
__sreg struct {

 unsigned int b1 : 4;

 unsigned int b2 : 4;

} s;

void main(void)

{

 s.b2 = s.b1 = 0xf;

}

Workaround:

Divide the assignment expression.

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 61 The error E0705 or invalid code might be output if a norec function that has enum parameters

is called.

Description:
The error E0705 is output if the -qr option is not specified and a norec function that has two enum

parameters is called. In addition, invalid code might be output if the -qr option is specified and a

norec function that has two enum parameters is called.

Example:
enum E {

 A = 256

};

__leaf int func(enum E e1, enum E e2)

{

 return e1 == e2;

}

int main(void)

{

 func(A, A);

 return 0;

}

ZMT-F35-11-0001 Attachment - 47/60

Workaround:
Change the enum to an int and the enum constant to a macro, as shown below.

Example:
#define A 256

__leaf int func(int e1, int e2)

{

 return e1 == e2;

}

int main(void)

{

 func(A, A);

 return 0;

}

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 62 No error occurs if an identical function whose parameters include a different structure or union is

declared multiple times.

Description:

The error E0747 is not output if an identical function whose parameters include a different structure

or union is declared multiple times.

Example:
struct st {

 int a;

} x;

struct st2 {

 char a;

} x2;

void func11(struct st a);

void func11(struct st2 a);

Workaround:

Do not declare the same function multiple times.

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

ZMT-F35-11-0001 Attachment - 48/60

No. 63 Invalid code might be output if a pointer that points to a structure of 256 bytes or more is a
register variable.

Description:

If a pointer that points to a structure of 256 bytes or more is assigned to a register, the register

variable might be corrupted as the result of dereferencing its member.

Example:
struct st1 {

 char buf[250];

 struct st2 {

 char buf[6];

 int i1;

 int i2;

} st2;

} st1;

int i1;

void func()

{

 register struct st1 *pst1 = &st1;

 i1 = pst1->st2.i1;

}

Workaround:
Do not declare register and disable the -qv option.

Alternatively, keep the structure size to 255 bytes or less.

Correction:

This issue has been corrected in V4.00.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 64 Work areas used by the compiler are corrupted if the static model option -sm and the expansion

specification option -zm2 are specified.

Description:

Work areas used by the compiler are corrupted if condition (a) or (b) is satisfied when the static
model option -sm and the expansion specification option -zm2 are specified.

This issue does not apply if the normal memory model is used.

(a) The function parameter includes any of the following:
• An address referenced using the & operator

• A structure

• A union

(b) The automatic variable is any of the following:
• An address referenced using the & operator

• A structure

• A union

• An array

ZMT-F35-11-0001 Attachment - 49/60

Example for (b):
void func2(unsigned short *);

struct tag {

unsigned char a[2];

};

void func1()

{

unsigned char buf[4]; /* Array */

struct tag st; /* Structure */

unsigned short ss; /* Address referenced */

func2(&ss);

/* ... */

}

Workaround:
(1) For (a), use the -zm1 option instead of the -zm2 option.

 Modifying the C source code does not resolve this issue.

(2) For (b), change the automatic variable to a local static variable.
 Alternatively, use the -zm2 option instead of the -zm1 option.

void func2(unsigned short *);

struct tag {

unsigned char a[2];

};

void func1()

{

static unsigned char buf[4]; /* Array */

static struct tag st; /* Structure */

static unsigned short ss; /* Address referenced */

func2(&ss);

/* ... */

}

Correction:

This issue has been corrected in V4.00.

No. 65 Invalid code might be output when referencing 1-byte data pointed to by a pointer to which ++ or

-- has been suffixed.

Description:

Invalid code might be output if, immediately after referencing 1 byte to which a pointer points, the

increment or decrement operator is suffixed to the pointer, and the memory to which the pointer points

is referenced again.

ZMT-F35-11-0001 Attachment - 50/60

Example:
 void func()
 {
 unsigned char tmp, *src, dst;
 *src = tmp + 0x80;
 dst += *src++;
 }

Workaround:
Do either of the following:

(1) Divide the assignment and increment operations into different expressions:
 dst += *src;

 src++;

(2) Use temporary variables to divide the expressions:
 tmp2 = tmp + 0x80;

 *src = tmp2;

Correction:

This issue has been corrected in V4.10.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 66 Invalid code is output if the last element of an initializer list for a char, signed char, or

unsigned char array is a character string and one or more constants or character constants

are placed before the character string.

Description:
If the last element of an initializer list for a char, signed char, or unsigned char array is a

character string and one or more constants or character constants are placed before the character

string, no error is output, but invalid code might be output.
Only string literals or constants can be used to initialize char, signed char, or unsigned char

arrays.

Example:
 [.c]

 const char a1[] = {0x01, “abct”};

 char *const TBL[3] = { a1 };

 char *ptr1;

 void func()

 {

 ptr1 = TBL[0];

 }

 [.asm]

 @@CNST CSEG UNITP

 _a1: DB 01H ; 1

 DB 'ab'

 _TBL: DW _a1 ; _TBL is an odd address

 DB (4)

 @@DATA DSEG UNITP

ZMT-F35-11-0001 Attachment - 51/60

 _ptr1: DS (2)

 ; line 1 : const char a1[] = { 0x01, "abc" };

 ; line 2 : char *const TBL[3] = { a1 };

 ; line 3 : char *ptr1;

 ; line 4 : void func()

 ; line 5 : {

 @@CODEL CSEG

 _func:

 ; line 6 : ptr1 = TBL[0];

 movw ax,!_TBL ; Reference an odd address

 movw !_ptr1,ax

Workaround:

Correctly specify the initial value.
 [.c]

 const char a1[] = { 0x01, 'a', 'b', 'c', '\0' };

 char *const TBL[3] = { a1 };

 char *const *ptr1;

 void func()

 {

 ptr1 = TBL[0];

 }

Correction:

This issue has been corrected in V4.10.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 67 Invalid code is output if referencing a pointer that has an offset obtained by subtracting one

pointer from another.

Description:

Invalid code is output if all the following conditions are satisfied:

(1) A pointer to which an offset is added is referenced.

(2) The offset mentioned in (1) is the result of subtracting one pointer from another.

(3) A pointer mentioned in (2) has an offset.

Example:
 [.c]

 void main(void)

 {

 char *p1;

 char *p2;

 char *p3;

 *p1 = *(p2 + (p1 – (p3 + 2)));

 }

ZMT-F35-11-0001 Attachment - 52/60

Workaround:

Divide the expression.
 [.c]

 void main(void)

 {

 char *p1;

 char *p2;

 char *p3;

 int tmp; /* Prepare a temporary variable */

 tmp = (p1 - (p3 + 2)); /* Assign the value to the temporary variable */

 *p1 = *(p2 + tmp);

 }

Correction:

This issue has been corrected in V4.10.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 68 Invalid code is output if the -qc option has not been specified (sign extension is specified to be

int type).

Description:

Invalid code is output if all the following conditions are satisfied:
(1) The -qc option is not specified (sign extension is specified to be the int type)

(2) One of the following combinations of operands (regardless of whether they are right or left

operands) is multiplied:
- An sreg unsigned char to which a constant from 0 to 255 is assigned and a constant from

0 to 255
- More than one sreg unsigned char to which a constant from 0 to 255 is assigned

- An sreg unsigned char to which a constant from 0 to 255 is assigned and an sreg

char or signed char to which a constant from 0 to 127 is assigned

(3) The multiplication result is 256 or larger (which cannot be expressed as an unsigned char).

(4) The operation result is handled as an int.

 In the following example, the value of Temp1 should be 0x1fe but it is output as 0xfe.

Example:
 [.c]

 unsigned int Temp1;

 _sreg unsigned char Byte1;

 Temp1 = (Byte1 = 255) * 2;

ZMT-F35-11-0001 Attachment - 53/60

Workaround:
Type-cast the variable to an int or unsigned int.
 [.c]

 unsigned int Temp1;

 unsigned char Byte1;

 Temp1 = (unsigned int) (Byte1 = 255) * 2;

Correction:

This issue has been corrected in V4.10.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 69 Invalid code is output as the result of the BCD operation function adbcdw or sbbcdw.

Description:

Invalid code is output if one of the following conditions is satisfied while the BCD operation function
adbcdw or sbbcdw is used:

(1) The return value of adbcdw or sbbcdw is assigned to an array or pointer.

(2) Another operation is executed before assigning the return value of adbcdw or sbbcdw to a

temporary variable.
(3) A temporary variable to which the return value of adbcdw or sbbcdw has been assigned is used

as is for other operations such as a conditional expression.

Example:
 [.c]

 void func()

 {

 unsigned int tmp1[3];

 unsigned int tmp2, tmp3;

 unsigned int a = 10, i = 0, *p;

 tmp1[i] = adbcdw(80, 50); /* (1) */

 tmp2 = adbcdw(80, 50) + (a + 1); /* (2) */

 if ((tmp3 = adbcdw(80, 50) == *p) … /* (3) */

 ...
 }

Workaround:
Prepare a function used only for calling adbcdw and sbbcdw and call the function. Use the same

parameters and return values as those of adbcdw and sbbcdw.

Example:
 [.c]

 unsigned int adbcdw_new(unsigned int a, unsigned int b)

 {

 return adbcdw(a, b);

ZMT-F35-11-0001 Attachment - 54/60

 }

 void func()

 {

 unsigned int tmp1[3];

 unsigned int tmp2, tmp3;

 unsigned int a = 10, i = 0, *p;

 tmp1[i] = adbcdw_new(80, 50); /* (1) */

 tmp2 = adbcdw_new(80, 50) + (a + 1); /* (2) */

 if ((tmp3 = adbcdw_new(80, 50) == *p) … /* (3) */

 ...
 }

Correction:

This issue has been corrected in V4.10.

No. 70 An error occurs if the -ng option is specified and a branch instruction is used in a function that

includes the asm statement.

Description:
If the -ng option is specified and a branch instruction is used after the asm statement in a function, an

error might occur. This error might occur if both of the following conditions are satisfied:
(1) The asm statement is used in a function.

(2) A statement that causes processing to branch (such as if, for, or while) is used in the same

function.

However, if the above conditions are satisfied, the error occurs during assembly and the object module

file is not generated. If no error occurs, this restriction does not apply.

Example:
 [.c]

 unsigned int i;

 void func()

 {

 do {

 __asm(“\t DB (1000)”);

 i++;

 } while (i < 10) ;

}

Workaround:
Change to the -g option.

Correction:

This issue has been corrected in V4.10.

ZMT-F35-11-0001 Attachment - 55/60

No. 71 The line number is not output for a statement that immediately follows a nested if statement

and is outside that statement’s conditional block.

Description:

If all of the conditions below are satisfied, the line number might not be output for a statement that
immediately follows a nested if statement and is outside that statement’s conditional block. However,

the output code is correct. A break point cannot be specified for a statement for which the line number

is not output.
(1) There are at least three levels of nested if statements.

(2) An else statement in a higher nested level has a larger line number than a nested if statement.

(3) At least one statement immediately follows an if statement in a higher nested level.

Example:
 [.c]

 int f0, f1, f2, f3;

 int g0, g1, g2;

 void func(void)

{

 if (f0){

 if (f1){ /* if statement in nested level 1 */

 g2 = 5;

}

else if (f2){ /* if statement in nested level 2 */

 g2 = 4;

}

else if (f3){ /* if statement in nested level 3 (condition (1)) */

g2 = 3;

}

else {

g2 = 2;

}

g0 = 0x1234; /* A statement immediately follows the if statement

 in nested level 1 (condition (3)).*/

g1 = 0x5678;

}

else { /* This else statement has a larger line number than */

g2 = 1; /* the if statement in nested level 3 (condition (2)).*/

}

}

Workaround:
Insert several blank lines before the statement that immediately follows the nested if statement and is

outside that statement’s conditional block.
For the above example, insert the lines before g0 = 0x1234;.

Correction:

This issue has been corrected in V4.10.

ZMT-F35-11-0001 Attachment - 56/60

No. 72 Invalid code is output when a value is assigned to a long variable in an interrupt function.

Description:
When the assignment of a value to a long variable is specified in an interrupt function, the -ql3

option or higher is specified, the compiler generates code that calls the runtime library function
@@dels03 or @@hlls03, the BC register is not used for other processing in the interrupt function, and

no function is called from the interrupt function, the BC register contents are corrupted.

Example:
[.c]

unsigned long l;

unsigned int i;

__interrupt void func()

{

 l = (unsigned long)i;

}

Workaround:
Do either of the following:

(1) After the return statement at the end of the function (which must be added if not there), add

code that increments the long variable.

 [.c]

 unsigned long l;

 unsigned int i;

 __interrupt void func()

 {

 l = (unsigned long)i;

 return;

 l++; /* Not executed */

 }

(2) Create a dummy function that does not perform any processing, and call it from the interrupt

function.
 [.c]

 unsigned long l;

 unsigned int i;

 void dummy { }

 __interrupt void func()

 {

 l = (unsigned long)i;

 dummy();

 }

(3) Specify -ql1 or -ql2 as the -ql optimization option level.

ZMT-F35-11-0001 Attachment - 57/60

Correction:

This issue has been corrected in V4.10.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 73 Bank function calling code might not be output.

Description:

If one of the conditions below is satisfied, bank function calling code might not be output for functions

allocated to the bank area by using the function information file.
In addition, C0101: Internal error might be output if condition (3) is satisfied. If this message is

not output, there is no problem and the program code is not affected.

(1) A function is called by type-casting it to a function pointer.
(2) A function declared using a typedef type is called.

(3) The -mf option is specified, and a function is called using a function pointer.

Example:
[.c]

typedef void F(void);

typedef void (*FP)(void);

void func1(void);

F func2;

void func()

{

 ((FP)func1)();

 func2();

}

Workaround:

Do not call a bank function by type-casting it to a function pointer.
Do not use a typedef type to declare a bank function.

[.c]

void func1(void);

void func2(void);

void func()

{

 func1();

 func2();

}

Correction:

This issue has been corrected in V4.10.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

For (3), no check is performed.

ZMT-F35-11-0001 Attachment - 58/60

No. 74 Invalid code might be output if using a 1-byte parameter or auto variable for a norec function.

Description:
Invalid code might be output if using a 1-byte parameter or auto variable for a norec function, and a

long variable is dereferenced within the function.

Example:
[.c]

long buf[8]

norec void func(void)

{

 unsigned char c = 7;

 long *s = &buf[c-1], *d = &buf[c];

 *d = *s;

}

Workaround:
Change the norec function to a normal function, or change the 1-byte variable to a 2-byte variable.

Correction:

This issue has been corrected in V4.10.

A tool used to check whether this restriction applies is available.

For details, contact a Renesas Electronics distributor.

No. 75 Macro expansion using the ## operator results in an error

Description:
The E0803 error might occur if the ## operator is not followed by a function-like macro parameter,

capital or small letter, or underscore (_).
In addition, using the ## operator might cause errors other than E0803, such as E0711 or E0301.

Example 1:

[*.c]

#define m1(x) (x ## .c1 + 23)

#define m2(x) (x ## .c1 + 122)

struct t1 {

 unsigned char c1;

} st1;

unsigned char x1, x2;

void func1()

{

 x1 = m1(st1) + 100; /* E0803 error (NG) */

 x2 = m2(st1) + 1; /* No error (OK) */

}

ZMT-F35-11-0001 Attachment - 59/60

Example 2:

[*.c]

#define m3(x) (x ## 1)

unsigned char x3, uc1;

void func2()

{

 x3 = m3(uc); /* E0711, E0301 error (NG) */

}

Workaround:

Do either of the following:
(1) Do not use the ## operator.

#define m1(x) (x ## .c1 + 23)

#define m2(x) (x ## .c1 + 122)

 ↓
#define m1(x) ((x).c1 + 23)

#define m2(x) ((x).c1 + 122)

(2) Place a function-like macro parameter immediately after the ## operator.

#define m3(x) (x ## 1)

unsigned char x3, uc1;

void func2()

{

 x3 = m3(uc);

}

 ↓
#define m3(x, y) (x ## y)

unsigned char x3, uc1;

void func2()

{

 x3 = m3(uc, 1);

}

Correction:

This issue will be corrected in the next revision.

No. 76 Symbol information for an interrupt function is not output to the assembler source

Description:

The E3405 error occurs during linking if all the following conditions are satisfied:
(1) #pragma interrupt is used to specify the generation of a vector table for an interrupt

function.

(2) The interrupt function is not defined in the same source.
(3) The -no option, assembler source module file output option (-a or -sa), and debugging

information output option (-g) are enabled.

ZMT-F35-11-0001 Attachment - 60/60

Example:

[*.c]

#pragma interrupt INTP0 inter

/* Definition of this interrupt function is not subject to compilation

__interrupt void inter()

{

 ...

}

*/

Workaround:

Define the interrupt function or output the object module file.

Correction:

This issue will be corrected in the next revision.

