

R20UT4377EJ0100 Rev.1.00 Page 1 of 49
Oct 1, 2018

RX Family Real-Time OS RI600PX V1.03.00
Release Notes
Contents

1. Packaged Tools ... 4

2. User’s Manual .. 5

3. Target Devices ... 6

4. Operating Environment .. 7

4.1. Hardware Environment... 7
4.2. Software Environment .. 7
4.3. Supported Tools ... 7

5. Installation Notes ... 8

5.1. Cautions for Installation .. 8
5.1.1. Caution for administrator privileges ... 8
5.1.2. Caution for execution environment .. 8
5.1.3. Caution for network drives ... 8
5.1.4. Caution for installation folder name ... 8
5.1.5. Caution for modifying and repairing functions ... 8
5.1.6. Caution for required files after installation ... 9
5.1.7. Caution for version of installed tools .. 9
5.1.8. Caution for starting installer ... 9
5.1.9. Enable Plug-ins .. 9

5.2. Cautions for Uninstallation ... 10
5.2.1. Caution for administrator privileges ... 10
5.2.2. Caution for uninstallation folder name ... 10
5.2.3. Caution for adding/repairing via other than the installer .. 10
5.2.4. Key Word for Uninstallation ... 10

6. Changes from previous released versions ... 11

6.1. Changes in RI600PX V1.02.00 .. 11
6.1.1. Kernel ... 11
6.1.2. Configurator ... 11
6.1.3. Realtime OS Build Tool Plug-in ... 11
6.1.4. Realtime OS Resource Information Displaying Plug-in ... 11

R20UT4377EJ0100
Rev.1.00

Oct 1, 2018

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 2 of 49
Oct 1, 2018

6.1.5. Sample programs of CS+ .. 11
6.2. Changes in RI600PX V1.03.00 .. 12

6.2.1. Kernel ... 12
6.2.2. Sample programs for CS+ ... 12

7. Cautions ... 13

7.1. Distinction of Version ... 13
7.2. Shift from a Previous Version ... 13
7.3. Timer Template File .. 13
7.4. How to Build Kernel Source Code .. 14
7.5. Stack Consumption .. 15

7.5.1. Stack consumption of base clock interrupt handler (clocksz1, clocksz2, clocksz3) 15
7.5.2. Stack consumption of service calls (svcsz) ... 15
7.5.3. When the kernel library is built ... 19

7.6. Cautions When Using global optimization of compile option .. 19
7.7. Enable Plug-ins .. 20
7.8. Create a CS+ Project .. 21

7.8.1. Divert the sample project attached to this product .. 21
7.8.2. Create a new project .. 21

7.9. Cautions for Realtime OS Resource Information Panel... 23
7.9.1. View after Real-Time OS is initialized .. 23
7.9.2. Use programs with debug information generated .. 23

8. Restrictions .. 24

8.1. Restrictions of CS+ for CC ... 24
8.1.1. Realtime OS Build Tool Plug-in ... 24
8.1.2. Realtime OS Resource Information Displaying Plug-in ... 24

9. Sample Programs .. 25

9.1. Sample programs of CS+ .. 25
9.1.1. Summary .. 25
9.1.2. File Composition .. 26
9.1.3. Memory Map .. 27
9.1.4. Setting of Build Tools concerning Sections ... 32
9.1.5. Example of Dealing with Access Violation ... 33

9.2. Sample programs using Firmware Integration Technology ... 34
9.2.1. Summary .. 34
9.2.2. Structure of sample programs using FIT ... 34
9.2.3. Directory structure of RI600PX sample projects using FIT .. 35
9.2.4. Changes to RI600PX sample project using FIT .. 36

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 3 of 49
Oct 1, 2018

9.2.5. Cautions of RI600PX sample project using FIT ... 43
9.2.6. How to add a new FIT module ... 47

Revision History ... 48

Website and Support ... 49

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 4 of 49
Oct 1, 2018

1. Packaged Tools

Depending on the model name, RI600PX has different forms of contract and offer as follows.

Product Name Agreement Type Contents

R0R5RX00PCW011 Evaluation License, Limited 1 host A

R0R5RX00PCW01A Evaluation License, Unlimited hosts A

R0R5RX00PCW01K Mass-production License, 3000 copies A

R0R5RX00PCW01U Mass-production License, Unlimited copies A

R0R5RX00PCW01Z Mass-production License, Unlimited copies, With source code B

The following tools are provided.

Contents Name Version

 Real-Time OS RI600PX Kernel Object V1.03.00

 Command-line Configurator “cfg600px” V1.01.01.001

 Plug-ins for CS+ for CC

 Realtime OS Build Tool Plug-in (Common) V3.02.01.01

 Realtime OS Build Tool Plug-in (RI600PX) V3.00.00.06

B A Realtime OS Analysis Control Plug-in (Common) V3.00.00.03

 Realtime OS Analysis Control Plug-in (μITRON4) V3.00.00.02

 Realtime OS Analysis Control Plug-in (RI600PX) V3.00.00.02

 Realtime OS Resource Information Displaying Plug-in (Common) V3.01.00.01

 Realtime OS Resource Information Displaying Plug-in (μITRON4) V3.00.00.06

 Real-Time OS RI600PX Kernel Source Code V1.03.00

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 5 of 49
Oct 1, 2018

2. User’s Manual

The following user's manuals are included with this version. Please read these manuals together with this document.

Manual Name Document Number

RI Series Real-Time Operating System User's Manual: Start R20UT0751EJ0106

RI600PX Real-Time Operating System User's Manual: Coding R20UT0964EJ0101

RI600PX Real-Time Operating System User's Manual: Debug R20UT0950EJ0100

RI Series Real-Time Operating System User's Manual: Message R20UT0756EJ0105

These PDF files are provided by this package or Renesas Electronics Home page. You can read them using the

Windows Start Menu after Installing this package.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 6 of 49
Oct 1, 2018

3. Target Devices

The following devices are supported by the product.

 RX700 Series MCU with Memory Protection Unit

 RX600 Series MCU with Memory Protection Unit

 RX200 Series MCU with Memory Protection Unit

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 7 of 49
Oct 1, 2018

4. Operating Environment

Below is described the operating environment for using the product.

4.1. Hardware Environment

 Processor: At least 1GHz (supported for hyper threading/multicore CPU)

 Memory capacity: 2 GB or more recommended. Minimum requirement is 1 GB or more

（64-bit Windows® requires 2 GB or more）

 Display: Resolution at least 1024 x 768; at least 65,536 colors

4.2. Software Environment

The following OS are supported.

 Windows 7（32bit, 64bit）

 Windows 8.1（32bit, 64bit）

 Windows Vista（32bit, 64bit）

 Windows 10（32bit, 64bit）

Remark: It is recommended that the latest service pack is installed on any OS.

The following runtime libraries are required.

 .NET Framework 4.5.2

 Runtime library of Microsoft Visual C++ 2010 SP1

4.3. Supported Tools

The following tools are supported.

Tool Name Manufacturer Version

Integrated development environment CS+ for CC Renesas Electronics V3.02.00 or later

C/C++ Compiler CC-RX Renesas Electronics V2.04.01 or later recommended

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 8 of 49
Oct 1, 2018

5. Installation Notes

This section provides cautions for installation and uninstallation

5.1. Cautions for Installation

5.1.1. Caution for administrator privileges

Windows® administrator privileges are required to install the software.

5.1.2. Caution for execution environment

The .NET Framework and the Visual C++ runtime libraries are required to run the installer.

5.1.3. Caution for network drives

The software cannot be installed from a network drive.

It also cannot be installed to a network drive.

5.1.4. Caution for installation folder name

The available characters for specifying the installation folder are the same as for Windows®.

The 11 characters / * : < > ? | " \ ; , cannot be used. Folder names also cannot start or end with a space.

Specify folders as absolute paths. Do not use relative paths.

Use the backslash character (\) as the path separator for the installation folder. Do not use the forward slash (/).

5.1.5. Caution for modifying and repairing functions

To modify or repair the function of a tool that has already been installed, have the tool's installer package on hand,

and run the installation program. The program maintenance program will start; select Modify or Repair.

Uninstall or change a program dialog boxes will cause an error.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 9 of 49
Oct 1, 2018

5.1.6. Caution for required files after installation

The following folder is created after installation. Do not delete it, because it contains files that are necessary for the

tools to run.

 If Windows® is 32bit and the installation drive is C:

C:\Program Files\Common Files\Renesas Electronics CubeSuite+\

 If Windows® is 64bit and the installation drive is C:

C:\Program Files (x86)\Common Files\Renesas Electronics CubeSuite+\

5.1.7. Caution for version of installed tools

If the newer version tool is already installed, the older version tool may not be installed.

5.1.8. Caution for starting installer

If the installer is started on a non-Japanese version of Windows®, then if the path contains multi-byte characters it

will cause an error, and the installer will not start.

5.1.9. Enable Plug-ins

Plug-ins of this product may be disabled immediately after installation of this product. Please enable Plug-ins of this

product. For details, refer to “7.7 Enable Plug-ins”.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 10 of 49
Oct 1, 2018

5.2. Cautions for Uninstallation

5.2.1. Caution for administrator privileges

Windows® administrator privileges are required to uninstall the software.

5.2.2. Caution for uninstallation folder name

Depending on the order in which tools are uninstalled, the folders may not be completely deleted. If this happens,

remove any remaining folders via Explorer or the like.

5.2.3. Caution for adding/repairing via other than the installer

If you added or modified files to the folders in which tools and manuals were installed using other means than the

installers, they cannot be deleted during uninstallation.

5.2.4. Key Word for Uninstallation

There are two ways to uninstall this product.

 Use the integrated uninstaller (uninstalls CS+ for CC)

 Use separate uninstaller (uninstalls this product only)

To use the separate uninstaller, select the following from the Control Panel:

 Programs and Features

After the applet appears, delete the followings.

 CS+ Realtime OS Common Plugins

 CS+ Realtime OS RI600PX Plugins

 CS+ Realtime OS RI600PX Object Release, or CS+ Realtime OS RI600PX Source Release

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 11 of 49
Oct 1, 2018

6. Changes from previous released versions

This section provides changes in each release version of this product.

6.1. Changes in RI600PX V1.02.00

6.1.1. Kernel

There is no difference in the kernel.

6.1.2. Configurator

There is no difference in the configurator.

For the reason of 6.1.1 and 6.1.2, the package version is same as the previous version.

6.1.3. Realtime OS Build Tool Plug-in

(1) The “CS+ for CC” tools are supported

The “CS+ for CC” tools are supported. In addition, this plug-in of this version does not operate on the

“CubeSuite+”.

(2) The help can be opened from [Realtime OS] tab and [System Configuration File Related Information] tab

6.1.4. Realtime OS Resource Information Displaying Plug-in

(1) The “CS+ for CC” tools are supported

The “CS+ for CC” tools are supported. In addition, this plug-in of this version does not operate on the

“CubeSuite+”.

(2) The waiting factor which are showed by the “ID” are changed to “name”

The waiting factor which are showed by the “ID” are changed to “name”. It became intelligible the waiting factor.

(3) It became intelligible the tabs

The tab selection area is divided into two columns, and adds the icon to each tab.

(4) A part of messages is improved

A part of messages, for example error message, is improved.

(5) The following restriction is canceled.

The resource information panel does not get focus even if a display menu or a display button on toolbar is

selected.

6.1.5. Sample programs of CS+

(1) Add new sample programs using FIT (Firmware Integration Technology) modules.

Add new sample programs using FIT modules. For details, refer to “9.2 Sample programs using Firmware

Integration Technology”.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 12 of 49
Oct 1, 2018

6.2. Changes in RI600PX V1.03.00

6.2.1. Kernel

（1） The RXv3 architecture is Supported.

To support the RXv3 architecture, we have changed that the RXv2 architecture’s library is linked when using

the RXv3 architecture. The RXv3 architecture is compatible with the RXv2 architecture.

It should be noted that Table 2-1 Kernel libraries in 2.6.3. Kernel library of “RI600PX Real-Time Operating

System User's Manual: Coding” (R20UT0964EJ0101) shall be replaced with the below table.

 Folder

Compiler version
corresponding to the

library
Corresponding CPU core File name Description

1 <ri_root>\library\rxv1 V1.02.01 or later ・RXv1 architecture
ri600lit.lib For little endian

ri600big.lib For big endian

2 <ri_root>\library\rxv2 V2.01.00 or later

・RXv1 architecture

・RXv2 architecture

・RXv3 architecture

ri600lit.lib For little endian

ri600big.lib For big endian

（2） The kernel version information

The version change is as follows.

Item Before After

TKERNEL_PRVER,

T_RVER prver (the return value of “ref_ver” and “iref_ver”)
0x120 0x130

6.2.2. Sample programs for CS+

（1） Add new sample programs for RX66T

Because of supporting the RXv3 architecture, we have added new sample programs for CS+ for RX66T.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 13 of 49
Oct 1, 2018

7. Cautions

7.1. Distinction of Version

By referring to this variable, the version of the kernel is distinguishable.

const UW _RI600PX_VERSION = < Value>;

The version of the kernel is denoted by form of “X,YY,ZZ,aa”. The bit31-24of _RI600PX_VERSION expresses “X”, the

bit 23-16 expresses “YY”, the bit 15-8 expresses “ZZ”, and the bit 7-0 expresses “aa”

The actual versions are as follows.

Kernel version

(Product version)

_RI600PX_VERSION Note

V1.01.00（V1.01.00, V1.01.01） (Not defined) The past version

V1.02.00.03（V1.02.00） 0x01020004 The past version

V1.03.00（V1.03.00） 0x01030000 This version

7.2. Shift from a Previous Version

When you shift from a previous version, please be sure to re-build.

7.3. Timer Template File

The relation between timer template file provided by RI600PX and corresponded MCUs is shown as follows.

The timer template file is specified to “clock.template” in the system configuration file.

Please check the latest information of the timer template file on the product website of RI600PX.

figure 7-1 Timer template file

Template File Corresponded MCUs

rx62t.tpl *1 RX600 Series RX62T Group

rx62n.tpl RX600 Series RX62G Group

RX600 Series RX62N Group

RX600 Series RX621 Group

rx630.tpl RX700 Series RX71M Group *2

RX600 Series RX66T Group *2

RX600 Series RX65N Group *2

RX600 Series RX651 Group *2

RX600 Series RX64M Group *2

RX600 Series RX630 Group

RX600 Series RX63N Group

RX600 Series RX631 Group

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 14 of 49
Oct 1, 2018

RX600 Series RX634 Group

RX600 Series RX63T Group

RX200 Series RX21A Group

RX200 Series RX230 Group

RX200 Series RX231 Group

RX200 Series RX23T Group

RX200 Series RX24T Group

RX200 Series RX24U Group

*1 Since this file is not included in RI600PX V1.02.00, it is necessary to get it separately.

Please contact our sales or distributor.

*2 Don't specify “CMT2” and “CMT3” as “clock.timer” in the system configuration file.

7.4. How to Build Kernel Source Code

Since the RI600PX kernel is provided in the library form, it does not usually need to build the kernel. The source

code is only attached to R0R5RX00PCW01Z.

The kernel source code is stored in "< installation folder >\src600”. To build the kernel, set current folder to this

folder, and run "nmake.exe"1 as follows. The libraries will be generated under “< installation folder >\library".

 Command to generate libraries at “< installation folder >\library\rxv1"

nmake release_install(RET)

Note, the libraries attached to this product was built by using CC-RX V1.02.01.

 Command to generate libraries at "< installation folder >\library\rxv2"

nmake –f make_rxv2.mak release_install(RET)

Note, the libraries attached to this product was built by using CC-RX V2.01.00.

Please copy the installation folder to the writable folder if you don't have the write-access permission to the

installation folder. After the build, copy the generated libraries to the "library\rxv1” or “library\rxv2” folder under the

installation folder by the user who has write-access permission to the product installation folder.

1 "nmake.exe" is a tool to build the project provided by Microsoft Corporation in United States.

"nmake.exe" is included in Microsoft Visual Studio 2008 etc.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 15 of 49
Oct 1, 2018

7.5. Stack Consumption

7.5.1. Stack consumption of base clock interrupt handler (clocksz1, clocksz2, clocksz3)

The value of clocksz1, clocksz2 and clocksz3 described in appendix D.4 of “RI600PX Real-Time Operating System

User's Manual: Coding” are as follows.

 clocksz1=120

 clocksz2=120

 clocksz3=200

7.5.2. Stack consumption of service calls (svcsz)

The kernel uses the system stack.

Please apply the maximum value of consumption of service calls used with the system and the following expression

to svcsz described in appendix D.4 of “RI600PX Real-Time Operating System User's Manual: Coding”.

 Size consumed by function tree that makes the access exception handler (_RI_sys_access_exception()) + 16

Size consumed by function tree that makes the timer initialization call-back function (_RI_init_cmt_knl()) + 8

figure 7-2 Stack usage of service-call

 Service call Consumption Note

Task management function
1 cre_tsk 28
2 acre_tsk 28
3 del_tsk 28
4 act_tsk 28
5 iact_tsk 24
6 can_act 24
7 ican_act 24
8 sta_tsk 28
9 ista_tsk 24

10 ext_tsk 60 The ext_tsk is called at the return from the task entry function.
11 exd_tsk 56
12 ter_tsk 108
13 chg_pri 36
14 ichg_pri 52
15 get_pri 28
16 iget_pri 28
17 ref_tsk 36
18 iref_tsk 36
19 ref_tst 28
20 iref_tst 28

Task dependent synchronization function
21 slp_tsk 28
22 tslp_tsk 28
23 wup_tsk 32
24 iwup_tsk 48
25 can_wup 24

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 16 of 49
Oct 1, 2018

 Service call Consumption Note

26 ican_wup 24
27 rel_wai 104
28 irel_wai 120
29 sus_tsk 28
30 isus_tsk 24
31 rsm_tsk 28
32 irsm_tsk 24
33 frsm_tsk 28
34 ifrsm_tsk 24
35 dly_tsk 28

Task exception handling function
36 def_tex 28
37 ras_tex 28
38 iras_tex 24
39 dis_tex 24
40 ena_tex 28
41 sns_tex 24
42 ref_tex 24
43 iref_tex 24

Semaphore
44 cre_sem 28
45 acre_sem 28
46 del_sem 48
47 sig_sem 32
48 isig_sem 48
49 wai_sem 28
50 pol_sem 24
51 ipol_sem 24
52 twai_sem 32
53 ref_sem 28
54 iref_sem 28

Eventflag
55 cre_flg 28
56 acre_flg 28
57 del_flg 48
58 set_flg 48
59 iset_flg 64
60 clr_flg 24
61 iclr_flg 24
62 wai_flg 32
63 pol_flg 28
64 ipol_flg 28
65 twai_flg 36
66 ref_flg 28
67 iref_flg 28

Data queue
68 cre_dtq 28
69 acre_dtq 28
70 del_dtq 48
71 snd_dtq 32
72 psnd_dtq 32
73 ipsnd_dtq 48

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 17 of 49
Oct 1, 2018

 Service call Consumption Note

74 tsnd_dtq 36
75 fsnd_dtq 32
76 ifsnd_dtq 52
77 rcv_dtq 32
78 prcv_dtq 32
79 iprcv_dtq 48
80 trcv_dtq 32
81 ref_dtq 32
82 iref_dtq 32

Mailbox
83 cre_mbx 28
84 acre_mbx 28
85 del_mbx 48
86 snd_mbx 32
87 isnd_mbx 52
88 rcv_mbx 28
89 prcv_mbx 28
90 iprcv_mbx 28
91 trcv_mbx 32
92 ref_mbx 28
93 iref_mbx 28

Mutex
94 cre_mtx 28
95 acre_mtx 28
96 del_mtx 52
97 loc_mtx 28
98 ploc_mtx 28
99 tloc_mtx 32

100 unl_mtx 44
101 ref_mtx 28

Message buffer
102 cre_mbf 28
103 acre_mbf 28
104 del_mbf 48
105 snd_mbf 36
106 psnd_mbf 36
107 ipsnd_mbf 56
108 tsnd_mbf 36
109 rcv_mbf 56
110 prcv_mbf 56
111 trcv_mbf 56
112 ref_mbf 28
113 iref_mbf 28

Fixed-sized memory pool
114 cre_mpf 28
115 acre_mpf 28
116 del_mpf 48
117 get_mpf 28
118 pget_mpf 28
119 ipget_mpf 28
120 tget_mpf 32
121 rel_mpf 32

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 18 of 49
Oct 1, 2018

 Service call Consumption Note

122 irel_mpf 48
123 ref_mpf 28
124 iref_mpf 28

Variable-sized memory pool
125 cre_mpl 80
126 acre_mpl 80
127 del_mpl 48
128 get_mpl 88
129 pget_mpl 104
130 ipget_mpl 104
131 tget_mpl 88
132 rel_mpl 100
133 ref_mpl 28
134 iref_mpl 28

Time management function
135 set_tim 28
136 iset_tim 28
137 get_tim 28
138 iget_tim 28

Cyclic handler
139 cre_cyc 28
140 acre_cyc 28
141 del_cyc 28
142 sta_cyc 24
143 ista_cyc 24
144 stp_cyc 24
145 istp_cyc 24
146 ref_cyc 28
147 iref_cyc 28

Alarm handler
148 cre_alm 28
149 acre_alm 28
150 del_alm 28
151 sta_alm 24
152 ista_alm 24
153 stp_alm 24
154 istp_alm 24
155 ref_alm 28
156 iref_alm 28

System state management function
157 rot_rdq 28
158 irot_rdq 24
159 get_tid 28
160 iget_tid 28
161 loc_cpu 24
162 iloc_cpu 16
163 unl_cpu 28
164 iunl_cpu 24
165 dis_dsp 16
166 ena_dsp 28
167 sns_ctx 24
168 sns_loc 24

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 19 of 49
Oct 1, 2018

 Service call Consumption Note

169 sns_dsp 24
170 sns_dpn 24
171 vsta_knl 88

The system stack is used after initializing ISP.
172 ivsta_knl 88
173 vsys_dwn 24
174 ivsys_dwn 24

Interrupt management function
175 chg_ims 28
176 ichg_ims 16
177 get_ims 28
178 iget_ims 28

179
Kernel
interrupt
handler

36 When a kernel interrupt handler ends, 36 bytes of the system stack is
consumed from just before generating of the interrupt.

System configuration management function
180 ref_ver 28
181 iref_ver 28

Object reset function
182 vrst_dtq 40
183 vrst_mbx 28
184 vrst_mbf 40
185 vrst_mpf 40
186 vrst_mpl 76

Memory object management function
187 ata_mem 48
188 det_mem 44
189 sac_mem 60
190 vprb_mem 28
191 ref_mem 52

7.5.3. When the kernel library is built

Please note that the stack consumption might change when a version and/or an optional setting of the compiler are

changed and the kernel library is built.

7.6. Cautions When Using global optimization of compile option

It is not able to specify global optimization (-ip_optimize, -merge_files, -whole_program) to the program embedded

RI600PX.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 20 of 49
Oct 1, 2018

7.7. Enable Plug-ins

Plug-ins of this product may be disabled immediately after installation of this product. If plug-ins are disabled, the

problem of being unable to build arises.

Please enable following Plug-ins by [Additional Function] tab in [Plug-in Manager] dialog box of the CS+ for CC

 Realtime OS Analysis Control Plug-in(Common)

 Realtime OS Build Tool Plug-in(Common)

 Realtime OS Resource Information Displaying Plug-in(common)

figure 7-3 Plug-in Manager

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 21 of 49
Oct 1, 2018

7.8. Create a CS+ Project

To create a project which uses this product, there are the following two methods.

 Divert the sample project attached to this product.

 Create a new project

7.8.1. Divert the sample project attached to this product

Select [RX] tab in [Open Sample Project] area of [Start] panel of the CS+, and choose the project named

“RX???_RI600PX”.

7.8.2. Create a new project

(1) Create a project

Press [Go] button in [Create New Project] area of [Start] panel of the CS+, then [Create Project] dialog box will

be opened.

figure 7-4 Create Project

 [Microcontroller] : Select “RX”

 [Kind of project] : Select “Application(RI600PX,CC-RX)”

Press [Create] button, then a project will be generated.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 22 of 49
Oct 1, 2018

(2) Register files

No files are registered immediately after project creation. Please register the following files according to

“CHAPTER 2 SYSTEM BUILDING” in “RI600PX User's Manual: Coding”.

 Processing programs, such as tasks and handlers (refer to section 2.2 in “RI600PX User's Manual: Coding”)

 System configuration file (refer to section 2.3 in “RI600PX User's Manual: Coding”)

 User-own coding module (refer to section 2.4 in “RI600PX User's Manual: Coding”)

(3) Build options

Please set up suitable build options according to “2.5 Creating Load Module” and “2.6 Build Options” in

“RI600PX User's Manual: Coding”.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 23 of 49
Oct 1, 2018

7.9. Cautions for Realtime OS Resource Information Panel

7.9.1. View after Real-Time OS is initialized

View the Realtime OS Resource Information Panel after the Real-Time OS has been initialized. Before the

Real-Time OS has been initialized, the information in the Realtime OS Resource Information Panel is undefined.

7.9.2. Use programs with debug information generated

When using the Realtime OS Resource Information Panel, download a program for which debug information has

been generated. Downloading a program without debug information and viewing it in the Realtime OS Resource

Information Panel will cause an error.

To generate debug information, under Build Tool, under the Link Options properties, set "Generate debug

information" to "Yes".

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 24 of 49
Oct 1, 2018

8. Restrictions

8.1. Restrictions of CS+ for CC

8.1.1. Realtime OS Build Tool Plug-in

(1) Multiple build modes

Do not use multiple build modes for the following reasons.

 The configurator options are common to all build modes. Even if multiple build modes are used, the

same configurator options are applied.

 Every time the build mode is changed, the path to the kernel_id.h file is added to [Additional include

paths] of the build tool. Although the build-setting plug-in sets the correct path in [System include paths],

the IDE adds the old path prior to the change of the build mode to [Additional include paths]. In the

process of building, the build tool refers to the old path set by the IDE. This means that editing the

configuration file to change the build mode before editing kernel_id.h, for example, will not be reflected

in building.

(2) Utilizing existing projects

If you choose to recycle as the basis of a new project an existing project that does not contain any files such

as sit.s which are generated by the configurator, and you select copy processing for the files you will be

reusing, the missing files such as sit.s that are supposed to be grayed out in the project tree will be deleted

from the project tree.

8.1.2. Realtime OS Resource Information Displaying Plug-in

(1) Effect of resetting the display of waiting tasks (child nodes) on the display of the [Task] tabbed

page

Resetting the display of waiting tasks also resets the display of other tasks in the [Task] tabbed page.

However, the information being displayed will be correct.

(2) "Time Left” in “Realtime OS Resource Information Panel”

The value displayed on the following items may become larger TIC_NUME than the original value at the

maximum.

・ “Time Left” item in [Task] tab

・ “Time Left” item in [Cyclic Handler] tab

・ “Time Left” item in [Alarm Handler] tab

The original value can be calculated by the following formulas.

・ When (The value displayed on “Time Left”) > TIC_NUME

The original value = (The value displayed on “Time Left”) – TIC_NUME

・ When (The value displayed on “Time Left”) ≤ TIC_NUME

The original value = 0

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 25 of 49
Oct 1, 2018

9. Sample Programs

This section describes the sample program “RX630_RI600PX” which is provided by RI600PX V1.02.00

9.1. Sample programs of CS+

9.1.1. Summary

There are three domains, "Master domain", "Domain-A" and "Domain-B".

The master domain (domid #1) is "trusted domain". The master domain creates various objects that are required to

execute domain-A and -B. The task that belongs to the master domain (MasterDom_Task) is created and activated

by the system configuration file.

The domain-A (domid #2) and domain-B (domid #3) are not "trusted domain".

The task that belongs to the domain-A is AppDomA_Task, and the task that belongs to the domain-B is

AppDomB_Task.

AppDomA_Task and AppDomB_Task access the global variable "g_ulSharedData" by using the semaphore

(ID_SEM1) while controlling it exclusively.

And AppDomA_Task sends data to the data queue (ID_DTQ1), AppDomB_Task receives it.

Table 9-1 List of Objects (1/2)

Type ID number, etc. Description
Domain 1 Master domain

Trusted domain
Belonging task : "MasterDom_Task"

2 Domain-A
Untrusted domain
Belonging task : "AppDomA_Task"

3 Domain-B
Untrusted domain
Belonging task : "AppDomB_Task"

Task ID_MASTERDOMTASK Created and activated by the system configuration file
ID_DOM_A_TASK Created and activated by MasterDom_Task
ID_DOM_B_TASK Created and activated by MasterDom_Task

Semaphore ID_SEM1 Created by MasterDom_Task
Control to access to variable "g_ulSharedData" from
AppDomA_Task and AppDomB_Task

Data Queue ID_DTQ1 Created by MasterDom_Task
Used to communicate between AppDomA_Task and
AppDomB_Task
The data queue area is generated in the "BS" section. This section is
outside of memory objects.

Variable-sized
memory pool

ID_MPL1 Created by MasterDom_Task
It is dummy.
The pool area is generated in the "BU_SH" section. This section is
inside of memory_object[4].

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 26 of 49
Oct 1, 2018

Table 9-1 List of Objects (2/2)
Type ID number, etc. Description

Cyclic handler ID_CYC1 Created and started by the system configuration file
Rotate ready queue for AppDomA_Task and AppDomB_Task

Alarm handler ID_ALM1 Created by the system configuration file
It is dummy.

Interrupt
handler

Relocatable vector #64 Defined by the system configuration file
It is dummy.

9.1.2. File Composition

The “RX630_RI600PX” sample programs are stored in the folder shown below.

<CS+_root>\SampleProjects\RX\RX630_RI600PX

 <CS+_root>

Indicates the installation folder of CS+.

The default folder is "C:\Program Files\Renesas Electronics\CS+”.

(1) appli\source\reset folder

 resetprg.c

This is the boot processing file. For details, refer to section 17.2 of “RI600PX Real-Time Operating

System User's Manual: Coding”.

 dbsct.c

This is the section information file. For details, refer to section 17.4 of “RI600PX Real-Time Operating

System User's Manual: Coding”.

(2) appli\source\kernel folder

 sample.cfg

This is the system configuration file. For details, refer to chapter 20 of “RI600PX Real-Time Operating

System User's Manual: Coding”.

 access_exc.c

This is the access exception handler. For details, refer to section 3.10 of “RI600PX Real-Time

Operating System User's Manual: Coding”.

 init_cmt.c

This is the base clock timer initialization routine. For details, refer to section 10.9 of “RI600PX

Real-Time Operating System User's Manual: Coding”.

 sysdwn.c

This is the system down routine. For details, refer to section 15.2 of “RI600PX Real-Time Operating

System User's Manual: Coding”.

 handler.c

Various kinds of handlers are implemented in this file.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 27 of 49
Oct 1, 2018

(3) appli\source\master_dom folder

 master_dom.c

The task which belongs to “Master domain” is implemented in this file.

(4) appli\source\dom_A folder

 dom_A.c

The task which belongs to “Domain-A” is implemented in this file.

(5) appli\source\dom_B folder

 dom_B.c

The task which belongs to “Domain-B” is implemented in this file.

(6) appli\source\common folder

 common.c

Functions and variables shared by two or more domains are implemented in this file.

9.1.3. Memory Map

The “aligned section” linker option, which aligns the start address of the section to 16-bytes boundary, is specified for

the sections indicated by parentheses “[]”. For details, see section 2.6.4 of “RI600PX Real-Time Operating System

User's Manual: Coding”.

9.1.3.1. RAM area

Table 9-2 RAM area

Address Section Order (setting for linker) Description Memory Object
0～0x0001FFFF SI System stack Non-memory object

BRI_RAM, RRI_RAM Kernel data
BS, BS_1, BS_2, RS, RS_1, RS_2 Data only for handlers
[SURI_STACK] User stack
[BU_MASTERDOM],BU_MASTERDOM_1,
BU_MASTERDOM_2,
RU_MASTERDOM,RU_MASTERDOM_1,
RU_MASTERDOM_2

Data only for the master
domain

memory_object[1]

[BU_DOM_A], BU_DOM_A_1, BU_DOM_A_2,
RU_DOM_A, RU_DOM_A_1, RU_DOM_A_2

Data only for the domain-A memory_object [2]

[BU_DOM_B], BU_DOM_B_1, BU_DOM_B_2,
RU_DOM_B,RU_DOM_B_1,RU_DOM_B_2

Data only for the domain-B memory_object [3]

[BURI_HEAP], BU_SH, BU_SH_1, BU_SH_2,
RU_SH,RU_SH_1,RU_SH_2

Shared data memory_object[4]

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 28 of 49
Oct 1, 2018

9.1.3.2. ROM area

Table 9-3 ROM area

Address Section Order (setting for linker) Description Memory Object
0xFFFF0000～
0xFFFFFF7F

[PU_MASTERDOM], CU_MASTERDOM,
CU_MASTERDOM_1, CU_MASTERDOM_2,
DU_MASTERDOM,
DU_MASTERDOM_1, DU_MASTERDOM_2

Code and constant only for
the master domain

memory_object[5]

[PU_DOM_A],CU_DOM_A,CU_DOM_A_1,
CU_DOM_A_2,DU_DOM_A,DU_DOM_A_1,
DU_DOM_A_2

Code and constant only for
the domain-A

memory_object[6]

[PU_DOM_B],CU_DOM_B,CU_DOM_B_1,
CU_DOM_B_2,DU_DOM_B,DU_DOM_B_1,
DU_DOM_B_2

Code and constant only for
the domain-B

memory_object[7]

[PU_SH], WU_SH, WU_SH_1, WU_SH_2,
LU_SH,
CU_SH, CU_SH_1, CU_SH_2,
DU_SH,DU_SH_1,DU_SH_2

Shared code and constant memory_object[8]

INTERRUPT_VECTOR Relocatable vector table 非メモリ・オブジェクト
PRI_KERNEL RI600PX code
CRI_ROM, DRI_ROM RI600PX constant
C$*,PS,CS,CS_1,CS_2,DS,DS_1,DS_2 Code and constant only for

handlers
0xFFFFFF80～
0xFFFFFFFF

FIX_INTERRUPT_VECTOR Fixed vector table

9.1.3.3. Memory objects

There are eight memory objects, these are registered in the system configuration file. The contents of registration of

memory objects in the system configuration file are shown in below.

(1) memory_object[1] : Data only for the master domain

memory_object[1]{

 start_address = BU_MASTERDOM;

 end_address = RU_MASTERDOM_2;

 acptn1 = 0x0001;

 acptn2 = 0x0001;

 acptn3 = 0;

};

The operand-read access is permitted only to the master domain.

The operand-write access is permitted only to the master domain.

The execution access is permitted to no domain.

(2) memory_object[2] : Data only for the domain-A

memory_object[2]{

 start_address = BU_DOM_A;

 end_address = RU_DOM_A_2;

 acptn1 = 0x0002;

 acptn2 = 0x0002;

 acptn3 = 0;

};

The operand-read access is permitted only to the domain-A.

The operand-write access is permitted only to the domain-A.

The execution access is permitted to no domain.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 29 of 49
Oct 1, 2018

(3) memory_object[3] : Data only for the domain-B

memory_object[3]{

 start_address = BU_DOM_B;

 end_address = RU_DOM_B_2;

 acptn1 = 0x0004;

 acptn2 = 0x0004;

 acptn3 = 0;

};

The operand-read access is permitted only to the domain-B.

The operand-write access is permitted only to the domain-B.

The execution access is permitted to no domain.

(4) memory_object[4] : Shared data

memory_object[4]{

 start_address = BURI_HEAP;

 end_address = RU_SH_2;

 acptn1 = TACP_SHARED;

 acptn2 = TACP_SHARED;

 acptn3 = 0;

};

The operand-read access is permitted to all the domains.

The operand-write access is permitted to all the domains.

The execution access is permitted to no domain.

(5) memory_object[5] : Code and constant only for the master domain

memory_object[5]{

 start_address = PU_MASTERDOM;

 end_address = DU_MASTERDOM_2;

 acptn1 = 0x0001;

 acptn2 = 0;

 acptn3 = 0x0001;

};

The operand-read access is permitted only to the master domain.

The operand-write access is permitted to no domain.

The execution access is permitted only to the master domain.

(6) memory_object[6] : Code and constant only for the domain-A

memory_object[6]{

 start_address = PU_DOM_A;

 end_address = DU_DOM_A_2;

 acptn1 = 0x0002;

 acptn2 = 0;

 acptn3 = 0x0002;

};

The operand-read access is permitted only to the domain-A.

The operand-write access is permitted to no domain.

The execution access is permitted only to the domain-A.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 30 of 49
Oct 1, 2018

(7) memory_object[7] : Code and constant only for the domain-B

memory_object[7]{

 start_address = PU_DOM_B;

 end_address = DU_DOM_B_2;

 acptn1 = 0x0004;

 acptn2 = 0;

 acptn3 = 0x0004;

};

The operand-read access is permitted only to the domain-B.

The operand-write access is permitted to no domain.

The execution access is permitted only to the domain-B.

(8) memory_object[8] : Shared code and data

memory_object[8]{

 start_address = PU_SH;

 end_address = DU_SH_2;

 acptn1 = TACP_SHARED;

 acptn2 = 0;

 acptn3 = TACP_SHARED;

};

The operand-read access is permitted to all the domains.

The operand-write access is permitted to no domain.

The execution access is permitted to all the domains.

9.1.3.4. User stacks

The user stacks must be allocated to the outside of memory objects. In this sample, user stacks for all tasks are

generated in SURI_STACK section that is the default setting.

(1) User stack for MasterDom_Task

MasterDom_Task is created statically by the system configuration file.

task[]{

 name = ID_MASTERDOMTASK;

 entry_address = MasterDom_Task();

 initial_start = ON;

 stack_size = 256;

 priority = 1;

// stack_section = SURI_STACK;

 exinf = 1;

 domain_num = 1;

};

The user stack is generated in the SURI_STACK section when

"stack_section" is omitted.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 31 of 49
Oct 1, 2018

(2) User stack for AppDomA_Task and AppDomB_Task

AppDomA_Task and AppDomB_Task are generated by acre_tsk which is called by MasterDom_Task. The

start address and size of user stack for each task is passed to acre_tsk.

User stack area for both AppDomA_Task and AppDomB_Task are generated in SURI_STACK section by

using #pragma section directive in “master_dom.c”.

//

// Stack for AppDomA_Task and AppDomB_Task

//

#pragma section B SURI_STACK

static UW s_ulDomA_Stk[DOM_A_STKSZ/sizeof(UW)]; // Stack area for AppDomA_Task

static UW s_ulDomB_Stk[DOM_B_STKSZ/sizeof(UW)]; // Stack area for AppDomB_Task

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 32 of 49
Oct 1, 2018

9.1.4. Setting of Build Tools concerning Sections

9.1.4.1. Standard library generator

The section of standard library is made memory objects that can be accessed from all domains.

Table 9-4 Sections of Standard Library

Area Section Memory object
Code PU_SH memory_object[8]
Constant CU_SH
Literal LU_SH
Switch branch table WU_SH, WU_SH_1, WU_SH_2
Initialized data DU_SH,DU_SH_1,DU_SH_2
Uninitialized data BU, BU_SH_1, BU_SH_2 memory_object[4]
Initialized data (RAM) (specify for linker) RU_SH,RU_SH_1,RU_SH_2

9.1.4.2. C/C++ compiler

The default section is same as Table 9-4. When other than this section is required, the section is changed by using

"#pragma section" directive.

9.1.4.3. Linker

The “aligned_section” option is required for the following sections as shown in section 2.6.4 of “RI600PX Real-Time

Operating System User's Manual: Coding”.

 The section specified for “memory_object[].start_address”

 The section specified for “task[].stack_section” (In this sample, this is not specified.)

 SURI_STACK

Therefore, in this sample, the “aligned_section” is specified for the start sections of memory objects and SURI_STACK.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 33 of 49
Oct 1, 2018

9.1.5. Example of Dealing with Access Violation

This sample implements following example. For details, refer to sample code.

 AppDomA_Task : Raise task exception, and the task exception handling routine re-activates itself.

 AppDomB_Task : Do processing over again from normal point by using longjmp().

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 34 of 49
Oct 1, 2018

9.2. Sample programs using Firmware Integration Technology

This section describes the sample programs using FIT (Firmware Integration Technology) modules.

9.2.1. Summary

 This sample program can run on the Renesas Starter Kits. It is possible to develop applications quickly and easily by

using this sample. This sample program is that the minimum FIT modules are added to original sample program like

existing "RX630_RI600PX". The basic operation is the same except that the hardware is initialized by FIT modules.

9.2.2. Structure of sample programs using FIT

Sample programs are provided as CS+ sample projects. The details of RI600PX sample project using FIT and used FIT

modules are as follows.

 RI600PX Sample Projects using FIT

Sample Projects Renesas Starter Kits

RX63N_RI600PX_FIT Renesas Starter Kit+ for RX63N

RX64M_RI600PX_FIT Renesas Starter Kit+ for RX64M

RX65N_RI600PX_FIT Renesas Starter Kit+ for RX65N

RX71M_RI600PX_FIT Renesas Starter Kit+ for RX71M

 Used FIT Modules

FIT Modules FIT module

name

Revision

Board Support Package (BSP) r_bsp Dec.01.15 Rev.3.10

Oct.01.16 Rev.3.40 (for RX65N)

Compare Match Timer (CMT) r_cmt_rx Jun.30.15 Rev.2.60

Oct.01.16 Rev.3.00 (for RX65N)

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 35 of 49
Oct 1, 2018

9.2.3. Directory structure of RI600PX sample projects using FIT

The directory structure of RI600PX sample project using FIT for RX63N is shown below.

 *1 In the other sample project, MCU name or RSK Board name in a folder name is replaced with respectively.

FIT modules (r_bsp and r_cmt_rx) are located in the root directory of a project.

 The header files for FIT module settings are stored in r_config folder together.

RX63N_RI600PX_FIT (*1)
├─appli
│ ├─include
│ └─source
│ ├─common
│ ├─dom_A
│ ├─dom_B
│ ├─kernel
│ └─master_dom
├─DefaultBuild
├─r_bsp
│ ├─board
│ │ ├─rskrx63n (*1)
│ │ └─user
│ ├─doc
│ └─mcu
│ ├─all
│ └─rx63n (*1)
│ └─register_access
├─r_cmt_rx
│ ├─doc
│ ├─ref
│ └─src
└─r_config

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 36 of 49
Oct 1, 2018

9.2.4. Changes to RI600PX sample project using FIT

In RI600PX sample project using FIT, modules and sample program are modified partially. Basically, FIT modules have

been changed to be available in a project with/without RTOS.

 This chapter describes the major changes.

（1） RSK board initialization by FIT modules

Target files:

 r_bsp\board\<RSK board name>\resetprg.c

 r_bsp\board\<RSK board name>\dbsct.c

 ** RSK board name: rskrx63n, rskrx64m, rskrx65n, rskrx71m

Changes:

 RSK Board is initialized by using board support package (r_bsp).

 Therefore the following duplicate files are removed from the original sample program.

 appli\source\reset\resetprg.c

 appli\source\reset\dbsct.c appli

 In the startup routine (PowerON_Reset_PC function in resetprg.c), the operation is switched by using

 BSP_CFG_RTOS_USED macro in case of RI600PX or OS-less.

 The starting addresses of interrupt vector and fixed/exception vector are different in case of RI600PX or

 OS-less.

 main function is called in user mode in case of OS-less, and vsta_knl is called in supervisor mode in case of

RI600PX.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 37 of 49
Oct 1, 2018

The clock initialization routines are skipped by USE_SIM_DEBUG macro to prevent an endless waiting when

debugging with RX Simulator.

For details, refer to "（6）RX simulator debug" in “9.2.5 Cautions of RI600PX sample project using FIT”.

The settings for section initialization in dbsct.c is switched by using BSP_CFG_RTOS_USED macro in case of

RI600PX or OS-less.

（2） The aggregation of interrupt vector

Target files:

 r_bsp\board\<RSK board name>\vecttbl.c

 r_bsp\mcu\<MCU name>\mcu_interrupts.c

 r_cmt_rx\src\r_cmt_rx.c

 appli\source\kernel\sample.cfg

 ** RSK board name: rskrx63n, rskrx64m, rskrx65n, rskrx71m

 ** MCU name: rx63n, rx64m, rx65n, rx71m

void PowerON_Reset_PC(void)
{
#if BSP_CFG_RTOS_USED == 0 /* Non-OS */
 set_intb((void *)__sectop("C$VECT"));
#ifdef __RXV2
 set_extb((void *)__sectop("EXCEPTVECT"));/* RXv2 command */
#endif/* __RXV2 */
#elif BSP_CFG_RTOS_USED == 1 /* FreeRTOS */
#elif BSP_CFG_RTOS_USED == 2 /* SEGGER embOS */
#elif BSP_CFG_RTOS_USED == 3 /* Micrium MicroC/OS */
#elif BSP_CFG_RTOS_USED == 4 /* Renesas RI600V4 & RI600PX */
 set_intb((void *)__sectop("INTERRUPT_VECTOR"));
#ifdef __RXV2

set_extb((void *)__sectop("FIX_INTERRUPT_VECTOR"));/* RXv2 command */
#endif/* __RXV2 */
#endif/* BSP_CFG_RTOS_USED */

(omission)

#if BSP_CFG_RTOS_USED == 0 /* Non-OS */
 nop();
 set_psw(PSW_init);
#if BSP_CFG_RUN_IN_USER_MODE==1
 chg_pmusr() ;
#endif
 main();
#if BSP_CFG_IO_LIB_ENABLE == 1
 _CLOSEALL();
#endif
 while(1)
 {
 /* Infinite loop. Put a breakpoint here if you want to catch an exit of main(). */
 }
#elif BSP_CFG_RTOS_USED == 1 /* FreeRTOS */
#elif BSP_CFG_RTOS_USED == 2 /* SEGGER embOS */
#elif BSP_CFG_RTOS_USED == 3 /* Micrium MicroC/OS */
#elif BSP_CFG_RTOS_USED == 4 /* Renesas RI600PX */

/* Make sure to disable interrupt. */
 clrpsw_i();
 vsta_knl(); /* Start RI600PX and never return */
 brk();
#endif/* BSP_CFG_RTOS_USED */
}

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 38 of 49
Oct 1, 2018

Changes:

 Interrupt vectors defined in FIT module are aggregated to RTOS system configuration file

 (sample.cfg).

 The following descriptions are excluded by using BSP_CFG_RTOS_USED macro in vecttbl.c.

 - "#pragma interrupt" line of interrupt handler function

 - The definition of interrupt vector table (since "#pragma section C FIXEDVECT" line）

 "#pragma interrupt" lines of the following group-interrupt-handlers are excluded in mcu_interrupts.c

 for RX64M, RX65N and RX71M.

 group_al0_handler_isr

 group_al1_handler_isr

 group_bl0_handler_isr

 group_bl1_handler_isr

 group_bl2_handler_isr (for RX65N only))

 All of the above interrupt handler functions are registered in sample.cfg.

"#pragma interrupt" lines and static declarations on the following FIT timer API interrupt handlers are excluded in

the r_cmt_rx.c.

#if BSP_CFG_RTOS_USED == 0 /* Non-OS */
#pragma interrupt (non_maskable_isr)
#elif BSP_CFG_RTOS_USED == 1 /* FreeRTOS */
#elif BSP_CFG_RTOS_USED == 2 /* SEGGER embOS */
#elif BSP_CFG_RTOS_USED == 3 /* Micrium MicroC/OS */
#elif BSP_CFG_RTOS_USED == 4 /* Renesas RI600V4 & RI600PX */
#endif
void non_maskable_isr(void)
{
 :
}

#if BSP_CFG_RTOS_USED == 0 /* Non-OS */
#pragma section C FIXEDVECT

void * const Fixed_Vectors[] =
{

:
(void *) non_maskable_isr, /* 0xfffffff8 NMI */

 (void *) PowerON_Reset_PC /* 0xfffffffc RESET */
};
#elif BSP_CFG_RTOS_USED == 1 /* FreeRTOS */
#elif BSP_CFG_RTOS_USED == 2 /* SEGGER embOS */
#elif BSP_CFG_RTOS_USED == 3 /* Micrium MicroC/OS */
#elif BSP_CFG_RTOS_USED == 4 /* Renesas RI600V4 & RI600PX */
#endif

// BSP Interrupt Handler Definition (VECT_ICU_GROUPBL0)
interrupt_vector[110]{
 os_int = YES;
 entry_address = group_bl0_handler_isr();
 pragma_switch = E,ACC;
};

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 39 of 49
Oct 1, 2018

 cmt0_isr

 cmt1_isr

 cmt2_isr

 cmt3_isr

The interrupt handler functions listed above are registered as follows in the sample.cfg file.

[RX71M, RX65N, RX64M]

 Interrupt vector 128: cmt2_isr

 Interrupt vector 129: cmt3_isr

[RX63N]

 Interrupt vector 30: cmt2_isr

 Interrupt vector 31: cmt3_isr

（3） Including RTOS header files in FIT

Target files:

 r_bsp\board\<RSK board name>\r_bsp.h

 ** RSK board name: rskrx63n, rskrx64m, rskrx65n, rskrx71m

Changes:

 Including the following header files in r_bsp.h

 kernel.h

 kernel_id.h

 platform.h just need to be included in RTOS source, because r_bsp.h has been included in it.

（4） Excluding timer resource used by RI600PX in r_cmt_rx module

Target files:

 r_cmt_rx\src\r_cmt_rx.c

 r_config\r_cmt_rx_config.h

Changes:

 In the timer API of this module, CMT channel used by RI600PX for system time update is excluded.

 _RI_TRACE_TIMER macro (dummy) indicates CMT channel for tracing.

 It is defined in r_cmt_rx_config.h to share FIT modules with RI600V4.

 _RI_CLOCK_TIMER and _RI_TRACE_TIMER are set the same value.

#if BSP_CFG_RTOS_USED == 0 /* Non-OS */
#elif BSP_CFG_RTOS_USED == 1 /* FreeRTOS */
#elif BSP_CFG_RTOS_USED == 2 /* SEGGER embOS */
#elif BSP_CFG_RTOS_USED == 3 /* Micrium MicroC/OS */
#elif BSP_CFG_RTOS_USED == 4 /* Renesas RI600V4 & RI600PX */
#include "kernel.h"
#include "kernel_id.h"
#endif/* BSP_CFG_RTOS_USED */

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 40 of 49
Oct 1, 2018

（5） Set the initial value of RTOS reserved channel in r_cmt_rx module.

Target files:

 r_cmt_rx\src\r_cmt_rx.c

Changes:

 CMT channel activity is stored in g_cmt_modes array.

 CMT_RX_MODE_PERIODIC is set in the array as the initial value of the CMT channel used by RTOS.

 ** To prevent power down of a pair of CMT channels.

（6） LED control on RSK board

Target files:

 appli\include\hw_control.h

 appli\source\common\hw_control.c

Changes:

 set_LED function is created to control LED's on/off on RSK board.

（7） Message output for debugging

Target files:

 appli\include\rtos_sample_config.h

Changes:

 In this sample, It is available to output any messages to debug-console by using printf function

 during debagging with RX simulator/E1 emulator.

 printf function is not called directly from a task in a sample program.

 It is used via DEBUG_print macro defined in rtos_sample_config.h.

 DEBUG_print macro is controlled to enable or disable by following macros.

 USE_DEBUG_MESSAGE (Enable output message to debug-console, if defined.)

bool R_CMT_Stop (uint32_t channel)
{
 /* Make sure valid channel number was input. */
 if (channel >= CMT_RX_NUM_CHANNELS)
 {
 /* Invalid channel number was used. */
 return false;
 }

#if BSP_CFG_RTOS_USED == 0 /* Non-OS */
#elif BSP_CFG_RTOS_USED == 1 /* FreeRTOS */
#elif BSP_CFG_RTOS_USED == 2 /* SEGGER embOS */
#elif BSP_CFG_RTOS_USED == 3 /* Micrium MicroC/OS */
#elif BSP_CFG_RTOS_USED == 4 /* Renesas RI600V4 & RI600PX */
 /* Exclude RTOS timers */
 if (channel == _RI_CLOCK_TIMER || channel == _RI_TRACE_TIMER)
 {
 return false;
 }
#endif/* BSP_CFG_RTOS_USED */

 /* Stop counter. */
 cmt_counter_stop(channel);

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 41 of 49
Oct 1, 2018

（8） Handler calling at memory access exception

Target files:

 r_bsp\board\<RSK board name>\vecttbl.c

 appli\source\kernel\access_exc.c

 ** RSK board name: rskrx64m, rskrx65n, rskrx71m

Changes:

 The access-exception handler excep_access_isr is registered at exception vector 21 in FIT.

 However, the exception vector 21 is also used for task exception function in RI600PX.

 So decided to call excep_access_isr function from access-exception handler _RI_sys_access_exception

 (access_exc.c) of RI600PX.

（9） Changes of sample program

Target files:

 appli\include\rtos_sample_config.h

 appli\source\common\common.c

 appli\source\dom_A\dom_A.c

 appli\source\dom_B\dom_B.c

 appli\source\kernel\access_exc.c

 appli\source\kernel\handler.c

 appli\source\kernel\init_cmt.c

 appli\source\kernel\sysdwn.c

 appli\source\master_dom\master_dom.c

Changes:

 - Including platform.h instead of kernel.h and kernel_id.h in all C sources.

 - Add message outputs by using DEBUG_print macro to tasks and task-exception handlers.

 - Light up LED1 at the end of task Mastrdom_task(mastr_dom.c).

 - Goes off LED2 at the top of task AppDomA_Task(dom_A.c).

 - Light up LED2 during task-exception handler AppDomA_TaskTex(dom_A.c).

 - Goes off LED3 at the top of task AppDomB_Task(dom_B.c).

 - Light up LED3 during task-exception handler AppDomB_TaskTex(dom_B.c).

 - Dividing the number of calls of cyclic handler cyh1(handler.c) to switch LED0 on and off.

 LED_BLINK_DIV_RATIO macro defined in rtos_sample_config.h is used for dividing.

 - Output error messages in _RI_sys_dwn__ (sysdwn.c) to debug-console.

 - Locking CMT channel by using r_bsp API in _RI_init_cmt_knl function (init_cmt.c)

（10） Setting of Individual compile options

 Target files:

 r_bsp\board\<RSK board name>resetprg.c

 ** RSK board name: rskrx63n, rskrx64m, rskrx65n, rskrx71m

 Changes:

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 42 of 49
Oct 1, 2018

 - The individual compile options are set to place the stack area on a 4-byte boundary.

 The setting “-nostuff” is add to [Others]-[Other additional options].

（11） Changes of “CC-RX(Build tool)” option

 The following options are changed in relation to Build.

 Compile option:

 Setting has changed from "C89" to "C99" in [Source]-[C source language]

 Setting has changed from "2" to "0" in [Optimization]-[Optimization level]

 Link option:

 Setting has changed to "Yes" in [List]-[Output symbol information]

 Library generate option:

 Setting has changed from “C89” to "C99" in [Standard library]-[Library structure]

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 43 of 49
Oct 1, 2018

9.2.5. Cautions of RI600PX sample project using FIT

This chapter describes the cautions on use of RI600PX sample project using FIT.

（1） Section names used in RI600PX sample

 Most of section names are application-dependent.

 Please do not forget the following changes when adding the section name or changing it.

 - Specifying sections arrangement in a source file. (#pragma section)

 - Section setting of the link option

 1. Section start address (order)

 2. Section alignment

 3. ROM to RAM mapping section

 - Initialization section settings in dbsct.c

 - Memory object settings in system configuration file (sample.cfg).

（2） Section arrangement

 Section arrangement is closely related with memory objects in sample.cfg.

 The address range is specified by using two section names in a memory object.

 The range is across multiple sections.

 Be careful enough when changing section order.

（3） CMT channel limitation

 CMT0 is used to update the system time by default in RI600PX.

 FIT timer API dynamically uses the other CMT channels greater than 0.

（4） Power supply from emulator

 Default setting is power supply from the emulator (USB) in this sample.

 USB power may become insufficient capacity by increased current consumption during development.

 Please use an external power supply on RX64M or later RSK Board.

 [Connection with target board]-[Power target from the emulator.(MAX 200mA)]

 in "Connect Settings" tab of "RX E1(JTAG) (Debug Tool)" property

（5） FIT module update

 The FIT modules r_bsp and r_cmt_rx attached to this sample are customized for RTOS.

 Therefore, do not overwrite them with the latest version of the corresponding FIT module.

（6） Debugging on RX simulator

 The clock initialization routine for RX71M, RX65N, RX64M, RX113 assumes executing on emulator.

 When debugging on RX simulator, it enters an infinite wait loop by register readout.

 To avoid this problem, build after uncommenting the following definition in resetprg.c,

 or specify it in the compile option [Source] - [Macro Definition].

 //#define USE_SIM_DEBUG

 The clock initialization routine is skipped by the USE_SIM_DEBUG macro definition.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 44 of 49
Oct 1, 2018

（7） Message output function during debugging

 DEBUG_print macro function enables debug log and error message output.

 However, DEBUG_print is disabled by default in this sample.

 This is because debug console plug-in is disabled by default on CS+.

 DEBUG_print can be enabled with the following steps.

 1.Enable debug console plug-in

 Select CS+ menu [Tool]-[Plug-in Setting…] to open "Plug-in Manager" dialog box.

 Check the box [Debugging Console Plug-in] in "Additional Function" tab.

 2.Build with USE_DEBUG_MESSAGE macro definition

 Build after uncommenting the following definition in rtos_sample_config.h,

 or specify USE_DEBUG_MESSAGE macro when compiling.

 //#define USE_DEBUG_MESSAGE

（8） Task stack size

 This sample assumes the use of the standard function printf.

 Standard function printf consumes more stack. (More than 400 bytes)

 Therefore, task stack size will ensure more than expected. (over 400bytes)

（9） Limitation of R_CMT_Control

 FIT timer API R_CMT_Control function returns an error when specifying the same value

 of _RI_CLOCK_TIMER(0) as CMT channel.

 This is because RTOS reserved channel is excluded internally.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 45 of 49
Oct 1, 2018

（10） FIT API restrictions

 FIT provides various API.

 However, there are the following restrictions on RI600PX.

Table 9-5 Usable or not about r_bsp API on RI600PX

r_bsp API name Before starting kernel After starting kernel

Startup routine

（PowerON_Reset_PC）

Task

(User mode)

Non-task

(Supervisor mode)

R_BSP_GetVersion ✔ ✔ ✔

R_BSP_InterruptsDisable ✔ (No effect) ✔

R_BSP_InterruptsEnable ✔ (No effect) ✔

R_BSP_CpuInterruptLevelRead ✔ ✔ ✔

R_BSP_CpuInterruptLevelWrite ✔ (No effect) *1 (Not recommend) *1

R_BSP_RegisterProtectEnable ✔ ✔ ✔

R_BSP_RegisterProtectDisable ✔ ✔ ✔

R_BSP_SoftwareLock ✔ ✔ ✔

R_BSP_SoftwareUnlock ✔ ✔ ✔

R_BSP_HardwareLock ✔ ✔ ✔

R_BSP_HardwareUnlock ✔ ✔ ✔

R_BSP_InterruptWrite ✔ ✔ ✔

R_BSP_InterruptRead ✔ ✔ ✔

R_BSP_InterruptControl ✔ ✔ ✔

R_BSP_SoftwareDelay ✔ ✔ ✔

*1 Use service-calls of RI600PX instead, such as chg_ims or ichg_ims.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 46 of 49
Oct 1, 2018

Table 9-6 Usable or not about r_cmt_rx API on RI600PX

r_cmt_rx API name Before starting kernel After starting kernel

Startup routine

(PowerON_Reset_PC)

Task

(User mode)

Non-task

(Supervisor mode)

R_CMT_CreatePeriodic ✔ ✔ *1 ✔ *1

R_CMT_CreateOneShot ✔ ✔ *1 ✔ *1

R_CMT_Control ✔ ✔ ✔

R_CMT_Stop ✔ ✔ ✔

R_CMT_GetVersion ✔ ✔ ✔

*1 Use cyclic handler or alarm handler of RI600PX instead.

（11） Undefined interrupt handler

 When an undefined interrupt occurs in this sample, the system-down-routine (_RI_sys_dwn _ _) is called from

 a handler inside the kernel. The undefined interrupt handler (undefined_interrupt_source_isr) in r_bsp module

 is not called. For this reason, the callback function that is registered as undefined-interrupt-handler is never

 called.

 Please describe the processing of undefined interrupt in the system-down-routine.

（12） Setting of the base clock cycle

 It is recommended to set the cycle of base clock timer interrupt to 1ms on RI600PX.

 In RI600PX sample project using FIT, set the clock frequency of PCLKB set by the following file

 to clock.timer_clock in sample.cfg.

 r_config\r_bsp_config.h

 This will cause system time to be in milliseconds.

 As a confirmation method, set 125 as the cycle of cyclic handler, and define the macro

 LED_BLINK_DIV_RATIO as 2 in the following file.

 appli\include\rtos_sample_config.h

 This causes LED0 to blink at approximately 1 second intervals.

// Setting example for RX64M in sample.cfg
clock{

template = rx630.tpl;
timer = CMT0;
timer_clock = 60MHz; // PCLKB frequency
IPL = 13;

};

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 47 of 49
Oct 1, 2018

9.2.6. How to add a new FIT module

This chapter describes the sequences to add a new FIT module.

（1） Get the source ZIP file of FIT module.

（2） Unzip the source files of FIT module to the root directory of CS+ project.

（3） Create a new configuration file of FIT module in r_config folder.

 There is a reference file usually. Copy the file and rename it.

 Original: ref\<FIT module name>_config_reference.h

 Copied : r_config\<FIT module name>_config.h

（4） By using Windows explorer, Execute Drag&Drop to add the top directory of FIT module

 to the “File” of CS+ Project tree.

（5） In “Add folder and file” dialog, Set the followings and click OK button.

 - Select the file types to add to the project.

 - Set a value over maximum number of layers to “Detecting the number of sub-folder layers”.

Table 9-1 "Add Folder and File" dialog

（6） Confirm [Source]-[Additional include path] settings in "Compile option" tab of "CC-RX(Build tool)"

 By above method, CS+ adds all relative paths in FIT module to [Additional include path].

（7） Register all interrupt handlers inside FIT modules in the system configuration file.

 When a new FIT module is added, please aggregate all interrupt handlers to cfg file.

 Please change sources by following these steps.

 1. Exclude "#pragma interrupt" lines in a source file of FIT module.

 Notes: Including platform.h or kernel_id.h is required in the source. Please confirm it.

 2. Remove "static" declaration of a handler function.

 3. Register interrupt handlers in sample.cfg.

RI600PX V1.03.00 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 48 of 49
Oct 1, 2018

Revision History

Rev. Date

Description

Page Summary

1.00 Oct 1,2018 - New Publication

 Release Notes

R20UT4377EJ0100 Rev.1.00 Page 49 of 49
Oct 1, 2018

Website and Support
 Renesas Electronics Website

http://www.renesas.com/

 Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/contact/

	Contents
	1. Packaged Tools
	2. User’s Manual
	3. Target Devices
	4. Operating Environment
	4.1. Hardware Environment
	4.2. Software Environment
	4.3. Supported Tools

	5. Installation Notes
	5.1. Cautions for Installation
	5.1.1. Caution for administrator privileges
	5.1.2. Caution for execution environment
	5.1.3. Caution for network drives
	5.1.4. Caution for installation folder name
	5.1.5. Caution for modifying and repairing functions
	5.1.6. Caution for required files after installation
	5.1.7. Caution for version of installed tools
	5.1.8. Caution for starting installer
	5.1.9. Enable Plug-ins

	5.2. Cautions for Uninstallation
	5.2.1. Caution for administrator privileges
	5.2.2. Caution for uninstallation folder name
	5.2.3. Caution for adding/repairing via other than the installer
	5.2.4. Key Word for Uninstallation

	6. Changes from previous released versions
	6.1. Changes in RI600PX V1.02.00
	6.1.1. Kernel
	6.1.2. Configurator
	6.1.3. Realtime OS Build Tool Plug-in
	6.1.4. Realtime OS Resource Information Displaying Plug-in
	6.1.5. Sample programs of CS+

	6.2. Changes in RI600PX V1.03.00
	6.2.1. Kernel
	6.2.2. Sample programs for CS+

	7. Cautions
	7.1. Distinction of Version
	7.2. Shift from a Previous Version
	7.3. Timer Template File
	7.4. How to Build Kernel Source Code
	7.5. Stack Consumption
	7.5.1. Stack consumption of base clock interrupt handler (clocksz1, clocksz2, clocksz3)
	7.5.2. Stack consumption of service calls (svcsz)
	7.5.3. When the kernel library is built

	7.6. Cautions When Using global optimization of compile option
	7.7. Enable Plug-ins
	7.8. Create a CS+ Project
	7.8.1. Divert the sample project attached to this product
	7.8.2. Create a new project

	7.9. Cautions for Realtime OS Resource Information Panel
	7.9.1. View after Real-Time OS is initialized
	7.9.2. Use programs with debug information generated

	8. Restrictions
	8.1. Restrictions of CS+ for CC
	8.1.1. Realtime OS Build Tool Plug-in
	8.1.2. Realtime OS Resource Information Displaying Plug-in

	9. Sample Programs
	9.1. Sample programs of CS+
	9.1.1. Summary
	9.1.2. File Composition
	9.1.3. Memory Map
	9.1.3.1. RAM area
	9.1.3.2. ROM area
	9.1.3.3. Memory objects
	9.1.3.4. User stacks

	9.1.4. Setting of Build Tools concerning Sections
	9.1.4.1. Standard library generator
	9.1.4.2. C/C++ compiler
	9.1.4.3. Linker

	9.1.5. Example of Dealing with Access Violation

	9.2. Sample programs using Firmware Integration Technology
	9.2.1. Summary
	9.2.2. Structure of sample programs using FIT
	9.2.3. Directory structure of RI600PX sample projects using FIT
	9.2.4. Changes to RI600PX sample project using FIT
	9.2.5. Cautions of RI600PX sample project using FIT
	9.2.6. How to add a new FIT module

	Revision History
	Website and Support

