LENESANS

c
"
®
q‘.
7
=
)
=)
c
=

RX65N Group

Renesas Starter Kit+ Code Generator Tutorial Manual
For e? studio

RENESAS 32-Bit MCU
RX Family / RX600 Series

All information contained in these materials, including products and product specifications, represents
information on the product at the time of publication and is subject to change by Renesas Electronics
Corporation without notice. Please review the latest information published by Renesas Electronics
Corporation through various means, including the Renesas Electronics Corporation website
(http://www.renesas.com).

Renesas Electronics
www.renesas.com Rev. 1.00 Jun 2016

10.

11.

12.

Notice

Descriptions of circuits, software and other related information in this document are provided only to illustrate the
operation of semiconductor products and application examples. You are fully responsible for the incorporation of these
circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for
any losses incurred by you or third parties arising from the use of these circuits, software, or information.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas
Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever
for any damages incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property
rights of third parties by or arising from the use of Renesas Electronics products or technical information described in
this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other
intellectual property rights of Renesas Electronics or others.

You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or
in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such
alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High
Quality”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade,
as indicated below.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio
and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial
robots etc.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster
systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a
direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may
cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality
grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas
Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable
for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for
which the product is not intended by Renesas Electronics.

You should use the Renesas Electronics products described in this document within the range specified by Renesas
Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage
range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no
liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified
ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products
have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use
conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to
implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire
in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including
but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or
any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please
evaluate the safety of the final products or systems manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all
applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation,
the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your
noncompliance with applicable laws and regulations.

Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not
use Renesas Electronics products or technology described in this document for any purpose relating to military
applications or use by the military, including but not limited to the development of weapons of mass destruction. When
exporting the Renesas Electronics products or technology described in this document, you should comply with the
applicable export control laws and regulations and follow the procedures required by such laws and regulations.

It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set
forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as
a result of unauthorized use of Renesas Electronics products.

This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of
Renesas Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its

majority owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

Disclaimer

By using this Renesas Starter Kit+ (RSK+), the user accepts the following terms:

The RSK+ is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK+ is
assumed by the User. The RSK+ is provided by Renesas on an “as is” basis without warranty of any kind whether
express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular
purpose, title and non-infringement of intellectual property rights with regard to the RSK+. Renesas expressly
disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data,
loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall
costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other
direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK+,
even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

The following precautions should be observed when operating any RSK+ product:

This Renesas Starter Kit+ is only intended for use in a laboratory environment under ambient temperature and
humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use
outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection
requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio
communications. However, there is no guarantee that interference will not occur in a particular installation. If this
equipment causes harmful interference to radio or television reception, which can be determined by turning the
equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

e ensure attached cables do not lie across the equipment

¢ reorient the receiving antenna

e increase the distance between the equipment and the receiver

e connect the equipment into an outlet on a circuit different from that which the receiver is connected
e power down the equipment when not in use

e consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever
possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the
following measures be undertaken;

e The user is advised that mobile phones should not be used within 10m of the product when in use.
e The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit+ does not represent an ideal reference design for an end product and does not fulfil the
regulatory standards for an end product.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of how to use Application Leading Tool
(Code Generator) for RX together with the e? studio IDE to create a working project for the RSK+ platform. It is
intended for users designing sample code on the RSK+ platform, using the many different incorporated
peripheral devices.

The manual comprises of step-by-step instructions to generate code and import it into e? studio, but does not
intend to be a complete guide to software development on the RSK+ platform. Further details regarding
operating the RX65N microcontroller may be found in the Hardware Manual and within the provided sample
code.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body
of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of
the manual for details.

The following documents apply to the RX65N Group. Make sure to refer to the latest versions of these
documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web
site.

Document Type Description Document Title Document No.

User’s Manual Describes the technical details of the RSK+RX65N User’s Manual R20UT3558EG
RSK+ hardware.

Tutorial Manual Provides a guide to setting up RSK+ RSK+RX65N Tutorial Manual | R20UT3562EG

environment, running sample code and
debugging programs.

Quick Start Provides simple instructions to setup the RSK+RX65N Quick Start R20UT3563EG
Guide RSK+ and run the first sample. Guide

Code Generator Provides a guide to code generation and RSK+RX65N Code R20UT3564EG
Tutorial importing into the e? studio IDE. Generator Tutorial Manual

Schematics Full detail circuit schematics of the RSK+. RSK+RX65N Schematics R20UT3557EG
Hardware Provides technical details of the RX65N RX65N Group, RX651 Group | RO1UHO590EJ

Manual microcontroller. Hardware Manual

2. List of Abbreviations and Acronyms

Abbreviation Full Form
ADC Analog-to-Digital Converter
API Application Programming Interface
bps bits per second
CMT Compare Match Timer
COM COMmunications port referring to PC serial port
CPU Central Processing Unit
DVD Digital Versatile Disc
E1/E2 Lite Renesas On-chip Debugging Emulator
GUI Graphical User Interface
IDE Integrated Development Environment
IRQ Interrupt Request
LCD Liquid Crystal Display
LED Light Emitting Diode
LSB Least Significant Bit
LVD Low Voltage Detect
MCU Micro-controller Unit
MSB Most Significant Bit
PC Personal Computer
PLL Phase-locked Loop
Pmod™ Thi§ is a Digilent Pmod™ ngpatible connector. Pmod™ is registered to Digilent Inc.
Digilent-Pmod_Interface_Specification
PSU Power Supply Unit
RAM Random Access Memory
ROM Read Only Memory
RSK+ Renesas Starter Kit+
RTC Realtime Clock
SAU Serial Array Unit
SCl Serial Communications Interface
SPI Serial Peripheral Interface
TAU Timer Array Unit
TFT Thin Film Transistor
TPU Timer Pulse Unit
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus
WwDT Watchdog Timer

All trademarks and registered trademarks are the property of their respective owners.

http://www.digilentinc.com/index.cfm

Table of Contents

1 OVBIVIBW. ..ottt e et e e e ettt e e e e et e e e e e et e e e e eeaa e e eesaa e eeeeanaaaeeenans 7
1.1 PU DO S .. ———— 7
L2 == (0] = PR 7
P20 | 11 'o T (5T (o o F R 8
3. Project Creation With €2 StUIO...........cccuiiiiiiiiic e 9
3.1 a1 (0T 0T 4o o S 9
3.2 Creating the PrOJECTo ettt et e et e e et e b e e e anreeas 9
4. Code Generation Using the €2 Studio PIUG iN.......c..eeeeiireeiieee e 14
g I | o To (U T (o o SRR 14
4.2 Code GENEIALOr TOUN ..., 14
T T O To I © =T o= - i) o S 16
431 L0 (o To3 Q@ 1= g T 7= o] SRS 16
432 Interrupt Controller UNIt........ oo o et e et e e e e e e e et e e e e e e e e s e eeaeeeeanns 18
4.3.3 CompPare MatCh TIMETcoi et e e ettt e e s bt e e s te e e e e abee e e e annneeeeannneeas 20
43.4 L oL I O] 1Y/ 4 (= PSSR 22
4.3.5 Serial CommuNiICationNs INTEITACEoooiiiiiieie e 25
4.3.6 7O I o o =PSRRI 27
4.4 BUIldiNg the PrOJECLttt a e e e bt e e e e st e e e e nae e e e ene e e e e ennee 30
5. User Code INtegration........cccoooieeeeee e 31
L0t I I @7 B @70 o (=N [01 1= [= 1o) o [SRR 31
5.1.1 ST o I O o o [SRR 33
5.1.2 L0 1V 8 70 To [PR 34
5.2 Additional INCIUAE Paths ...ttt e e e e e e e et e e e e e e e e e nnreeeaeaeeeaaas 35
5.3 SWItCh Code INtEGration.........ooiiiiiiii e e e st e e e b e e e b e e eanee 36
5.3.1 T (=15 U] o) O oo [T PP PUPRR 36
5.3.2 DE-DOUNCE TIMEI COUEcociiiiiiie ittt ett e e e ettt e e e snte e e e e enteeeessnteeeessnteeaesanteeaesantenaeans 38
5.3.3 Main SWitch and ADC COUE......oeii ittt e e e e e e e e e e e e e e eeeeea e e e e e nnnneeeeaans 39
5.4 Debug Code INtEGration..........ooi ittt e e e e e e e et e e e b e e e e nre e e e ennee 44
R I U 7Y o I @7o o (= [a1 1= Te = 1 1o o [SRR 44
5.5.1 10 107 oo [T RS PRS 44
55.2 =TT L7 o I oo Yo [S 46
5.6 LED COdE INTEGrationccoiiiiiiiiiiiiiee ettt e e ettt e e e e e e st e e e e e e e e e an b e aeeaaeeeaannnraneaaaeaaans 48
6. Debugging the PrOjECte ittt e e e e e e e e aeaaes 51

7. Additional INfOrMETION ... e e e 53

LENESANS

RSK+RX65N R20UT3564EG0100
Rev. 1.00
RENESAS STARTER KIT Jun 30, 2016

1. Overview

1.1 Purpose

This RSK+ is an evaluation tool for Renesas microcontrollers. This manual describes how to use the e? studio
IDE code generator plug in to create a working project for the RSK+ platform.

1.2 Features

This RSK provides an evaluation of the following features:
« Project Creation with e? studio.

« Code Generation using the code generator plug in.
« User circuitry such as switches, LEDs and a potentiometer.

The RSK+ board contains all the circuitry required for microcontroller operation.

R20UT3564EG0100 Rev. 1.00 —e
Jun 30, 2016 RENESAS

RSK+RX65N 2. Introduction

2. Introduction

This manual is designed to answer, in tutorial form, how to use the code generator plug in for the RX family
together with the e? studio IDE to create a working project for the RSK+ platform. The tutorials help explain the
following:

Project generation using the e? studio

Detailed use of the code generator plug in for e? studio
Integration with custom code

Building the project e? studio

The project generator will create a tutorial project with two selectable build configurations:
e ‘HardwareDebug’ is a project built with the debugger support included. Optimisation is set to zero.

o ‘Release’ is a project with optimised compile options (level two) and no outputs debugging information
options selected, producing code suitable for release in a product.

These tutorials are designed to show you how to use the RSK+ and are not intended as a comprehensive introduction to
the e? studio debugger, compiler toolchains or the E2 Lite emulator. Please refer to the relevant user manuals for more

in-depth information.

R20UT3564EG0100 Rev. 1.00 ———
Jun 30, 2016 RENESAS

RSK+RX65N 3. Project Creation with e? studio

3. Project Creation with e? studio

3.1 Introduction

In this section the user will be guided through the steps required to create a new C project for the RX65N
MCU, ready to generate peripheral driver code using Code Generator. This project generation step is
necessary to create the MCU-specific source, project and debug files.

3.2 Creating the Project

e Start e? studio and select a suitable |l Workspace Launcher ==
location for the project workspace. Select a workspace

e studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session.

Workspace: | [SENYEIEERT - Browse...

[Use this as the default and do not ask again

OK] I Cancel
H ‘
e In the Welcome page, click ‘Go to |llec-aue : : e
f ’ T) =
the e2 studio workbench’. 5| @ ecome & =
2studi
& Overview Renesas Tutorials
) W o e enturel TN Go through Renesas Tutorials
© Renesas Samples A What's New
Try out the Renesas Samples S \,") Find out what is new
First Steps Workbench
Take your first steps Go to the e2 studio workbench

e Create a new C project by right- [Project Explorer 53 ==
clicking in the Project Explorer
pane and selecting ‘New -> C
Project’ as shown. Alternatively, Mew » | F% Project..
use the menu item ‘File -> New -> S
C Project. g2y Import. [c¥] CProject
Sy Export. [c¥] C++ Project
&1 Refresh F5 | Other.. Ctrl+M
R20UT3564EG0100 Rev. 1.00 RENESAS Page 9 of 57

Jun 30, 2016

RSK+RX65N

3. Project Creation with e? studio

e Enter the project name 7] C Project [= o=
‘CG_Tutorial’. In ‘Project type:’ C Project —
choose ‘Sample Project. In Create C project of selected type
‘Toolchains’ choose ‘Renesas RXC
Toolchain’. Click ‘Next’. Project neme: | CG_Tutoria!

Use default location
Chworkspace\CG_Tutorial Browse.

@ Back Ned> | [Fnish |[Cancel |
e In the ‘Target Specific Settings’ e CProject

dialog, select the options as shown
in the screenshot opposite.

e The R5F565N9AXFB MCU is
found under RX600 -> RX65N ->

RX65N - 144 pin.
e Click ‘Next'.

Create Directory for Project

Project type:

Toolchains:

4 = Executable (Renesas)
@® Sample Project

4 (= Static Library (Renesas)
@ Sample Project

> (= Debug-Only Project

> [Executable

: (= Shared Library

» = Static Library

> (= Others

> (= Makefile project

KPIT GNUARM-NOMNE-EABI Toelchain
KPIT GNURL7&-ELF Toclchain

KPIT GNURX-ELF Toclchain

KPIT GNUSH-ELF Toolchain

Renesas CCRL Toolchain

Renesas GCC for RLTE

Renesas GCC for RX

Renesas RXC Toolchain

Renesas SHC Toolchain

Show project types and toolchains only if they are supported on the platform

e2 studio - Project Generation
Select Target Specific Settings

[E=N R =

Toolchain Version : [VZ.DS.[JO

Debug Hardware: [EZ Lite (RX)

Data endian : [Little—and\aﬂ data

Select Target: R5F565M3AxFB

Select Configurations:

Hardware Debug
[Debug using Simulator : Debug using simulator
Release (no debug)

: Debug using hardware

: Project without any debug information

Build configurations will be created in the project only for the selected debug mode options,
however by default the project will be built for the active cenfiguration i.e, first configuration
selected from group. Based on the device selection you made (RX600) the debug hardware (E2 Lite
(RX)) and debug target (R5F565N3AxFB), debug configuration will be automatically created for you.

@ < Back

J

Net> | [Finsh || Cancel

R20UT3564EG0100 Rev. 1.00
Jun 30, 2016

RRENESAS

Page 10 of 57

RSK+RX65N 3. Project Creation with e? studio

’ [e? C Project

¢ In the ‘Select Coding Assistant Tool
dialog, select ‘Peripheral Code | %y M=t .
Generator or Firmware Integration :

Technology (FIT) then ensure the © o
‘Use Peri pheral COde Generatorv iS @ Peripheral Code Generator or Firmware Integration Technology (FIT)
Use Peripheral code Generator
checked. [FUse FIT module Download FIT mod
° CIICk sNeXty Smart Configurator

The e2 studio peripheral code generator
automatically generates programs (device
drivers) for MCU peripheral functions (clocks,
timers, serial interfaces, A/D converters, DMA
controllers, etc.) based on settings entered via a
graphical user interface (GUI). Functions are
provided as application programming interfaces
(APIs) and are not limited ko initialization of
peripheral functions.

Conventionally, the information "CMCU initial
settings”, "How to define a target board”, File
configuration’, "Names of functions", "Common
interface with user application” etc; has in many
cases varied by sample code, so changes needed
to be made to sample code when embedding into
a user application. With FIT, there are rules for
this information, so each sample code can be
embedded inte a user application with ease. Also,
the peripheral function drivers and middleware
which support FIT have a common interface with
user applications. This makes it easy to port user
applications when migrating between RX
microcontrollers.

User Application

Driver and Middleware

. FIT Modules
Driver Code [l priver/Middleware
Board Support Package

J03e4n8yuo) |14

-
o
=
©
&
7]
c
(7]
Q
]
T
(e]
[9]

< Back]l Next >] Finish] [cancel

e In ‘Select Additional CPU Options’ | et cPrject
Ieave eVerything at default VaIUeS. e2 studio - Project Generation —

. Select Additional CPU Options
e Click ‘Next'.

Select Additional CPU Options:

Round: [Nearest VI
Precision of Double: [Smg\e precision ']
Sign of Char: [Uns\gned ']
Sign of bit Field: [Uns\gned VI
Allocate from Lower Bit [Lower bit ']
Width of Divergence of Function: [24 Bit ']

Specify Global Options:

[7] Denormalized number allowed as a result
= Replace from int with short

[T Enum size is made the smallest

[T Pack structures, unions and classes

[] Use try, throw and catch of C++

[] Use dynamic cast and typeid of C++

|] Saves and restores ACC using the interrupt function

<Back || Nez> |[Finsh |[Cancel

R20UT3564EG0100 Rev. 1.00 RENESAS Page 11 of 57
Jun 30, 2016

RSK+RX65N

3. Project Creation with e? studio

In the ‘Global Options Settings’
leave everything at default values.

Click ‘Next’.

In the ‘Standard Header Files’
dialog, select C99 for ‘Library
Configuration’. Untick ‘new(EC++)’
and leave all others at defaults.

Click ‘Next'.

C Project = e =]
e2 studio - Project Generation —>
Global Options Settings
Patch code generation lNone ']
Fast interrupt vector register: lNone V]
ROM: lNone v]
RAM: lNone V]
Address (H'): 00000000
Address Register: lNone ']
I(?) < Back][Mext >] [Finish] l Cancel I
CPrjec e
e2 studio - Project Generation —
Standard Header Files
Library configuration: [C(C93) b
Select Header Files:
runtime : Runtime routines (Checked and disabled by default)
[ctypeh : Character classification routines
[T math.h : Mathematical/trigonometric operations(double-precision)
[] mathf.h : Mathematical/trigonometric operations(single-precision)
[stdarg.h : Variable argument functions
stdio.h : Input/Output
stdlib.h : General purpose library features
string.h : String handling operations
[[ios(EC++) : Input/Output Streams
[T new(EC++) : Memory allocation and deallocation routines
|| complex(EC++) : Complex number operations
[string(EC++) : String manipulation operations
B complex.h(C99) : Performs complex number calculation
[fenv.h(C09) : Sets floating point environment
[]inttypes.h(C99) : Converts integer type format
[weharh(C99) : Performs wide character
chtype.h((gg] : Performs wide character conversion
Select All || Deselect All
(?:' < Back ” Mext »] [Finish] [Cancel

R20UT3564EG0100 Rev. 1.00
Jun 30, 2016

RRENESAS

Page 12 of 57

RSK+RX65N

e In the next dialog, untick all check
boxes except ‘I/O Register
Definition Files’ as shown opposite.
Click ‘Finish’.

e A summary dialog will appear, click
‘OK’ to complete the project
generation.

C Project

e2 studio - Project Generation

Set various Stack Areas and to add additional Supporting Files

Stack/Heap Configuration
[Use User Stack

User's Stack Size: (H') 100

Interrupt Stack Size: (H') 300

[7] Use Heap Memory
Heap Size: (H') 400

Generation of Supporting Files
[7] Vector Definition Files

[¥] 70 Register Definition Files

Generate Hardware Setup Function |Nene

3. Project Creation with e? studio
o [)
Next > Fiish | [Cancel

®

Project generator summary

Project summary for CG_Tutorial

(i) Thefollowing target device settings and files will be

o |[O] w5

GEMERATIOM FILES :

Stack File
Yercstacksct.h

Custom Batch file
Ycustom.bat

Main Program
YerchCG_Tutonal.c

Setting of B and R sections

generated,
PROJECT NAME : CG_Tutorial
PROJECT DIRECTORY : Chworkspace
CPU SERIES : RXG00
CPU TYPE: RXB5M
TOOLCHAIN NAME : Renesas_RXC
TOOLCHAIM VERSIOM : 20500

m

@

\E) OK l [Cancel
R20UT3564EG0100 Rev. 1.00 RENESAS Page 13 of 57

Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

4. Code Generation Using the e? studio plug in

4.1 Introduction

Code Generator is an e? studio plug in GUI tool for generating template ‘C’ source code for the RX65N. When
using Code Generator, the user is able to configure various MCU features and operating parameters using
intuitive GUI controls, thereby bypassing the need in most cases to refer to sections of the Hardware Manual.

Once the user has configured the project, the ‘Generate Code’ function is used to generate three code
modules for each specific MCU feature selected. These code modules are name ‘r_cg_xxx.h’, ‘r_cg_xxx.c’,
and ‘r_cg_xxx_user.c’, where ‘xxx’ is a three letter acronym for the relevant MCU feature, for example ‘adc’.
Within these code modules, the user is then free to add custom code to meet their specific requirement.
Custom code should be added, whenever possible, in between the following comment delimiters:

/* Start user code for adding. Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Code Generator will locate these comment delimiters, and preserve any custom code inside the delimiters on
subsequent code generation operations. This is useful if, after adding custom code, the user needs to re-visit
Code Generator to change any MCU operating parameters.

By following the steps detailed in this Tutorial, the user will generate an e? studio project called CG_Tutorial.
The fully completed Tutorial project is contained on the RSK Web Installer
(https://www.renesas.com/rskrx65n/install) and may be imported into e? studio by following the steps in the
Quick Start Guide. This Tutorial is intended as a learning exercise for users who wish to use the Code
Generator to generate their own custom projects for e? studio.

The CG_Tutorial project uses interrupts for switch inputs, the ADC module, the Compare Match Timer (CMT),
the Serial Communications Interface (SCI) and uses these modules to perform A/D conversion and display the
results via the Virtual COM port to a terminal program and also on the LCD display on the RSK+.

Following a tour of the key user interface features of Code Generator in §4.2, the reader is guided through
each of the peripheral function configuration dialogs in §4.3. In §5, the reader is familiarised with the structure
of the template code, as well as how to add their own code to the user code areas provided by the code
generator.

The Code Generator installer is contained on the RSK Web Installer. This installer must be run before
proceeding to the next section.

4.2 Code Generator Tour

In this section a brief tour of Code Generator is presented. For further details of the Code Generator
paradigm and reference, refer to the Application Leading Tool Common Operations manual.

You can download the latest document from: https://www.renesas.com/applilet

Application Leading Tool is the stand-alone version of Code Generator and this manual is applicable to the
Code Generator.

From the e? studio menus, select ‘Window -> Perspective -> Open Perspective -> Other. In the ‘Open
Perspective’ dialog shown in Figure 4-1, select ‘Code Generator’ and click ‘OK’.

R20UT3564EG0100 Rev. 1.00 RENESAS Page 14 of 57
Jun 30, 2016

https://www.renesas.com/rskrx65n/install
https://www.renesas.com/applilet

RSK+RX65N

4. Code Generation Using the e? studio plug in

o |5

Open Perspective

B /T + (default)

CJ Code Generator
j%ﬁ'\.\‘»Debug

i Resource

L) Synergy Configuration
§0Team Synchrenizing
Tracing

T

Figure 4-1 Open Perspective Dialog

Cancel]

In the Project Explorer pane, expand the ‘Code Generator’ and ‘Peripheral Functions’ node. The Code
Generator initial view is displayed as illustrated in Figure 4-2.
Code Generator - 2 studio =[S
File Edit Navigate Sesrch Project RenesasViews Run Window Help
- | Bl B 8 0G4 S A Quick Access 1| [| BE C/Ce+ 4 Debug (%] Code Generator |
[Project Explorer 52 =% ¥ = O | E Peripheral Functions I3 [=g
4 |I=5 CG_Tutorial [HardwareDebug] Clock setting | Block diagram | On-chip debug setting | o
~ i) Includes FIT setting
. (3 sre o
= CG_Tutorial HardwareDebug.launch iguration in°r_t oh
=| CG_Tutorial Release.launch ite "r_bsp_config h® on [Generate Code] B
custom.bat
» %[Code Generator Main clock oscillator and RTCMCLK setting
[] Operation
[F] Main clock oscillator forced oscillation (nly for RTC, software standby and desp software standby mode)
Main clock oscillation source Resonator -
Frequency 24 (MHz)
Oscillator wait fime 11000 (us) (Actual value: 1)
Oscillation stop detection function Disabled Level 15 (highest)
Low speed clock escillator (LOCO) setting
[#] Operation
Frequency 240 (kHz)
High speed clock oscillator (HOCO) setting
[] Operation
Frequency (MHz)
PLL circuit sefting
1 Nemenbine S
B Console 32 LEEE| M B~ -= B £ Conflicts View 12 v =8
Code Generator Console 0 items
“ Description = Resource Type
« » “ m L3

=5 CG_Tutorial

Figure 4-2 Initial View

Code Generator provides GUI features for configuration of MCU sub systems. Once the user has configured
all required MCU sub systems and peripherals, the user can click the ‘Generate Code’ button, resulting in a
fully configured e? studio project that builds and runs without error.

Navigation to the MCU peripheral configuration screens may be performed by double-clicking the required
function in the Code Generator -> Peripheral Function on the left.

It is also possible to see a preview of the code that will be generated for the current peripheral function
settings by double-clicking the required function in the Code Generator -> Code Preview on the left.

R20UT3564EG0100 Rev. 1.00
Jun 30, 2016

RRENESAS Page 15 of 57

RSK+RX65N 4. Code Generation Using the e? studio plug in

4.3 Code Generation

In the following sub-sections, the reader is guided through the steps to configure the MCU for a simple project
containing interrupts for switch inputs, timers, ADC and a SCI.

4.3.1 Clock Generator

Figure 4-3 shows a screenshot of Code Generator with the Clock Generator function open. Click on the
‘Clock setting’ sub tab. Configure the system clocks as shown in the figure. In this tutorial we are using the
on board 24 MHz crystal resonator for our main clock oscillation source and the PLL circuit is in operation.
The PLL output is used as the main system clock and the divisors should be set as shown in Figure 4-3.

3 *Peripheral Functions 53 | ¥ Code Preview £l Device Top View £ Device List View

i Clock setting ;| Block diagram | On-chip debug setting
FIT setting

Use clock configuration in "r_bsp_config h
Clock settings in this view will overwrite “r_bsp_configh” on [Generate Code]
Main clock oscillator and RTCMCLK setting

Opzraticn

[F] Main clock oscillatsr forzed oscillstion (enly for RTC, sofware standby and deep softwars standby mode)

Main c'ock oscillation source Resonator -

Frequency 24 (MHz)

Oscillztor wait time 11000 (us] (Actual value 11080.809 ps)

Oscillztion stop detecton function Disabled - Pricrity | Level 15 (highest)

Low speed clock oscillator (LOCO) setting
[] Operaticn

Frequency 240 (k2)

High speed clock escillater (HOCO) setting

[Operaton)

Frequency 1 [MHz)

PLL circui- setting

P_L clock source Main ciock oscillator -
Input frequency dvisien ratio x1 -

Frequency rultiplication factor x10.0 -

Frequency 240 (MHz)

Sub-clock oscillater and FTC (RTCSCLK) setting
[] Operaticn
Sub-clock oscillator drive capaciy

(k2)

Frequency

Oscillztor wait time (ms) (Actual value: 2296182 ms)

RTC clock setting
[C] Operaticn

Clock source Sub-clock oscillator

[\w/DT-ded cated low-speed clock oseillater (WDTLOCO) setting
[C] Operaticn

Frequency 120 (kkz)

System clock s=tting

Clock source I P_L circuit - I

System clock (IC_K] %12 - 120 (MHz)
Pzripheral module clock (PCLKA] x'hZ_v 120 (MHz)
Peripheral module clock (PCLKE] x4 - 0 [MHz)
Paripheral module clock (PCLKC x4 - 60 (MHz)
Peripheral module clock (PCLKD] x4 - 50 [MHz)
External bus clock (BCLK) 120 (MHz)
Fiash IF closk (FZLK) x4 - 60 [MHz)
USE clock (JCLK) %115 - 48 [MHz)
ROM wait cycle Jwaitoycles v

BCLK pin outpus: setting
] Opsratin
Clock outpu: source BCLK
SDCLK pin output seting
[C] Operatien ¢

Figure 4-3 Clock setting tab

R20UT3564EG0100 Rev. 1.00 RENESAS Page 16 of 57
Jun 30, 2016

RSK+RX65N

4. Code Generation Using the e? studio plug in

Click the arrow next to the Generate Report icon. Select ‘Interrupt Controller Unit’ as shown in Figure 4-4

below. Proceed to the next section on the Interrupt Controller Unit.

Bun Window Help
O e -
&5 Peripheral Functions 52 | [Code Preview [T Properties 1 FIT Configurator

Block diagram | On-chip debug setting

Quick Access

| G CC-+ | ¥ Code Generator | % Debug

] Generate Code (2]

Is

Clock Generator

Voltage Detection Circuit

Use clock configuration in *r_bsp_config b

Clock settings in this view will overwrite *r_bsp_config h” on [Generate Code]

- Main clock oscillator and RTCMCLK setting
[+] Operation

[[] Main clock oscillator forced escillation (only for RTC, scftware standby and deep software standby mode)

Main clock oscillation source Resonator v
Frequency 24 (MHz)
Oscillator wait time 11000 (us) (Actual value: 11080.909 ps)
Oscillation stop detection function Disabled W Priority Level 15
Low spesd clock oscillator (LOCO) setting
[[] Operation
Frequency 240 (kHz)
High speed clock oscillater (HOCO) seting
[] Operation
Frequency 16 (MHz)
PLL circuit setting
[#] Operation
PLL elock source Main clock oscillator v
Input frequency division ratio x1 v
Frequency multiplication factor x10.0 v
Frequency 240 (MHz)
Sub-clock oscillator and RTC (RTCSCLK) setiing
[] Operation
Sub-clock oscillator drive capacity Drive capacity for low CL

Figure 4-4 Select Interrupt Controller Unit

B

Clock Frequency Accuracy Measurement Circuit
* Low Power Consumption
| 9 Buses
% DMA Controller
2%, Data Transfer Controller
o+, Event Link Controller
@ /0 Ports
¢ Multi-Function Timer Pulse Unit 3
{3 Port Output Enable 3
16-Bit Timer Pulse Unit
Programmable Pulse Generator
&-Bit Timer
Compare Match Timer
Compare Match Timer W
Realtime Clock
Watchdog Timer
Independent Watchdog Timer

SRLECGRe

Senial Communications Interface
12C Bus Interface

p %

Senal Peripheral Interface
! CRC Calculator

12-Bit A/D Converter
d: 12-Bit D/A Converter

{ 3 L=

.~ Data Operation Circuit

R20UT3564EG0100 Rev. 1.00

LENESAS
Jun 30, 2016 /{

Page 17 of 57

RSK+RX65N

4. Code Generation Using the e? studio plug in

4.3.2 Interrupt Controller Unit

Referring to the RSK+ schematic, SW1 is connected to IRQ8 (P00) and SW2 is connected to IRQ9 (P01).
SW3 is connected directly to the ADTRGOn and will be configured later in §4.3.4. Navigate to the ‘Interrupt
Controller Unit’ node in Code Generator and in the ‘General’ tab, configure these two interrupts as falling edge
triggered as shown in Figure 4-5 below.

E.;ﬁ *Peripheral Functions 22 [Code Preview f.}.! Device Top View Ei! Device List View

General I Group Interrupts | Interrupt B/A selection |

ﬁj Generate C

- Fast interrupt setting

[Fast interrupt

- Software interrupt setting
[T Software interrupt

Interrupt source

BSC (BUSERR vect=16)

Priority

Level 15 (highest)

[Software interrupt 2 Priority | Level 15 (highest)
- NMI setting
[T NMI pin interrupt Wzlid edge | Falling Digital filter | Mo filter (MHz)
- IRQO setting
[IRQO Pin | P30 Digital filter | No filter (MHz)
Valid edge | Low level Priority | Level 15 (highest)
- IRQ1 setting
[IRG1 Pin | P31 Digital filter | No filter (MHz)
Walid edge | Low level Pricrity | Level 15 (highest)
- IRQ2 setting
[IRQ2 Pin | P32 Digital filter | No filter (MHz)
Valid edge | Low level Pricrity | Level 15 (highest)
- IRQ3 setting
[IRQ3 Pin | P33 Digital filter | No filter (MHz)
Valid edge | Low level Priority | Level 15 (highest)
- IRQ4 setting
[T IRG4 Pin |PB1 Digital filter | Mo filter (MHz)
Valid edge | Low level Priarity | Level 15 (highest)
- IRQS setting
[IRQ5 Pin | PA4 Digital filter | No filter (MHz)
Valid edge | Low level Pricrity | Level 15 (highest)
- IRQS setting
[IRQ6 Pin |PA3 Digital filter | Mo filter (MHz)
Valid edge | Low level Priority | Level 15 (highest)
- IRQ7 setting
[IrRQ7 Pin |PE2 Digital filter | No filter (MHz)
Valid edge | Low level Priority | Level 15 (highest)
IRQE Pin POO ~ Digitalfilter Mo filter {MHz)
Walid edge Falling - Pricrity Level 15 (highest)
IRQY setting
IRQS Fin P01 ~ Digital filter No filter (MHz)
Welid edge Falling - Priority Level 15 (highest)
- IRQ10 setting
[IR0 Pin | P42 Digital filter | No filter (MHz)
Valid edge | Low level Priority | Level 15 (highest)
- IRQ11 setting
[1rRQ11 Pin | P43 Digital filter | No filter (MHz)
Valid edge | Low level Pricrity | Level 15 (highesf)
- IRQ12 setting
[IrG12 Pin | P44 Digital filter | No filter (MHz)
Walid edge | Low level Pricrity | Level 15 (highest)
- IRQ13 setting
[1RQ13 Pin | P45 Digital filter | No filter (MHz)
Valid edge | Low level Pricrity | Level 15 (highest)
~IRQ14 setting
1 1RQ14 Fin | P46 Digital filter | No filter (MHz)
Valid edge | Low level Priority | Level 15 (highest)
- IRQ15 setting
[IrRQ15 Pin | P47 Digital filter | No filter (MHz)
Valid edge | Low level Pricrity | Level 15 (highesf)

Figure 4-5 Interrupt Functions tab

R20UT3564EG0100 Rev. 1.00

Jun 30, 2016

RENESAS

Page 18 of 57

RSK+RX65N 4. Code Generation Using the e? studio plug in

Navigate to the ‘Group Interrupts’ sub tab and ensure that the ‘Group BLO’ interrupt is selected as shown in
Figure 4-6. The Group BLO interrupt is used for SCI Transmit End Interrupts (TEl) and Reception Error
Interrupts (ERI) as described in §4.3.5.

£l Peripheral Functions 52 | /3 Code Preview £l Device Top View 23 Device List View

l Interrupt B/4 selection |

Group BED setting
[] Group BED Priority | Level 15 (highest)

Group BELD setting
Group BLD Priority Level 15 (highest) -

Group BEL1 setting
[7] Group BL1 Priority | Level 15 (highest)

Group ELZ setting
[F] Group BL2 Prienty | Level 15 (highest)
Group ALD setting

[F] Group ALD Priority | Level 15 (highest)

Group AL1 setting
[] Group AL1 Priority | Level 15 (highest)

Figure 4-6 Group Interrupt Functions tab

Click the arrow next to the Generate Report icon. Select ‘Compare Match Timer’ as shown in Figure 4-7

below. Proceed to the next section on the Compare Match Timer.
=& =]

C/C++ 4% Debug | Quick Access
% Generate Code ,_)_/E' m| H

Clock Generator

Voltage Detection Circuit

I

Clock Frequency Accuracy Measurement Circuit
Low Power Consumption
Interrupt Controller Unit

Buses

DMA Controller

Data Transfer Controller

Event Link Controller

O Ports

Multi-Functien Timer Pulse Unit 3
Port Qutput Enable 3

16-Bit Timer Pulse Unit

sgoseiisingEe N o

Programmable Pulse Generator
@ 8-Bit Timer
i) Compare Match Timer W

7] Realtime Clock

Watchdog Timer

Independent Watchdeg Timer

(6)
&
j_" Serial Communications Interface
*Ig I2C Bus Interface

j_" Serial Peripheral Interface

i CRC Calculator

by, 12-Bit A/D Converter

d 12-Bit D/A Converter

.z~ Data Operation Circuit

Figure 4-7 Select Compare Match Timer

S oo

R20UT3564EG0100 Rev. 1.00 RENESAS Page 19 of 57
Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

4.3.3 Compare Match Timer

Navigate to the ‘Compare Match Timer’ node in Code Generator. CMTO will be used as an interval timer for
generation of accurate delays. CMT1 and CMT2 will be used as timers in de-bouncing of switch interrupts.

In the ‘CMTO’ sub-tab configures CMTO0 as shown in Figure 4-8. This timer is configured to generate a high

priority interrupt every 1ms. We will use this interrupt later in the tutorial to provide an API for generating high
accuracy delays required in our application.

2l *Peripheral Functions 51 | /3 Code Preview il Device Top View 23 Device List View

| CMTO Y T | cmT2 | cmTa |
Compare match timer operation setting

Count clock setting
@ PCLKB i PCLKI32 i) PCLKN23) PCLKIZ12

Interval value setting

Interrupt setting
Enable compare match interrupt (CMIO)

Prionty Lewvel 10 -
| |

Figure 4-8 CMTO tab
Navigate to the ‘CMT1’ sub-tab and configure CMT1 as shown in Figure 4-9. This timer is configured to

generate a high priority interrupt after 20ms. This timer is used as hour short switch de-bounce timer later in
this tutorial.

'}:,_EJ *Peripheral Functions 52 | /3 Code Preview JE-:'_EJ Device Top View E'_Ii! Device List View

| cuTof CMT1 fcmT2 | o3 |

Compare match timer operation setting
Count clock setting

) PCLKIB i@ PCLKI32) PCLK128) PCLKIG12

Interval value setting
Interval value I2D I I ms - I[ActL.EI value: 20)

Interrupt setting
Enable compare match interrupt (CMIT)

Priority I Lewvel 10 - I

Figure 4-9 CMT1 tab

R20UT3564EG0100 Rev. 1.00 RENESAS Page 20 of 57
Jun 30, 2016

RSK+RX65N

4. Code Generation Using the e? studio plug in

Navigate to the ‘CMT2’ sub-tab and configure CMT2 as shown in Figure 4-10. This timer is configured to
generate a high priority interrupt after 200ms. This timer is used as our long switch de-bounce timer later in

this tutorial.

2l “Peripheral Functions &7 | & Code Preview 2l Device Top View 23 Device List View

CMT'Dl lC.I'\J'IT1I CMT2 ICMTS

Compare match timer operation setting
) Unused

(7 PCLKN28

Count clock setting
) PCLKI8) PCLK32
Interval value setting
Interval value

Interrupt setting
Enable compare match interrupt (CMIZ)

@ PCLK/512

{Actual value: 200.004267)

Priority I Level 10

vl

Figure 4-10 CMT2 tab

Click the arrow next to the Generate Report icon. Select ‘12-Bit A/D Converter’ as shown in Figure 4-11 below.

Proceed to the next section on the 12-Bit A/D Converter.

C/Ce+ [EE] Code Generator | 45 Debug

o i s

Quick Access

?_.j Generate Code ')_,E: O ﬂ

1

Clock Generator

Voltage Detection Circuit

Low Power Consumption
Interrupt Controller Unit

Buses

DMA Controller

Data Transfer Controller

Event Link Controller

O Ports

Multi-Function Timer Pulse Unit 3
Port Qutput Enable 3

16-Bit Timer Pulse Unit
Programmable Pulse Generator
8-Bit Timer

Compare Match Timer

goosasFeldinh#Es N o

Compare Match Timer W

Realtime Clock

Watchdog Timer

Independent Watchdog Timer
Serial Communications Interface
12C Bus Interface

Serial Peripheral Interface

1! CRC Calculator

i, 12-Bit A/D Converter

¥ 12-Bit D/A Converter

2
e
&
#
&r

.~ Data Operation Circuit

Clock Frequency Accuracy Measurement Circuit

Figure 4-11 Select 12-Bit A/D Converter

R20UT3564EG0100 Rev. 1.00
Jun 30, 2016

RRENESAS

Page 21 of 57

RSK+RX65N

4. Code Generation Using the e? studio plug in

434 12-Bit A/D Converter

Navigate to the ‘“12-Bit A/D Converter’ node in Code Generator. In the ‘S12AD0’ sub-tab configures S12AD0
as shown in Figure 4-12, Figure 4-13 and configure the S12ADO0 as shown. We will be using the S12ADO0 in
Single scan mode on the AN0OO input, which is connected to the RV1 potentiometer output on the RSK+. The
conversion start trigger will be via the pin connected to SW3.

£l *Peripheral Functions 52 | [f Code Preview 2 Device Top View £ Device List View % G
S12400 Ismm
General setting I window A setting | Window B setting |
- 512AD0 operation setting
() Unused 3 Used
— Dperation mode setting
@ Single scan mode () Group scan mode () Continuous scan mode
—Group scan select
@ Two groups (A.B Three groups (A.B.C
— Double trigger mode setting
@ Disable () Enable
- Self diagnosis setting
Mode Unused -
Voltage used Use VREFHD x O
- Disconnection detection assist setting
Charge setting Unused -
Period 2 ADCLK
—Group scan prionty setting
Group priority Group A without priority
Group action Mot restarted or continued due to Group A priority
Restart channel selection Restarted from the first scan channel
—AD converted value count setting
@ Addition mode 7 Average mode
—Window function setting
@ Disable (7} Enable
~\window A operation setting
@ Disable () Enable
~‘indow B operation setting
@ Disable ™) Enable
—indow A'B complex condition setting
\indow A/B complex condition Window A companson condition matched OR Window B companison condition matched
—Analog input channel setting
Convert Convert Convert Addifwverage Dedicated sample
(Group &) (Group B) (Group C) AD value and hold
I Anooo & &
ANDD1 [l
ANDOZ |
ANDD3 |
ANDD4 0
ANDDS 0
ANDDE o
ANDOT |
Figure 4-12 S12ADO0 tab (1)
R20UT3564EG0100 Rev. 1.00 RENESANAS Page 22 of 57

Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

— Conversion start trigger setting

Conversion start trigger (Group &)
AJD conversion start trigger pin - I

Conversion start trigger (Group B)

| Compare matchfinput capture from MTUD.TGRA - |
‘Conversicn start trigger (Group C)
| Compare match/input capture from MTU1.TGRA - |
ADTRGO# pin selection PO7 -
- Data registers setting
AD converted value addition count 1-time conversion -
Data placement Right-alignment -
Automatic clearing Disable automatic clearing -
Conversion resolution 12-bit resolution -

- Dedicated sample and hold circuit setting

Input sampling time 2 | (us) (Actual value: 0)

- ANODO0O / Self-diagnesis conversion time setting
Input sampling time 3667 (us) (Actual value: 3.667)

—AMO01 conversion time setting
Input sampling time |3.EE? | (us) (Actual value: 3.667)

- ANDOZ conversion time setting
Input sampling time |3.EB? | (us) (Actual value: 3.667)

- ANDO3 conversion time setting

Input sampling time |3.EE? | (ps) (Actual value: 3.667)

— AMD04 conversion time setting
Input sampling time |3.EE? | (us) (Actual value: 3.667)

- ANDOS conversion time setting
Input sampling time |3.BB? | (us) (Actual value: 3.667)

— AMOO0E conversion time setting

Input sampling time |3.EE? | (us) (Actual value: 3.667)

- ANDOY conversicon time setting

Input sampling time |3.EB? | (us) (Actual value: 3.667)
—Co ion time setting
Total conversion time (Group A) 4.05 (ps)
Total conversion time (Group E) | | () (Note: Continuous sampling is disabled)
Total conversion time (Group C) | | (ps)
— Interrupt setting

Enable AD conversicn end interrupt (S12ADI)

Priority Level 15 (highest) -
[¥] Enable AD conversion end interrupt for group B (S12GBADI)
Priority [Level 15 (highest) -]

[¥] Enable AD conversion end interrupt for group C (S12GCADI)

Priority [Level 15 (highest) -

Figure 4-13 S12ADO tab (2)

R20UT3564EG0100 Rev. 1.00 RENESAS Page 23 of 57
Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

Click the arrow next to the Generate Report icon. Select ‘Serial Communications Interface’ as shown in Figure
4-14 below. Proceed to the next section on the Serial Communications Interface.

=5 =0 =
C/Cr+ [Code Generator] 4 Debug | Quick Access
% Generate Code .L& 5 H

Clock Generator

I

Voltage Detection Circuit

Clock Frequency Accuracy Measurement Circuit
Low Power Consumption
Interrupt Controller Unit

Buses

DMA Controller

Data Transfer Controller

Event Link Controller

O Ports

Multi-Functien Timer Pulse Unit 3
Port Qutput Enable 3

16-Bit Timer Pulse Unit

S iEeiedEne ™o

o~

@
{ﬁ, Programmable Pulse Generator
@ 8-Bit Timer
@ Compare Match Timer
©3 Compare Match Timer W
Realtime Clock
Watchdeg Timer

tﬂ)

4 Independent Watchdog Timer

7 Serial Communications Interface
I2C Bus Interface

j_" Serial Peripheral Interface
38 CRC Calculator

G, 12-Bit A/D Converter

g 12-Bit D/A Converter

.« Data Operation Circuit

Figure 4-14 Select Serial Communications Interface

R20UT3564EG0100 Rev. 1.00 RENESAS Page 24 of 57
Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

4.3.5 Serial Communications Interface

Navigate to the ‘Serial Communications Interface’ tab in Code Generator, select the SCI7 sub-tab and apply
the settings shown in Figure 4-15. In the RSK+RX65N SCI7 is used as an SPI master for the Pmod LCD on
the PMOD1 connector as shown in the schematic.

25 *Peripheral Functions 37 | [Code Preview £ Device Top View 5% Device List View

scio | scin | sciz | scia | scis | scis | scie| sCiz fscie | scis | scio | scit | scnz2 |
General se‘t‘tingl Setting |

Function setting

() Unused

() Asynchronous mode Transmission

() Asynchronous mode (Multi-processor) Transmission

(@) Clock synchronous mode Transmission

() Smart card interface mode Transmission

) Simple IIC bus

I Master transmit only vI

Pin setting

TXD7 P30 RXD7 P92

SSDAT P30 S8CL7 P92

SMOSI7 P30 - SMISO7 P92

Figure 4-15 SCI7 General Setting tab
Select the SCI7 ‘Setting’ sub-tab and configure the SPI Master as illustrated in Figure 4-16. Make sure the

‘Transfer direction setting’ is set to ‘MSB-first’ and the ‘Bit rate’ is set t015000000. All other settings remain at
their defaults.

'j,_aJ “Peripheral Functions &3 u;,f Code Preview 'j,_aJ Device Top View 'j,_;J Device List View

sci2 | sci3 | sci4 | scis | scis | SCI7 | scis | scis | scio | scitt | scitz |
 Setting |

General setting

Transfer direction setting

() LSB-first @ MSE-first

Diata inversion setting
@ Mormal) Inverted
Transfer rate setting

Transfer clock Internal clock - P31 -

Bit rate I 15000000 - I (bps) (Actual value: 15000000, Error : 0%)

[] Enable modulation duty correction

SCKT pin function Clock output -
Clock setting
Clock delay Clock is not delayed -

[Enable clock polarity inversion
[Diata handling setting
Transmit data handling Data handled in interrupt service routine -
Interrupt setting
THI7 pricrity Lewvel 15 (highest) -
TEI7 priority (Group BLO) (Please set priority setting in ICL)

Callback function setting

Transmission end
Figure 4-16 SCI7 SPI Master Setting
R20UT3564EG0100 Rev. 1.00 RENESAS Page 25 of 57

Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

Staying in the ‘Serial Communications Interface’ tab in Code Generator, select the SCI2 sub-tab and apply the
settings shown in Figure 4-17. In the RSK+RX65N SCI2 is connected via a Renesas RL78/G1C to provide a
USB virtual COM port as shown in the schematic.

28] *Peripheral Functions 52 | [Code Preview 53 Device Top View %3 Device List View

sciz Wsci3 | sci | scis | scie | scim | scie [scis | scio [saint | scnz |

Function setting
() Unused
) Trznsmission/reception ~|
) Asynch mode (Multi-pr i Transmission
() Clock synchronous mode Transmission
() Smart card interface mode Transmission
~) Simple IIC bus
~) Simple SPI bus Slave transmitireceive
Pin setting
TXD2Z P50 - RXD2 P52 -
S5DA2 P13 55CL2 P12
SMOSI2 P13 SMISD2 P12

Figure 4-17 SCI2 General Setting tab

Select the SCI2 ‘Setting’ sub-tab and configure SCI2 as illustrated in Figure 4-18. Make sure the ‘Start bit
edge detection’ is set as ‘Falling edge on RXD2 pin’ and the ‘Bit rate’ is set to 19200 bps. All other settings

remain at their defaults.
2l *Peripheral Functions 52 | 2f Code Preview 2% Device Top View 2l Device List View

scio [scin | sci2 §scis [sci4 | scis [scis [sci7 | scie | scis [scito [scit [scinz |
General seﬂingl MI

Start bit edge detection setting

@) Low level on RXD2 pin I @ Falling edge on RXD2 pin I
Data length setting

) 9 bits @ 8 bits) 7 bits
Parity setting

@ Mone ©) Even @ Odd

Stop bit length setting

@ 1bit () 2 bits
Transfer direction setting

@ LSB-first () MSB-first

Transfer rate setting

Transfer clock Internal clock -
Base clock 16 eycles for 1-bit period
Bit rate I152DD - I (bps) (Actual value: 19230.763, Error: 0.16%)

[T] Enable modulation duty correction
SCK2 pin function SCK2 is not used - P51

Moize filter setting
[”] Enable noise filter

Moize filter clock Clock signal divided by 1 60000000 (Hz)

Hardware flow contrel setting

@ MNone
@ cTs2 P54
® RTS28 P54

Data handling setting

Transmit data handling [Diata handled in interrupt service routine -

Receive data handling [Diata handled in interrupt service routine -
Interrupt setting

TXI2 priority Level 15 (highest) -

RX2 priority Level 15 (highest) -

Enable error interrupt (ERIZ)

TEI2, ERI2 pricrity (Group BLD) (Please set priority setting in ICU)
Callback function setting

Transmission end Reception end Reception error

Figure 4-18 SCI2 Asynchronous Setting

R20UT3564EG0100 Rev. 1.00 RENESAS Page 26 of 57
Jun 30, 2016

RSK+RX65N

4. Code Generation Using the e? studio plug in

Click the arrow next to the Generate Report icon. Select ‘1/O Ports’ as shown in Figure 4-19 below. Proceed

to the next section on the 1/O Ports.

43.6 1/OPorts

€/ [Code Generator | 45 Debug

===

Quick Access

'DLJ Generate Code || E‘: (] ":

o2 Clock Generator

2] Voltage Detection Circuit

an

@ Clock Frequency Accuracy Measurement Circuit

. Low Power Consumption

Interrupt Controller Unit

#f Buses
“g‘; DMA Controller
«gj Data Transfer Controller

wie EventLink Controller

¥ 1O Ports

& Multi-Function Timer Pulse Unit 3
(??, Port Output Enable 3

) 16-Bit Timer Pulse Unit

rln‘ Programmable Pulse Generator
) 8-Bit Timer

@ Compare Match Timer

Compare Match Timer W

] Realtime Clock

o Watchdog Timer

3

& Independent Watchdog Timer
;'_" Serial Communications Interface
12C Bus Interface

;'_" Serial Peripheral Interface

! CRC Calculator

Gl 12-Bit A/D Converter

s 12-Bit D/A Converter

5~ Data Operation Circuit

=3

Figure 4-19 Select I/O Ports

Referring to the RSK+ schematic, LEDO is connected to P03, LED1 is connected to P05, LED2 is connected
to P73 and LED3 is connected to PJ5. Navigate to the ‘1/O Ports’ tab in Code Generator and configure these
four I/O lines as shown in Figure 4-20, Figure 4-21 and Figure 4-22 below. Ensure that the ‘Output 1’ tick
box is checked. This ensures that the code is generated to set LEDs initially off.

2kl *Peripheral Functions 52 | 2 Code Preview 2| Device Top View 2! Device List View % Gen
Port0 | Fort! | Fort2 | Pont3 | Port4 | Fert5 | Forts | Port7 | Pert@ | Fortd | Forta | Fort® | FertC | PortD | FortE | PortF | Fortd |

POD

@ Unused @ In ¢ @ Out ¥ CMOS output Normal drive sutput

PO1

@ Unused) In % @ Out 2 CMOS output Normal drive output

PO2

@ Unused In 7 Out CMOS output Normal drive output

P03

™ Unused @) In CMOS output - UtPUH

P05

) Unused @) In CMOS output - UtPUH

PO7

@ Unused) In % @ Out 2 CMOS output

Figure 4-20 1/O ports — Port0
R20UT3564EG0100 Rev. 1.00 RENESAS Page 27 of 57

Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

Eﬁg *Peripheral Functions 52 2 Code Preview "E;g Device Top View Eﬁg Device List View D@J Gener:
| Portd | Portt | Port2 | Port3 | Porté | Ports | Ports | Fort? {Porte | Port9 | Porta | PortB | PortC | PortD | PertE | PortF | Ports |

P70

@ Unused @ In © Out Pull-up | CMOS output Output 1 | Normal drive output

- P71

@ Unused) In @ Out Pull-up | CMOS output Output 1

- P72

@ Unused @) In @ Out Pull-up | CMOS output Output 1

- P73

© Unused © In Fullup CMOS output « Elpvest1 High-drive output -
- P74

@ Unused () In © Out Pull-up | CMOS output Output T | Normal drive output

- P75

@ Unused) In © Out Pull-up | CMOS output Output T | Normal drive output

- P76

@ Unused) In @ Out Pull-up | CMOS output Output T | Normal drive output

- P77

@ Unused) In @ Out Pull-up | CMOS output Output 1 | Normal drive output

Figure 4-21 1/0O ports — Port7

Eﬂ*l’eripheral Functions 3 E.f Code Preview E&d Device Top View m Device List View

| Portd | Port1 | Port2 | Port3 | Port4 | Ports | Port | Port7 | Porte | Portd | Porta | PortB | PortC | PortD | PorE | PortFl Port) |
_PJ3
@ Unused @ In @ Out Full-up | CMOS output Output 1
-PJ5

) Unused © In n Full-up CMOS output - Lﬂpu‘t'l

Figure 4-22 1/O ports — PortJ

P02 is used as one of the LCD control lines, together with P55, P56 and P93. Configure these lines as shown
in Figure 4-23, Figure 4-24 and Figure 4-25.

Eﬂ*Peripheral Functions &% | 5 Code Preview E;g Device Top View Eﬂ Device List View ?E-J Genet

Bortd I Port1 | Pori2 | Port3 | Port4 | Ports | Porté | Pert7 | Porte | Ports | Port | Porig | PoriC | PoriD | PortE | PortF | Portd |

@ Unused © In 8 © Out ¥ Pull-up | CMOS output Output T | Normal drive output
- P01
@ Unused © In (1. © Out ¥ Full-up [CMOS output Output 1 | Normal drive output
- P02
@ Unused @ In Full-up CMOS output - L“F’I-l'f'I Mormal drive output -
_Poa
) Unused @ In @ Out Full-up CMOS output - [¥] Output 1
- P05
@) Unused @ In @ Out Full-up CMOS output - [#/] Output 1
- PO7
@ Unused @ In 1 @ Out ¥ Full-up | CMOS output Output 1
Figure 4-23 1/0 ports — Port0
R20UT3564EG0100 Rev. 1.00 RENESAS Page 28 of 57

Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

2l *Peripheral Functions 52 | 5f Code Preview £ Device Top View 23 Device List View Fo] Gener
| Portd | Port1 | Portz | Port3 | Port4 | Port5 | Porté | Port7 | Portg | Ports | Porta | PortB | PortC | PortD | PoriE | PortF | Porti |
P50
@ Unused @ In % O Out ¥ CMOS output Nermal drive output
P51
@ Unused) In @ Out CMOS output Nermal drive output
F52
@ Unused OIn %) Out ¥ CMOS output Nermal drive output
P53
@ Unused @) In) Out CMOS output Normal drive output
P54
@ Unused () In @ Out CMOS output Nermal drive output
P55
@ Unused © In Out CMOS output - [7] Output 1 High-drive output -
P56
@ Unused © In CMOS output - UTDU” Nermal drive output -
Figure 4-24 1/O ports — Port5
2l *Peripheral Functions 82 | [3f Code Preview 23 Device Top View 23 Device List View] Genera
| Porto | Portt | Port2 | Port3 | Port4 | Forts | Porté | Fort7 | Porigl] Portd | Forta | FortB | PortC | FortD | FertE | FertF | Portd |
P30
@ Unused @ In v & Out 2 CMOS output Normal drive output
P91
@ Unused @ In 1, © Out ¥ CMOS output Normal drive output
P32
@ Unused () In @ Owt CMOS output Normal drive output
P33
@ Unused @ In CMOS output - DUtPU” Normal drive output -

Figure 4-25 1/O ports — Port9

Peripheral function configuration is now complete. Save the project using the File -> Save, then click
‘©lGenerate Code’. The Console pane should report ‘The operation of generating file was successful’, as
shown Figure 4-26 below.

& Console 2 [*] Problems

Code Generator Conscle

===== Start generate code (2016/7/29 18:19:34) =====
M@489@82:The generating source folder is: C:\workspacel\CG Tutoriall,
MB4898@1:The following files were generated:
M@489888:srchcg srchr cg main.c was generated.
M@429888:srchcg srchr cg dbsct.c was generated.
MB4898@@:srch\cg srchr cg intprg.c was generated.
Me4p9eea:srch\cg srchr cg resetprg.c was generated.
MB4898@@:srch\cg srchr cg shrk.c was generated.
MB4B98ea:srchcg srchr cg vecttbl.c was generated.
Me4e9@@@:src\cg srchr cg shrk.h was generated.
Me4poeea:srchcg srchr cg stacksct.h was generated.
MB4@9@@@:srchcg srchr cg vect.h was generated.
MBaRgeea:src\cg srchr cg hardware setup.c was generated.
MBAROBAA:srch\cg srchr cg macrodriver.h was generated.
MBaARoBee:srchcg srchr cg userdefine.h was generated.
M@429688:srchcg srchr cg cgo.c was generated.
M@489888:srchcg srchr cg cge user.c was generated.
M@429888:srchcg srchr cg cge.h was generated.
M@429888:srchcg srchr cg icu.c was generated.
MB4898@@:srch\cg srchr cg icu user.c was generated.
MB4898@@:srch\cg srchr cg icu.h was generated.
MB4898@@:srch\cg srchr cg port.c was generated.
MB4B98ea:srchcg srchr cg port user.c was generated.
MB489@@@:src\cg srchr cg port.h was generated.
MB4898@@:src\cg srchr cg cmt.c was generated.
M@4poeea:srchcg srchr cg omt user.c was generated.
MB4B9@@ad: src\cg srchr cg cmt.h was generated.
MB4BOBAA:src\cg srchr cg sci.c was generated.
MB4ARoBEe:srchcg srchr cg sci user.c was generated.
M@429688:srchcg srchr cg sci.h was generated.
M@489688:srchcg srchr cg sl2ad.c was generated.
MB4B98@@: src\cg srchr cg sllad user.c was generated.
M@429888:srchcg srchr cg sl2ad.h was generated.
MB480883:The operation of generating file was successful.
===== Generate code ended (2016/7/29 18:19:35) =====

Figure 4-26 Code generator console

R20UT3564EG0100 Rev. 1.00 RENESAS Page 29 of 57
Jun 30, 2016

RSK+RX65N 4. Code Generation Using the e? studio plug in

4.4 Building the Project

The project template created by Code Generator can now be built. In the Project Explorer pane expand the
‘src’ folder. The four files created by the New Project Wizard in §3.2 have been excluded from the build
automatically as part of the code generation procedure as shown in Figure 4-27. This is because the main
function now resides in r_cg_main.c in the cg_src folder and the type definitions and setting of sections has
been handled by the Code Generator.
I Project Explorer &3 = <}==€»>
4 |5 CG_Tutorial [HardwareDebug]
> [al Includes
4 2 src
s [2% Cg_src
> izdefine.h
[# CG_Tutorial.c
[# dbsct.c
[stacksct.h
[typedefine.h

Figure 4-27 Files excluded from the build by Code Generator

Switch back to the ‘C/C++’ perspective using the gy C/C++ button on the top right of the e? studio
workspace. Use ‘Build Project’ from the ‘Project’ menu or the % button to build the tutorial. The project
will build with no errors.

R20UT3564EG0100 Rev. 1.00 RENESAS Page 30 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

5. User Code Integration

In this section the remaining application code is added to the project. Source files found on the RSK Web
Installer are copied into the workspace and the user is directed to add code in the user areas of the code
generator files.

Code must be inserted in to the user code area in many files in this project, in the areas delimited by
comments as follows:

/* Start user code for _xxxxx_ . Do not edit comment generated here */
/* End user code. Do not edit comment generated here */

Where _xxxx_ depends on the particular area of code, i.e. ‘function’ for insertion of user functions and
prototypes, ‘global’ for insertion of user global variable declarations, or ‘include’ for insertion of pre-processor
include directives. User code inserted inside these comment delimiters is protected from being overwritten by
Code Generator, if the user needs to subsequently change any of the Code Generator-generated code.

5.1 LCD Code Integration

API functions for the Okaya LCD display are provided with the RSK+. Locate the files ascii.h, r_okaya_lcd.h,
ascii.c, and r_okaya_lcd.c on the RSK Web Installer. These files can be found in the Tutorial project for e?
studio. Copy these files into the C:\Workspace\CG_Tutorial\src directory. The files will be automatically
added to the project as shown in Figure 5-1.

L5 Project Explorer 32 = O
= ﬁ% -
a|[=% CG_Tutorial [HardwareDebug]
» [ay) Includes
4 2 sre
. = cg_src
. || asciic
. [h] asciih
- indefine.h
- g r_okaya_lecd.c
- r_okaya_lcd.h

I tnrial -
Figure 5-1 Adding files to the project

R20UT3564EG0100 Rev. 1.00 RENESAS Page 31 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

In the e? studio Project Tree, expand the ‘src/cg_src’ folder and open the file ‘r_cg_userdefine.h’ by double-
clicking on it. Insert the following #defines in between the user code delimiter comments as shown below.

/* Start user code for function. Do not edit comment generated here */
#define TRUE (1)
#define FALSE (0)

/* used to stop warnings being generated in r cg intprg.c */
extern void r sci2 transmitend interrupt (void);

extern void r_sci2_ receiveerror_ interrupt (void);

extern void r_sci7 transmitend interrupt (void);

/* End user code. Do not edit comment generated here */

In the same folder open the file ‘r_cg_main.c’ by double-clicking on it. Insert the following code in between the
user code delimiter comments as shown below.

/* Start user code for include. Do not edit comment generated here */
#include "r okaya lcd.h"
/* End user code. Do not edit comment generated here */

Scroll down to the ‘main’ function and insert the highlighted code as shown below into the beginning of the
user code area of the ‘main’ function:

void main (void)
{
R_MAIN UserInit();
/* Start user code. Do not edit comment generated here */

/* Initialize the debug LCD */
R LCD Init();

/* Displays the application name on the debug LCD */
R _LCD Display(0, (uint8 t *)" RSK+RX65N ") ;

R LCD Display(l, (uint8 t *)" Tutorial ");

R _LCD Display (2, (uint8 t *)" Press Any Switch ");
while (1U)

{

}

/* End user code. Do not edit comment generated here */

R20UT3564EG0100 Rev. 1.00 RENESAS Page 32 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

5.1.1 SPICode

The Okaya LCD display is driven by the SPI Master that was configured using Code Generator in §4.3.5. In
the e? studio Project Tree, open the file ‘r_cg_sci.h’ by double-clicking on it. Insert the following code in the
user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */
MD STATUS R SCI7 SPIMasterTransmit (uint8 t * const tx buf, const uintl6 t tx num);
/* End user code. Do not edit comment generated here */

Now, open the r_cg_sci_user.c file and insert the following code in the user area for global:

/* Start user code for global. Do not edit comment generated here */
/* Flag used locally to detect transmission complete */

static volatile uint8 t sci7_txdone;

/* End user code. Do not edit comment generated here */

Insert the following code in the transmit end call-back function for SCI7:

static void r sci7 callback transmitend(void)

{
/* Start user code. Do not edit comment generated here */
sci7 txdone = TRUE;
/* End user code. Do not edit comment generated here */

Now insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

VAR A EEEEE RSt AEEEEEE R R R AR R R

* Function Name: R SCI7 SPIMasterTransmit

* Description : This function sends SPI7 data to slave device.
* Arguments : tx buf -

* transfer buffer pointer

* tx num -

* buffer size

* Return Value : status -

* MD OK or MD ARGERROR

***/
MD_STATUS R SCI7 SPIMasterTransmit (uint8 t * const tx buf,
const uintlé6_t tx num)

{
MD STATUS status = MD OK;

/* clear the flag before initiating a new transmission */
sci7 txdone = FALSE;

/* Send the data using the API */
status = R _SCI7_SPI Master Send(tx buf, tx num);

/* Wait for the transmit end flag */
while (FALSE == sci7_txdone)
{
/* Wait */
}

return (status);

}

VAR R R AR EEEEEEE AR EE LR

* End of function R SCI7 SPIMasterTransmit

KK KKK KA AR AR KA KRR KA AR AR KA AR KRR AR AR AR A A AR A A A A A A A A A A A Ak A Ak k k%

This function uses the transmit end callback function to perform flow control on the SPI transmission to the
LCD, and is used as the main API call in the LCD code module.

R20UT3564EG0100 Rev. 1.00 RENESAS Page 33 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

5.1.2 CMT Code

The LCD code needs to insert delays to meet the timing requirements of the display module. This is achieved
using the dedicated timer which was configured using Code Generator in §4.3.3. Open the file r_cg_cmt.h
and insert the following code in the user area for function at the end of the file:

/* Start user code for function. Do not edit comment generated here */
void R CMT MsDelay(const uintlé t millisec);
/* End user code. Do not edit comment generated here */

Open the file r_cg_cmt_user.c and insert the following code in the user area for global at the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */
static volatile uint8 t one ms delay complete = FALSE;
/* End user code. Do not edit comment generated here */

Scroll down to the r_cmt_cmiO_interrupt function and insert the following line in the user code area:

static void r cmt cmiO_interrupt (void)

{
/* Start user code. Do not edit comment generated here */
one ms delay complete = TRUE;
/* End user code. Do not edit comment generated here */

Then insert the following function in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/*********************'k'k'k***
* Function Name: R CMT MsDelay

* Description : Uses CMTO to wait for a specified number of milliseconds

* Arguments : uintl6 t millisecs, number of milliseconds to wait

* Return Value : None
***/
void R_CMT MsDelay (const uintlé6_t millisec)

{

uintl6é_t ms_count = 0;

do
{
R_CMTO_Start();
while (FALSE == one ms_delay complete)
{
/* Wait */
}
R CMTO Stop();
one_ms_delay complete = FALSE;
ms_count++;
} while (ms_count < millisec);

}

/*****~k~k***************************'k'k***

End of function R CMT MsDelay

Kk ko k k kKA AR AR KKK KKK KAAAAA A A ALK K H KKK KKK KKK AAA LA I Kk kk ok hh kAR XA A A Ak /

R20UT3564EG0100 Rev. 1.00 RENESAS Page 34 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

5.2 Additional include paths

Before the project can be built the compiler needs some additional include paths added. Select the
CG_Tutorial project in the Project Explorer pane. Use the button in the toolbar to open the project settings.

Navigate to ‘C/C++ Build -> Settings ->Compiler -> Source and click the] button as shown in Figure 5-2.

Properties for CG_Tutorial .?,@
type filter text Settings - v -
> Resource
Builders 4 & Compiler Include file directories 28 8 -
4 G/ Buld " 3 Soues
Build Variables fﬁ Object
Change Toolchain Vers fé‘_: L'St_]
Dependency Scan d fg OFt'm'ZE
Device (22 Miscellaneous 3
Environment 2 User
Logging > (B CPU 1
Settings (# PIC/PID Preinclude files &
Tool Chain Editor (5 MISRA C Rule Check
. C/C++ General 4 %) Assembler
Project References @ Source
Run/Debug Settings g @ Object
@ List
@ Miscellaneous
@ User
P T — 4 B Linker Defines 28 8 il

@' [OK l ’ Cancel

Figure 5-2 Adding additional search paths

In the ‘Add directory path’ dialog, click the ‘Workspace’ button and in the ‘Folder selection’ dialog browse to the
‘CG_Tutorial/src’ folder and click ‘OK’. e? studio formats the path as show in Figure 5-3 below.

-

le%] Add directory path =

Directory:

Sworkspace_loc/${ProjMamel/src}

oK l ’ Cancel] | Workspace... l ’ File system...

Figure 5-3 Adding workspace search path

Repeat the above steps to add the ‘src/cg_src’ workspace search path. Select ‘Build Project’ from the ‘Project’

menu, or use the button. e? studio will build the project with no errors.

The project may now be run using the debugger as described in §6. The program will display ‘RSK+RX65N
Tutorial Press Any Switch’ on 3 lines in the LCD display.

R20UT3564EG0100 Rev. 1.00 RENESAS Page 35 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

5.3 Switch Code Integration

API functions for user switch control are provided with the RSK+. Locate the files rskrx65ndef.h,
r_rsk_switch.h and r_rsk_switch.c on the RSK Web Installer. These files can be found in the Tutorial project
for e? studio. Copy these files into the C:\Workspace\CG_Tutorial\src directory. Import these three files into
the project in the same way as the LCD files.

The switch code uses interrupt code in the files r_cg_icu.h, r_cg_icu.c and r_cg_icu_user.c and timer code in
the files r_cg_cmt.h, r_cg_cmt.c and r_cg_cmt_user.c, as described in §4.3.2 and §4.3.3. It is necessary to
provide additional user code in these files to implement the switch press/release detection and de-bouncing
required by the API functions in r_rsk_switch.c.

5.3.1 Interrupt Code

In the e? studio Project Tree, expand the ‘src/cg_src’ folder and open the file ‘r_cg_icu.h’ by double-clicking on
it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Function prototypes for detecting and setting the edge trigger of ICU IRQ */
uint8 t R ICU IRQIsFallingEdge (const uint8 t irqg no);

void R _ICU IRQSetFallingEdge (const uint8 t irqg no, const uint8 t set f edge);
void R_ICU IRQSetRisingEdge (const uint8 t irqg no, const uint8 t set r edge);

/* End user code. Do not edit comment generated here */

R20UT3564EG0100 Rev. 1.00 RENESAS Page 36 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

Now, open the r_cg_icu.c file and insert the following code in the user code area at the end of the file:

/* Start user code for adding. Do not edit comment generated here */

/***

* Function Name: R ICU IRQIsFallingEdge

Description : This function returns 1 if the specified ICU IRQ is set to
* falling edge triggered, otherwise 0.
* Arguments : uint8 t irg no

* Return Value : 1 if falling edge triggered, 0 if not

***/
uint8 t R ICU IRQIsFallingEdge (const uint8 t irg no)
{ uint8 t falling edge trig = 0x0;

if (ICU.IRQCR[irg no].BYTE & 04 ICU IRQ EDGE FALLING)

{ falling edge trig = 1;

}

return (falling edge trig);

}

KR KKK K K K Kk K K R K K K R K K K R K K K R K K R kK K R K K K R K K ok Kk R ok Kk ok kK ok R K ok K K ok K R ok Kk R Rk ok K kR ok K K

* End of function R _ICU IRQIsFallingEdge

***/

KK KKK K K K K K K K R K K K R K K K R K KKk K K R ok K K R K K K R K K ok Kk ok K ok ok K ok K K ok K K ok Kk R ok Kk R kK ok K kR ok K K

* Function Name: R ICU IRQSetFallingEdge

* Description : This function sets/clears the falling edge trigger for the

* specified ICU_IRQ.

* Arguments : uint8 t irg no

* uint8 t set f edge, 1 if setting falling edge triggered, 0 if
* clearing

* Return Value : None
***/

void R _ICU IRQSetFallingEdge (const uint8 t irg no, const uint8 t set f edge)
{
if (1 == set_f edge)
{
ICU.IRQCR[irg nol] .BYTE |= 04 ICU IRQ EDGE FALLING;
}
else

{
ICU.IRQCR[irg no] .BYTE &= (uint8 t) ~ 04 ICU IRQ EDGE FALLING;

}

/**

* End of function R_ICU_IRQSetFallingEdge

***/

/***

* Function Name: R _ICU IRQSetRisingEdge

* Description : This function sets/clear the rising edge trigger for the

* specified ICU_TIRQ.

* Arguments : uint8 t irg no

* uint8 t set r edge, 1 if setting rising edge triggered, 0 if

* clearing

* Return Value : None
***/

void R_ICU IRQSetRisingEdge (const uint8 t irg no, const uint8 t set r edge)
{
if (1 == set r edge)
{
ICU.IRQCR[irg no].BYTE |= 08 ICU IRQ EDGE RISING;
}
else

{
ICU.IRQCR[irg no] .BYTE &= (uint8 t) ~ 08 ICU IRQ EDGE RISING;

}

/**

* End of function R ICU IRQSetRisingEdge

kkkk*******************/

/* End user code. Do not edit comment generated here */

R20UT3564EG0100 Rev. 1.00 RENESAS
Jun 30, 2016

Page 37 of 57

RSK+RX65N 5. User Code Integration

Open the r_cg_icu_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r rsk switch.h"

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_icu_irg8 interrupt:

/* Start user code. Do not edit comment generated here */

/* Switch 1 callback handler */
R _SWITCH IsrCallbackl();

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_icu_irq9_interrupt:

/* Start user code. Do not edit comment generated here */

/* Switch 2 callback handler */
R_SWITCH IsrCallback2();

/* End user code. Do not edit comment generated here */

5.3.2 De-bounce Timer Code

Open the r_cg_cmt_user.c file and insert the following code in the user code area for include near the top of
the file:

/* Start user code for include. Do not edit comment generated here */

/* Defines switch callback functions required by interrupt handlers */
#include "r rsk switch.h"

/* End user code. Do not edit comment generated here */
In the same file insert the following code in the user code area inside the function r_cmt_cmi1_interrupt:

/* Start user code. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R_CMT1_Stop () ;

/* Call the de-bounce call back routine */
R_SWITCH_ DebouncelIsrCallback();

/* End user code. Do not edit comment generated here */

In the same file insert the following code in the user code area inside the function r_cmt_cmi2_interrupt:

/* Start user code. Do not edit comment generated here */

/* Stop this timer - we start it again in the de-bounce routines */
R_CMT2_ Stop ()

/* Call the de-bounce call back routine */
R_SWITCH DebouncelIsrCallback();

/* End user code. Do not edit comment generated here */

R20UT3564EG0100 Rev. 1.00 RENESAS Page 38 of 57
Jun 30, 2016

RSK+RX65N

5. User Code Integration

5.3.3 Main Switch and ADC Code

In this part of the tutorial we add the code to act on the switch presses to activate A/D conversions and display
the result on the LCD. In §4.3.4 we configured the ADC to be triggered from the ADTRGO# pin, SW3. In this
code, we also perform software triggered A/D conversion from the user switches SW1 and SW2, by

reconfiguring the ADC trigger source on-the-fly once an SW1 or SW2 press is detected.

In the e? studio Project Tree open the file ‘r_cg_userdefine.h’. Insert the following code the user code area,

resulting in the code shown below

/* Start user code for function. Do not edit comment generated here */

#define TRUE (1)
#define FALSE (0)

extern volatile uint8 t g adc_trigger;

/* used to stop warnings being generated in r cg intprg.c */
extern void r_sci2 transmitend_ interrupt (void);

extern void r sci2 receiveerror interrupt (void);

extern void r sci7 transmitend interrupt (void);

/* End user code. Do not edit comment generated here */

Open the file ‘r_cg_main.c’ and insert #include "r_rsk_switch.h" in the user code area for include, resulting in

the code shown below:

/* Start user code for include. Do not edit comment generated here */

#include "r okaya lcd.h"
#include "r rsk switch.h"
/* End user code. Do not edit comment generated here */

Next add the switch module initialization function call highlighted in the user code area inside the main

function, resulting in the code shown below:

void main (void)
{
R MAIN UserInit();
/* Start user code. Do not edit comment generated here */

/* Initialize the switch module */
R_SWITCH Tnit();

/* Initialize the debug LCD */
R LCD_Tnit();

/* Displays the application name on the debug LCD */
R _LCD Display (0, (uint8 t *)" RSK+RX65N ");

R _LCD Display(l, (uint8 t *)" Tut
R_LCD Display(2, (uint8 t *)" P

ress

while (10U)

{

}

/* End user code. Do not edit comment generated here */

}

In the same file, insert the declarations in the user code area for global, resulting in the code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Variable for flagging user requested ADC conversion */
volatile uint8 t g adc_trigger = FALSE;

/* Prototype declaration for cb switch press */
static void cb switch press (void);

/* Prototype declaration for get adc */
static uintl6 t get adc(void);

/* Prototype declaration for lcd display adc */
static void lcd display adc (const uintlé t adc_ result);

/* End user code. Do not edit comment generated here */

R20UT3564EG0100 Rev. 1.00 RENESAS
Jun 30, 2016

Page 39 of 57

RSK+RX65N 5. User Code Integration

Next add the highlighted code below in the user code area inside the main function and the code inside the
while loop, resulting in the code shown below:

void main (void)
{
R_MAIN UserInit();
/* Start user code. Do not edit comment generated here */

/* Initialize the switch module */
R SWITCH Tnit();

/* Set the call back function when SWl or SW2 is pressed */
R_SWITCH SetPressCallback(cb_switch press);

/* Initialize the debug LCD */
R _LCD Init ();

/* Displays the application name on the debug LCD */
R _LCD Display (0, (uint8 t *)" RSK+RX65N ");

R_LCD Display(l, (uint8 t *)" Tutorial ");

R_LCD Display(2, (uint8 t *)" Press Any Switch ");

/* Start the A/D converter */
R_S12AD0O_Start();

while (10)
{

uintl6 t adc result;

/* Wait for user requested A/D conversion flag to be set (SWl or SW2) */
if (TRUE == g adc_ trigger)
{

/* Call the function to perform an A/D conversion */

adc_result = get adc();

/* Display the result on the LCD */
lcd display adc(adc_result);

/* Reset the flag */
g_adc_trigger = FALSE;
}
/* SW3 1is directly wired into the ADTRGOn pin so will
cause the interrupt to fire */
else if (TRUE == g adc complete)
{
/* Get the result of the A/D conversion */
R_S12AD0O_Get_ValueResult (ADCHANNELO, &adc_result);

/* Display the result on the LCD */
lcd display_adc(adc_result);

/* Reset the flag */
g_adc_complete = FALSE;
}

else
{
/* do nothing */
}
}

/* End user code. Do not edit comment generated here */

}

Then add the definition for the switch call-back, get_adc and Icd_display_adc functions in the user code area
for adding at the end of the file, as shown below:

/* Start user code for adding. Do not edit comment generated here */

/***********************************‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k‘k******************************

* Function Name : cb switch press

* Description : Switch press callback function. Sets g adc trigger flag.
* Argument : none

* Return value : none

KKK K KKK KKK KK KK K K K KK K K R K K K K K R K R K K K K R Kk R R R R Rk Rk R Rk x /

static void cb_switch press (void)

{
/* Check if switch 1 or 2 was pressed */
if (g_switch flag & (SWITCHPRESS 1 | SWITCHPRESS 2))
{

R20UT3564EG0100 Rev. 1.00 RENESAS Page 40 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

/* set the flag indicating a user requested A/D conversion is required */
g_adc_trigger = TRUE;

/* Clear flag */
g_switch flag = 0x0;
}
}

/**********************************~k~k~k~k~k~k~k~k~k***********************************
* End of function cb switch press

**/
/**

Function Name : get adc

* Description : Reads the ADC result, converts it to a string and displays
* it on the LCD panel.

* Argument : none

* Return value : uintl6_t adc value

**/
static uintl6_t get adc (void)
{

/* A variable to retrieve the adc result */

uintlé_t adc_ result;

/* Stop the A/D converter being triggered from the pin ADTRGOn */
R_S12AD0_sStop();

/* Start a conversion */
R S12AD0 SWTriggerStart();

/* Wait for the A/D conversion to complete */
while (FALSE == g adc_complete)
{
/* Wait */
}

/* Stop conversion */
R _S12AD0_SWTriggerStop () ;

/* Clear ADC flag */
g adc_complete = FALSE;

R _S12AD0_Get ValueResult (ADCHANNELO, &adc result);

/* Set AD conversion start trigger source back to ADTRGOn pin */
R S12AD0_Start () ;

return (adc_result);

}

/**

* End of function get adc
~k~k~k***********************/

/**

* Function Name : lcd display adc

* Description : Converts adc result to a string and displays
* it on the LCD panel.

* Argument : uintl6_t adc result

* Return value : none

**/
static void lcd_display_adc (const uintlé_t adc_result)

{
/* Declare a temporary variable */
uint8 t a;

/* Declare temporary character string */
char lcd buffer[11] = " ADC: XXXH";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (uint8_t) ((adc_result & 0x0F00) >> 8);
lcd buffer[6] = (char) ((a < 0x0A) ? (a + 0x30) : (a + 0x37));
a = (uint8_t) ((adc_result & 0x00F0) >> 4);

R20UT3564EG0100 Rev. 1.00 RENESAS
Jun 30, 2016

Page 41 of 57

RSK+RX65N 5. User Code Integration

lcd buffer[7] = (char) ((a < 0x0A) 2 (a + 0x30) : (a + 0x37));
a = (uint8_t) (adc_result & 0x000F);
lcd buffer[8] = (char) ((a < 0x0A) ? (a + 0x30) : (a + 0x37));

/* Display the contents of the local string lcd buffer */
R_LCD Display(3, (uint8 t *)lcd buffer);

}

/**********************kk**

* End of function lcd display adc

**/

Open the file r_cg_s12ad.h’ by double-clicking on it. Insert the following code in the user code area for

function, resulting in the code shown below:

/* Start user code for function. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */
extern volatile uint8 t g adc complete;

/* Functions for starting and stopping software triggered A/D conversion */
void R S12AD0 SWTriggerStart (void) ;
void R_S12AD0_SWTriggerStop (void) ;

/* End user code. Do not edit comment generated here */

Open the file r_cg_s12ad.c’ by double-clicking on it. Insert the following code in the user code area for

adding at the end of the file, as shown below:

/* Start user code for adding. Do not edit comment generated here */
/***
* Function Name: R S12AD0 SWTriggerStart
* Description : This function starts the ADO converter.
* Arguments : None
* Return Value : None
***/
void R _S12AD0_SWTriggerStart (void)
{

IR (PERIB, INTB129) = 0U;

IEN (PERIB, INTB129) = 1U;

ICU.GENBL1.BIT.EN19 = 1U;

S12AD.ADCSR.BIT.ADST = 1U;
}

/***

End of function R S12AD0 SWTriggerStart

***/

/***

* Function Name: R S12AD0 SWTriggerStop
* Description : This function stops the ADO converter.
* Arguments : None
* Return Value : None
***/
void R _S12AD0_SWTriggerStop (void)
{

S12AD.ADCSR.BIT.ADST = 0U;

IEN (PERIB, INTB129) = 0U;

IR (PERIB, INTB129) = 0U;

ICU.GENBL1.BIT.EN19 = 0U;
}

/***

End of function R S12AD0 SWTriggerStop

***/

/* End user code. Do not edit comment generated here */

R20UT3564EG0100 Rev. 1.00 RENESAS
Jun 30, 2016

Page 42 of 57

RSK+RX65N 5. User Code Integration

Open the file r_cg_s12ad_user.c and insert the following code in the user code area for global, resulting in the
code shown below:

/* Start user code for global. Do not edit comment generated here */

/* Flag indicates when A/D conversion is complete */

volatile uint8 t g adc complete;
/* End user code. Do not edit comment generated here */

Insert the following code in the user code area of the r_s12adO0_interrupt function, resulting in the code shown
below:

static void r sl2ad0_interrupt (void)

{

/* Start user code. Do not edit comment generated here */
g_adc_complete = TRUE;
/* End user code. Do not edit comment generated here */

}

-

Select ‘Build Project’ from the ‘Project’ menu, or use the button. e? studio will build the project with no
errors.

The project may now be run using the debugger as described in §6. When any switch is pressed, the
program will perform an A/D conversion of the voltage level on the ADPOT line and display the result on the
LCD panel. Return to this point in the Tutorial to add the UART user code.

R20UT3564EG0100 Rev. 1.00 RENESAS Page 43 of 57
Jun 30, 2016

RSK+RX65N 5. User Code Integration

5.4 Debug Code Integration

API functions for trace debugging via the RSK serial port are provided with the RSK+. Locate the files
r_rsk_debug.h and r_rsk_debug.c on the RSK Web Installer. These files can be found in the
RSK+RX65N_Tutorial project for e? studio. Copy these files into the C:\Workspace\CG_Tutorial\src directory.
Import these two files into the project in the same way as the LCD files.

In the r_rsk_debug.h file, ensure the following macro definition is included:

/* Macro for definition of serial debug transmit function - user edits this */
#define SERIAL DEBUG WRITE (R SCI2 AsyncTransmit)

This macro is referenced in the r_rsk_debug.c file and allows easy re-direction of debug output if a different
debug interface is used.

5.5 UART Code Integration

5.51 SClCode

In the e? studio Project Tree, expand the ‘src/cg_src’ folder and open the file ‘r_cg_sci.h’ by double-clicking on
it. Insert the following code in the user code area at the end of the file:

/* Start user code for function. Do not edit comment generated here */

/* Exported functions used to transmit a number of bytes and wait for completion */

MD STATUS R SCI7 SPIMasterTransmit (uint8 t * const tx buf, const uintlé t tx num);

MD STATUS R SCI2 AsyncTransmit (uint8 t * const tx buf, const uintl6 t tx num);

/* Character is used to receive key presses from PC terminal */
extern uint8 t g rx char;

/* Flag used to control transmission to PC terminal */
extern volatile uint8 t g tx flag;

/* End user code. Do not edit comment generated here */

Open the file r_cg_sci_user.c. Insert the following code in the user area for global near the beginning of the
file:

/* Start user code for global. Do not edit comment generated here */

/* Global used to receive a character from the PC terminal */
uint8 t g rx char;

/* Flag used to control transmission to PC terminal */
volatile uint8_t g_tx flag = FALSE;

/* Flag used locally to detect transmission complete */
static volatile uint8 t sci7 txdone;
static volatile uint8 t sci2 txdone;

/* End user code. Do not edit comment generated here */

In the same file, insert the following code in the user code area inside the r_sci2_callback transmitend
function:

static void r sci2 callback transmitend(void)

{
/* Start user code. Do not edit comment generated here */
sci2 txdone = TRUE;

/* End user code. Do not edit comment generated here */

R20UT3564EG0100 Rev. 1.00 RENESAS Page 44 of 57
Jun 30, 2016

RSK+RX65N

5. User Code Integration

In the same file, insert the following code in the user code area inside the r_sci2_callback_receiveend
function:

static void r_sci2 callback receiveend(void)

{

/* Start user code. Do not edit comment generated here */
/* Check the contents of g rx char */
if (('c' == g_rx_char) || ('C'" == g_rx char))
{
g_adc_trigger = TRUE;
}

/* Set up SCI2 receive buffer and callback function again */
R_SCI2_Serial_ Receive((uint8_t *)&g_rx char, 1);

/* End user code. Do not edit comment generated here */

At the end of the file, in the user code area for adding, add the following function definition:

[KKK KKK KKK KK KA A KK KKK KKK KKK KKK KKK KKK Kk ok kKK KKK KKK A& K&k ko ko ok ok ok kKRR A AR KKKk kR Rk ok ok ok

*

* Description

Function Name: R SCI2 AsyncTransmit
This function sends SCI2 data and waits for the transmit end flag.

* Arguments ¢ tx buf -

*

* ok *

*

***/

MD STATUS R SCI2 AsyncTransmit (uint8 t * const tx buf, const uintl6 t tx num)

{

}

/**kk*************kkk***

transfer buffer pointer
tx num -
buffer size

Return Value : status -

MD OK or MD ARGERROR

MD_STATUS status = MD_OK;

/* clear the flag before initiating a new transmission */
sci2 txdone = FALSE;

/* Send the data using the API */
status = R_SCI2 Serial Send(tx buf, tx num);

/* Wait for the transmit end flag */
while (FALSE == sci2 txdone)
{
/* Wait */
}

return (status);

* End of function R SCI2 AsyncTransmit

***/

R20UT3564EG0100 Rev. 1.00 RENESAS
Jun 30, 2016

Page 45 of 57

RSK+RX65N 5. User Code Integration

5.5.2 Main UART code

Open the file ‘r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

/* Start user code for include. Do not edit comment generated here */
#include "r okaya lcd.h"

#include "r rsk switch.h"

#include "r rsk debug.h"

/* End user code. Do not edit comment generated here */

Add the following declaration to the user code area for global near the top of the file:

/* Start user code for global. Do not edit comment generated here */
/* Variable for flagging user requested ADC conversion */
volatile uint8 t g adc_trigger = FALSE;

/* Prototype declaration for cb_switch press */
static void cb_switch press (void);

/* Prototype declaration for get adc */
static uintl6 t get adc(void);

/* Prototype declaration for lcd display adc */
static void lcd display adc (const uintlé t adc result);

/* Prototype declaration for uart display adc */
static void uart display adc(const uint8 t adc count, const uintlé t adc result);

/* Variable to store the A/D conversion count for user display */
static uint8 t adc count = 0;

/* End user code. Do not edit comment generated here */

Add the following highlighted code to the user code area in the main function:

void main (void)
{
R_MAIN UserInit();
/* Start user code. Do not edit comment generated here */

/* Initialize the switch module */
R SWITCH Tnit();

/* Set the call back function when SW1l or SW2 is pressed */
R SWITCH SetPressCallback(cb switch press);

/* Initialize the debug LCD */
R LCD Init();

/* Displays the application name on the debug LCD */
R_LCD Display (0, (uint8 t *)" RSK+RX65N ");

R_LCD Display(l, (uint8 t *)" Tutorial ");

R _LCD Display(2, (uint8 t *)" Press Any Switch ");

/* Start the A/D converter */
R S12AD0 Start();

/* Set up SCI2 receive buffer and callback function */
R_SCI2_Serial Receive((uint8_t *)&g_rx char, 1);

/* Enable SCI2 operations */
R _SCI2 Start();

while (10)
{

uintl6é_t adc_result;

/* Wait for user requested A/D conversion flag to be set (SW1l or SW2) */
if (TRUE == g adc_trigger)
{

/* Call the function to perform an A/D conversion */

adc_result = get_adc();

/* Display the result on the LCD */
lcd display adc(adc_result);

/* Increment the adc_count */
if (16 == (++adc_count))

R20UT3564EG0100 Rev. 1.00 RENESAS Page 46 of 57
Jun 30, 2016

RSK+RX65N

5. User Code Integration

{

adc_count = 0;

}

/* Send the result to the UART */

uart display adc(adc_count, adc result);

/* Reset the flag */

g_adc_trigger = FALSE;
}
/* SW3 is directly wired into the ADTRGOn pin so will

cause the interrupt to fire */
else if (TRUE == g adc_complete)
{

/* Get the result of the A/D conversion */

R_S12AD0_Get ValueResult (ADCHANNELO, &adc result);

/* Display the result on the LCD */
lcd display adc(adc_result);

/* Increment the adc_count */
if (16 == (++adc_count))
{

adc_count = 0;

}

/* Send the result to the UART */
uart display adc(adc_count, adc result);
/* Reset the flag */
g_adc_complete = FALSE;

}

else

{
/* do nothing */

}

}

/* End user code. Do not edit comment generated here */

Then, add the following function definition in the user code area at the end of the file:

{

}

/**

* Function Name : uart display adc

* Description : Converts adc result to a string and sends it to the UARTL.
* Argument : uint8 t : adc_count

* uintlé_t: adc result

*

Return value : none
kk******************/

static void uart display adc (const uint8 t adc_count, const uintlé_t adc_result)

/* Declare a temporary variable */
char a;

/* Declare temporary character string */
static char uart buffer[] = "ADC xH Value: xxxH\r\n";

/* Convert ADC result into a character string, and store in the local.
Casting to ensure use of correct data type. */

a = (char) (adc_count & 0x000F);

uart _buffer[4] = (char) ((a < 0x0A) ? (a + 0x30) : (a + 0x37));
a = (char) ((adc_result & 0xO0F00) >> 8);

uart buffer[14] = (char) ((a < 0x0A) 2 (a + 0x30) : (a + 0x37));
a = (char) ((adc_result & 0x00F0) >> 4);

uvart buffer([15] = (char) ((a < 0xO0A) 2 (a + 0x30) : (a + 0x37));
a = (char) (adc_result & 0x000F);

uart_buffer[16] = (char) ((a < 0x0A) 2 (a + 0x30) : (a + 0x37));

/* Send the string to the UART */
R _DEBUG Print (uart buffer);

/**

* End of function uart display adc
**/

Select ‘Build Project’ from the ‘Build’ menu. e? studio will build the project with no errors.

R20UT3564EG0100 Rev. 1.00 RENESAS
Jun 30, 2016

Page 47 of 57

RSK+RX65N 5. User Code Integration

The project may now be run using the debugger as described in §6. Connect the RSK G1CUSBO port to a
USB port on a PC. If this is the first time the RSK has been connected to the PC then a device driver will be
installed automatically. Open Device Manager, the virtual COM port will now appear under 'Port (COM &
LPT)' as 'RSK USB Serial Port (COMXx)', where x is a number.

Open a terminal program, such as HyperTerminal, on the PC with the same settings as for SCI2 (see §4.3.5).
When any switch is pressed, or when ‘c’ is sent via the COM port, the program will perform an A/D conversion
of the voltage level on the ADPOT line and display the result on the LCD panel and send the result to the PC
terminal program via the SCI2. Return to this point in the Tutorial to add the LED user code.

5.6 LED Code Integration

Open the file r_cg_main.c’. Add the following declaration to the user code area for include near the top of the
file:

/* Start user code for include. Do not edit comment generated here */
#include "r okaya lcd.h"

#include "r rsk switch.h"

#include "r rsk debug.h"

#include "rskrx65ndef.h"

/* End user code. Do not edit comment generated here */

Add the following declaration to the user code area for global near the top of the file:

/* Start user code for global. Do not edit comment generated here */
/* Prototype declaration for cb_switch press */
static void cb switch press (void);

/* Prototype declaration for get adc */
static uintl6_t get adc(void);

/* Prototype declaration for lcd display adc */
static void lcd display adc (const uintl6_t adc_result);

/* Variable for flagging user requested ADC conversion */

volatile uint8 t g adc trigger = FALSE;

/* Prototype declaration for uart display adc */

static void uart display adc(const uint8 t adc_count, const uintlé_t adc_result);

/* Variable to store the A/D conversion count for user display */
static uint8 t adc_count = 0;

/* Prototype declaration for led display count */
static void led display count (const uint8 t count);

/* End user code. Do not edit comment generated here */

Add the following highlighted code to the user code area in the main function:

void main (void)
{
R_MAIN UserInit();
/* Start user code. Do not edit comment generated here */

/* Initialize the switch module */
R _SWITCH Tnit();

/* Set the call back function when SW1 or SW2 is pressed */
R _SWITCH SetPressCallback(cb switch press);

/* Initialize the debug LCD */
R _LCD Init();

/* Displays the application name on the debug LCD */
R_LCD Display(0, (uint8 t *)" RSK+RX65N ");

R _LCD Display(l, (uint8 t *)" Tutorial ");

R _LCD Display(2, (uint8 t *)" Press Any Switch ");

/* Start the A/D converter */
R S12AD0 Start();

R20UT3564EG0100 Rev. 1.00 RENESAS Page 48 of 57
Jun 30, 2016

RSK+RX65N

5. User Code Integration

/* Set up SCI2 receive buffer and callback function */
R_SCI2_ Serial Receive((uint8_t *)&g_rx char, 1);

/* Enable SCI2 operations */
R _SCI2 Start();

while (10)

{
uintlé_t adc result;

/* Wait for user requested A/D conversion flag to be set (SW1 or SW2)

if (TRUE == g adc_trigger)

{
/* Call the function to perform an A/D conversion */
adc _result = get adc();

/* Display the result on the LCD */
lcd display_adc(adc_result);

/* Increment the adc count and display using the LEDs */
if (16 == (++adc_count))
{
adc_count = 0;
}

led display count (adc_count);

/* Send the result to the UART */

uart display adc(adc_count, adc result);

/* Reset the flag */

g_adc_trigger = FALSE;
}
/* SW3 is directly wired into the ADTRGOn pin so will

cause the interrupt to fire */
else if (TRUE == g adc_complete)
{

/* Get the result of the A/D conversion */

R _S12AD0 Get ValueResult (ADCHANNELO, &adc result);

/* Display the result on the LCD */
lcd display adc(adc_result);

/* Increment the adc_count and display using the LEDs */
if (16 == (++adc_count))
{
adc_count = 0;
}

led display count (adc_count) ;

/* Send the result to the UART */
uart display adc(adc_count, adc_ result);
/* Reset the flag */
g_adc_complete = FALSE;

}

else

{
/* do nothing */

}

}

/* End user code. Do not edit comment generated here */

*/

R20UT3564EG0100 Rev. 1.00 RENESAS
Jun 30, 2016

Page 49 of 57

RSK+RX65N

5. User Code Integration

Then, add the following function definition in the user code area at the end of the file:

/**

* Function Name : led display count

* Description : Converts count to binary and displays on 4 LEDSO0-3
* Argument : uint8_t count

* Return value : none

**/

static void led display count (const uint8 t count)
{
/* Set LEDs according to lower nibble of count parameter */
LEDO = (uint8_t) ((count & 0x01) ? LED_ON : LED OFF);
LEDl = (uint8 t) ((count & 0x02) ? LED ON : LED OFF);
LED2 = (uint8 t) ((count & 0x04) ? LED ON : LED OFF);
LED3 = (uint8 t) ((count & 0x08) ? LED ON : LED OFF)

’

}

VAR E R EE R St e A AR EEEEE AR R R

* End of function led display count
R R R R R R R R R R I I I i b I i b I b b b I b b b b i i g

/* End user code. Do not edit comment generated here */

]

Select ‘Build Project’ from the ‘Build’ menu, or use the
errors.

" button. e? studio will build the project with no

The project may now be run using the debugger as described in §6. The code will perform the same but now

the LEDs will display the adc_count in binary form.

R20UT3564EG0100 Rev. 1.00 RENESAS
Jun 30, 2016

Page 50 of 57

RSK+RX65N

6. Debugging the Project

6. Debugging the Project

In the Project Explorer pane, ensure that the ‘CG_Tutorial’ project is selected. To enter the debug
configurations, click upon the arrow next to the debug button and select ‘Debug Configuration’. In order to run
the project there are two setting under ‘Renesas GDB Hardware Debugging’ -> ‘Debugger’ -> ‘Connection
Settings’ that need modifying.
Ensure that in debug configuration that the ‘Power Target From The Emulator(MAX 200mA) is set to No , and
the ‘Extal Frequency’ is set to the correct frequency, this can be found from the device schematics (in the case
of RSK+RX65N the setting should be 24.0000).
For more information on powering the RSK+RX65N please refer to the Usermanual.

[Main | %5 Debugger = Startup| B Source|] Common

Debug hardware: | E2 Lite (RX) * | Target Device: | R5F565M3 [I]
GDB Settings | Cennection Settings | Debug Tool Settings

4 Clock
Main Clock Source EXTAL
Extal Frequency[MHz] 24,0000
Permit Clock Source Change On Writing Internal Flash Memon, Yes

4 Connection with Target Board
Emulator (Auto)
Connection Type Fine
ITag Clock Frequency[MHz] 6.00
Fine Baud Rate[Mbps] 150
Hot Plug Mo

4 Power
Power Target From The Emulator (MAX 200mA) |
Supply Voltage 3.3V

4 CPU Operating Mode
Register Setting Single Chip

m

’ Revert

Apply

l

[Debug

J{

Close

Figure 6-1 Debug Configurations

R20UT3564EG0100 Rev. 1.00

Jun 30, 2016

RRENESAS

Page 51 of 57

RSK+RX65N

6. Debugging the Project

Connect the E2 Lite to the PC and the RSK+ E1 connector. Connect the Pmod LCD to the PMOD1 connector.
Connect the center positive +5V PSU to the PWR connector on the RSK+ and apply power.
In the Project Explorer pane, ensure that the ‘CG_Tutorial’ project is selected. To debug the project, click the

X button. The dialog shown in Figure 6-2 will be displayed.

Confirm Perspective Switch @

7~ This kind of launch is configured to open the Debug perspective when it suspends.

This Debug perspective is designed to suppert application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint
management.

Do you want to open this perspective now?

[#] Rernember my decision

Figure 6-2 Perspective Switch Dialog

Click Remember my decision to skip this dialog later. Click ‘YES’ to confirm that the debug window

perspective will be used.

The debugger will start up and the code will stop at the Code Generator function

‘PowerOn_Reset PC’ as shown in Figure 6-3.

|e?| Debug - CG_Tutorial/src/cg_src/r_cg_resetprg.c - €2 studio
Eile Edit Source Refactor Navigate Search Project RenesasViews Run Window Help
= [T SRR T ST Y B S U PHIF Oiter O G
¢
45 Debug 52 O, ~ 3%, BEH|ir|ep =8 | w
4 [CG_Tutorial HardwareDebug [Renesas GDB Hardware Debugging]
4 7 C6_Tutorialx [1] Nar
4 Thread 11 (single core) (Suspended : Signal : SIGTRAP:Trace/breakpoint trap)
= PowerON Reset PC{) at r_cg_resetprg.c:72 0xfff00000
o] Ci/Renesasfe? studio 52 0.0 1 4/DebugCompy/re-elf-gdb -rx-force-v2 --m-force-64bit-double (7.8.2)
+5 GDB server
]
[€] r_cq_resetprg.c 52 %%
fffBBOB8 void PowerON_Reset_PC(void)
#ifdef _ RXV2
75 fffeasae set_extb(__sectop("EXCEPTVECT"));
#endif
fffoeol7 set_intb(__sectop("CSVECT"));
#ifdef _ ROZ /* Initialize FPSW */
#define _ROUND (@x@0088001) /* Let FPSW RMbits=81 (round to zero) *
#else
#define _ROUND (exeooeeeon) /* Let FPSW RMbits=80 (round to nearesi
#endif
#ifdef _ DOFF
#define _DENOM (BxB0000108) /* Let FPSW DNbit=1 (denormsl as zero)
#else
B Cons.. 2 A
C6G_Tutorial HardwareDebug [Renesas GDB Hardware Debugging] C:/Renesas/e2 studia 5.2 0.0 1 4/DebugComp/ne-elf-gdb -
monitor set_io_access_width,RW,1,8c5c@,908286-9828d,90216-9821d,96226-9822d,96236-9823d, 98246 -9¢

Figure 6-3 Debugger start up screen

For more information on the e? studio debugger refer to the Tutorial manual. To run the code click the L&
button. The debugger will stop again at the beginning of the main function. Press U again to run the code.

R20UT3564EG0100 Rev. 1.00
Jun 30, 2016

RRENESAS Page 52 of 57

RSK+RX65N 7. Additional Information

7. Additional Information

Technical Support

For details on how to use e? studio, refer to
the help file by opening e? studio, then
selecting Help > Help Contents from the ‘Window [Help

menu bar. & v @ @5 ielcome

(7). Help Contents
&7 Search

Dynarnic Help
For information about the RX65N group microcontroller refer to the RX65N Group, RX651 Group Hardware Manual.
For information about the RX assembly language, refer to the RX Family Software Manual.
Technical Contact Details
Please refer to the contact details listed in section 8 of the “Quick Start Guide”.

General information on Renesas microcontrollers can be found on the Renesas website at:
https://www.renesas.com/

Trademarks
All brand or product names used in this manual are trademarks or registered trademarks of their respective
companies or organisations.

Copyright

This document may be, wholly or partially, subject to change without notice. All rights reserved. Duplication of
this document, either in whole or part is prohibited without the written permission of Renesas Electronics
Europe Limited.

© 2016 Renesas Electronics Europe Limited. All rights reserved.
© 2016 Renesas Electronics Corporation. All rights reserved.
© 2016 Renesas System Design Co., Ltd. All rights reserved.

R20UT3564EG0100 Rev. 1.00 RENESAS Page 53 of 57
Jun 30, 2016

https://www.renesas.com/

REVISION HISTORY

RSK+RX65N Code Generator Tutorial Manual

Rev.

Date

Description

Page

Summary

1.00

Jun 30, 2016

First Edition issued

C-1

Renesas Starter Kit+ Manual: Code Generator Tutorial Manual

Publication Date: Rev. 1.00 Jun 30, 2016

Published by: Renesas Electronics Corporation

LENESANS

SALES OFFICES Renesas Electronics Corporation http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Dusseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2016 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

RX65N Group

LENESANS

Renesas Electronics Corporation R20UT3564EG0100

	1. Overview
	1.1 Purpose
	1.2 Features

	2. Introduction
	3. Project Creation with e2 studio
	3.1 Introduction
	3.2 Creating the Project

	4. Code Generation Using the e2 studio plug in
	4.1 Introduction
	4.2 Code Generator Tour
	4.3 Code Generation
	4.3.1 Clock Generator
	4.3.2 Interrupt Controller Unit
	4.3.3 Compare Match Timer
	4.3.4 12-Bit A/D Converter
	4.3.5 Serial Communications Interface
	4.3.6 I/O Ports

	4.4 Building the Project

	5. User Code Integration
	5.1 LCD Code Integration
	5.1.1 SPI Code
	5.1.2 CMT Code

	5.2 Additional include paths
	5.3 Switch Code Integration
	5.3.1 Interrupt Code
	5.3.2 De-bounce Timer Code
	5.3.3 Main Switch and ADC Code

	5.4 Debug Code Integration
	5.5 UART Code Integration
	5.5.1 SCI Code
	5.5.2 Main UART code

	5.6 LED Code Integration

	6. Debugging the Project
	7. Additional Information

