PRODUCTION STRATEGY STRENGTHEN PRODUCTION RESILIENCE

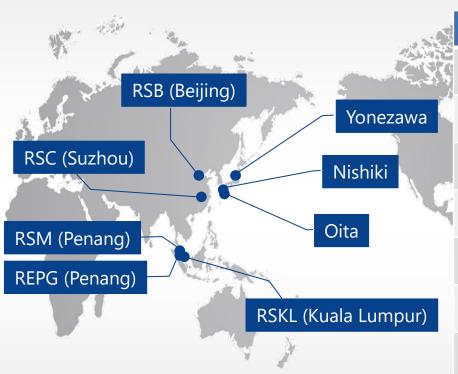
SEPTEMBER 29, 2021

MASAHIKO NOZAKI

EXECUTIVE VICE PRESIDENT

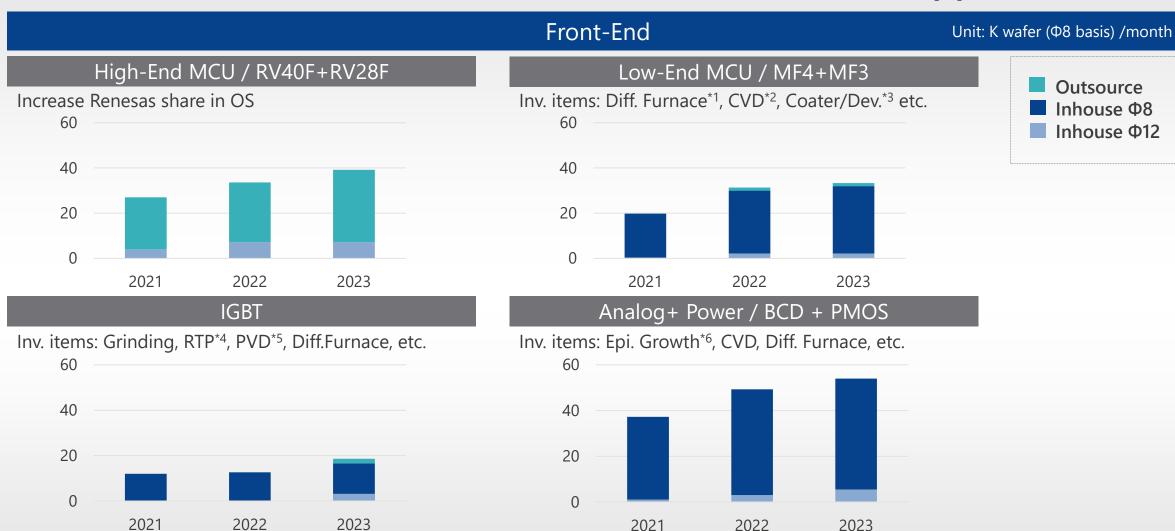
PRODUCTION & TECHNOLOGY UNIT

RENESAS ELECTRONICS CORPORATION

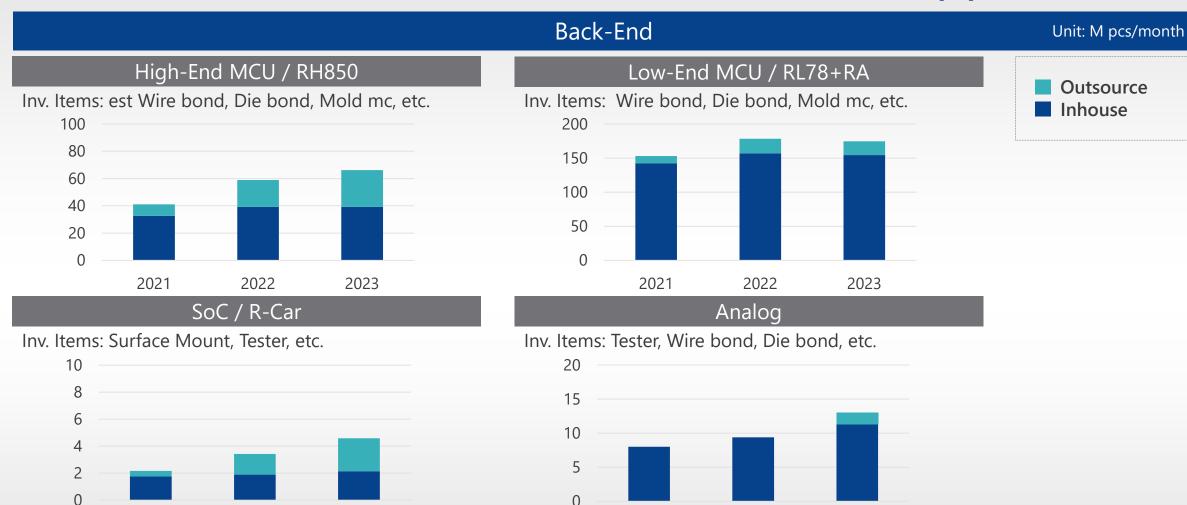

PRODUCTION STRATEGY (1)

- Keep fab-light strategy
 - Focus area: Analog, PMOS (IGBT) and High-end/Low-end MCU
- Inhouse fab : Process conversion to focus devices
- Outsource : Increase Renesas share by strengthening partnership

Inhouse front-end fab footprint Existing main products Focus devices Fab **IGBT**, Analog (incl. Dialog device) Naka N3 MCU, SOC **High-End MCU** Naka N2 MCU, PMOS PMOS, IGBT Naka N3/N2 Low-end MCU Palm Bay Saijo MCU, Analog, IGBT PMOS (IGBT & Switching devices) Kawashiri MCU **Low-End MCU (incl. Dialog device)** Takasaki Takasaki PMOS, Analog **IGBT** Saijo **High-Rel. Products Palm Bay** High-Rel. Products Kawashiri


PRODUCTION STRATEGY (2)

Inhouse back-end fab footprint


X.	Fab	Existing main products	Focus devices
	Yonezawa	Auto High-End MCU (BGA)	High-End MCU
	Oita	SoC (FCBGA)	SoC/R-Car
	Nishiki	Auto High-End MCU (LQFP)	High-End MCU
4	RSC	Auto High-End MCU (LQFP)	High-End MCU
	RSB	Non-Auto Low-End MCU (LQFP)	Low-End MCU (non-Auto)
	RSKL	Auto Low-End MCU (LQFP)	Low-End MCU (Auto)
	RSM	Auto PMOS, Analog	Analog
	REPG	Non-Auto Analog, SoC (only test)	Analog

INHOUSE PRODUCTION CAPACITY EXPANSION(1)

^{*1:}Diffusion Furnace *2:Chemical Vapor Deposition, *3: Coater Developer, *4 Rapid Thermal Processing *5 Physical Vapor Deposition, *6 Epitaxial Cristal Growth Furnace

INHOUSE PRODUCTION CAPACITY EXPANSION(2)

Outsource

IMPROVING RESILIENCE OF INHOUSE FABS (1)

To keep stable delivery to customers

Disaster-Resistant Factories

Continuous Improvement

Fire incident

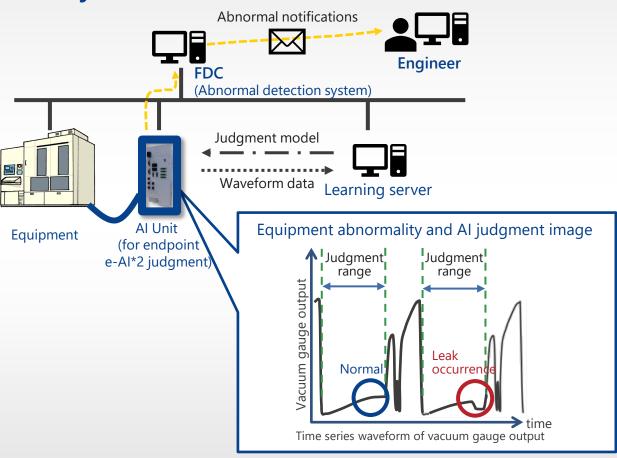
- Early detection (Install High-sensitivity smoke detectors)
- Early extinguishing (Install sprinklers to domestic fabs in Japan)

Natural disaster

Continuous measures based on the latest hazard maps
 ex) Re-Plan measures against 3m high flood in Kawashiri, Takasaki and Yonezawa

Pandemic

- Thorough implementation of infection prevention measures
- Horizontal deployment of one experience to others: ex) Cluster in Saijo


Material procurement crisis

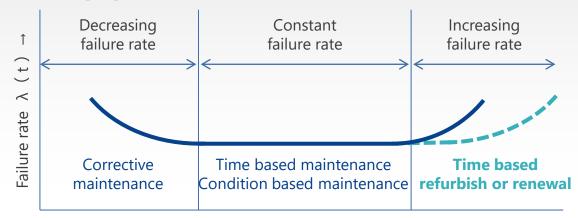
- Build a search system that directly links all materials to all products
- Optimization of material inventory and promotion of multi-sourcing

IMPROVING RESILIENCE OF INHOUSE FABS (2)

High productivity and high-quality factories

FDC*1 system with e-Al

- 2,000+ monitoring functions have been already installed in Renesas factories since 2017.
- Achieved a loss cost reduction of 320 million yen in last year by preventing quality issues.
- Over the next four years, another 2,000 monitoring functions is planned to be implemented (total of c. 4,000).
- Expect to achieve an additional loss cost reduction of 320 million yen.


^{*1} FDC: Failure Detection Classification, *2 e-Al: embedded-Artificial Intelligence

IMPROVING RESILIENCE OF INHOUSE FABS (3)

High productivity and high-quality factories

Stable operation of production equipment

Bathtub curve

Time t →

Efforts to achieve zero equipment failure

Previously

- Promote standard work based on 5S*1
- Selection of appropriate maintenance methods based on failure rate and age (bathtub curve)
- Strengthen the ability to pursue the root cause
- Improvement of individual skill levels

New Phase

- Time based refurbish or renewal (e.g. Exposure machine, CVD,CMP @N3)
- Promote predictive maintenance using endpoint e-Al
- Strengthen company-wide implementation of standard work based on 5S

^{*1 5}S: Sort out, Set-in-order, Shine, Standardize, Sustain

IMPROVING RESILIENCE OF INHOUSE FABS (4)

To keep stable delivery to customers

Autonomous Learning Fabs

- Communicate incidents to the company immediately
- Concentrate resources and authority for early recovery

- A mechanism for sharing the experience of a single factory within inhouse Fabs
- Learning and training

- Feedback system using internal audit and survey
- Ranking system among fabs

Growth through benchmarking with other companies

SUSTAINABILITY INITIATIVE

Greenhouse gas emissions

- Disclosed the Scope 1-3 GHG emission data
- Set the target for GHG emissions
 - **2050 Carbon Neutral (Scope 1+2)**
 - **2030 GHG -60% vs 2013**
- Submitted the commitment letter for SBT

Water resource

- Disclosed water usage, withdrawal, discharge data
- Identified the water-stressed regions / facilities
- Updated the water management policy
- 2H 2021 Set the target and plan for the water usage
- 1H 2022 Third-party verification on water data

Renesas.com