

Performance Comparison of IDT Tsi381 and PLX PEX8111

80E2000_AN001_04

October 1, 2009

6024 Silver Creek Valley Road San Jose, California 95138 Telephone: (408) 284-8200 • FAX: (408) 284-3572 Printed in U.S.A. ©2009 Integrated Device Technology, Inc.

GENERAL DISCLAIMER Integrated Device Technology, Inc. ("IDT") reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance. IDT does not assume responsibility for use of any circuitry described herein other than the circuitry embodied in an IDT product. Disclosure of the information herein does not convey a license or any other right, by implication or otherwise, in any patent, trademark, or other intellectual property right of IDT. IDT products may contain errata which can affect product performance to a minor or immaterial degree. Current characterized errata will be made available upon request. Items identified herein as "reserved" or "undefined" are reserved for future definition. IDT does not assume responsibility for conflicts or incompatibilities arising from the future definition of such items. IDT products have not been designed, tested, or manufactured for use in, and thus are not warranted for, applications where the failure, malfunction, or any inaccuracy in the application carries a risk of death, serious bodily injury, or damage to tangible property. Code examples provided herein by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of such code examples shall be at the user's sole risk.

Copyright $^{\odot}$ 2009 Integrated Device Technology, Inc. All Rights Reserved.

The IDT logo is registered to Integrated Device Technology, Inc. IDT is a trademark of Integrated Device Technology, Inc.

1. Performance Comparison of IDT Tsi381 and PLX PEX8111

This report compares the IDT Tsi381 versus the PLX PEX 8111-BB and PEX 8112-AA. It highlights the performance advantages of using the Tsi381 over the two PLX devices.

This document discusses the following:

- "Throughput Measurements"
- "Latency Measurements"

Terms

- Upstream transaction In the context of a PCIe-to-PCI bridge, this transaction flow starts on a PCI bus and ends on a PCIe link.
- Downstream In the context of a PCIe-to-PCI bridge, this transaction flow starts on a PCIe link and ends on a PCI bus.
- Latency The time required for a transaction to pass from one side of a bridge to another. The method of measurement depends on the type of transaction.

Revision History

80E2000_AN001_04, Formal, October 2009

This document was rebranded as IDT. It does not include any technical changes.

80E2000_AN001_03, Formal, April 2008

This document includes throughput measurements.

80E2000_AN001_02, Formal, November 2006

This document was updated to include 32- and 64-byte transaction test results.

80E2000_AN001_01, Formal, November 2006

This is the first version of this document.

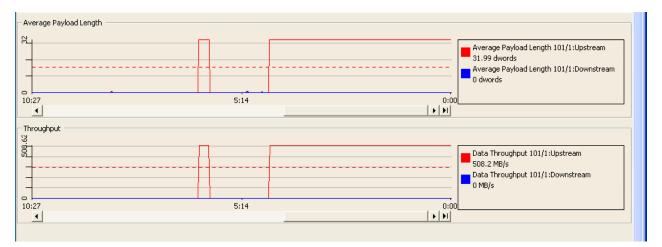
1.1 Throughput Measurements

This section consists of a lab analysis comparison between the Tsi381 and the PLX 8112, as well as simulation throughput analysis of the Tsi381.

1.1.1 Lab Throughput Analysis

This section compares throughput measurements of the IDT Tsi381 and the PLX PEX 8112-AA. Please note that the throughput tests do not include bidirectional traffic. Each test is of a single direction of a particular size and type of transaction.

Unless noted, the default register settings for the devices were used.


1.1.1.1 Throughput Measurement Method

The test setup for the throughput measurements is described in "Throughout and Latency Test Setup".

PCIe Performance Measurement Method

Throughput was monitored using the Agilent E2960 Protocol Tester Realtime Statistics display. This display measures card performance in megabytes per second (MBps).

The actual measurement was taken from a TCL script provided by Agilent called PerformancePrint. This script was a text list of sequential measurements reported every second for 10 seconds.

1.1.1.2 PCI Upstream Reads without Short-Term Caching

Transaction Type	Payload Size (Bytes)	PCI Bus Speed (MHz)	Tsi381 Throughput (MB/s)	PLX 8112 Throughput (MB/s)	IDT Performance Improvement	Footnote
PCI Mem Read Multiple	4096	66	85.7	46.3	85.4%	а
	2048	66	85.5	52.0	64.3%	а
	1024	66	85.4	51.9	64.5%	а
	512	66	80.3	50.3	59.7%	а
	256	66	53.2	47.4	12.3%	
	128	66	36.1	31.6	14.1%	
	64	66	20.5	16.8	22.0%	
	32	66	10.7	8.7	22.9%	
	16	66	5.5	4.2	29.8%	
	8	66	2.8	2.2	25.9%	
Note a) The Tsi381 Regist	ers were configur	ed as follows duri	ng this test: Prefe	etch Control Regis	ter (offset BC) = 0	03FFFFFFF.

Table 1: PCI Upstream Reads without Short-Term Caching

Summary

The Tsi381 performance improvement over the 8112 increases according to the payload size.

1.1.1.3 PCI Upstream Reads with Short-term Caching

Table 2: PCI Upstream	Reads with	Short-Term	Caching
-----------------------	-------------------	------------	---------

Transaction Type	Payload Size (Bytes)	PCI Bus Speed (MHz)	Tsi381 Throughput (MB/s)	PLX 8112 Throughput (MB/s)	IDT Performance Improvement	Footnote
PCI Mem Read Multiple	4096	66	85.4	46.3	84.6%	а
	2048	66	86.6	52.0	66.4%	а
	1024	66	86.6	51.9	67.0%	а
	512	66	86.7	50.3	72.4%	а
	256	66	86.7	47.4	83.0%	а
	128	66	86.8	31.6	174.7%	а
	64	66	59.3	16.8	253.1%	а
	32	66	32.9	8.7	278.2%	а
	16	66	17.4	4.2	314.8%	а
	8	66	8.9	2.2	306.4%	а

Note a) The Tsi381 Registers were configured as follows during this test:

• Prefetch Control Register (offset 0x0BC) = 0x03FFFFFFF.

• PCI Miscellaneous Control and Status Register (offset 0x044) = 0x7D9F_1900 (this sets the Short Term Caching Enable bit).

Summary

The Tsi381's short-term caching feature can cause noticeable performance improvements when sequential transfers of a small payload size are required.

1.2 Tsi381 Simulation Throughput Analysis

The Tsi381's simulation throughput was measured in the upstream and downstream directions for both read and write transactions. The results for both measurements are detailed in the following sections.

1.2.1 Simulation

1.2.1.1 Test Setup

The test results were derived from simulation. The Tsi381's simulation environment consists of the Tsi381 device with bus functional models (BFMs) on both the PCI and PCI-e interfaces. The BFMs were used to initiate read and write transactions through the Tsi381, as well as provide an ideal target response. The PCI bus frequency was equal to 66 MHz for all tests.

1.2.1.2 Test Results

PCI Burst Size (bytes)	Maximum Sustained Throughput (Mbytes/s)
32	147.1
64	183.3
128	208.9
256	206.2

Table 3: Upstream Writes

Table 4: Upstream Reads

PCI Burst Size (bytes)	Maximum Sustained Throughput (Mbytes/s)
32	128.7
64	159.3
128	162.2
256	151.4

PCI-e Data Payload Size (bytes)	Maximum Sustained Throughput (Mbytes/s)
32	144.8
64	179.9
128	197.7

Table 6: Downstream Reads

PCI-e Data Payload Size (bytes)	Maximum Sustained Throughput (Mbytes/s)
32	110.9
64	159.4
128	193.9
256	197.9

1.3 Latency Measurements

This section compares latency measurements of the IDT Tsi381 and the PLX PEX 8111.

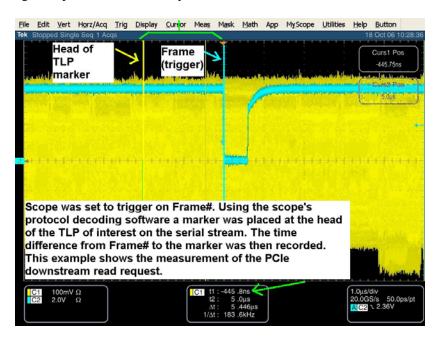
1.3.1 Latency Test Results

Table 7: Latency Test Results

Transaction ^a				Device			
Туре	Direction	Size	IDT Tsi381	PLX PEX 8111	Difference	Performance Improvement	
PCI posted write	Upstream	128 bytes	696 ns	945 ns	249 ns	26%	
white		64 bytes	456 ns	725 ns	269 ns	37%	
		32 bytes	336 ns	589 ns	253 ns	43%	
		8 bytes	248 ns	485 ns	237 ns	49%	
PCIe posted write	Downstream	128 bytes	904 ns	934 ns	30 ns	3%	
write		64 bytes	632 ns	666 ns	34 ns	5%	
		32 bytes	499 ns	552 ns	53 ns	10%	
		8 bytes	424 ns	465 ns	41 ns	9%	
PCI read	Upstream	128 bytes	200 ns	474 ns	274 ns	58%	
request		64 bytes	200 ns	472 ns	272 ns	58%	
		32 bytes	200 ns	474 ns	274 ns	58%	
		8 bytes	200 ns	461 ns	261 ns	57%	
PCIe read	Downstream	128 bytes	364 ns	445 ns	81 ns	18%	
request		64 bytes	364 ns	436 ns	72 ns	17%	
		32 bytes	364 ns	433 ns	69 ns	16%	
		8 bytes	364 ns	438 ns	74 ns	17%	

Transaction ^a				IDT Derformenes		
Туре	Direction	Size	IDT Tsi381	PLX PEX 8111	Difference	Performance Improvement
PCI read completion	Upstream ^b	128 bytes	743 ns	915 ns	172 ns	19%
completion		64 bytes	500 ns	681 ns	181 ns	27%
		32 bytes	380 ns	564 ns	184 ns	33%
		8 bytes	295 ns	473 ns	178 ns	38%
PCIe read	Downstream ^c	128 bytes	795 ns	967 ns	172 ns	18%
completion	ion	64 bytes	548 ns	683 ns	135 ns	20%
		32 bytes	417 ns	488 ns	71 ns	15%
		8 bytes	315 ns	465 ns	150 ns	32%

Table 7: Latency Test Results (Continued)


a. All transactions were measured based on a x1 PCIe link and a 66-MHz PCI bus configuration.

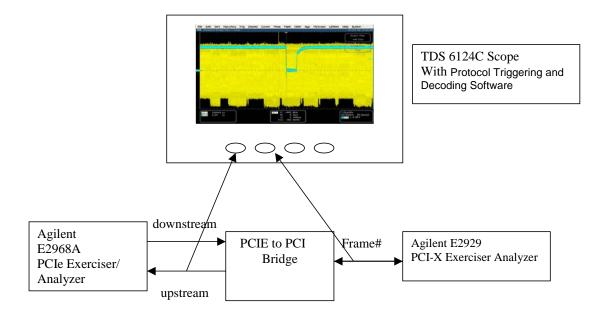
b. Upstream Completion with Data for Downstream non-posted request.

c. Downstream Completion with Data for Upstream non-posted request.

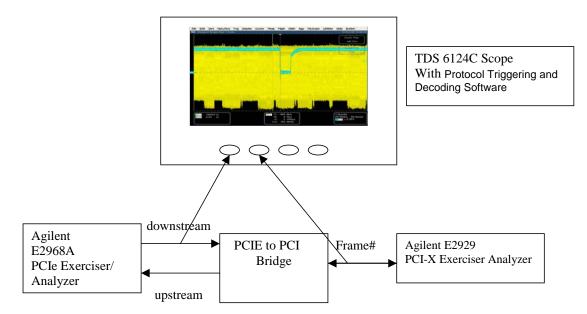
1.3.2 Latency Test Cases

This section presents latency measurements for six test cases of the PEX 8111-BB. The following figure explains how the latency measurements were made for the test cases.

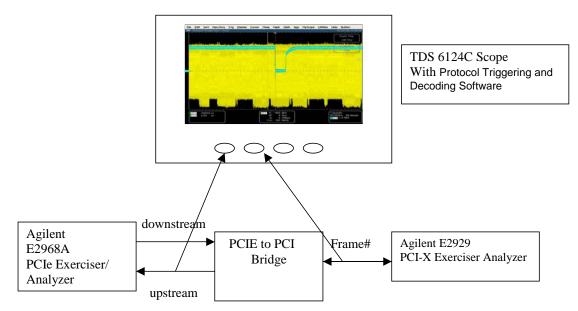
The measurements were made by capturing the serial PCIe stream and triggering on the FRAME# signal. The serial stream (upstream or downstream) is decoded by post processing the data using the serial protocol decoding software on board the scope. A marker is placed at the head of the TLP of interest, and the latency measurement is made by measuring the time from the marker to the trigger.


The trigger out from the Agilent Protocol Analyzer was not used for latency measurement due to its long trigger delay and its 64 ns uncertainty for the x1 lane width.

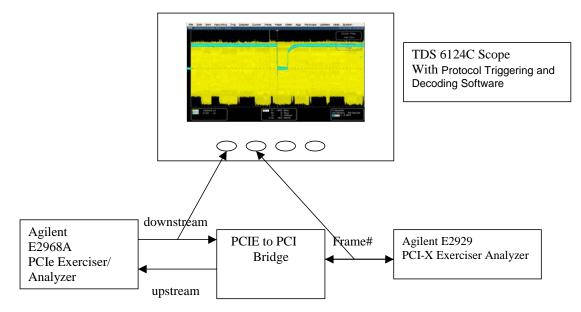
The Agilent E2928 PCI exerciser analyzer was used to measure transactions on the PCI bus.


1.3.2.1 PCI Posted Write (Upstream)

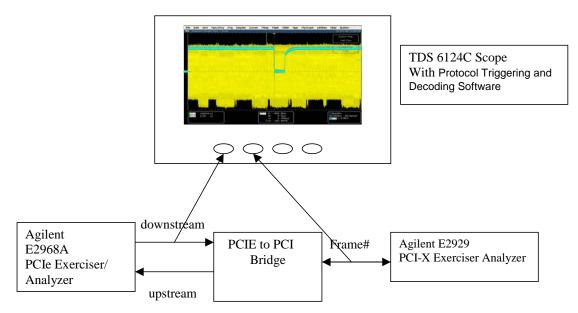
This measurement was made from the assertion of FRAME# on the PCI bus to the head of the upstream TLP.


1.3.2.2 PCIe Posted Write (Downstream)

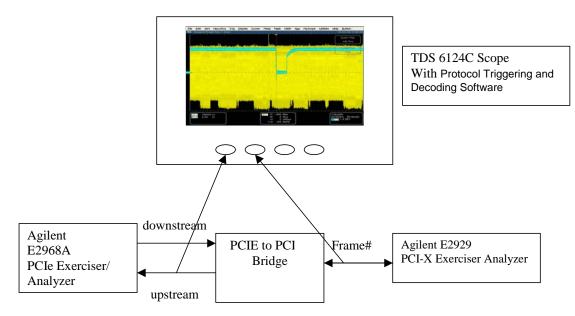
This measurement was made from the head of the downstream TLP to the assertion of FRAME# on the PCI bus.


1.3.2.3 PCI Read Request (Upstream)

Initial Read request latency for PCI was measured from the assertion of FRAME# to the head of the upstream TLP.


1.3.2.4 PCIe Read Request (Downstream)

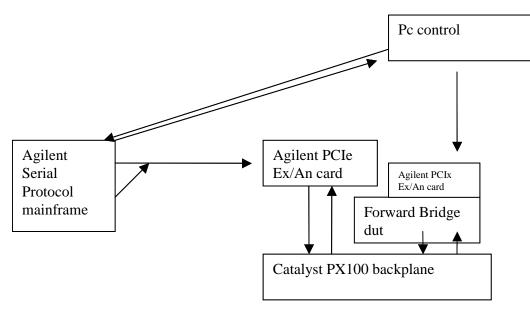
Initial Read request latency for PCIe was measured from the head of the downstream TLP to the assertion of FRAME#.


1.3.2.5 PCI Read Completion (Upstream)

This measurement was made from the starting character of the downstream TLP (data return) to the de-assertion of FRAME# on the PCI bus.

1.3.2.6 PCIe Read Completion (Downstream)

This measurement was made from the de-assertion of FRAME# on the PCI bus when data is being driven into the PEX 8111-BB until the starting character of the upstream TLP of data being driven out of the bridge. During the read, the Agilent PCI target was slow to respond on the initial read (this delay does not occur on subsequent reads but the measurement was taken on the first read). As seen in the second PCI waveform signal capture below, the 10 clocks of latency (delayed TRDY#) are present. This was removed from the measurement in order to not penalize the bridge under test. The target measurement is adjusted as if the target was responding as fast as the PCI protocol allows. As per the PCI spec, "The first data phase on a read transaction requires a turn around cycle (enforced by the target through TRDY#)."


_PCI_CLK all	0101010		010101010	1010101	01010101
_AD[63-32] all	00000000		000001F9		000
_AD[31_0] all	80000700	80000000	F8000000	+000	09000000
_C/BE[7-4] all					0
_C/BE[3-0] all	0	6		0	
_FRAME# all	1		0		1
_IRDY# all	1		0		
_DEVSEL# all	1		0		
_STOP# all					
_TRDY# all					
_GNT# all					1
_REQ# all		1			1
_ACK64#_TZ all		1			1
_REQ64#_TZ all		1 1 1			1
_ACK64# all		1			1
_REQ64# all		1			1
_RST# all					1
_PERR# all					1
_PAR all	0	1	0	1	0
_PAR64 all	0		1		

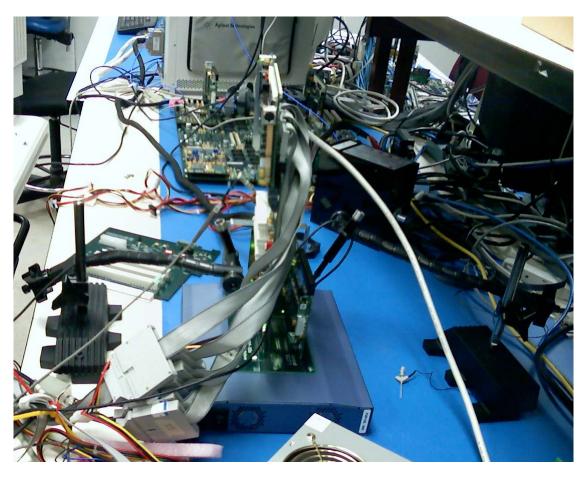
1.3.3 Throughout and Latency Test Setup

1.3.3.1 Test Environment for Throughput Measurements and PLX 8111 Latency Measurements

This section describes the hardware test environment.

System Setup

- A Catalyst two-slot backplane with model number PX100 was used.
- The appropriate (Tsi381, 8111, 8112) evaluation board was connected directly into slot 1 of the Catalyst backplane.
- The Agilent E2928 PCI Exerciser/Analyzer card was plugged into the top slot of the evaluation board.
- An ATX power supply provided power to the PCI bus through a connector on the evaluation board.
- The Agilent PCIe Exerciser/Analyzer card was connected to slot 2 of the Catalyst backplane.
- The Catalyst backplane supplied power and reset to both boards, as well as clocking to the evaluation board.
- The Agilent PCIe Exerciser/Analyzer clock source was internal.
- The Agilent serial protocol mainframe was connected to the Agilent PCIe Exerciser/Analyzer card through the E2942A single probe Y-cable. This cable allowed the simultaneous use of one active probe board for the exerciser and analyzer (using two I/O modules).
- The Agilent Exerciser/Analyzer software operated on a Control PC. The PC was connected to the Agilent PCIe hardware through Ethernet.


- The Agilent PCI exerciser analyzer was connected to the Control PC through its proprietary fast-bus interface. The Control PC operated the Exerciser/Analyzer control software.
- The Control PC provided full control of stimulus and response of the PCIe and PCI sides of the bridge.

Tektronix Scope

The latency measurements were made using a Tektronix TDS6124C oscilloscope. This scope has a 12-GHz bandwidth, 20-GSps sample rate, and 32 MB of storage on each of its four channels. It also has the Protocol Triggering and Decoding Software, which can easily decode the 8b/10b serial data streams, and set serial pattern markers after capture.

Complete Test Setup

1.3.3.2 Tsi381 Test Environment

All tests performed on the Tsi381 were based on Verilog simulation using PCIe and PCI bus functional models. The test bench setup consists of a PCIe bus functional model (BFM) on the primary side of the Tsi381, which acts as a Root Complex; and four PCI BFMs on the secondary side, which act as four different PCI devices. The PCIe BFM on the primary side of the Tsi381 generates TLPs on the link, while the PCI BFM generates all PCI transactions on the secondary side.

In the simulations, the downstream measurements were made from the STP (start of the TLP) symbol on the PIPE (PHY to PCIe) interface to the assertion of FRAME# on the PCI bus, while the upstream measurements were made from the assertion of FRAME# on the PCI bus to the STP symbol on the PIPE interface.

To these latency numbers, we added the latency numbers for the SerDes PHY Interface to obtain the overall Tsi381 latency number. This method of determining the Tsi381's latency was used because it required less time for data collection.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 *for SALES:* 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com *for Tech Support:* email: ssdhelp@idt.com phone: 408-284-8208 document: 80E2000_AN001_04

October 1, 2009