Quick Start

DEMO8766G Demonstration Board for ADC1002S020

Rev. 2.0 — 2 July 2012

Quick Start

Document information Info Content Keywords DEMO8766G, PCB769-2, Demonstration board, ADC, Converter, ADC1002S020 Abstract This document describes how to use the demonstration board DEMO8766G for the analog-to-digital converter ADC1002S020.

Overview

Revision history

Rev	Date	Description
2.0	20120702	Rebranded.
0.1	20080612	Initial version.

1. Quick start

1.1 Setup overview

Figure Fig 1 presents the connections to measure DEMO8766G.

1.2 Power supply

The board is powered with a single 12 V_{DC} power supply. A power supply regulator is used to supply all the circuitry on the board.

Table 1. General power supply

1.3 DC voltage adjustments

The ADC1002S020 allows to adjust the full scale input signal from 1.6 V to 2.4 V.

Table 2. DC voltage adjustments

Name	Function	View
P1	VRT trimmer – TOP reference adjustment	
TP1	VRT test point – TOP reference value (typ 3.3 V)	
P2	VRB trimmer – BOT reference adjustment	
TP5	VRB test point – BOT reference value (typ 1.2 V)	P3 TP7
P3	OFS trimmer – Input signal DC offset adjustment	
TP3	VI+OFS test point – Input signal DC offset (typ 2.25 V)	
TP7	VRM test point – MIDDLE reference value (typ 2.25 V)	

1.4 Input signals (VI, CLK)

To ensure a good evaluation of the device, the input signal and the input clock must be synchronized together.

Moreover, the input frequency (Fi, MHz) and the clock frequency (Fclk, Msps) should follow the formula:

, where M is an odd number of period and N is the number of samples.

Table 3. Input signals

Name	Function	View
J2	VI connector – Analog input signal (50 Ω matching)	
J3	CLK connector – Clock input signal (50 Ω matching)	

1.5 Output signals (D0 to D9, IR)

Table 4. Output signals

Name	Function		View
TP10 to TP30	Array connector – A range signal (IR)	DC digital output(D0 to D9) and In	
DS1	IR green light – It indicates that the analog input signal is in the full scale range		TP10 to TP30
K1	OEN switch – Output enable selection		
	Active output	High impedance output	

2. Example

2.1 Setup example

