

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

82V391x / 8V893xx WAN PLL Device Families –
Device Driver User’s Guide

Version 1.2

April 29, 2014

IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

Table of Contents
1. Introduction .. 1

2. Software Architecture ... 2

2.1. Overview ... 2

2.2. Hardware Abstraction Layer (HAL) ... 2

2.3. Functional Modules .. 3

3. Getting Started .. 5

3.1. Installation .. 5

3.2. Directory Structure ... 5

3.3. Operating System Adaptation ... 7

3.4. Build Tool Chain Specification ... 8

3.5. Device Access (HAL) .. 9

3.6. Simulated Device .. 11

3.7. Initialization ... 11

4. Sample Applications .. 13

5. Debug Tools .. 15

IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

1. Introduction
This document is the programmer’s user guide to the device driver for 82V391x / 8V893xx family of
devices. The below list describes the supported device families by the device driver.

• 82V391x Device Family
o 82V3910
o 82V3911
o 82V33930

• 8V893xx Device Family
o 8V89316
o 8V89317

This user's guide supports device drivers up to version 1.2.

All of the information in this document is relevant to any of the supported devices. This document is
partitioned into the following sections:

• Software architecture – architecture of device driver
• Getting Started – Installation, initialization, basic tests
• Sample Application – example configurations
• Debug utilities – tools and utilities to diagnose problems

The driver package contains device driver source code which is written in ANSI C (C89). It should be
compatible with any standard C compiler and linker.

Included with the device driver package is the following documentation:

• Release Notes – Information about the device driver package both current and historical. Any
changes to APIs and relevant bug fixes are listed here.

• Device Driver Application Programmer’s Interface (API) Reference Manual –a comprehensive
reference for all functions, data types, and variables.

o Comes in two formats, PDF and HTML. Both versions support searching
• Device Driver User’s Guide – this document. How-to guide to the device driver package.

Customers are encouraged to contact IDT support (tsd@idt.com / IDT Technical Support Web Site) for
the current list of support devices or any questions regarding the device driver.

1
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

mailto:tsd@idt.com
https://www.idt.com/support/technical-support

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

2. Software Architecture

2.1. Overview

The device driver is portioned into two parts, the hardware abstraction layer (HAL) and functional
modules. The below diagram illustrates a high level architectural view of the driver.

Sample Application

OutputDPLLInputDebug
Tools

General

Hardware Abstraction Layer

R
TO

S Device
Driver

Read Write

O
S

 A
da

pt
at

io
n

Hardware Device

Customer supplied software IDT supplied
software/hardware

High Level API

APLL

Figure 1 Device driver architecture

2.2. Hardware Abstraction Layer (HAL)

At the lowest layer is the hardware abstraction layer (HAL). This layer of code abstracts specific system
access about the targeted device. The HAL acts as a bridge between the device driver and system
specific methods to access hardware.

The driver functional modules use the HAL to access the device in a consistent manner. All functional
modules use the HAL interface to access the device.

Customers must provide read and write functions to bind to the driver (HAL). Using this architecture a
variety of different read/write functions can be “plugged” into the driver. Functional modules remain
system agnostic.

2
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

Hardware Abstraction Layer

I2C Driver
RD Func. WR Func.

File System
RD Func. WR Func.

Hardware Device

Device
Driver

Bind Read/Write
functions to HAL

Figure 2 Hardware abstraction layer (HAL)

The driver package contains a number of read/write functions that have been created for the purposes
of interfacing the driver to the evaluation platform and the simulated device. They serve as templates
for customers to develop their own functions.

2.3. Functional Modules

This section outlines various functional modules present in the device driver. There are 5 core modules
and 2 optional modules. For a complete list of application programmer’s interfaces please see specific
device API Reference Manual.

• General – Device wide features
o Device initialization
o Interrupt control
o Device protection mode

• Input - Input provisioning and status
o Input Configuration (including input priority selection)
o Input Frequency Monitoring

• Output – Output provisioning and status
o Output Configuration (including PPS, 8kHz, 2kHz pulse)

• DPLL - All digital and analog phase locked loop (PLL) related functionality is contained in this
module.

o DPLL provisioning
o Clock path selection (multiple ways to travel through the device)
o Phase detection
o DPLL bandwidth and damping factor

3
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

• APLL – APLL block for generating ultra-low jitter differential outputs

o APLL provisioning
o Only required for output path that has APLL populated

• High Level API – A set of functions that simplify provisioning of the device. These functions are
optional.

• Debug Tools - This functional module contains a set of tools to aid in debugging issues. An
optional component to the device driver.

The high level APIs are a set of functions that simplify the provisioning of the device. It uses the
core modules (output, general, input, DPLL, and APLL) to achieve this functionality. Customers
who have specific requirements can elect not to use these functions and directly call core API
functions. In these cases the high level API can be used as additional sample code.

4
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

3. Getting Started
As mentioned in the introduction, this section contains the procedure for device driver installation,
initialization and basic tests. Follow the below sequence to integrate the device driver into your system.

Procedure for integrating device driver to a customer system is:
1. Decompress the device driver package
2. Perform Operating System Adaptation
3. Implement Hardware Abstraction Layer functions.
4. Modify Makefile to point to build environment (compiler tool chain)
5. Initialize the device driver

The following sub-sections describe the procedure in details.

3.1. Installation

There is no installer for the device driver package. Decompress the package into the desired directory.

Table 1 Unpacking Instructions

Platform Instructions
Windows Open package in either

• Winrar
• Winzip
• 7-Zip

Or any other decompression utility supporting, zip files.
Unix, Linux, cygwin Run the following at a prompt:

gunzip < foo.tar.gz | tar xvf –
or

tar xvzf file.tar.gz

3.2. Directory Structure

The uncompressed 82V3910 driver contains the following directory structure; the driver for other
variant (82V3911, 8V89316, etc.) has similar structure:

Table 2 Driver package directory structure

Directory Description
82V3910/ 82V3910 device specific top level (package dependent)
 dev/ Device specific source code
 sample/ Sample application

5
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

http://www.rarlab.com/download.htm
http://www.winzip.com/win/en/prod_down.htm
http://www.7-zip.org/

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

82V3911/ 82V3911 device specific top level (package dependent). See

82V3910 for directory details.
82V33930/ 82V33930 device specific top level (package dependent). See

82V33930 for directory details.
8V89316/ 8V89316 device specific top level (package dependent). See

82V3910 for directory details.
8V89317/ 8V89317device specific top level (package dependent). See

82V3910 for directory details.
apll/ APLL files top level
 access/ Sample HAL routines
 include/ APLL header files
 src/ APLL source code
 test/ APLL unit tests
bin/ Binary file directory
common/ Common files top level
 access/ Sample HAL routines
 hlapi/ High Level API
 include/ Common header files
 src/ Common source code
test/ Device driver unit tests (using open-source check utility)
doc/ Documentation directory
 driverAPIRefManual/ Device Driver API Reference Manual
 html/ HTML version
 rtf/ PDF version
 driverUserGuide/ Device Driver User’s Guide
lib/ Library directory
obj/ Object file directory
osAdaptation/ OS Abstraction
 cygwin/ Cygwin sample OS Adaptation files
 linux/ Linux x86 sample OS Adaptation files
test/ Device driver unit test
 bin/ Device driver unit test binary directory
 obj/ Device driver unit test object directory
tools/ Tools directory
 annotate/ RGF File annotator
 registers/ Register utility to build C header file
 rgf/ Register dump utility to load/save register dump (.rgf) file

Below is a select list of important files and their location within the directory structure.

6
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

Table 3 Important files

File Description
idt391x/ReleaseNotes.txt Release notes
idt391x/license.txt Software License
idt391x/Makefile Top level Makefile to generate driver

library and sample application
idt391x/82V3910/dev/include/idt82V3910.h
idt391x/82V3911/dev/include/idt82V3911.h
idt391x/82V33930/dev/include/idt82V33930.h
idt391x/8V89316/dev/include/idt8V89316.h
idt391x/8V89317/dev/include/idt8V89317.h

Header files to be included by upper
(customer/sample) code; device specific

idt391x/82V3910/sample/src/sample.c
idt391x/82V3911/sample/src/sample.c
idt391x/82V33930/sample/src/sample.c
idt391x/8V89316/sample/src/sample.c
idt391x/8V89317/sample/src/sample.c

Example code demonstrating sample
configurations for device using device
driver. Device specific.
Contact IDT support to request additional
sample configurations.

idt391x/doc/driverAPIRefManual/html/index.html Starting point for HTML version of API
reference manual

idt391x/doc/driverAPIRefManual/rtf/ Location of PDF version to API reference
manual

idt391x/doc/driverUserGuide/DriverUserGuide.pdf Device drive user’s guide (this document)
idt391x/osAdaptation/linux/include/osAdapt.h
& osNumeric.h

Sample OS Adaptation file for Linux x86

Idt391x/osAdaptation/linux/src/osAdapt.c
idt391x/osAdaptation/linux/osConfig.mk Sample build environment makefile for

Linux x86
idt391x/common/access Directory containing sample HAL functions

3 Sets of sample HAL functions provided:
• I2C
• Simulated (used for unit tests)

3.3. Operating System Adaptation

It is trivial to adapt the device driver to any operating system. System integration to the device driver is
done through the implementation of macros and typedefs of common data types (char, int, etc.). These
macros and typedefs are located in the osAdaptation directory. The driver comes with 2 sample OS
adaptations:

7
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

• Linux x86
• cygwin

The below table lists the required macro implementations (see osAdapt.h for example):

Table 4 OS Adaptation Macros

Macro Name Description
OS_ASSERT(cond) Assert on false condition. Usually bound to assert function in standard C

library (assert.h)
OS_ASSERTS(cond,fmt) Similar to DRV_ASSERT but outputs message fmt. fmt is similar argument to

printf.
OS_ERROR(fmt) Unexpected run time error occurred. Message fmt. Usually implemented as

a log message and an assert.
OS_SETLOGLVL(lvl) Set highest log level to output. A simple custom function to track highest

log level can be written.
OS_GETLOGLVL() Get highest log level to output.
OS_LOGGER(lvl,fmt) Log message fmt of priority lvl. Can be bound to printf function in standard

C library (stdio.h) or to existing system logging facilities.
OS_TRACE(fmt) Log message fmt of predefined priority. Output file name, line number and

function name. Can be used to trace function calls. Can be bound to printf
function in standard C library (stdio.h) or to existing system logging
facilities.

OS_MALLOC(numBytes) Allocate a block of memory sized numBytes and return pointer to memory.
Usually bound to malloc in standard C library (stdlib.h)

OS_FREE(ptr) Deallocate memory referenced by ptr. Usually bound to free in standard C
library (stdlib.h)

OS_ZERO(ptr,size) Zero out block of memory sized size referenced by ptr. Usually bound to
memset function in standard C library (string.h).

Common data types are abstracted with typedef, e.g.

For a full list of typedefs, please refer to osAdaptation/osNumeric.h header file.

During the development phase we strongly encourage customers to enable assertions. It will aid in
detecting invalid input parameters when using the device driver. For production, assertions can be
removed or redirected to a logging system.

3.4. Build Tool Chain Specification

/** @brief Unsigned char (8-bit) */
typedef unsigned char T_osUint8;

8
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

A makefile is provided within the driver package to build a device driver library and sample application.
By default it is configured for Linux but can be modified to refer to any build tool chain. The below
diagram illustrates the makefile hierarchy.

Idt391x/Makefile
…
Include host/target specific options
include osAdaptation/$(TARGET)/osConfig.mk
...

osAdaptation/linux/
osConfig.mk

Utilities
CC := gcc
LD := gcc
AR := ar rcs
RM := rm -f
CP := cp

Multiple Targets (Linux,
cygwin, …)

Figure 3 Makefile Hierarchy

Customers may specify their own system specific tool chains using this structure.

3.5. Device Access (HAL)

Device access routines are bound to the device driver during driver initialization. The below code
snippet illustrates the required functions to bind into the HAL.

9
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

#include “idt82V3910.h” /* Or any other supported device */

/**
 * \brief Function for reading from device
 * \param usrData optional data passed to write function
 * \param deviceAddr device address (e.g. I2C slave address)
 * \param addrOff address offset
 * \return read data
 */
T_osUint8 myReadFunc (void *usrData, T_osUint8 deviceAddr, T_osUint8 addrOff)
{
 /* System specific code to read a register
 *
 * For example, have I2C controller issue read command
 */
}

/**
 * \brief Function to writing to device
 * \param usrData optional user data passed to read function
 * \param deviceAddr device address (e.g. I2C slave address)
 * \param addrOff address offset
 * \param data data to write
 */
void myWriteFunc (void *usrData, T_osUint8 deviceAddr,
 T_osUint8 addrOff, T_osUint8 data)
{
 /* System specific code to write to a register
 *
 * For example use I2C controller to initiate a write command
 */
}

/**
 * \brief Function to initialize device access
 *
 * Optional binding
 *
 * \param userData optional user data passed to initialization function
 */
void myInit (void *userData)
{
 /* System specific code to initialize device access mechanism.
 *
 * For example: initialize I2C controller
 */
}

/**
 * \brief Function to deintialize device access
 *
 * Optional binding
 *
 * \param userData optional user data passed to deinitalization function
 */
void myDeinit (void *userData)
{
 /* System specific code to read a register
 *
 * For example: shut down I2C controller
 */
}

Figure 4 HAL Bind Functions

10
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

3.6. Simulated Device

The device driver comes with a device simulator to enable developers to develop software without
requiring a physical device. To setup the device driver to use simulated device specify HAL interfaces
located in common/access/sim directory. See below initialization example for implementation details.

3.7. Initialization

Once both operating system adaptation and HAL integration functions have been coded, initialization of
the driver is trivial.

82V391x / 8V893xx family of devices can be populated with up to two APLLs to produce ultra low jitter
on certain output paths. Each APLL supports up to two external crystal connections (XTAL1/3 for APLL1
and XTAL2/4 for APLL2). The supported crystal frequencies are 24.8832MHz (SONET), 25MHz (Ethernet),
and 25.78125 MHz (Ethernet FEC). All devices communicate with microprocessor through I2C interface
and require an I2C slave address. For detailed APLL population and I2C addressing information, please
refer to the corresponding datasheet.

When initializing the driver, user needs to supply APLL external crystal configuration information (ID and
frequency) and an unmodified (without direction bit) 7-bit I2C slave address for the device. The APLL
external crystal configuration information is defined as following:

For the detailed information of each field in the structure, please refer to the “Device Driver Application
Programmer’s Interface (API) Reference Manual”.

Below is the sample code on how to initialize the device driver.

/**
 */brief Structure containing APLL crystal id and frequency information
 */
typedef struct
{
 T_idtApllXtalId apllXtalId; /**< APLL crystal ID
 e.g. APLL_XTAL_1_APLL1 - for APLL1 XTAL1 */
 T_idtApllXtalType apllXtalFreq; /**< APLL crystal frequency
 e.g. APLL_XTAL_FREQ_25000KHz –for 25MHz crystal */
} T_idtApllXtal;

11
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

#include “idt82V3910.h” /* Or any other supported device */
#include “ReadWrite_sim.h” /* For simulated device */
#include “myReadWrite_i2c.h” /* User’s implementation of I2C functions */

/* Assuming the device has the following APLL crystal configuration:
 * - APLL1 XTAL1 at 25MHz
 * - APLL2 XTAL2 at 24.8832MHz
 */
/* APLL XTAL configuration list */
static T_idtApllXtal apllXtalList[] =
{
 /* APLL1 XTAL1 at 25MHz */
 { APLL_XTAL_1_APLL1, APLL_XTAL_FREQ_25000KHz },
 /* APLL2 XTAL2 at 24.8832MHz */
 { APLL_XTAL_2_APLL2, APLL_XTAL_FREQ_24883_DOT_2KHz },
};

/* Number of APLL XTAL configuration */
static T_osUint8 numberOfApllXtal =
 sizeof(apllXtalList)/sizeof(T_idtApllXtal);

/* Assuming i2c slave address is 0x50 */
static T_osUint8 i2cAddr = 0x50;

int main(int argc, char *argv[])
{
 drvHdlr_t hdlr;
 drvAccess_t deviceAccess;
 int wantSimulatedDevice = 0;
 /* Bind device access functions */
 if (wantSimulatedDevice) {
 /* Use a simulated device – functions come from ReadWrite_sim.h */
 deviceAccess.initFunc_m = Init_Sim;
 deviceAccess.deinitFunc_m = DeInit_Sim;
 deviceAccess.readFunc_m = RDByte_Sim;
 deviceAccess.writeFunc_m = WRByte_Sim;
 }
 else {
 /* Access actual device */
 deviceAccess.initFunc_m = myInit;
 deviceAccess.deinitFunc_m = myDeinit;
 deviceAccess.readFunc_m = myReadFunc;
 deviceAccess.writeFunc_m = myWriteFunc;
 }
 /* No additional user information required. */
 deviceAccess.userData_m = NULL;
 /* Initialize driver
 *
 * Driver initialization routine returns a driver handler.
 * This handler is used to refer to a particular instance.
 */
 hdlr = IDTGeneral_InitDriver("dev82V3910",
 deviceAccess,
 IDT_82V3910,
 apllXtalList,
 numberOfApllXtal,
 i2cAddr,
 1); /* 0-No high level API used

 * 1-Can use high level API */
 /* Initialize 3910 device */
 IDTGeneral_InitDevice(hdlr);

 /* Start device usage (i.e. provision device) */

 /* Deinitialize driver – call during system shutdown */
 IDTGeneral_DeInitDriver(hdlr);
 return 0;
}

Figure 5 Sample Initialization function 12
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

4. Sample Applications
In addition to device driver source code, the package contains sample code for configuring the device.
The sample code illustrates a possible design for customer application code. Its primary function is to
demonstrate device driver usage. The secondary function is to provide quick provisioning of
configurations. Below is an example of sample code.

The last three arguments in “IDTHlApi_ConfigureOutput” function in the sample code are APLL related
parameters. If the output does not go through APLL, please set them to unused “max” enum value, e.g.
for APLL instance id, set it to “”APLL_INST_MAX” in case the output does not go through APLL. For detailed
description of each function, please refer to the “Device Driver Application Programmer’s Interface
(API) Reference Manual”.

/**
 * @brief Configure the device in the following configuration:
 * IN3 (25 MHz) -> T0 +-> OUT1 (25 MHz)
 * +-> OUT6 (156.25 MHz)
 * @param hdlr Device driver handler
 */
void IDTSample_ConfigureSampleConfig1(T_idtDrvHdlr hdlr)
{
 /* Disable all outputs */
 IDTHlApi_DisableAllOutputs(hdlr);

 /* Configure input 3, 25MHz */
 IDTHlApi_ConfigureInputFrequency(hdlr, 3, 25000);

 /* Configure DPLL for G8262 Option 1 */
 IDTHlApi_g8262EecOption1(hdlr, DPLL_INSTANCE_1);

 /* Configure output output 1 (25 MHz) using T0 */
 IDTHlApi_ConfigureOutput(hdlr,
 1,
 OutFreq_25000k,
 DPLL_INSTANCE_1,
 sonetGigeMode_Matching,
 APLL_CONFIG_MAX,
 APLL_OUT_SIG_MAX,
 APLL_CLK_SEL_MAX); /* We're only using one of the DPLLs */

 /* Configure output output 6 (156.25 MHz) using T0 */
 IDTHlApi_ConfigureOutput(hdlr,
 6,
 OutFreq_156250k,
 DPLL_INSTANCE_1,
 sonetGigeMode_Matching,
 APLL_CONFIG0, /* Program the APLL configuration 0 */
 APLL_OUT_SIG_LVPECL,
 APLL_CLK_SEL_INTERNAL); /* We're only using one of the DPLLs */

 /* Enable output */
 IDTOutput_SetOutputEnable(hdlr, 1, 1);
 IDTOutput_SetOutputEnable(hdlr, 6, 1);
}

Figure 6 Sample Code 13
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

Sample code is located in [DEVICE]/sample/src directory (where [DEVICE] is 82V3910, 82V3911,
8V89316 ...).

In addition to sample code, the device driver can be compiled to a sample application. This application
has the following features:

• Read/Write access of registers
• Execute sample configurations
• Input / Output /DPLL High level API configuration

For usage instructions run the compiled sample application without any parameters.

14
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

Networking & Communications Timing Division
82V391x / 8V893xx WAN PLL Device Families – Device Driver

User’s Guide

5. Debug Tools
This final section details various tools provided by the device driver package to aid in debugging issues.
Some tools are meant to be used offline. The package currently contains the following tools:

• Tracing – Function tracing allows customers to determine which APIs have been called.
• Save & Restore Registers – Ability to save and load registers in *.rgf format (compatible with

GUI)
• GUI Register File Annotation – This utility annotates *.rgf files generated by the GUI. It adds

name and bit field names to each register value entry in the file. It makes it easier to understand
the provisioned register values.

Further debug tools are planned and will be introduced in the future. We welcome any ideas / feature
requests to better provide support for our customers.

15
IDT Canada Inc. 603 March Road Ottawa, Ontario K2K 2M5 Canada Tel: +1 613 592-0859 www.IDT.com

	1. Introduction
	2. Software Architecture
	1.
	2.
	2.1. Overview
	2.2. Hardware Abstraction Layer (HAL)
	2.3. Functional Modules

	3. Getting Started
	3.1. Installation
	3.2. Directory Structure
	3.3. Operating System Adaptation
	3.4. Build Tool Chain Specification
	3.5. Device Access (HAL)
	3.6. Simulated Device
	3.7. Initialization

	4. Sample Applications
	5. Debug Tools

