
May 2005

6024 Silver Creek Valley Road, San Jose, California 95138
Telephone: (800) 345-7015 • (408) 284-8200 • FAX: (408) 284-2775

Printed in U.S.A.
©2005 Integrated Device Technology, Inc.

IDT™ Interprise™ 79RC32438
Integrated Communications

Processor

User Reference Manual

GENERAL DISCLAIMER
Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance
and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The
Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

CODE DISCLAIMER
Code examples provided by IDT are for illustrative purposes only and should not be relied upon for developing applications. Any use of the code examples below is completely
at your own risk. IDT MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE NONINFRINGEMENT, QUALITY, SAFETY OR SUITABILITY
OF THE CODE, EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICU-
LAR PURPOSE, OR NON-INFRINGEMENT. FURTHER, IDT MAKES NO REPRESENTATIONS OR WARRANTIES AS TO THE TRUTH, ACCURACY OR COMPLETENESS
OF ANY STATEMENTS, INFORMATION OR MATERIALS CONCERNING CODE EXAMPLES CONTAINED IN ANY IDT PUBLICATION OR PUBLIC DISCLOSURE OR
THAT IS CONTAINED ON ANY IDT INTERNET SITE. IN NO EVENT WILL IDT BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, INCIDENTAL, INDIRECT, PUNITIVE OR
SPECIAL DAMAGES, HOWEVER THEY MAY ARISE, AND EVEN IF IDT HAS BEEN PREVIOUSLY ADVISED ABOUT THE POSSIBILITY OF SUCH DAMAGES. The code
examples also may be subject to United States export control laws and may be subject to the export or import laws of other countries and it is your responsibility to comply with
any applicable laws or regulations.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to
such intended use is executed between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform,
when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device
or system, or to affect its safety or effectiveness.

The IDT logo is a registered trademark of Integrated Device Technology, Inc. IDT, Interprise, RISController, RISCore, RC3041, RC3052, RC3081, RC32134, RC32332, RC32333, RC32334, RC32336, RC32355,
RC32351, RC32365, RC32438, RC32364, RC36100, RC4700, RC4640, RC64145, RC4650, RC5000, RC64474, RC64475 are trademarks of Integrated Device Technology, Inc.
.

Powering What's Next and Enabling A Digitally Connected World are service marks of Integrated Device Technology, Inc. Q, QSI, SynchroSwitch and Turboclock are registered trademarks of Quality Semiconduc-
tor, a wholly-owned subsidiary of Integrated Device Technology, Inc.

Notes

79RC32438 User Reference Manual
About This Manual
Introduction
This user reference manual includes hardware and software information on the RC32438, a high perfor-

mance integrated processor that combines a high performance 32-bit CPU core with system logic to
provide direct connection to boot memory, main memory, I/O, and PCI. It also includes on-chip peripherals
such as DMA channels, reset circuitry, interrupts, timers, and UARTs. Each chapter is designed to cover the
following topics:

High level feature summary of the specific module
Summary of the register set associates with a specific module
Outline of the operation of the module
Detailed register description.

Finding Additional Information
Information not included in this manual such as mechanicals, package pin-outs, and electrical character-

istics can be found in the data sheet for this device, which is available from the IDT website (www.idt.com)
as well as through your local IDT sales representative.

Content Summary
Chapter 1, “RC32438 Device Overview,” provides a complete introduction to the performance capabil-

ities of the RC32438. Included in this chapter is a summary of features for the device as well as a system
block diagram and internal register maps.

Chapter 2, “MIPS32 4Kc Processor Core,” provides basic information on the architecture and opera-
tion of the 4Kc™ processor core from MIPS® Technologies as it applies to the RC32438.

Chapter 3, “Clocking and Initialization,” discusses the reset initialization sequence required by the
RC32438 and provides information on boot vector settings and clock signals.

Chapter 4, “System Integrity Functions,” discusses system integrity functions, including the registers
that log system activity and that can be used to indicate the source of hardware or software errors.

Chapter 5, “Bus Arbitration,” describes the internal arbitration mechanism used among the various
on-chip modules. The chapter also describes the bus protocol used by an external bus master to gain
ownership of the memory and peripheral bus.

Chapter 6, “Device Controller,” describes the operation of the device controller, including registers
and device transactions, which provides a glueless interface to SRAMs, ROMs/PROMs/EEPROMs, dual
port memories, and other devices.

Chapter 7, “Double Data Rate (DDR) Controller,” describes the features, functions, and operation of
the DDR Controller, including a description of the registers.

Chapter 8, “Interrupt Controller,” provides information about the interrupt controller and interrupt
source descriptions.

Chapter 9, “DMA Controller,” describes the DMA controller, channels, descriptors, registers, transac-
tions, and operations.

Chapter 10, “PCI Bus Interface,” describes the features, functions, and operations of the PCI bus
interface on the RC32438.

Chapter 11, “Ethernet Interfaces,” discusses the two Ethernet interfaces on the RC32438 which can
be used in applications such as SOHO routers or high speed modems for PCs.
i May 11, 2005

IDT About This Manual Documentation Conventions and Definitions

79RC32438 User Refer

Notes
 Chapter 12, “General Purpose I/O Controller,” describes this controller and how it is configured to
operate as a general purpose I/O or as an alternate function.

Chapter 13, “UART Controller,” provides information about the two separate UARTs within the
RC32438, including the UART registers.

Chapter 14, “Counter Timers,” describes the three general purpose 32-bit counter/timers on the
RC32438.

Chapter 15, “I2C Bus Interface,” describes the standard I2C bus interface, supporting both master and
slave operations, that is implemented on the RC32438.

Chapter 16, “Serial Peripheral Interface,” describes the SPI master interface which uses three signals
to connect to low-cost SPI peripherals and memory.

Chapter 17, “On-Chip Memory,” describes the operation and support provided by on-chip memory for
memory read and write operations on the RC32438.

Chapter 18, “Debugging and Performance Monitoring,” discusses the three different debugging
features available on the RC32438: IPBus Monitor, Event Monitor, and Debug Pins.

Chapter 19, “JTAG Boundary Scan,” discusses an enhanced JTAG interface, including a system logic
TAP controller, signal definitions, a test data register, an instruction register, and usage considerations.

Chapter 20, “EJTAG System,” describes the EJTAG’s features, its Debug Control Register, TAP regis-
ters, EJTAG Probe, hardware breakpoints, and other related topics.

Appendix A, “4Kc Processor Core Instructions,” contains additional information about the 4Kc
processor core instruction set.

Documentation Conventions and Definitions
Throughout this manual the following conventions and terms are used:

To avoid confusion when dealing with a mixture of “active-low” and “active-high” signals, the terms
assertion and negation are used. The term assert or assertion is used to indicate that a signal is
active or true, independent of whether that level is represented by a high or low voltage. The term
negate or negation is used to indicate that a signal is inactive or false.
To define the active polarity of a signal, a suffix will be used. Signals ending with an ‘N’ should be
interpreted as being active, or asserted, when at a logic zero (low) level. All other signals (including
clocks, buses and select lines) will be interpreted as being active, or asserted, when at a logic one
(high) level.
To define buses, the most significant bit (MSB) will be on the left and least significant bit (LSB) will
be on the right. No leading zeros will be included.
To represent numerical values, either decimal, binary, or hexadecimal formats will be used. The
binary format is as follows: 0bDDD, where “D” represents either 0 or 1; the hexadecimal format is
as follows: 0xDD, where “D” represents the hexadecimal digit(s); otherwise, it is decimal.
Unless otherwise denoted, a byte will refer to an 8-bit quantity. A halfword will refer to a 16-bit quan-
tity. A triple-byte will refer to a 24-bit quantity. A word will refer to a 32-bit quantity, and a double or
double word will refer to a 64-bit quantity.
A bit is set when its value is 0b1. A bit is cleared when its value is 0b0.
The compressed notation ABC[x|y|z]D refers to ABCxD, ABCyD, and ABCzD.
The compressed notation ABC[x..y]D refers to ABCxD, ABC(x+1)D, ABC(x+2)D, ... ABCyD.
In words, bit 31 is always the most significant bit and bit 0 is the least significant bit. In halfwords, bit
15 is always the most significant bit and bit 0 is the least significant bit. In bytes, bit 7 is always the
most significant bit and bit 0 is the least significant bit.
The ordering of bytes within words is referred to as either “big endian” or “little endian.” Big endian
systems label byte zero as the most significant (leftmost) byte of a word. Little endian systems label
byte zero as the least significant (rightmost) byte of a word.
ence Manual ii May 11, 2005

IDT About This Manual Signal Terminology

79RC32438 User Refer

Notes
Figure 1 Example of Byte Ordering for “Big Endian” or “Little Endian” System Definition

A read-only: register, bit, or field is one which can be read but not modified
A sticky bit is a bit that remains set after being set by hardware until a zero is written to it. Writing a
one to a sticky has no effect on its value.
A zero field in a register, denoted as “0” in register figures, must be written with a value of zero and
returns a value of zero when read.

Signal Terminology
Throughout this manual, when describing signal transitions, the following terminology is used:

Rising edge indicates a low-to-high (0 to 1) transition.
Falling edge indicates a high-to-low (1 to 0) transition.

These terms are illustrated in Figure 2.

Figure 2 Signal Transitions

Revision History
November 4, 2002: Initial publication.

January 16, 2003: SCL pin under I2C in Table 1.1 was changed from pull-down to pull-up.
February 5, 2003: Changed DDRDM[7:0] pins from input/output to output only in Chapter 1. Revised

description for EJTAG/JTAG pins in Table 1.2. Revised Chapter 20, EJTAG System.
March 7, 2003: Added Table 3.4, Pin State During Reset, in Chapter 3.
April 11, 2003: In Chapter 1, Table 1.2, the description for PCIREQN[3:0] should read that [3:1] in both

host and satellite modes are unused and driven high, instead of low. Also in Chapter 1, added the address
for DDRRDC register to Table 1.4. In Chapter 7, added the same DDRRDC address to Table 7.1 and
revised the DDR Initialization program example.

0 1 2 3
bit 0bit 31

Address of Bytes within Words: Big Endian

3 2 1 0
bit 0bit 31

Address of Bytes within Words: Little Endian

1 2 3 4

high-to-low
transition low-to-high

transition

single clock cycle
ence Manual iii May 11, 2005

IDT About This Manual Revision History

79RC32438 User Refer

Notes
 May 5, 2003: In Chapter 10, PCI Serial EEPROM Interface section, revised 1st paragraph as follows:
changed register addresses from 0x80 to 0x40, added sentence “The interface only supports 93C46-
compatible serial EEPROMs,” and added sentence “Only EEPROMs which are 2048 bits in size should be
used.” In the second paragraph, the following sentence was deleted, “EEPROM addresses which are
greater than or equal to 0x40 in EEPROMs whose size is greater than 1024 bits may be used to store appli-
cation specific information.” Also in Chapter 10, Disabled Mode section, second paragraph, revised 1st
sentence as follows: “When the PCI bus interface is disabled, all of the PCI pins are tri-stated, except
PCIGNTN[3:1], and thus should be held at a valid logic level on the board.” Also added that PCIGNTN[3:1]
signals are driven high. In Chapter 16, Function Overview, added clarification on PCI serial EEPROM mode
of operation.

May 21, 2003: In Chapter 11, Address Recognition Logic section, the 2nd through the 4th paragraphs
on page 11-8 were revised.

July 11, 2003: Removed references to IPBus Monitor feature. In Chapter 5, deleted Enable Eager
Prefetching bit from IPBus Arbiter Control Register in the IPBus Registers section. In Chapter 10, revised
description for EN bit in PCI Control Register, Changed Byte Swapping bit in PCI Local Address Control
register to Force Endianess, added “byte and halfword target IO transactions are not supported” to Target
I/O Read and Target I/O Write sections, and changed DMA limitations to “32KB minus 8 bytes” for channels
8 and 9. In Chapter 11, removed table associated with MII Management Command Register. In Chapter 16,
added information in the Functional Overview section. In Chapter 17, revised first 4 paragraphs of Theory of
Operation section.

July 28, 2003: In Chapter 11, changed the First Descriptor bit in Figure 11.10 to Reserved and deleted
information about FD in 2 sections: Ethernet Input DMA Operations and Ethernet Output DMA Operations.

November 21, 2003: In Chapter 10, changed the description of the IGM bit on page 10-6, the CWE bit
on page 10-8, and the CLS bit on page 10-52.

March 10, 2004: In Chapter 2, references to the RP bit were deleted. In the Target I/O Read and Target
I/O Write sections of Chapter 10, the following sentences were removed “The RC32438 PCI I/O interface is
a 32-bit interface. Byte and halfword Target I/O transactions are not supported.” In fact, the RC32438 does
support PCI Target I/O transactions of byte and half word size. In Chapter 11, changed the description of
the PEN bit on page 11-15.

May 11, 2005: In Table 10.6: switched Chapter 8 and Chapter 9 headings only - not the values in the
columns; also, switched Yes and No for these two headings in the Memory Read Multiple row.
ence Manual iv May 11, 2005

Notes

79RC32438 User Refer

Table of Contents
About This Manual
Introduction .. i
Content Summary ... i
Documentation Conventions and Definitions... ii
Signal Terminology .. iii
Revision History .. iii

1 RC32438 Device Overview
Introduction ..1-1
Key Features ...1-1
System Block Diagram ..1-2
Additional Resources...1-2
Feature List Summary ...1-2
System Identification..1-5
Logic Diagram — RC32438...1-7
Pin Characteristics...1-8
Pin Description... 1-11
Default Memory Map ...1-20
RC32438 Internal Register Map ..1-21

2 MIPS32 4Kc Processor Core
Introduction ..2-1
 Functional Overview ...2-1
Features...2-1
Functional Overview ..2-3

Blocks...2-3
Pipeline Description ...2-6

Instruction Cache Miss ...2-8
Multiply/Divide Operations..2-9
MDU Pipeline ...2-9
Branch Delay..2-14
Data Bypassing ..2-14
Interlock Handling...2-16
Slip Conditions ...2-17
Instruction Interlocks ..2-18
Instruction Hazards ..2-19

Memory Management..2-20
Modes of Operation..2-21
Translation Lookaside Buffer..2-27
Virtual to Physical Address Translation ..2-31
System Control Coprocessor ...2-35
ence Manual v May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 Exceptions ...2-35
Exception Conditions ...2-35
Exception Priority ...2-36
Exception Vector Locations ..2-37
General Exception Processing...2-38
Debug Exception Processing ...2-39
Exceptions..2-39
Exception Handling and Servicing Flowcharts ...2-49

CP0 Registers..2-54
CP0 Register Summary ...2-54
CP0 Registers ..2-56

Hardware and Software Initialization ...2-79
Hardware Initialized Processor State ...2-79
Software Initialized Processor State ..2-80

Caches...2-80
Cache Protocols...2-81
Instruction Cache ...2-82
Data Cache ..2-82
Memory Coherence Issues ..2-83

Power Management...2-83
Instruction-Controlled Power Management ..2-83

Instruction Set..2-83
Load and Store Instructions ...2-84
Computational Instructions...2-85
Control Instructions ..2-86
Coprocessor Instructions ...2-86
Enhancements to the MIPS Architecture ...2-86

Processor Core Instructions ..2-87

3 Clocking and Initialization
Introduction ..3-1
Block Diagram ...3-1
Clocking Overview ...3-1
Reset Register Description ..3-3
Reset and Initialization...3-3

Cold Reset ...3-3
Boot Configuration Vector ..3-4

Reset/Initialization Registers ...3-6
Boot Configuration Vector Register ..3-6
Warm Reset ...3-6
Reset Register ...3-8

Pin State During Reset ..3-9

4 System Integrity Functions
Introduction ..4-1
Features...4-1
Functional Overview ..4-1
System Integrity Register Description..4-1
ence Manual vi May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 System Integrity Registers...4-2
Error Control and Status Register ..4-2
CPU Error Address Register ..4-4

Address Space Monitor ...4-4
Watchdog Timer...4-5

Watchdog Timer Count Register ..4-6
Watchdog Timer Compare Register ...4-6
Watchdog Timer Control Register ..4-7

IPBus Slave Acknowledge Errors ..4-7

5 Bus Arbitration
Introduction ..5-1
Functional Overview ..5-1
IPBus Register Description..5-2
PMBus Arbitration Register Description ..5-2
Theory of Operation...5-3

Example IPBus Arbiter Configurations ...5-6
IPBus Registers ...5-9

IPBus Arbiter Control Register ...5-9
IPBus Arbiter Priority Configuration Register ...5-10
IPBus Arbiter Bus Master Configuration Register .. 5-11
IPBus Idle Transaction Cycle Count Register ..5-12

PMBus Arbitration..5-12
IPBus Idle...5-12
IPBus Active ...5-12
Sneak Transactions..5-12
Bus Parking ..5-13

PMBus Registers ...5-13
PMBus Arbiter Processor Priority Register ..5-13
PMBus Arbiter Sneak Access Control Register ...5-13

Memory and Peripheral Bus Arbitration...5-14

6 Device Controller
Introduction ..6-1
Features...6-1
Device Controller Register Description..6-1
Theory of Operation...6-2
Device Control Registers ...6-5

Device [0..5] Base Register..6-5
Device [0..5] Mask Register ...6-5
Device [0..5] Control Register ..6-6
Device [0..5] Timing Control Register...6-8

Memory And Peripheral Bus Transaction Timer ..6-9
Bus Transaction Timer Control and Status Register ..6-10
Bus Transaction Timer Compare Register ...6-10
Bus Transaction Timer Address Register... 6-11

Device Read Transaction... 6-11
ence Manual vii May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 Burst Device Read Transaction ...6-14
Device Write Transaction...6-15
Burst Device Write Transaction ...6-17
Decoupled CPU Device Transactions..6-18

Device Decoupled Access Control and Status Register ..6-19
Device Decoupled Access Address Register ...6-20
Device Decoupled Access Data Register...6-20

7 DDR Controller
Introduction ..7-1
Features...7-1
Additional Resources...7-1
DDR Controller Register Description ...7-1
Theory of Operation...7-1

DDR Address Multiplexing Scheme ...7-3
DDR Command Encoding ..7-5

DDR Registers...7-5
DDR Control Register ..7-5
DDR Read Data Capture Register ...7-9
DDR Address Mapping .. 7-11
DDR [0|1] Base Register ..7-12
DDR [0|1] Mask Register..7-13
DDR 0 Alternate Base Register ...7-13
DDR 0 Alternate Mask Register ...7-14
DDR 0 Alternate Mapping Register ..7-14
DDR Data Bus Multiplexing..7-14

DDR Initialization ...7-16
DDR Custom Transaction Register ..7-17

DDR Refresh Timer ...7-18
Refresh Timer Count Register..7-18
Refresh Timer Compare Register ..7-19
Refresh Timer Control Register..7-19

DDR Read Transaction..7-20
DDR Write Transaction ..7-21
DDR Refresh Transaction..7-23
DDR Custom Transaction ..7-24
Example of DDR SDRAM Initialization ..7-25

8 Interrupt Controller
Introduction ..8-1
Features...8-1
Block Diagram ...8-2
Interrupt Controller Register Description ...8-2

Interrupt Pending [2..6] Register ..8-3
Interrupt Test [2..6] Register ...8-3
Interrupt Mask [2..6] Register ...8-4

Interrupt Status Description ...8-4
ence Manual viii May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 Non-Maskable Interrupts ...8-6
Non-Maskable Interrupt Pin Status Register ..8-7

9 DMA Controller
Introduction ..9-1
Features...9-1
DMA Registers...9-1
Data Flow within the RC32438 ..9-3

The IPBus™...9-3
4Kc Core as Bus Master ..9-3
DMA Controller...9-4
No Alignment Restrictions ..9-4
Data Flow Using the DMA Controller ...9-5
Memory-to-Memory Transfer..9-5

DMA Channels...9-6
Internal DMA Operation ...9-7

DMA Descriptor Register..9-8
DMA Registers ...9-9
DMA Stopping Conditions ..9-9
DMA Request Event...9-10
DMA Descriptor List and Chaining ...9-10
DMA [0..9] Control Register ...9-12
DMA [0..9] Status Register...9-13
DMA [0..9] Status Mask Register ...9-14
DMA [0..9] Descriptor Pointer Register ..9-15
DMA [0..9] Next Descriptor Pointer Register..9-15

External DMA Operations ..9-16
Device Control and Status Field for External DMA ..9-16
Device Command Field for External DMA..9-16

Memory to Memory DMA Operations ..9-19
Examples ...9-20

10 PCI Bus Interface
Introduction ..10-1
Features...10-1
Use of Decoupled PCI Transactions..10-2
IPBus Access...10-2
PCI Register Description ...10-3

PCI Control Register ..10-4
PCI Status Register..10-7
PCI Status Mask Register ..10-10

Reset ...10-13
Disabled Mode...10-14
PCI Host Mode ..10-14

Reset and Initialization ...10-14
Bus Arbitration..10-14
Interrupts ..10-15
ence Manual ix May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 PCI Satellite Mode ...10-15
Reset and Initialization ...10-15
Bus Arbitration..10-16
Interrupts ..10-17
PCI Serial EEPROM Interface ...10-17

PCI Transactions ...10-17
Endianness and PCI Swapping ...10-18
PCI Master...10-18

Master I/O Read...10-19
Master I/O Write ...10-19
Master Memory Read...10-19
Master Memory Write ...10-19
Master Configuration Read ..10-19
Master Configuration Write...10-20
Master Memory Read Line ...10-21
Master Error Handling ..10-21
PCI Configuration Address Register ..10-22
PCI Configuration Data Register ..10-23
PCI Local Base Address [0|1|2|3] Register ..10-23
PCI Local Base Address [0|1|2|3] Control ..10-24
PCI Local Base Address [0|1|2|3] Mapping Register ...10-25

Decoupled PCI Master Transactions ...10-25
PCI Decoupled Access Control Register..10-26
PCI Decoupled Access Status Register ...10-27
PCI Decoupled Access Status Mask Register ...10-28
PCI Decoupled Access Data Register..10-29

PCI Master—PCI to Memory DMA (DMA Channel 8) ...10-30
Channel 8 Memory Read ...10-31
Channel 8 Memory Read Multiple..10-31
Channel 8 Memory Read Line ...10-31
Channel 8 I/O Read ...10-31
Channel 8 Error Handling...10-32
PCI DMA Channel 8 Configuration Register ..10-32

PCI Master — Memory to PCI DMA (DMA Channel 9) ...10-33
Channel 9 Memory Write..10-34
Channel 9 Memory Write and Invalidate ..10-34
Channel 9 I/O Write..10-35
Channel 9 Error Handling...10-35
PCI DMA Channel 9 Configuration Register ..10-35

PCI Target..10-35
Target I/O Read..10-37
Target I/O Write ..10-37
Target Memory Read..10-37
Target Memory Write ..10-37
Target Configuration Read ...10-37
Target Configuration Write..10-38
Target Memory Read Multiple ..10-38
Target Memory Read Line ..10-38
Target Memory Write and Invalidate...10-38
Target Error Handling ...10-38
ence Manual x May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 PCI Target Control Register ...10-39
Transaction Ordering ...10-40
PCI Messaging Unit ...10-41

PCI Inbound Message [0|1] Register ...10-41
PCI Outbound Message [0|1] Register...10-41
PCI Inbound Doorbell Register ..10-42
PCI Inbound Interrupt Cause Register ...10-42
PCI Inbound Interrupt Mask Register ...10-43
PCI Outbound Doorbell Register..10-44
PCI Outbound Interrupt Cause Register ..10-44
PCI Outbound Interrupt Mask Register ..10-45

PCI Configuration Registers ..10-45
Vendor ID Register ...10-47
Device ID Register ...10-47
Command Register ..10-47
Status Register...10-49
Device Revision ID Register...10-51
Class Code Register ..10-51
Cache Line Size Register...10-52
Master Latency Register ..10-52
Header Type Register ..10-53
BIST Register ...10-53
PCI Base Address [0|1|2|3] Register..10-54
Subsystem Vendor ID ..10-55
Subsystem ID Register ..10-55
Interrupt Line Register..10-55
Interrupt Pin Register ...10-56
Minimum Grant Register ..10-56
Maximum Latency Register..10-57
Target Ready Time-out Register ..10-57
Retry Limit Register..10-58
PCI Base Address [0|1|2|3] Control ...10-58
PCI Base Address [0|1|2|3] Mapping Register ...10-60
PCI Management Register ...10-61

11 Ethernet Interfaces
Introduction .. 11-1
Features... 11-1
Block Diagram ... 11-1
Functional Overview .. 11-1
Input and Output FIFOs ... 11-2
Ethernet Register Description.. 11-2

Ethernet Interface Control Register.. 11-5
Ethernet FIFO Transmit Threshold Register .. 11-7

Address Recognition Logic .. 11-7
Ethernet Address Recognition Control Register... 11-9
Ethernet Hash Table [0|1] Register .. 11-11
Ethernet Station Address [0|1|2|3] Low Register ... 11-11
Ethernet Station Address [0|1|2|3] High Register... 11-12
ence Manual xi May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 DMA Interface.. 11-12
Ethernet Input DMA Operations ... 11-12
Ethernet Output DMA Operations .. 11-14

Ethernet Statistics.. 11-16
Ethernet Receive Byte Count Register .. 11-16
Ethernet Receive Packet Count Register... 11-17
Ethernet Receive Undersized Packet Count Register.. 11-17
Ethernet Receive Fragment Count Register .. 11-18
Ethernet Transmit Byte Count Register.. 11-18

PAUSE Control Frames ... 11-18
Ethernet Generate Pause Frame Register... 11-19
Ethernet Pause Frame Status Register ... 11-19
Ethernet Control Frame Station Address 0 Register .. 11-20
Ethernet Control Frame Station Address 1 Register .. 11-21
Ethernet Control Frame Station Address 2 Register .. 11-21

Ethernet Medium Access Controller (MAC)... 11-22
Ethernet MAC Configuration Register #1... 11-22
Ethernet MAC Configuration Register #2... 11-23
Ethernet Back-to-Back Inter-Packet Gap Register... 11-27
Ethernet Non Back-to-Back Inter-Packet Gap Register ... 11-27
Ethernet Collision Window and Retry Register .. 11-28
Ethernet Maximum Frame Length Register ... 11-29
Ethernet MAC Test Register... 11-29

Ethernet MII Management Interface .. 11-30
MII Management Configuration Register.. 11-30
MII Management Command Register .. 11-31
MII Management Address Register.. 11-32
MII Management Write Data Register .. 11-32
MII Management Read Data Register.. 11-33
MII Management Indicators Register ... 11-33

Ethernet Clock Prescalar ... 11-34
Programming Example .. 11-34

12 General Purpose I/O Controller
Introduction ..12-1
Functional Overview ..12-1
Theory of Operation...12-2

GPIO Pin Configured As Input ...12-2
GPIO Pin Configured As Output ..12-2
GPIO Pin Configured As an Alternate Function ...12-3
GPIO Pins As Interrupt Sources ..12-3
GPIO Pins As Non-maskable Interrupt Sources ..12-3

General Purpose I/O Register Description ..12-3
GPIO Function Register ...12-4
GPIO Configuration Register ...12-4
GPIO Data Register ...12-5
GPIO Interrupt Level Register ..12-5
GPIO Interrupt Status Register ..12-5
GPIO Non-maskable Interrupt Enable Register ...12-6
ence Manual xii May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 13 UART Controller
Introduction ..13-1
Features...13-1
Functional Overview ..13-1
UART Register Description..13-2
Baud Rate Selection ..13-3
UART Interrupts...13-4
UART Channel Reset ..13-4
UART Registers...13-4

Reset Register ...13-5
Receive Buffer Register ...13-5
Transmit Holding Register ..13-5
Interrupt Enable Register ...13-6
Interrupt Identification Register ..13-7
FIFO Control Register ..13-8
Line Control Register ...13-9
Modem Control Register ..13-10
Line Status Register ... 13-11
Modem Status Register..13-13
Scratch Register...13-14
Divisor Latch Low Register ..13-14
Divisor Latch High Register..13-15

14 Counter/Timers
Functional Overview ..14-1
Counter/Timers Register Description...14-1
Theory of Operation...14-1

Counter Timer [0|1|2] Count Register...14-2
Counter Timer [0|1|2] Compare Register ...14-2
Counter Timer [0|1|2] Control Register...14-3

15 I2C Bus Interface
Introduction ..15-1
Features...15-1
Block Diagram ...15-1
Functional Overview and Theory of Operation ..15-1
I2C Register Description..15-2

I2C Bus Control Register ..15-2
I2C Bus Data Input Register ..15-3
I2C Bus Data Output Register..15-4

I2C Bus Clock Prescalar..15-4
I2C Bus Master Interface ...15-5

Example I2C Bus Transactions ..15-7
I2C Bus Master Command Register...15-9
I2C Bus Master Status Register ...15-10
I2C Bus Master Status Mask Register ... 15-11

I2C Bus Slave Interface ...15-12
ence Manual xiii May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 Example of I2C Bus Transaction..15-12
I2C Bus Slave Status Register ...15-14
I2C Bus Slave Status Mask Register ...15-15
I2C Bus Slave Address Register ..15-17
I2C Bus Slave Acknowledge Register..15-18

Programming Example ..15-18

16 Serial Peripheral Interface
Introduction ..16-1
Block Diagram ...16-1
SPI Register Description..16-2
Functional Overview ..16-2

PCI Serial EEPROM Mode (Microwire)..16-2
SPI Interface Mode ..16-3

SPI Clock Prescalar...16-3
Clock Prescalar Register..16-4
SPI Control Register ..16-4
SPI Status Register ..16-6
SPI Data Register ..16-7

SPI Setup...16-7
Serial Bit I/O Pins...16-8

Serial I/O Function Register ...16-8
Serial I/O Configuration Register ...16-9
Serial I/O Data Register ...16-10

Master Programming Example .. 16-11
SPI Initialization.. 16-11

17 On-Chip Memory
Introduction ..17-1
Theory of Operation...17-1

On-chip Memory Base Register ...17-1
On-chip Memory Mask Register...17-1

18 Debugging and Performance Monitoring
Introduction ..18-1
Features...18-1
Debug and Performance Register Description ..18-1
IPBus Monitor ..18-2
IPBus Monitor Registers ..18-3

IPBus Monitor Trigger Configuration Register..18-3
IPBus Monitor Trigger Select Register ...18-6
IPBus Monitor Manual Trigger Register ...18-8
IPBus Monitor Trigger Condition 0 Register...18-9
IPBus Monitor Trigger Condition 1 Register...18-9
IPBus Monitor Trigger Condition 2 Register...18-10
IPBus Monitor Trigger Condition 3 Register...18-10
IPBus Monitor Filter Select Register .. 18-11
ence Manual xiv May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 IPBus Monitor Filter Control 0 Register..18-12
IPBus Monitor Filter Control 1 Register..18-13
IPBus Monitor Filter Control 2 Register..18-13
IPBus Monitor Record Control ...18-14
IPBus Monitor Trigger Position...18-15
IPBus Monitor Trigger Time..18-15
IPBus Monitor Record Formats..18-16

Event Monitor...18-17
Event Monitor Control Register ..18-20
Event Monitor [0..7] Count Register ...18-20
Event Monitor 0 Compare Register ..18-21

Debug Pins ..18-22

19 JTAG Boundary Scan
Introduction ..19-1
System Logic TAP Controller Overview...19-2
Signal Definitions ...19-2
Test Data Register (DR)...19-3

Boundary Scan Registers ..19-3
Instruction Register (IR)...19-5

EXTEST ...19-6
SAMPLE/PRELOAD ..19-7
BYPASS ...19-7
CLAMP...19-7
DEVICEID ..19-7
VALIDATE ..19-8
RESERVED..19-8
UNUSED ..19-8

Usage Considerations ...19-8

20 EJTAG System
Introduction ..20-1
Functional Description ...20-1

EJTAG Components...20-2
Register and Memory Map Overview...20-3

Pin Description...20-6
EJTAG Processor Core Extensions...20-6

Overview ..20-6
Debug Mode Execution ..20-7
Debug Exceptions ..20-13
Debug Mode Exceptions ..20-19
Interrupts and NMIs..20-21
Reset and Soft Reset of Processor ..20-22
EJTAG Instructions...20-23
EJTAG Coprocessor 0 Registers ...20-24

Debug Control Register ...20-30
Hardware Breakpoints ...20-32

Instruction Breakpoint Features ...20-32
ence Manual xv May 11, 2005

IDT Table of Contents

79RC32438 User Refer

Notes
 Data Breakpoint Features ..20-33
Overview of Instruction and Data Breakpoint Registers...20-33
Conditions for Matching Breakpoints ...20-35
Debug Exceptions from Breakpoints..20-40
Breakpoints Used as Triggerpoints ..20-42
Instruction Breakpoint Registers ..20-43
Data Breakpoint Registers ...20-47
Recommendations for Implementing Hardware Breakpoints ...20-51
Breakpoint Examples ...20-52

EJTAG Test Access Port..20-54
TAP Signals..20-55
TAP Controller ..20-56
Instruction Register and Special Instructions ...20-58
TAP Data Registers..20-59
Examples of Use ..20-68

Probe Interfaces ..20-72
Mechanical Connector ...20-72
Target System PCB Design..20-73
Using the EJTAG Probe ...20-74
Probe Requirements and Recommendations ..20-75
Connecting Multiple EJTAG Controllers ...20-76
Connecting EJTAG and JTAG Controllers ...20-76

Appendix A 4Kc Processor Core Instructions
Introduction ... A-1
Understanding the Instruction Set .. A-1

Instruction Fields ... A-2
Instruction Descriptive Name and Mnemonic.. A-3
Format Field .. A-3
Purpose Field .. A-3
Description Field ... A-3
Restrictions Field... A-4
Operation Field.. A-4
Exceptions Field .. A-5
Programming Notes and Implementation Notes Fields... A-5

Operation Section Notation and Functions ... A-5
Instruction Execution Ordering.. A-5
Special Symbols in Pseudocode Notation .. A-6
Pseudocode Functions.. A-7
Op and Function Subfield Notation ..A-11

CPU Opcode Map..A-11
Instruction Set... A-13

Index ... I-1
ence Manual xvi May 11, 2005

Notes

79RC32438 User Refer

List of Tables
Table 1.1 Pin Characteristics..1-8
Table 1.2 Pin Description.. 1-11
Table 1.3 RC32438 Default Memory Map Following a Cold Reset ..1-20
Table 1.4 Internal Register Map ...1-21
Table 2.1 4Kc Core Instruction Latencies...2-10
Table 2.2 4Kc Core Instruction Repeat Rates .. 2-11
Table 2.3 Pipeline Interlocks...2-16
Table 2.4 Instruction Interlocks...2-18
Table 2.5 Instruction Hazards...2-19
Table 2.6 User Mode Segments ...2-23
Table 2.7 Kernel Mode Segments ..2-25
Table 2.8 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces..2-26
Table 2.9 CPU Access to drseg Address Range..2-27
Table 2.10 CPU Access to dmseg Address Range ..2-27
Table 2.11 TLB Tag Entry Fields ..2-29
Table 2.12 TLB Data Entry Fields...2-30
Table 2.13 TLB Instructions..2-35
Table 2.14 Priority of Exceptions ..2-36
Table 2.15 Exception Vector Base Addresses..2-37
Table 2.16 Exception Vector Offsets ..2-37
Table 2.17 Exception Vectors ...2-37
Table 2.18 Debug Exception Vector Addresses ...2-39
Table 2.19 Register States an Interrupt Exception ...2-43
Table 2.20 Register States on a Watch Exception ...2-44
Table 2.21 CP0 Register States on an Address Exception Error ...2-44
Table 2.22 CP0 Register States on a TLB Refill Exception..2-45
Table 2.23 CP0 Register States on a TLB Invalid Exception ...2-46
Table 2.24 Register States on a TLB Modified Exception ..2-49
Table 2.25 CP0 Registers...2-55
Table 2.26 CP0 Register Field Types ...2-56
Table 2.27 Index Register Field Descriptions ...2-57
Table 2.28 Random Register Field Descriptions ..2-57
Table 2.29 EntryLo0, EntryLo1 Register Field Descriptions ...2-58
Table 2.30 Cache Coherency Attributes...2-58
Table 2.31 Context Register Field Descriptions ...2-59
Table 2.32 PageMask Register Field Descriptions...2-59
Table 2.33 Values for the Mask Field of the PageMask Register ...2-60
Table 2.34 Wired Register Field Descriptions ..2-61
Table 2.35 BadVAddr Register Field Descriptions..2-61
Table 2.36 Count Register Field Descriptions ..2-61
Table 2.37 EntryHi Register Field Descriptions ..2-62
Table 2.38 Compare Register Field Description...2-62
Table 2.39 Status Register Field Description ...2-63
Table 2.40 Cause Register Field Descriptions ...2-66
Table 2.41 Cause Register ExcCode Field Descriptions..2-67
Table 2.42 EPC Register Field Description ..2-68
Table 2.43 PRId Register Field Descriptions..2-68
Table 2.44 Config Register Field Descriptions ...2-69
Table 2.45 Cache Coherency Attributes...2-70
ence Manual xvii May 11, 2005

IDT List of Tables

79RC32438 User Refer

Notes
 Table 2.46 Config1 Register Field Descriptions — Select 1...2-70
Table 2.47 LLAddr Register Field Descriptions ..2-72
Table 2.48 WatchLo Register Field Descriptions..2-72
Table 2.49 WatchHi Register Field Descriptions ..2-73
Table 2.50 Debug Register Field Descriptions ...2-74
Table 2.51 DEPC Register Field Description..2-76
Table 2.52 ErrCtl Register Field Descriptions...2-77
Table 2.53 TagLo Register Field Descriptions ..2-77
Table 2.54 DataLo Register Field Descriptions ..2-78
Table 2.55 ErrorEPC Register Field Descriptions ..2-78
Table 2.56 DeSave Register Field Descriptions ...2-79
Table 2.57 Instruction and Data Cache Attributes ..2-81
Table 2.58 Byte Access within a Word ...2-85
Table 3.1 Processor Clock PLL Multiplier Modes...3-2
Table 3.2 Reset Register Map..3-3
Table 3.3 Boot Configuration Encoding..3-5
Table 3.4 Pin State During Reset ...3-9
Table 4.1 System Integrity Register Map..4-1
Table 4.2 Address Space Monitor Undecoded Address Error Reporting ...4-5
Table 4.3 IPBus Slave Acknowledge Error Reporting ..4-8
Table 5.1 Bus Master Index..5-1
Table 5.2 IPBus Arbitration Register Map ..5-2
Table 5.3 PMBus Arbitration Register Map ..5-2
Table 6.1 Device Controller Register Map..6-1
Table 6.2 Default Values for Device Configuration Registers...6-4
Table 7.1 DDR Controller Register Map...7-1
Table 7.2 Supported DDR Configurations ..7-2
Table 7.3 DDR Address Multiplexing in 32-bit Mode..7-3
Table 7.4 DDR Address Multiplexing in 16-bit Mode..7-4
Table 7.5 DDR Command Encoding ..7-5
Table 8.1 Interrupt Controller Register Map ...8-2
Table 8.2 IPEND2 Interrupt Source Description ...8-4
Table 8.3 IPEND3 Interrupt Source Description ...8-4
Table 8.4 IPEND5 Interrupt Source Description ...8-5
Table 8.5 IPEND6 Interrupt Source Description ...8-5
Table 9.1 DMA Register Map ...9-1
Table 9.2 DMA Channels and Device Selects..9-6
Table 9.3 External DMA Operations ...9-17
Table 9.4 Memory to DMA FIFO DMA Operations ...9-20
Table 9.5 DMA FIFO to Memory DMA Operations ...9-20
Table 10.1 PCI Bus Interface FIFO Sizes...10-3
Table 10.2 PCI Register Map ...10-3
Table 10.3 PCI Arbitration Pin Functionality in PCI Host Mode with Internal Arbiter Enabled........10-15
Table 10.4 PCI Arbitration Pin Functionality in PCI Host Mode Using External Arbiter..................10-15
Table 10.5 PCI Arbitration Pin Functionality in PCI Satellite Mode ..10-16
Table 10.6 Supported PCI Transactions...10-17
Table 10.7 PCI Device Fields to IDSEL Mapping ...10-20
Table 10.8 PCI to Memory DMA Operations ..10-30
Table 10.9 Memory to PCI DMA Operations ..10-33
Table 10.10 PCI Configuration Registers ...10-46
Table 11.1 Ethernet Register Map.. 11-2
Table 11.2 Ethernet Interface Input DMA Operations... 11-13
Table 11.3 Ethernet Interface Output DMA Operations.. 11-14
Table 11.4 Padding Operation.. 11-26
Table 12.1 General Purpose I/O Pin Alternate Function ..12-1
ence Manual xviii May 11, 2005

IDT List of Tables

79RC32438 User Refer

Notes
 Table 12.2 Possible GPIO Configurations ..12-3
Table 12.3 Ethernet Register Map..12-3
Table 13.1 UART Input/Output Pins ...13-1
Table 13.2 UART Register Map..13-2
Table 13.3 Divisor Values for Typical Baud Rates and IPBus Clock Frequencies13-3
Table 15.1 I2C Register Map..15-2
Table 15.2 I2C Bus Master Interface Commands...15-5
Table 15.3 I2C Bus Data Transfer Abbreviations ...15-7
Table 16.1 SPI Register Map..16-2
Table 16.2 Serial I/O Pin Configuration ..16-3
Table 18.1 Debug and Performance Register Map ..18-1
Table 18.2 Event Monitor Sources ...18-17
Table 18.3 Debug Pin Operation ..18-22
Table 19.1 JTAG Pin Descriptions..19-2
Table 19.2 Instructions Supported By RC32438’s JTAG Boundary Scan ..19-6
Table 19.3 System Controller Device Identification Register..19-7
Table 20.1 Overview of Coprocessor 0 Registers for EJTAG...20-3
Table 20.2 Overview of Debug Control Register as Memory-mapped Register for EJTAG20-3
Table 20.3 Overview of Instruction Hardware Breakpoint Registers ..20-4
Table 20.4 Overview of Data Hardware Breakpoint Registers ...20-4
Table 20.5 Overview of Test Access Port Registers...20-5
Table 20.6 JTAG / EJTAG Pin Description ...20-6
Table 20.7 Overview of Test Access Port Registers...20-8
Table 20.8 Physical Address and Cache Attribute for dseg’s dmsg and drseg20-9
Table 20.9 Access to dmseg Address Range...20-9
Table 20.10 Access to drseg Address Range ..20-10
Table 20.11 SYNC Instruction References...20-12
Table 20.12 “Required” CP0 and dseg Hazard Spacing ..20-13
Table 20.13 Priority of Non-Debug and Debug Exceptions ..20-14
Table 20.14 Debug Exception Vector Location...20-15
Table 20.15 Priority of Non-Debug and Debug Exceptions ..20-19
Table 20.16 Coprocessor 0 Registers for EJTAG...20-25
Table 20.17 Debug Register Field Descriptions ...20-26
Table 20.18 DEPC Register Field Description..20-30
Table 20.19 DESAVE Register Field Description ...20-30
Table 20.20 DCR Register Field Descriptions ..20-31
Table 20.21 Instruction Breakpoint Register Summary ..20-34
Table 20.22 Data Breakpoint Register Description...20-34
Table 20.23 Instruction Breakpoint Condition Parameters ...20-36
Table 20.24 Data Breakpoint Condition Parameters ..20-37
Table 20.25 BYTELANE at Unaligned Address for 32-bit Processors ...20-39
Table 20.26 Behavior on Precise Exceptions from Data Breakpoints ..20-41
Table 20.27 Behavior on Precise Exceptions from Data Breakpoints ..20-41
Table 20.28 Rules for Update of BS Bits on Data Triggerpoints ..20-43
Table 20.29 Instruction Breakpoint Register Mapping..20-43
Table 20.30 IBS Register Field Description..20-44
Table 20.31 IBAn Register Field Description..20-45
Table 20.32 IBMn Register Field Description ...20-45
Table 20.33 IBASIDn Register Field Description..20-46
Table 20.34 IBCn Register Field Description..20-46
Table 20.35 Data Breakpoint Register Mapping...20-47
Table 20.36 DBS Register Field Description ..20-47
Table 20.37 DBAn Register Field Description ..20-48
Table 20.38 DBMn Register Field Description..20-49
Table 20.39 DBASIDn Register Field Description ..20-49
ence Manual xix May 11, 2005

IDT List of Tables

79RC32438 User Refer

Notes
 Table 20.40 DBCn Register Field Description ..20-50
Table 20.41 DBVn Register Field Description ..20-51
Table 20.42 EJTAG TAP Instruction Overview ...20-58
Table 20.43 EJTAG TAP Data Registers..20-59
Table 20.44 Device ID Register Field Description ..20-61
Table 20.45 Implementation Register Field Description ...20-62
Table 20.46 Data Register Field Description ..20-63
Table 20.47 Data Register Contents for 32-bit Processors ..20-63
Table 20.48 Address Register Field Description ..20-64
Table 20.49 EJTAG Control Register Field Description..20-65
Table 20.50 Combinations of ProbTrap and ProbEn..20-68
Table 20.51 Bypass Register Field Description..20-68
Table 20.52 Information Provided to Probe at Processor Access ..20-70
Table 20.53 EJTAG Connector Pinout..20-73
Table A.1 Symbols Used in Instruction Operation Statements .. A-6
Table A.2 AccessLength Specifications for Loads/Stores.. A-9
Table A.3 Encoding of the Opcode Field ..A-11
Table A.4 Special Opcode Encoding of Function Field...A-11
Table A.5 Special2 Opcode Encoding of Function Field.. A-12
Table A.6 RegImm Encoding of rt Field ... A-12
Table A.7 COP0 Encoding of rs Field .. A-12
Table A.8 CP0 Encoding of Function Field when rs=CO ... A-13
Table A.9 Instruction Set.. A-13
Table A.10 Values of the hint Field for the PREF Instruction ... A-70
Table A.11 Use of Effective Address ... A-103
Table A.12 Encoding of Bits [17:16] of CACHE Instruction.. A-104
Table A.13 Encoding of Bits [20:18] of CACHE Instruction ErrCtl[WST,SPR] Cleared.................. A-104
Table A.14 Encoding of Bits [20:18] of CACHE Instruction ErrCtl[WST] Set, ErrCtl[SPR]

Cleared .. A-105
Table A.15 Encoding of Bits [20:18] of CACHE Instruction ErrCtl[SPR] Set.................................. A-106
ence Manual xx May 11, 2005

Notes

79RC32438 User Refer

List of Figures
Figure 1.1 RC32438 Block Diagram ...1-2
Figure 1.2 System Identification Register (SYSID) ..1-5
Figure 1.3 Logic Diagram for the RC32438 ...1-7
Figure 2.1 RC32438 Block Diagram ..2-3
Figure 2.2 Address Translation During a Cache Access in the 4Kc Core ...2-5
Figure 2.3 4Kc Core Pipeline Stages...2-7
Figure 2.4 4Kc Instruction Cache Miss Timing ..2-8
Figure 2.5 Load/Store Cache Miss Timing...2-9
Figure 2.6 MDU Pipeline Behavior During Multiply Operations ...2-11
Figure 2.7 MDU Pipeline Flow During a 32x16 Multiply Operation..2-12
Figure 2.8 MDU Pipeline Flow During a 32x32 Multiply Operation..2-13
Figure 2.9 MDU Pipeline Flow During an 8-bit Divide (DIV) Operation ...2-13
Figure 2.10 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation ...2-13
Figure 2.11 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation ...2-13
Figure 2.12 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation ...2-14
Figure 2.13 IU Pipeline Branch Delay..2-14
Figure 2.14 IU Pipeline Data Bypass ...2-15
Figure 2.15 IU Pipeline M to E Bypass ..2-15
Figure 2.16 IU Pipeline A to E Data Bypass ..2-16
Figure 2.17 IU Pipeline Slip after MFHI ...2-16
Figure 2.18 Instruction Cache Miss Slip ..2-18
Figure 2.19 Address Translation During a Cache Access ...2-21
Figure 2.20 4K Processor Core Virtual Memory Map ..2-22
Figure 2.21 User Mode Virtual Address Space..2-23
Figure 2.22 Kernel Mode Virtual Address Space...2-24
Figure 2.23 Debug Mode Virtual Address Space...2-26
Figure 2.24 JTLB Entry (Tag and Data)...2-28
Figure 2.25 Overview of a Virtual-to-Physical Address Translation...2-32
Figure 2.26 32-bit Virtual Address Translation...2-33
Figure 2.27 TLB Address Translation Flow in the 4Kc Processor Core...2-34
Figure 2.28 Register States on a Coprocessor Unusable Exception...2-47
Figure 2.29 General Exception Handler (HW) ...2-50
Figure 2.30 General Exception Servicing Guidelines (SW) ...2-51
Figure 2.31 TLB Miss Exception Handler (HW) ...2-52
Figure 2.32 TLB Exception Servicing Guidelines (SW) ...2-53
Figure 2.33 Reset, Soft Reset, and NMI Exception Handling and Servicing Guidelines2-54
Figure 2.34 Wired and Random Entries in the TLB ...2-60
Figure 2.35 Cache Array Formats..2-81
Figure 2.36 Instruction Set Formats...2-84
Figure 3.1 System Block Diagram of Reset and Boot Configuration Vector Generation3-1
Figure 3.2 RC32438 Clocking Architecture..3-2
Figure 3.3 Cold Reset ..3-4
Figure 3.4 PCI Reset in Host Mode ...3-4
Figure 3.5 Boot Configuration Vector Register (BCV) ...3-6
Figure 3.6 Externally Initiated Warm Reset ...3-7
Figure 3.7 Internally Initiated Warm Reset...3-8
Figure 3.8 PCI Reset in Satellite Mode..3-8
Figure 3.9 Reset Register (RESET)...3-8
Figure 4.1 Error Control and Status Register (ERRCS)...4-2
ence Manual xxi May 11, 2005

IDT List of Figures

79RC32438 User Refer

Notes
 Figure 4.2 CPU Error Address Register (CEA)..4-4
Figure 4.3 Watchdog Timer Count Register (WTCOUNT)...4-6
Figure 4.4 Watchdog Timer Compare Register (WTCOMPARE) ..4-6
Figure 4.5 Watchdog Timer Control Register (WTC)...4-7
Figure 5.1 Illustration of IPbus Arbitration Algorithm..5-3
Figure 5.2 IPBus Arbitration Algorithm Flow Chart ..5-5
Figure 5.3 IPBus Arbiter Configuration for Strict Priority Arbitration ..5-6
Figure 5.4 Example Operation of IPBus Arbiter with Strict Priority Arbitration...................................5-6
Figure 5.5 IPBus Arbiter Configuration for Fair Arbitration ..5-7
Figure 5.6 Example Operation of IPBus Arbiter with Fair Arbitration...5-7
Figure 5.7 IPBus Arbiter Configuration for Priority Arbitration with Fairness5-7
Figure 5.8 Example Operation of IPBus Arbiter with Priority Arbitration with Fairness......................5-8
Figure 5.9 IPBus Arbiter Configuration for Weighted Round Robin...5-8
Figure 5.10 Example Operation of IPBus Arbiter with Weighted Round Robin5-8
Figure 5.11 IPBus Arbiter Control Register (IPAC)..5-9
Figure 5.12 IPBus Arbiter Priority Configuration [0..3] Register (IPAP[0..3]C)5-10
Figure 5.13 IPBus Arbiter Bus Master [0..16] Configuration Register (IPABM[0..16])5-11
Figure 5.14 IPBus Idle Transaction Cycle Count Register (IPAITCC)...5-12
Figure 5.15 PMBus Arbiter Processor Priority Register (PMAPP)...5-13
Figure 5.16 PMBus Arbiter Sneak Access Control Register (PMASAC) ...5-13
Figure 5.17 External Bus Arbitration ..5-15
Figure 5.18 External Bus Arbitration with RC32438 Requesting that Ownership Be Relinquished...5-15
Figure 6.1 Connecting Devices to the RC32438 Data Bus (Right Aligned)6-3
Figure 6.2 Device [0..5] Base Register (DEV[0..5]BASE)..6-5
Figure 6.3 Device [0..5] Mask Register (DEV[0..5]MASK)...6-5
Figure 6.4 Device [0..5] Control Register (DEV[0..5]C) ...6-6
Figure 6.5 Device [0..5] Timing Control Register (DEV[0..5]TC) ...6-8
Figure 6.6 Bus Timer Control and Status Register (BTCS) ...6-10
Figure 6.7 Bus Transaction Timer Compare Register (BTCOMPARE) ...6-10
Figure 6.8 Bus Transaction Timer Address Register (BTADDR)...6-11
Figure 6.9 Generic Device Read Transaction..6-12
Figure 6.10 Device Read Transaction1 (WAITACKN Configured As Wait)6-13
Figure 6.11 Device Read Transaction (WAITACKN Configured As Transfer Acknowledge)6-13
Figure 6.12 Generic Burst Device Read Transaction ..6-14
Figure 6.13 Burst Device Read Transaction ..6-15
Figure 6.14 Generic Device Write Transaction1 ..6-16
Figure 6.15 Generic Burst Device Write Transaction...6-17
Figure 6.16 Device Decoupled Access Control and Status Register (DEVDACS)6-19
Figure 6.17 Device Decoupled Access Address Register (DEVDAA) ...6-20
Figure 6.18 Device Decoupled Access Data Register (DEVDAD)...6-20
Figure 7.1 DDR Control Register (DDRC) ...7-5
Figure 7.2 DDR Read Data Capture Edge Select Configurations ...7-10
Figure 7.3 DDR Read Data Capture Register (DDRRDC)...7-10
Figure 7.4 DDR0 Alternate Address Mapping..7-12
Figure 7.5 DDR [0|1] Base Register (DDR[0|1]BASE)...7-12
Figure 7.6 DDR [0|1] Mask Register (DDR[0|1]MASK)..7-13
Figure 7.7 DDR 0 Alternate Base Register (DDR0ABASE)...7-13
Figure 7.8 DDR 0 Alternate Mask Register (DDR0AMASK)..7-14
Figure 7.9 DDR 0 Alternate Mapping Register (DDR0AMAP) ...7-14
Figure 7.10 DDR Data Bus Multiplexing Address Range Expansion...7-15
Figure 7.11 32-bit Bank DDR Data Bus Multiplexing ...7-15
Figure 7.12 16-bit Bank DDR Data Bus Multiplexing ...7-16
Figure 7.13 DDR Custom Transaction Register (DDRCUST) ...7-17
Figure 7.14 Refresh Timer Count Register (RCOUNT) ...7-18
Figure 7.15 Refresh Timer Compare Register (RCOMPARE)...7-19
ence Manual xxii May 11, 2005

IDT List of Figures

79RC32438 User Refer

Notes
 Figure 7.16 Refresh Timer Control Register (RTC) ...7-19
Figure 7.17 DDR SDRAM Read Transaction with Wrong Page Active in Bank (Bank Page Miss) ...7-20
Figure 7.18 DDR SDRAM Write Transaction with Wrong Page Active in Bank (Bank Page Miss) ...7-22
Figure 7.19 DDR SDRAM Refresh Transaction with Active Pages ...7-23
Figure 7.20 DDR SDRAM Custom Transaction...7-25
Figure 8.1 Mapping of Interrupts to the CPU Cause Register ...8-2
Figure 8.2 Interrupt Pending [2..6] Register (IPEND[2..6]) ..8-3
Figure 8.3 Interrupt Test [2..6] Register (ITEST[2..6]) ...8-3
Figure 8.4 Interrupt Mask [2..6] Register (IMASK[2..6])...8-4
Figure 8.5 Non-Maskable Interrupt Pin Status...8-7
Figure 9.1 DMA Block Diagram ...9-4
Figure 9.2 Anatomy of DMA Operations .. 9-5
Figure 9.3 Memory to Memory DMA Transfers..9-6
Figure 9.4 DMA Descriptor Register ..9-8
Figure 9.5 DMA Chaining Example..9-11
Figure 9.6 DMA [0..9] Control Register (DMA[0..9]C)..9-12
Figure 9.7 DMA [0..9] Status Register (DMA[0..9]S) ...9-13
Figure 9.8 DMA [0..9] Status Mask Register (DMA[0..9]SM)...9-14
Figure 9.9 DMA [0..9] Descriptor Pointer Register (DMA[0..9]DPTR) ...9-15
Figure 9.10 DMA [0..9] Next Descriptor Pointer Register (DMA[0..9]NDPTR)9-15
Figure 9.11 Device Control and Status Value for External DMA Descriptors9-16
Figure 9.12 Device Command Field for External DMA Descriptors...9-16
Figure 9.13 External DMA Operation (Transfer Request Mode)..9-17
Figure 9.14 External DMA Operation (Burst Request Mode)...9-18
Figure 9.15 Sampling of DMADONENx During External Peripheral Read Transactions...................9-18
Figure 9.16 Sampling of DMADONENx During External Peripheral Write Transactions...................9-18
Figure 9.17 Assertion of DMAFINNx During External Peripheral Read Transactions9-19
Figure 9.18 Assertion of DMAFINNx During External Peripheral Write Transactions9-19
Figure 9.19 Device Command Field for Memory to Memory DMA Descriptors9-19
Figure 10.1 PCI Interface Block Diagram ..10-1
Figure 10.2 PCI Control Register (PCIC)...10-4
Figure 10.3 PCI Status Register (PCIS) ..10-7
Figure 10.4 PCI Status Mask Register (PCISM) ...10-10
Figure 10.5 PCI Configuration Address Register (PCICFGA) ...10-22
Figure 10.6 PCI Configuration Data Register (PCICFGD)...10-23
Figure 10.7 PCI Local Base Address [0|1|2|3] Register (PCILBA[0|1|2|3])......................................10-23
Figure 10.8 PCI Local Base Address [0|1|2|3] Control (PCILBA[0|1|2|3]C).....................................10-24
Figure 10.9 PCI Local Base Address [0|1|2|3] Mapping Register (PCILBA[0|1|2|3]M)....................10-25
Figure 10.10 PCI Decoupled Access Control Register (PCIDAC) ...10-26
Figure 10.11 PCI Decoupled Access Status Register (PCIDAS)...10-27
Figure 10.12 PCI Decoupled Access Status Mask Register (PCIDASM))...10-28
Figure 10.13 PCI Decoupled Access Data Register (PCIDAD) ...10-29
Figure 10.14 Device Command Field for PCI to Memory DMA Descriptors10-31
Figure 10.15 Device Control and Status Value for PCI to Memory DMA Descriptors10-31
Figure 10.16 PCI DMA Channel 8 Configuration Register (PCIDMA8C)...10-32
Figure 10.17 Device Command Field for Memory to PCI DMA Descriptors10-34
Figure 10.18 Device Control and Status Value for Memory to PCI DMA Descriptors10-34
Figure 10.19 PCI DMA Channel 9 Configuration Register (PCIDMA9C)...10-35
Figure 10.20 PCI Target Control Register (PCITC) ...10-39
Figure 10.21 PCI Inbound Message [0|1] Register (PCIIM[0|1]) ...10-41
Figure 10.22 PCI Outbound Message [0|1] Register (PCIOM[0|1]) ...10-41
Figure 10.23 PCI Inbound Doorbell Register (PCIID) ..10-42
Figure 10.24 PCI Inbound Interrupt Cause Register (PCIIIC)..10-42
Figure 10.25 PCI Inbound Interrupt Mask Register (PCIIIM) ...10-43
Figure 10.26 PCI Outbound Doorbell Register (PCIOD) ...10-44
ence Manual xxiii May 11, 2005

IDT List of Figures

79RC32438 User Refer

Notes
 Figure 10.27 PCI Outbound Interrupt Cause Register (PCIOIC) ...10-44
Figure 10.28 PCI Outbound Interrupt Mask Register (PCIOIM) ..10-45
Figure 10.29 Vendor ID Register (VENDOR_ID)...10-47
Figure 10.30 Device ID Register (DEVICE_ID) ...10-47
Figure 10.31 Command Register (COMMAND) ..10-47
Figure 10.32 Status Register (STATUS)..10-49
Figure 10.33 Device Revision ID Register (REVISION_ID)...10-51
Figure 10.34 Class Code Register (CLASS_CODE) ...10-51
Figure 10.35 Class Code Register (CLASS_CODE) ...10-52
Figure 10.36 Master Latency Register (MASTER_LATENCY)..10-52
Figure 10.37 Header Type Register (HEADER_TYPE)...10-53
Figure 10.38 Header Type Register (BIST) ...10-53
Figure 10.39 PCI Base Address [0|1|2|3] Register (PBA[0|1|2|3])...10-54
Figure 10.40 Subsystem Vendor ID Register (SVI) ...10-55
Figure 10.41 Subsystem ID Register (SUBSYSTEM_ID)..10-55
Figure 10.42 Interrupt Line Register (INTERRUPT_LINE) ..10-55
Figure 10.43 Interrupt Pin Register (INTERRUPT_PIN)..10-56
Figure 10.44 Minimum Grant Register (MIN_GNT) ...10-56
Figure 10.45 Maximum Latency Register (MAX_LAT) ..10-57
Figure 10.46 Target Time-out Register (TRDY_TIMEOUT) ..10-57
Figure 10.47 Retry Limit Register (RETRY_LIMIT) ...10-58
Figure 10.48 PCI Base Address [0|1|2|3] Control (PBA[0|1|2|3]C) ..10-58
Figure 10.49 PCI Base Address [0|1|2|3] Mapping Register (PBA[0|1|2|3]M)10-60
Figure 10.50 PCI Management Register (PMGT)..10-61
Figure 11.1 Ethernet Interface with Management Feature ..11-1
Figure 11.2 Ethernet Interface Control Register (ETH[0|1]INTFC) ..11-5
Figure 11.3 Ethernet FIFO Transmit Threshold Register (ETH[0|1]FIFOTT)11-7
Figure 11.4 Representation of MAC Address ..11-7
Figure 11.5 Ethernet Address Recognition Control Register (ETH[0|1]ARC)....................................11-9
Figure 11.6 Ethernet Address Filtering Algorithm..11-10
Figure 11.7 Ethernet Hash Table [0|1] Register (ETH[0|1]HASH[0|1]) ..11-11
Figure 11.8 Ethernet Station Address [0|1|2|3] Low Register (ETH[0|1]SAL[0|1|2|3]).....................11-11
Figure 11.9 Ethernet Station Address [0|1|2|3] High Register (ETH[0|1]SAH[0|1|2|3])11-12
Figure 11.10 Device Control and Status Value for Ethernet Receive Descriptors.............................11-13
Figure 11.11 Device Control and Status Value for Ethernet Transmit Descriptors............................11-15
Figure 11.12 Ethernet Receive Byte Count (ETH[0|1]RBC) ..11-16
Figure 11.13 Ethernet Receive Packet Count (ETH[0|1]RPC) ..11-17
Figure 11.14 Ethernet Receive Undersized Packet Count (ETH[0|1]RUPC).....................................11-17
Figure 11.15 Ethernet Receive Fragment Count (ETH[0|1]RFC) ..11-18
Figure 11.16 Ethernet Transmit Byte Count (ETH[0|1]TBC)..11-18
Figure 11.17 Ethernet Generate Pause Frame Register (ETH[0|1]GPF) ..11-19
Figure 11.18 Ethernet Pause Frame Status Register (ETH[0|1]PFS) ...11-19
Figure 11.19 Ethernet Control Frame Station Address 0 (ETH[0|1]CFSA0)......................................11-20
Figure 11.20 Ethernet Control Frame Station Address 1 (ETH[0|1]CFSA1)......................................11-21
Figure 11.21 Ethernet Control Frame Station Address 2 (ETH[0|1]CFSA2)......................................11-21
Figure 11.22 Ethernet MAC Configuration Register #1 (ETH[0|1]MAC1)..11-22
Figure 11.23 Ethernet MAC Configuration Register #2 (ETH[0|1]MAC2)..11-23
Figure 11.24 Ethernet Back-to-Back Inter-Packet Gap Register (ETH[0|1]IPGT)11-27
Figure 11.25 Ethernet Non Back-to-Back Inter-Packet Gap Register (ETH[0|1]IPGR)11-27
Figure 11.26 Ethernet Collision Window and Retry Register (ETH[0|1]CLRT)..................................11-28
Figure 11.27 Ethernet Maximum Frame Length Register (ETH[0|1]MAXF)11-29
Figure 11.28 Ethernet MAC Test Register (ETH[0|1]MTEST) ...11-29
Figure 11.29 MII Management Configuration Register (MIIMCFG) ...11-30
Figure 11.30 MII Management Command Register (MIIMCMD) ...11-31
Figure 11.31 MII Management Address Register (MIIMADDR)...11-32
ence Manual xxiv May 11, 2005

IDT List of Figures

79RC32438 User Refer

Notes
 Figure 11.32 MII Management Write Data Register (MIIMWTD)...11-32
Figure 11.33 MII Management Read Data Register (MIIMRDD) ...11-33
Figure 11.34 MII Management Indicators Register (MIIMIND) ..11-33
Figure 11.35 Ethernet Management Clock Prescalar Register (ETHMCP)11-34
Figure 12.1 GPIO Function Register (GPIOFUNC) ...12-4
Figure 12.2 GPIO Configuration Register (GPIOCFG) ..12-4
Figure 12.3 GPIO Data Register (GPIOD)...12-5
Figure 12.4 GPIO Interrupt Level Register (GPIOILEVEL)..12-5
Figure 12.5 GPIO Interrupt Status Register (GPIOISTAT) ..12-5
Figure 12.6 GPIO Non-maskable Interrupt Enable Register (GPIONMIEN)......................................12-6
Figure 13.1 UART [0|1] Reset Register ...13-5
Figure 13.2 UART [0|1] Receive Buffer Register (UART[0|1]RB)..13-5
Figure 13.3 UART [0|1] Transmit Holding Register (UART[0|1]TH) ..13-5
Figure 13.4 UART [0|1] Interrupt Enable Register (UART[0|1]IE) ...13-6
Figure 13.5 UART [0|1] Interrupt Identification Register (UART[0|1]II) ..13-7
Figure 13.6 UART [0|1] FIFO Control Register (UART[0|1]FC)...13-8
Figure 13.7 UART [0|1] Line Control Register (UART[0|1]LC) ..13-9
Figure 13.8 UART[0|1] Modem Control Register (UART0MC) ..13-10
Figure 13.9 UART [0|1] Line Status Register (UART[0|1]LS) ..13-11
Figure 13.10 UART[0|1] Modem Status Register (UART0MS)..13-13
Figure 13.11 UART [0|1] Scratch Register (UART[0|1]S)..13-14
Figure 13.12 UART [0|1] Divisor Latch Low Register (UART[0|1]DLL) ...13-14
Figure 13.13 UART [0|1] Divisor Latch High Register (UART[0|1]DLH) ..13-15
Figure 14.1 Counter Timer [0|1|2] Count Register (COUNT[0|1|2])...14-2
Figure 14.2 Counter Timer [0|1|2] Compare Register (COMPARE[0|1|2]) ..14-2
Figure 14.3 Counter Timer [0|1|2] Control Register (CTC[0|1|2]) ..14-3
Figure 15.1 I2C Bus Interface Block Diagram..15-1
Figure 15.2 I2C Bus Control Register (I2CC)...15-2
Figure 15.3 I2C Bus Data Input Register (I2CDI) ..15-3
Figure 15.4 I2C Bus Data Output Register (I2CDO)..15-4
Figure 15.5 I2C Bus Clock Prescalar Register (I2CCP) ..15-4
Figure 15.6 Using the I2C Bus Clock (SCL) to Adapt the Operating Rate...15-6
Figure 15.7 Master Operation: Master Transmitter Addressing a Slave Receiver (7-bit Address)15-8
Figure 15.8 Master Operation: Master Receiver Addressing a Slave Transmitter (7-bit Address)15-8
Figure 15.9 Master Operation: Master Interface Initiated Repeated Start Condition15-9
Figure 15.10 Master Operation: Addressing a 10-bit Slave as a Slave Transmitter15-9
Figure 15.11 I2C Bus Master Command Register (I2CMCMD)...15-9
Figure 15.12 I2C Bus Master Status Register (I2CMS) ...15-10
Figure 15.13 I2C Bus Master Status Mask Register (I2CMSM) ..15-11
Figure 15.14 Slave Operation: Master Transmitter Addressing a Slave Receiver (7-bit Address)15-13
Figure 15.15 Slave Operation: Master Receiver Addressing a Slave Transmitter (7-bit Address)15-13
Figure 15.16 Slave Operation: Addressing a 10-bit Slave as a Slave Transmitter15-14
Figure 15.17 I2C Bus Slave Status Register (I2CSS)..15-14
Figure 15.18 I2C Bus Slave Status Mask Register (I2CSSM) ...15-15
Figure 15.19 I2C Bus Slave Address Register (I2CSADDR)...15-17
Figure 15.20 I2C Bus Slave Acknowledge Register (I2CSACK) ...15-18
Figure 16.1 SPI and PCI Serial EEPROMs Interfacing..16-1
Figure 16.2 SPI Clock Prescalar Register (SPCP) ..16-4
Figure 16.3 SPI Control Register (SPC) ..16-4
Figure 16.4 Serial Peripheral Interface (SPI) Clock/Data Timing...16-6
Figure 16.5 SPI Status Register (SPS)..16-6
Figure 16.6 SPI Data Register (SPD) ..16-7
Figure 16.7 Serial I/O Function Register (SIOFUNC) ..16-8
Figure 16.8 Serial I/O Configuration Register (SIOCFG)...16-9
Figure 16.9 Serial I/O Data Register (SIOD)..16-10
ence Manual xxv May 11, 2005

IDT List of Figures

79RC32438 User Refer

Notes
 Figure 17.1 On-chip Memory Base Register (OCMBASE) ..17-1
Figure 17.2 On-chip Memory Mask Register (OCMMASK) ...17-1
Figure 18.1 IPBus Monitor On-Chip Memory Usage ...18-2
Figure 18.2 IPBus Monitor Trigger Configuration Register (IPBMTCFG) ..18-3
Figure 18.3 IPBus Monitor Trigger Select Register (IPBMTS)...18-6
Figure 18.4 IPBus Monitor Manual Trigger Register (IPBMMT) ..18-8
Figure 18.5 IPBus Monitor Trigger Condition 0 Register (IPBMTC0) ..18-9
Figure 18.6 IPBus Monitor Trigger Condition 1 Register (IPBMTC1) ..18-9
Figure 18.7 IPBus Monitor Trigger Condition 2 Register (IPBMTC2) ..18-10
Figure 18.8 IPBus Monitor Trigger Condition 3 Register (IPBMTC3) ..18-10
Figure 18.9 IPBus Monitor Filter Select Register (IPBMFS) ..18-11
Figure 18.10 IPBus Monitor Filter Control 0 Register (IPBMFC0) ...18-12
Figure 18.11 IPBus Monitor Filter Control 1 Register (IPBMFC1 ..18-13
Figure 18.12 IPBus Monitor Filter Control 2 Register (IPBMFC2) ...18-13
Figure 18.13 IPBus Monitor Record Control Register (IPBMRC) ..18-14
Figure 18.14 IPBus Monitor Trigger Position Register (IPBMTP)..18-15
Figure 18.15 IPBus Monitor Trigger Time Register (IPBMTT)...18-15
Figure 18.16 IPBus Monitor Transaction Summary Record Format ..18-16
Figure 18.17 IPBus Monitor Clock Cycle Record Format ..18-17
Figure 18.18 Event Monitor Control Register (EMC) ...18-20
Figure 18.19 Event Monitor [0..7] Count Register (EM[0..7]COUNT) ..18-20
Figure 18.20 Event Monitor 0 Compare Register (EM0COMPARE) ...18-21
Figure 19.1 Dual TAP Controller Block Diagram ...19-1
Figure 19.2 Diagram of the JTAG Logic ..19-2
Figure 19.3 State Diagram of RC32438’s TAP Controller ...19-3
Figure 19.4 Diagram of Observe-only Input Cell..19-4
Figure 19.5 Diagram of Output Cell ...19-4
Figure 19.6 Diagram of Output Enable Cell ... 19-5
Figure 19.7 Diagram of Bidirectional Cell ...19-5
Figure 19.8 System Controller Device ID Instruction Format...19-8
Figure 20.1 Simplified EJTAG Block Diagram ...20-2
Figure 20.2 Virtual Address Spaces with Debug Mode Segments ..20-8
Figure 20.3 Debug Register Format ..20-26
Figure 20.4 DEPC Register Forma..20-29
Figure 20.5 DESAVE Register Format ..20-30
Figure 20.6 DCR Register Format ...20-31
Figure 20.7 Instruction Breakpoint Overview...20-33
Figure 20.8 Data Breakpoint Overview ..20-33
Figure 20.9 IBS Register Format ...20-44
Figure 20.10 IBAn Register Format ...20-44
Figure 20.11 IBMn Register Format...20-45
Figure 20.12 IBASIDn Register Format ...20-45
Figure 20.13 IBCn Register Format ...20-46
Figure 20.14 DBS Register Format..20-47
Figure 20.15 DBAn Register Format..20-48
Figure 20.16 DBMn Register Format ...20-49
Figure 20.17 DBASIDn Register Format..20-49
Figure 20.18 DBCn Register Format ...20-50
Figure 20.19 DBVn Register Format..20-51
Figure 20.20 Data Break on Store with Value Compare..20-54
Figure 20.21 Data Break on Store with Value Compare..20-54
Figure 20.22 Test Access Port (TAP) Overview ..20-55
Figure 20.23 EJTAG TAP Controller State Diagram..20-56
Figure 20.24 JTAG_TDI to JTAG_TDO Path in Shift Mode State ...20-57
Figure 20.25 JTAG_TDI to JTAG_TDO Path for Selected Data Register(s) in Shift-DR State20-57
ence Manual xxvi May 11, 2005

IDT List of Figures

79RC32438 User Refer

Notes
 Figure 20.26 JTAG_TDI to JTAG_TDO Path in Shft-DR State and ALL Instruction is Selected20-59
Figure 20.27 JTAG_TDI to JTAG_TDO Path in Shift-DR State and FASTDATA Instruction is

Selected..20-59
Figure 20.28 Device ID Register Format ...20-61
Figure 20.29 Implementation Register Format ..20-61
Figure 20.30 Data Register Format ...20-62
Figure 20.31 Address Register Format..20-64
Figure 20.32 EJTAG Control Register Format...20-64
Figure 20.33 Bypass Register Format ...20-68
Figure 20.34 TAP Operation Example ...20-69
Figure 20.35 Write Processor Access Example...20-71
Figure 20.36 Read Processor Access Example ..20-72
Figure 20.37 EJTAG Connector Mechanical Dimensions..20-73
Figure 20.38 Target System Electrical EJTAG Connection ...20-74
Figure 20.39 Target System Layout for EJTAG Connection..20-75
Figure 20.40 Daisy Chaining of Multi-core EJTAG TAP Controllers..20-76
Figure 20.41 Connecting EJTAG and JTAG Controllers ...20-77
Figure A.1 Example of Instruction Description .. A-2
Figure A.2 Example of Instruction Fields... A-3
Figure A.3 Example of Instruction Descriptive and Mnemonic Name ... A-3
Figure A.4 Example of Instruction Format... A-3
Figure A.5 Example of Instruction Purpose... A-3
Figure A.6 Example of Instruction Description .. A-4
Figure A.7 Example of Instruction Restrictions ... A-4
Figure A.8 Sample Instruction Operation .. A-5
Figure A.9 Sample Instruction Exception .. A-5
Figure A.10 Sample Instruction Programming Notes .. A-5
Figure A.11 Unaligned Word Load Using LWL and LWR ... A-54
Figure A.12 Bytes Loaded by LWL Instruction.. A-54
Figure A.13 Unaligned Word Load Using LWL and LWR ... A-56
Figure A.14 Bytes Loaded by LWL Instruction.. A-56
Figure A.15 Unaligned Word Store Using SWL and SWR.. A-85
Figure A.16 Bytes Stored by an SWL Instruction .. A-85
Figure A.17 Unaligned Word Store Using SWR and SW.. A-87
Figure A.18 Bytes Stored by SWR Instruction .. A-87
Figure A.19 Use of Address Fields to Select Index and Way.. A-103
ence Manual xxvii May 11, 2005

IDT List of Figures

79RC32438 User Refer

Notes
ence Manual xxviii May 11, 2005

Notes

79RC32438 User Reference Manual 1 - 1 M
Chapter 1
RC32438 Device
Overview
Introduction
The objective of this chapter is to provide an overview of the capabilities of the RC32438 device. In addi-

tion, it is a centralized resource for three standard items:
Summary of the address map for all the registers included in this device. The functionality of each
register bit is covered in the relevant chapter within this manual.
Default address memory map.
Pin description list, pin types, drive strengths, and alternate functions.

The RC32438 is a member of the IDT™ Interprise™ family of PCI integrated communications proces-
sors. It is a general-purpose integrated processor that incorporates a high performance CPU core and a
number of on-chip peripherals. The integrated processor is designed to transfer information from IO
modules to main memory with minimal CPU intervention, using a highly sophisticated direct memory
access (DMA) engine. All data transfers through the RC32438 are achieved by writing data from an on-chip
IO peripheral to main memory and then out to another IO module.

Key Features
The key features of this part include the following:

– A 32-bit CPU core 100% compatible with the MIPS32 instruction set architecture (ISA). Specifi-
cally, this core features the 4kc developed by MIPS Technologies Inc. (www.mips.com). This core
issues a single instruction per cycle, includes a five stage pipeline and is optimized for applications
that require integer arithmetic. The version in the RC32438 includes 16 KB instruction and 16 KB
data caches. Both caches are 4-way set associative and can be locked on a per line basis, which
allows the programmer control over this precious on-chip memory resource. The core also
features a memory management unit (MMU). The CPU core also incorporates an enhanced joint
test access group (EJTAG) interface that is used to interface to in-circuit emulator tools, providing
access to internal registers and enabling the part to be controlled externally, simplifying the system
debug process. The use of this core allows IDT's customers to leverage the broad range of soft-
ware and development tools available for the MIPS architecture, including operating systems,
compilers and in-circuit emulators.

– High performance double data rate (DDR) memory controller. This supports both x16 and x32
memory configurations up to 2GB. The module provides all of the signals required to interface to
both memory modules and discrete devices, including two chip selects, differential clocking
outputs, and data strobes.

– A dedicated local memory/IO controller including a de-multiplexed 16-bit data and 26-bit address
bus. This device includes all of the signals required to interface directly to up to six Intel or
Motorola-style external peripherals. This interface can be configured to support both 8-bit and 16-
bit peripherals.

– Two Ethernet Channels supporting 10Mbps and 100Mbps speeds, and providing a standard
media independent interface (MII) off-chip, to enable a wide range of external devices to be
connected up efficiently.

– A PCI interface compatible with version 2.2 of the PCI specification. An on-chip arbiter supports
up to six external bus masters, supporting both fixed priority and rotating priority arbitration
schemes. The part can support both satellite and host PCI configurations, enabling the RC32438
to act as a slave controller for a PCI add-in card application, or as the primary PCI controller in the
system. The PCI interface can be operated synchronously or asynchronously to the other IO inter-
faces on the RC32438 device

– Two standard 16550-compatible serial ports, with both channels including hardware flow control
signals
ay 11, 2005

IDT RC32438 Device Overview System Block Diagram

79RC32438 User Refer

Notes
 – An I2C interface
– A serial peripheral interface (SPI)
– 4 KB of on-chip memory (configured as 1kx32 bits) for use as scratch pad memory that can be

accessed by the CPU core and other IO modules
– Three general-purpose 32-bit counter/timers
– An interrupt controller that multiplexes all of the interrupt signals coming from on-chip modules

and general purpose IO (GPIO) pins onto one of five available interrupt sources to the CPU core.

System Block Diagram
An internal block diagram is shown in Figure 1.1.

Figure 1.1 RC32438 Block Diagram

Additional Resources
This device provides a performance upgrade for existing users of the RC32332, RC32333, and

RC32334 (referred to as the RC3233x series) integrated communications processors. IDT has developed
an application note that addresses the migration of software from the RC3233x to the RC32438. This docu-
ment, AN-368—Migrating RC32332/RC32334 Software to the RC32438 Device, can be found on the
company’s web site at www.idt.com.

Feature List Summary
32-bit Processor

MIPS32 architecture
Single-cycle 32x16 multiply accumulate instructions
16 KB Instruction and Data Caches
Memory Management Unit
8 -word write buffer that supports byte merging
Power-down modes

EJTAG MMU

D. Cache I. Cache

MIPS-32
CPU Core

ICE

Interrupt
Controller

3 Counter
Timers

Bus/System

DMA
Controller

Arbiter
DDR

DDR &
Device

2 UARTS
(16550)

GPIO
Interface

PCI
Master/Target

Memory &
Peripheral Bus

Ch. 1 Ch. 2
Serial Channels

GPIO Pins PCI Bus

ControllerController
SPII2C

SPI BusI2C Bus

:
:

10/100
2 Ethernet

Interfaces

MII MII

Integrity
Monitor

IPBusTM

Interface
PCI Arbiter

(Host Mode)

Controllers

PMBus
ence Manual 1 - 2 May 11, 2005

http://www.idttools.com/hal5/getDoc.taf?PartID=79RC32438&DocTypes=AN

IDT RC32438 Device Overview Feature List Summary

79RC32438 User Refer

Notes
 Debugging through Enhanced JTAG (EJTAG) interface
– Version 2.5 compatible
– Non-intrusive real-time debugging
– Single stepping
– Instruction and data breakpoints

DDR Memory Controller
Supports up to 2GB of DDR SDRAM (using data bus multiplexing and two chip selects)
2 chip selects (each chip select supports 4 internal DDR banks)
Supports 16-bit or 32-bit data bus width using 8, 16, or 32-bit devices
Supports 64 Mb, 128 Mb, 256 Mb, 512 Mb, and 1Gb DDR SDRAM devices
Data bus multiplexing support allows interfacing to standard DDR DIMMs and SODIMMs
Automatic refresh generation

Memory and Peripheral Device Controller
Provides “glueless” interface to standard SRAM, Flash, ROM, dual-port memory, and peripheral
devices
Demultiplexed address and data buses

– 16-bit data bus
– 26-bit address bus
– 6 chip selects
– Supports alternate bus masters
– Control for external data bus buffers

Supports 8-bit and 16-bit width devices
– Automatic byte gathering and scattering

Flexible protocol configuration parameters
– Programmable number of wait states (0 to 63)
– Programmable postread/postwrite delay (0 to 31)
– Supports external wait state generation
– Supports Intel and Motorola style peripherals

Write protect capability per chip select
Programmable bus transaction timer generates warm reset when counter expires
Supports up to 64 MB of memory per chip select

Counter/Timers
Three general purpose 32-bit counter timers

Interrupt Controller
Allows status of all interrupt sources to be read
Each interrupt source may be masked
Provides interrupt test capability

System Integrity Functions
Programmable watchdog timer generates NMI when counter expires
Address space monitor reports error in response to accesses to undecoded address regions
ence Manual 1 - 3 May 11, 2005

IDT RC32438 Device Overview Feature List Summary

79RC32438 User Refer

Notes
 DMA Controller
10 DMA channels

– Two channels for PCI (PCI to Memory and Memory to PCI)
– Four Ethernet channels — two for each Ethernet interface (transmit/receive)
– Two DMA channels for memory to memory DMA operations
– Two DMA channel for external DMA operations

Provides flexible descriptor based operation
Supports external peripheral DMA operations
Supports unaligned transfers (i.e., source or destination address may be on any byte boundary)
with arbitrary byte length.

Two Ethernet Interfaces
10 and 100 Mb/s ISO/IEC 8802-3:1996 compliant
Two IEEE 802.3u compatible Media Independent Interfaces (MII) with serial management interface
MII supports IEEE 802.3u auto-negotiation speed selection
Supports 64 entry hash table based multicast address filtering
512 byte transmit and receive FIFOs
Supports flow control functions outlined in IEEE Std. 802.3x-1997

 PCI Interface
32-bit PCI revision 2.2 compliant
Supports host or satellite operation in both master and target modes
PCI clock

– Supports PCI clock frequencies from 16 MHz to 66 MHz
– PCI clock may be asynchronous to master clock (CLK)

PCI arbiter in Host mode
– Supports 6 external masters
– Fixed priority or round robin arbitration

I2O “like” PCI Messaging Unit

Universal Asynchronous Receiver Transmitter (UART)
Compatible with the 16550 and 16450 UARTs
Two completely separate serial channels
Modem control functions (CTS, RTS, DSR, DTR, RI, DCD)
16-byte transmit and receive buffers
Programmable baud rate generator derived from the system clock
Fully programmable serial characteristics:

– 5, 6, 7, or 8 bit characters
– Even, odd or no parity bit generation and detection
– 1, 1 1/2, or 2 stop bit generation

Line break generation and detection
False start bit detection
Internal loopback mode

I2C-Bus
Supports standard 100 Kbps mode as well as 400 Kbps fast mode
Supports 7-bit and 10-bit addressing
ence Manual 1 - 4 May 11, 2005

IDT RC32438 Device Overview System Identification

79RC32438 User Refer

Notes
 Supports four modes:
– Master transmitter
– Master receiver
– Slave transmitter
– Slave receiver

Serial Peripheral Interface (SPI)
Supports master mode

General Purpose I/O Controller
32 general purpose input/output pins
Each pin may be used as an active high or active low level interrupt or non-maskable interrupt input
Each signal may be used as bit input or output port

On-chip Memory
4 KB of high speed SRAM organized as 1K x 32 bits
Supports burst and non-burst word, half-word, and byte CPU, PCI, and DMA accesses

Debug Support
Rev. 2.6 compliant EJTAG Interface

Enhanced JTAG and ICE Interface
Compatible with IEEE Std. 1149.1-1990

System Identification
In addition to the MIPS processor revision identification (PRId) register located in CP0 of the CPU, the

RC32438 contains a system identification register (SYSID). The SYSID register, which is always located at
address 0x1800_0018, may be used by software to determine the vendor, implementation, and revision of
an integrated processor. The format for this register is shown in Figure 1.2.

Figure 1.2 System Identification Register (SYSID)

REV

Description: Revision. This field contains the revision of the integrated processor. It may be used by software to
identify the revision of a particular implementation.

Initial Value: 0x0

Read Value: Revision Number

Write Effect: Read-only

IMP

Description: Implementation. This field contains the implementation ID of the integrated processor.
RC32438 — 6

Initial Value: 0x6

Read Value: Implementation

SYSID
031

8

REV

12

VENDOR

12

IMP
ence Manual 1 - 5 May 11, 2005

IDT RC32438 Device Overview System Identification

79RC32438 User Refer

Notes
 Write Effect: Read-only

VENDOR

Description: Vendor. This field contains the vendor of the integrated processor. The currently defined vendor is:
0 Integrated Device Technology

Initial Value: 0x0

Read Value: Vendor

Write Effect: Read-only
ence Manual 1 - 6 May 11, 2005

IDT RC32438 Device Overview Logic Diagram — RC32438

79RC32438 User Refer

Notes
 Logic Diagram — RC32438

Figure 1.3 Logic Diagram for the RC32438

Miscellaneous
Signals

Memory
and

Peripheral
Bus

CLK
COLDRSTN

RSTN

4

MIIMDC
MIIMDIO

MII0CL
MII0CRS

MII0RXCLK
MII0RXD[3:0]

MII0RXDV
MII0RXER

MII0TXCLK
MII0TXD[3:0]

MII0TXENP
MII0TXER

MII1CL
MII1CRS

MII1RXCLK
MII1RXD[3:0]

MII1RXDV
MII1RXER

MII1TXCLK
MII1TXD[3:0]

MII1TXENP
MII1TXER

BDIRN
BGN
BOEN
BRN
BWEN[1:0]
CSN[5:0]
MADDR[21:0]
MDATA[15:0]
OEN
RWN
WAITACKN

DDRADDR[13:0]
DDRBA[1:0]
DDRCASN
DDRCKE
DDRCKN[1:0]
DDRCKP[1:0]
DDRCSN[1:0]
DDRDATA[31:0]
DDRDM[7:0]
DDRDQS[3:0]

DDRRASN
DDRVREF
DDRWEN

PCIAD[31:0]
PCICBEN[3:0]
PCICLK
PCIDEVSELN
PCIFRAMEN
PCIGNTN[3:0]
PCIIRDYN
PCILOCKN
PCIPAR
PCIPERRN
PCIREQN[3:0]
PCIRSTN
PCISERRN
PCISTOPN
PCITRDYN

GPIO[31:0]

SDO

SDA
SCL

JTAG_TCK
JTAG_TDI

JTAG_TDO
JTAG_TMS

JTAG_TRST_N

INST
CPU

IPBMTRIGOUT

4

4

4

32

4

4

4

32

4

8

32

2

2

2

2

14

16

22

6

2

EJTAG / JTAG
Signals

Debug
Signals

General Purpose
I/O

I2C-Bus

Serial I/O

PCI Bus

DDR Bus

Ethernet

RC32438

VccCore
VccI/O
Vss
VccPLL
VssPLL

Power/Ground

SDI
SCK

DDROEN[3:0]
4

EJTAG_TMS

EXTCLK
ence Manual 1 - 7 May 11, 2005

IDT RC32438 Device Overview Pin Characteristics

79RC32438 User Refer

Notes
 Pin Characteristics

Function Pin Name Type Buffer I/O Type Internal
Resistor Notes1

Memory and
Peripheral Bus

BDIRN O LVTTL High Drive

BGN O LVTTL Low Drive

BOEN O LVTTL High Drive

BRN I LVTTL STI2 pull-up

BWEN[1:0] O LVTTL High Drive

CSN[5:0] O LVTTL High Drive

MADDR[21:0] O LVTTL High Drive

MDATA[15:0] I/O LVTTL High Drive

OEN O LVTTL High Drive

RWN O LVTTL High Drive

WAITACKN I LVTTL STI pull-up

DDR Bus DDRADDR[13:0] O SSTL_2 SSTL_2

DDRBA[1:0] O SSTL_2 SSTL_2

DDRCASN O SSTL_2 SSTL_2

DDRCKE O SSTL_2 /
LVCMOS

SSTL_2

DDRCKN[1:0] O SSTL_2 SSTL_2

DDRCKP[1:0] O SSTL_2 SSTL_2

DDRCSN[1:0] O SSTL_2 SSTL_2

DDRDATA[31:0] I/O SSTL_2 SSTL_2

DDRDM[7:0] O SSTL_2 SSTL_2

DDRDQS[3:0] I/O SSTL_2 SSTL_2

DDROEN[3:0] O SSTL_2 SSTL_2

DDRRASN O SSTL_2 SSTL_2

DDRVREF I Analog SSTL_2

DDRWEN O SSTL_2 SSTL_2

Table 1.1 Pin Characteristics (Part 1 of 4)
ence Manual 1 - 8 May 11, 2005

IDT RC32438 Device Overview Pin Characteristics

79RC32438 User Refer

Notes
PCI Bus Interface3 PCIAD[31:0] I/O PCI PCI

PCICBEN[3:0] I/O PCI PCI

PCICLK I PCI PCI

PCIDEVSELN I/O PCI PCI pull-up on board

PCIFRAMEN I/O PCI PCI pull-up on board

PCIGNTN[3:0] I/O PCI PCI pull-up on board

PCIIRDYN I/O PCI PCI pull-up on board

PCILOCKN I/O PCI PCI

PCIPAR I/O PCI PCI

PCIPERRN I/O PCI PCI

PCIREQN[3:0] I/O PCI PCI pull-up on board

PCIRSTN I/O PCI PCI pull-down on
board

PCISERRN I/O PCI Open Col-
lector; PCI

pull-up on board

PCISTOPN I/O PCI PCI pull-up on board

PCITRDYN I/O PCI PCI pull-up on board

General Purpose
 I/O

GPIO[23:0] I/O LVTTL Low Drive pull-up

GPIO[24] I/O PCI pull-up on board

GPIO[25] I/O LVTTL pull-up

GPIO[30:26]4 I/O PCI pull-up on board

GPIO[31] I/O LVTTL Low Drive pull-up

Serial Interface SCK I/O LVTTL Low Drive pull-up pull-up on board

SDI I/O LVTTL Low Drive pull-up pull-up on board

SDO I/O LVTTL Low Drive pull-up pull-up on board

I2C Bus Interface SCL I/O LVTTL Low Drive /
STI

pull-up on board

SDA I/O LVTTL Low Drive /
STI

pull-up on board

Function Pin Name Type Buffer I/O Type Internal
Resistor Notes1

Table 1.1 Pin Characteristics (Part 2 of 4)
ence Manual 1 - 9 May 11, 2005

IDT RC32438 Device Overview Pin Characteristics

79RC32438 User Refer

Notes
Ethernet Interfaces MII0CL I LVTTL STI pull-down

MII0CRS I LVTTL STI pull-down

MII0RXCLK I LVTTL STI pull-up

MII0RXD[3:0] I LVTTL STI pull-up

MII0RXDV I LVTTL STI pull-down

MII0RXER I LVTTL STI pull-down

MII0TXCLK I LVTTL STI pull-up

MII0TXD[3:0] O LVTTL Low Drive

MII0TXENP O LVTTL Low Drive

MII0TXER O LVTTL Low Drive

MII1CL I LVTTL STI pull-down

MII1CRS I LVTTL STI pull-down

MII1RXCLK I LVTTL STI pull-up

MII1RXD[3:0] I LVTTL STI pull-up

MII1RXDV I LVTTL STI pull-down

MII1RXER I LVTTL STI pull-down

MII1TXCLK I LVTTL STI pull-up

MII1TXD[3:0] O LVTTL Low Drive

MII1TXENP O LVTTL Low Drive

MII1TXER O LVTTL Low Drive

MIIMDC O LVTTL Low Drive

MIIMDIO I/O LVTTL Low Drive pull-up

JTAG / EJTAG JTAG_TRST_N I LVTTL STI pull-up

JTAG_TCK I LVTTL STI pull-up

JTAG_TDI I LVTTL STI pull-up

JTAG_TDO O LVTTL Low Drive

JTAG_TMS I LVTTL STI pull-up

EJTAG_TMS I LVTTL STI pull-up

Debug CPU O LVTTL Low Drive

INST O LVTTL Low Drive

IPBMTRIGOUT O LVTTL Low Drive

Function Pin Name Type Buffer I/O Type Internal
Resistor Notes1

Table 1.1 Pin Characteristics (Part 3 of 4)
ence Manual 1 - 10 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes
Pin Description
The following table lists the function of the pins provided on the RC32438. Some of the functions listed

may be multiplexed onto the same pin.

Miscellaneous CLK I LVTTL STI

EXTCLK O LVTTL High Drive

COLDRSTN I LVTTL STI

RSTN I/O LVTTL Low Drive /
STI

pull-up pull-up on board

1. External pull-up required in most system applications. Some applications may require additional pull-ups not identified in this
table.
2. Schmidt Trigger Input (STI)
3. The PCI pins have internal pull-ups but they are too weak to guarantee system validity. Therefore, board pull-ups are manda-
tory where indicated. GPIO alternate function pins for PCI must also have board pull-ups.
4. PCIMUINTN is an alternate function of GPIO[30]. When configured as an alternate function, this pin is tri-stated when not as-
serted (i.e., it acts as an open collector output).

Signal Type Name/Description

System

CLK I Master Clock. This is the master clock input. The processor frequency is a mul-
tiple of this clock frequency. This clock is used as the system clock for all mem-
ory and peripheral bus operations.

EXTCLK O External Clock. This clock is used for all memory and peripheral bus opera-
tions.

COLDRSTN I Cold Reset. The assertion of this signal initiates a cold reset. This causes the
processor state to be initialized, boot configuration to be loaded, and the internal
PLL to lock onto the master clock (CLK).

RSTN I/O Reset. The assertion of this bidirectional signal initiates a warm reset. This sig-
nal is asserted by the RC32438 during a warm reset.

Memory and Peripheral Bus

BDIRN O External Buffer Direction. Memory and peripheral bus external data bus buffer
direction control. If the RC32438 memory and peripheral bus is connected to the
A side of a transceiver such as an IDT74FCT245, then this pin may be directly
connected to the direction control (e.g., BDIR) pin of the transceiver.

BGN O Bus Grant. This signal is asserted by the RC32438 to indicate that the
RC32438 has relinquished ownership of the memory and peripheral bus.

BOEN O External Buffer Enable. This signal provides an output enable control for an
external buffer on the memory and peripheral data bus.

BRN I Bus Request. This signal is asserted by an external device to request owner-
ship of the memory and peripheral bus.

Table 1.2 Pin Description (Part 1 of 9)

Function Pin Name Type Buffer I/O Type Internal
Resistor Notes1

Table 1.1 Pin Characteristics (Part 4 of 4)
ence Manual 1 - 11 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes

BWEN[1:0] O Byte Write Enables. These signals are memory and peripheral bus by write

enable signals.
BWEN[0] corresponds to byte lane MDATA[7:0]
BWEN[1] corresponds to byte lane MDATA[15:8]

CSN[5:0] O Chip Selects. These signals are used to select an external device on the mem-
ory and peripheral bus.

MADDR[21:0] O Address Bus. 22-bit memory and peripheral bus address bus.
MADDRP[25:22] are available as GPIO alternate functions

MDATA[15:0] I/O Data Bus. 16-bit memory and peripheral data bus. During a cold reset, these
pins function as inputs that are used to load the boot configuration vector.

OEN O Output Enable. This signal is asserted when data should be driven on by an
external device on the memory and peripheral bus.

RWN O Read Write. This signal indicates if the transaction on the memory and periph-
eral bus is a read transaction or a write transaction. A high level indicates a read
from an external device. A low level indicates a write to an external device.

WAITACKN I Wait or Transfer Acknowledge. When configured as wait, this signal is
asserted during a memory and peripheral bus transaction to extend the bus
cycle. When configured as a transfer acknowledge, this signal is asserted during
a transaction to signal the completion of the transaction.

DDR Bus

DDRADDR[13:0] O DDR Address Bus. 14-bit multiplexed DDR bus address bus. This bus is used
to transfer the addresses to the DDRs.

DDRBA[1:0] O DDR Bank Address. These signals are used to transfer the bank address to the
DDRs.

DDRCASN O DDR Column Address Strobe. DDR column address strobe which is asserted
during DDR transactions.

DDRCKE O DDR Clock Enable. DDR clock enable which is asserted during normal DDR
operation. This signal is negated during following a cold reset or during a power
down operation.

DDRCKN[1:0] I/O DDR Negative DDR clock. These signals are the negative clock of the differen-
tial DDR clock pair. Two copies of this output are provided to reduce signal load-
ing.

DDRCKP[1:0] I/O DDR Positive DDR clock. These signals are the positive clock of the differen-
tial DDR clock pair. Two copies of this output are provided to reduce signal load-
ing.

DDRCSN[1:0] O DDR Chip Selects. These active low signals are used to select DDR device(s)
on the DDR bus.

DDRDATA[31:0] I/O DDR Data Bus. 32-bit DDR data bus used to transfer data between the
RC32438 and the DDR devices. Data is transferred on both edges of the clock.

Signal Type Name/Description

Table 1.2 Pin Description (Part 2 of 9)
ence Manual 1 - 12 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes

DDRDM[7:0] O DDR Data Write Enables. Byte data write enables are used to enable specific

byte lanes during DDR writes.
DDRDM[0] corresponds to DDRDATA[7:0]
DDRDM[1] corresponds to DDRDATA[15:8]
DDRDM[2] corresponds to DDRDATA[23:16]
DDRDM[3] corresponds to DDRDATA[31:24]
DDRDM[4] corresponds to DDRDATA[39:32]
DDRDM[5] corresponds to DDRDATA[47:40]
DDRDM[6] corresponds to DDRDATA[55:48]
DDRDM[7] corresponds to DDRDATA[54:56]
(Refer to the DDR Data Bus Multiplexing section in Chapter 7 of this manual.)

DDRDQS[3:0] I/O DDR Data Strobes. DDR byte data strobes are used to clock data between
DDR devices and the RC32438. These strobes are inputs during DDR reads
and outputs during DDR writes.
DDRDQS[0] corresponds to DDRDATA[7:0].
DDRDQS[1] corresponds to DDRDATA[15:8].
DDRDQS[2] corresponds to DDRDATA[23:16].
DDRDQS[3] corresponds to DDRDATA[31:24].

DDROEN[3:0] O DDR Bus Switch Output Enables. In systems that support data bus multiplex-
ing, these pins are used to enable external data bus switches.

DDRRASN O DDR Row Address Strobe. DDR row address strobe is asserted during DDR
transactions.

DDRVREF I DDR Voltage Reference. SSTL_2 DDR voltage reference generated by an
external source.

DDRWEN O DDR Write Enable. DDR write enable which is asserted during DDR write trans-
actions.

PCI Bus

PCIAD[31:0] I/O PCI Multiplexed Address/Data Bus. Address is driven by a bus master during
initial PCIFRAMEN assertion. Data is then driven by the bus master during
writes or by the bus target during reads.

PCICBEN[3:0] I/O PCI Multiplexed Command/Byte Enable Bus. PCI command is driven by the
bus master during the initial PCIFRAMEN assertion. Byte enables are driven by
the bus master during subsequent data phase(s).

PCICLK I PCI Clock. Clock used for all PCI bus transactions.

PCIDEVSELN I/O PCI Device Select. This signal is driven by a bus target to indicate that the tar-
get has decoded the address as one of its own address spaces.

PCIFRAMEN I/O PCI Frame. Driven by a bus master. Assertion indicates the beginning of a bus
transaction. Negation indicates the last datum.

Signal Type Name/Description

Table 1.2 Pin Description (Part 3 of 9)
ence Manual 1 - 13 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes

PCIGNTN[3:0] I/O PCI Bus Grant.

In PCI host mode with internal arbiter:
The assertion of these signals indicates to the agent that the internal RC32438
arbiter has granted the agent access to the PCI bus.

In PCI host mode with external arbiter:
PCIGNTN[0]: asserted by an external arbiter to indicate to the RC32438 that
access to the PCI bus has been granted.
PCIGNTN[3:1]: unused and driven high.

In PCI satellite mode:
PCIGNTN[0]: this signal is asserted by an external arbiter to indicate to the
RC32438 that access to the PCI bus has been granted.
PCIGNTN[1]: this signal takes on the alternate function of PCIEECS and is used
as a PCI Serial EEPROM chip select.
PCIGNTN[3:2]: unused and driven high.

Note: When the GPIO register is programmed in the alternate function mode for
bits GPIO [26] and [28], these bits become PCIGNTN [4] and [5] respectively.

PCIIRDYN I/O PCI Initiator Ready. Driven by the bus master to indicate that the current datum
can complete.

PCILOCKN I/O PCI Lock. This signal is asserted by an external bus master to indicate that an
exclusive operation is occurring.

PCIPAR I/O PCI Parity. Even parity of the PCIAD[31:0] bus. Driven by the bus master during
address and write Data phases. Driven by the bus target during the read data
phase.

PCIPERRN I/O PCI Parity Error. If a parity error is detected, this signal is asserted by the
receiving bus agent 2 clocks after the data is received.

PCIREQN[3:0] I/O PCI Bus Request.

In PCI host mode with internal arbiter:
These signals are inputs whose assertion indicates to the internal RC32438
arbiter that an agent desires ownership of the PCI bus.

In PCI host mode with external arbiter:
PCIREQN[0]: asserted by the RC32438 to request ownership of the PCI bus.
PCIREQN[3:1]: unused and driven high.

In PCI satellite mode:
PCIREQN[0]: this signal is asserted by the RC32438 to request use of the PCI
bus.
PCIREQN[1]: PCIIDSELP and is used as a chip select during configuration read
and write transactions.
PCIREQN[3:2]: unused and driven high.

Note: When the GPIO register is programmed in the alternate function mode for
bits GPIO [24] and [27], these bits become PCIREQN [4] and [5] respectively.

PCIRSTN I/O PCI Reset. In host mode this signal is asserted by the RC32438 to generate a
PCI reset. In satellite mode, assertion of this signal initiates a warm reset.

Signal Type Name/Description

Table 1.2 Pin Description (Part 4 of 9)
ence Manual 1 - 14 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes

PCISERRN I/O PCI System Error. This signal is driven by an agent to indicate an address par-

ity error, data parity error during a special cycle command, or any other system
error. Requires an external pull-up.

PCISTOPN I/O PCI Stop. Driven by the bus target to terminate the current bus transaction for
example to indicate a retry.

PCITRDYN I/O PCI Target Ready. Driven by the bus target to indicate that the current datum
can complete.

General Purpose Input/Output

GPIO[0] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U0SOUT
Alternate function: UART channel 0 serial output

GPIO[1] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U0SINP
Alternate function: UART channel 0 serial input

GPIO[2] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U0RIN
Alternate function: UART channel 0 ring indicator

GPIO[3] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U0DCDN
Alternate function: UART channel 0 data carrier detect

GPIO[4] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U0DTRN
Alternate function: UART channel 0 data terminal ready

GPIO[5] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U0DSRN
Alternate function: UART channel 0 data set ready

GPIO[6] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U0RTSN
Alternate function: UART channel 0 request to send

GPIO[7] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U0CTSN
Alternate function: UART channel 0 clear to send

GPIO[8] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U1SOUT
Alternate function: UART channel 1 serial output

GPIO[9] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U1SINP
Alternate function: UART channel 1 serial input

Signal Type Name/Description

Table 1.2 Pin Description (Part 5 of 9)
ence Manual 1 - 15 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes

GPIO[10] I/O General Purpose I/O.

This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U1DTRN
Alternate function: UART channel 1 data terminal ready

GPIO[11] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U1DSRN
Alternate function: UART channel 1 data set ready

GPIO[12] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
 Alternate function pin name: U1RTSN
Alternate function: UART channel 1 request to send

GPIO[13] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: U1CTSN
Alternate function: UART channel 1 clear to send

GPIO[14] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: DMAREQN0
Alternate function: External DMA channel 0 request

GPIO[15] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: DMAREQN1
Alternate function: External DMA channel 1 request

GPIO[16] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: DMADONEN0
Alternate function: External DMA channel 0 done

GPIO[17] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: DMADONEN1
Alternate function: External DMA channel 1 done

GPIO[18] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: DMAFINN0
Alternate function: External DMA channel 0 finished

GPIO[19] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: DMAFINN1
Alternate function: External DMA channel 1 finished

GPIO[20] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: MADDR[22]
Alternate function: Memory and peripheral bus address

GPIO[21] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: MADDR[23]
Alternate function: Memory and peripheral bus address

Signal Type Name/Description

Table 1.2 Pin Description (Part 6 of 9)
ence Manual 1 - 16 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes

GPIO[22] I/O General Purpose I/O.

This pin can be configured as a general purpose I/O pin.
Alternate function pin name: MADDR[24]
Alternate function: Memory and peripheral bus address

GPIO[23] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: MADDR[25]
Alternate function: Memory and peripheral bus address

GPIO[24] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PCIREQN[4]
Alternate function: PCI Request 4

GPIO[25] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: AFSPARE1
Alternate function: reserved

GPIO[26] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PCIGNTN[4]
Alternate function: PCI Grant 4

GPIO[27] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PCIREQN[5]
Alternate function: PCI Request 5

GPIO[28] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PCIGNTN[5]
Alternate function: PCI Grant 5

GPIO[29] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: Reserved
Alternate function: Reserved.

GPIO[30] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.
Alternate function pin name: PCIMUINTN
Alternate function: PCI Messaging unit interrupt output

GPIO[31] I/O General Purpose I/O.
This pin can be configured as a general purpose I/O pin.

SPI Interface

SCK I/O Serial Clock. This signal is used as the serial clock output in SPI mode and in
PCI satellite mode with suspended CPU execution during PCI serial EEPROM
loading. This pin may be configured as a GPIO pin.

SDI I/O Serial Data Input. This signal is used to shift in serial data in SPI mode and in
PCI satellite mode with suspended CPU execution during PCI serial EEPROM
loading. This pin may be configured as a GPIO pin.

SDO I/O Serial Data Output. This signal is used shift out serial data in SPI mode and in
PCI satellite mode with suspended CPU execution during PCI serial EEPROM
loading. This pin may be configured as a GPIO pin.

Signal Type Name/Description

Table 1.2 Pin Description (Part 7 of 9)
ence Manual 1 - 17 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes

I2C Bus Interface

SCL I/O I2C Clock. I2C-bus clock.

SDA I/O I2C Data Bus. I2C-bus data bus.

Ethernet Interfaces

MII0CL I Ethernet 0 MII Collision Detected. This signal is asserted by the ethernet PHY
when a collision is detected.

MII0CRS I Ethernet 0 MII Carrier Sense. This signal is asserted by the ethernet PHY
when either the transmit or receive medium is not idle.

MII0RXCLK I Ethernet 0 MII Receive Clock. This clock is a continuous clock that provides a
timing reference for the reception of data.

MII0RXD[3:0] I Ethernet 0 MII Receive Data. This nibble wide data bus contains the data
received by the ethernet PHY.

MII0RXDV I Ethernet 0 MII Receive Data Valid. The assertion of this signal indicates that
valid receive data is in the MII receive data bus.

MII0RXER I Ethernet 0 MII Receive Error. The assertion of this signal indicates that an
error was detected somewhere in the ethernet frame currently being sent in the
MII receive data bus.

MII0TXCLK I Ethernet 0 MII Transmit Clock. This clock is a continuous clock that provides a
timing reference for the transfer of transmit data.

MII0TXD[3:0] O Ethernet 0 MII Transmit Data. This nibble wide data bus contains the data to
be transmitted.

MII0TXENP O Ethernet 0 MII Transmit Enable. The assertion of this signal indicates that data
is present on the MII for transmission.

MII0TXER O Ethernet 0 MII Transmit Coding Error. When this signal is asserted together
with MIITXENP, the ethernet PHY will transmit symbols which are not valid data
or delimiters.

MII1CL I Ethernet 1 MII Collision Detected. This signal is asserted by the ethernet PHY
when a collision is detected.

MII1CRS I Ethernet 1 MII Carrier Sense. This signal is asserted by the ethernet PHY
when either the transmit or receive medium is not idle.

MII1RXCLK I Ethernet 1 MII Receive Clock. This clock is a continuous clock that provides a
timing reference for the reception of data.

MII1RXD[3:0] I Ethernet 1 MII Receive Data. This nibble wide data bus contains the data
received by the ethernet PHY.

MII1RXDV I Ethernet 1 MII Receive Data Valid. The assertion of this signal indicates that
valid receive data is in the MII receive data bus.

MII1RXER I Ethernet 1 MII Receive Error. The assertion of this signal indicates that an
error was detected somewhere in the ethernet frame currently being sent in the
MII receive data bus.

MII1TXCLK I Ethernet 1 MII Transmit Clock. This clock is a continuous clock that provides a
timing reference for the transfer of transmit data.

MII1TXD[3:0] O Ethernet 1 MII Transmit Data. This nibble wide data bus contains the data to
be transmitted.

Signal Type Name/Description

Table 1.2 Pin Description (Part 8 of 9)
ence Manual 1 - 18 May 11, 2005

IDT RC32438 Device Overview Pin Description

79RC32438 User Refer

Notes

MII1TXENP O Ethernet 1 MII Transmit Enable. The assertion of this signal indicates that data

is present on the MII for transmission.

MII1TXER O Ethernet 1 MII Transmit Coding Error. When this signal is asserted together
with MIITXENP, the ethernet PHY will transmit symbols which are not valid data
or delimiters.

MIIMDC O MII Management Data Clock. This signal is used as a timing reference for
transmission of data on the management interface.

MIIMDIO I/O MII Management Data. This bidirectional signal is used to transfer data
between the station management entity and the ethernet PHY.

JTAG / EJTAG

EJTAG_TMS I EJTAG Mode. The value on this signal controls the test mode select of the
EJTAG Controller. When using the JTAG boundary scan, this pin should be left
disconnected (since there is an internal pull-up) or driven high.

JTAG_TCK I JTAG Clock. This is an input test clock used to clock the shifting of data into or
out of the boundary scan logic, JTAG Controller, or the EJTAG Controller.
JTAG_TCK is independent of the system and the processor clock with a nomi-
nal 50% duty cycle.

JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic, JTAG
Controller, or the EJTAG Controller.

JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary scan
logic, JTAG Controller, or the EJTAG Controller. When no data is being shifted
out, this signal is tri-stated.

JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the
boundary scan logic or JTAG Controller. When using the EJTAG debug inter-
face, this pin should be left disconnected (since there is an internal pull-up) or
driven high.

JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary scan
logic, JTAG TAP Controller, and the EJTAG Debug TAP Controller. An external
pull-up on the board is recommended to meet the JTAG specification in cases
where the tester can access this signal. However, for systems running in func-
tional mode, one of the following should occur:
1) actively drive this signal low with control logic
2) statically drive this signal low with an external pull-down on the board
3) clock JTAG_TCK while holding EJTAG_TMS and/or JTAG_TMS high.

Debug

CPU O CPU Transaction. This signal is asserted during all CPU instruction fetches and
data transfers to/from the DDR and devices on the memory and peripheral bus.
The signal is negated during PCI and DMA transactions to/from the DDR and
devices on the memory and peripheral bus.

INST O Instruction or Data. This signal is driven high during CPU instruction fetches on
the memory and peripheral bus memory or DDR bus.

Signal Type Name/Description

Table 1.2 Pin Description (Part 9 of 9)
ence Manual 1 - 19 May 11, 2005

IDT RC32438 Device Overview Default Memory Map

79RC32438 User Refer

Notes
 Default Memory Map
The RC32438 contains 2 initially-enabled physical address regions. They are: Boot device region (i.e.,

Device 0) and an internal register region. Associated with each memory region (i.e., device, DDR, or on-
chip memory) is a base and mask register pair. When a bit in the mask register is set, then the corre-
sponding physical address bit generated by the CPU participates in address comparisons for the region. If
a bit in the mask register is cleared, then the corresponding physical address bit does not participate in
address comparisons for the region. When the CPU, PCI, or DMA controller generates a physical address,
the address is compared with all non-masked bits in each base register. If all non-masked physical address
bits match a base register, then the corresponding address region is selected. If no base register matches
or if multiple base registers match, then no region is selected and the address space monitor reports an
error (see Chapter 4, System Integrity).1

The initial default memory map following a cold reset is shown in Table 1.3. Software may alter this
default configuration by modifying the base and mask registers. Base and mask registers should not be
modified for the region(s) from which the CPU is executing.

1. If a device or SDRAM is mapped such that it overlaps the internal system address space (0x1800_000 through
0x181F_FFFF), the internal system controller address space will take precedence. Any subsequent CPU or PCI
access to this redundantly mapped space will result in the system controller being accessed.

Physical Address
Range Size RC32438 Memory

Region Reset Initialization

0x0000_0000 to 0x17FF_FFFF 384 MB Unused

0x1800_0000 to 0x181F_FFFF 2 MB RC32438 internal registers

0x1820_0000 to 0x1BFF_FFFF 62 MB Unused

0x1C00_0000 to 0x1FFF_FFFF 64 MB Device 0 (CSN[0]) DEV0BASE 0x1C00

DEV0MASK 0xFC00

0x2000_0000 to 0xFFFF_FFFF Approx.
3 GB

Unused

Table 1.3 RC32438 Default Memory Map Following a Cold Reset
ence Manual 1 - 20 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
 RC32438 Internal Register Map
The physical address of a RC32438 internal register is equal to the register offset, shown in Table 1.4,

added to the base value 0x1800_0000. The RC32438 internal register region is not fully decoded.1 Unless
otherwise noted, all registers should be accessed as aligned 32-bit quantities. Also, all internal registers
should be accessed through non-cacheable addresses.

1. Addresses for each function may be partitioned into two regions. Region one includes addresses from the start
of the function’s address range to one less than the lowest address that modulo 256 is zero and which is greater
than or equal to the highest defined register for that function. Region two consists of those function addresses not
in region one. For the system identification function, region one would consist of 0x00_0000 through 0x00_00FF
and region two could consist of 0x00_0100 through 0x00_7FFF. Reads from a region one reserved address return
zero. Writes to a region one reserved address are ignored. Reads and writes to region two result in an undecoded
address error. For more information, see the Address Space Monitor section in Chapter 4.

Function Register Offset Register
Name Register Function

System
Identification

0x00_0000 through 0x00_0017 Reserved

0x00_0018 SYSID System Identification

0x00_001C Reserved

0x00_0020 through 0x00_7FFF Reserved

Reset and
Initialization

0x00_8000 RESET Reset

0x00_8004 BCV Boot configuration

0x00_80081 CEA CPU error address
Note: This register can only be
accessed by the CPU. It cannot be
accessed by IPBus masters.

0x00_800C through 0x00_FFFF Reserved

Device Controller 0x01_0000 DEV0BASE Device 0 Base

0x01_0004 DEV0MASK Device 0 Mask

0x01_0008 DEV0C Device 0 Control

0x01_000C DEV0TC Device 0 Timing control

0x01_0010 DEV1BASE Device 1 Base

0x01_0014 DEV1MASK Device 1 Mask

0x01_0018 DEV1C Device 1 Control

0x01_001C DEV1TC Device 1 Timing control

0x01_0020 DEV2BASE Device 2 Base

0x01_0024 DEV2MASK Device 20 Mask

0x01_0028 DEV2C Device 2 Control

0x01_002C DEV2TC Device 2 Timing control

0x01_0030 DEV3BASE Device 3 Base

0x01_0034 DEV3MASK Device 3 Mask

Table 1.4 Internal Register Map (Part 1 of 11)
ence Manual 1 - 21 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x01_0038 DEV3C Device 3 Control

0x01_003C DEV3TC Device 3 Timing control

Device Controller
(Cont.)

0x01_0040 DEV4BASE Device 4 Base

0x01_0044 DEV4MASK Device 40 Mask

0x01_0048 DEV4C Device 4 Control

0x01_004C DEV4TC Device 4 Timing control

0x01_0050 DEV5BASE Device 5 Base

0x01_0054 DEV5MASK Device 5 Mask

0x01_0058 DEV5C Device 5 Control

0x01_005C DEV5TC Device 5 Timing control

0x01_0060 BTCS Bus Timer Control and Status

0x01_0064 BTCOMPARE Bus Transaction Timer Compare

0x01_0068 BTADDR Bus Transaction Timer Address

0x01_006C DEVDACS Device Decoupled Access Control
and Status

0x01_0070 DEVDAA Device Decoupled Access Address

0x01_0074 DEVDAD Device Decoupled Access Data

0x01_0078 through 0x01_7FFF Reserved

DDR Controller 0x01_8000 DDR0BASE DDR 0 base

0x01_8004 DDR0MASK DDR 0 mask

0x01_8008 DDR1BASE DDR 1 base

0x01_800C DDR1MASK DDR 1 mask

0x01_8010 DDRC DDR control

0x01_8014 DDR0ABASE DDR 0 alternate base

0x01_8018 DDR0AMASK DDR 0 alternate mask

0x01_801C DDR0AMAP DDR 0 alternate mapping

0x01_8020 DDRCUST DDR Custom transaction

0x01_8024 DDRRDC DDR Read Data Capture

0x01_8028 through 0x01_BFFF Reserved

PMBus Arbiter 0x02_0000 PMAPP PMBus arbiter processor priority

0x02_0004 PMASAC PMBus arbiter sneak access con-
trol

0x02_0008 through 0x02_7FFF Reserved

Counter/Timers 0x02_8000 COUNT0 Counter timer 0 count

0x02_8004 COMPARE0 Counter timer 0 compare

0x02_8008 CTC0 Counter timer 0 control

0x02_800C COUNT1 Counter timer 1 count

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 2 of 11)
ence Manual 1 - 22 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x02_8010 COMPARE1 Counter timer 1 compare

0x02_8014 CTC1 Counter timer 1 control

0x02_8018 COUNT2 Counter timer 2 count

0x02_801C COMPARE2 Counter timer 2 compare

0x02_8020 CTC2 Counter timer 2 control

0x02_8024 RCOUNT Refresh timer count

0x02_8028 RCOMPARE Refresh timer compare

0x02_802C RTC Refresh timer control

0x02_8030 through 0x02_FFFF Reserved

System Integrity
Functions

0x03_0000 through 0x03_002C Reserved

0x03_0030 ERRCS Error control and status

0x03_0034 WTCOUNT Watchdog timer count

0x03_0038 WTCOMPARE Watchdog timer compare

0x03_003C WTC Watchdog timer control

0x03_0040 through 0x03_7FFF Reserved

Interrupt Controller 0x03_8000 IPEND2 Interrupt pending 2

0x03_8004 ITEST2 Interrupt test 2

0x03_8008 IMASK2 Interrupt mask 2

0x03_800C IPEND3 Interrupt pending 3

0x03_8010 ITEST3 Interrupt test 3

0x03_8014 IMASK3 Interrupt mask 3

0x03_8018 IPEND4 Interrupt pending 4

0x03_801C ITEST4 Interrupt test 4

0x03_8020 IMASK4 Interrupt mask 4

0x03_8024 IPEND5 Interrupt pending 5

0x03_8028 ITEST5 Interrupt test 5

0x03_802C IMASK5 Interrupt mask 5

0x03_8030 IPEND6 Interrupt pending 6

0x03_8034 ITEST6 Interrupt test 6

0x03_8038 IMASK6 Interrupt mask 6

0x03_803C NMIPS Non-maskable interrupt pin status

0x03_8040 through 0x03_FFFF Reserved

DMA Controller 0x04_0000 DMA0C DMA 0 control

0x04_0004 DMA0S DMA 0 status

0x04_0008 DMA0SM DMA 0 status mask

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 3 of 11)
ence Manual 1 - 23 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x04_000C DMA0DPTR DMA 0 descriptor pointer

0x04_0010 DMA0NDPTR DMA 0 next descriptor pointer

0x04_0014 DMA1C DMA 1 control

DMA Controller
(Cont.)

0x04_0018 DMA1S DMA 1 status

0x04_001C DMA1SM DMA 1 status mask

0x04_0020 DMA1DPTR DMA 1 descriptor pointer

0x04_0024 DMA1NDPTR DMA 1 next descriptor pointer

0x04_0028 DMA2C DMA 2 control

0x04_002C DMA2S DMA 2 status

0x04_0030 DMA2SM DMA 2 status mask

0x04_0034 DMA2DPTR DMA 2 descriptor pointer

0x04_0038 DMA2NDPTR DMA 2 next descriptor pointer

0x04_003C DMA3C DMA 3 control

0x04_0040 DMA3S DMA 3 status

0x04_0044 DMA3SM DMA 3 status mask

0x04_0048 DMA3DPTR DMA 3 descriptor pointer

0x04_004C DMA3NDPTR DMA 3 next descriptor pointer

0x04_0050 DMA4C DMA 4 control

0x04_0054 DMA4S DMA 4 status

0x04_0058 DMA4SM DMA 4 status mask

0x04_005C DMA4DPTR DMA 4 descriptor pointer

0x04_0060 DMA4NDPTR DMA 4 next descriptor pointer

0x04_0064 DMA5C DMA 5 control

0x04_0068 DMA5S DMA 5 status

0x04_006C DMA5SM DMA 5 status mask

0x04_0070 DMA5DPTR DMA 5 descriptor pointer

0x04_0074 DMA5NDPTR DMA 5 next descriptor pointer

0x04_0078 DMA6C DMA 6 control

0x04_007C DMA6S DMA 6 status

0x04_0080 DMA6SM DMA 6 status mask

0x04_0084 DMA6DPTR DMA 6 descriptor pointer

0x04_0088 DMA6NDPTR DMA 6 next descriptor pointer

0x04_008C DMA7C DMA 7 control

0x04_0090 DMA7S DMA 7 status

0x04_0094 DMA7SM DMA 7 status mask

0x04_0098 DMA7DPTR DMA 7 descriptor pointer

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 4 of 11)
ence Manual 1 - 24 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x04_009C DMA7NDPTR DMA 7 next descriptor pointer

0x04_00A0 DMA8C DMA 8 control

0x04_00A4 DMA8S DMA 8 status

DMA Controller
(Cont.)

0x04_00A8 DMA8SM DMA 8 status mask

0x04_00AC DMA8DPTR DMA 8 descriptor pointer

0x04_00B0 DMA8NDPTR DMA 8 next descriptor pointer

0x04_00B4 DMA9C DMA 9 control

0x04_00B8 DMA9S DMA 9 status

0x04_00BC DMA9SM DMA 9 status mask

0x04_00C0 DMA9DPTR DMA 9 descriptor pointer

0x04_00C4 DMA9NDPTR DMA 9 next descriptor pointer

0x04_00C8 DMA10C DMA 10 control

0x04_00CC DMA10S DMA 10 status

0x04_00D0 DMA10SM DMA 10 status mask

0x04_00D4 DMA10DPTR DMA 10 descriptor pointer

0x04_00D8 DMA10NDPTR DMA 10 next descriptor pointer

0x04_00DC DMA11C DMA 11 control

0x04_00E0 DMA11S DMA 11 status

0x04_00E4 DMA11SM DMA 11 status mask

0x04_00E8 DMA11DPTR DMA 11 descriptor pointer

0x04_00EC DMA11NDPTR DMA 11 next descriptor pointer

0x04_00F0 DMA12C DMA 12 control

0x04_00F4 DMA12S DMA 12 status

0x04_00F8 DMA12SM DMA 12 status mask

0x04_00FC DMA12DPTR DMA 12 descriptor pointer

0x04_0100 DMA12NDPTR DMA 12 next descriptor pointer

0x04_0104 through 0x04_3FFF Reserved

IPBus Arbiter 0x04_4000 IPAP0C IPBus arbiter priority 0 configura-
tion

0x04_4004 IPAP1C IPBus arbiter priority 1 configura-
tion

0x04_4008 IPAP2C IPBus arbiter priority 2 configura-
tion

0x04_400C IPAP3C IPBus arbiter priority 3 configura-
tion

0x04_4010 IPABM0C IPBus arbiter bus master 0 config-
uration

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 5 of 11)
ence Manual 1 - 25 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x04_4014 IPABM1C IPBus arbiter bus master 1 config-
uration

0x04_4018 IPABM2C IPBus arbiter bus master 2 config-
uration

IPBus Arbiter
(Cont.)

0x04_401C IPABM3C IPBus arbiter bus master 3 config-
uration

0x04_4020 IPABM4C IPBus arbiter bus master 4 config-
uration

0x04_4024 IPABM5C IPBus arbiter bus master 5 config-
uration

0x04_4028 IPABM6C IPBus arbiter bus master 6 config-
uration

0x04_402C IPABM7C IPBus arbiter bus master 7 config-
uration

0x04_4030 IPABM8C IPBus arbiter bus master 8 config-
uration

0x04_4034 IPABM9C IPBus arbiter bus master 9 config-
uration

0x04_4038 through 0x04_4040 Reserved

0x04_4044 IPABM13C IPBus arbiter bus master 13 con-
figuration

0x04_4048 IPABM14C IPBus arbiter bus master 14 con-
figuration

0x04_404C IPABM15C IPBus arbiter bus master 15 con-
figuration

0x04_4050 IPABM16C IPBus arbiter bus master 16 con-
figuration

0x04_4054 IPAC IPBus arbiter control

0x04_4058 IPAITCC IPBus arbiter idle transaction cycle
count

0x04_405C through 0x04_7FFF Reserved

GPIO Controller 0x04_8000 GPIOFUNC GPIO function

0x04_8004 GPIOCFG GPIO configuration

0x04_8008 GPIOD GPIO data

0x04_800C GPIOILEVEL GPIO interrupt level

0x04_8010 GPIOISTAT GPIO interrupt status

0x04_8014 GPIONMIEN GPIO nonmaskable interrupt
enable

0x04_8018 through 0x04_FFFF Reserved

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 6 of 11)
ence Manual 1 - 26 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
UART 0x05_0000 UART0RB /
UART0TH /
UART0DLL

UART 0 receive buffer / UART 0
transmit holding / UART 0 divisor
latch low

0x05_0004 UART0IE /
UART0DLH

UART 0 interrupt enable / UART 0
divisor latch high

0x05_0008 UART0II /
UART0FC

UART 0 interrupt identification /
UART 0 FIFO control

0x05_000C UART0LC UART 0 line control

0x05_0010 UART0MC UART 0 modem control

0x05_0014 UART0LS UART 0 line status

0x05_0018 UART0MS UART 0 modem status

0x05_001C UART0S UART 0 scratch

0x05_0020 UART1RB /
UART1TH /
UART1DLL

UART 1 receive buffer / UART 1
transmit holding / UART 1 divisor
latch low

0x05_0024 UART1IE /
UART1DLH

UART 1 interrupt enable / UART 1
divisor latch high

0x05_0028 UART1II /
UART1FC

UART 1 interrupt identification /
UART 1 FIFO control

0x05_002C UART1LC UART 1 line control

0x05_0030 UART1MC UART 1 modem control

0x05_0034 UART1LS UART 1 line status

0x05_0038 UART1MS UART 1 modem status

0x05_003C UART1S UART 1 scratch

0x05_0040 UART0RR UART 0 Reset

0x05_0044 UART1RR UART 1 Reset

0x05_0048 through 0x05_7FFF Reserved

Ethernet Interface 0 0x05_8000 ETH0INTFC Ethernet 0 interface control

0x05_8004 ETH0FIFOTT Ethernet 0 FIFO transmit threshold

0x05_8008 ETH0ARC Ethernet 0 address recognition
control

0x05_800C ETH0HASH0 Ethernet 0 hash table 0

0x05_8010 ETH0HASH1 Ethernet 0 hash table 1

0x05_8014 through 0x05_8020 Reserved

0x05_8024 ETH0PFS Ethernet 0 pause frame status

Management Clock 0x05_8028 ETHMCP Ethernet management clock pre-
scalar

0x05_802C through 0x05_80FF Reserved

0x05_8100 ETH0SAL0 Ethernet 0 station address 0 low

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 7 of 11)
ence Manual 1 - 27 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x05_8104 ETH0SAH0 Ethernet 0 station address 0 high

0x05_8108 ETH0SAL1 Ethernet 0 station address 1 low

0x05_810C ETH0SAH1 Ethernet 0 station address 1 high

0x05_8110 ETH0SAL2 Ethernet 0 station address 2 low

0x05_8114 ETH0SAH2 Ethernet 0 station address 2 high

0x05_8118 ETH0SAL3 Ethernet 0 station address 3 low

0x05_811C ETH0SAH3 Ethernet 0 station address 3 high

0x05_8120 ETH0RBC Ethernet 0 receive byte count

0x05_8124 ETH0RPC Ethernet 0 receive packet count

0x05_8128 ETH0RUPC Ethernet 0 receive undersized
packet count

0x05_812C ETH0RFC Ethernet 0 receive fragment count

0x05_8130 ETH0TBC Ethernet 0 transmit byte count

0x05_8134 ETH0GPF Ethernet 0 generate pause frame

0x05_8138 through 0x05_81FF Reserved

0x05_8200 ETH0MAC1 Ethernet 0 MAC configuration 1

0x05_8204 ETH0MAC2 Ethernet 0 MAC configuration 2

0x05_8208 ETH0IPGT Ethernet 0 back-to-back inter-
packet gap

0x05_820C ETH0IPGR Ethernet 0 non back-to-back inter-
packet gap

0x05_8210 ETH0CLRT Ethernet 0 collision window retry

0x05_8214 ETH0MAXF Ethernet 0 maximum frame length

0x05_8218 Reserved

0x05_821C ETH0MTEST Ethernet 0 MAC test

MII Management 0x05_8220 MIIMCFG MII management configuration

MII Management 0x05_8224 MIIMCMD MII management command

MII Management 0x05_8228 MIIMADDR MII management address

MII Management 0x05_822C MIIMWTD MII management write data

MII Management 0x05_8230 MIIMRDD MII management read data

MII Management 0x05_8234 MIIMIND MII management indicators

0x05_8238 through 0x05_823C Reserved

0x05_8240 ETH0CFSA0 Ethernet 0 control frame station
address 0

0x05_8244 ETH0CFSA1 Ethernet 0 control frame station
address 1

0x05_8248 ETH0CFSA2 Ethernet 0 control frame station
address 2

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 8 of 11)
ence Manual 1 - 28 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x05_824C through 0x5_FFFF Reserved

Ethernet Interface 1 0x06_0000 ETH1INTFC Ethernet 1 interface control

0x06_0004 ETH1FIFOTT Ethernet 1 FIFO transmit threshold

0x06_0008 ETH1ARC Ethernet 1 address recognition
control

0x06_000C ETH1HASH0 Ethernet 1 hash table 0

0x06_0010 ETH1HASH1 Ethernet 1 hash table 1

0x06_0014 through 0x06_0020 Reserved

0x06_0024 ETH1PFS Ethernet 1 pause frame status

0x06_0028 through 0x06_00FF Reserved

0x06_0100 ETH1SAL0 Ethernet 1 station address 0 low

0x06_0104 ETH1SAH0 Ethernet 1 station address 0 high

0x06_0108 ETH1SAL1 Ethernet 1 station address 1 low

0x06_010C ETH1SAH1 Ethernet 1 station address 1 high

0x06_0110 ETH1SAL2 Ethernet 1 station address 2 low

0x06_0114 ETH1SAH2 Ethernet 1 station address 2 high

0x06_0118 ETH1SAL3 Ethernet 1 station address 3 low

0x06_011C ETH1SAH3 Ethernet 1 station address 3 high

0x06_0120 ETH1RBC Ethernet 1 receive byte count

0x06_0124 ETH1RPC Ethernet 1 receive packet count

0x06_0128 ETH1RUPC Ethernet 1 receive undersized
packet count

0x06_012C ETH1RFC Ethernet 1 receive fragment count

0x06_0130 ETH1TBC Ethernet 1 transmit byte count

0x06_0134 ETH1GPF Ethernet 1 generate pause frame

0x06_0138 through 0x06_01FF Reserved

0x06_0200 ETH1MAC1 Ethernet 1 MAC configuration 1

0x06_0204 ETH1MAC2 Ethernet 1 MAC configuration 2

0x06_0208 ETH1IPGT Ethernet 1 back-to-back inter-
packet gap

0x06_020C ETH1IPGR Ethernet 1 non back-to-back inter-
packet gap

0x06_0210 ETH1CLRT Ethernet 1 collision window retry

0x06_0214 ETH1MAXF Ethernet 1 maximum frame length

0x06_0218 Reserved

0x06_021C ETH1MTEST Ethernet 1 MAC test

0x06_0220 through 0x06_023C Reserved

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 9 of 11)
ence Manual 1 - 29 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x06_0240 ETH1CFSA0 Ethernet 1 control frame station
address 0

0x06_0244 ETH1CFSA1 Ethernet 1 control frame station
address 1

0x06_0248 ETH1CFSA2 Ethernet 1 control frame station
address 2

0x06_024C through 0x6_FFFF Reserved

I2C Bus 0x07_0000 I2CC I2C bus control

0x07_0004 I2CDI I2C bus data input

0x07_0008 I2CDO I2C bus data output

0x07_000C I2CCP I2C bus clock prescalar

0x07_0010 I2CMCMD I2C bus master command

0x07_0014 I2CMS I2C bus master status

0x07_0018 I2CMSM I2C bus master status mask

0x07_001C I2CSS I2C bus slave status

0x07_0020 I2CSSM I2C bus slave status mask

0x07_0024 I2CSADDR I2C bus slave address

0x07_0028 I2CSACK I2C bus slave acknowledge

0x07_002C through 0x7_7FFF Reserved

Serial Peripheral
Interface

0x07_8000 SPCP SPI clock prescalar

0x07_8004 SPC SPI control

0x07_8008 SPS SPI status

0x07_800C SPD SPI data

0x07_8010 SIOFUNC Serial I/O function

0x07_8014 SIOCFG Serial I/O configuration

0x07_8018 SIOD Serial I/O data

0x07_801C through 0x7_FFFF Reserved

PCI Bus Interface 0x08_0000 PCIC PCI control

0x08_0004 PCIS PCI status

0x08_0008 PCISM PCI status mask

0x08_000C PCICFGA PCI configuration address

0x08_0010 PCICFGD PCI configuration data

0x08_0014 PCILBA0 PCI local base address 0

0x08_0018 PCILBA0C PCI local base address 0 control

0x08_001C PCILBA0M PCI local base address 0 mapping

0x08_0020 PCILBA1 PCI local base address 1

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 10 of 11)
ence Manual 1 - 30 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
0x08_0024 PCILBA1C PCI local base address 1 control

PCI Bus Interface
(Cont.)

0x08_0028 PCILBA1M PCI local base address 1 mapping

0x08_002C PCILBA2 PCI local base address 2

0x08_0030 PCILBA2C PCI local base address 2 control

0x08_0034 PCILBA2M PCI local base address 2 mapping

0x08_0038 PCILBA3 PCI local base address 3

0x08_003C PCILBA3C PCI local base address 3 control

0x08_0040 PCILBA3M PCI local base address 3 mapping

0x08_0044 PCIDAC PCI decoupled access control

0x08_0048 PCIDAS PCI decoupled access status

0x08_004C PCIDASM PCI decoupled access status mask

0x08_0050 PCIDAD PCI decoupled access data

0x08_0054 PCIDMA8C PCI DMA channel 8 configuration

0x08_0058 PCIDMA9C PCI DMA channel 9 configuration

0x08_005C PCITC PCI target control

0x08_0060 through 0x8_7FFF Reserved

PCI Messaging Unit 0x08_8000 through 0x8_800C Reserved

0x08_8010 PCIIM0 PCI Inbound Message 0

0x08_8014 PCIIM1 PCI Inbound Message 1

0x08_8018 PCIOM0 PCI Outbound Message 0

0x08_801C PCIOM1 PCI Outbound Message 1

0x08_8020 PCIID PCI Inbound Doorbell

0x08_8024 PCIIIC PCI Inbound Interrupt Cause

0x08_8028 PCIIIM PCI Inbound Interrupt Mask

0x08_802C PCIOD PCI Outbound Doorbell

0x08_8030 PCIOIC PCI Outbound Interrupt Cause

0x08_8034 PCIOIM PCI Outbound Interrupt Mask

0x08_8038 through 0x8_FFFF Reserved

Reserve 0x09_0000 through 0x09_7FFF Reserved

On-Chip Memory 0x09_8000 OCMBASE On-chip memory base

0x09_8004 OCMMASK On-chip memory mask

0x09_8008 through 0x09_FFFF Reserved

1. Addresses for each function may be partitioned into two regions. Region one includes addresses from the start of the function’s
address range to one less than the lowest address that modulo 256 is zero and which is greater than or equal to the highest de-
fined register for that function. Region two consists of those function addresses not in region one. For the system identification
function, region one would consist of 0x00_0000 through 0x00_00FF and region two could consist of 0x00_0100 through
0x00_7FFF. Reads from a region one reserved address return zero. Writes to a region one reserved address are ignored. Reads
and writes to region two result in an undecoded address error. For more information, refer to the Address Space Monitor section
in Chapter 4.

Function Register Offset Register
Name Register Function

Table 1.4 Internal Register Map (Part 11 of 11)
ence Manual 1 - 31 May 11, 2005

IDT RC32438 Device Overview RC32438 Internal Register Map

79RC32438 User Refer

Notes
ence Manual 1 - 32 May 11, 2005

Notes

79RC32438 User Reference Manual 2 - 1 M
Chapter 2
MIPS32 4Kc Processor Core
Introduction
The MIPS32™ 4Kc™ processor core from MIPS® Technologies is a high performance, low power, 32 bit

MIPS RISC core intended for custom system-on-silicon applications. The 4Kc processor incorporates
aspects of both the MIPS Technologies R3000® and R4000® processors. This chapter provides basic infor-
mation on the architecture and operation of the 4Kc processor core as it applies to the RC32438. Additional
information about the 4Kc core can be obtained by contacting MIPS Technologies or visiting their 4Kc web
page at: http://www.mips.com/products/s2p4.html.

 Functional Overview
The 4Kc core contains a fully-associative translation lookaside buffer (TLB) based MMU (Memory

Management Unit) and a pipelined MDU (Multiply/Divide Unit). The instruction and data caches are both 16
Kbytes in size and organized as 4-way set associative. On a cache miss, loads are blocked only until the
first critical word becomes available. The pipeline resumes execution while the remaining words are being
written to the cache. Both caches are virtually indexed and physically tagged. Virtual indexing allows the
cache to be indexed in the same clock in which the address is generated rather than waiting for the virtual-
to-physical address translation in the Memory Management Unit (MMU).

The 4Kc core executes the MIPS32 instruction set architecture (ISA). The MIPS32 ISA contains all
MIPS II instructions as well as special multiply-accumulate, conditional move, prefetch, wait, and zero/one
detect instructions. The R4000-style memory management unit of the 4Kc core contains a 3-entry instruc-
tion TLB (ITLB), a 3-entry data TLB (DTLB), and a 16 dual-entry joint TLB (JTLB) with variable page sizes.

The 4Kc MDU supports a maximum issue rate of one 32x16 multiply (MUL/MULT/MULTU), multiply-add
(MADD/MADDU), or multiply-subtract (MSUB/MSUBU) operation per clock, or one 32x32 MUL, MADD, or
MSUB every other clock. The basic Enhanced JTAG (EJTAG) features provide CPU run control with stop,
single stepping and re-start, and with software breakpoints through the SDBBP instruction. In addition,
optional instruction and data virtual address hardware breakpoints, and optional connection to an external
EJTAG probe through the Test Access Port (TAP) may be included.

Features
32-bit Address and Data Paths
MIPS32 compatible instruction set

– All MIPSII™ instructions
– Multiply-add and multiply-subtract instructions (MADD, MADDU, MSUB, MSUBU)
– Targeted multiply instruction (MUL)
– Zero and one detect instructions (CLZ, CLO)
– Wait instruction (WAIT)
– Conditional move instructions (MOVZ, MOVN)
– Prefetch instruction (PREF)
ay 11, 2005

IDT MIPS32 4Kc Processor Core Features

79RC32438 User Refer

Notes
 Cache Sizes
– 16KB instruction and data caches
– 4-Way set associative
– Loads that miss in the cache are blocked only until critical word is available
– Write-through, no write-allocate
– 128 bit (16-byte) cache line size, word sectored - suitable for standard 32-bit wide single-port

SRAM
– Virtually indexed, physically tagged
– Cache line locking support

R4000 Style Privileged Resource Architecture
– Count/compare registers for real-time timer interrupts
– Instruction and data watch registers for software breakpoints
– Separate interrupt exception vector

Programmable Memory Management Unit
– 16 dual-entry R4000 style JTLB with variable page sizes
– 3-entry instruction TLB
– 3-entry data TLB

Multiply-Divide Unit
– Max issue rate of one 32x16 multiply per clock
– Max issue rate of one 32x32 multiply every other clock
– Early in divide control. Minimum 11, maximum 34 clock latency on divide

Power Control
– No minimum frequency
– Power-down mode (triggered by WAIT instruction)
– Support for software-controlled clock divider

EJTAG Debug Support
– CPU control with start, stop, and single stepping
– Software breakpoints via the SDBBP instruction
– Optional hardware breakpoints on virtual addresses; 4 instruction and 2 data breakpoints, 2

instruction and 1 data breakpoint, or no breakpoints
– Test Access Port (TAP) facilitates high speed download of application code
ence Manual 2 - 2 May 11, 2005

IDT MIPS32 4Kc Processor Core Functional Overview

79RC32438 User Refer

Notes
 Functional Overview
Figure 2.1 shows a block diagram of the 4Kc CPU core.

Figure 2.1 RC32438 Block Diagram

Blocks
The following sections describe the various blocks in the 4Kc processor core.

Execution Unit
 The execution unit includes:

32-bit adder used for calculating the data address
Address unit for calculating the next instruction address
Logic for branch determination and branch target address calculation
Load aligner
Bypass multiplexers used to avoid stalls when executing instruction streams where data-producing
instructions are followed closely by consumers of their results
Zero/One detect unit for implementing the CLZ and CLO instructions
ALU for performing bitwise logical operations
Shifter and Store aligner

The core execution unit implements a load-store architecture with single-cycle Arithmetic Logic Unit
(ALU) operations (logical, shift, add, subtract) and an autonomous multiply-divide unit. The core contains
thirty-two 32-bit general-purpose registers used for scalar integer operations and address calculation. The
register file consists of two read ports and one write port and is fully bypassed to minimize operation latency
in the pipeline.

Multiply/Divide Unit (MDU)
The Multiply/Divide unit performs multiply and divide operations. In the 4Kc processor, the MDU consists

of a 32x16 booth-encoded multiplier, result-accumulation registers (HI and LO), a divide state machine, and
all multiplexers and control logic required to perform these functions. This pipelined MDU supports execu-
tion of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply operations can be issued
every other clock cycle. Appropriate interlocks are implemented to stall the issue of back-to-back 32x32
multiply operations. Divide operations are implemented with a simple 1 bit per clock iterative algorithm and
may require up to 35 clock cycles (worst case scenario) to complete. In the early stages of executions, the
algorithm detects a sign extension of the dividend and, if its actual size is 24, 16, or 8 bits. Based on this

System
Coprocessor

Cache
Controller

MDU

TLB or FM

MMU

D-Cache

BIU

TAP

EJTAG

 Power
Mgmt

I-Cache Off-Chip
Debug I/F

 Execution Core
(RF/ALU/Shift

Th
in

I/F

On
-C

hip
 B

us
(e

s)
ence Manual 2 - 3 May 11, 2005

IDT MIPS32 4Kc Processor Core Functional Overview

79RC32438 User Refer

Notes
 information, the divider will skip 7, 15, or 23 iterations respectively (out of a total of 32 iterations). An
attempt to issue a subsequent MDU instruction while a divide is still in progress causes a pipeline stall until
the divide operation is completed.

An additional multiply instruction, MUL, is implemented. This instruction specifies that the lower 32 bits
of the multiply result be placed in the register file instead of the HI/LO register pair. By avoiding the explicit
move from the LO (MFLO) instruction (required when using the LO register) and by supporting multiple
destination registers, the throughput of multiply-intensive operations is increased.

Two instructions, multiply-add (MADD/MADDU) and multiply-subtract (MSUB/MSUBU), are used to
perform the multiply-add and multiply-subtract operations. The MADD instruction multiplies two numbers
and then adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruc-
tion multiplies two operands and then subtracts the product from the HI and LO registers. The MADD/
MADDU and MSUB/MSUBU operations are commonly used in Digital Signal Processor (DSP) algorithms.

System Control Coprocessor (CP0)
In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, cache proto-

cols, the exception control system, the processor’s diagnostics capability, operating mode selection (kernel
vs. user mode), and the enabling/disabling of interrupts. Configuration information, such as cache size, set
associativity, and EJTAG debug features, is available by accessing the CP0 registers. Additional informa-
tion on CP0 registers can be found in the CP0 Registers section. Additional information on EJTAG can be
found in Chapter 20.

Memory Management Unit (MMU)
Each core contains an MMU that interfaces between the execution unit and the cache controller, shown

in Figure 2.1. Although the 4Kc core implements a 32-bit architecture, the Memory Management Unit
(MMU) is modeled after the MMU found in the 64-bit R4000 family, as defined by the MIPS32 architecture.

The 4Kc core implements an MMU based on a Translation Lookaside Buffer (TLB). The TLB actually
consists of three translation buffers: a 16 dual-entry fully associative Joint TLB (JTLB), a 3-entry fully asso-
ciative Instruction TLB (ITLB), and a 3-entry fully associative data TLB(DTLB). The ITLB and DTLB, also
referred to as the micro TLBs, are managed by the hardware and are not software visible. The micro TLBs
contain subsets of the JTLB. When translating addresses, the corresponding micro TLB (I or D) is accessed
first. If there is no matching entry, the JTLB is used to translate the address and refill the micro TLB. If the
entry is not found in the JTLB, an exception is taken. To minimize the micro TLB miss penalty, the JTLB is
looked-up in parallel with the DTLB for data references. This results in a 1 cycle stall for a DTLB miss and a
2 cycle stall for an ITLB miss.

Figure 2.2 shows how the ITLB, DTLB, and JTLB are used in the 4Kc core.
ence Manual 2 - 4 May 11, 2005

IDT MIPS32 4Kc Processor Core Functional Overview

79RC32438 User Refer

Notes
Figure 2.2 Address Translation During a Cache Access in the 4Kc Core

Cache Controller
The data and instruction cache controllers support 16KB 4-way set associative caches. There are sepa-

rate cache controllers for the I-Cache and D-Cache.
Each cache controller contains and manages a one-line fill buffer. Besides accumulating data to be

written to the cache, the fill buffer is accessed in parallel with the cache and data can be bypassed back to
the core.

Bus Interface Unit (BIU)
The Bus Interface Unit (BIU) controls the external interface signals. It also contains the implementation

of a 32-byte collapsing write-buffer. The purpose of this buffer is to hold and combine write transactions
before issuing them to the external interface. Since the data caches for all cores follow a write-through
cache policy, the write-buffer significantly reduces the number of write transactions on the external inter-
face, as well as reducing the amount of stalling in the core due to issuance of multiple writes in a short
period of time.

The write-buffer is organized as two 16-byte buffers. Each buffer contains data from a single 16-byte
aligned block of memory. One buffer contains the data currently being transferred on the external interface,
while the other buffer contains accumulating data from the core.

Power Management
The 4Kc processor core offers a number of power management features, including low-power design,

active power management, and power-down modes of operation. This core is a static design that supports
a WAIT instruction designed to signal the rest of the device that execution and clocking should be halted,
thereby reducing system power consumption during idle periods.

The 4Kc core provides two mechanisms for system-level, low-power support:
Register-controlled power management
Instruction-controlled power management

I-Cache

D-Cache

Comparator

Comparator

Instruction
Hit/Miss

Data Hit/Miss

Virtual Address

Virtual Address

ITLB

JTLB

DTLB

Instruction
Address

Calculator

Data Address
Calculator

Entry

EntryIVA
ence Manual 2 - 5 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
 In register-controlled power management mode, the 4Kc core provides three bits in the CP0 Status
register for software control of the power management function and allows interrupts to be serviced even
when the core is in power-down mode. In instruction-controlled power-down mode, execution of the WAIT
instruction is used to invoke low-power mode.

For additional information on power management, refer to the Power Management section.

Instruction Cache
The instruction cache is 16 Kbytes in size. The cache is virtually indexed and physically tagged, allowing

the virtual-to-physical address translation to occur in parallel with the cache access rather than having to
wait for the physical address translation. The tag holds 22 bits of the physical address, 4 valid bits, a lock
bit, and the LRF (Least Recently Filled) replacement bit.

All cores support instruction cache locking. Cache locking allows critical code to be locked into the
cache on a per-line basis, enabling the system designer to maximize the efficiency of the system cache.
Cache locking is always available on all instruction cache entries. Entries can be marked as locked or
unlocked (by setting or clearing the lock-bit) on a per-entry basis using the CACHE instruction.

Data Cache
The data cache is 16-Kbytes in size. The cache is virtually indexed and physically tagged, allowing the

virtual-to-physical address translation to occur in parallel with the cache access. The tag holds 22 bits of the
physical address, 4 valid bits, a lock bit, and the LRF replacement bit.

In addition to instruction cache locking, all cores also support a data cache locking mechanism identical
to the instruction cache, with critical data segments to be locked into the cache on a per-line basis. The
locked contents cannot be selected for replacement on a cache miss, but can be updated on a store hit.

Cache locking is always available on all data cache entries. Entries can be marked as locked or
unlocked on a per-entry basis using the CACHE instruction.

The physical data cache memory must be byte-writable to support non-word store operations.

EJTAG Controller
All cores provide basic EJTAG support with debug mode, run control, single step and software break-

point instruction (SDBBP) as part of the core. These features allow for the basic software debug of user and
kernel code.

Optional EJTAG features include hardware breakpoints. A 4K core may have four instruction break-
points and two data breakpoints, two instruction breakpoints and one data breakpoint, or no breakpoints.
The hardware instruction breakpoints can be configured to generate a debug exception when an instruction
is executed anywhere in the virtual address space. Bit mask and address space identifier (ASID) values
may apply in the address compare. These breakpoints are not limited to code in RAM like the software
instruction breakpoint (SDBBP). The data breakpoints can be configured to generate a debug exception on
a data transaction. The data transaction may be qualified with both virtual address, data value, size, and
load/store transaction type. Bit mask and ASID values may apply in the address compare, and byte mask
may apply in the value compare.

An optional Test Access Port (TAP), which provides for the communication from an EJTAG probe to the
CPU through a dedicated port, may also be applied to the core. This provides the possibility for debugging
without debug code in the application and for download of application code to the system.

For additional information on the EJTAG controller, refer to Chapter 20, EJTAG System.

Pipeline Description
The MIPS32 4Kc processor core implements a 5-stage pipeline similar to the original R3000 pipeline.

The five stages are:
Instruction (I stage)
Execution (E stage)
ence Manual 2 - 6 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
 Memory (M stage)
Align/Accumulate (A stage)
Writeback (W stage)

This pipeline allows the processor to achieve high frequency while minimizing device complexity,
reducing both cost and power consumption. The 4Kc core implements a “Bypass” mechanism that allows
the result of an operation to be sent directly to the instruction that needs it without having to write the result
to the register and then read it back.

Figure 2.3 shows the operations performed in each pipeline stage of the 4Kc processor.

Figure 2.3 4Kc Core Pipeline Stages

During the Instruction fetch stage:
An instruction is fetched from the instruction cache
The ITLB performs a virtual-to-physical address translation.

During the Execution stage:
Operands are fetched from the register file
Operands from M and A stage are bypassed to this stage
The Arithmetic Logic Unit (ALU) begins the arithmetic or logical operation for register-to-register
instructions
The ALU calculates the data virtual address for load and store instructions
The ALU determines whether the branch condition is true and calculates the virtual branch target
address for branch instructions
Instruction logic selects an instruction address
All multiply and divide operations begin in this stage.

During the Memory Fetch stage:
The arithmetic or logic ALU operation completes
The data cache fetch and the data virtual-to-physical address translation are performed for load
and store instructions
Data TLB and data cache lookup are performed and a hit/miss determination is made
A 16x16 or 32x16 MUL operation completes in the array and stalls for one clock in the M stage to
complete the carry-propagate-add in the M stage
A 32x32 MUL operation stalls for two clocks in the M stage to complete second cycle of the array
and the carry-propagate-add in the M stage
A 16x16 or 32x16 MULT/MADD/MSUB operation completes in the array
A 32x32 MULT/MADD/MSUB operation stalls for one clock in the MMDU stage of the MDU pipeline
to complete second cycle in the array

I

A->E Bypass
M->E Bypass

A->E Bypass

E M A W

I-Cache

I-TLB

RegRd

I Dec D-AC

I-AC1 I-AC2

ALU Op

D-Cache

D-TLB

Align

MUL RegWRegW

RegW

RegW

RegW

Mult, Macc 16x16, 32x16 CPA

CPAMult, Macc 32x32

Sign AdjustDivide

IU
-P

ip
el

in
e

M
D

U
-P

ip
el

in
e

I-AC2

D-AC

Align

MUL

I-TLB

I Dec

ALU Op

D-Cache

D-TLB

Divide

Mult, Macc

Sign Adjust

I-Cache

RegRd

I-AC1

RegW

CPA

: I$ Tag and Data read
: I-TLB Look-up
: Instruction Decode
: Register file read
: Instruction Address Calc stage 1 and 2
: Arithmetic Logic and Shift operations
: Data Address Calculation
: D$ Tag and Data read
: D-TLB Look-up
: Load data aligner
: Register file write or HI/LO write
: The MUL instr. Uses MDU-Pipeline write Reg file
: Carry Propagate Adder
: Multiply and Multiply Accumulate instructions
: Divide instructions
: Last stage of Divide is a sign adjustment
: One or more stall cycles.
ence Manual 2 - 7 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
 A divide operation stalls for a maximum of 32 clocks in the MMDU stage of the MDU pipeline.

During the Align/Accumulate stage:
A separate aligner aligns loaded data with its word boundary
A MUL operation makes the result available for writeback. The actual register writeback is per-
formed in the W stage
A MULT/MADD/MSUB operation performs the carry-propagate-add. This includes the accumulate
step for the MADD/MSUB operations. The actual register writeback to HI and LO is performed in
the W stage.
A divide operation perform the final Sign-Adjust. The actual register writeback to HI and LO is per-
formed in the W stage.

During the Writeback stage:
For register-to-register or load instructions, the result is written back to the register file during the W
stage.

Instruction Cache Miss
When the instruction cache is indexed, the instruction address is translated to determine if the required

instruction resides in the cache. An instruction cache miss occurs when the requested instruction address
does not reside in the instruction cache. When a cache miss is detected in the I stage, the core transitions
to the E stage. The pipeline stalls in the E stage until the miss is resolved. The bus interface unit must
select the address from multiple sources. If the address bus is busy, the request will remain in this arbitra-
tion stage (B-ASel in Figure 2.4) until the bus is available. The core drives the selected address onto the
bus. The number of clocks required to access the bus is determined by the access time of the array that
contains the data. The number of clocks required to return the data once the bus is accessed is also deter-
mined by the access time of the array.

Once the data is returned to the core, the critical word is written to the instruction register for immediate
use. The bypass mechanism allows the core to use the data once it becomes available, as opposed to
having the entire cache line written to the instruction cache, then reading out the required word.

Figure 2.4 shows a timing diagram of an instruction cache miss for the 4Kc core.

Figure 2.4 4Kc Instruction Cache Miss Timing

When the data cache is indexed, the data address is translated to determine if the required data resides
in the cache. A data cache miss occurs when the requested data address does not reside in the data
cache.

When a data cache miss is detected in the M stage (D-TLB), the core transitions to the A stage. The
pipeline stalls in the A stage until the miss is resolved (requested data is returned). The bus interface unit
arbitrates between multiple requests and selects the correct address to be driven onto the bus (B-ASel in
Figure 2.5). The core drives the selected address onto the bus. The number of clocks required to access
the bus is determined by the access time of the array containing the data. The number of clocks required to
return the data once the bus is accessed is also determined by the access time of the array.

EEE EI

I Dec
I-Cache

I-TLB I-TLB B-ASel Bus* IC-Bypass
RegRd ALU Op

I-A2I-A1

* Contains all of the cycles that address and data are utilizing the bus.
ence Manual 2 - 8 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
 Once the data is returned to the core, the critical word of data passes through the aligner before being
forwarded to the execution unit and register file. The bypass mechanism allows the core to use the data
once it becomes available, as opposed to having the entire cache line written to the data cache, then
reading out the required word.

Figure 2.5 shows a timing diagram of a data cache miss for the 4Kc core.

Figure 2.5 Load/Store Cache Miss Timing

Multiply/Divide Operations
The 4Kc core implements the standard MIPS II™ multiply and divide instructions. In addition, several

new instructions have been added that enhance the core’s performance.
The targeted multiply instruction, MUL, specifies that multiply results are placed in the general purpose

register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction, required when
using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive
operations is increased.

Four instructions — multiply-add (MADD), multiply-add-unsigned (MADDU), multiply-subtract (MSUB),
and multiply-subtract-unsigned (MSUBU) — are used to perform the multiply-accumulate and multiply-
subtract operations. The MADD/MADDU instruction multiplies two numbers and then adds the product to
the current contents of the HI and LO registers. Similarly, the MSUB/MSUBU instruction multiplies two oper-
ands and then subtracts the product from the HI and LO registers. The MADD/MADDU and MSUB/MSUBU
operations are commonly used in DSP algorithms.

All multiply operations (except the MUL instruction) write to the HI/LO register pair. All integer operations
write to the general purpose registers (GPR). Because MDU operations write to different registers than
integer operations, integer instructions that follow MDU operations can execute before the MDU operation
has finished. The MFLO and MFHI instructions are used to move data from the HI/LO register pair to the
GPR file. If a MFLO or MFHI instruction is issued before the MDU operation finishes, the instruction will stall
to wait for the data.

MDU Pipeline
The 4Kc processor core contains an autonomous multiply/divide unit (MDU) with a separate pipeline for

multiply and divide operations. This pipeline operates in parallel with the integer unit (IU) pipeline and does
not stall when the IU pipeline stalls. This allows long-running MDU operations, such as a divide, to be
partially masked by system stalls and/or other integer unit instructions.

The MDU consists of a 32x16 booth encoded multiplier, result/accumulation registers (HI and LO), a
divide state machine, and all necessary multiplexers and control logic. The first number shown (‘32’ of
32x16) represents the rs operand. The second number (‘16’ of 32x16) represents the rt operand. The core
only checks the latter (rt) operand value to determine how many times the operation must pass through the
multiplier. The 16x16 and 32x16 operations pass through the multiplier once. A 32x32 operation passes
through the multiplier twice.

D-TLB
D-CacheALU1

B-ASel

RegR

Bus* RegWAlignDC Bypass

* Contains all of the time that address and data are utilizing the bus.

WAAAAME
ence Manual 2 - 9 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
 The MDU supports execution of a 16x16 or 32x16 multiply operation every clock cycle; 32x32 multiply
operations can be issued every other clock cycle. Appropriate interlocks are implemented to stall the issue
of back-to-back 32x32 multiply operations. Multiply operand size is automatically determined by logic built
into the MDU. Divide operations are implemented with a simple 1 bit per clock iterative algorithm with an
early in detection of sign extension on the dividend (rs). Any attempt to issue a subsequent MDU instruction
while a divide is still active causes an IU pipeline stall until the divide operation is completed.

Table 2.1 lists the latencies (number of cycles until a result is available) for multiply and divide instruc-
tions. The latencies are listed in terms of pipeline clocks. In this table “latency” refers to the number of
cycles necessary for the first instruction to produce the result needed by the second instruction.

In Table 2.1, a latency of one means that the first and second instruction can be issued back to back in
the code without the MDU causing any stalls in the IU pipeline. A latency of two means that if the instruc-
tions are issued back to back, the IU pipeline will be stalled for one cycle. An MUL operation is special
because it needs to stall the IU pipeline in order to maintain its register file write slot. Consequently, the
MUL 16x16 or 32x16 operation will always force a one cycle stall of the IU pipeline, and the MUL 32x32 will
force a two cycle stall. If the integer instruction immediately following the MUL operation uses its (MUL
operation) result, an additional stall is forced on the IU pipeline.

Operand Size of
1st Instruction1

1. For multiply operations, this is the rt operand. For divide operations, this is the rs operand.

Instruction Sequence Latency
Clocks1st Instruction 2nd Instruction

16 bit MULT/MULTU, MADD/
MADDU, or MSUB/
MSUBU

MADD/MADDU, MSUB/
MSUBU, or MFHI/MFLO

1

32 bit MULT/MULTU, MADD/
MADDU, or MSUB/
MSUBU

MADD/MADDU, MSUB/
MSUBU, or MFHI/MFLO

2

16 bit MUL Integer operation2

2. Integer operation refers to any integer instruction that uses the result of a previous MDU operation.

23

3. This does not include the 1 or 2 IU pipeline stalls (16 bit or 32 bit) that MUL operation causes regardless of the
following instruction. These stalls do not add to the latency of 2.

32 bit MUL Integer operation2 23

8 bit DIVU MFHI/MFLO 9

16 bit DIVU MFHI/MFLO 17

24 bit DIVU MFHI/MFLO 25

32 bit DIVU MFHI/MFLO 33

8 bit DIV MFHI/MFLO 104

4. If both operands are positive, the Sign Adjust stage is bypassed. Latency is then the same as for DIVU.

16 bit DIV MFHI/MFLO 184

24 bit DIV MFHI/MFLO 264

32 bit DIV MFHI/MFLO 344

any MFHI/MFLO Integer operation2 2

any MTHI/MTLO MADD/MADDU or
MSUB/MSUBU

1

Table 2.1 4Kc Core Instruction Latencies
ence Manual 2 - 10 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
 Table 2.2 lists the repeat rates (peak issue rate of cycles until the operation can be reissued) for multiply
accumulate/subtract instructions. The repeat rates are listed in terms of pipeline clocks. In this table “repeat
rate” refers to the case where the first MDU instruction is back to back with the second instruction.

The 32x16 multiply operation requires one clock of each pipeline stage to complete. The 32x32 requires
two clocks in the MMDU pipe-stage. The MDU pipeline is shown as the shaded areas of Figure 2.6 and
always starts a computation in the final phase of the E stage. As shown in Figure 2.6, the MMDU pipe-stage
of the MDU pipeline occurs in parallel with the M stage of the IU pipeline, the AMDU stage occurs in parallel
with the A stage, and the WMDU stage occurs in parallel with the W stage. However, in case the instruction
in the MDU pipeline needs multiple passes through the same MDU stage, this parallel behavior will be
skewed by one or more clocks. This is not a problem because results in the MDU pipeline are written to HI
and LO registers, while the integer pipeline results are written to the register file.

Figure 2.6 shows the pipeline flow for the following sequence:
32x16 multiply (Mult1)
Add
32x32 multiply (Mult2)
Sub

Figure 2.6 MDU Pipeline Behavior During Multiply Operations

Operand Size of
1st Instruction

Instruction Sequence
Repeat Rate

1st Instruction 2nd Instruction

16 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU,
MSUB/MSUBU

1

32 bit MULT/MULTU,
MADD/MADDU,
MSUB/MSUBU

MADD/MADDU, MSUB/
MSUBU

2

Table 2.2 4Kc Core Instruction Repeat Rates

I E A WM

cycle 1 cycle 2 cycle 3 cycle 4 cycle 5 cycle 6 cycle 7 cycle 8

Mult1

Add

Mult2

I E AMDU WMDUMMDU

I E AMDU WMDUMMDUMMDU

Sub

I E A WM
ence Manual 2 - 11 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
 The following is a cycle-by-cycle analysis of Figure 2.6.
1. The first 32x16 multiply operation (Mult1) enters the I stage and is fetched from the instruction cache.
2. An Add operation enters the I stage. The Mult1 operation enters the E stage. The integer and MDU

pipelines share the I and E pipeline stages. At the end of the E stage in cycle 2, the multiply opera-
tion (Mult1) is passed to the MDU pipeline.

3. In cycle 3 a 32x32 multiply operation (Mult2) enters the I stage and is fetched from the instruction
cache. Since the Add operation has not yet reached the M stage by cycle 3, there is no activity in
the M stage of the integer pipeline at this time.

4. In cycle 4 the Sub instruction enters I stage. The second multiply operation (Mult2) enters the E
stage. And the Add operation enters M stage of the integer pipe. Since the Mult1 multiply is a 32x16
operation, only one clock is required for the MMDU stage, hence the Mult1 operation passes to the
AMDU stage of the MDU pipeline.

5. In cycle 5 the Sub instruction enters E stage. The Mult2 multiply enters the MMDU stage. The Add
operation enters the A stage of the integer pipeline. The Mult1 operation completes and is written
back in to the HI/LO register pair in the WMDU stage.

6. Since a 32x32 multiply requires two passes through the multiplier, with each pass requiring one
clock, the 32x32 Mult2 remains in the MMDU stage in cycle 6. The Sub instruction enters M stage
in the integer pipeline. The Add operation completes and is written to the register file in the W stage
of the integer pipeline.

7. The Mult2 multiply operation progresses to the AMDU stage, and the Sub instruction progress to A
stage.

8. The Mult2 operation completes and is written to the HI/LO registers pair the WMDU stage, while the
Sub instruction write to the register file in W stage.

32x16 Multiply
The 32x16 multiply operation begins in the last phase of the E stage, which is shared between the

integer and MDU pipelines. In the latter phase of the E stage, the rs and rt operands arrive and the booth
recoding function occurs at this time. The multiply calculation requires one clock and occurs in the MMDU
stage. In the AMDU stage, the carry-propagate-add function occurs and the operation is completed. The
result is written back to the HI/LO register pair in the first half of the WMDU stage.

Figure 2.7 shows a diagram of a 32x16 multiply operation.

Figure 2.7 MDU Pipeline Flow During a 32x16 Multiply Operation

32x32 Multiply
The 32x32 multiply operation begins in the last phase of the E stage, which is shared between the

integer and MDU pipelines. In the latter phase or the E stage, the rs and rt operands arrive and the booth
recoding function occurs at this time. The multiply calculation requires two clocks and occurs in the MMDU
stage. In the AMDU stage, the carry-propagate-add (CPA) function occurs and the operation is completed.
The result is written back to the HI/LO register pair in the first half of the WMDU stage.

Figure 2.8 shows a diagram of a 32x32 multiply operation.

Booth Array CPA

E MMDU AMDU

Reg WR

WMDU

Clock 1 2 3 4
ence Manual 2 - 12 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
Figure 2.8 MDU Pipeline Flow During a 32x32 Multiply Operation

Divide Operations
Divide operations are implemented using a simple non-restoring division algorithm. This algorithm works

only for positive operands, thus the first cycle of the MMDU stage is used to negate the rs operand (RS
Adjust) if needed. Note that this cycle is executed even if the adjustment is not necessary. At maximum, the
next 32 clocks (3-34) execute an iterative add/subtract function. In cycle 3, an early in detection is
performed in parallel with the add/subtract. The adjusted rs operand is detected to be zero extended on the
upper most 8, 16, or 24 bits. If this is the case the following 7, 15, or 23 cycles of the add/subtract iterations
are skipped.

The remainder adjust (Rem Adjust) cycle is required if the remainder was negative. Note that this cycle
is taken even if the remainder was positive. A sign adjust is performed on the quotient and/or remainder if
necessary. Note that the sign adjust cycle is skipped if both operands are positive. In this case the Rem
Adjust is moved to the AMDU stage.

Figures 2.9 through 2.12 show the latency for 8, 16, 24, and 32-bit divide operations, respectively. The
repeat rate is either 11, 19, 27, or 35 cycles (one less if the Sign Adjust stage is skipped) since a second
divide can be in the RS Adjust stage when the first divide is in the Reg WR stage.

Figure 2.9 MDU Pipeline Flow During an 8-bit Divide (DIV) Operation

Figure 2.10 MDU Pipeline Flow During a 16-bit Divide (DIV) Operation

Figure 2.11 MDU Pipeline Flow During a 24-bit Divide (DIV) Operation

Booth Array

E MMDU MMDU AMDU

Reg WR

WMDU

CPAArray
Booth

Clock 1 2 3 4 5

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-10 11 12

WMDU Stage

13

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-18 19 20

WMDU Stage

21

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-26 27 28

WMDU Stage

29

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In
ence Manual 2 - 13 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
Figure 2.12 MDU Pipeline Flow During a 32-bit Divide (DIV) Operation

Branch Delay
The pipeline has a branch delay of one cycle. The one-cycle branch delay is a result of the branch deci-

sion logic operating during the E pipeline stage. This allows the branch target address calculated in the
previous stage to be used for the instruction access in the following E stage. The branch delay slot means
that no bubbles are injected into the pipeline on branch instructions. The address calculation and branch
condition check are both performed in the E stage. The target PC is used for the next instruction in the
I stage (2nd instruction after the branch).

The pipeline begins the fetch of either the branch path or the fall-through path in the cycle following the
delay slot. After the branch decision is made, the processor continues with the fetch of either the branch
path (for a taken branch) or the fall-through path (for the non-taken branch).

The branch delay means that the instruction immediately following a branch is always executed, regard-
less of the branch direction. If no useful instruction can be placed after the branch, then the compiler or
assembler must insert a NOP instruction in the delay slot.

Figure 2.13 illustrates the branch delay.

Figure 2.13 IU Pipeline Branch Delay

Data Bypassing
Most MIPS32 instructions use one or two register values as source operands for the execution. These

operands are fetched from the register file in the first part of E stage. The ALU straddles the E to M
boundary, and can present the result early in M stage. However, the result is not written in the register file
until W stage. This leaves following instructions unable to use the result for 3 cycles. To overcome this
problem, Data bypassing is used.

Between the register file and the ALU, a data bypass multiplexer is placed on both operands (see Figure
2.14). This enables the 4K core to forward data from preceding instructions which have the target register of
the first instruction as one of the source operands. An M to E bypass and an A to E bypass feed the bypass
multiplexers. A W to E bypass is not needed, as the register file is capable of making an internal bypass of
Rd write data directly to the Rs and Rt read ports.

RS Adjust

E Stage MMDU Stage MMDU Stage MMDU Stage AMDU Stage

Rem AdjustAdd/Subtract

Clock 1 2 4-34 35 36

WMDU Stage

37

Reg WRSign Adjust

MMDU Stage

Add/Subtract

3

Early In

One Cycle

Jump Target Instruction

Delay Slot Instruction

One Clock
Branch Delay

One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

I E M A W

I E M A

Jump or Branch
ence Manual 2 - 14 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
Figure 2.14 IU Pipeline Data Bypass

Figure 2.15 shows the Data bypass for an Add1 instruction followed by a Sub2 and another Add3
instruction. The Sub2 instruction uses the output from the Add1 instruction as one of the operands, and
thus the M to E bypass is used. The following Add3 uses the result from both the first Add1 instruction and
the Sub2 instruction. Since the Add1 data is now in A stage, the A to E bypass is used, and the M to E
bypass is used to bypass the Sub2 data to the Add2 instruction.

Figure 2.15 IU Pipeline M to E Bypass

Load Delay
Load delay means that data fetched by a load instruction is not available in the integer pipeline until after

the load aligner is in A stage. All instructions need the source operands available in E stage. An instruction
immediately following a load instruction will, if it has the same source register as the target of the load,
cause an instruction interlock pipeline slip in E stage (see the Instruction Interlocks section). If the second
instruction after the load (not the first instruction), uses the data from the load, the A to E bypass exists to
provide for stall free operation (refer to Figure 2.14). An instruction flow of this is shown in Figure 2.16.

Bypass
multiplexers

E stage M stage A stage W stageI stage

Load data, HI/LO Data or
CP0 data

A to E bypass

M to E bypass

Instruction
ALU

M stage
ALU

E stageReg File

Rs Addr
Rt Addr

Rs Read

Rt Read
Rd Write

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

R3=R2+R1
E M A W

I E M A W

I E M A

ADD1

R4=R3-R7
SUB2

R5=R3+R4
ADD3

I

A to E bypassM to E bypass

M to E bypass
ence Manual 2 - 15 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
Figure 2.16 IU Pipeline A to E Data Bypass

Move from HI/LO and CP0 Delay
As indicated in Figure 2.14, not only load data but also data from a move from the HI or LO register

instruction (MFHI/MFLO) or a move from CP0 (MFC0) can enter the IU-Pipeline in A stage. That is, data is
not available in the integer pipeline until early in the A stage. The A to E bypass is available for this data.
But as for Loads, the instruction immediately following one of these instructions can not use this data right
away. If it does, it will cause an instruction interlock slip in E stage (refer to the Instruction Interlocks
section). An interlock slip after an MFHI is illustrated in Figure 2.17.

Figure 2.17 IU Pipeline Slip after MFHI

Interlock Handling
Smooth pipeline flow is interrupted when cache misses occur or when data dependencies are detected.

Interruptions handled using hardware, such as cache misses, are referred to as interlocks. At each cycle,
interlock conditions are checked for all active instructions.

Table 2.3 lists the types of pipeline interlocks for the 4Kc processor core.

Interlock Type Source Slip Stage

ITLB Miss Instruction TLB I Stage

ICache Miss Instruction cache E Stage

Instructions Producer-consumer hazards E/M Stage

Hardware Dependencies
(MDU/TLB)

E Stage

DTLB Miss Data TLB M Stage

Table 2.3 Pipeline Interlocks (Part 1 of 2)

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle

I E M A W

I E M A W

I E M A

Load Instruction

Consumer of Load Data Instruction

Data bypass from A to E

One Clock
Load Delay

One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle One Cycle
I E M A W

E M A WslipI

MFHI (to R3)

ADD (R4=R3+R5)
Data bypass from A to E
ence Manual 2 - 16 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
In general, MIPS processors support two types of hardware interlocks:
Stalls, which are resolved by halting the pipeline
Slips, which allow one part of the pipeline to advance while another part of the pipeline is held
static.

The 4Kc processor core handles all interlocks as slips.

Slip Conditions
On every clock, internal logic determines whether each pipe stage is allowed to advance. These slip

conditions propagate backwards down the pipe. For example, if the M stage does not advance, neither will
the E or I stages. Slipped instructions are retried on subsequent cycles until they issue. The back end of the
pipeline advances normally during slips in an attempt to resolve the conflict. NOPS are inserted into the
bubble in the pipeline.

Figure 2.18 shows a diagram of a two-cycle slip. In the first clock cycle, the pipeline is full and the cache
miss is detected. Instruction I0 is in the A stage, instruction I1 is in the M stage, instruction I2 is in the E
stage, and instruction I3 is in the I stage. The cache miss occurs in clock 2 when the I4 instruction fetch is
attempted. I4 advances to the E-stage and waits for the instruction to be fetched from main memory. In this
example it takes two clocks (3 and 4) to fetch the I4 instruction from memory. Once the cache miss is
resolved in clock 4 and the instruction is bypassed to the cache, the pipeline is restarted, causing the I4
instruction to finally execute it’s E-stage operations.

Data Cache Miss Load that misses in data
cache

W Stage

Multi-cycle cache Op

Sync

Store when write through
buffer full

EJTAG breakpoint on store

VA match needing data value
comparison

Store hitting in fill buffer

Interlock Type Source Slip Stage

Table 2.3 Pipeline Interlocks (Part 2 of 2)
ence Manual 2 - 17 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
Figure 2.18 Instruction Cache Miss Slip

Instruction Interlocks
Most instructions can be issued at a rate of one per clock cycle. In some cases, in order to ensure a

sequential programming model, the issue of an instruction is delayed to ensure that the results of a prior
instruction will be available. Table 2.4 details the instruction interactions that delay the issuance of an
instruction into the processor pipeline.

1st Instruction 2nd Instruction
Issue Delay

(in Clock
Cycles)

Slip Stage

LB/LBU/LH/LHU/LL/LW/LWL/LWR Consumer of load data 1 E stage

MFC0 Consumer of destination
register

1 E stage

MULT/MADD/
MSUB

16x32b MFLO/MFHI 0 M stage

32x32b 1 M stage

MUL 16x32b Consumer of target data 2 E stage

32x32b 3 E stage

MUL 16x32b Non-Consumer of target
data

1 E stage

32x32b 2 E stage

MFHI and MFLO Consumer of target data 1 E stage

MULT/MADD/
MSUB

16x32b MULT/MUL/MADD/
MSUB/MTHI/MTLO/DIV

0 E stage

32x32b 1 E stage

DIV MULT/MUL/MADD/
MSUB/MTHI/MTLO/
MFHI/MFLO/DIV

Until DIV com-
pletes

E stage

Table 2.4 Instruction Interlocks (Part 1 of 2)

1 Cache miss detected

1 2

00

E

M I1 I2 I3

A

I

0I3I0 I1 I2

I4I4I2 I3 I4

I5I5I3 I4 I5

3 Execute E-stage

Stage

I4

0

I5

I6

3

Clock 1 2 3 4 5 6

2 Critical word received
ence Manual 2 - 18 May 11, 2005

IDT MIPS32 4Kc Processor Core Pipeline Description

79RC32438 User Refer

Notes
Instruction Hazards
In general, the core ensures that instructions are executed following a fully sequential program model.

Each instruction in the program sees the results of the previous instruction. There are some exceptions to
this model. These exceptions are referred to as instruction hazards.

Table 2.5 shows the instruction hazards that exist in the core. The first and second instruction fields indi-
cate the combination of instructions that do not ensure a sequential programming model. The Spacing field
indicates the number of unrelated instructions (such as NOPs or SSNOPs) that should be placed between
the first and second instructions of the hazard in order to ensure that the effects of the first instruction are
seen by the second instruction. Entries in the table that are listed as 0 are traditional MIPS hazards which
are not hazards on the 4Kc core. (MT Compare to Timer Interrupt cleared is system dependent since Timer
Interrupt is an output of the core that can be returned to the core on one of the SI_Int pins. This number is
the minimum time due its passage through the core’s I/O registers. Typical implementations will not add any
latency to this).

MFC0 Consumer of target data 1 E stage

TLBWR/TLBWI Load/Store/PREF/
CACHE/Cop0 op

2 E stage

TLBR 1 E stage

1st Instruction 2nd Instruction Spacing
(Instructions)

Watch Register Write Instruction Fetch Matching
Watch Register

2

Load/Store Reference Matching
Watch Register

0

TLBWI/TLBWR Instruction fetch affected by new
page mapping

3

Load/Store affected by new
page mapping

0

TLBP/TLBR 0

TLBR Move from Coprocessor Zero
Register

0

Move to EntryHi TLBWR/TLBWI/TLBP 1

Move to EntryLow0 or EntryLo1 TLBWR/TLBWI 0

Move to EntryHi Load/Store affected by new
ASID

1

Move to EntryHi Instruction fetch affected by new
ASID

3

TLBP Move from Coprocessor Zero
Register

0

Move to Index Register TLBR/TLBWI 1

Table 2.5 Instruction Hazards (Part 1 of 2)

1st Instruction 2nd Instruction
Issue Delay

(in Clock
Cycles)

Slip Stage

Table 2.4 Instruction Interlocks (Part 2 of 2)
ence Manual 2 - 19 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
Memory Management
The MMU in a 4Kc processor core will translate any virtual address to a physical address before a

request is sent to the cache controllers for tag comparison or to the bus interface unit for an external
memory reference. This translation is a very useful feature for operating systems when trying to manage
physical memory to accommodate multiple tasks active in the same memory, possibly on the same virtual
address but of course in different locations in physical memory. Other features handled by the MMU are
protection of memory areas and defining the cache protocol.

In the 4Kc processor core, the MMU is TLB based. The TLB consists of three address translation
buffers: a 16 dual-entry fully associative Joint TLB (JTLB), a 3-entry instruction micro TLB (ITLB), and a 3-
entry data micro TLB (DTLB). When an address is translated, the appropriate micro TLB (ITLB or DTLB) is
accessed first. If the translation is not found in the micro TLB, the JTLB is accessed. If there is a miss in the
JTLB, an exception is taken.

Figure 2.19 shows how the memory management unit interacts with cache accesses in the 4Kc core.

Change to CU Bits in Status
Register

Coprocessor Instruction 1

Move to EPC, ErrorPC, or DEPC ERET 1

Move to Status Register ERET 0

Set of IP in Cause Register Interrupted Instruction 3

Any Other Move to Coprocessor
0 Registers

Instruction Affected by Change 2

CACHE instruction operating on
I$

Instruction fetch seeing new
cache state

3

LL Move From LLAddr 1

Move to Compare Instruction not seeing Timer
Interrupt

41

1. This is the minimum value. Actual value is system-dependent since it is a function of the sequential logic between
the SI-TimerInt output and the external logic which feeds SI-TimerInt back into one of the SI_Int inputs.

1st Instruction 2nd Instruction Spacing
(Instructions)

Table 2.5 Instruction Hazards (Part 2 of 2)
ence Manual 2 - 20 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
Figure 2.19 Address Translation During a Cache Access

Modes of Operation
The 4Kc processor core supports three modes of operation:

User mode
Kernel mode
Debug mode

User mode is most often used for application programs. Kernel mode is typically used for handling
exceptions and privileged operating system functions, including CP0 management and I/O device
accesses. Debug mode is used for software debugging and most likely occurs within a software develop-
ment tool. The address translation performed by the MMU depends on the mode in which the processor is
operating.

Virtual Memory Segments
The Virtual memory segments are different depending on the mode of operation. Figure 2.20 shows the

segmentation for the 4 GByte (232 bytes) virtual memory space addressed by a 32-bit virtual address, for
the three modes of operation.

The core enters Kernel mode both at reset and when an exception is recognized. While in Kernel mode,
software has access to the entire address space, as well as all CP0 registers. User mode accesses are
limited to a subset of the virtual address space (0x0000_0000 to 0x7FFF_FFFF) and can be inhibited from
accessing CP0 functions. In User mode, virtual addresses 0x8000_0000 to 0xFFFF_FFFF are invalid and
cause an exception if accessed.

Debug mode is entered on a debug exception. While in Debug mode, the debug software has access to
the same address space and CP0 registers as for Kernel mode. In addition, while in Debug mode the core
has access to the debug segment dseg. This area overlays part of the kernel segment kseg3. dseg access
in Debug mode can be turned on or off, allowing full access to the entire kseg3 in Debug mode, if so
desired.

Instruction Virtual
Address
(IVA)

Data
Virtual Address
(DVA)

JTLB

ITLB

Instruction
Cache
RAM

DTLB

Data Cache
RAM

IVA Entry

Entry
Data
Physical Address
(DPA)

Instruction
Physical Address
(IPA)

Tag (IPA)

Tag (DPA)

Comparator

Comparator

Data Hit/Miss

Instruction Hit/
Miss
ence Manual 2 - 21 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
Figure 2.20 4K Processor Core Virtual Memory Map

Each of the segments shown in Figure 2.20 is either mapped or unmapped. The following two subsec-
tions, Unmapped Segments and Mapped Segments, explain the distinction. Following this, the User Mode,
Kernel Mode, and Debug Mode sections specify which segments are actually mapped and unmapped.

Unmapped Segments
An unmapped segment in the 4Kc core does not use the TLB to translate from virtual to physical

address. Especially after reset, it is important to have unmapped memory segments because the TLB is not
yet programmed to perform the translation.

Unmapped segments have a fixed simple translation from virtual to physical address. Except for kseg0,
unmapped segments are always uncached. The cacheability of kseg0 is set in the K0 field of the CP0
Register Config (see the Config Register (CP0 Register 16, Select 0) section later in this chapter.

Mapped Segments
A mapped segment in the 4Kc core does use the TLB. The translation of mapped segments is handled

on a per-page basis. Included in this translation is information defining whether the page is cacheable or
not, and the protection attributes that apply to the page.

useg kuseg kuseg

kseg0

kseg1

kseg2

kseg3

kseg2

kseg1

kseg0

kseg3

kseg3

dseg

User Mode Kernel Mode Debug ModeVirtual Address

0x7FFF_FFFF
0x8000_0000

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xF1FF_FFFF

0xF3FF_FFFF

0xFFFF_FFFF

0xA000_0000

0xC000_0000

0xE000_0000

0xF200_0000

0xF400_0000

0x0000_0000
ence Manual 2 - 22 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
 User Mode

In user mode, a single 2 GByte (231 bytes) uniform virtual address space called the user segment (useg)
is available. Figure 2.21 shows the location of user mode virtual address space.

Figure 2.21 User Mode Virtual Address Space

The user segment starts at address 0x0000_0000 and ends at address 0x7FFF_FFFF. Accesses to all
other addresses cause an address error exception.

The processor operates in User mode when the Status register contains the following bit values:
UM = 1
EXL = 0
ERL = 0

In addition to the above values, the DM bit in the Debug register must be 0. Table 2.6 lists the character-
istics of the useg User mode segments.

All valid user mode virtual addresses have their most-significant bit cleared to 0, indicating that user
mode can only access the lower half of the virtual memory map. Any attempt to reference an address with
the most-significant bit set while in user mode causes an address error exception.

The system maps all references to useg through the TLB. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address before translation. Bit settings within the
TLB entry for the page determine the cacheability of a reference.

Kernel Mode
The processor operates in Kernel mode when the DM bit in the Debug register is 0 and the Status

register contains one or more of the following values:
UM = 0
ERL = 1
EXL = 1

Address Bit
Value

Status Register
Segment

Name
Address
Range Segment SizeBit Value

EXL ERL UM

32-bit
A(31)=0

0 0 1 useg 0x0000_0000
0x7FFF_FFFF

2 GByte 231 bytes)

Table 2.6 User Mode Segments

0x0000_0000

0x8000_0000
0x7FFF_FFFF

0xFFFF_FFFF

32 bit

Address
Error

2GB
Mapped useg
ence Manual 2 - 23 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
 When a non-debug exception is detected, EXL or ERL will be set and the processor will enter Kernel
mode. At the end of the exception handler routine, an Exception Return (ERET) instruction is generally
executed. The ERET instruction jumps to the Exception PC, clears ERL, and clears EXL if ERL=0. This
may return the processor to User mode.

Kernel mode virtual address space is divided into regions differentiated by the high-order bits of the
virtual address, as shown in Figure 2.22. Also, Table 2.7 lists the characteristics of the Kernel mode
segments.

Figure 2.22 Kernel Mode Virtual Address Space

Kernel virtual address space
Unmapped, 512MB

kuseg

kseg0

kseg1

kseg2

kseg3

Mapped, 2048MB

Kernel virtual address space
Unmapped, Uncached, 512MB

Kernel virtual address space
Mapped, 512MB

Kernel virtual address space
Mapped, 512MB

0x0000_0000

0x8000_0000

0xA000_0000

0xC000_0000

0xE000_0000

0x7FFF_FFFF

0x9FFF_FFFF

0xBFFF_FFFF

0xDFFF_FFFF

0xFFFF_FFFF
ence Manual 2 - 24 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
Kernel Mode, User Space (kuseg)
In Kernel mode, when the most-significant bit of the virtual address (A31) is cleared, the 32-bit kuseg

virtual address space is selected and covers the full 231 bytes (2 GByte) of the current user address space
mapped to addresses 0x0000_0000 - 0x7FFF_FFFF. The virtual address is extended with the contents of
the 8-bit ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231-byte unmapped and
uncached address space. While in this setting, the kuseg virtual address maps directly to the same physical
address, and does not include the ASID field.

Kernel Mode, Kernel Space 0 (kseg0)
In Kernel mode, when the most-significant three bits of the virtual address are 1002, 32-bit kseg0 virtual

address space is selected; it is the 229-byte (512-MByte) kernel virtual space located at addresses
0x8000_0000 - 0x9FFF_FFFF. References to kseg0 are unmapped; the physical address selected is
defined by subtracting 0x8000_0000 from the virtual address. The K0 field of the Config register controls
cacheability.

Kernel Mode, Kernel Space 1 (kseg1)
In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1012, 32-bit kseg1

virtual address space is selected. kseg1 is the 229-byte (512-MByte) kernel virtual space located at
addresses 0xA000_0000 - 0xBFFF_FFFF. References to kseg1 are unmapped; the physical address
selected is defined by subtracting 0xA000_0000 from the virtual address. Caches are disabled for accesses
to these addresses, and physical memory (or memory-mapped I/O device registers) are accessed directly.

Kernel Mode, Kernel Space 2 (kseg2)
In Kernel mode, when UM = 0, ERL = 1, or EXL = 1 in the Status register, and DM = 0 in the Debug

register, and the most-significant three bits of the 32-bit virtual address are 1102, 32-bit kseg2 virtual
address space is selected. This 229-byte (512-MByte) kernel virtual space is mapped through the TLB in the
4Kc processor core.

Kernel Mode, Kernel Space 3 (kseg3)
In Kernel mode, when the most-significant three bits of the 32-bit virtual address are 1112, the kseg3

virtual address space is selected. This 229-byte (512-MByte) kernel virtual space is mapped through the
TLB in the 4Kc processor core.

Address
Bit Values

Status Register Is
One Of These

Values Segment
Name

Address
Range

Segment
Size

UM EXL ERL

A(31)=0

(UM = 0 or EXL = 1 or
ERL = 1) and DM = 0

kuseg 0x0000_0000
0x7FFF_FFFF

2 GBytes
(231 bytes)

A(31:29)=1002 kseg0 0x8000_0000
0x9FFF_FFFF

512 MBytes
(229 bytes)

A(31:29)=1012 kseg1 0xA000_0000
0xBFFF_FFFF

512 MBytes
(229 bytes)

A(31:29)=1102 kseg2 0xC000_0000
0xDFFF_FFFF

512 MBytes
(229 bytes)

A(31:29)=1112 kseg3 0xE000_0000
0xFFFF_FFFF

512 MBytes
(229 bytes)

Table 2.7 Kernel Mode Segments
ence Manual 2 - 25 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
 Debug Mode
Debug mode address space is identical to Kernel mode address space with respect to mapped and

unmapped areas, except for kseg3. In kseg3, a debug segment dseg co-exists in the virtual address range
0xFF20_0000 to 0xFF3F_FFFF. The layout is shown in Figure 2.23.

Figure 2.23 Debug Mode Virtual Address Space

The dseg is sub-divided into the dmseg segment at 0xFF20_0000 to 0xFF2F_FFFF which is used when
the probe services the memory segment, and the drseg segment at 0xFF30_0000 to 0xFF3F_FFFF which
is used when memory mapped debug registers are accessed. The subdivision and attributes for the
segments are shown in Table 2.8.

Accesses to memory that would normally cause an exception if tried from kernel mode cause the core to
re-enter debug mode via a debug mode exception. This includes accesses usually causing a TLB exception
(4Kc core only), with the result that such accesses are not handled by the usual memory management
routines. The unmapped kseg0 and kseg1 segments from kernel mode address space are available from
debug mode, which allows the debug handler to be executed from uncached and unmapped memory.

Conditions and Behavior for Access to drseg and EJTAG Registers
The behavior of CPU access to the drseg address range at 0xFF30_0000 to 0xFF3F_FFFF is deter-

mined as shown in Table 2.9.

Segment
Name

Sub-segment
Name

Virtual
Address

Generates
Physical
Address

Cache
Attribute

dseg dmseg 0xFF20_0000
through

0xFF2F_FFFF

mseg maps to
addresses 0x0_0000
- 0xF_FFFF in
EJTAG probe mem-
ory space.

Uncached

drseg 0xFF30_0000
through

0xFF3F_FFFF

drseg maps to the
breakpoint registers
0x0_0000 -
0xF_FFFF

Table 2.8 Physical Address and Cache Attributes for dseg, dmseg, and drseg Address Spaces

0x0000_0000

0xFF20_0000

0xFF40_0000
0xFFFF_FFFF

dseg

kseg1

kseg0 Unmapped

Mapped if mapped in Kernel Mode
ence Manual 2 - 26 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
Debug software is expected to read the debug control register (DCR) to determine which other memory
mapped registers exist in drseg. The value returned in response to a read of any unimplemented memory
mapped register is unpredictable, and writes are ignored to any unimplemented register in the drseg.

The allowed access size is limited for the drseg. Only word size transactions are allowed. Operation of
the processor is undefined for other transaction sizes.

Conditions and Behavior for Access to dmseg, EJTAG Memory
The behavior of CPU access to the dmseg address range at 0xFF20_0000 to 0xFF2F_FFFF is deter-

mined by Table 2.10.

The case with access to the dmseg when the ProbEn bit in the DCR register is 0 is not expected to
happen. Debug software is expected to check the state of the ProbEn bit in DCR register before attempting
to reference dmseg. If such a reference does happen, the reference hangs until it is satisfied by the probe.
The probe can not assume that there will never be a reference to dmseg if the ProbEn bit in the DCR
register is 0 because there is an inherent race between the debug software sampling the ProbEn bit as 1
and the probe clearing it to 0.

Translation Lookaside Buffer
The following subsections discuss the TLB memory management scheme used in the 4Kc processor

core. The TLB consists of one joint and two micro address translation buffers:
16 dual-entry fully associative Joint TLB (JTLB)
3-entry fully associative Instruction micro TLB (ITLB)
3-entry fully associative Data micro TLB (DTLB).

Transaction LSNM bit in
Debug Register Access

Load / Store 1 Kernel mode address space (kseg3)

Fetch Don’t care drseg, see comments below

Load / Store 0

Table 2.9 CPU Access to drseg Address Range

Transaction ProbEn bit in
DCR Register

LSNM bit in
Debug

Register
Access

Load / Store Don’t care 1 Kernel mode address space (kseg3)

Fetch 1 Don’t care dmseg

Load / Store 1 0

Fetch 0 Don’t care See comments below

Load / Store 0 0

Table 2.10 CPU Access to dmseg Address Range
ence Manual 2 - 27 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
 Joint TLB
The 4Kc core implements a 16 dual-entry, fully associative Joint TLB that maps 32 virtual pages to their

corresponding physical addresses. The JTLB is organized as 16 pairs of even and odd entries containing
pages that range in size from 4-KBytes to 16-MBytes into the 4-GByte physical address space. The
purpose of the TLB is to translate virtual addresses and their corresponding Address Space Identifier
(ASID) into a physical memory address. The translation is performed by comparing the upper bits of the
virtual address (along with the ASID bits) against each of the entries in the tag portion of the JTLB structure.
Because this structure is used to translate both instruction and data virtual addresses, it is referred to as a
“joint” TLB.

The JTLB is organized in page pairs to minimize its overall size. Each virtual tag entry corresponds to
two physical data entries, an even page entry and an odd page entry. The highest order virtual address bit
not participating in the tag comparison is used to determine which of the two data entries is used. Since
page size can vary on a page-pair basis, the determination of which address bits participate in the compar-
ison and which bit is used to make the even-odd determination must be determined dynamically during the
TLB lookup.

Figure 2.24 shows the contents of one of the 16 dual-entries in the JTLB.

Figure 2.24 JTLB Entry (Tag and Data)

PageMask[24:13]

D0

G ASID[7:0]

PFN0[31:12] C0[2:0]

D1PFN1[31:12] C1[2:0]

VPN2[31:13]

V0

V1

G
Tag Entry

Data Entries

19 1 8

20 3 1 1
ence Manual 2 - 28 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
 Table 2.11 and Table 2.12 explain each of the fields in a JTLB entry.

Field Name Description

PageMask[24:13] Page Mask Value. The Page Mask defines the page size by masking the appropriate
VPN2 bits from being involved in a comparison. It is also used to determine which
address bit is used to make the even-odd page (PFN0-PFN1) determination. See the
table below.

The PageMask column above show all the legal values for PageMask. Because each
pair of bits can only have the same value, the physical entry in the JTLB will only save
a compressed version of the PageMask using only 6 bits. However, this is transparent
to software, which will always work with a 12 bit field.

VPN2[31:13] Virtual Page Number divided by 2. This field contains the upper bits of the virtual page
number. Because it represents a pair of TLB pages, it is divided by 2. Bits 31:25 are
always included in the TLB lookup comparison. Bits 24:13 are included depending on
the page size, defined by PageMask.

G Global Bit. When set, indicates that this entry is global to all processes and/or threads
and thus disables inclusion of the ASID in the comparison.

ASID[7:0] Address Space Identifier. Identifies which process or thread this TLB entry is associ-
ated with.

Table 2.11 TLB Tag Entry Fields

PageMask[11:0] Page Size Even/Odd Bank
Select Bit

0000_0000_0000 4KB VAddr[12]
0000_0000_0011 16KB VAddr[14]
0000_0000_1111 64KB VAddr[16]
0000_0011_1111 256KB VAddr[18]
0000_1111_1111 1MB VAddr[20]
0011_1111_1111 4MB VAddr[22]
1111_1111_1111 16MB VAddr[24]
ence Manual 2 - 29 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
In order to fill an entry in the JTLB, software executes a TLBWI or TLBWR instruction (see the TLB
Instructions section). Prior to invoking one of these instructions, several CP0 registers must be updated
with the information to be written to a TLB entry:

PageMask is set in the CP0 PageMask register
VPN2 and ASID are set in the CP0 EntryHi register
PFN0, C0, D0, V0 and G bit are set in the CP0 EntryLo0 register
PFN1, C1, D1, V1 and G bit are set in the CP0 EntryLo1 register.

Note that the global bit “G” is part of both EntryLo0 and EntryLo1. The resulting “G” bit in the JTLB entry
is the logical AND between the two fields in EntryLo0 and EntryLo1. For additional information, refer to
section “CP0 Registers” on page 2-56.

The address space identifier (ASID) helps to reduce the frequency of TLB flushing on a context switch.
The existence of the ASID allows multiple processes to exist in both the TLB and instruction caches. The
ASID value is stored in the EntryHi register and is compared to the ASID value of each entry.

Field Name Description

PFN0[31:12],
PFN1[31:12]

Physical Frame Number. Defines the upper bits of the physical address. For page
sizes larger than 4 KBytes, only a subset of these bits is actually used.

C0[2:0],
C1[2:0]

Cacheability. Contains an encoded value of the cacheability attributes and determines
whether the page should be placed in the cache or not. The field is encoded as fol-
lows:

D0, D1 “Dirty” or Write-enable Bit. Indicates that the page has been written, and/or is writable.
If this bit is set, stores to the page are permitted. If the bit is cleared, stores to the page
cause a TLB Modified exception.

V0, V1 Valid Bit. Indicates that the TLB entry and, thus, the virtual page mapping are valid. If
this bit is set, accesses to the page are permitted. If the bit is cleared, accesses to the
page cause a TLB Invalid exception.

Table 2.12 TLB Data Entry Fields

C[2:0] Coherency Attribute
000 Cacheable, noncoherent, write-through, no write allo-

cated
001 Cacheable, noncoherent, write-through, no write allo-

cated
010 Uncached
011 Cacheable, noncoherent, write-through, no write allo-

cated
100 Cacheable, noncoherent, write-through, no write allo-

cated
101 Cacheable, noncoherent, write-through, no write allo-

cated
110 Cacheable, noncoherent, write-through, no write allo-

cated
111 Cacheable, noncoherent, write-through, no write allo-

cated
ence Manual 2 - 30 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
 Instruction TLB
The ITLB is a small 3-entry, fully associative TLB dedicated to performing translations for the instruction

stream. The ITLB only maps 4-Kbyte pages/sub-pages.
The ITLB is managed by hardware and is transparent to software. If a fetch address cannot be trans-

lated by the ITLB, the JTLB is accessed to attempt to translate it in the following clock cycle. If successful,
the translation information is copied into the ITLB. The ITLB is then re-accessed and the address will be
successfully translated. This results in an ITLB miss penalty of at least 2 cycles (if the JTLB is busy with
other operations, it may take additional cycles).

Data TLB
The DTLB is a small 3-entry, fully associative TLB which provides a faster translation for Load/Store

addresses than is possible with the JTLB. The DTLB only maps 4-Kbyte pages/sub-pages.
Like the ITLB, the DTLB is managed by hardware and is transparent to software. Unlike the ITLB, when

translating Load/Store addresses, the JTLB is accessed in parallel with the DTLB. If there is a DTLB miss
and a JTLB hit, the DTLB can be reloaded that cycle. The DTLB is then re-accessed and the translation will
be successful. This parallel access reduces the DTLB miss penalty to 1 cycle.

Virtual to Physical Address Translation
Converting a virtual address to a physical address begins by comparing the virtual address from the

processor with the virtual addresses in the TLB. There is a match when the virtual page number (VPN) of
the address is the same as the VPN field of the entry, and either:

The Global (G) bit of both the even and odd pages of the TLB entry are set, or
The ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB miss exception is taken by the
processor and software is allowed to refill the TLB from a page table of virtual/physical addresses in
memory.

Figure 2.25 shows the logical translation of a virtual address into a physical address. In this figure, the
virtual address is extended with an 8-bit address-space identifier (ASID), which reduces the frequency of
TLB flushing during a context switch. This 8-bit ASID contains the number assigned to that process and is
stored in the CP0 EntryHi register.
ence Manual 2 - 31 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
Figure 2.25 Overview of a Virtual-to-Physical Address Translation

If there is a virtual address match in the TLB, the physical frame number (PFN) is output from the TLB
and concatenated with the Offset, to form the physical address. The Offset represents an address within the
page frame space. As shown in Figure 2.25, the Offset does not pass through the TLB.

Figure 2.26 shows a flow diagram of the 4Kc core address translation process. The top portion of the
figure shows a virtual address for a 4-KByte page size. The width of the Offset is defined by the page size.
The remaining 20 bits of the address represent the virtual page number (VPN) that indexes the 1M-entry
page table.

The bottom portion of Figure 2.26 shows the virtual address for a 16-MByte page size. The remaining 8
bits of the address represent the VPN that indexes the 256-entry page table.

1.Virtual address (VA) represented by the
virtual page number (VPN) is compared
with tag in TLB.

2. If there is a match, the page frame
number (PFN0 or PFN1) representing
the upper bits of the physical address
(PA) is output from the TLB.

3. The Offset, which does not pass through
the TLB, is then concatenated with the PFN.

OffsetVPNG ASID

Virtual Address

TLB
Entry

OffsetPFN

TLB

G ASID VPN2

C0 D0 V0 PFN0

PFN1C1 D1 V1

Physical Address
ence Manual 2 - 32 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
Figure 2.26 32-bit Virtual Address Translation

Hits, Misses, and Multiple Matches
Each JTLB entry contains a tag and two data fields. If a match is found, the upper bits of the virtual

address are replaced with the page frame number (PFN) stored in the corresponding entry in the data array
of the JTLB. The granularity of JTLB mappings is defined in terms of TLB pages. The 4Kc core JTLB
supports pages of different sizes ranging from 4 KB to 16 MB in powers of 4. If a match is found, but the
entry is invalid (i.e., the V bit in the data field is 0), a TLB Invalid exception is taken.

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table
resident in memory. Figure 2.27 shows the translation and exception flow of the TLB.

Software can write over a selected TLB entry or use a hardware mechanism to write into a random entry.
The Random register selects which TLB entry to use on a TLBWR. This register decrements almost every
cycle, wrapping to the maximum once it’s value is equal to the Wired register. Thus, TLB entries below the
Wired value cannot be replaced by a TLBWR allowing important mappings to be preserved. In order to
reduce the possibility for a livelock situation, the Random register includes a 10b LFSR that introduces a
pseudo-random perturbation into the decrementing.

The 4Kc core implements a TLB write-compare mechanism to ensure that multiple TLB matches do not
occur. On the TLB write operation, the VPN2 field to be written is compared with all other entries in the TLB.
If a match occurs, the 4Kc core takes a machine-check exception, sets the TS bit in the CP0 Status register,
and aborts the write operation. For additional information on exceptions, see “Exceptions” on page 2-35.
There is a hidden bit in each TLB entry that is cleared on a ColdReset. This bit is set once the TLB entry is
written and is included in the match detection. Therefore, uninitialized TLB entries will not cause a TLB
shutdown.

Note: This hidden initialization bit leaves the entire JTLB invalid after a ColdReset, eliminating
the need to flush the TLB. But, to be compatible with other MIPS processors, it is recommended
that software initialize all TLB entries with unique tag values and V bits cleared before the first
access to a mapped location.

11
Virtual address with 1M (220) 4-KByte pages

Virtual Address with 256 (28)16-MByte pages
8 bits = 256 pages

20 bits = 1M pages

Virtual-to-physical
translation in TLB

Bit 31 of the virtual address
selects user and kernel address
spaces.

Offset passed unchanged to
physical memory.

Virtual-to-physical
translation in TLB

Offset passed unchanged to
physical memory.

32-bit Physical Address

ASID VPN Offset

PFN0/1 Offset

TLB

TLB

ASID VPN Offset
0233132 2439

313239 012

031

8 8 24

8 20 12
ence Manual 2 - 33 May 11, 2005

IDT MIPS32 4Kc Processor Core Memory Management

79RC32438 User Refer

Notes
 Page Sizes and Replacement Algorithm
To assist in controlling both the amount of mapped space and the replacement characteristics of various

memory regions, the 4Kc core provides two mechanisms. First, the page size can be configured, on a per
entry basis, to map page sizes ranging from 4 KByte to 16 MByte (in multiples of 4). The CP0 PageMask
register is loaded with the desired page size, which is then entered into the TLB when a new entry is written.
Thus, operating systems can provide special-purpose maps. For example, a typical frame buffer can be
memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB
entry to be written with a new mapping, the 4Kc core provides a random replacement algorithm. However,
the processor also provides a mechanism whereby a programmable number of mappings can be locked
into the TLB via the CP0 Wired register, thus avoiding random replacement. For additional information, see
“Wired Register (CP0 Register 6, Select 0)” on page 2-60.

Figure 2.27 TLB Address Translation Flow in the 4Kc Processor Core

For valid address space,
see the section describing
Modes of operation in this
chapter.

Virtual Address (Input)
VPN and

ASID

User
Mode?

NoYes

No

Yes

No

Yes

No

No No

No

No

No

No

Yes

Yes Yes

Yes

Yes

Yes

Yes

Exception

Global

Valid

Dirty

Noncacheable

Physical Address (Output)

User
Address?

Address
Error

Unmapped
Address

kseg0/kseg1
Address

VPN
Match?

 G = 1?

 C=010 or
C=111?

 ASID
Match?

 V = 1?

 D = 1? Write?

 TLB
Modified

 TLB
Invalid

 TLB Refill

 Access
Cache

 Access
Main

Memory
ence Manual 2 - 34 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 TLB Instructions
Table 2.13 lists the 4Kc core’s TLB-related instructions. For additional information on these instructions,

see Appendix A, 4Kc Processor Core Instructions.

System Control Coprocessor
The System Control Coprocessor (CP0) is implemented as an integral part of the 4Kc processor core

and supports memory management, address translation, exception handling, and other privileged opera-
tions. Certain CP0 registers are used to support memory management. For additional information on the
CP0 register set, see the CP0 Registers section later in this chapter.

Exceptions
The 4Kc processor core receives exceptions from a number of sources, including translation lookaside

buffer (TLB) misses, arithmetic overflows, I/O interrupts, and system calls. When the CPU detects one of
these exceptions, the normal sequence of instruction execution is suspended and the processor enters
kernel mode.

In kernel mode, the core disables interrupts and forces execution of a software exception processor
(called a handler) located at a fixed address. The handler saves the context of the processor, including the
contents of the program counter, the current operating mode, and the status of the interrupts (enabled or
disabled). This context is saved so it can be restored when the exception has been serviced.

When an exception occurs, the core loads the Exception Program Counter (EPC) register with a location
where execution can restart after the exception has been serviced. The restart location in the EPC register
is the address of the instruction that caused the exception or, if the instruction was executing in a branch
delay slot, the address of the branch instruction immediately preceding the delay slot. To distinguish
between the two, software must read the BD bit in the CP0 Cause register.

Exception Conditions
When an exception condition occurs, the relevant instruction and all those that follow it in the pipeline

are cancelled. Accordingly, all stall conditions and all later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a cancelled instruction.

When an exception condition is detected on an instruction fetch, the core aborts that instruction and all
instructions that follow. When this instruction reaches the W stage, the exception flag causes it to write
various CP0 registers with the exception state, change the current program counter (PC) to the appropriate
exception vector address, and clear the exception bits of earlier pipeline stages.

This implementation allows all preceding instructions to complete execution and prevents all subse-
quent instructions from completing. Thus, the value in the EPC (ErrorEPC for errors or DEPC for debug
exceptions) is sufficient to restart execution. It also ensures that exceptions are taken in the order of execu-
tion; an instruction taking an exception may itself be killed by an instruction further down the pipeline that
takes an exception in a later cycle.

Op Code Description of Instructions

TLBP Translation Lookaside Buffer Probe

TLBR Translation Lookaside Buffer Read

TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 2.13 TLB Instructions
ence Manual 2 - 35 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 Exception Priority
Table 2.14 lists all possible exceptions and the relative priority of each, highest to lowest. Several of

these exceptions can happen simultaneously. If that happens, the exception with the highest priority is the
one taken.

Exception Condition

Reset Assertion of SI_ColdReset signal.

Soft Reset Assertion of SI_Reset signal.

DSS EJTAG Debug Single Step.

DINT EJTAG Debug Interrupt. Caused by the assertion of the external EJ_DINT input, or by
setting the EjtagBrk bit in the ECR register.

NMI Asserting edge of SI_NMI signal.

Machine Check TLB write that conflicts with an existing entry.

Interrupt Assertion of unmasked HW or SW interrupt signal.

Deferred Watch Deferred Watch (unmasked by K|DM->!(K|DM) transition).

DIB EJTAG debug hardware instruction break matched.

WATCH A reference to an address in one of the watch registers (fetch).

AdEL Fetch address alignment error.
User mode fetch reference to kernel address.

TLBL Fetch TLB miss.
Fetch TLB hit to page with V=0.

IBE Instruction fetch bus error.

DBp EJTAG Breakpoint (execution of SDBBP instruction).

Sys Execution of SYSCALL instruction.

Bp Execution of BREAK instruction.

CpU Execution of a coprocessor instruction for a coprocessor that is not enabled.

RI Execution of a Reserved Instruction.

Ov Execution of an arithmetic instruction that overflowed.

Tr Execution of a trap (when trap condition is true).

DDBL / DDBS EJTAG Data Address Break (address only) or EJTAG Data Value Break on Store
(address and value).

WATCH A reference to an address in one of the watch registers (data).

AdEL Load address alignment error.
User mode load reference to kernel address.

AdES Store address alignment error.
User mode store to kernel address.

TLBL Load TLB miss.
Load TLB hit to page with V=0.

TLBS Store TLB miss.
Store TLB hit to page with V=0.

Table 2.14 Priority of Exceptions
ence Manual 2 - 36 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 Exception Vector Locations
The Reset, Soft Reset, and NMI exceptions are always vectored to location 0xBFC0_0000. Debug

exceptions are vectored to location 0xBFC0_0480 or to location 0xFF20_0200 if the ProbTrap bit is 0 or 1,
respectively, in the EJTAG Control register (ECR). Addresses for all other exceptions are a combination of a
vector offset and a base address. Table 2.15 gives the base address as a function of the exception and
whether the BEV bit is set in the Status register. Table 2.16 gives the offsets from the base address as a
function of the exception. Table 2.17 combines these two tables into one that contains all possible vector
addresses as a function of the state that can affect the vector selection.

Exception
StatusBEV

0 1

Reset, Soft Reset, NMI 0xBFC0_0000

Debug (with ProbTrap = 0 in the ECR) 0xBFC0_0480

Debug (with ProbTrap = 1 in the ECR) 0xFF20_0200
(in dmseg handled by probe, and not system memory)

Other 0x8000_0000 0xBFC0_0200

Table 2.15 Exception Vector Base Addresses

Exception Vector Offset

TLB refill, EXL = 0 (4Kc core) 0x000

Reset, Soft Reset, NMI 0x000
(uses reset base address)

General Exception 0x180

Interrupt, CauseIV = 1 0x200

Table 2.16 Exception Vector Offsets

Exception BEV EXL IV EJTAG
ProbTrap Vector

Reset, Soft
Reset, NMI

x x x x 0xBFC0_0000

Debug x x x 0 0xBFC0_0480

Debug x x x 1 0xFF20_0200 (in dmseg)

TLB Refill 0 0 x x 0x8000_0000

TLB Refill 0 1 x x 0x8000_0180

TLB Refill 1 0 x x 0xBFC0_0200

TLB Refill 1 1 x x 0xBFC0_0380

Interrupt 0 0 0 x 0x8000_0180

Interrupt 0 0 1 x 0x8000_0200

Interrupt 1 0 0 x 0xBFC0_0380

Table 2.17 Exception Vectors
ence Manual 2 - 37 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
General Exception Processing
With the exception of Reset, Soft Reset, NMI, and Debug exceptions, which have their own special

processing as described below, exceptions have the same basic processing flow:
1. If the EXL bit in the Status register is cleared, the EPC register is loaded with the PC at which execu-

tion will be restarted and the BD bit is set appropriately in the Cause register. If the instruction is not
in the delay slot of a branch, the BD bit in Cause will be cleared and the value loaded into the EPC
register is the current PC. If the instruction is in the delay slot of a branch, the BD bit in Cause is set
and EPC is loaded with PC-4. If the EXL bit in the Status register is set, the EPC register is not
loaded and the BD bit is not changed in the Cause register.

2. The CE and ExcCode fields of the Cause registers are loaded with the values appropriate to the
exception. The CE field is loaded, but not defined, for any exception type other than a coprocessor
unusable exception.

3. The EXL bit is set in the Status register.
4. The processor is started at the exception vector.
The value loaded into EPC represents the restart address for the exception and need not be modified by

exception handler software in the normal case. Software need not look at the BD bit in the Cause register
unless is wishes to identify the address of the instruction that actually caused the exception.

Note that individual exception types may load additional information into other registers. This is noted in
the description of each exception type below.

Operation:
if StatusEXL = 0 then

if InstructionInBranchDelaySlot then
EPC << PC - 4
CauseBD << 1

else
EPC << PC
CauseBD << 0

endif
if ExceptionType = TLBRefill then

vectorOffset << 0x000
elseif (ExceptionType = Interrupt) and
(CauseIV = 1) then

vectorOffset << 0x200
else

vectorOffset << 0x180
endif

else
vectorOffset << 0x180

endif
CauseCE << FaultingCoprocessorNumber
CauseExcCode << ExceptionType
StatusEXL << 1
if StatusBEV = 1 then

PC << 0xBFC0_0200 + vectorOffset
else

Interrupt 1 0 1 x 0xBFC0_0400

All others 0 x x x 0x8000_0180

All others 1 x x x 0xBFC0_0380

Exception BEV EXL IV EJTAG
ProbTrap Vector

Table 2.17 Exception Vectors
ence Manual 2 - 38 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 PC << 0x8000_0000 + vectorOffset
endif

Debug Exception Processing
All debug exceptions have the same basic processing flow:
1. The DEPC register is loaded with the program counter (PC) value at which execution will be restarted

and the DBD bit is set appropriately in the Debug register. The value loaded into the DEPC register
is the current PC if the instruction is not in the delay slot of a branch, or the PC-4 of the branch if the
instruction is in the delay slot of a branch.

2. The DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits at [5:0]) in the Debug register are updated
appropriately depending on the debug exception type.

3. Halt and Doze bits in the Debug register are updated appropriately.
4. DM bit in the Debug register is set to 1.
5. The processor is started at the debug exception vector.
The value loaded into DEPC represents the restart address for the debug exception and need not be

modified by the debug exception handler software in the usual case. Debug software need not look at the
DBD bit in the Debug register unless it wishes to identify the address of the instruction that actually caused
the debug exception.

A unique debug exception is indicated through the DSS, DBp, DDBL, DDBS, DIB and DINT bits (D* bits
at [5:0]) in the Debug register.

No other CP0 registers or fields are changed due to the debug exception, thus no additional state is
saved.

Operation:
if InstructionInBranchDelaySlot then

DEPC << PC-4
DebugDBD << 1

else
DEPC << PC
DebugDBD << 0

endif
DebugD* bits at at [5:0] <- DebugExceptionType
DebugHalt << HaltStatusAtDebugException
DebugDoze << DozeStatusAtDebugException
DebugDM << 1
if EJTAGControlRegisterProbTrap = 1 then

PC << 0xFF20_0200
else

PC << 0xBFC0_0480
endif

The same debug exception vector location is used for all debug exceptions. The location is determined
by the ProbTrap bit in the EJTAG Control register (ECR), as shown in Table 2.18.

Exceptions
The following subsections describe each of the exceptions listed in the same sequence as shown in

Table 2.14.

ProbTrap bit in
ECR Register Debug Exception Vector Address

0 0xBFC0_0480

1 0xFF20_0200 in dmseg

Table 2.18 Debug Exception Vector Addresses
ence Manual 2 - 39 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 Reset Exception
A reset exception occurs when the SI_ColdReset signal is asserted to the processor. This exception is

not maskable. When a Reset exception occurs, the processor performs a full reset initialization, including
aborting state machines, establishing critical state, and generally placing the processor in a state in which it
can execute instructions from uncached, unmapped address space. On a Reset exception, the state of the
processor in not defined, with the following exceptions:

The Random register is initialized to the number of TLB entries - 1 (4Kc core.
The Wired register is initialized to zero (4Kc core)
The Config register is initialized with its boot state
The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state
The I, R, and W fields of the WatchLo register are initialized to 0
The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was execut-
ing an instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.
Note that this value may or may not be predictable.

PC is loaded with 0xBFC0_0000.
Cause Register ExcCode Value:
None
Additional State Saved:
None
Entry Vector Used:
Reset (0xBFC0_0000)
Operation:

Random << TLBEntries - 1
Wired << 0
Config << ConfigurationState
StatusBEV << 1
StatusTS << 0
StatusSR << 0
StatusNMI << 0
StatusERL << 1
WatchLoI << 0
WatchLoR << 0
WatchLoW << 0
if InstructionInBranchDelaySlot then

ErrorEPC << PC - 4
else

ErrorEPC << PC
endif
PC << 0xBFC0_0000

Soft Reset Exception
A soft reset exception occurs when the SI_Reset signal is asserted to the processor. This exception is

not maskable. When a soft reset exception occurs, the processor performs a subset of the full reset initial-
ization. Although a soft reset exception does not unnecessarily change the state of the processor, it may be
forced to do so in order to place the processor in a state in which it can execute instructions from uncached,
unmapped address space. Since bus, cache, or other operations may be interrupted, portions of the cache,
memory, or other processor state may be inconsistent. In addition to any hardware initialization required,
the following state is established on a soft reset exception:

The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.
ence Manual 2 - 40 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was execut-
ing an instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.
Note that this value may or may not be predictable.
PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:
None
Additional State Saved:
None
Entry Vector Used:
Reset (0xBFC0_0000)
Operation:

StatusBEV << 1
StatusTS << 0
StatusSR << 1
StatusNMI << 0
StatusERL << 1
if InstructionInBranchDelaySlot then

ErrorEPC << PC - 4
else

ErrorEPC << PC
endif
PC << 0xBFC0_0000

Debug Single Step Exception
A debug single step exception occurs after the CPU has executed one/two instructions in non-debug

mode, when returning to non-debug mode after debug mode. One instruction is allowed to execute when
returning to a non jump/branch instruction, otherwise two instructions are allowed to execute since the
jump/branch and the instruction in the delay slot are executed as one step. Debug single step exceptions
are enabled by the SSt bit in the Debug register, and are always disabled for the first one/two instructions
after a DERET.

The DEPC register points to the instruction on which the debug single step exception occurred, which is
also the next instruction to single step or execute when returning from debug mode. So the DEPC will not
point to the instruction which has just been single stepped, but rather the following instruction. The DBD bit
in the Debug register is never set for a debug single step exception, since the jump/branch and the instruc-
tion in the delay slot is executed in one step.

Exceptions occurring on the instruction(s) executed with debug single step exception enabled are taken
even though debug single step was enabled. For a normal exception (other than reset), a debug single step
exception is then taken on the first instruction in the normal exception handler. Debug exceptions are unaf-
fected by single step mode, e.g. returning to a SDBBP instruction with debug single step exceptions
enabled causes a debug software breakpoint exception, and the DEPC will point to the SDBBP instruction.
However, returning to an instruction (not jump/branch) just before the SDBBP instruction, causes a debug
single step exception with the DEPC pointing to the SDBBP instruction.

To ensure proper functionality of single step, the debug single step exception has priority over all other
exceptions, except reset and soft reset.

Debug Register Debug Status Bit Set
DSS
Additional State Saved
None
Entry Vector Used
ence Manual 2 - 41 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 Debug exception vector

Debug Interrupt Exception
A debug interrupt exception is either caused by the EjtagBrk bit in the EJTAG Control register (controlled

through the TAP) or caused by the debug interrupt request signal to the CPU.
The debug interrupt exception is an asynchronous debug exception which is taken as soon as possible,

but with no specific relation to the executed instructions. The DEPC register is set to the instruction where
execution should continue after the debug handler is through. The DBD bit is set based on whether the
interrupted instruction was executing in the delay slot of a branch.

Debug Register Debug Status Bit Set
DINT
Additional State Saved
None
Entry Vector Used
Debug exception vector

Non-Maskable Interrupt (NMI) Exception
A non-maskable interrupt exception occurs when the SI_NMI signal is asserted to the processor.

SI_NMI is an edge sensitive signal - only one NMI exception will be taken each time it is asserted. An NMI
exception occurs only at instruction boundaries, so it does not cause any reset or other hardware initializa-
tion. The state of the cache, memory, and other processor states are consistent and all registers are
preserved, with the following exceptions:

The BEV, TS, SR, NMI, and ERL fields of the Status register are initialized to a specified state.
The ErrorEPC register is loaded with PC-4 if the state of the processor indicates that it was execut-
ing an instruction in the delay slot of a branch. Otherwise, the ErrorEPC register is loaded with PC.
PC is loaded with 0xBFC0_0000.

Cause Register ExcCode Value:
None
Additional State Saved:
None
Entry Vector Used:
Reset (0xBFC0_0000)
Operation:

StatusBEV << 1
StatusTS << 0
StatusSR << 0
StatusNMI << 1
StatusERL << 1
if InstructionInBranchDelaySlot then

ErrorEPC << PC - 4
else

ErrorEPC << PC
endif
PC << 0xBFC0_0000

Machine Check Exception
A machine check exception occurs when the processor detects an internal inconsistency. The following

condition causes a machine check exception:
ence Manual 2 - 42 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 The detection of multiple matching entries in the TLB in a TLB-based MMU. The core detects this
condition on a TLB write and prevents the write from being completed. The TS bit in the Status reg-
ister is set to indicate this condition. This bit is only a status flag and does not affect the operation of
the device. Software clears this bit at the appropriate time. This condition is resolved by flushing the
conflicting TLB entries. The TLB write can then be completed.

Cause Register ExcCode Value:
MCheck
Additional State Saved:
None
Entry Vector Used:
General exception vector (offset 0x180)

Interrupt Exception
The interrupt exception occurs when one or more of the eight interrupt requests is enabled by the Status

register and the interrupt input is asserted. The delay from assertion of an unmasked interrupt to fetch of the
first instructions at the exception vector is a minimum of 5 clock cycles. More may be needed if a committed
instruction has to complete before the exception can be taken. A SYNC instruction which has already
started flushing the cache and write buffers must wait until this is completed before the interrupt exception
can be taken.

Register ExcCode Value:
Int
Additional State Saved:

Entry Vector Used:
General exception vector (offset 0x180) if the IV bit in the Cause register is 0;
interrupt vector (offset 0x200) if the IV bit in the Cause register is 1.

Debug Instruction Break Exception
A debug instruction break exception occurs when an instruction hardware breakpoint matches an

executed instruction. The DEPC register and DBD bit in the Debug register indicates the instruction that
caused the instruction hardware breakpoint to match. This exception can only occur if instruction hardware
breakpoints are implemented.

Debug Register Debug Status Bit Set:
DIB
Additional State Saved:
None
Entry Vector Used:
Debug exception vector

Register State Value

CauseIP Indicates the interrupts that are pending.

Table 2.19 Register States an Interrupt Exception
ence Manual 2 - 43 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 Watch Exception — Instruction Fetch or Data Access
The Watch facility provides a software debugging vehicle by initiating a watch exception when an

instruction or data reference matches the address information stored in the WatchHi and WatchLo registers.
A Watch exception is taken immediately if the EXL and ERL bits of the Status register are both zero and the
DM bit of the Debug is also zero. If any of those bits is a one at the time that a watch exception would
normally be taken, the WP bit in the Cause register is set, and the exception is deferred until both all three
bits are zero. Software may use the WP bit in the Cause register to determine if the EPC register points to
the instruction that caused the watch exception or if the exception actually occurred while in kernel mode.

The Watch exception can occur on either an instruction fetch or a data access. Watch exceptions that
occur on an instruction fetch have a higher priority than watch exceptions that occur on a data access.

Register ExcCode Value:
WATCH
Additional State Saved:

Entry Vector Used:
General exception vector (offset 0x180)

Address Error Exception — Instruction Fetch/Data Access
An address error exception occurs on an instruction or data access when an attempt is made to execute

one of the following:
Fetch an instruction, load a word, or store a word that is not aligned on a word boundary
Load or store a halfword that is not aligned on a halfword boundary
Reference the kernel address space from user mode.

Note that in the case of an instruction fetch that is not aligned on a word boundary, PC is updated before
the condition is detected. Therefore, both EPC and BadVAddr point to the unaligned instruction address. In
the case of a data access, the exception is taken if either an unaligned address or an address that was
inaccessible in the current processor mode was referenced by a load or store instruction.

Cause Register ExcCode Value:
ADEL: Reference was a load or an instruction fetch
ADES: Reference was a store
Additional State Saved:

Register State Value

CauseWP Indicates that the watch exception was deferred until after
StatusEXL, StatusERL, and DebugDM were zero. This bit
directly causes a watch exception, so software must clear
this bit as part of the exception handler to prevent a watch
exception loop at the end of the current handler execution.

Table 2.20 Register States on a Watch Exception

Register State Value

BadVAddr Failing address

ContextVPN2 UNPREDICTABLE

Table 2.21 CP0 Register States on an Address Exception Error (Part 1 of 2)
ence Manual 2 - 44 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
Entry Vector Used:
General exception vector (offset 0x180)

TLB Refill Exception — Instruction Fetch or Data Access
During an instruction fetch or data access, a TLB refill exception occurs when no TLB entry in a TLB-

based MMU matches a reference to a mapped address space and the EXL bit is 0 in the Status register.
Note that this is distinct from the case in which an entry matches but has the valid bit off. In that case, a TLB
Invalid exception occurs.

Cause Register ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store
Additional State Saved:

Entry Vector Used:
TLB refill vector (offset 0x000) if StatusEXL = 0 at the time of exception;
general exception vector (offset 0x180) if StatusEXL = 1 at the time of exception.

TLB Invalid Exception — Instruction Fetch or Data Access (4Kc core)
During an instruction fetch or data access, a TLB invalid exception occurs in one of the following cases:

No TLB entry in a TLB-based MMU matches a reference to a mapped address space; and the EXL
bit is 1 in the Status register
A TLB entry in a TLB-based MMU matches a reference to a mapped address space, but the
matched entry has the valid bit off
The virtual address is greater than or equal to the bounds address in a FM-based MMU.

Cause Register ExcCode Value:
TLBL: Reference was a load or an instruction fetch
TLBS: Reference was a store
Additional State Saved:

EntryHiVPN2 UNPREDICTABLE

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Register State Value

BadVAddr Failing address

Context The BadVPN2 fields contains VA31:13 of the failing
address.

EntryHi The VPN2 field contains VA31:13 of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 2.22 CP0 Register States on a TLB Refill Exception

Register State Value

Table 2.21 CP0 Register States on an Address Exception Error (Part 2 of 2)
ence Manual 2 - 45 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
Entry Vector Used:
General exception vector (offset 0x180)

Bus Error Exception — Instruction Fetch or Data Access
A bus error exception occurs when an instruction or data access makes a bus request (due to a cache

miss or an uncacheable reference) and that request terminates in an error. The bus error exception can
occur on either an instruction fetch or a data access. Bus error exceptions that occur on an instruction fetch
have a higher priority than bus error exceptions that occur on a data access.

Bus errors taken on the requested (critical) word of an instruction fetch or data load are precise. Other
bus errors, such as stores or non-critical words of a burst read, can be imprecise. These errors are taken
when the EB_RBErr or EB_WBErr signals are asserted and may occur on an instruction that was not the
source of the offending bus cycle.

Cause Register ExcCode Value:
IBE:Error on an instruction reference
DBE:Error on a data reference
Additional State Saved:
None
Entry Vector Used:
General exception vector (offset 0x180)

Debug Software Breakpoint Exception
A debug software breakpoint exception occurs when an SDBBP instruction is executed. The DEPC

register and DBD bit in the Debug register will indicate the SDBBP instruction that caused the debug excep-
tion.

Debug Register Debug Status Bit Set:
DBp
Additional State Saved:
None
Entry Vector Used:
Debug exception vector

Execution Exception — System Call
The system call exception is one of the six execution exceptions. All of these exceptions have the same

priority. A system call exception occurs when a SYSCALL instruction is executed.

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing address.

EntryHi The VPN2 field contains VA31:13 of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 2.23 CP0 Register States on a TLB Invalid Exception
ence Manual 2 - 46 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 Cause Register ExcCode Value:
Sys
Additional State Saved:
None
Entry Vector Used:
General exception vector (offset 0x180)

Execution Exception — Breakpoint
The breakpoint exception is one of the six execution exceptions. All of these exceptions have the same

priority. A breakpoint exception occurs when a BREAK instruction is executed.
Cause Register ExcCode Value:
Bp
Additional State Saved:
None
Entry Vector Used:
General exception vector (offset 0x180)

Execution Exception — Reserved Instruction
The reserved instruction exception is one of the six execution exceptions. All of these exceptions have

the same priority. A reserved instruction exception occurs when a reserved or undefined major opcode or
function field is executed.

Cause Register ExcCode Value:
RI
Additional State Saved:
None
Entry Vector Used:
General exception vector (offset 0x180)

Execution Exception — Coprocessor Unusable
The coprocessor unusable exception is one of the six execution exceptions. All of these exceptions

have the same priority. A coprocessor unusable exception occurs when an attempt is made to execute a
coprocessor instruction for one of the following:

A corresponding coprocessor unit that has not been marked usable by setting its CU bit in the Sta-
tus register
CP0 instructions, when the unit has not been marked usable, and the processor is executing in user
mode.

Cause Register ExcCode Value:
CpU
Additional State Saved:

Register State Value

CauseCE Unit number of the coprocessor being referenced

Figure 2.28 Register States on a Coprocessor Unusable Exception
ence Manual 2 - 47 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
 Entry Vector Used:
General exception vector (offset 0x180)

Execution Exception — Integer Overflow
The integer overflow exception is one of the six execution exceptions. All of these exceptions have the

same priority. An integer overflow exception occurs when selected integer instructions result in a 2’s
complement overflow.

Cause Register ExcCode Value:
Ov
Additional State Saved:
None
Entry Vector Used:
General exception vector (offset 0x180)

Execution Exception — Trap
The trap exception is one of the six execution exceptions. All of these exceptions have the same priority.

A trap exception occurs when a trap instruction results in a TRUE value.
Cause Register ExcCode Value:
Tr
Additional State Saved:
None
Entry Vector Used:
General exception vector (offset 0x180)

Debug Data Break Exception
A debug data break exception occurs when a data hardware breakpoint matches the load/store transac-

tion of an executed load/store instruction. The DEPC register and DBD bit in the Debug register will indicate
the load/store instruction that caused the data hardware breakpoint to match. The load/store instruction that
caused the debug exception has not completed, e.g. not updated the register file, and the instruction can be
re-executed after returning from the debug handler.

Debug Register Debug Status Bit Set:
DDBL for a load instruction or DDBS for a store instruction
Additional State Saved:
None
Entry Vector Used:
Debug exception vector

TLB Modified Exception — Data Access
During a data access, a TLB modified exception occurs on a store reference to a mapped address if the

following condition is true:
The matching TLB entry in a TLB-based MMU is valid, but not dirty.
Cause Register ExcCode Value:
Mod
Additional State Saved:
ence Manual 2 - 48 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
Entry Vector Used:
General exception vector (offset 0x180)

Exception Handling and Servicing Flowcharts
The remainder of this chapter contains flowcharts for the following exceptions and guidelines for their

handlers:
General exceptions and their exception handler
TLB miss exceptions and their exception handler (4Kc core)
Reset, soft reset and NMI exceptions, and a guideline to their handler
Debug exceptions.

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then serviced by
software (SW). Note that unexpected debug exceptions to the debug exception vector at 0xBFC0_0200
may be viewed as a reserved instruction since uncontrolled execution of a SDBBP instruction caused the
exception. The DERET instruction must be used at return from the debug exception handler, in order to
leave debug mode and return to non-debug mode. The DERET instruction returns to the address in the
DEPC register.

Register State Value

BadVAddr Failing address

Context The BadVPN2 field contains VA31:13 of the failing address.

EntryHi The VPN2 field contains VA31:13 of the failing address; the
ASID field contains the ASID of the reference that missed.

EntryLo0 UNPREDICTABLE

EntryLo1 UNPREDICTABLE

Table 2.24 Register States on a TLB Modified Exception
ence Manual 2 - 49 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
Figure 2.29 General Exception Handler (HW)

To General Exception Servicing Guidelines

=1 (bootstrap)=0 (normal)
Status.BEV

Comments

PC << 0x8000_0000 + 180
(unmapped, cached)

PC << 0xBFC0_0200 + 180
(unmapped, uncached)

EXL << 1

EPC << (PC - 4) EPC << PC

Instr. in
Br.Dly. Slot?

=0

Processor forced to Kernel
Mode & interrupt disabled

=0

=1
Check if exception within

another exception EXL

EntryHi and Context are set only for
TLB Invalid, Modified, & Refill
exceptions. BadVA is set only for TLB
Invalid, Modified, and Refill
exceptions. Note: Not set on Bus
Errors.

EntryHi << VPN2, ASID
Context << VPN2

Set Cause EXCCode,CE
BadVA << VA

Exceptions other than Reset, Soft Reset, NMI, or first-level TLB miss. Note:
Interrupts can be masked by IE or IMs, and Watch is masked if EXL = 1.
ence Manual 2 - 50 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
Figure 2.30 General Exception Servicing Guidelines (SW)

ERET

MTC0 -
EPC,STATUS

EXL = 1

Service Code

* ERET is not allowed in the branch delay slot of another
Jump Instruction
* Processor does not execute the instruction which is in the
ERET’s branch delay slot
* PC << EPC; EXL << 0
* LLbit << 0

Check Cause value & Jump to
appropriate Service Code

* After EXL=0, all exceptions allowed. (except
interrupt if masked by IE)

(Optional - only to enable Interrupts while keeping Kernel Mode)
MTC0 -

Set Status bits:
UM << 0, EXL << 0,

IE << 1

MFC0 -
Context, EPC, Status, Cause

 * Unmapped vector so TLBMod, TLBInv, or TLB Refill
exceptions not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible

Comments
ence Manual 2 - 51 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
Figure 2.31 TLB Miss Exception Handler (HW)

To TLB Exception Servicing Guidelines

Vec. Off. = 0x180

EPC << (PC - 4)
Cause.BD << 1

EPC << PC
Cause.BD << 0

Vec. Off. = 0x000

EXL << 1

Points to General Exception

Processor forced to Kernel Mode &
interrupt disabled

= 0

= 1 (bootstrap)= 0 (normal)

PC << 0x8000_0000 +
Vec.Off.(unmapped. cached)

PC << 0xBFC0_0200 + Vec.Off.(unmapped.
uncached)

Status.BEV

Check if exception within another
exception= 1= 1

= 0

EXL EXL

EntryHi << VPN2, ASID
Context << VPN2

Set Cause EXCCode,CE
BadVA << VA

Instr. in Br.Dly.
Slot?

noyes
ence Manual 2 - 52 May 11, 2005

IDT MIPS32 4Kc Processor Core Exceptions

79RC32438 User Refer

Notes
Figure 2.32 TLB Exception Servicing Guidelines (SW)

Comments

ERET

Service Code

MFC0 -CONTEXT

 * Unmapped vector so TLBMod, TLBInv, or TLB Refill
exceptions not possible
* EXL=1 so Watch, Interrupt exceptions disabled
* OS/System to avoid all other exceptions
* Only Reset, Soft Reset, NMI exceptions possible

* Load the mapping of the virtual address in Context Reg. Move
it to EntryLo and write into the TLB
* There could be a TLB miss again during the mapping of the
data or instruction address. The processor will jump to the
general exception vector since the EXL is 1. (Option to
complete the first level refill in the general exception handler or
ERET to the original instruction and take the exception again)

* ERET is not allowed in the branch delay slot of another Jump
Instruction
* Processor does not execute the instruction which is in the
ERET’s branch delay slot
* PC << EPC; EXL << 0
* LLbit << 0
ence Manual 2 - 53 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
Figure 2.33 Reset, Soft Reset, and NMI Exception Handling and Servicing Guidelines

CP0 Registers
The System Control Coprocessor (CP0) provides the register interface to the MIPS32 4Kc processor

core and supports memory management, address translation, exception handling, and other privileged
operations. Each CP0 register has a unique number (register number) that identifies it. For example, the
PageMask register is register number 5. For more information on the EJTAG registers, refer to Chapter 20,
EJTAG System.

After updating a CP0 register, there is a hazard period of zero or more instructions from the update
instruction (MTC0) and until the effect of the update has taken place in the core.

CP0 Register Summary
Table 5-1 lists the CP0 registers in numerical order.

Status:
BEV << 1
TS << 0
SR << 1/0
NMI << 0/1
ERL << 1

(Optional)

Reset Service CodeSoft Reset Service Code

NMI Service Code

ERET

=0

=1

=0

=1

 Status.SR

 Status.NMI

PC << 0xBFC0_0000

ErrorEPC << PC

Random << TLBENTRIES - 1
Wired << 0
Config << Reset state
Status:
BEV << 1
TS << 0
SR << 0
NMI << 0
ERL << 1
WatchLo:
I,R,W << 0

Reset Exception

Soft Reset or NMI Exception

Re
se

t, S
oft

 R
es

et
&

NM
I E

xc
ep

tio
n H

an
dli

ng
 (H

W
)

Re
se

t, S
oft

 R
es

et
&

NM
I S

er
vic

ing

Gu
ide

lin
es

 (S
W

)

ence Manual 2 - 54 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes

Register
Number Register Name Function

0 Index1

1. Registers used in memory management.

Index into the TLB array

1 Random1 Randomly generated index into the TLB array

2 EntryLo01 Low-order portion of the TLB entry for even-num-
bered virtual pages

3 EntryLo11 Low-order portion of the TLB entry for odd-num-
bered virtual pages

4 Context2

2. Registers used in exception processing.

Pointer to page table entry in memory

5 PageMask1 Controls the variable page sizes in TLB entries

6 Wired1 Controls the number of fixed (“wired”) TLB entries

7 Reserved Reserved

8 BadVAddr2 Reports the address for the most recent address-
related exception

9 Count2 Processor cycle count

10 EntryHi1 High-order portion of the TLB entry.

11 Compare2 Timer interrupt control

12 Status2 Processor status and control

13 Cause2 Cause of last exception

14 EPC2 Program counter at last exception

15 PRId Processor identification and revision

16 Config/Config1 Configuration register

17 LLAddr Load linked address

18 WatchLo2 Watchpoint address (low order)

19 WatchHi2 Watchpoint address (high order) and mask

20 - 22 Reserved Reserved

23 Debug3

3. Registers used in debug.

Debug control and exception status

24 DEPC3 Program counter at last debug exception

25 Reserved Reserved

26 ErrCtl Controls access to data and SPRAM arrays for
CACHE instruction

27 Reserved Reserved

28 TagLo/DataLo Low-order portion of cache tag interface

29 Reserved Reserved

30 ErrorEPC2 Program counter at last error

31 DESAVE3 Debug handler scratchpad register

Table 2.25 CP0 Registers
ence Manual 2 - 55 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
 CP0 Registers
The CP0 registers provide the interface between the ISA and the architecture. Each register is

discussed below, with the registers presented in numerical order, first by register number, then by select
field number. For each register described below, field descriptions include the read/write properties of the
field and the reset state of the field. Table 2.26 summarizes the read/write properties of the field.

Index Register (CP0 Register 0, Select 0)
The Index register is a 32-bit read/write register that contains the index used to access the TLB for

TLBP, TLBR, and TLBWI instructions. The width of the index field is 4-bits wide in order to address the 16
entries in the TLB. The operation of the processor is UNDEFINED if a value greater than or equal to the
number of TLB entries is written to the Index register. This register is only valid with the TLB.

IIndex Register Format

Read/Write
Notation Hardware Interpretation Software Interpretation

R/W A field in which all bits are readable and writable by software and, potentially, by hard-
ware.
Hardware updates of this field are visible by software read. Software updates of this
field are visible by hardware read.
If the reset state of this field is “Undefined,” either software or hardware must initialize
the value before the first read will return a predictable value. This should not be con-
fused with the formal definition of UNDEFINED behavior.

R A field that is either static or is updated
only by hardware.
If the Reset State of this field is either “0”
or “Preset”, hardware initializes this field
to zero or to the appropriate state,
respectively, on powerup.
If the Reset State of this field is “Unde-
fined”, hardware updates this field only
under those conditions specified in the
description of the field.

A field to which the value written by soft-
ware is ignored by hardware. Software
may write any value to this field without
affecting hardware behavior. Software
reads of this field return the last value
updated by hardware.
If the Reset State of this field is “Unde-
fined,” software reads of this field result in
an UNPREDICTABLE value except after
a hardware update done under the condi-
tions specified in the description of the
field.

0 A field that hardware does not update,
and for which hardware can assume a
zero value.

A field to which the value written by soft-
ware must be zero. Software writes of
non-zero values to this field may result in
UNDEFINED behavior of the hardware.
Software reads of this field return zero as
long as all previous software writes are
zero.
If the Reset State of this field is “Unde-
fined,” software must write this field with
zero before it is guaranteed to read as
zero.

Table 2.26 CP0 Register Field Types

31 30 4 3 0
P 0 Index
ence Manual 2 - 56 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
Random Register (CP0 Register 1, Select 0)
The Random register is a read-only register whose value is used to index the TLB during a TLBWR

instruction. The width of the Random field is calculated in the same manner as that described for the Index
register above.

The value of the register varies between an upper and lower bound as follow:
A lower bound is set by the number of TLB entries reserved for exclusive use by the operating sys-
tem (the contents of the Wired register). The entry indexed by the Wired register is the first entry
available to be written by a TLB Write Random operation.
An upper bound is set by the total number of TLB entries minus 1.

The Random register is decremented by one almost every clock wrapping after the value in the Wired
register is reached. To enhance the level of randomness and reduce the possibility of a live lock condition,
an LFSR register is used that prevents the decrement pseudo-randomly.

The processor initializes the Random register to the upper bound on a Reset exception and when the
Wired register is written.

This register is only valid with the TLB.
Random Register Format

EntryLo0, EntryLo1 (CP0 Registers 2 and 3, Select 0)
The pair of EntryLo registers act as the interface between the TLB and the TLBR, TLBWI, and TLBWR

instructions. For a TLB-based MMU, EntryLo0 holds the entries for even pages and EntryLo1 holds the
entries for odd pages. The contents of the EntryLo0 and EntryLo1 registers are undefined after an address
error, TLB invalid, TLB modified, or TLB refill exceptions. These registers are only valid with the TLB.

Fields
Description Read/

Write
Reset
StateName Bit(s)

P 31 Probe Failure. Set to 1 when the previous TLBProbe
(TLBP) instruction failed to find a match in the TLB.

R Undefined

0 30:4 Must be written as zero; returns zero on read. 0 0

Index 3:0 Index to the TLB entry affected by the TLBRead and
TLBWrite instructions.

R/W Undefined

Table 2.27 Index Register Field Descriptions

31 4 3 0
0 Random

Fields
Description Read/

Write
Reset
StateName Bit(s)

0 31:4 Must be written as zero; returns zero on read. 0 0

Random 3:0 TLB Random Index R TLB
Entries - 1

Table 2.28 Random Register Field Descriptions
ence Manual 2 - 57 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
 EntryLo0, EntryLo1 Register Format

Table 2.30 lists the encoding of the C field of the EntryLo0 and EntryLo1 registers and the K0 field of the
Config register.

31 30 29 26 25 6 5 3 2 1 0
R 0 PFN C D V G

Fields
Description Read/

Write
Reset
StateName Bit(s)

R 31:30 Reserved. Should be ignored on writes; returns zero
on read.

R 0

0 29:26 These 4 bits are normally part of the PFN. However,
since the core supports only 32-bits of physical
address, the PFN is only 20-bits wide. Therefore, bits
29:26 of this register must be written with zeros.

R/W 0

PFN 25:6 Page Frame Number. Corresponds to bits 31:12 of
the physical address.

R/W Undefined

C 5:3 Coherency attribute of the page. See Table 2.30. R/W Undefined

D 2 “Dirty” or write-enable bit, indicating that the page
has been written, and/or is writable. If this bit is a
one, stores to the page are permitted. If this bit is a
zero, stores to the page cause a TLB Modified
exception.

R/W Undefined

V 1 Valid bit, indicating that the TLB entry, and thus the
virtual page mapping are valid. If this bit is a one,
accesses to the page are permitted. If this bit is a
zero, accesses to the page cause a TLB Invalid
exception.

R/W Undefined

G 0 Global bit. On a TLB write, the logical AND of the G
bits in both the EntryLo0 and EntryLo1 registers
become the G bit in the TLB entry. If the TLB entry G
bit is a one, ASID comparisons are ignored during
TLB matches. On a read from a TLB entry, the G bits
of both EntryLo0 and EntryLo1 reflect the state of the
TLB G bit.

R/W Undefined

Table 2.29 EntryLo0, EntryLo1 Register Field Descriptions

C(5:3) Value Cache Coherency Attributes

0, 1, 31, 4, 5, 6

1. These two values are required by the MIPS32 architecture. No other values are used. For example, values 0,
1, 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is mapped to 2. Note that these
values do have meaning in other MIPS Technologies processor implementations. Refer to the MIPS32 specifica-
tion for more information.

Cacheable, noncoherent, write through, no write allocate

21, 7 Uncached

Table 2.30 Cache Coherency Attributes
ence Manual 2 - 58 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
 Context Register (CP0 Register 4, Select 0)
The Context register is a read/write register containing a pointer to an entry in the page table entry (PTE)

array. This array is an operating system data structure that stores virtual-to-physical translations. During a
TLB miss, the operating system loads the TLB with the missing translation from the PTE array. The Context
register duplicates some of the information provided in the BadVAddr register but is organized in such a
way that the operating system can directly reference an 8-byte page table entry (PTE) in memory.

A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual address to
be written into the BadVPN2 field of the Context register. The PTEBase field is written and used by the
operating system. Refer to Table 2.31. The BadVPN2 field of the Context register is not defined after an
address error exception. This register is only valid with the TLB.

Context Register Format

PageMask Register (CP0 Register 5, Select 0)
The PageMask register is a read/write register used for reading from and writing to the TLB. It holds a

comparison mask that sets the variable page size for each TLB entry, as shown in Table 2.33. Behavior is
UNDEFINED if a value other than those listed is used. This register is only valid with the TLB.

PageMask Register Format

31 23 22 4 3 0
PTEBase BadVPN2 0

Fields
Description Read/

Write
Reset
StateName Bit(s)

PTEBase 31:23 This field is for use by the operating system and is
normally written with a value that allows the operat-
ing system to use the Context Register as a pointer
into the current PTE array in memory.

R/W Undefined

BadVPN2 22:4 This field is written by hardware on a TLB miss for
the 4Kc core. It contains bits VA31:13 of the virtual
address that missed.

R Undefined

0 3:0 Must be written as zero; returns zero on read. 0 0

Table 2.31 Context Register Field Descriptions

31 25 24 13 12 0
0 Mask 0

Fields
Description Read/

Write
Reset
StateName Bit(s)

Mask 24:13 The Mask field is a bit mask in which a “1” indicates
that the corresponding bit of the virtual address
should not participate in the TLB match.

R/W Undefined

0 31:25 and
12:0

Must be written as zero; returns zero on read. 0 0

Table 2.32 PageMask Register Field Descriptions
ence Manual 2 - 59 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
Wired Register (CP0 Register 6, Select 0)
The Wired register is a read/write register that specifies the boundary between the wired and random

entries in the TLB as shown in Figure 2.34. The width of the Wired field is calculated in the same manner as
that described for the Index register above. Wired entries are fixed, non-replaceable entries that are not
overwritten by a TLBWR instruction. Wired entries can be overwritten by a TLBWI instruction. The Wired
register is set to zero by a Reset exception. Writing the Wired register causes the Random register to reset
to its upper bound. The operation of the processor is undefined if a value greater than or equal to the
number of TLB entries is written to the Wired register. This register is only valid with a TLB.

Figure 2.34 Wired and Random Entries in the TLB

Wired Register Format

Page Size
Bit

24 23 22 21 20 19 18 17 16 15 14 13

4 KBytes 0 0 0 0 0 0 0 0 0 0 0 0

16 KBytes 0 0 0 0 0 0 0 0 0 0 1 1

64 KBytes 0 0 0 0 0 0 0 0 1 1 1 1

256 KBytes 0 0 0 0 0 0 1 1 1 1 1 1

1 MByte 0 0 0 0 1 1 1 1 1 1 1 1

4 MByte 0 0 1 1 1 1 1 1 1 1 1 1

16 Mbyte 1 1 1 1 1 1 1 1 1 1 1 1

Table 2.33 Values for the Mask Field of the PageMask Register

31 4 3 0
0 Wired

Entry 0

Entry 10

Entry n-1

10Wired Register

W
ire

d
Ra

nd
om
ence Manual 2 - 60 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
BadVAddr Register (CP0 Register 8, Select 0)
The BadVAddr register is a read-only register that captures the most recent virtual address that caused

one of the following exceptions:
Address error (AdEL or AdES)
TLB Refill
TLB Invalid
TLB Modified

The BadVAddr register does not capture address information for cache or bus errors, since neither is an
addressing error.

BadVAddr Register Format

Count Register (CP0 Register 9, Select 0)
The Count register acts as a timer, incrementing at a constant rate, whether or not an instruction is

executed, retired, or any forward progress is made through the pipeline. The counter increments every
other clock. The Count register can be written for functional or diagnostic purposes, including at reset or to
synchronize processors. Whether the Count register continues incrementing while the processor is in
debug mode is determined by the CountDM bit in the Debug register. Refer to section “Debug Register
(CP0 Register 23)” on page 2-73.

Count Register Format

Fields
Description Read/

Write
Reset
StateName Bit(s)

0 31:4 Must be written as zero; returns zero on read. 0 0

Wired 3:0 TLB wired boundary. R/W 0

Table 2.34 Wired Register Field Descriptions

31 0
BadVAddr

Fields
Description Read/

Write
Reset
StateName Bit(s)

BadVAddr 31:0 Bad virtual address R Undefined

Table 2.35 BadVAddr Register Field Descriptions

31 0
Count

Fields
Description Read/

Write
Reset
StateName Bit(s)

Count 31:0 Interval counter. R/W Undefined

Table 2.36 Count Register Field Descriptions
ence Manual 2 - 61 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
 EntryHi Register (CP0 Register 10, Select 0)
The EntryHi register contains the virtual address match information used for TLB read, write, and access

operations. A TLB exception (TLB Refill, TLB Invalid, or TLB Modified) causes bits VA31:13 of the virtual
address to be written into the VPN2 field of the EntryHi register. The ASID field is written by software with
the current address space identifier value and is used during the TLB comparison process to determine
TLB match. The VPN2 field of the EntryHi register is not defined after an address error exception. This
register is only valid with the TLB.

EntryHi Register Format

 Compare Register (CP0 Register 11, Select 0)
The Compare register acts in conjunction with the Count register to implement a timer and timer inter-

rupt function. The timer interrupt is an output of the cores. The Compare register maintains a stable value
and does not change on its own. When the value of the Count register equals the value of the Compare
register, the SI_TimerInt pin is asserted. This pin will remain asserted until the Compare register is written.
The SI_TimerInt pin can be fed back into the core on one of the interrupt pins to generate an interrupt.
Traditionally, this has been done by connecting it with hardware interrupt 5 to set interrupt bit IP(7) in the
Cause register.

For diagnostic purposes, the Compare register is a read/write register. In normal use, however, the
Compare register is write-only. Writing a value to the Compare register, as a side effect, clears the timer
interrupt.

Compare Register Format

31 13 12 8 7 0
VPN2 0 ASID

Fields
Description Read/

Write
Reset
StateName Bit(s)

VPN2 31:13 VA31:13 of the virtual address (virtual page number /
2). This field is written by hardware on a TLB excep-
tion or on a TLB read, and is written by software
before a TLB write.

R/W Undefined

0 12:8 Must be written as zero; returns zero on read. 0 0

ASID 7:0 Address space identifier. This field is written by hard-
ware on a TLB read and by software to establish the
current ASID value for TLB write and against which
TLB references match each entry’s TLB ASID field.

R/W Undefined

Table 2.37 EntryHi Register Field Descriptions

31 0
Compare

Fields
Description Read/

Write
Reset
StateName Bit(s)

Compare 31:0 Interval count compare value R/W Undefined

Table 2.38 Compare Register Field Description
ence Manual 2 - 62 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
 Status Register (CP0 Register 12, Select 0)
The Status register (SR) is a read/write register that contains the operating mode, interrupt enabling,

and the diagnostic states of the processor. Fields of this register combine to create operating modes for the
processor, as follows:

Interrupt Enable: Interrupts are enabled when all of the following conditions are true:
IE = 1
EXL = 0
ERL = 0
DM = 0

If these conditions are met, the settings of the IM and IE bits enable the interrupt.
Operating Modes: If the DM bit in the Debug register is 1, the processor is in debug mode. Otherwise the

processor is in either kernel or user mode. The following CPU Status register bit settings determine user or
kernel mode.

User mode: UM = 1, EXL = 0, and ERL = 0
Kernel mode: UM = 0, or EXL = 1, or ERL = 1

Coprocessor Accessibility: The Status register CU bits control coprocessor accessibility. If any copro-
cessor is unusable, an instruction that accesses it generates an exception.

Coprocessor 0 is always enabled in kernel mode, regardless of the setting of the CU0 bit.
Status Register Format

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 5 4 3 2 1 0
CU3-CU0 0 R RE 0 BE

V
TS SR N

MI
0 0 IM7-IM0 R U

M
R ER

L
EX
L

IE

Fields
Description Read/

Write
Reset
StateName Bit(s)

CU3-CU0 31:28 Controls access to coprocessors 3, 2, 1, and 0,
respectively:
0: access not allowed
1: access allowed
Coprocessor 0 is always usable when the processor
is running in kernel mode, independent of the state of
the CU0 bit.
The core does not support coprocessors 1-3, but
CU3:1 can still be set. However, processor behavior
is unpredictable if a coprocessor instruction to copro-
cessors 1-3 is attempted with the corresponding
CU3:1 bit set.

R/W Undefined

0 27 This bit must be written as zero; returns zero on read. R/W 0

R 26 This bit must be ignored on writes and read as zero. R 0

RE 25 Used to enable reverse-endian memory references
while the processor is running in user mode:
0: User mode uses configured endianness
1: User mode uses reversed endianness
Kernel or debug mode references are not affected by
the state of this bit.

R/W Undefined

Table 2.39 Status Register Field Description (Part 1 of 3)
ence Manual 2 - 63 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
0 24:23 This bit must be written as zero; returns zero on read. R 0

BEV 22 Controls the location of exception vectors:
0: Normal
1: Bootstrap

R/W 1

TS 21 TLB shutdown. This bit is set if a TLBWI or TLBWR
instruction is issued that would cause a TLB shut-
down condition if allowed to complete.
Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W 0

SR 20 Indicates that the entry through the reset exception
vector was due to a Soft Reset:
0: Not Soft Reset (NMI or hard reset)
1: Soft Reset
Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W 1 for Soft
Reset; 0
otherwise

NMI 19 Indicates that the entry through the reset exception
vector was due to an NMI.
0: Not NMI (soft or hard reset)
1: NMI
Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W 1 for NMI;
0 other-
wise

0 18 Must be written as zero; returns zero on read. R 0

R 17:16 Reserved. Must be ignored on write and read as
zero.

R 0

IM[7:0] 15:8 Interrupt Mask: Controls the enabling of each of the
external, internal, and software interrupts. An inter-
rupt is taken if interrupts are enabled and the corre-
sponding bits are set in both the Interrupt Mask field
of the Status register and the Interrupt Pending field
of the Cause register and the IE bit is set in the Sta-
tus register.
0: Interrupt request disabled
1: Interrupt request enabled

R/W Undefined

R 7:5 Reserved. Must be ignored on write and read as
zero.

R 0

UM 4 Indicates that the processor is operating in user
mode:
0: processor is operating in kernel mode
1: processor is operating in user mode
Note that the processor can also be in kernel mode if
EXR or ERL are set. This condition does not affect
the state of the UM bit.

R/W Undefined

R 3 Reserved. Must be ignored on write and read as
zero.

R 0

Fields
Description Read/

Write
Reset
StateName Bit(s)

Table 2.39 Status Register Field Description (Part 2 of 3)
ence Manual 2 - 64 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
Cause Register (CP0 Register 13, Select 0)
The Cause register primarily describes the cause of the most recent exception. In addition, fields also

control software interrupt requests and the vector through which interrupts are dispatched. With the excep-
tion of the IP[1:0], IV, and WP fields, all fields in the Cause register are read-only.

Cause Register Format

ERL 2 Error Level. Set by the processor when a Reset, Soft
Reset, or NMI exception is taken.
0: normal level
1: error level
When ERL is set:
The processor is running in kernel mode.
Interrupts are disabled.
The ERET instruction uses the return address held in
ErrorEPC instead of EPC.
kuseg is treated as an unmapped and uncached
region. This allows main memory to be accessed in
the presence of cache errors. Behavior is UNDE-
FINED if ERL is set while executing code in useg/
kuseg.

R/W 1

EXL 1 Exception Level. Set by the processor when any
exception other than a Reset, Soft Reset, or NMI
exception is taken.
0: normal level
1: exception level
When EXL is set:
The processor is running in kernel mode.
Interrupts are disabled.
In the 4Kc core, TLB refill exceptions use the general
exception vector instead of the TLB refill vector.
EPC is not updated if another exception is taken.

R/W Undefined

IE 0 Interrupt Enable. Acts as the master enable for soft-
ware and hardware interrupts:
0: disables interrupts
1: enables interrupts

R/W Undefined

31 30 29 28 27 24 23 22 21 16 15 10 9 8 7 6 2 1 0
BD 0 CE 0 IV WP 0 IP[7:2] IP[1:0] 0 Exc Code 0

Fields
Description Read/

Write
Reset
StateName Bit(s)

Table 2.39 Status Register Field Description (Part 3 of 3)
ence Manual 2 - 65 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes

Fields

Description Read/
Write

Reset
StateName Bit(s)

BD 31 Indicates whether the last exception taken occurred
in a branch delay slot:
0: Not in delay slot
1: In delay slot
Note that the BD bit is not updated on a new excep-
tion if the EXL bit is set.

R Undefined

CE 29:28 Coprocessor unit number referenced when a Copro-
cessor Unusable exception is taken. This field is
loaded by hardware on every exception but is unpre-
dictable for all exceptions except for Coprocessor
Unusable.

R Undefined

IV 23 Indicates whether an interrupt exception uses the
general exception vector or a special interrupt vector:
0: Use the general exception vector (0x180)
1: Use the special interrupt vector (0x200)

R/W Undefined

WP 22 Indicates that a watch exception was deferred
because StatusEXL or StatusERL were a one at the
time the watch exception was detected. This bit both
indicates that the watch exception was deferred and
causes the exception to be initiated once StatusEXL
and StatusERL are both zero. As such, software must
clear this bit as part of the watch exception handler to
prevent a watch exception loop.
Software can only write a 0 to this bit to clear it and
cannot force a 0-1 transition.

R/W Undefined

IP[7:2] 15:10 Indicates an external interrupt is pending:
15: Hardware interrupt 5 or timer interrupt
14: Hardware interrupt 4
13: Hardware interrupt 3
12: Hardware interrupt 2
11: Hardware interrupt 1
10: Hardware interrupt 0

R Undefined

IP[1:0] 9:8 Controls the request for software interrupts:
9: Request software interrupt 1
8: Request software interrupt 0

R/W Undefined

Exc Code 6:2 Exception code — see Table 2.41. R Undefined

0 30, 27:24,
21:16, 7,

1:0

Must be written as zero; returns zero on read. R 0

Table 2.40 Cause Register Field Descriptions
ence Manual 2 - 66 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
Exception Program Counter (CP0 Register 14, Select 0)
The Exception Program Counter (EPC) is a read/write register that contains the address at which

processing resumes after an exception has been serviced. All bits of the EPC register are significant and
must be writable.

For synchronous (precise) exceptions, the EPC contains one of the following:
The virtual address of the instruction that was the direct cause of the exception
The virtual address of the immediately preceding branch or jump instruction, when the exception
causing instruction is in a branch delay slot and the Branch Delay bit in the Cause register is set.

On new exceptions, the processor does not write to the EPC register when the EXL bit in the Status
register is set. However, the register can still be written via the MTC0 instruction.

EPC Register Format

Exception
Code Value Mnemonic Description

0 Int Interrupt

1 Mod TLB modification exception

2 TLBL TLB exception (load or instruction fetch)

3 TLBS TLB exception (store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Integer Overflow exception

13 Tr Trap exception

14-22 — Reserved

23 WATCH Reference to WatchHi/WatchLo address

24 MCheck Machine check

25-31 — Reserved

Table 2.41 Cause Register ExcCode Field Descriptions

31 0
EPC
ence Manual 2 - 67 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
Processor Identification (CP0 Register 15, Select 0)
The Processor Identification (PRId) register is a 32-bit read-only register that contains information iden-

tifying the manufacturer, manufacturer options, processor identification, and revision level of the processor.
PRId Register Format

Config Register (CP0 Register 16, Select 0)
The Config register specifies various configuration and capabilities information. Most of the fields in the

Config register are initialized by hardware during the Reset exception process, or are constant. One field,
K0, must be initialized by software in the Reset exception handler.

Register Format — Select 0

Fields
Description Read/

Write
Reset
StateName Bit(s)

EPC 31:0 Exception Program Counter R/W Undefined

Table 2.42 EPC Register Field Description

31 24 23 16 15 8 7 0
R Company ID Processor ID Revision

Fields
Description Read/

Write
Reset
StateName Bit(s)

R 31:24 Reserved. Must be ignored on write and read as
zero.

R 0

Company
ID

23:16 Identifies the company that designed or manufac-
tured the processor. In all three cores this field con-
tains a value of 1 to indicate MIPS Technologies, Inc.

R 1

Processor
ID

15:8 Identifies the type of processor. This field allows soft-
ware to distinguish between the various types of
MIPS Technologies processors. This field contains a
value of 0x80 for the 4Kc processor.

R 0x80

Revision 7:0 Specifies the revision number of the processor. This
field allows software to distinguish between one revi-
sion and another of the same processor type. Cur-
rent values are:
0x1: 1.1-2.2
0x2: 2.3-2.4
0x3: 2.5-2.6
0x4: 3.0
0x5: 3.1
0x6: 3.2
0x7: 3.3
0x8: 3.4
0x9: 3.5

R 0x09

Table 2.43 PRId Register Field Descriptions

31 30 28 27 25 24 21 20 19 18 17 16 15 14 13 12 10 9 7 6 3 2 0
M K23 KU R MDU R MM BM BE AT AR MT 0 K0
ence Manual 2 - 68 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes

Fields

Description Read/
Write

Reset
StateName Bit(s)

M 31 This bit is hardwired to ‘1’ to indicate the presence of
the Config1 register.

R 1

K23 30:28 This field is reserved (must be written as 0; returns 0
on read).

FM: R/W
TLB: 0

FM: 010
TLB: 000

KU 27:25 This field is reserved (must be written as 0; returns 0
on read).

FM: R/W
TLB: 0

FM: 010
TLB: 000

0 24:21 Must be written as 0. Returns 0 on read. 0 0

MDU 20 This bit indicates the MDU type.
0 = Fast Multiplier Array
1 = Reserved

R Preset

0 19 Must be written as 0. Returns 0 on read. 0 0

MM 18:17 This field contains the merge mode for the 32-byte
collapsing write buffer:
00 = No Merging
01 = SysAD Valid merging
10 = Full merging
11 = Reserved

R Externally
Set

BM 16 Burst order.
0: Sequential
1: SubBlock

R Externally
Set

BE 15 Indicates the endian mode in which the processor is
running:
0: Little endian
1: Big endian

R Externally
Set

AT 14:13 Architecture type implemented by the processor.
This field is always 00 to indicate MIPS32.

R 00

AR 12:10 Architecture revision level. This field is always 000 to
indicate revision 1.
0: Revision 1
1-7: Reserved

R 000

MT 9:7 MMU Type:
1: Standard TLB
All other values: Reserved

R Preset

0 6:3 Must be written as zero; returns zero on read. 0 0

K0 2:0 Kseg0 coherency algorithm. Refer to Table 2.45 for
the field encoding.

R/W 010

Table 2.44 Config Register Field Descriptions
ence Manual 2 - 69 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
Config1 Register (CP0 Register 16, Select 1)
The Config1 register is an adjunct to the Config register and encodes additional capabilities information.

All fields in the Config1 register are read-only. The instruction and data cache configuration parameters
include encodings for the number of sets per way, the line size, and the associativity. The total cache size
for a cache is therefore:

Associativity * Line Size * Sets Per Way

If the line size is zero, there is no cache implemented.
Config1 Register Format — Select 1

C(2:0) Value Cache Coherency Attribute

0, 1, 31, 4, 5, 6

1. These two values are required by the MIPS32 architecture. No other values are used. For ex-
ample, values 0, 1, 4, 5 and 6 are not used and are mapped to 3. The value 7 is not used and is
mapped to 2. Note that these values do have meaning in other MIPS Technologies processor im-
plementations. Refer to the MIPS32 specification for more information.

Cacheable, noncoherent, write-through, no write allocate

21, 7 Uncached

Table 2.45 Cache Coherency Attributes

31 30 25 24 22 21 19 18 16 15 13 12 10 9 7 6 5 4 3 2 1 0
0 MMU Size IS IL IA DS DL DA 0 PC WR CA EP FP

Fields
Description Read/

Write
Reset
StateName Bit(s)

0 31 This bit is reserved to and must be read or written as
zero.

R 0

MMU Size 30:25 This field contains the number of entries in the TLB
minus one. The field is read as 15 decimal.

R Preset

IS 24:22 This field contains the number of instruction cache
sets per way. Three options are available. All others
values are reserved:
0x0: 64
0x1: 128
0x2: 256
0x3 - 0x7: Reserved

R Preset

IL 21:19 This field contains the instruction cache line size. If
an instruction cache is present, it must contain a
fixed line size of 16 bytes.
0x0: No Icache present
0x3: 16 bytes
0x1, 0x2, 0x4 - 0x7: Reserved

R Preset

IA 18:16 This field contains the level of instruction cache asso-
ciativity.
0x0: Direct mapped
0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

R Preset

Table 2.46 Config1 Register Field Descriptions — Select 1 (Part 1 of 2)
ence Manual 2 - 70 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
Load Linked Address (CP0 Register 17, Select 0)
The LLAddr register contains the physical address read by the most recent Load Linked (LL) instruction.

This register is for diagnostic purposes only, and serves no function during normal operation.
LLAddr Register Format

DS 15:13 This field contains the number of data cache sets per
way:
0x0: 64
0x1: 128
0x2: 256
0x3 - 0x7: Reserved

R Preset

DL 12:10 This field contains the data cache line size. If a data
cache is present, it must contain a line size of 16
bytes.
0x0: No Dcache present
0x3: 16 bytes
0x1, 0x2, 0x4 - 0x7: Reserved

R Preset

DA 9:7 This field contains the type of set associativity for the
data cache:
0x0: Direct mapped
0x1: 2-way
0x2: 3-way
0x3: 4-way
0x4 - 0x7: Reserved

R Preset

0 6:5 Must be written as zero; returns zero on read. 0 0

PC 4 Performance Counter registers implemented. Always
a 0 since the cores do not implement any.

R 0

WR 3 Watch registers implemented. This bit always reads
as 1 since the cores each contain one pair of Watch
registers.

R 1

CA 2 Code compression (MIPS16™) implemented. This
bit always reads as 0 because MIPS16 is not sup-
ported.

R 0

EP 1 EJTAG present: This bit is always set to indicate that
the core implements EJTAG.

R 1

FP 0 FPU implemented. This bit is always zero since the
core does not contain a floating-point unit.

R 0

31 28 27 0
0 PAddr[31:4]

Fields
Description Read/

Write
Reset
StateName Bit(s)

Table 2.46 Config1 Register Field Descriptions — Select 1 (Part 2 of 2)
ence Manual 2 - 71 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
WatchLo Register (CP0 Register 18)
The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that

initiates a watch exception if an instruction or data access matches the address specified in the registers.
As such, they duplicate some functions of the EJTAG debug solution. Watch exceptions are taken only if
the EXL and ERL bits are zero in the Status register. If either bit is a one, the WP bit is set in the Cause
register, and the watch exception is deferred until both the EXL and ERL bits are zero.

The WatchLo register specifies the base virtual address and the type of reference (instruction fetch,
load, store) to match.

WatchLo Register Format

WatchHi Register (CP0 Register 19)
The WatchLo and WatchHi registers together provide the interface to a watchpoint debug facility that

initiates a watch exception if an instruction or data access matches the address specified in the registers.
As such, they duplicate some functions of the EJTAG debug solution. Watch exceptions are taken only if
the EXL and ERL bits are zero in the Status register. If either bit is a one, the WP bit is set in the Cause
register, and the watch exception is deferred until both the EXL and ERL bits are zero.

The WatchHi register contains information that qualifies the virtual address specified in the WatchLo
register: an ASID, a Global (G) bit, and an optional address mask. If the G bit is 1, any virtual address refer-
ence that matches the specified address will cause a watch exception. If the G bit is a 0, only those virtual

Fields
Description Read/

Write
Reset
StateName Bit(s)

0 31:28 Must be written as zero; returns zero on read. 0 0

PAddr[31:4] 27:0 This field encodes the physical address read by the
most recent Load Linked instruction.

R Undefined

Table 2.47 LLAddr Register Field Descriptions

31 3 2 1 0
VAddr I R W

Fields
Description Read/

Write
Reset
StateName Bit(s)

VAddr 31:3 This field specifies the virtual address to match. Note
that this is a doubleword address, since bits [2:0] are
used to control the type of match.

R/W Undefined

I 2 If this bit is set, watch exceptions are enabled for
instruction fetches that match the address.

R/W 0 for Cold
Reset
only.

R 1 If this bit is set, watch exceptions are enabled for
loads that match the address.

R/W 0 for Cold
Reset
only.

W 0 If this bit is set, watch exceptions are enabled for
stores that match the address.

R/W 0 for Cold
Reset
only.

Table 2.48 WatchLo Register Field Descriptions
ence Manual 2 - 72 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
 address references for which the ASID value in the WatchHi register matches the ASID value in the EntryHi
register cause a watch exception. The optional mask field provides address masking to qualify the address
specified in WatchLo.

WatchHi Register Format

Debug Register (CP0 Register 23)
The Debug register is used to control the debug exception and provide information about the cause of

the debug exception and when re-entering at the debug exception vector due to a normal exception in
debug mode. The read-only information bits are updated every time the debug exception is taken or when a
normal exception is taken when already in debug mode.

Only the DM bit and the EJTAGver field are valid when read from non-debug mode; the value of all other
bits and fields is UNPREDICTABLE. Operation of the processor is UNDEFINED if the Debug register is
written from non-debug mode.

Some of the bits and fields are only updated on debug exceptions and/or exceptions in debug mode, as
shown below:

– DSS, DBp, DDBL, DDBS, DIB, DINT are updated on both debug exceptions and on exceptions in
debug modes

– DExcCode is updated on exceptions in debug mode, and is undefined after a debug exception
– Halt and Doze are updated on a debug exception, and is undefined after an exception in debug

mode
– DBD is updated on both debug and on exceptions in debug modes.

All bits and fields are undefined when read from normal mode, except those explicitly described to be
defined, such as EJTAGver and DM.

Debug Register Format

31 30 29 24 23 16 15 12 11 3 2 0
0 G 0 ASID 0 MASK 0

Fields
Description Read/

Write
Reset
StateName Bit(s)

0 31 Must be written as zero; returns zero on read. 0 0

G 30 If this bit is one, any address that matches that spec-
ified in the WatchLo register causes a watch excep-
tion. If this bit is zero, the ASID field of the WatchHi
register must match the ASID field of the EntryHi reg-
ister to cause a watch exception.

R/W Undefined

0 29:24 Must be written as zero; returns zero on read. 0 0

ASID 23:16 ASID value which is required to match that in the
EntryHi register if the G bit is zero in the WatchHi
register.

R/W Undefined

Table 2.49 WatchHi Register Field Descriptions

31 30 29 28 27 26 25 24 23 22 21 20 19 18
DBD DM R LSNM Doze Halt CountDM IBusEP R DBusEP IEXI R

17 15 14 10 9 8 7 6 5 4 3 2 1 0
Ver DExcCode R SSt R DINT DIB DDBS DDBL DBp DSS
ence Manual 2 - 73 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes

Fields

Description Read/
Write

Reset
StateName Bit(s)

DBD 31 Indicates whether the last debug exception or excep-
tion in debug mode, occurred in a branch delay slot:
0: Not in delay slot
1: In delay slot

R Undefined

DM 30 Indicates that the processor is operating in debug
mode:
0: Processor is operating in non-debug mode
1: Processor is operating in debug mode

R 0

R 29 Reserved. Must be written as zero; returns zero on
read.

R 0

LSNM 28 Controls access of load/store between dseg and
main memory:
0: Load/stores in dseg address range goes to dseg.
1: Load/stores in dseg address range goes to main
memory.

R/W 0

Doze 27 Indicates that the processor was in any kind of low
power mode when a debug exception occurred:
0: Processor not in low power mode when debug
exception occurred
1: Processor in low power mode when debug excep-
tion occurred

R Undefined

Halt 26 Indicates that the internal system bus clock was
stopped when the debug exception occurred:
0: Internal system bus clock stopped
1: Internal system bus clock running

R Undefined

CountDM 25 Indicates the Count register behavior in debug mode.
Encoding of the bit is:
0: Count register stopped in debug mode
1: Count register increments in debug mode

R/W 1

IBusEP 24 Instruction fetch Bus Error exception Pending. Set
when an instruction fetch bus error event occurs or if
a 1 is written to the bit by software. Cleared when a
Bus Error Exception on Instruction Fetch is taken by
the processor, and by reset. If IBusEP is set when
IEXI is cleared, a Bus Error exception on instruction
fetch is taken by the processor, and IBusEP is
cleared.

R/W1 0

R 23:22 Reserved. Must be written as zero; returns zero on
read.

R 0

DBusEP 21 Data access Bus Error exception Pending. Covers
imprecise bus errors on data access, similar to
behavior of IBusEP for imprecise bus errors on an
instruction fetch.

R/W1 0

Table 2.50 Debug Register Field Descriptions (Part 1 of 2)
ence Manual 2 - 74 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
IEXI 20 Imprecise Error eXception Inhibit controls exceptions
taken due to imprecise error indications. Set when
the processor takes a debug exception or exception
in debug mode. Cleared by execution of the DERET
instruction. Otherwise modifiable by debug mode
software. When IEXI is set then the imprecise error
exceptions from bus error on instruction fetch or data
access, cache error or machine check are inhibited
and deferred until the bit is cleared.

R/W 0

R 19:18 Reserved. Must be written as zero; returns zero on
read.

R 0

Ver 17:15 EJTAG version R 1

DExcCode 14:10 Indicates the cause of the latest exception in debug
mode. The field is encoded as the ExcCode field in
the Cause register for those normal exceptions that
may occur in debug mode.
Value is undefined after a debug exception.

R Undefined

R 9 Reserved. Must be written as zero; returns zero on
read.

R 0

SSt 8 Controls if debug single step exception is enabled:
0: No debug single step exception enabled
1: Debug single step exception enabled

R/W 0

R 7:6 Reserved. Must be written as zero; returns zero on
read.

R 0

DINT 5 Indicates that a debug interrupt exception occurred.
Cleared on exception in debug mode.
0: No debug interrupt exception
1: Debug interrupt exception

R/W Undefined

DIB 4 Indicates that a debug instruction break exception
occurred. Cleared on exception in debug mode.
0: No debug instruction exception
1: Debug instruction exception

R Undefined

DDBS 3 Indicates that a debug data break exception occurred
on a store. Cleared on exception in debug mode.
0: No debug data exception on a store
1: Debug instruction exception on a store

R Undefined

DDBL 2 Indicates that a debug data break exception occurred
on a load. Cleared on exception in debug mode.
0: No debug data exception on a load
1: Debug instruction exception on a load

R Undefined

DBp 1 Indicates that a debug software breakpoint exception
occurred. Cleared on exception in debug mode.
0: No debug software breakpoint exception
1: Debug software breakpoint exception

R Undefined

DSS 0 Indicates that a debug single step exception
occurred. Cleared on exception in debug mode.
0: No debug single step exception
1: Debug single step exception

R Undefined

Fields
Description Read/

Write
Reset
StateName Bit(s)

Table 2.50 Debug Register Field Descriptions (Part 2 of 2)
ence Manual 2 - 75 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
 Debug Exception Program Counter Register (CP0 Register 24)
The Debug Exception Program Counter (DEPC) register is a read/write register that contains the

address at which processing resumes after a debug exception or debug mode exception has been
serviced. For synchronous (precise) debug and debug mode exceptions, the DEPC contains either:

– The virtual address of the instruction that was the direct cause of the debug exception, or
– The virtual address of the immediately preceding branch or jump instruction, when the debug

exception causing instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit in
the Debug register is set.

For asynchronous debug exceptions (debug interrupt), the DEPC contains the virtual address of the
instruction where execution should resume after the debug handler code is executed.

DEPC Register Format

ErrCtl Register (CP0 Register 26, Select 0)
Note: This register was added to version 3.5 of the core. It is reserved in earlier versions.

The ErrCtl register provides a mechanism for enabling software testing of the way-select and data RAM
arrays for both the ICache and DCache. The way-selection RAM test mode is enabled by setting the WST
bit. It modifies the functionality of the CACHE Index Load Tag and Index Store Tag operations so that they
modify the way-selection RAM and leave the Tag RAMs untouched. When this bit is set, the lower 6 bits of
the PA field in the TagLo register are used as the source and destination for Index Load Tag and Index
Store Tag CACHE operations.

The WST bit also enables the data RAM test mode. When this bit is set, the Index Store Data CACHE
instruction is enabled. This CACHE operation writes the contents of the DataLo register to the word in the
data array that is indicated by the index and byte address.

The SPR bit enables CACHE accesses to the optional Scratchpad RAMs. When this bit is set, Index
Load Tag, Index Store Tag, and Index Store Data CACHE instructions will send reads or writes to the
Scratchpad RAM port. The effects of these operations are dependent on the particular Scratchpad imple-
mentation.

ErrCtl Register Format

31 0
DEPC

Fields
Description Read/

Write
Reset
StateName Bit(s)

DEPC 31:0 The DEPC register is updated with the virtual
address of the instruction that caused the debug
exception. If the instruction is in the branch delay
slot, the virtual address of the immediately preceding
branch or jump instruction is placed in this register.
Execution of the DERET instruction causes a jump to
the address in the DEPC.

 R/W Undefined

Table 2.51 DEPC Register Field Description

31 30 29 28 27 0
R WST SPR R
ence Manual 2 - 76 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
TagLo Register (CP0 Register 28, Select 0)
The TagLo register acts as the interface to the cache tag array. The Index Store Tag and Index Load Tag

operations of the CACHE instruction use the TagLo register as the source of tag information, respectively.
TagLo Register Format

Fields
Description Read/

Write
Reset
StateName Bit(s)

WST 29 Indicates whether the tag array or the way-select
array should be read/written on Index Load/Store
Tag CACHE instructions.
Also enables the Index Store Data CACHE instruc-
tion which writes the contents of DataLo to the data
array.

R/W 0

SPR 28 Forces indexed CACHE instructions to operate on
the ScratchPad RAM instead of the cache

R/W 0

R 31:30,
27:0

Must be written as zero; returns zero on reads. 0 0

Table 2.52 ErrCtl Register Field Descriptions

31 10 9 8 7 6 5 4 3 2 1 0
PA R Valid R L LRF R

Fields
Description Read/

Write
Reset
StateName Bit(s)

PA 31:10 This field contains the physical address of the cache
line being stored.

R/W Undefined

R 9:8 Must be written as zero; returns zero on read. 0 0

Valid 7:4 This field indicates whether the corresponding word
in the cache line is valid in the cache.

R/W Undefined

R 3 Must be written as zero; returns zero on read. 0 0

L 2 Specifies the lock bit for the cache tag. When this bit
is set, the corresponding cache line should not be
replaced by the cache replacement algorithm.

R/W Undefined

LRF 1 LRF. One bit of the LRF bits for the set this cache
line is a part of. This bit is inverted every time a new
cache line is filled in the cache entry.

R/W Undefined

R 0 Must be written as zero; returns zero on read. 0 0

Table 2.53 TagLo Register Field Descriptions
ence Manual 2 - 77 May 11, 2005

IDT MIPS32 4Kc Processor Core CP0 Registers

79RC32438 User Refer

Notes
 DataLo Register (CP0 Register 28, Select 1)
The DataLo register acts as the interface to the cache data array. The Index Load Tag operation of the

CACHE instruction reads the corresponding data values into the DataLo register. This register was made
writeable on revision 3.5 and the Index Store Data operation of the CACHE instruction was added. This
operation will write the cache data array with the value of this register.

DataLo Register Format

ErrorEPC (CP0 Register 30, Select 0)
The ErrorEPC register is a read-write register, similar to the EPC register, except that ErrorEPC is used

on error exceptions. All bits of the ErrorEPC register are significant and must be writable. It is also used to
store the program counter on Reset, Soft Reset, and non-maskable interrupt (NMI) exceptions.

The ErrorEPC register contains the virtual address at which instruction processing can resume after
servicing an error. This address can be:

– The virtual address of the instruction that caused the exception
– The virtual address of the immediately preceding branch or jump instruction when the error

causing instruction is in a branch delay slot.
Unlike the EPC register, there is no corresponding branch delay slot indication for the ErrorEPC register.
ErrorEPC Register Format

DeSave Register (CP0 Register 31)
The Debug Exception Save (DeSave) register is a read/write register that functions as a simple memory

location. This register is used by the debug exception handler to save one of the GPRs that is then used to
save the rest of the context to a pre-determined memory area (such as in the EJTAG Probe). This register
allows the safe debugging of exception handlers and other types of code where the existence of a valid
stack for context saving cannot be assumed.

DeSave Register Format

31 0
DATA

Fields
Description Read/

Write
Reset
StateName Bit(s)

DATA 31:0 Low-order data read from the cache data array. R/W Undefined

Table 2.54 DataLo Register Field Descriptions

31 0
ErrorEPC

Fields
Description Read/

Write
Reset
StateName Bit(s)

ErrorEPC 31:0 Error Exception Program Counter R/W Undefined

Table 2.55 ErrorEPC Register Field Descriptions

31 0
DESAVE
ence Manual 2 - 78 May 11, 2005

IDT MIPS32 4Kc Processor Core Hardware and Software Initialization

79RC32438 User Refer

Notes
Hardware and Software Initialization
The 4Kc processor core is not fully initialized by reset. Only a minimal subset of the processor state is

cleared. This is enough to bring the core up while running in unmapped and uncached code space. All other
processor states can then be initialized by software. SI_ColdReset is asserted after power-up to bring the
device into a known state. Soft reset can be forced by asserting the SI_Reset pin. This can be used when
the device is already up and running and does not need as much initialization.

Hardware Initialized Processor State

Coprocessor Zero State
Much of the hardware initialization occurs in Coprocessor Zero.

– Random - set to maximum value on Reset
– Wired - set to 0 on Reset
– StatusBEV - set to 1 on Reset/SoftReset
– StatusTS - cleared to 0 on Reset/SoftReset
– StatusSR - cleared to 0 on Reset, set to 1 on SoftReset
– StatusNMI - cleared to 0 on Reset/SoftReset
– StatusERL - set to 1 on Reset/SoftReset
– WatchLoI,R,W - cleared to 0 on Reset
– Config fields related to static inputs - set to input value by Reset
– ConfigK0 - set to 010 (uncached) on Reset
– DebugDM - cleared to 0 on Reset/SoftReset (unless EJTAGBOOT option is used to boot

into DebugMode (see the EJTAG Debug Support section for more information)
– DebugLSNM - cleared to 0 on Reset/SoftReset
– DebugIBusEP - cleared to 0 on Reset/SoftReset
– DebugDBusEP - cleared to 0 on Reset/SoftReset
– DebugIEXI - cleared to 0 on Reset/SoftReset
– DebugSSt - cleared to 0 on Reset/SoftReset.

TLB Initialization
Each TLB entry has a “hidden” state bit which is set by Reset/SoftReset and is cleared when the TLB

entry is written. This bit disables matches and prevents “TLB Shutdown” conditions from being generated
by the power-up values in the TLB array (when two or more TLB entries match on a single address). This bit
is not visible to software.

Bus State Machines
All pending bus transactions are aborted and the state machines in the bus interface unit are reset when

a Reset or SoftReset exception is taken.

Static Configuration Inputs
All static configuration inputs (defining the bus mode and cache size for example) should only be

changed during Reset.

Fields
Description Read/

Write
Reset
StateName Bit(s)

DESAVE 31:0 Debug exception save contents. R/W Undefined

Table 2.56 DeSave Register Field Descriptions
ence Manual 2 - 79 May 11, 2005

IDT MIPS32 4Kc Processor Core Caches

79RC32438 User Refer

Notes
 Fetch Address
Upon Reset/SoftReset, unless the EJTAGBOOT option is used, the fetch is directed to VA 0xBFC00000

(PA 0x1FC00000). This address is in kseg1, which is unmapped and uncached, so that the TLB and caches
do not require hardware unitization.

Software Initialized Processor State
Software is required to initialize the following parts of the device.

Register File
The register file powers up in an unknown state with the exception of r0 which is always 0. Initializing the

rest of the register file is not required for proper operation. Good code will generally not read a register
before writing to it, but the boot code can initialize the register file for added safety.

TLB
Because of the hidden bit indicating initialization, the 4Kc processor core does not require TLB initializa-

tion upon ColdReset. This is a feature of the 4Kc core.
Note: When initializing the TLB, care must be taken to avoid creating a “TLB Shutdown”
condition where two TLB entries could match on a single address. Unique virtual addresses
should be written to each TLB entry to avoid this.

Caches
The cache tag and data arrays power up to an unknown state and are not affected by reset. Every tag in

the cache arrays should be initialized to an invalid state using the CACHE instruction (typically the Index
Invalidate function). This can be a long process, especially since the instruction cache initialization needs to
be run in an uncached address region.

Coprocessor Zero State
Miscellaneous Cop0 states need to be initialized prior to leaving the boot code. There are various

exceptions that are blocked by ERL=1 or EXL=1 and that are not cleared by Reset. These can be cleared to
avoid taking spurious exceptions when leaving the boot code.

Cause: WP (Watch Pending), SW0/1 (Software Interrupts) should be cleared.
Config: K0 should be set to the desired Cache Coherency Algorithm (CCA) prior to accessing
kseg0.
Count: Should be set to a known value if Timer Interrupts are used.
Compare: Should be set to a known value if Timer Interrupts are used. The write to compare will
also clear any pending Timer Interrupts (Thus, Count should be set before Compare to avoid any
unexpected interrupts).
Status: Desired state of the device should be set.
Other Cop0 state: Other registers should be written before they are read. Some registers are not
explicitly writable, and are only updated as a by-product of instruction execution or a taken excep-
tion. Uninitialized bits should be masked off after reading these registers.

Caches
The 4Kc processor core supports separate instruction and data caches which may be flexibly configured

at build time for various sizes, organizations, and set-associativities. The use of separate caches allows
instruction and data references to proceed simultaneously. Both caches are virtually indexed and physically
tagged, allowing cache access to occur in parallel with virtual-to-physical address translation. The instruc-
tion and data caches are independently configured. Each cache is accessed in a single processor cycle.
ence Manual 2 - 80 May 11, 2005

IDT MIPS32 4Kc Processor Core Caches

79RC32438 User Refer

Notes
 Cache refills are performed using a 4-word fill buffer, which holds data returned from memory during a 4-
beat burst transaction. The critical miss word is always returned first. The caches are blocking until the crit-
ical word is returned, but the pipeline may proceed while the other 3 beats of the burst are still active on the
bus. Table 2.57 lists the instruction and data cache attributes for the RC32438.

Software can identify the instruction or data cache configuration by reading the appropriate bits of the
Config1 register (see section Config1 Register (CP0 Register 16, Select 1) earlier in this chapter.

Cache Protocols

Cache Organization
The instruction and data caches each consist of two arrays: a tag array and a data array. The caches

are virtually indexed, since a virtual address is used to select the appropriate line within both the tag and
data arrays. The caches are physically tagged, as the tag array contains a physical, not virtual, address.

The tag and data arrays hold “n” ways of information per line, corresponding to the n-way set associa-
tivity of the cache, where “n” can be between 1 and 4 for a cache. Figure 2.35 shows the format of each line
of the tag and data arrays for each way. A tag entry consists of the upper 22 bits of the physical address
(bits [31:10]), 4 valid bits (one for each data word in the line), a lock bit and a LRF bit. A data entry contains
the four 32-bit words in the line, for a total of 16 bytes. Not every word need be present in the data array,
hence the per-word validity information stored with the tag. A word is the minimum valid quanta, so it is not
possible to hold a partially valid subword. Once a valid word is resident in the cache, then a byte, halfword,
or tri-byte stores can update a portion of the word.

Figure 2.35 Cache Array Formats

Parameter Instruction Data

Size 16 KBytes 16 KBytes

Number of Cache Sets 256 256

Lines Per Set (Associativity) 4 way set associative 4 way set associative

Line Size 16 Bytes 16 Bytes

Read Unit 32-bits 32-bits

Write Policy N/A write-through without write-allocate

Miss restart after transfer of miss word miss word

Cache Locking per line per line

Table 2.57 Instruction and Data Cache Attributes

Tag:

Data: Word3 Word2 Word1 Word0

PA Valid L LRF

32 32 32 32

22 4 1 1
ence Manual 2 - 81 May 11, 2005

IDT MIPS32 4Kc Processor Core Caches

79RC32438 User Refer

Notes
 Cacheability Attributes
The 4Kc processor core supports the following cacheability attributes:

– Uncached: Addresses in a memory area indicated as uncached are not read from the cache.
Stores to such addresses are written directly to main memory, without changing cache contents.

– Write-through: Loads and instruction fetches first search the cache, reading main memory only if
the desired data does not reside in the cache. On data store operations, the cache is first searched
to see if the target address is cache resident. If it is resident, the cache contents are updated, and
main memory is also written. If the cache lookup misses on a store, only main memory is written.
Hence, the allocation policy on a cache miss is read-allocate only.

Some segments of memory employ a fixed caching policy; for example the kseg1 is always uncache-
able. Other segments of memory allow the caching policy to be selected by software. Generally, the cache
policy for these programmable regions is defined by a cacheability attribute field associated with that region
of memory. For additional information, see “Memory Management” on page 2-20.

Replacement Policy
The replacement policy refers to how a way is chosen to hold an incoming cache line on a miss which

will result in a cache fill, when a cache is at least two-way set associative. In a direct mapped cache (one-
way set associative), the replacement policy is irrelevant since there is only one way available. The replace-
ment policy is least recently filled (LRF), first considering invalid ways and excluding any locked ways. On a
cache miss, the valid, lock and LRF bits for each tag entry of the selected line may be used to determine the
way which will be chosen. The number of tag entries which are looked at depends on the set associativity of
the cache.

First the valid bits are inspected. If an invalid way is available, as determined by all 4 of the valid bits in a
tag being zero, then that way will be selected. If more than one invalid way is available, then the first one
found starting from way0 will be selected.

If all ways are valid, then any locked ways will be excluded from consideration for replacement. If all
ways are locked, then no replacement can occur to that line. For the unlocked ways, the LRF bits from each
tag are used to identify the way which has been filled least recently, and that way is selected for replace-
ment. When the new tag is written during the line fill, its LRF bit is modified to indicate that way is no longer
the least recently filled.

Instruction Cache
The instruction cache is a memory block of 16 KBytes. The virtually indexed, physically tagged cache

allows the virtual-to-physical address translation to occur in parallel with the cache access rather than
having to wait for the physical address translation.

The 4Kc core supports instruction cache-locking. Cache locking allows critical code or data segments to
be locked into the cache on a “per-line” basis, enabling the system programmer to maximize the efficiency
of the system cache. The cache locking function is always enabled on all instruction cache entries. Entries
can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

Data Cache
The data cache is a memory block of 16 KBytes. The virtually indexed, physically tagged cache allows

the virtual-to-physical address translation to occur in parallel with the cache access rather than having to
wait for the physical address translation.

The core also supports a data cache locking mechanism identical to the instruction cache. Critical data
segments to be locked into the cache on a “per-line” basis. The locked contents can be updated on a store
hit, but cannot be selected for replacement on a miss.

The cache locking function is always enabled on all data cache entries. Entries can then be marked as
locked or unlocked on a per entry basis using the CACHE instruction.
ence Manual 2 - 82 May 11, 2005

IDT MIPS32 4Kc Processor Core Power Management

79RC32438 User Refer

Notes
 Memory Coherence Issues
A cache presents coherency issues within the memory hierarchy which must be considered in the

system design. Since a cache holds a copy of memory data, it is possible for another memory master to
modify a memory location, thus making other copies of that location stale if those copies are still in use. A
detailed discussion of memory coherence is beyond the scope of this document, but following are a few
related comments.

The 4Kc processor core contains no direct hardware support for managing coherency with respect to its
caches, so it must be handled via system design or software. The 4Kc caches are write-through, so all data
writes will eventually be sent to memory. Due to write buffers, however, there could be a delay in how long it
takes for the write to memory to actually occur. If another memory master updates cacheable memory
which could also be in the 4Kc caches, then those locations may need to be flushed from the cache. The
only way to accomplish this invalidation is by use of the CACHE instruction.

The SYNC instruction may also be useful to software enforcing memory coherence, as it flushes the 4Kc
processor core’s write buffers.

Power Management

Instruction-Controlled Power Management
The mechanism for invoking power down mode is through execution of the WAIT instruction. If the bus

is idle at the time the WAIT instruction reaches the M stage of the pipeline, the internal clocks are
suspended and the pipeline is frozen. However, the internal timer and some of the input pins (SI_Int[5:0],
SI_NMI, SI_Reset, SI_ColdReset, and EJ_DINT) continue to run. If the bus is not idle at the time the WAIT
instruction reaches the M stage, the pipeline stalls until the bus becomes idle, at which time the clocks are
stopped. Once the CPU is in instruction controlled power management mode, any enabled interrupt, NMI,
debug interrupt, or reset condition causes the CPU to exit this mode and resume normal operation. While
the part is in this low-power mode, the SI_SLEEP signal is asserted to indicate to external agents what the
state of the chip is.

Instruction Set
The 4Kc core processor has 3 instruction set formats — immediate, jump, and register — as shown in

Figure 2.36. Each CPU instruction consists of a single 32-bit word, aligned on a word boundary.
ence Manual 2 - 83 May 11, 2005

IDT MIPS32 4Kc Processor Core Instruction Set

79RC32438 User Refer

Notes
Figure 2.36 Instruction Set Formats

Load and Store Instructions
Load and store are immediate (I-type) instructions that move data between memory and the general

registers. The only addressing mode that load and store instructions directly support is base register plus
16-bit signed immediate offset.

Scheduling a Load Delay Slot
A load instruction that does not allow its result to be used by the instruction immediately following is

called a delayed load instruction. The instruction slot immediately following this delayed load instruction is
referred to as the load delay slot. The instruction immediately following a load instruction can use the
contents of the loaded register. However, in such cases, hardware interlocks insert additional real cycles.
Although not required, the scheduling of load delay slots can be desirable for performance.

Defining Access Types
Access type indicates the size of a core data item to be loaded or stored, set by the load or store instruc-

tion opcode. Regardless of access type or byte ordering (endianness), the address given specifies the low-
order byte in the addressed field. For a big-endian configuration, the low-order byte is the most-significant
byte; for a little-endian configuration, the low-order byte is the least-significant byte.

The access type and the three low-order bits of the address define the bytes accessed within the
addressed word as shown in Table 2.58. Only the combinations shown in Table 2.58 are permissible; other
combinations cause address error exceptions.

op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition

immediate 16-bit immediate value, branch displacement or address
displacement

target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

I-Type (Immediate)

R-Type (Register)

J-Type (Jump)

immediate
015

rt
1620

op
2631

rs
2125

target
015

op
2631

rt
1620

op
2631

rs
2125

sa
610

rd
1115

funct
05

target
0 25

op
31
ence Manual 2 - 84 May 11, 2005

IDT MIPS32 4Kc Processor Core Instruction Set

79RC32438 User Refer

Notes
Computational Instructions
Computational instructions can be either in register (R-type) format, in which both operands are regis-

ters, or in immediate (I-type) format, in which one operand is a 16-bit immediate.
Computational instructions perform the following operations on register values:

Arithmetic
Logical
Shift
Multiply
Divide

These operations fit in the following four categories of computational instructions:
– ALU Immediate instructions
– Three-operand Register-type Instructions
– Shift Instructions
– Multiply And Divide Instructions

Cycle Timing for Multiply and Divide Instructions
Any multiply instruction in the integer pipeline is transferred to the multiplier as remaining instructions

continue through the pipeline; the product of the multiply instruction is saved in the HI and LO registers. If
the multiply instruction is followed by an MFHI or MFLO before the product is available, the pipeline inter-
locks until this product does become available. For more information on instruction latency and repeat
rates, see the Pipeline Description section earlier in this chapter.

Jump and Branch Instructions
Jump and branch instructions change the control flow of a program. All jump and branch instructions

occur with a delay of one instruction: that is, the instruction immediately following the jump or branch (this is
known as the instruction in the delay slot) always executes while the target instruction is being fetched from
storage.

Access Type

Low Order
Address Bits

Bytes Accessed

Big Endian
31...........0

Little Endian
31...........0

2 1 0 Byte Byte

Word 0 0 0 0 1 2 3 3 2 1 0

Triple byte 0 0 0 0 1 2 2 1 0

0 0 1 1 2 3 3 2 1

Half word 0 0 0 0 1 1 0

0 1 0 2 3 3 2

Byte 0 0 0 0 0

0 0 1 1 1

0 1 0 2 2

0 1 1 3 3

Table 2.58 Byte Access within a Word
ence Manual 2 - 85 May 11, 2005

IDT MIPS32 4Kc Processor Core Instruction Set

79RC32438 User Refer

Notes
 Overview of Jump Instructions
Subroutine calls in high-level languages are usually implemented with Jump or Jump and Link instruc-

tions, both of which are J-type instructions. In J-type format, the 26-bit target address shifts left 2 bits and
combines with the high-order 4 bits of the current program counter to form an absolute address. Returns,
dispatches, and large cross-page jumps are usually implemented with the Jump Register or Jump and Link
Register instructions. Both are R-type instructions that take the 32-bit byte address contained in one of the
general purpose registers. For more information about jump instructions, see the Instruction Set section
earlier in this chapter.

Overview of Branch Instructions
All branch instruction target addresses are computed by adding the address of the instruction in the

delay slot to the 16-bit offset (shifted left 2 bits and sign-extended to 32 bits). All branches occur with a
delay of one instruction. If a conditional branch likely is not taken, the instruction in the delay slot is nullified.
Branches, jumps, ERET, and DERET instructions should not be placed in the delay slot of a branch or jump.

Control Instructions
Control instructions allow the software to initiate traps; they are always R-type.

Coprocessor Instructions
CP0 instructions perform operations on the System Control Coprocessor registers to manipulate the

memory management and exception handling facilities of the processor. For a listing of CP0 instructions,
refer to Appendix A, 4Kc Processor Core Instructions, in this manual.

Enhancements to the MIPS Architecture
The core execution unit implements the MIPS32 architecture, which includes the following instructions:

– CLO – Count Leading Ones
– CLZ – Count Leading Zeros
– MADD – Multiply and Add Word
– MADDU – Multiply and Add Unsigned Word
– MSUB – Multiply and Subtract Word
– MSUBU – Multiply and Subtract Unsigned Word
– MUL – Multiply Word to Register
– SSNOP – Superscalar Inhibit NOP.

CLO - Count Leading Ones
The CLO instruction counts the number of leading ones in a word. The 32-bit word in the GPR rs is

scanned from most-significant to least-significant bit. The number of leading ones is counted and the result
is written to the GPR rd. If all 32 bits are set in the GPR rs, the result written to the GPR rd is 32.

CLZ - Count Leading Zeros
The CLZ instruction counts the number of leading zeros in a word. The 32-bit word in the GPR rs is

scanned from most-significant to least-significant bit. The number of leading zeros is counted and the result
is written to the GPR rd. If all 32 bits are cleared in the GPR rs, the result written to the GPR rd is 32.

MADD - Multiply and Add Word
The MADD instruction multiplies two words and adds the result to the HI/LO register pair. The 32-bit

word value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is added to the 64-bit concatenated values in the HI and LO
register pair. The resulting value is then written back to the HI and LO registers. No arithmetic exception
occurs under any circumstances.
ence Manual 2 - 86 May 11, 2005

IDT MIPS32 4Kc Processor Core Processor Core Instructions

79RC32438 User Refer

Notes
 MADDU - Multiply and Add Unsigned Word
The MADDU instruction multiplies two unsigned words and adds the result to the HI/LO register pair.

The 32-bit word value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands
as unsigned values, to produce a 64-bit result. The product is added to the 64-bit concatenated values in
the HI and LO register pair. The resulting value is then written back to the HI and LO registers. No arithmetic
exception occurs under any conditions.

MSUB - Multiply and Subtract Word
The MSUB instruction multiplies two words and subtracts the result from the HI/LO register pair. The 32-

bit word value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as signed
values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated values in the HI
and LO register pair. The resulting value is then written back to the HI and LO registers. No arithmetic
exception occurs under any circumstances.

MSUBU - Multiply and Subtract Unsigned Word
The MSUBU instruction multiplies two unsigned words and subtracts the result from the HI/LO register

pair. The 32-bit word value in the GPR rs is multiplied by the 32-bit value in the GPR rt, treating both oper-
ands as unsigned values, to produce a 64-bit result. The product is subtracted from the 64-bit concatenated
values in the HI and LO register pair. The resulting value is then written back to the HI and LO registers. No
arithmetic exception occurs under any circumstances.

MUL - Multiply Word
The MUL instruction multiplies two words and writes the result to a GPR. The 32-bit word value in the

GPR rs is multiplied by the 32-bit value in the GPR rt, treating both operands as signed values, to produce
a 64-bit result. The least-significant 32 bits of the product are written to the GPR rd. The contents of the HI
and LO register pair are not defined after the operation. No arithmetic exception occurs under any circum-
stances.

SSNOP- Superscalar Inhibit NOP
The 4Kc processor core treats this instruction as a regular NOP.

Processor Core Instructions
The 4Kc Processor Core Instructions are discussed in Appendix A of this user manual.
ence Manual 2 - 87 May 11, 2005

IDT MIPS32 4Kc Processor Core Processor Core Instructions

79RC32438 User Refer

Notes
ence Manual 2 - 88 May 11, 2005

Notes

79RC32438 User Reference Manual 3 - 1 M
Chapter 3
Clocking and Initialization
Introduction
This chapter discusses the reset initialization sequence that is required by the RC32438 device and

includes information on the boot vector settings. These settings are used to configure the processor for the
remainder of the power-up sequence. This chapter also provides a description of the clock signals that are
used on the RC32438.

Block Diagram
Figure 3.1 illustrates how the boot configuration vector and reset signals may be generated in a system.

Figure 3.1 System Block Diagram of Reset and Boot Configuration Vector Generation

Clocking Overview
The RC32438 is designed to simplify the external clocking requirements for an embedded system. The

device requires one input clock and from this generates the processor clock (PCLK) from which the CPU
pipeline operates, the clock for the DDR memory subsystem and the clock for the local address/data bus. If
the PCI interface is desired to be operated synchronously to the other RC32438 interfaces, the PCI clock
can be tied externally to the clock for the local address/data bus.

Internally, the device supports a range of clock multipliers and divisors to allow system designers to
select a combination that best meets their needs. Additionally, this device has been designed to operate
from a relatively low external clock frequency without compromising the CPU or memory performance. For
example, the use of a 33MHz clock can support a 266MHz CPU pipeline frequency and standard DDR 266
memories. In this case, the local memory bus can be operated at either 66MHz or 33MHz, enabling the PCI
interface to be operated from the same clock signal if synchronous operation is desired. The use of low
external clock frequencies simplifies board design and reduces noise emissions. Refer to Table 3.1 for more
information on the clock ratios that are supported.

High Speed
Device

or
Memory

FC
T2

45

BOEN
OE DIR

BDIRN

MDATA[31:0]

Low Speed
Device

or
Memory FCT245

OE

...

...

Vcc

COLDRSTN

Reset
Generator

RSTN

External
Device

External
Device

External
Device

RC32438

(Boot vector)
ay 11, 2005

IDT Clocking and Initialization Clocking Overview

79RC32438 User Refer

Notes
 A PLL multiplies the master clock input and generates an internal CPU pipeline clock (PCLK) and an
IPBus clock (ICLK). The CPU pipeline clock (PCLK) is divided by two to form the IPBus clock (ICLK). All of
the logic that interfaces to the IPBus use this clock. In addition, the IPBus clock is used to generate the
clock signals for the external DDR Memory subsystem. The IPBus clock is further divided by the value
selected in the External Clock Divider field in the boot configuration vector to generate an external clock
output on the EXTCLK pin. The external clock output (EXTCLK) is used by the memory and peripheral bus.
The relationship between CLK, PCLK, ICLK, and the EXTCLK pin are shown in Figure 3.2.

Figure 3.2 RC32438 Clocking Architecture

The CPU pipeline clock is equal to the master clock input multiplied by the value selected by the CPU
Pipeline Clock Multiplier field in the boot configuration vector during a cold reset. Table 3.1 shows the
supported CPU Pipeline Clock Multiplier field modes. Care must be exercised to ensure that the master
clock input frequency falls within the range supported by a selected mode. For example, when multiply by 3
is selected, the master clock input frequency must be between 66.6 MHz and 88.6 MHz.

CPU Pipeline
Clock Multiplier

CLK PCLK

Min1

1. Frequency in MHz.

Max1 Min1 Max1

PLL Bypass - - - -

Multiply by 3 66.6 88.6 200 266

Multiply by 4 50 66.6 200 266

Multiply by 6 33.3 44.3 200 266

Multiply by 8 25 33.25 200 266

Table 3.1 Processor Clock PLL Multiplier Modes

PLL Divider DividerPCLK ICLK

CPU
Most

On-Chip
Logic

CPU Pipeline Clock Multiplier
(bypass, 3, 4, 6, 8)

External Clock Divider
(1, 2, 4)

Constant 2

RC32438

CLK EXTCLK

Clock for DDR Memory
ence Manual 3 - 2 May 11, 2005

IDT Clocking and Initialization Reset Register Description

79RC32438 User Refer

Notes
 Reset Register Description

Reset and Initialization
The RC32438 may be reset with either a warm reset or a cold reset.

Cold Reset
A cold reset is initiated through the assertion of the cold reset (COLDRSTN) pin. The COLDRSTN pin is

typically asserted by an external voltage monitor or reset switch at power-up. A cold reset causes the
RC32438 to initialize its internal state, assert the reset (RSTN) bidirectional pin, assert the BOEN pin, and
assert the BDIRN pin. No state information of any kind is preserved. Figure 3.3 shows a cold reset.

Using the boot configuration vector the internal phase lock loop locks onto the master clock input (CLK)
and generates the CPU pipeline clock (PCLK) and the IPBus clock (ICLK). When the COLDRSTN signal is
negated, the boot configuration vector is obtained from the bottom 16-bits of the data bus (MDATA[15:0]
clocked in on the previous rising edge of CLK).1

Once the processor clock stabilizes, the RSTN pin is tri-stated. Then, the RC32438 waits an additional
4096 master clock cycles to allow the RSTN pin to be pulled up by an external resistor and samples the
state of the RSTN pin. In addition, the RC32438 examines the state of the PCIRSTN pin if the PCI interface
is selected to operate in satellite mode by the boot configuration vector. If RSTN is negated and if the PCI
interface is selected to operate in satellite mode, the de-glitched PCIRSTN signal is also negated, and the
CPU begins execution by taking a MIPS soft reset exception. If RSTN is still asserted, the RC32438 waits
an additional 4096 master clock cycles, then repeats the above process. If the PCI interface is selected to
operate in satellite mode and the de-glitched PCIRSTN signal is asserted, the RC32438 remains in a reset
state until it is negated (or until COLDRSTN or RSTN is asserted, at which point a cold or warm reset
process begins).

Before the boot configuration vector has been read during a cold reset, the external clock (EXTCLK) pin
output is held low. Within 16 CLK clock cycles of reading the boot configuration vector, the RC32438 will
begin generating EXTCLK. EXTCLK is guaranteed to be glitch free and maintain a 60/40 duty cycle.

Register Offset1

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

Register Name Register Function Size

0x00_8000 RESET Reset 32-bit

0x00_8004 BVC Boot configuration vector 32-bit

0x00_8008 CEA2

2. Note that the CEA register is discussed in Chapter 4, System Integrity Functions.

CPU error address 32-bit

0x00_800C through 0x00_FFFF Reserved

Table 3.2 Reset Register Map

1. The CPU pipeline clock multiplier field (i.e., MDATA[3:0]) should be driven to a valid value as soon as possible
after power stabilizes. This field is use by the PLL before COLDRSTN is negated. All other fields of the boot
configuration vector are sampled only when COLDRSTN is negated.
ence Manual 3 - 3 May 11, 2005

IDT Clocking and Initialization Reset and Initialization

79RC32438 User Refer

Notes
Figure 3.3 Cold Reset

Figure 3.4 PCI Reset in Host Mode

Boot Configuration Vector
The boot configuration vector is read by the RC32438 during a cold reset. The vector defines essential

RC32438 parameters that are required once the cold reset completes.
The encoding of boot configuration vector is described in Table 3.3, and the vector input is illustrated in

Figure 3.5. The value of the boot configuration vector read in by the RC32438 during a cold reset may be
determined by reading the Boot Configuration Vector (BCV) Register.

BOOT VECT

CLK

COLDRSTN

RSTN

MDATA[15:0]

BDIRN

BOEN

>= 4096 CLK clock cycles

1 2 3 4 5 6

FFFF_FFFF

1. COLDRSTN asserted by external logic. The RC32438 asserts RSTN, asserts BOEN low, drives BDIRN low, disables EXTCLK, and tri-
states the data bus and all output pins in response.

2. External logic begins driving valid boot configuration vector on the data bus, and the RC32438 starts sampling it.
3. External logic negates COLDRSTN and tri-states the boot configuration vector on MDATA[15:0]. The boot configuration vector must not

be tri-stated before COLDRSTN is negated. The RC32438 stops sampling the boot configuration vector.
4. The RC32438 starts driving the data bus, MDATA[15:0], negates BOEN, drives BDIRN high, and starts driving EXTCLK.
5. RSTN negated by the RC32438.
6. CPU begins executing by taking MIPS reset exception, and the RC32438 starts sampling RSTN as a warm reset input.

<= 16 CLK
clock cycles

>= 4096 CLK clock cycles

EXTCLK

PCI interface enabled
cold reset

warm reset

COLDRSTN

PCIRSTN (output)

RSTN

Note: During and after cold reset, PCIRSTN is tri-stated and requires a pull-down to reach a low state.
After the PCI interface is enabled in host mode, PCIRSTN will be driven high and low depending on the

(tri-state)

reset state of the 79RC32438.
ence Manual 3 - 4 May 11, 2005

IDT Clocking and Initialization Reset and Initialization

79RC32438 User Refer

Notes

Signal Name/Description

MDATA[3:0] CPU Pipeline Clock Multiplier. This field specifies the value by which the PLL multi-
plies the master clock input (CLK) to obtain the processor clock frequency (PCLK).
See Table 3.1 for master clock input frequency constraints.
0x0 - PLL Bypass
0x1 - Multiply by 3
0x2 - Multiply by 4
0x3 - Multiply by 6
0x4 - Multiply by 8
0x5 to 0xF - reserved

MDATA[5:4] External Clock Divider. This field specifies the value by which the IPBus clock (ICLK)
is divided in order to generate the external clock output on the EXTCLK pin.
0x0 - Divide by 1
0x1 - Divide by 2
0x2 - Divide by 4
0x3 - reserved

MDATA[6] Endian. This bit specifies the endianness.
0x0 - little endian
0x1 - big endian

MDATA[7] Boot Device Width. This field specifies the width of the boot device (i.e., Device 0).
0x0 - 8-bit boot device width
0x1 - 16-bit boot device width

MDATA[8] Reset Mode. This bit specifies the length of time the RSTN signal is driven.
0x0 - Normal reset: RSTN driven for minimum of 4096 clock cycles
0x1 - reserved

MDATA[11:9] PCI Mode. This bit controls the operating mode of the PCI bus interface. The initial
value of the EN bit in the PCIC register is determined by the PCI mode.
0x0 - Disabled (EN initial value is zero)
0x1 - PCI satellite mode with PCI target not ready (EN initial value is one)
0x2 - PCI satellite mode with suspended CPU execution (EN initial value is one)
0x3 - PCI host mode with external arbiter (EN initial value is zero)
0x4 - PCI host mode with internal arbiter using fixed priority arbitration algorithm

(EN initial value is zero)
0x5 - PCI host mode with internal arbiter using round robin arbitration algorithm

(EN initial value is zero)
0x6 - reserved
0x7 - reserved

MDATA[12] Disable Watchdog Timer. When this bit is set, the watchdog timer is disabled follow-
ing a cold reset.
0x0 - Watchdog timer enabled
0x1 - Watchdog timer disabled

MDATA[15:13] Reserved. These pins must be driven low during boot configuration.

Table 3.3 Boot Configuration Encoding
ence Manual 3 - 5 May 11, 2005

IDT Clocking and Initialization Reset/Initialization Registers

79RC32438 User Refer

Notes
 Reset/Initialization Registers

Boot Configuration Vector Register

Figure 3.5 Boot Configuration Vector Register (BCV)

Warm Reset
A warm reset may be initiated by one of seven conditions:

– Assertion of the reset pin (RSTN) by an external agent
– A CPU write of 0x8000_0001 to the Reset (RESET) register
– An IPBus transaction timer time-out
– A watchdog timer time-out with the WRE bit set in the ERRCS register
– A CPU or PCI master write setting the Warm Reset (WR) bit in the PCI Management (PCIMGT)

register in PCI configuration space
– Assertion of the PCI reset signal (PCIRSTN) when operating in PCI satellite mode
– Generation of a processor reset by EJTAG debug software by setting of the PrRst bit in the EJTAG

control register (i.e., assertion of the EJ_PrRst output signal by the CPU core).
When one of these conditions occurs, the RC32438 asserts the RSTN pin for a minimum of 4096 CLK

clock cycles. Then, the RC32438 tri-states RSTN, waits an additional 4096 CLK clock cycles, and exam-
ines the state of the RSTN pin. In addition, the RC32438 will examine the state of the PCIRSTN pin if the
PCI interface is selected to operate in satellite mode by the boot configuration vector. If RSTN is negated
and if the PCI interface is selected to operate in satellite mode, the de-glitched PCIRSTN signal is also
negated, and the CPU begins execution by taking a MIPS soft reset exception.1 If RSTN is still asserted,
the warm reset procedure above is repeated. If the PCI interface is selected to operate in satellite mode and
the de-glitched PCIRSTN signal is asserted, then the RC32438 remains in a warm reset until it is negated
(or until RSTN is asserted again, at which point the warm reset process repeats).

The delay between tri-stating the RSTN pin and then sampling whether it is asserted allows the signal to
be pulled up with a resistor. During a warm reset, all memory and peripheral bus transactions are inhibited.
The DDR Controller continues operation across warm resets and may generate a refresh transaction during
a warm reset.

A warm reset causes the following:
 All blocks within the RC32438 are reset with the exception of the CPU, CPU BIU, and IPBus moni-
tor
The CPU to take a MIPS soft reset exception

BCV

Description: Boot Configuration Vector. This field contains the boot configuration vector read in by the
RC32438 during a cold reset. See Table 3.3 for a description of the encoding of this vector.

Initial Value: Boot configuration vector

Read Value: Boot configuration vector

Write Effect: Read-only

1. The assertion of CSN[0] will occur no sooner than 16 clock cycles after the RC32438 samples RSTN negated.

BCV
031

16

0

16

BCV
ence Manual 3 - 6 May 11, 2005

IDT Clocking and Initialization Reset/Initialization Registers

79RC32438 User Refer

Notes
 All registers are reset to their initial value, except the following:
– BTCOMPARE1, BTADDR, and BTCS registers in the Device Controller
– All bits in the PCIC register (except the TNR and IGM bits which are, in fact, reset)
– TO bit in the WTC register
– EN bit in the WTC register if the warm reset was not caused by the expiration of the

watchdog timer
– WTO bit in the ERRCS register
– WR bit in the PCIS register
– Registers in PCI configuration space
– DDR controller registers
– Event monitor registers
– Contents of on-chip memory.

Note: All PCI registers are reset to their initial value if the warm reset was the result of an
assertion of the PCI reset signal when operating in PCI satellite mode. Also, the external clock,
EXTCLK, is always driven during any warm reset.

An externally initiated warm reset caused by assertion of RSTN by an external agent is shown in Figure
3.6, while an internally initiated warm reset, for example, caused by a write of 0x8000_0001 to the RESET
register is shown in Figure 3.7.

Figure 3.6 Externally Initiated Warm Reset

1. If the warm reset is the result of a bus transaction time-out, the BTCOMPARE field is initialized to 0xFFFF.

1. Warm reset condition caused by assertion of RSTN by an external agent.
2. RC32438 tri-states the data bus, MDATA[15:0], negates all memory control signals, and itself asserts RSTN.
3. RC32438 negates RSTN after 4096 master clock (CLK) cycles.
4. External agent negates RSTN.
5. RC32438 samples RSTN negated 4096 master clock (CLK) cycles after step 3 and starts driving the data bus, MDATA[15:0].
6. CPU begins executing by taking a MIPS soft reset exception. The assertion of CSN[0] will occur no sooner than 16 clock cycles after the

RC32438 samples RSTN negated (i.e., step 5).

Active Deasserted Active

CLK

COLDRSTN

RSTN

MDATA[15:0]

Mem Control Signals

FFFF_FFFF

1 2 4 5 63

4096
Clock Cycles

4096
Clock Cycles
ence Manual 3 - 7 May 11, 2005

IDT Clocking and Initialization Reset/Initialization Registers

79RC32438 User Refer

Notes
Figure 3.7 Internally Initiated Warm Reset

Figure 3.8 PCI Reset in Satellite Mode

Reset Register

Figure 3.9 Reset Register (RESET)

R

Description: Reset. A write of the value 0x8000_0001 to this register causes the RC32438 to generate a
warm reset. A write of any other value has no effect.

Initial Value: Undefined

Read Value: Undefined

Write Effect: Write value of 0x8000_0001 generates a warm reset

1. Warm reset condition caused by a CPU write of 0x8000_0001 to the RESET register. The RC32438 tri-states the data bus, MDATA[15:0],
negates all memory control signals, and asserts RSTN.

2. RC32438 negates RSTN after 4096 master clock (CLK) cycles.
3. RC32438 samples RSTN negated after waiting 4096 or 64 master clock (CLK) clock cycles depending on the boot configuration mode and

starts driving the data bus, MDATA[15:0].
4. CPU begins executing by taking a MIPS soft reset exception. The assertion of CSN[0] will occur no sooner than 16 clock cycles after the

RC32438 samples RSTN negated (i.e., step 5).

Active Deasserted Active

CLK

COLDRSTN

RSTN

MDATA[15:0]

Mem Control Signals

1 3 42

FFFF_FFFF

warm reset

CLK

PCIRSTN (input)

RSTN

MDATA[15:0]

PCI bus signals

RESET
031

32

R

ence Manual 3 - 8 May 11, 2005

IDT Clocking and Initialization Pin State During Reset

79RC32438 User Refer

Notes
 Pin State During Reset
Table 3.4 shows the state of each pin during cold reset (COLDRSTN pin asserted low) and warm reset

(RSTN pin asserted low). Because input-only pins are never driven, they are not included in this table.

Function Pin Name Type Cold
Reset

Warm
Reset

Memory and
Peripheral Bus

BDIRN O low low

BGN O high high

BOEN O low low

BWEN[1:0] O high high

CSN[5:0] O high high

MADDR[21:0] O low low

MDATA[15:0] I/O Z Z

OEN O high high

RWN O high high

DDR Bus DDRADDR[13:0] O low low

DDRBA[1:0] O low low

DDRCASN O high high

DDRCKE O low low

DDRCKN[1:0] O high toggle

DDRCKP[1:0] O low toggle

DDRCSN[1:0] O high high

DDRDATA[31:0] I/O Z Z

DDRDM[7:0] I/O high high

DDRDQS[3:0] I/O Z Z

DDROEN[3:0] O high high

DDRRASN O high high

DDRWEN O high high

Table 3.4 Pin State During Reset (Part 1 of 3)
ence Manual 3 - 9 May 11, 2005

IDT Clocking and Initialization Pin State During Reset

79RC32438 User Refer

Notes
PCI Bus Interface PCIAD[31:0] I/O Z Z

PCICBEN[3:0] I/O Z Z

PCIDEVSELN I/O Z Z

PCIFRAMEN I/O Z Z

PCIGNTN[3:0] I/O low, high,
Z1

low, high,
Z1

PCIIRDYN I/O Z Z

PCILOCKN I/O Z Z

PCIPAR I/O Z Z

PCIPERRN I/O Z Z

PCIREQN[3:0] I/O low, high,
Z1

low, high,
Z1

PCIRSTN I/O Z low, Z2

PCISERRN I/O Z Z

PCISTOPN I/O Z Z

PCITRDYN I/O Z Z

General Purpose
 I/O

GPIO[31:0] I/O Z Z

Serial Interface SCK I/O Z Z

SDI I/O Z Z

SDO I/O Z Z

I2C Bus Interface SCL I/O Z Z

SDA I/O Z Z

Ethernet Interfaces MII0TXD[3:0] O low low

MII0TXENP O low low

MII0TXER O low low

MII1TXD[3:0] O low low

MII1TXENP O low low

MII1TXER O low low

MIIMDC O low low

MIIMDIO I/O Z Z

JTAG / EJTAG JTAG_TDO O Z Z

Debug CPU O high high

INST O high high

IPBMTRIGOUT O high high

Function Pin Name Type Cold
Reset

Warm
Reset

Table 3.4 Pin State During Reset (Part 2 of 3)
ence Manual 3 - 10 May 11, 2005

IDT Clocking and Initialization Pin State During Reset

79RC32438 User Refer

Notes
Miscellaneous EXTCLK O low toggle

RSTN I/O low low

1. To determine the actual pin state, refer to Chapter 10, Tables 10.3, 10.4, and 10.5
2. In PCI satellite mode, PCIRSTN is Z. In PCI host mode, PCIRSTN is low.

Function Pin Name Type Cold
Reset

Warm
Reset

Table 3.4 Pin State During Reset (Part 3 of 3)
ence Manual 3 - 11 May 11, 2005

IDT Clocking and Initialization Pin State During Reset

79RC32438 User Refer

Notes
ence Manual 3 - 12 May 11, 2005

Notes

79RC32438 User Reference Manual 4 - 1 M
Chapter 4
System Integrity Functions
Introduction
This chapter describes the system integrity functions on the RC32438. The system integrity module

includes several registers that log system activity. These registers can be used to indicate the source of
hardware or software errors.

Features
Programmable bus transaction timer generates warm reset when counter expires
Address space monitor
Programmable watchdog timer generates NMI when counter expires

Functional Overview
The RC32438 supports three functions to monitor activity within the system and report potential hard-

ware or software error conditions.
The first function is the bus transaction timer. The bus transaction timer times memory and peripheral

bus transactions, generating a warm reset if a transaction does not complete within a specified number of
clock cycles. The bus transaction timer is part of the device controller. For more information on the bus
transaction timer, see the Memory and Peripheral Bus Transaction Timer section in Chapter 6.

A second function is the address space monitor. The address space monitor generates an error in
response to bus transactions with invalid RC32438 local address space addresses. This applies to transac-
tions generated by the CPU as well as the PCI and DMA controllers.

A third function is the watchdog timer. The watchdog timer is a general purpose timer that, if not periodi-
cally reset by software, generates a nonmaskable interrupt (NMI) exception to the CPU or a warm reset.
The watchdog timer is independent from the three general purpose timers described in Chapter 14, Counter
Timers.

System integrity functions are controlled, and their status is reported in the Error Control and Status
(ERRCS) Register. The bus transaction timer, the address space monitor, and the watchdog are all enabled
following a cold reset. The bus timer and watchdog timer can be individually disabled by software.

The address of an undecoded CPU read/write operation or IPBus slave acknowledge error is recorded
in the CPU Error Address (CEA) register. This register is only accessible by the CPU since it is located in
the CPU BIU.

System Integrity Register Description

Register Offset1 Register Name Register Function Size

0x03_0000 through 0x03_002C Reserved

0x03_0030 ERRCS Error control and status 32-bit

0x03_0034 WTCOUNT Watchdog timer count 32-bit

Table 4.1 System Integrity Register Map (Part 1 of 2)
ay 11, 2005

IDT System Integrity Functions System Integrity Registers

79RC32438 User Refer

Notes
System Integrity Registers

Error Control and Status Register

Figure 4.1 Error Control and Status Register (ERRCS)

0x03_0038 WTCOMPARE Watchdog timer compare 32-bit

0x03_003C WTC Watchdog timer control 32-bit

0x03_0040 through 0x03_7FFF Reserved

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

WTO

Description: Watchdog Timer Time Out. When the watchdog timer times-out and either the WNE or WRE bit in
this register is set, this bit is set.

Initial Value: 0x0

Read Value: Status (this field is not modified due to a warm reset)

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

WNE

Description: Watchdog Timer NMI Enable. When this bit is cleared, the watchdog timer is masked from gener-
ating an NMI. When the watchdog timer expires, and this bit is set, and the WRE bit is cleared, an
NMI is generated.
0 Watchdog timer NMI masked
1 Watchdog timer NMI enabled (unmasked)

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

UCW

Description: Undecoded CPU Write. This bit is set when the CPU writes to an undecoded address space. This
bit is presented to the interrupt handler as the undecoded CPU write interrupt source.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit. The interrupt service routine must clear this bit.

UCR

Description: Undecoded CPU Read. This bit is set when the CPU reads from an undecoded address space.
This bit is presented to the interrupt handler as the undecoded CPU read interrupt source.

Register Offset1 Register Name Register Function Size

Table 4.1 System Integrity Register Map (Part 2 of 2)

ERRCS
031

22

0

1

WTO

1

WNE

1

UCW

1

UCR

1

UPW

1

UPR

1

UDW

1

UDR

1

SAE

1

WRE
ence Manual 4 - 2 May 11, 2005

IDT System Integrity Functions System Integrity Registers

79RC32438 User Refer

Notes
 Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit. The interrupt service routine must clear this bit.

UPW

Description: Undecoded PCI Write. This bit is set when the PCI interface writes to an undecoded address
space. This bit is presented to the interrupt handler as the undecoded PCI write interrupt source.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit. The interrupt service routine must clear this bit.

UPR

Description: Undecoded PCI Read. This bit is set when the PCI interface reads from an undecoded address
space. This bit is presented to the interrupt handler as the undecoded PCI read interrupt source.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit. The interrupt service routine must clear this bit.

UDW

Description: Undecoded DMA Write. This bit is set when the DMA writes to an undecoded address space. This
bit is presented to the interrupt handler as the undecoded DMA write interrupt source.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit. The interrupt service routine must clear this bit.

UDR

Description: Undecoded DMA Read. This bit is set when the DMA interface reads from an undecoded address
space. This bit is presented to the interrupt handler as the undecoded DMA read interrupt source.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit. The interrupt service routine must clear this bit.

SAE

Description: IPBus Slave Acknowledge Error. This bit is set when an IPBus slave signals a slave acknowledge
error.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit. The interrupt service routine must clear this bit.
ence Manual 4 - 3 May 11, 2005

IDT System Integrity Functions Address Space Monitor

79RC32438 User Refer

Notes
CPU Error Address Register

Figure 4.2 CPU Error Address Register (CEA)

Note: The register address for CEA can be found in Chapter 3, Table 3.2.

Address Space Monitor
The address space monitor observes physical addresses in transactions generated by the CPU, PCI,

and DMA controller and generates an error if the address does not decode to a valid region within the
RC32438 memory map or if an address maps to two regions due to mis-configuration of a region’s base
and mask registers.1 Table 4.2 summarizes the methods used to report an undecoded address or redun-
dant mapping errors to the CPU, PCI, and DMA controller. The address space monitor is always enabled.

If an undecoded address error is detected during a single byte, half-word, or word DMA transfer, then
the CA field in the DMA descriptor is incremented by one byte, half-word, or word respectively and the
COUNT field is decremented accordingly. If an undecoded address error is detected in a burst DMA
transfer, then the COUNT and CA fields in the DMA descriptor are unmodified.

WRE

Description: Watchdog Timer Warm Reset Enable. When this bit is set and the watchdog timer times-out, a
warm reset is generated. When this bit is cleared, a warm reset is never generated due to a watch-
dog timer time-out.
0 - No warm reset on watchdog timer time-out
1 - Generate warm reset on watchdog timer time-out

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

ADDR

Description: Address. This field contains the physical address of the first CPU transaction which resulted in
an undecoded address error or slave acknowledge error. This register is only updated when an
undecoded address error or slave acknowledge error occurs if the ADDR field is all ones (i.e.,
0xFFFF_FFFF).

Initial Value: 0xFFFF_FFFF

Read Value: Physical address of the last CPU transaction that resulted in undecoded address error or previ-
ous value written.

Write Effect: Modify value

1. If a device or SDRAM is mapped such that it overlaps the internal system address space (0x1800_000 through
0x181F_FFFF), the internal system controller address space will take precedence. Any subsequent CPU or PCI
access to this redundantly mapped space will result in the system controller being accessed.

CEA
031

32

ADDR
ence Manual 4 - 4 May 11, 2005

IDT System Integrity Functions Watchdog Timer

79RC32438 User Refer

Notes
Watchdog Timer
When the watchdog timer NMI Enable (WNE) bit is set in the ERRCS register, the watchdog timer will

generate an NMI when it times out. In addition, the watchdog timer may be configured to generate a warm
reset when it times out by setting the watchdog timer warm reset enable (WRE) bit in the ERRCS register. If
both the WNE and WRE bits are cleared, the watchdog timer operates as a general purpose counter timer.

The watchdog timer is enabled by setting the enable (EN) bit in the watchdog timer control (WTC)
register. When this occurs, the watchdog timer begins incrementing its current watchdog timer count value
with each IPBus clock (ICLK) cycle. The CPU may determine the current watchdog timer count value by
reading the Watchdog Timer Count Register (WTCOUNT). Writing to this register modifies the watchdog
timer count value. For normal operation, this register should be initialized to zero prior to enabling the
watchdog timer. Following a cold reset, the watchdog timer is normally enabled. The watchdog timer may
be disabled by setting the Disable Watchdog Timer bit in the boot configuration vector.

When the watchdog timer count value matches the value in the Watchdog Timer Compare Register
(WTCOMPARE), the timer expires1. When this occurs, the time out (WTO) bit in the Watchdog Timer
Control Register (WTC) is set. In addition, if either the Watchdog Timer Warm Reset Enable (WRE) bit or
Watchdog Timer NMI Enable (WNE) bit is set in the Error Control and Status Register (ERRCS), the
Watchdog Timer Time-Out (WTO) bit is set in the ERRCS register.

Bus
Master

Bus Master
Operation Undecoded Address Error Reporting Mechanism

 CPU CPU read operation CPU bus error exception and Undecoded CPU Read (UCR) bit set in the
ERRCS register. The CPU Error Address (CEA) register contains the
address of the undecoded read.

CPU write operation CPU core interrupt from UCW bit (Undecoded CPU Write (UCW) bit is
set in the ERRCS register. The CPU Error Address (CEA) register con-
tains the address of the undecoded write.

 PCI PCI read operation PCI transaction terminated with Target Abort and Undecoded PCI Read
(UPR) bit set in ERRCS register. For additional information, refer to
Chapter 10, section “Target Error Handling” on page 10-38.

PCI write operation PCI transaction terminated with Target Abort and Undecoded PCI Write
(UPW) bit set in ERRCS register. If the PCI transaction resulted in a
posted write, then a PCI system error is signalled on the PCI bus by
asserting the SERRN signal of the SEN bit is set in the PCI COMMAND
register. For additional information, refer to Chapter 10, section “Target
Error Handling” on page 10-38.

DMA DMA descriptor read Error (E) bit set in corresponding DMA status (DMAxS) register and
Undecoded DMA Read (UDR) bit set in ERRCS register.

DMA descriptor write Error (E) bit in set in corresponding DMA status (DMAxS) register and
Undecoded DMA Write (UDW) bit set in ERRCS register.

DMA data read The terminated (T) bit is set in the descriptor in which the error was
detected. The Undecoded DMA Read (UDR) bit is set in ERRCS regis-
ter.

DMA data write The terminated (T) bit is set in the descriptor in which the error was
detected. The Undecoded DMA Write (UDW) bit is set in the ERRCS reg-
ister.

Table 4.2 Address Space Monitor Undecoded Address Error Reporting

1. The counter timer expires at the point when the value in the WTCOUNT register first equals the value in the
WTCOMPARE register (i.e., the rising edge of the master clock, that is, CLK (WTCOUNT == WTCOMPARE)).
ence Manual 4 - 5 May 11, 2005

IDT System Integrity Functions Watchdog Timer

79RC32438 User Refer

Notes
 If the watchdog timer is enabled to generate an NMI interrupt (i.e., the WNE bit is set) and the timer
expires, the watchdog timer time-out (WTO) bit in the ERRCS register is set, the EN bit in the WTC register
is cleared, and an NMI is generated.

Note: Until the WTO bit is cleared by software, another watchdog NMI interrupt cannot be
generated.

If the watchdog timer is configured to generate a warm reset (i.e., the WRE bit is set) and the timer
expires, the TO bit in the WTC register and the WTO bit in the ERRCS register are set, the EN bit in the
WTC register is cleared, and a warm reset is generated. The TO and WTO bits are not modified due to a
warm reset.

Setting both the WNE and WRE bits results in a warm reset, causing all watchdog timer registers and
fields (except the TO and WTO bits) to take on their initial value. If neither the WNE bit nor the WRE bit is
set, the watchdog timer behaves simply as a timer. When it expires, it resets its count value to zero and
begins incrementing at the master clock frequency. The TO bit is presented as an interrupt source to the
interrupt handler.

Watchdog Timer Count Register

Figure 4.3 Watchdog Timer Count Register (WTCOUNT)

Watchdog Timer Compare Register

Figure 4.4 Watchdog Timer Compare Register (WTCOMPARE)

COUNT

Description: Watchdog Timer Count. This field contains the current watchdog timer count value.

Initial Value: 0x0000_0000 (this register is not reset after a warm reset)

Read Value: Current watchdog timer count

Write Effect: Set watchdog timer count

COMPARE

Description: Compare Value. This field contains the maximum watchdog timer count value. When the value
in the WTCOUNT register equals this value, the watchdog timer expires.

Initial Value: 0xFFFF_FFFF

Read Value: Previous value written

Write Effect: Modify value

WTCOUNT
031

32

COUNT

WTCOMPARE
031

32

COMPARE
ence Manual 4 - 6 May 11, 2005

IDT System Integrity Functions IPBus Slave Acknowledge Errors

79RC32438 User Refer

Notes
 Watchdog Timer Control Register

Figure 4.5 Watchdog Timer Control Register (WTC)

IPBus Slave Acknowledge Errors
The IPBus provides a general mechanism for slaves to report errors to IPBus masters during a read or

write transaction. Each IPBus slave that may generate an IPBus slave acknowledge error has two sticky
bits that serve as interrupt sources. One bit is set on the occurrence of a slave acknowledge error during a
read transaction while the other is set on the occurrence of a slave acknowledge error during a write trans-
action.

The only IPBus slave in the RC32438 device that generates slave acknowledge errors is the PCI inter-
face. See Chapter 10, PCI Bus Interface, for conditions that result in a PCI slave acknowledge error. Table
4.3 summarizes the methods used to report IPBus slave acknowledge errors.

The DMA controller does not stop a burst transfer when a slave acknowledge error is detected. It
completes the burst transfer and, as a result, the CA field in the descriptor in which the error is detected is
set to the last address of the burst transfer. The COUNT is updated accordingly. A slave acknowledge error
during a memory to peripheral DMA results in undefined data being written to the peripheral (in order to
complete the DMA burst transfer). A slave acknowledge error during a peripheral to memory DMA results in
data read from the peripheral being discarded (in order to complete the DMA burst transfer).

EN

Description: Enable. When this bit is set, the watchdog timer is enabled. Clearing this bit disables the watch-
dog timer. Neither enabling nor disabling the timer affects the watchdog timer count value.
The EN bit is automatically cleared when the watchdog timer expires and the WNE bit in the
ERRCS register is set. The state of the EN bit is preserved across warm resets not caused by
the expiration of the watchdog timer.

Initial Value: See boot configuration vector (i.e., disable watchdog timer bit)

Read Value: Previous value written

Write Effect: Modify value

TO

Description: Time Out. This bit is set to a one to indicate that the watchdog timer has expired. Once this bit is
set, it will remain set until a zero is written into this field.

Initial Value: 0x0

Read Value: Status (this field is not modified when a warm reset occurs)

Write Effect: Sticky bit

WTC
031

30

0 TO EN

1 1
ence Manual 4 - 7 May 11, 2005

IDT System Integrity Functions IPBus Slave Acknowledge Errors

79RC32438 User Refer

Notes

.

Bus
Master

Bus Master
Operation

IPBus Slave Acknowledge Error
Reporting Mechanism

 CPU CPU read operation A CPU bus error exception is generated and the Slave Acknowledge
Error (SAE) bit is set in the ERRCS register. The CPU Error Address
(CEA) register contains the address of the transaction which resulted in
an IPBus slave acknowledge error. A sticky bit is set in the IPBus slave
that generated the error. The sticky bit may be selected as an interrupt
source. For additional information, see Chapter 10, section “Master Error
Handling” on page 10-21.

CPU write operation A slave acknowledge error is not generated by the PCI interface when a
CPU generated PCI master write transaction experiences a fatal error.
For additional information, see Chapter 10, section “Master Error Han-
dling” on page 10-21.

 PCI PCI read operation Since the only interface that supports Slave Acknowledge Errors in the
RC32438 is the PCI interface, this condition never occurs.

PCI write operation Since the only interface that supports Slave Acknowledge Errors in the
RC32438 is the PCI interface, this condition never occurs.

DMA DMA descriptor read This condition never occurs in the RC32438.

DMA descriptor write This condition never occurs in the RC32438.

DMA data read This condition never occurs in the RC32438.

DMA data write This condition never occurs in the RC32438.

Table 4.3 IPBus Slave Acknowledge Error Reporting
ence Manual 4 - 8 May 11, 2005

Notes

79RC32438 User Reference Manual 5 - 1 M
Chapter 5
Bus Arbitration
Introduction
This chapter describes the internal bus arbitration mechanism used among the various on-chip modules

and explains the bus protocol used by an external bus master to gain ownership of the memory and periph-
eral bus.

Functional Overview
The RC32438 has two internal buses, the IPBus and PMBus. It also has one external bus, the memory

and peripheral bus. A bus master may have ownership of one or more buses at any given time, but no two
masters can own the same bus at the same time. There are 16 potential IPbus masters. They consist of the
10 DMA channels, an external bus master (on the memory and peripheral bus), the PCI target interface,
and the CPU when it is reading or writing devices on the IPBus.

Each potential IPbus master is assigned a bus master index (see Table 5.1). There are seventeen
indices. The PCI target interface is allocated two indices. One for the first target read or write transfer and
one for subsequent target read transfers. This allows the initial data transfer of a target read or write trans-
action to be given a higher priority than subsequent reads and writes.

Index Bus Master

0 External DMA channel 0

1 External DMA channel 1

2 Ethernet Channel 0 Receive

3 Ethernet Channel 0 Transmit

4 Ethernet Channel 1 Receive

5 Ethernet Channel 1 Transmit

6 Memory to Memory (Memory to Holding FIFO)

7 Memory to Memory (Holding FIFO to Memory)

8 PCI (PCI to Memory)

9 PCI (Memory to PCI)

10 Reserved

11 Reserved

12 Reserved

13 External Memory and Peripheral Bus Master

14 PCI Target

15 PCI Target - Read and Write Start

16 CPU (CPU accesses to IPBus)

Table 5.1 Bus Master Index
ay 11, 2005

IDT Bus Arbitration IPBus Register Description

79RC32438 User Refer

Notes
 IPBus Register Description

PMBus Arbitration Register Description

Register Offset1

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

Register Name Register Function Size

0x04_4000 IPAP0C IPBus arbiter priority 0 configuration 32-bit

0x04_4004 IPAP1C IPBus arbiter priority 1 configuration 32-bit

0x04_4008 IPAP2C IPBus arbiter priority 2 configuration 32-bit

0x04_400C IPAP3C IPBus arbiter priority 3 configuration 32-bit

0x04_4010 IPABM0C IPBus arbiter bus master 0 configuration 32-bit

0x04_4014 IPABM1C IPBus arbiter bus master 1 configuration 32-bit

0x04_4018 IPABM2C IPBus arbiter bus master 2 configuration 32-bit

0x04_401C IPABM3C IPBus arbiter bus master 3 configuration 32-bit

0x04_4020 IPABM4C IPBus arbiter bus master 4 configuration 32-bit

0x04_4024 IPABM5C IPBus arbiter bus master 5 configuration 32-bit

0x04_4028 IPABM6C IPBus arbiter bus master 6 configuration 32-bit

0x04_402C IPABM7C IPBus arbiter bus master 7 configuration 32-bit

0x04_4030 IPABM8C IPBus arbiter bus master 8 configuration 32-bit

0x04_4034 IPABM9C IPBus arbiter bus master 9 configuration 32-bit

0x04_4038 through 0x04_4040 Reserved

0x04_4044 IPABM13C IPBus arbiter bus master 13 configuration 32-bit

0x04_4048 IPABM14C IPBus arbiter bus master 14 configuration 32-bit

0x04_404C IPABM15C IPBus arbiter bus master 15 configuration 32-bit

0x04_4050 IPABM16C IPBus arbiter bus master 16 configuration 32-bit

0x04_4054 IPAC IPBus arbiter control 32-bit

0x04_4058 IPAITCC IPBus arbiter idle transaction cycle count 32-bit

0x04_405C through 0x04_7FFF Reserved

Table 5.2 IPBus Arbitration Register Map

Register Offset1

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

Register Name Register Function Size

0x02_0000 PMAPP PMBus arbiter processor priority 32-bit

0x02_0004 PMASAC PMBus arbiter sneak access control 32-bit

0x02_0008 through 0x02_7FFF Reserved

Table 5.3 PMBus Arbitration Register Map
ence Manual 5 - 2 May 11, 2005

IDT Bus Arbitration Theory of Operation

79RC32438 User Refer

Notes
 Theory of Operation
The IPBus has four priorities. Zero is the lowest and three is the highest.
Each IPBus priority has an associated IPBus Arbiter Priority Configuration (IPAPxC) register. The

IPAPxC register contains a Priority Transaction Count (PTC) and Current Priority Transaction Count
(CPTC) field. Each bus master index has a corresponding IPBus Arbiter Bus Master Configuration
(IPABMxC) register. The CMTC field in IPABMxC indicates the current transaction count for the corre-
sponding bus master, while MTC indicates the transaction count. The MSK field in IPABMxC allows bus
ownership requests to be masked from the corresponding bus master index. CPU bus ownership requests
cannot be masked. The P field in IPABMxC contains the IPBus priority for the bus master.

The arbiter should be initialized in the following manner. First, the MTC field of all bus masters should be
configured. Next, the PTC field of all priorities should be configured. Since the arbiter only looks at the
CPTC and CMTC fields, the configuration will take affect in the next epoch (i.e., when CPTC reaches zero).
The configuration of the arbiter may be modified when the system is running.

The IPBus arbiter implements an enhanced Weighted Round Robin arbitration scheme that supports
priorities and full resource utilization.

Figure 5.1 shows a graphical view of the bus arbitration algorithm. In this example, bus masters with
indices 4, 8, and 11 are assigned a priority of three (the highest). Bus masters with indices 3 and 15 are
assigned a priority of two. Bus masters with indices 1, 5, and 14 are assigned a priority of one. Finally, bus
masters with indices 2, 9, 13, and 16 are assigned a priority of zero (the lowest). Arbitration requests from
the other bus masters are masked.

Figure 5.1 Illustration of IPbus Arbitration Algorithm

The circumference of the circles represent the number of IPBus transactions required before the arbitra-
tion epoch for that priority restarts. When an arbitration epoch restarts, the CMTC field of all bus masters
with that priority is set to the corresponding MTC, and the CPTC field of the priority is set to the PTC field.

The algorithm looks at the highest priority. If there is a bus master requesting service whose CMTC is
non-zero, then the bus is granted to that master. If multiple masters exist, then the bus is granted to the
master that currently owns the bus. If none of the masters currently own the bus, then the bus is granted to
the master with the lowest index. The CMTC for the bus master that was granted the bus and the CPTC of
all priorities higher than or equal to the master priority are decremented. If no such bus master was granted
the bus, then the algorithm repeats for the next highest priority.

Because priority is given to the master which currently has the bus, the arbiter will tend to cause trans-
actions to the same bus master to be clustered. This feature is desired to allow IPBus transaction merging.

If the CMTC field for a bus master reaches zero, then the bus master is not granted ownership until the
CPTC of the corresponding priority reaches zero and the arbitration epoch for the priority restarts. Thus, the
MTC field of a bus master can be viewed as limiting the percentage of bus bandwidth allocated to the bus
master. The MTC fields of all bus masters with a given priority are normally less than or equal to the PTC
field of the priority. If the sum is less than the PTC field, then the remaining transfers for the priority are allo-
cated to lower priorities.

M11

M8

M4

M15

M3
M1

M14

M5

M13

M2

M9

M16

Priority 3 Priority 1Priority 2 Priority 0
ence Manual 5 - 3 May 11, 2005

IDT Bus Arbitration Theory of Operation

79RC32438 User Refer

Notes
 The minimum percentage of bus bandwidth available for a given priority can be calculated as follows for
the above example:

Where MTCi is the MTC for the bus master with index i and PTCj is the PTC for priority j.
As an example, the percentage of bus bandwidth available to bus masters 3 and 4 may be calculated as

follows:

It should be apparent that these equations approximate bus bandwidth since the IPBus arbiter deals
with transactions and not clock cycles. Despite this fact, the IPBus arbiter provides a mechanism to bound
service delays and provide a guaranteed level of service.

When the CMTC field of all bus masters requesting service is zero, then instead of allowing the IPBus to
go idle, the bus is granted in a fair manner to one of the bus master(s) with the highest priority.

IPBus supports transaction merging. This allows burst transfers to the Double Data Rate (DDR)
controller that are longer than a maximal length DMA burst (16 words). It also allows the system to limit
queueing delays and hence minimize the size of buffers.

The DDR controller can supply data at twice the data rate required by the IPBus. The IPBus arbiter
passes hints to the DDR controller when IPBus transaction merging may take place. The DDR controller
uses this information to speculatively prefetch data potentially required for the next DMA transaction. When
the Disable Prefetching (DP) bit is set in the IPBus Arbiter Control (IPAC) register, DDR prefetching hints
are disabled (i.e., the DDR controller will never speculatively prefetch data).

Figure 5.2 depicts a flow chart of the IPBus arbitration algorithm.

BW available to priority 3 100%=

BW available to priority 2 1
MTC8 MTC4 MTC11+ +

PTC3
---–⎝ ⎠

⎛ ⎞ x100%=

 BW available to priority 1 1
MTC8 MTC4 MTC11+ +

PTC3
---–⎝ ⎠

⎛ ⎞ x 1
MTC3 MTC15+

PTC2
---–⎝ ⎠

⎛ ⎞ x100%=

 BW available to priority 0 1
MTC8 MTC4 MTC11+ +

PTC3
---–⎝ ⎠

⎛ ⎞ x 1
MTC3 MTC15+

PTC2
---–⎝ ⎠

⎛ ⎞

1
MTC1 MTC5 MTC14+ +

PTC1
---–⎝ ⎠

⎛ ⎞ x100%

=

 BW available to bus master 4
MTC4
PTC3
----------------x100%=

 BW available to bus master 3
MTC3
PTC2
----------------x 1

MTC8 MTC4 MTC11+ +
PTC3

---–⎝ ⎠
⎛ ⎞ x100%=
ence Manual 5 - 4 May 11, 2005

IDT Bus Arbitration Theory of Operation

79RC32438 User Refer

Notes
Figure 5.2 IPBus Arbitration Algorithm Flow Chart

 *The fairness bit is used internally by the arbiter and is not visible to software

any bus master requesting
ownership of the bus with a

non-zero CMTC?

any bus master requesting
ownership of the bus with a

zero CMTC?

• Grant ownership to the master with highest priority that is
requesting the bus. If multiple bus masters share the highest
priority, then choose one in a fair manner as follows:

a Select the bus master with the lowest index that
has highest priority, is requesting ownership of the
bus, and does not have its fairness bit set.*

b If all of these bus masters have their fairness bit
set, then clear the fairness bit of all bus masters
with highest priority and go back to step a.

• Set the fairness bit of the bus master that is granted ownership
of the bus.

• Decrement the CPTC of all priorities.

• Decrement the CPTC of all priorities.

looping done?

START

is CPTC for priority p equal
to zero?

loop through all priorities
p = 0 through 3

• Set the CPTC for priority p equal to its corresponding PTC.
• For all bus masters with priority p, set their CMTC equal to the

corresponding MTC.
• If the MF bit in the corresponding IPAPxC register is cleared,

then for all bus masters with priority p, clear the bus master’s
fairness bit.*

YES

NO

YES

NO

YES

YES

NO

NO

has the bus been
idle for 16 clock cycles?

YES

NO

• Grant ownership to the bus master with highest priority that is
requesting the bus and has a non-zero CMTC. If multiple
masters share these characteristics, then grant the bus to the
master that currently owns the bus. If none of the masters with
these characteristics currently own the bus, then grant the bus
to the master with the lowest index.

• Decrement the CMTC of the bus master that was granted the
bus.

• Decrement the CPTC of all priorities higher than or equal to the
priority of the master that was granted the bus.
ence Manual 5 - 5 May 11, 2005

IDT Bus Arbitration Theory of Operation

79RC32438 User Refer

Notes
 Example IPBus Arbiter Configurations
To illustrate the operation of the IPBus arbiter, this section examines several IPBus arbiter configura-

tions. For simplicity, only three priorities and four bus masters are considered. The examples can be easily
extended to all priorities and bus masters.

Strict Priority Arbitration
Figure 5.3 shows an IPBus arbiter configuration that implements strict priority. In this example, masters

with priority three are given preference over masters with lower priorities. Priority two is given preference
over priority one. Since the PTC and MTC values for priority three are one, a new arbitration epoch begins
each time the bus is granted to a priority three master.

Figure 5.4 illustrates the operation of the IPBus arbiter with the configuration in Figure 5.3. Each rect-
angle represents one transaction or 64 clock cycles. The value in a rectangle shows the current value of
CPTC or CMTC. The bottom row shows the current bus master. A rectangle is shaded if the corresponding
bus master is requesting ownership of the bus.

Figure 5.3 IPBus Arbiter Configuration for Strict Priority Arbitration

Figure 5.4 Example Operation of IPBus Arbiter with Strict Priority Arbitration

Fair Arbitration
Figure 5.5 shows an IPBus arbiter configuration that implements fair arbitration. In this configuration the

MF bit in the IPAP3C register must be set. This maintains fairness across arbitration epochs.1 Since all
masters have the same priority and a zero MTC, access to the bus is granted in a fair manner using the fair-
ness bit method described in Figure 5.2.

Priority 3

PTC3=1 MTC1=1
MTC2=1

Priority 2

PTC2=1 MTC3=1

Priority 1

PTC1=1 MTC4=1

1. If the MF bit were not set, then the fairness bit would be cleared each clock cycle since PTC is equal to one. This
would result in the bus being granted unfairly to the bus master with the lowest index.

CMTC1=1
CMTC2=1
CMTC3=1
CMTC4=1
CPTC1=1
CPTC2=1
CPTC3=1

Bus Ownership Idle
1
1
1
1
1
1
1

Master 1
1
1
1
1
1
1
1

Master 2
1
1
1
1
1
1
1

Master 3
1
1
1
1
1
1
1

Master 1
1
1
1
1
1
1
1

Master 4
1
1
1
1
1
1
1

Idle
1
1
1
1
1
1
1

Master 1
1
1
1
1
1
1
1

Master 2
1
1
1
1
1
1
1

Master 1
1
1
1
1
1
1
1

Master 2
1
1
1
1
1
1
1

Master 2
1
1
1
1
1
1
1

MF=0
ence Manual 5 - 6 May 11, 2005

IDT Bus Arbitration Theory of Operation

79RC32438 User Refer

Notes
Figure 5.5 IPBus Arbiter Configuration for Fair Arbitration

Figure 5.6 Example Operation of IPBus Arbiter with Fair Arbitration

Priority Arbitration with Fairness
A difficulty with strict priority arbitration, presented above, is that it can lead to starvation within a priority.

For the example in Figure 5.4, it is possible for master two to starve since it has a higher index than master
one. If master one continuously requests the bus, master two will starve. Priority arbitration with fairness
within a priority eliminates this starvation. As in the fair arbitration example, the MF bit in the IPAP3C
register must be set. This maintains fairness across arbitration epochs.

Figure 5.7 shows an IPBus arbiter configuration that implements priority arbitration with fairness. Owner-
ship is granted to the bus master with the highest priority level which is requesting the bus. If multiple bus
masters are requesting ownership and share the same priority level, then ownership is granted in a fair
manner within the priority level.

Figure 5.7 IPBus Arbiter Configuration for Priority Arbitration with Fairness

Priority 3

PTC3=1 MTC1=0
MTC2=0
MTC3=0
MTC4=0

Priority 2

PTC2=0

Priority 1

PTC1=0

Priority 3

PTC3=0 MTC1=0
MTC2=0

Priority 2

PTC2=0 MTC3=0

Priority 1

PTC1=0 MTC4=0

CMTC1=0
CMTC2=0
CMTC3=0
CMTC4=0
CPTC1=0
CPTC2=0
CPTC3=1

Bus Ownership Idle
1
0
0
0
0
0
0

Master 1
1
0
0
0
0
0
0

Master 2
1
0
0
0
0
0
0

Master 3
1
0
0
0
0
0
0

Master 4
1
0
0
0
0
0
0

Master 1
1
0
0
0
0
0
0

Idle
1
0
0
0
0
0
0

Master 2
1
0
0
0
0
0
0

Master 1
1
0
0
0
0
0
0

Master 2
1
0
0
0
0

0
0

Master 1
1
0
0
0
0
0
0

Master 2
1
0
0
0
0
0
0

MF=1
ence Manual 5 - 7 May 11, 2005

IDT Bus Arbitration Theory of Operation

79RC32438 User Refer

Notes
Figure 5.8 Example Operation of IPBus Arbiter with Priority Arbitration with Fairness

Weighted Round Robin
Figure 5.9 shows an IPBus arbiter configuration that implements weighted round robin. Master one is

allocated 33.3% of the transaction, master two is allocated 4.8%, master three is allocated 14.3%, and
master four is allocated 47.6%.

Figure 5.9 IPBus Arbiter Configuration for Weighted Round Robin

Figure 5.10 Example Operation of IPBus Arbiter with Weighted Round Robin

Priority 3

PTC3=21 MTC1=7
MTC2=1
MTC3=3

MTC4=10

Priority 2

PTC2=0

Priority 1

PTC1=0

CMTC1=0
CMTC2=0
CMTC3=0
CMTC4=0
CPTC1=0
CPTC2=0
CPTC3=0

Bus Ownership Idle
0
0
0
0
0
0
0

Master 1
0
0
0
0
0
0
0

Master 2
0
0
0
0
0
0
0

Master 3
0
0
0
0
0
0
0

Master 1
0
0
0
0
0
0
0

Master 4
0
0
0
0
0
0
0

Idle
0
0
0
0
0
0
0

Master 2
0
0
0
0
0
0
0

Master 1
0
0
0
0
0
0
0

Master 2
0
0
0
0
0
0
0

Master 1
0
0
0
0
0
0
0

Master 2
0
0
0
0
0
0
0

MF=1

CMTC1=7
CMTC2=1
CMTC3=3

CMTC4=10
CPTC1=21

CPTC2=0
CPTC3=0

Bus Ownership Idle
0
0

21
10
3
1
7

Master 1
0
0

20
10
3
1
6

Master 2
0
0

19
10
3
0
6

Master 3
0
0

18
10
2
0
6

Master 1
0
0

17
10
2
0
5

Idle
0
0

16
10
2
0
5

Master 1
0
0

15
10
2
0
4

Master 1
0
0

14
10
2
0
3

Master 1
0
0

13
10
2
0
2

Master 1
0
0

12
10
2
0
1

Master 1
0
0

11
10
2
0
0

Master 2
0
0

10
10
1
0
0

MF=0
ence Manual 5 - 8 May 11, 2005

IDT Bus Arbitration IPBus Registers

79RC32438 User Refer

Notes
 IPBus Registers

IPBus Arbiter Control Register

Figure 5.11 IPBus Arbiter Control Register (IPAC)

DP

Description: Disable Prefetching. When this bit is set, the IPBus arbiter disables prefetching hints passed to
the DDR controller (i.e., the DDR controller will never speculatively prefetch data).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DWM

Description: Disable Write Transaction Merging. When this bit is set, write transaction merging is disabled
for all IPBus masters.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DRM

Description: Disable Read Transaction Merging. When this bit is set, read transaction merging is disabled
for all IPBus masters.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MSK

Description: Mask Bus Ownership Requests. When this bit is set, all bus ownership requests are masked
except those from the CPU.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPAC
031

28

0

1

DP

1

0

1

DWM

1

DRM

1

MSK
ence Manual 5 - 9 May 11, 2005

IDT Bus Arbitration IPBus Registers

79RC32438 User Refer

Notes
 IPBus Arbiter Priority Configuration Register

Figure 5.12 IPBus Arbiter Priority Configuration [0..3] Register (IPAP[0..3]C)

PTC

Description: Priority Transaction Count. This field contains the transaction count for the corresponding arbi-
tration priority.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

MF

Description: Maintain Fairness. When this bit is set, the fairness bit mentioned in Figure 5.2 is not cleared
when the CPTC for a priority reaches zero. This allows fairness to be maintained across arbitra-
tion epochs.

The MF bit must be set when fair arbitration or priority arbitration with fairness algorithms are
desired.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

CPTC

Description: Current Priority Transaction Count. This field contains the current arbitration transaction count
for the corresponding arbitration priority. This field is provided for status only and cannot be mod-
ified by the CPU.

Initial Value: 0x1

Read Value: Status

Write Effect: Read-only

IPAP[0..3]C
031

14

PTC

1

0

2

0

1

MF

14

CPTC
ence Manual 5 - 10 May 11, 2005

IDT Bus Arbitration IPBus Registers

79RC32438 User Refer

Notes
 IPBus Arbiter Bus Master Configuration Register

Figure 5.13 IPBus Arbiter Bus Master [0..16] Configuration Register (IPABM[0..16])

Note: Registers 10 through 12 are reserved. Only use registers 0 through 9 and 13 through 16.

MTC

Description: Master Transaction Count. This field contains the transaction count for the corresponding bus
master.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

P

Description: Priority. This field contains the arbitration priority for the corresponding bus master.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MSK

Description: Mask Bus Ownership Requests. When this bit is set, bus ownership requests from the corre-
sponding bus master are masked. CPU bus ownership requests can never be masked.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value (read only for index 16, the CPU)

CMTC

Description: Current Master Transaction Count. This field contains the current arbitration transaction count
for the corresponding bus master. This field is provided for status only and cannot be modified by
the CPU.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

IPABM[0..16]C
031

12

CMTC

4

0

12

MTC

2

PMSK

1

0

1

ence Manual 5 - 11 May 11, 2005

IDT Bus Arbitration PMBus Arbitration

79RC32438 User Refer

Notes
 IPBus Idle Transaction Cycle Count Register

Figure 5.14 IPBus Idle Transaction Cycle Count Register (IPAITCC)

PMBus Arbitration
Since the PMBus and DDR controller operate at twice the IPBus clock rate, they have twice the avail-

able bandwidth. The goal of PMBus arbitration is to utilize this spare bus bandwidth for CPU transactions to
DDR without adversely affecting IPBus performance. Since there are buffers associated with the IPBus
Master Bus Bridge that links the IPBus to the PMBus, it is possible for the IPBus to be active while the
PMBus is idle.

IPBus Idle
If the PMBus and IPBus are idle, then the CPU is granted access to memory without delay (i.e., nothing

to arbitrate).

IPBus Active

If the IPBus is active and the CPU has higher priority than the current or pending1 IPBus transaction,
then the CPU is granted ownership of the PMBus and the IPBus transaction is delayed. If the IPBus is
active and the CPU priority is equal to that of the current or pending IPBus transaction, then access to the
PMBus is granted in a fair manner (i.e., access alternates between an IPBus transaction and the CPU).
Sneak transactions (see next section) have no effect on fair access (i.e., they are ignored by the arbiter). If
the IPBus is active and the CPU priority is less than that of the current or pending IPBus transaction, then
access to the PMBus is granted to the IPBus transaction and the CPU is delayed.

Sneak Transactions
Due to buffering between the IPBus and PMBus, it is possible for the PMBus to be idle while a transac-

tion is in progress on the IPBus. Sneak transactions allow the CPU to utilize otherwise idle PMBus cycles to
perform accesses to DDR. Sneak transactions are never allowed to devices on the memory and peripheral
bus since sneak transactions may delay the completion of an IPBus transaction. Control is provided to allow
sneak transactions to be disabled. The PMBus Arbiter Sneak Access Control (PMASAC) register has a
sneak transaction enable bit associated with each of the four IPBus priorities.

The IPBus sneak priority is equal to the highest value of any current or pending IPBus transaction. For a
sneak transaction to take place, the sneak transaction enable bit associated with the IPBus sneak priority
must be set in the PMASAC register. Sneak transactions do not count toward fair access to the PMBus.

ITCC

Description: Idle Transaction Cycle Count. This field contains the number of clock cycles the IPBus must be
idle before it is viewed as an idle transaction. See Figure 5.2.

Initial Value: 0x10

Read Value: Previous value written

Write Effect: Modify value

1. When an IPBus master requests the IPBus, a transaction is considered to be pending since eventually the
IPBus will be granted to the master.

IPAITCC
031

23

0

9

ITCC
ence Manual 5 - 12 May 11, 2005

IDT Bus Arbitration PMBus Registers

79RC32438 User Refer

Notes
 Bus Parking
When the PMBus is idle, it is normally parked on the CPU in order to minimize CPU memory access

latency. When the Park On IPBus (POI) bit is set in the PMBus Arbiter Sneak Access Control (PMASAC)
register, then the PMBus is parked on the IPBus when it is idle. This minimizes IPBus master memory
access latency rather than CPU latency.

PMBus Registers

PMBus Arbiter Processor Priority Register

Figure 5.15 PMBus Arbiter Processor Priority Register (PMAPP)

PMBus Arbiter Sneak Access Control Register

Figure 5.16 PMBus Arbiter Sneak Access Control Register (PMASAC)

P

Description: Processor Priority. This two bit field contains the CPU priority used for PMBus arbitration.
Unlike the priority in the IPABM16C register which is used for CPU accesses to the IPBus, this
priority is used for access to DDR or devices on the memory and peripheral bus.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

P0

Description: Priority 0 Sneak Transaction Enable. When this bit is set, the CPU may be granted access to
the PMBus during otherwise idle cycles while a priority 0 master is granted ownership of the
IPBus or ownership is pending to a priority 0 master.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

P1

Description: Priority 1 Sneak Access Enable. When this bit is set, the CPU may be granted access to the
PMBus during otherwise idle cycles while a priority 1 master is granted ownership of the IPBus
or ownership is pending to a priority 1 master.

Initial Value: 0x0

PMAPP
031

2

P

30

0

PMASAC
031

1

P1

27

0

1

P2

1

P3

1

P0

1

POI
ence Manual 5 - 13 May 11, 2005

IDT Bus Arbitration Memory and Peripheral Bus Arbitration

79RC32438 User Refer

Notes
Memory and Peripheral Bus Arbitration
The RC32438 allows external bus masters on the memory and peripheral bus. An external bus master

asserts the bus request (BRN) input to the RC32438 to request ownership of the memory and peripheral
bus.1 The RC32438 responds to the assertion of BRN by relinquishing ownership of the memory and
peripheral bus by asserting bus grant (BGN) and simultaneously tri-stating2 the following signals:

MADDR[25:0],
MDATA[15:0],
BWEN[1:0],
OEN,
RWN,
CSN[5:0],
BOEN,
BDIRN.

Read Value: Previous value written

Write Effect: Modify value

P2

Description: Priority 2 Sneak Transaction Enable. When this bit is set, the CPU may be granted access to
the PMBus during otherwise idle cycles while a priority 2 master is granted ownership of the
IPBus or ownership is pending to a priority 2 master.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

P3

Description: Priority 3 Sneak Transaction Enable. When this bit is set, the CPU may be granted access to
the PMBus during otherwise idle cycles while a priority 3 master is granted ownership of the
IPBus or ownership is pending to a priority 3 master.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

POI

Description: Park On IPBus. When the PMBus is idle, it is normally parked on the CPU. When the PMBus is
idle and this bit is set, the PMBus is parked on the IPBus.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

1. Once an external bus master has requested the bus by asserting BRN, it must keep BRN asserted until it is
granted the bus (i.e., it observes BGN asserted).
2. CSN[5:0] and BOEN shall have been in their negated state for at least one EXTCLK clock cycle before being tri-
stated. This is true when both the RC32438 or the external bus master relinquish ownership.
ence Manual 5 - 14 May 11, 2005

IDT Bus Arbitration Memory and Peripheral Bus Arbitration

79RC32438 User Refer

Notes
 When the external bus master observes BGN asserted, it owns the memory and peripheral bus and may
drive the above signals. The external bus master maintains BRN asserted during the entire time it owns the
memory and peripheral bus. It relinquishes ownership by negating BRN1 and tri-stating the above memory
and peripheral bus signals. The RC32438 acknowledges that external ownership of the bus has been relin-
quished by negating BGN2, and it begins driving the memory and peripheral bus signals. This process is
illustrated in Figure 5.17.

The RC32438 may request that an external bus master relinquish ownership of the memory and periph-
eral bus early, for example due to a higher priority internal pending transaction, by negating BGN while BRN
is asserted. When the external bus master observes this, it relinquishes ownership by negating BRN and tri-
stating the memory and peripheral bus signals. The RC32438 regains ownership and may drive the
memory and peripheral bus signals when it observes BRN negated. This process is illustrated in Figure
7.17. Since BRN is an asynchronous input to the RC32438, which is double sampled, it must be negated for
at least three EXTCLK clock cycles before being asserted.

When the RC32438 owns the memory and peripheral bus and there are no device controller transac-
tions in progress, the RC32438 may drive or tri-state the data bus (MDATA[15:0]).

Figure 5.17 External Bus Arbitration

Figure 5.18 External Bus Arbitration with RC32438 Requesting that Ownership Be Relinquished

1. Once an external bus master has relinquished ownership of the bus by negating BRN, it should not assert BRN
until the RC32438 acknowledges the negation of BRN by negating BGN.
2. It is guaranteed that the RC32438 will assert BGN for no less than three EXTCLK clock cycles.

EXTCLK

BRN

BGN

ownership

1 4 52 3

RC32438 Owns Bus RC32438 Owns BusExternal Bus Master Owns Bus

1. External bus master requests ownership of memory and peripheral bus by asserting BRN.
2. The RC32438 tri-states memory and peripheral bus signals and asserts BGN to indicate that it has relinquished ownership of the bus.
3. When the external bus master observes BGN asserted, it drives memory and peripheral bus signals.
4. External bus master relinquishes ownership of memory and peripheral bus by negating BRN.
5. The RC32438 acknowledges ownership and begins driving memory and peripheral bus signals.

EXTCLK

BRN

BGN

ownership

1 5 62 3

RC32438 Owns Bus RC32438 Owns BusExternal Bus Master Owns Bus

4

1. External bus master requests ownership of memory and peripheral bus by asserting BRN.
2. The RC32438 tri-states memory and peripheral bus signals and asserts BGN to indicate that it has relinquished ownership of the bus.
3. When the external bus master observes BGN asserted, it drives memory and peripheral bus signals.
4. The RC32438 requests that the external bus master relinquish ownership of the memory and peripheral bus by negating BGN
5. The external bus master relinquishes ownership of the memory and peripheral bus by negating BRN.
6. The RC32438 observes that ownership of the bus has been relinquished and begins driving memory and peripheral bus

signals.
ence Manual 5 - 15 May 11, 2005

IDT Bus Arbitration Memory and Peripheral Bus Arbitration

79RC32438 User Refer

Notes
ence Manual 5 - 16 May 11, 2005

Notes

79RC32438 User Reference Manual 6 - 1 M
Chapter 6
Device Controller
Introduction
The device controller on the RC32438 device provides a glueless interface to: SRAMs, ROMs/PROMs/

EEPROMs, dual port memories, and many peripheral devices. The device controller generates all of the
signals required to support both Intel and Motorola style peripherals and can directly control up to six
devices. Additional devices may be supported through external decoding of the address bus.

Features
Provides “glueless” interface to standard SRAM, Flash, ROM, dual-port memory, and peripheral
devices
Demultiplexed address and data buses

– 16-bit data bus
– 26-bit address bus
– 6 chip selects
– Supports alternate bus masters
– Control for external data bus buffers

Supports 8-bit and 16-bit width devices
– Automatic byte gathering and scattering

Flexible protocol configuration parameters
– Programmable number of wait states (0 to 63)
– Programmable postread/postwrite delay (0 to 31)
– Supports external wait state generation
– Supports Intel and Motorola style peripherals

Write protect capability per chip select
Programmable bus transaction timer generates warm reset when counter expires
Supports up to 64 MB of memory per chip select
Provides clocking for external devices on the memory and peripheral bus

Device Controller Register Description

Register Offset1 Register Name Register Function Size

0x01_0000 DEV0BASE Device 0 Base 32-bit

0x01_0004 DEV0MASK Device 0 Mask 32-bit

0x01_0008 DEV0C Device 0 Control 32-bit

0x01_000C DEV0TC Device 0 Timing control 32-bit

0x01_0010 DEV1BASE Device 1 Base 32-bit

0x01_0014 DEV1MASK Device 1 Mask 32-bit

0x01_0018 DEV1C Device 1 Control 32-bit

0x01_001C DEV1TC Device 1 Timing control 32-bit

0x01_0020 DEV2BASE Device 2 Base 32-bit

Table 6.1 Device Controller Register Map
ay 11, 2005

IDT Device Controller Theory of Operation

79RC32438 User Refer

Notes
Theory of Operation
The following memory and peripheral bus signals are managed by the device controller during device

transactions:
– MADDR[25:0] (address bus, MADDR[21:0] directly available as I/O pins, MADDR[25:22] are

GPIO alternate functions)
– MDATA[15:0] (data bus)
– OEN (output enable, may be used as Intel style read signal)
– BWEN[1:0] (byte write enables, may be used as Intel style write signals)
– RWN (Motorola style read/write signal)
– CSN[5:0] (chip selects)
– WAITACKN (configurable as Intel style wait signal or Motorola style transfer acknowledge signal)
– BOEN (external data bus buffer output enable)
– BDIRN (external data bus buffer direction).

All memory and peripheral bus transactions are synchronous to the master clock (EXTCLK). Therefore,
all of the timing parameters in the Device Control (DEVxC) and Device Timing Control (DEVxTC) registers
are in terms of master clock (EXTCLK) clock cycles.

0x01_0024 DEV2MASK Device 2 Mask 32-bit

0x01_0028 DEV2C Device 2 Control 32-bit

0x01_002C DEV2TC Device 2 Timing control 32-bit

0x01_0030 DEV3BASE Device 3 Base 32-bit

0x01_0034 DEV3MASK Device 3 Mask 32-bit

0x01_0038 DEV3C Device 3 Control 32-bit

0x01_003C DEV3TC Device 3 Timing control 32-bit

0x01_0040 DEV4BASE Device 4 Base 32-bit

0x01_0044 DEV4MASK Device 4 Mask 32-bit

0x01_0048 DEV4C Device 4 Control 32-bit

0x01_004C DEV4TC Device 4 Timing control 32-bit

0x01_0050 DEV5BASE Device 5 Base 32-bit

0x01_0054 DEV5MASK Device 5 Mask 32-bit

0x01_0058 DEV5C Device 5 Control 32-bit

0x01_005C DEV5TC Device 5 Timing control 32-bit

0x01_0060 BTCS Bus Timer Control and Status 32-bit

0x01_0064 BTCOMPARE Bus Transaction Timer Compare 32-bit

0x01_0068 BTADDR Bus Transaction Timer Address 32-bit

0x01_006C DEVDACS Device Decoupled Access Control and
Status

32-bit

0x01_0070 DEVDAA Device Decoupled Access Address 32-bit

0x01_0074 DEVDAD Device Decoupled Access Data 32-bit

0x01_0078 through 0x01_7FFF Reserved

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

Register Offset1 Register Name Register Function Size

Table 6.1 Device Controller Register Map
ence Manual 6 - 2 May 11, 2005

IDT Device Controller Theory of Operation

79RC32438 User Refer

Notes
 The endianess of the RC32438 is selected during boot configuration. Regardless of the selected endi-
aness, devices are connected to the RC32438 data bus in a right aligned manner, as shown in Figure 6.1.
8-bit device data is read and written on MDATA[7:0] and 16-bit device data is read and written on
MDATA[15:0].

Figure 6.1 Connecting Devices to the RC32438 Data Bus (Right Aligned)

The width of a device, 8-bits or 16-bits, is configured in the device size (DS) field of the device [0..5]
control register (DEV[0..5]C). The RC32438 performs byte gathering during read transactions and byte
scattering during write transactions, allowing word and half-word read and write operations to any size
device. The RC32438’s address bus is always driven with a byte address. 8-bit devices use MADDR[25:0],
and 16-bit devices use MADDR[25:1]. During write transactions to 16-bit, the byte write enable (BWEN[1:0])
signals are used to select byte lanes to be written.

The RC32438 supports four transaction types: a device read transaction, a burst device read transac-
tion, a device write transaction, and a burst device write transaction. Transaction parameters for each
device are programmed in the corresponding device [0..5] control register (DEV[0..5]C) and device [0..5]
timing control (DEV[0..5]TC) register. In particular, the wait/ack mode (WAM) bit in the DEVxC register
controls whether the WAITACKN signal operates as an Intel style wait signal or as a Motorola style
acknowledge signal. Although WAITACKN is classified as an asynchronous input, to support systems that
use master clock to generate it, asynchronous input setup and hold times are provided. If the setup and
hold times are met for the assertion of WAITACKN, then the RC32438 is guaranteed to recognize it
on a specific rising edge of the clock.

By configuring the programmable parameters in the DEVxC and DEVxTC registers, Intel and Motorola
style bus transactions may be generated. Burst read transactions to devices which do not support burst
reads may be disabled by clearing the burst read enable (BRE) bit in the corresponding DEVxC register.
Burst write transactions to devices which do not support burst writes may be disabled by clearing the burst
write enable (BWE) bit in the corresponding DEVxC register. All writes to a device may be disabled by
setting the write protect (WP) bit in the corresponding DEVxC register.

Address decoding for each device chip select is controlled by the device [0..5] base (DEV[0..5]BASE)
and device [0..5] mask (DEV[0..5]MASK) registers. The device mask register is used to select which bits
are used for address decoding. When a bit in this register is a one, the corresponding address bit is active
in address comparisons. If a bit in this register is a zero, then the corresponding address bit does not partic-
ipate in address comparisons. All of the active address bits not masked by the device mask register are
compared to the value in the device base register. If they all match, then the corresponding device chip
select is asserted.

The device controller provides the control signals necessary to control external buffers, such as
74FCT245s, on the data bus (MDATA[15:0]). The buffer output enable (BOEN) pin is the enable for such
buffers, while the external buffer direction (BDIRN) pin controls the direction. During device transactions,
the BDIRN output is always in the opposite state of the RWN pin. The BOEN output is asserted during
device transactions if the buffer enable (BE) bit is set in the DEVxC register.

bit 0

0 1

bit 15

16-bit Device

bit 0

0

bit 7

8-bit Device

Big Endian

bit 0

1 0

bit 15

16-bit Device

bit 0

0

bit 7

8-bit Device

Little Endian
ence Manual 6 - 3 May 11, 2005

IDT Device Controller Theory of Operation

79RC32438 User Refer

Notes
 Device zero is the boot device and contains the boot exception vector. Since read operations to this
device must take place before software can initialize the system, the DEV0C and DEV0TC registers must
have default values that allow the boot device to be read following a cold reset. Initial values for the DEVxC
and DEVxTC registers for all devices are summarized in Table 6.2. These values may be modified during
system initialization.

The RC32438 only reads data from a memory and peripheral bus device that is actually requested by
the CPU or external DMA. For these transactions, the RC32438 never “reads past” the ending address of a
transaction. For example, if the CPU reads a byte from a Memory and Peripheral Bus address, only that
byte is actually read from memory.

Note: This is not true for PCI masters and general DMA operations; data may be read past the
ending address of a transaction.

Table 6.2 shows the default values for the device configuration registers.

Register Field Initial
Value Description/Comment

DEVxC DS Boot
Configuration

Device Size. Boot configuration vector (Refer to the Boot Configuration
Vector section in Chapter 3).

BE 0x1 Buffer Enable. Initial value places the boot device on buffered data bus.

WP 0x1 Write Protect. Initial value disables writes to the boot device.

BRE 0x0 Burst Read Enable. Burst reads are disabled from the boot device.

BWE 0x0 Burst Write Enable. Burst writes are disabled to the boot device.

RWS 0x3F Read Wait States. Initially configured for maximum number of wait states.

WWS 0x3F Write Wait States. Initially configured for maximum number of wait states.

WAM 0x0 Wait/Ack Mode. Initially configured for wait mode.

CSD 0xF Chip Select Delay. Initially configured for maximum delay.

OED 0xF Output Enable Delay. Initially configured for maximum delay.

BWD 0xF Byte Write Enable Delay. Initially configured for maximum delay.

DEVxTC PRD 0xF Postread Delay. Initially configured for maximum delay.

PWD 0xF Postwrite Delay. Initially configured for maximum delay.

WDH 0x7 Write Data Hold. Initially configured for maximum delay.

CSH 0x3 Chip Select Hold. Initially configured for maximum delay.

Table 6.2 Default Values for Device Configuration Registers
ence Manual 6 - 4 May 11, 2005

IDT Device Controller Device Control Registers

79RC32438 User Refer

Notes
 Device Control Registers

Device [0..5] Base Register

Figure 6.2 Device [0..5] Base Register (DEV[0..5]BASE)

Device [0..5] Mask Register

Figure 6.3 Device [0..5] Mask Register (DEV[0..5]MASK)

BASEADDR

Description: Base Address. This field specifies the upper 16-bits of the device space base address.

Initial Value: 0x0 (Device 0 has an initial value of 0x1C00)

Read Value: Previous value written

Write Effect: Modify value

MASK

Description: Address Mask. This field determines which bits of the upper 16-bits of the address participate in
address comparisons. When a bit is set in this field, then the corresponding address bit partici-
pates in address comparisons. When a bit is cleared in this field, then the corresponding address
bit is masked and does not participate in address comparisons.

When the MASK field is zero, the device is disabled and does not appear in the memory map.

Initial Value: 0x0 (Device 0 has an initial value of 0xFC00)

Read Value: Previous value written

Write Effect: Modify value

DEV[0..5]BASE
031

16 16

BASEADDR 0

DEV[0..5]MASK
031

16 16

MASK 0
ence Manual 6 - 5 May 11, 2005

IDT Device Controller Device Control Registers

79RC32438 User Refer

Notes
 Device [0..5] Control Register

Figure 6.4 Device [0..5] Control Register (DEV[0..5]C)

DS

Description: Device Size. This field specifies the data path width of the device.
0 8-bit device
1 16-bit device
2 reserved
3 reserved

Initial Value: Boot configuration parameter (Refer to the Boot Configuration Vector section in Chapter 3).

Read Value: Previous value written

Write Effect: Modify value

BE

Description: Buffer Enable. When this bit is set, accesses to the device cause the BOEN signal to be
asserted during device transactions.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

WP

Description: Write Protect. When this bit is set, writes to the device are disabled.
0 Writes to the device are enabled
1 Writes to the device are disabled

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

CSD

Description: Chip Select Delay. This field contains the delay in clock cycles by which the assertion of chip
select (CSNx) is delayed from the start of a transaction. Programming this value to be greater
than or equal to RWS or WWS causes CSNx not be asserted in the transaction.

Initial Value: 0xF

Read Value: Previous value written

Write Effect: Modify value

DEV[0..5]C
1631

RWS

6

015

2

DS

1

BE

4

CSD

1

WP

1

BRE

1

BWE

1

WAM WWS

6

4

OED

4

BWD

1

0

ence Manual 6 - 6 May 11, 2005

IDT Device Controller Device Control Registers

79RC32438 User Refer

Notes
 OED

Description: Output Enable Delay. This field contains the delay in clock cycles by which the assertion of out-
put enable (OEN) is delayed from the start of a read transaction. Programming this value to be
greater than or equal to RWS causes OEN not be asserted in the transaction.

Initial Value: 0xF

Read Value: Previous value written

Write Effect: Modify value

BWD

Description: Byte Write Enable Delay. This field contains the delay in clock cycles by which the assertion of
the byte write enable signals (BWEN[1:0]) are delayed from the start of a write transaction. Pro-
gramming this value to be greater than or equal to WWS causes BWEN[1:0] not be asserted in
the transaction.

Initial Value: 0xF

Read Value: Previous value written

Write Effect: Modify value

RWS

Description: Read Wait States. This field specifies the number of wait states during device read transactions.
A value of zero in this field causes read transactions to be performed as though the RWS value
was one. The RWS field must be initialized to a value greater than one if WAITACKN is config-
ured as a wait input (see the WAM field below) which may be asserted during the transaction.

Initial Value: 0x3F

Read Value: Previous value written

Write Effect: Modify value

WWS

Description: Write Wait States. This field specifies the number of wait states during device write transac-
tions. A value of zero in this field is treated as a WWS value of one.
The WWS field must be initialized to a value greater than one if the device is configured to sup-
port burst device write transactions and WAITACKN is configured as a wait input which may be
asserted during the transaction.

Initial Value: 0x3F

Read Value: Previous value written

Write Effect: Modify value

BRE

Description: Burst Read Enable. When this bit is set, the device controller performs burst device read trans-
actions whenever possible. When this bit is cleared, burst device read transactions are never
generated to the device.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 6 - 7 May 11, 2005

IDT Device Controller Device Control Registers

79RC32438 User Refer

Notes
Device [0..5] Timing Control Register

Figure 6.5 Device [0..5] Timing Control Register (DEV[0..5]TC)

BWE

Description: Burst Write Enable. When this bit is set, the device controller performs burst device write trans-
actions whenever possible. When this bit is cleared, burst device write transactions are never
generated to the device.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

WAM

Description: Wait/Ack Mode. This bit controls the operation of the WAITACKN signal. When this bit is a one,
the WAITACKN signal operates as a Motorola style active low transfer acknowledge signal.
When this bit is a zero, the WAITACKN signal operates as an Intel style active low wait signal.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PRD

Description: Postread Delay. This field contains the delay, in clock cycles, from when the RC32438 clocks in
data from the data bus during a device read transaction until the start of a new transaction. Pro-
gramming this value to zero results in a postread delay of one clock cycle.
If PRD or PWD is equal or less than CSH, chip select may remain asserted between transactions
to the same device (i.e., back-to-back transactions).

Initial Value: 0xF

Read Value: Previous value written

Write Effect: Modify value

PWD

Description: Postwrite Delay. This field contains the delay, in clock cycles, from when the RC32438 negates
the byte write enable signals during a device write transaction until the start of a new transaction.
Programming this value to zero results in a postread delay of one clock cycle.
If PRD or PWD is equal or less than CSH, chip select may remain asserted between transactions
to the same device (i.e., back-to-back transactions).
If PWD is equal or less than WDH and BWD is zero, the byte write enable signals may remain
asserted between write transactions to the same device (i.e., back-to-back write transactions).

Initial Value: 0xF

Read Value: Previous value written

Write Effect: Modify value

DEV[0..5]TC
031

19

0

4

PRD

4

PWD

3

WDH

2

CSH
ence Manual 6 - 8 May 11, 2005

IDT Device Controller Memory And Peripheral Bus Transaction Timer

79RC32438 User Refer

Notes
Memory And Peripheral Bus Transaction Timer
When enabled, the memory and peripheral bus transaction timer times all the memory and peripheral

bus transactions. The memory and peripheral bus transaction timer is enabled by setting the bus transac-
tion timer enable (BTE) bit in the BTCS register.

At the start of each memory and peripheral bus transaction in which the bus transaction timer is
enabled, an internal 16-bit counter is initialized to zero. The counter increments with each passing external
clock (EXTCLK) clock cycle until the bus transaction completes. If the counter value ever exceeds the value
in the Compare (COMPARE) field in the Bus Timer Compare (BTCOMPARE) register, then a bus transac-
tion timer time-out occurs.

When the bus transaction timer times-out, the following actions occur:
– The bus transaction timer time out (BTO) bit in the BTCS register is set
– The address of the transaction which caused the time out is recorded in the bus transaction timer

address (BTADDR) register
– The type of bus transaction (i.e., read or write) is recorded in the transaction type (TT) field of the

BTCS register
– A warm reset is generated
– Compare field is initialized to 0xFFFF and the bus transaction timer is enabled.

Only devices on the memory and peripheral bus with an Intel style wait signal or Motorola style transfer
acknowledge signal can cause the bus transaction timer to time out.

WDH

Description: Write Data Hold. This field contains the delay, in clock cycles, from when the RC32438 negates
the byte write enable signals during a device write transaction until the buffer output enable
(BOEN) is negated and the data bus (MDATA[15:0]) is tri-stated. Buffer output enable is negated
and the data bus is tri-stated when PWD expires regardless of the value of this field.

Initial Value: 0x7

Read Value: Previous value written

Write Effect: Modify value

CSH

Description: Chip Select Hold. This field contains the delay, in clock cycles, from when the RC32438
negates the byte write enable signals during a device write transaction or when output enable is
negated during a device read transaction until the chip select signal is negated. Chip select is
negated when PRD/PWD expires regardless of the value of this field.

Initial Value: 0x3

Read Value: Previous value written

Write Effect: Modify value
ence Manual 6 - 9 May 11, 2005

IDT Device Controller Memory And Peripheral Bus Transaction Timer

79RC32438 User Refer

Notes
 Bus Transaction Timer Control and Status Register

Figure 6.6 Bus Timer Control and Status Register (BTCS)

Bus Transaction Timer Compare Register

Figure 6.7 Bus Transaction Timer Compare Register (BTCOMPARE)

TT

Description: Transaction Type. This bit records the transaction type (read or write) of the first transaction in
which the bus transaction timer timed-out.
0 write transaction
1 read transaction

Initial Value: Undefined (this field is not modified due to a warm reset)

Read Value: Current value

Write Effect: Modify Value

BTO

Description: Bus Transaction Timer Time-out. When the bus transaction timer times-out, this bit is set.

Initial Value: 0x0

Read Value: Status (this field is not modified due to a warm reset)

Write Effect: Sticky bit1

1. A sticky bit is set by the hardware and can only be cleared by the CPU.

BTE

Description: Bus Transaction Timer Enable. When this bit is set, the bus transaction timer is enabled. When
the bus transaction timer is enabled all memory and peripheral bus transactions are timed.

Initial Value: 0x1 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

BTCS
031

29

0

1

TT

1

BTO

1

BTE

BTCOMPARE
031

16 16

0 COMPARE
ence Manual 6 - 10 May 11, 2005

IDT Device Controller Device Read Transaction

79RC32438 User Refer

Notes
Bus Transaction Timer Address Register

Figure 6.8 Bus Transaction Timer Address Register (BTADDR)

Device Read Transaction
This section describes the device read transaction. The transaction involves five programmable timing

parameters:
Chip Select Delay (CSD). CSD may be programmed to be any value between 0 and 15 clock
cycles.
Output Enable Delay (OED). OED may be programmed to be any value between 0 and 15 clock
cycles.
Read Wait States (RWS). RWS may be programmed to be any value between 1 and 63 clock
cycles.
Postread Delay (PRD). PRD may be programmed to be any value between 0 and 15 clock cycles.
Chip Select Hold Delay (CSH). CSH may be programmed to be any value between 0 and 3 clock
cycles.

COMPARE

Description: Bus Transaction Timer Compare Value. This field contains the maximum bus transaction timer
count value in the external clock (EXTCLK) clock cycles. If a bus transaction exceeds this num-
ber of clock cycles then the bus transaction timer times-out.

Initial Value: 0xFFFF

Read Value: Previous value written

Write Effect: Modify value

ADDR

Description: Address. This field contains the physical address of the transaction in which the bus transaction
timer time out occurred.

Initial Value: Undefined (this field is not modified due to a warm reset)

Read Value: Current value

Write Effect: Read-only

BTADDR
031

32

ADDR
ence Manual 6 - 11 May 11, 2005

IDT Device Controller Device Read Transaction

79RC32438 User Refer

Notes
Figure 6.9 Generic Device Read Transaction1

The device read transaction, with WAITACKN configured as a wait input, consists of the following steps.
1. The RC32438 drives the address bus (MADDR[25:0]), drives RWN high and BDIRN low, and asserts

BOEN2 on the rising edge of EXTCLK. This indicates the start of a transaction.
2. CSD clock cycles after step one, the RC32438 asserts the appropriate chip select (CSNx).
3. OED clock cycles after step one, the RC32438 asserts output enable (OEN).
4. If WAITACKN is not asserted during the transaction, then RWS clock cycles after step one the

RC32438 clocks in the data from the data bus (MDATA[15:0]), negates OEN and BOEN.
If WAITACKN is asserted during the transaction, then the RWS field is ignored from that point on.
The RC32438 clocks in the data on the data bus (MDATA[15:0]), negates OEN and BOEN one clock
cycle after it samples WAITACKN negated.

5. CSH clock cycles after step four, the RC32438 negates chip select.
6. PRD clock cycles after step four, the RC32438 may modify the address on the address bus

(MADDR[25:0]) and may begin a new transaction (the postread delay provides time for slow devices
to get off the bus before issuing another transaction).

Figure 6.10 illustrates the effect of asserting the WAITACKN signal when it is configured as a wait signal.
In this transaction, even though RWS + PRD was programed for eight clock cycles the transaction
completes in seven clock cycles. This is because WAITACKN was asserted during the third clock cycle in
the transaction and was negated during the fourth clock cycle. This caused the RC32438 to clock in the
data on the fifth clock cycle and terminate the transaction early. The transaction could have been extended
beyond eight clock cycles by holding WAITACKN asserted for several clock cycles.

1. The programmable parameters shown in this figure are for illustrative purposes only and may be varied.
2. BOEN is only asserted if the buffer enable (BE) bit is set in the device control register (DEVxC).

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Transaction

CSD

OED

RWS PRD

CSH

Address Valid

Data Valid

Transaction

BOEN

WAITACKN
ence Manual 6 - 12 May 11, 2005

IDT Device Controller Device Read Transaction

79RC32438 User Refer

Notes
 When configured as a wait signal, WAITACKN must be asserted at least two clock cycles prior to the
end of RWS. WAITACKN assertions after this point are ignored. Thus, to use WAITACKN in this mode RWS
must have a value greater than or equal to three.

Figure 6.10 Device Read Transaction1 (WAITACKN Configured As Wait)

The WAITACKN signal may be configured as an Intel style wait signal or as a Motorola style transfer
acknowledge signal. Up to this point, this section has only considered WAITACKN configured as a wait
signal. When WAITACKN is configured as transfer acknowledge, then the read wait states (RWS) value is
ignored and the assertion of WAITACKN signals the completion of the transaction.

Figure 6.11 Device Read Transaction1 (WAITACKN Configured As Transfer Acknowledge)

The device read transaction, with WAITACKN configured as a transfer acknowledge input, consists of
the following steps.

1. The RC32438 drives the address bus (MADDR[25:0]), drives RWN high and BDIRN low, and asserts
BOEN2 on the rising edge of EXTCLK. This indicates the start of a transaction.

2. CSD clock cycles after step one, the RC32438 asserts the appropriate chip select (CSNx).
3. OED clock cycles after step one, the RC32438 asserts output enable (OEN).
4. The external device asserts WAITACKN once it has driven valid data onto the data bus and is ready

for the transaction to complete.

1. The programmable parameters shown in this figure are for illustrative purposes only and may be varied.
2. BOEN is only asserted if the buffer enable (BE) bit is set in the device control register (DEVxC).

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Transaction

CSD

OED

RWS

CSH

Address Valid

Data Valid

Transaction

PRD

BOEN

WAITACKN

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Transaction

CSD

OED

PRD

CSH

Address Valid

Data Valid

Transaction

BOEN

WAITACKN
ence Manual 6 - 13 May 11, 2005

IDT Device Controller Burst Device Read Transaction

79RC32438 User Refer

Notes
 5. One clock cycle after the RC32438 samples WAITACKN asserted, it clocks in the data on the data
bus (MDATA[15:0]), and negates OEN and BOEN.

6. CSH clock cycles after step five, the RC32438 negates CSNx.
7. When the external device observes that CSNx is negated, it tri-states the data bus and negates

WAITACKN.
8. PRD clock cycles after step five, the RC32438 may modify the address on the address bus

(MADDR[25:0]) and may begin a new transaction (the postread delay provides time for slow devices
to get off the bus before issuing another transaction).

Burst Device Read Transaction
The burst device read transaction is enabled by setting the burst read enable bit (BRE) in the device

control register. When this bit is set, consecutive read transactions to the same device, such as during
cache refills and DMA operations, may be performed in a back-to-back manner as shown in Figure 6.12.
Burst device read transactions do not support WAITACKN configured as a transfer acknowledge input.
Regardless of the state of WAM in the DEVxC register, wait mode is selected. When configured as a wait
signal, WAITACKN must be asserted at least two clock cycles prior to the end of RWS. WAITACKN asser-
tions after this point are ignored. Thus, to use WAITACKN in this mode RWS must have a value greater
than or equal to three.

During burst device read transactions the CSNx, OEN, and BOEN signals remain asserted between
read operations. The postread delay is inserted only after the last read operation in the transaction. All
programmable parameters are exactly the same as in a device read transaction described in “Device Read
Transaction” on page 6-11. A burst device read transaction may consist of two or more read operations.
The RC32438 provides no indication as to the number of read operations in the transaction.

Figure 6.12 Generic Burst Device Read Transaction1

The burst device read transaction consists of the following steps.
1. The RC32438 drives the address bus (MADDR[25:0]), drives RWN high and BDIRN low, and asserts

BOEN2 on the rising edge of EXTCLK. This indicates the start of a transaction.
2. CSD clock cycles after step one, the RC32438 asserts the appropriate chip select (CSNx).
3. OED clock cycles after step one, the RC32438 asserts output enable (OEN).
4. If WAITACKN is not asserted during the transaction, then RWS clock cycles after step one the

RC32438 clocks in the data from the data bus (MDATA[15:0]) and modifies the address on the
address bus (MADDR[25:0]).
If WAITACKN is asserted during the transaction, then the RWS field is ignored from that point until

1. The programmable parameters shown in this figure are for illustrative purposes only and may be varied.
2. BOEN is only asserted if the buffer enable (BE) bit is set in the device control register (DEVxC).

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Transaction

CSD

RWS PRD

CSH

Address Valid

Data 1

Transaction

OED

RWS

Data 2

RWS

Data 3

RWS

Data 4

Address Valid Address Valid Address Valid

BOEN

WAITACKN
ence Manual 6 - 14 May 11, 2005

IDT Device Controller Device Write Transaction

79RC32438 User Refer

Notes
 WAITACKN is negated. The RC32438 clocks in the data on the data bus (MDATA[15:0]) and modi-
fies the address on the address bus (MADDR[25:0]) in the clock cycle after it samples WAITACKN
negated.

5. After RWS clock cycles, if WAITACKN is not asserted during the transaction, the RC32438 clocks in
the data from the data bus (MDATA[15:0]) and if this is not the last read operation in the transaction,
it modifies the address on the address bus (MADDR[25:0]).
If WAITACKN is asserted during any point during the read operation, the RWS field is ignored from
that point until WAITACKN is negated. If this is not the last read operation in the transaction, then in
the clock cycle after the RC32438 samples WAITACKN negated it clocks in the data on the data bus
(MDATA[15:0]) and modifies the address on the address bus (MADDR[25:0]).

6. If there are more read operations in the burst device read transaction, go to step five.
7. CSH clock cycles after step five, the RC32438 negates chip select.
8. PRD clock cycles after step five, the RC32438 may modify the address on the address bus

(MADDR[25:0]) and may begin a new transaction (the postread delay provides time for slow devices
to get off the bus before issuing another transaction).

Figure 6.13 illustrates the effect of asserting the WAITACKN signal when it is configured as a wait signal
in a burst device read transaction. The transaction in this example had RWS programmed as three clock
cycles and consists of two read operations. The first read operation completed in three clock cycles, as
programmed. The assertion of WAITACKN during the second read operations extends the operations to
four clock cycles.

Figure 6.13 Burst Device Read Transaction1

Device Write Transaction
This section describes the device write transaction. The transaction involves six programmable timing

parameters:
Chip Select Delay (CSD). CSD may be programmed to be any value between 0 and 15 clock
cycles.
Byte Write Enable Delay (BWD). BWD may be programmed to be any value between 0 and 15
clock cycles.
Write Wait States (WWS). WWS may be programmed to be any value between 1 and 63 clock
cycles.
Postwrite Delay (PWD). PWD may be programmed to be any value between 0 and 15 clock cycles.
Chip Select Hold Delay (CSH). CSH may be programmed to be any value between 0 and 3 clock
cycles.
Write Data Hold Delay (WDH). WDH may be programmed to be any value between 0 and 7 clock
cycles.

1. The programmable parameters shown in this figure are for illustrative purposes only and may be varied.

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

BOEN

Transaction

CSD

PRD

CSH

Address Valid

Transaction

OED

Data 1 Data 2

Address Valid

WAITACKN

RWS
ence Manual 6 - 15 May 11, 2005

IDT Device Controller Device Write Transaction

79RC32438 User Refer

Notes
Figure 6.14 Generic Device Write Transaction1

The device write transaction, with WAITACKN configured as a wait input, consists of the following steps.
1. The RC32438 drives the address bus (MADDR[25:0]), drives RWN low and BDIRN high, asserts

BOEN1, and drives the data to be written on the data bus (MDATA[15:0]) on the rising edge of
EXTCLK. This indicates the start of a transaction.

2. CSD clock cycles after step one, the RC32438 asserts the appropriate chip select (CSNx).
3. BWD clock cycles after step one, the RC32438 asserts the appropriate byte write enables

(BWEN[1:0]).
4. If WAITACKN is not asserted during the transaction, the WWS clock cycles after step one the

RC32438 negates all byte write enables (BWEN[1:0]).
If WAITACKN is asserted during the transaction, the WWS field is ignored from that point on. The
RC32438 negates all byte write enables in the clock cycle after it samples WAITACKN negated.

5. CSH clock cycles after step four, the RC32438 negates chip select.
6. WDH clock cycles after step four, the RC32438 negates BOEN and tri-states the data bus

(MDATA[15:0]).
7. PWD clock cycles after step four, the RC32438 may modify the address on the address bus

(MADDR[25:0]) and may begin a new transaction.
When configured as a wait signal, WAITACKN must be asserted at least two clock cycles prior to the

end of WWS. WAITACKN assertions after this point are ignored. Thus, to use WAITACKN in this mode,
WWS must have a value greater than or equal to three.

The device write transaction, with WAITACKN configured as a transfer acknowledge input, consists of
the following steps.

1. The RC32438 drives the address bus (MADDR[25:0]), drives RWN low and BDIRN high, asserts
BOEN1, and drives the data to be written on the data bus (MDATA[15:0]) on the rising edge of
EXTCLK. This indicates the start of a transaction.

2. CSD clock cycles after step one, the RC32438 asserts the appropriate chip select (CSNx).
3. BWD clock cycles after step one, the RC32438 asserts the appropriate byte write enables

(BWEN[1:0]).
4. The external device asserts WAITACKN once it has captured the data on the data bus and is ready

for the transaction to complete.
5. CSH clock cycles after the RC32438 samples WAITACKN asserted, the RC32438 negates CSNx.
6. When the external device observes that CSNx is negated, it negates WAITACKN.
7. WDH clock cycles after the RC32438 samples WAITACKN asserted, the RC32438 negates BOEN.
8. PWD clock cycles after the RC32438 samples WAITACKN asserted, it tri-states the data bus

(MDATA[15:0]), may modify the address on the address bus (MADDR[25:0]), and may begin a new
transaction.

1. BOEN is only asserted if the buffer enable (BE) bit is set in the device control register (DEVxC).

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Transaction

CSD

WWS PWD

CSH

Address Valid

Transaction

Data Valid

WDH

BWD

BOEN

WAITACKN
ence Manual 6 - 16 May 11, 2005

IDT Device Controller Burst Device Write Transaction

79RC32438 User Refer

Notes
 Burst Device Write Transaction
The burst device write transaction is enabled by setting the burst write enable bit (BWE) in the device

control register. When this bit is set, consecutive write transactions to the same device, such as occur
during DMA operations, may be performed in a back-to-back manner. Burst device write transactions do not
support WAITACKN configured as a transfer acknowledge input. When configured as a wait signal, WAIT-
ACKN must be asserted at least two clock cycles prior to the end of WWS. WAITACKN assertions after this
point are ignored. Thus, to use WAITACKN in this mode, WWS must have a value greater than or equal to
three.

During burst device write transactions CSNx, appropriate BWEN[1:0], and BOEN signals remain
asserted between write operations. The postwrite delay is inserted only after the last write operation in the
transaction. All programmable parameters are exactly the same as in a device write transaction described
in section “Device Write Transaction” on page 6-15. A burst device write transaction may consist of two or
more write operations. The RC32438 provides no indication as to the number of write operations in the
transaction.

Figure 6.15 Generic Burst Device Write Transaction1

The burst device write transaction consists of the following steps.
1. The RC32438 drives the address bus (MADDR[25:0]), drives RWN low and BDIRN high, asserts

BOEN2, and drives the data to be written on the data bus (MDATA[15:0]) on the rising edge of
EXTCLK. This indicates the start of a transaction.

2. CSD clock cycles after step one, the RC32438 asserts the appropriate chip select (CSNx).
3. BWD clock cycles after step one, the RC32438 asserts the appropriate byte write enables

(BWEN[1:0]).
4. If WAITACKN is not asserted during the transaction, the WWS clock cycles after step one the

RC32438 drives the next data to be written on the data bus (MDATA[15:0]) and modifies the address
on the address bus (MADDR[25:0]).
If WAITACKN is asserted during the transaction, the WWS field is ignored from that point until WAIT-
ACKN is negated. The RC32438 drives the next data to be written on the data bus (MDATA[15:0])
and modifies the address on the address bus (MADDR[25:0]) in the clock cycle after it samples
WAITACKN negated.

5. After WWS clock cycles, if WAITACKN is not asserted during the transaction, the RC32438 clocks
in the data from the data bus (MDATA[15:0]) and, if this is not the last write operation in the trans-
action, modifies the address on the address bus (MADDR[25:0]).
If WAITACKN is asserted during any point during the read operation, the WWS field is ignored from

1. The programmable parameters shown in this figure are for illustrative purposes only and may be varied.
2. BOEN is only asserted if the buffer enable (BE) bit is set in the device control register (DEVxC).

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

BOEN

Transaction

CSD

WWS PWD

CSH

Address Valid

Data 1

Transaction

BWD

WWS WWS WWS

Address Valid Address Valid Address Valid

Data 2 Data 3 Data 4

WDH

WAITACKN
ence Manual 6 - 17 May 11, 2005

IDT Device Controller Decoupled CPU Device Transactions

79RC32438 User Refer

Notes
 that point until WAITACKN is negated. In the clock cycle after the RC32438 samples WAITACKN
negated, if this is not the last write operation in the transaction, it drives the next data to be written
on the data bus (MDATA[15:0]) and modifies the address on the address bus (MADDR[25:0]).

6. If there are more writes operations in the burst device write transaction, go to step five.
7. CSH clock cycles after step five, the RC32438 negates chip select.
8. WDH clock cycles after step five, the RC32438 negates BOEN.
9. PWD clock cycles after step five, the RC32438 tri-states the data bus (MDATA[15:0]), may modify

the address on the address bus (MADDR[25:0]), and may begin a new transaction.

Decoupled CPU Device Transactions
CPU accesses to a device on the memory and peripheral bus may take a significantly longer time to

complete than normal PMBus transactions. One reason for this is the fact that the memory and peripheral
bus can run at one eighth the frequency of the PMBus. Other reasons are wait states, post read delays, and
post write delays.

Locking up the PMBus may have adverse affects on the real-time performance of the system. For
example, it may lead to Ethernet FIFO overflows and underflows. Since the PMBus does not support split
transactions there is no way to avoid this issue with traditional CPU read and write operations. To avoid
locking up the PMBus, the device controller supports decoupled CPU accesses. Decoupled CPU accesses
allow CPU device read and write operations to complete without locking up the PMBus. The CPU encodes
the type of operation (read or write) in the OP field and the size of the operation (byte, halfword, triple-byte,
word) in the SIZE field.

All multi-byte decoupled read and write operations must be contained in a single word (e.g., it is invalid
to initiate a decoupled read from a byte address of 0x3 or a word read from a non-word aligned address).
Initiating a multi-byte decoupled read or write operation that crosses a word boundary results in undefined
data and the Error (ERR) bit being set in the DEVDACS register.

To initiate a read operation, the CPU writes a local address that maps to a device to the DEVDAA
register. The CPU write completes on the PMBus without delay. A read of the size specified in the SIZE field
is then performed from the device address written. When the read completes, the data read from the device
updates the DATA field of the DEVDAD register and the F bit is set.

To initiate a write operation, the CPU writes the data to be written to the DATA field of the DEVDAD
register and then writes the address to be written to the DEVDAA register. Both writes complete without
delay. A write of the size specified in the SIZE field is then performed to the device using data from the
DEVDAD register. When the write completes, the F bit is set. The F bit is presented to the interrupt handler
as an interrupt source.

If an error occurs during the device operation or if the address written to the DEVDAA register does not
map to a device on the memory and peripheral bus, then the error (ERR) bit is set in the DEVDACS register
when the F bit is set.

Note: It is recommended that direct CPU device accesses be used only to execute code from
device space and that CPU device accesses to slow external devices use decoupled CPU device
transactions.
ence Manual 6 - 18 May 11, 2005

IDT Device Controller Decoupled CPU Device Transactions

79RC32438 User Refer

Notes
 Device Decoupled Access Control and Status Register

Figure 6.16 Device Decoupled Access Control and Status Register (DEVDACS)

OP

Description: Operation. This field encodes the decoupled access operation.
0 - write
1 - read

SIZE

Description: Size. This field encodes the size of the decoupled access operation.
0 - byte
1 - halfword
2 - triple byte
3 - word

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

ERR

Description: Error. This bit is set if an error occurred while executing a decoupled access operation. The ERR
bit is set under the following conditions:
- Decoupled access to an address that does not map to a device
- Multi-byte decoupled access that crosses a word boundary
- Memory and peripheral bus transaction time-out during a decoupled access

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

F

Description: Finished. This bit is set when a decoupled access operation completes.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

B

Description: Busy. This bit is set when a decoupled access operation is in progress.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

DEVDACS
031

0

26

OP

1

ERR

1

F

1

SIZE

2

B

1

ence Manual 6 - 19 May 11, 2005

IDT Device Controller Decoupled CPU Device Transactions

79RC32438 User Refer

Notes
 Device Decoupled Access Address Register

Figure 6.17 Device Decoupled Access Address Register (DEVDAA)

Device Decoupled Access Data Register

Figure 6.18 Device Decoupled Access Data Register (DEVDAD)

ADDR

Description: Address Field. Writing to this register initiates a decoupled access operation to the address writ-
ten to this field. The type of operation is defined by the OP field in the DEVDACS register.

Initial Value: 0x0

Read Value: 0x0

Write Effect: Initiate a decoupled access operation.

DATA

Description: Data Field. This register contains the return value of the previous decoupled access operation or
the value to be written to the device. Data quantities in this field are always right aligned. There-
fore, word operations use all four byte lanes. Triple-byte operations always use the right three
bytes leaving DATA[31:24] undefined. Word operations always use the right two bytes leaving
DATA[31:16] undefined. Finally, byte operations always use the right most byte leaving
DATA[31:8] undefined.

Initial Value: 0x0

Read Value: Return value of previous decoupled access operation (value read from device for read opera-
tions, or value written to device for write operations)

Write Effect: Modify value

DEVDAA
031

ADDR

32

DEVDAD
031

DATA

32
ence Manual 6 - 20 May 11, 2005

Notes

79RC32438 User Reference Manual 7 - 1 M
Chapter 7
DDR Controller
Introduction
This chapter describes the features, functions, and operations of the Double Data Rate (DDR) controller.

A complete description of the DDR registers is also included.

Features
Supports up to 2GB of DDR SDRAM (using data bus multiplexing and two chip selects)
2 chip selects (each chip select supports 4 internal DDR banks)
Supports 16-bit or 32-bit data bus width using 8, 16, or 32-bit devices
Supports 64 Mb, 128 Mb, 256 Mb, 512 Mb, and 1Gb DDR SDRAM devices
Data bus multiplexing support allows interfacing to standard DDR DIMMs and SODIMMs
Automatic refresh generation
Provides clock signals required for control of external memory devices

Additional Resources
 IDT has developed an application note that focuses on designing an interface between the RC32438

and DDR memory and provides some layout considerations. This document — AN-371, Interfacing the
RC32438 with DDR SDRAM Memory — can be found on the company’s web site at www.idt.com.

DDR Controller Register Description

Theory of Operation
The DDR controller provides a glueless interface to industry standard Double Data Rate (DDR)

Synchronous Dynamic Random Access Memories (SDRAMs). The DDR controller may be configured to
support a 32-bit or 16-bit data path. When a 16-bit data path is selected, the DDR controller performs byte

Register Offset1

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

Register Name Register Function Size

0x01_8000 DDR0BASE DDR 0 base 32-bit

0x01_8004 DDR0MASK DDR 0 mask 32-bit

0x01_8008 DDR1BASE DDR 1 base 32-bit

0x01_800C DDR1MASK DDR 1 mask 32-bit

0x01_8010 DDRC DDR control 32-bit

0x01_8014 DDR0ABASE DDR 0 alternate base 32-bit

0x01_8018 DDR0AMASK DDR 0 alternate mask 32-bit

0x01_801C DDR0AMAP DDR 0 alternate mapping 32-bit

0x01_8020 DDRCUST DDR Custom transaction 32-bit

0x01_8024 DDRRDC DDR Read Data Capture 32-bit

0x01_8028 through 0x01_FFFF Reserved

Table 7.1 DDR Controller Register Map
ay 11, 2005

http://www.idttools.com/hal5/getDoc.taf?PartID=79RC32438&DocTypes=AN
http://www.idttools.com/hal5/getDoc.taf?PartID=79RC32438&DocTypes=AN

IDT DDR Controller Theory of Operation

79RC32438 User Refer

Notes
 gathering and scattering. The DDR controller provides two chip selects (DDRCSN[1:0]) with each chip
select supporting four internal DDR banks. The DDR configuration for both chip selects must be the same.
The supported DDR organizations are shown in Table 7.2.

The RC32438 has a dedicated DDR bus that is managed by the DDR controller. The DDR bus consist of
the following pins:

DDRCKP[1:0] and DDRCKN[1:0] (two sets of differential clock outputs)
DDRCKE (DDR clock enable)
DDRCSN[1:0] (DDR chip selects)
DDRRASN (DDR row address strobe)
DDRCASN (DDR column address strobe)
DDRWEN (DDR write enable)
DDRDM[7:0] (DDR byte write mask)
DDRBA[1:0] (DDR bank address)
DDRADDR[13:0] (multiplexed DDR address bus)]
DDRDATA[31:0] (DDR data bus)
DDRDQS[3:0] (DDR byte data strobes)
DDROEN[3:0] (bus switch enables used when data bus multiplexing is enabled)
DDRVREF (SSTL_2 DDR voltage reference generated by an external source)

DDR Size and
Type

DDR
Organization

Total Memory
per Chip Select
in 16-bit Mode1

1. Four times the memory is available with data bus multiplexing.

Total Memory
per Chip Select
in 32-bit Mode2

2. Twice the memory is available with data bus multiplexing.

64Mb Components 2M x 8 x 4 banks 16MB 32MB

1M x 16 x 4 banks 8MB 16MB

512K x 32 x 4 banks Not Applicable 8MB

128Mb Components 4M x 8 x 4 banks 32MB 64MB

2M x 16 x 4 banks 16MB 32MB

1M x 32 x 4 banks Not Applicable 16MB

256Mb Components 8M x 8 x 4 banks 64MB 128MB

4M x 16 x 4 banks 32MB 64MB

2M x 32 x 4 banks Not Applicable 32MB

512Mb Components 16M x 8 x 4 banks 128MB 256MB

8M x 16 x 4 banks 64MB 128MB

4M x 32 x 4 banks Not Applicable 64MB

1024Mb Components 32M x 8 x 4 banks 256MB 512MB

16M x 16 x 4 banks 128MB 256MB

8M x 32 x 4 banks Not Applicable 128MB

Table 7.2 Supported DDR Configurations
ence Manual 7 - 2 May 11, 2005

IDT DDR Controller Theory of Operation

79RC32438 User Refer

Notes
 Two sets of differential DDR clocks (DDRCKP[1:0] and DDRCKN[1:0]) are provided to ease loading
constraints and board design. Both clocks have the same frequency, which is equal to the IPBus clock
(ICLK), and phase relationship. All DDR transactions are synchronous to these clocks. Thus, all of the
timing parameters in the DDR Control (DDRC) register are in terms of DDR clock cycles.

The DDR controller contains a single control register (DDRC) since DDRs connected to both chip
selects must share a common configuration. The DDR controller supports only sequential burst lengths of
two. This burst length refers to the burst length value programmed in the DDR’s MODE register. By pipe-
lining addresses issued to the DDR, the RC32438 can support burst read and write transactions of any
length. The Data Bus Width (DBW) field in this register selects the width of the DDR controller data bus
(either 16-bits or 32-bits).

During DDR transactions, the address bus is multiplexed as shown in Table 7.3 for 32-bit data width
mode and in Table 7.4 for 16-bit data width mode. The exact address multiplexing is dependent on the DDR
device type selected in the device type (DTYPE) field of the DDRC register. Selecting a DTYPE results in
the same multiplexing as that for 64Mb devices organized as 2M x 8 x 4 banks. Address and bank select
signals connect directly to the corresponding DDR pins in both 16-bit and 32-bit data path modes (i.e., no
address shifting is required for x16 and x32 DDR organizations).

Each chip select supports four page comparators. Although each page comparator is 14 bits in size, not
all bits are used in all DDR configurations. When the CPU performs a read or write operation to DDR space,
the page comparator associated with the selected DDR bank is checked. If the bank was left active and the
value in the comparator matches the DDR row address, then the access can be made without first closing
the currently active page and opening a different page. Otherwise, if the active page in the comparator does
not match the DDR row address, then the active page must first be closed (i.e., precharged) and the correct
page opened (i.e., made active) before the access may be performed. Finally, if no page is active in the
bank, the required page must first be opened (i.e., made active) before the access may be performed.

The DDR controller normally operates with a DDR data strobe per byte lane (i.e., DDRDQS[1:0] in 16-bit
data bus width mode and DDRDQS[3:0] in 32-bit data bus width mode). Some DDR devices have a single
data byte strobe for ALL byte lanes (e.g., x32 DDR devices in a TQFP package). When the Single Data
Strobe (SDS) bit is set in the DDRC register, DDRDQS[0] is used for all byte lanes.

DDR Address Multiplexing Scheme

DDR
Organization Cycle

DDR
Bank DDR Address

1 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0

64Mb 2Mx8x4 banks
(9-bit page)

Row a24 a23 x1 x a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a24 a23 x x x AP2 x a10 a9 a8 a7 a6 a5 a4 a3 a2

64Mb 1Mx16x4 banks
(8-bit page)

Row a23 a22 x x a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10

Column a23 a22 x x x AP x x a9 a8 a7 a6 a5 a4 a3 a2

64Mb 512Kx32x4banks
(8-bit page)

Row a22 a21 x x x a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10

Column a22 a21 x x x x x AP a9 a8 a7 a6 a5 a4 a3 a2

128Mb 4Mx8x4 banks
(10-bit page)

Row a25 a24 x x a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12

Column a25 a24 x x x AP a11 a10 a9 a8 a7 a6 a5 a4 a3 a2

128Mb 2Mx16x4 banks
(9-bit page)

Row a24 a23 x x a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a24 a23 x x x AP x a10 a9 a8 a7 a6 a5 a4 a3 a2

128Mb 1Mx32x4 banks
(8-bit page)

Row a23 a22 x x a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10

Column a23 a22 x x x x x AP a9 a8 a7 a6 a5 a4 a3 a2

Table 7.3 DDR Address Multiplexing in 32-bit Mode (Part 1 of 2)
ence Manual 7 - 3 May 11, 2005

IDT DDR Controller Theory of Operation

79RC32438 User Refer

Notes
256Mb 8Mx8x4 banks
(10-bit page)

Row a26 a25 x a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12

Column a26 a25 x x x AP a11 a10 a9 a8 a7 a6 a5 a4 a3 a2

256Mb 4Mx16x4 banks
(9-bit page)

Row a25 a24 x a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a25 a24 x x x AP x a10 a9 a8 a7 a6 a5 a4 a3 a2

256Mb 2Mx32x4 banks
(8-bit page)

Row a24 a23 x a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10

Column a24 a23 x x x x x AP a9 a8 a7 a6 a5 a4 a3 a2

512Mb 16Mx8x4 banks
(11-bit page)

Row a27 a26 x a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13

Column a27 a26 x x a12 AP a11 a10 a9 a8 a7 a6 a5 a4 a3 a2

512Mb 8Mx16x4 banks
(10-bit page)

Row a26 a25 x a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12

Column a26 a25 x x x AP a11 a10 a9 a8 a7 a6 a5 a4 a3 a2

512Mb 4Mx32x4 banks
(9-bit page)

Row a25 a24 x a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a25 a24 x x x x a10 AP a9 a8 a7 a6 a5 a4 a3 a2

1024Mb 32Mx8x4 banks
(11-bit page)

Row a28 a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13

Column a28 a27 x x a12 AP a11 a10 a9 a8 a7 a6 a5 a4 a3 a2

1024Mb16Mx16x4 banks
(10-bit page)

Row a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12

Column a27 a26 x x x AP a11 a10 a9 a8 a7 a6 a5 a4 a3 a2

1024Mb 8Mx32x4 banks
(9-bit page)

Row a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a26 a25 x x x x a10 AP a9 a8 a7 a6 a5 a4 a3 a2

1. Don’t care.
2. Auto Precharge.

DDR
Organization Cycle

DDR
Bank DDR Address

1 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0

64Mb 2Mx8x4 banks
(9-bit page)

Row a23 a22 x1 x a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10

Column a23 a22 x x x AP2 x a9 a8 a7 a6 a5 a4 a3 a2 a1

64Mb 1Mx16x4 banks
(8-bit page)

Row a22 a21 x x a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9

Column a22 a21 x x x AP x x a8 a7 a6 a5 a4 a3 a2 a1

128Mb 4Mx8x4 banks
(10-bit page)

Row a24 a23 x x a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a24 a23 x x x AP a10 a9 a8 a7 a6 a5 a4 a3 a2 a1

128Mb 2Mx16x4 banks
(9-bit page)

Row a23 a22 x x a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10

Column a23 a22 x x x AP x a9 a8 a7 a6 a5 a4 a3 a2 a1

256Mb 8Mx8x4 banks
(10-bit page)

Row a25 a24 x a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a25 a24 x x x AP a10 a9 a8 a7 a6 a5 a4 a3 a2 a1

256Mb 4Mx16x4 banks
(9-bit page)

Row a24 a23 x a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10

Column a24 a23 x x x AP x a9 a8 a7 a6 a5 a4 a3 a2 a1

Table 7.4 DDR Address Multiplexing in 16-bit Mode (Part 1 of 2)

DDR
Organization Cycle

DDR
Bank DDR Address

1 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 7.3 DDR Address Multiplexing in 32-bit Mode (Part 2 of 2)
ence Manual 7 - 4 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
DDR Command Encoding

DDR Registers

DDR Control Register

Figure 7.1 DDR Control Register (DDRC)

512Mb 16Mx8x4 banks
(11-bit page)

Row a26 a25 x a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12

Column a26 a25 x x a11 AP a10 a9 a8 a7 a6 a5 a4 a3 a2 a1

512Mb 8Mx16x4 banks
(10-bit page)

Row a25 a24 x a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a25 a24 x x x AP a10 a9 a8 a7 a6 a5 a4 a3 a2 a1

1024Mb 32Mx8x4 banks
(11-bit page)

Row a27 a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12

Column a27 a26 x x a11 AP a10 a9 a8 a7 a6 a5 a4 a3 a2 a1

1024Mb 16Mx16x4 banks
(10-bit page)

Row a26 a25 a24 a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11

Column a26 a25 x x x AP a10 a9 a8 a7 a6 a5 a4 a3 a2 a1

1. Don’t care.
2. Auto Precharge.

Command Description DDRRASN DDRCASN DDRWEN

NOP No operation H H H

ACTIVE Select active bank and row L H H

READ Select bank and column, perform
read

H L H

WRITE Select bank and column, perform
write

H L L

AUTO-REFRESH Enter auto-refresh mode L L H

PRECHARGE Deactivate row in bank or banks L H L

Table 7.5 DDR Command Encoding

DDR
Organization Cycle

DDR
Bank DDR Address

1 0 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Table 7.4 DDR Address Multiplexing in 16-bit Mode (Part 2 of 2)

DDRC
1631

RE

1

CL

2

RCD

2

AP

1

RP

2

RFC

4

015

0

5

DTYPE DBW

1

2

ATP

2

WR

3

ATA

SDS

1

DBM

1

5

ence Manual 7 - 5 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes

ATA

Description: Active to Active/Auto Refresh. This field specifies the minimum number of DDR clock cycles
between an Active and a subsequent Active or Auto Refresh command.
0 5 clock cycles
1 6 clock cycles
2 7 clock cycles
3 8 clock cycles
4 9 clock cycles
5 10 clock cycles
6 11 clock cycles
7 12 clock cycles

Initial Value: 0x3 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

DBW

Description: Data Bus Width. This field specifies the width of the DDR control data bus.
0 16-bit data bus width
1 32-bit data bus width

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

WR

Description: Write Recovery. This field specifies the minimum number of DDR clock cycles from the comple-
tion of a WRITE operation to a PRECHARGE command.
0 3 clock cycles
1 4 clock cycles
2 5 clock cycles
3 6 clock cycles

Initial Value: 0x3 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value
ence Manual 7 - 6 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
 DTYPE

Description: DDR Device Type. This field selects the DDR device type.
0 64Mb, 512K x 32 x 4
1 64Mb, 1M x 16 x 4
2 64Mb, 2M x 8 x 4
3 reserved
4 128Mb, 1M x 32 x 4
5 128Mb, 2M x 16 x 4
6 128Mb, 4M x 8 x 4
7 reserved
8 256Mb, 2M x 32 x 4
9 256Mb, 4M x 16 x 4
10 256Mb, 8M x 8 x 4
11 reserved
12 reserved
13 512Mb, 4M x 32 x 4
14 512Mb, 8M x 16 x 4
15 512Mb, 16M x 8 x 4
16 reserved
17 1Gb, 8M x 32 x 4
18 1Gb, 16M x 16 x 4
19 1Gb, 32M x 8 x 4
20 reserved
.
.
.
31 reserved

Initial Value: 0x1 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

RFC

Description: Refresh Clock Cycles. This field specifies the AUTO Refresh command period in DDR clock
cycles. Permissible values are zero through 15. A value of zero has the same effect as program-
ming this field to one.

Initial Value: 0xF (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

RP

Description: Precharge Delay. This field specifies the number of DDR clock cycles between a PRECHARGE
command and a subsequent row access.
0 1 clock cycle
1 2 clock cycles
2 3 clock cycles
3 4 clock cycles

Initial Value: 0x3 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value
ence Manual 7 - 7 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
 AP

Description: Auto Precharge Enable. This field controls the value driven on Auto Precharge (shown as “AP”
in Tables 7.3 and 7.4) bit during DDR transactions. If auto precharge is enabled, the row being
accessed is precharged at the completion of a read or write transaction.
0 Auto precharge disabled (AP=0).
1 Auto precharge enabled (AP=1).

Initial Value: 0x1 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

RCD

Description: Active to Read or Write Delay. This field specifies the minimum number of DDR clock cycles
between the issuing of a DDR ACTIVE command and a READ or WRITE command.
0 1 clock cycle
1 2 clock cycles
2 3 clock cycles
3 4 clock cycles

Initial Value: 0x2 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

CL

Description: CAS Latency. This field contains the CAS latency value in DDR clock cycles.
0 2 clock cycles
1 2.5 clock cycles
2 3 clock cycles
3 4 clock cycles

Initial Value: 0x2 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

DBM

Description: Data Bus Multiplexing. When this bit is set, data bus multiplexing is enabled. For more informa-
tion, refer to the DDR Data Bus Multiplexing section in this chapter.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

SDS

Description: Single Data Strobe. The DDR controller normally operates with a DDR data strobe per byte lane
(i.e., DDRDQS[1:0] in 16-bit data bus width mode and DDRDQS[3:0] in 32-bit data bus width
mode). Some DDR devices have a single data byte strobe for ALL byte lanes. When this bit is
set, DDRDQS[0] is used for all byte lanes.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value
ence Manual 7 - 8 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
DDR Read Data Capture Register

Figure 7.2 shows the PCLK1 edges which can be configured for DDR read data capture. The edges
shown correspond to the PCLK edges which will capture the first data word of the read transaction (i.e.,
DDRDATA[31:0] = D0). Subsequent data words are captured with subsequent PCLK positive edges. Note
that the capturing edges are relative to the CAS latency (CL) programmed in the DDRC register. Figure 7.2
shows the capturing edges when CL = 2. As a rule, the first capture edge (CES=0) is always the positive
PCLK edge corresponding to CL + 1/2 DDRCKP edges from the time the first read command is issued
(DDRCMD = READ).2

ATP

Description: Active To Precharge. This field specifies the minimum number of DDR clock cycles from an
ACTIVE command to READ or WRITE command with auto precharge (this field corresponds to
the tRAS(MIN) DDR timing parameter).
0 5 clock cycles
1 6 clock cycles
2 7 clock cycles
3 8 clock cycles

Initial Value: 0x3 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

RE

Description: Refresh Enable. When this bit is set and the DDR refresh timer expires, a DDR refresh transac-
tion is queued. When this bit is cleared, a DDR refresh transaction is never generated regardless
of the state of the refresh timer.

Initial Value: 0x1 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Value: Modify value

1. PCLK is the internal clock used by the DDR Controller.
2. DDRCMD represents the concatenation of DDRRASN, DDRCASN, and DDRWEN.
ence Manual 7 - 9 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes

Y
y

Figure 7.2 DDR Read Data Capture Edge Select Configurations

The selection of which PCLK edge is used to capture data depends on the read data access loop delay
(i.e., DDRCKPx -> DDRDATA) of a system. This selection has to take into account the PCLK->DDRCKP
delay, as well as DDRCKP and DDRDATA board delays. For systems with a short read data access loop
delay, CES may be configured to 0 or 1. For systems with a long read data access loop delay, CES may be
configured to 2 or 3. The user must do a careful analysis of the board delays when programming CES.

When the ACE bit is set (recommended), the DDR Controller automatically determines which PCLK
edge should be used to capture the read data (i.e., the CES field is ignored). In this mode the user must
only ensure that the read data access loop delay does not exceed one DDRCKP cycles.

Figure 7.3 DDR Read Data Capture Register (DDRRDC)

CES

Description: Capture Edge Select. This bit controls the PCLK edge used to capture data during a DDR read
transaction when the Auto Capture Enable (ACE) bit is cleared.
0 - Capture data on early positive edge of PCLK that corresponds to the negative edge of

DDRCKP[1:0]
1 - Capture data on early positive edge of PCLK that corresponds to the positive edge of

DDRCKP[1:0]
2 - Capture data on late positive edge of PCLK that corresponds to the negative edge of

DDRCKP[1:0]
3 - Capture data on late positive edge of PCLK that corresponds to the positive edge of

DDRCKP[1:0]

Col A0

NOP RD NOP NOP NOP NOP NOP NOP NOP

BNKx

D0 D1

PCLK (INTERNAL)

DDRCKPx

DDRCKNx

DDRCSNx

DDRADDR[13:0]

DDRCMD

DDRCKE

DDRBA[1:0]

DDRDM[7:0]

DDROEN[3:0]

DDRDQSx

DDRDATA[Y:0]

 0 1 2 3
CAPTURE EDGE SELECT (CES)

 CL

* Range may be [15:0] or [31:0] depending on whether the DDR controller is configured for x16 or x32 mode.

*

031

DDRRDC

29 2

0 CES

1

ACE
ence Manual 7 - 10 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
DDR Address Mapping

The DDR banks can be located anywhere in the RC32438’s local address space. The address of the
DDR banks corresponding to each DDR chip select can be allocated independently.

Address decoding for each DDR chip select is controlled by the DDR base (DDR[1|0]BASE) and DDR
mask (DDR[1|0]MASK) registers. The DDR mask register is used to select which bits are used for address
decoding. When a bit in this register is a one, the corresponding address bit is active in address compari-
sons. If a bit in this register is a zero, then the corresponding address bit does not participate in address
comparisons. The base address register specifies the base physical address for each DDR chip select. All
of the active address bits not masked by the DDR mask register are compared to the value in the DDR base
register. If they all match, then the corresponding DDR chip select is asserted.

To facilitate PCI booting from a DDR-only memory system, an alternate address mapping range is
supported for DDR chip select zero (see Figure 7.4). The alternate address range is configured using the
DDR alternate base (DDR0ABASE) and DDR alternate mask (DDR0AMASK) registers. The DDR alternate
mapping (DDR0AMAP) register specifies the value of DDR address bits that are mapped by the DDR mask
register. This allows the DDR address to be offset from the RC32438’s local address.

The normal and alternate base and mask registers for DDR chip select zero allow two RC32438 local
address ranges to be mapped to the same DDR chip select. Care should be exercised when using this
feature to ensure data cache coherence.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Value: Modify value

ACE

Description: Auto Capture Enable. When this bit is set the DDR controller automatically determines the
PCLK edge used to capture data during a DDR read transaction.

Initial Value: 0x1 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Value: Modify value
ence Manual 7 - 11 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
Figure 7.4 DDR0 Alternate Address Mapping

DDR [0|1] Base Register

Figure 7.5 DDR [0|1] Base Register (DDR[0|1]BASE)

BASEADDR

Description: Base Address. This 16-bit field specifies the upper 16 bits of the DDR base address.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

DDR0BASE

DDR0ABASE

DDR0MASK

DDR0AMASK

 DDR0

 DDR0 ALTERNATE

 Physical Address

Physical Memory
DDRCSN[0]

DDR0

DDR0

DDR0 & DDR0 ALT
Overlap
Region

DDR0AMAP

 Mapping

NOTES:

1. Register DDR0AMAP controls the location of the overlap region within DDR0 space. The Mapping Logic substitutes address bits that

Logic

 participate in address comparison (i.e., non-masked bits) with the corresponding bits in the DDR0AMAP register.

2. Only DDR chip-select 0 (DDRCSN[0]) supports alternate mapping.

DDR[0|1]BASE
031

16 16

BASEADDR 0
ence Manual 7 - 12 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
 DDR [0|1] Mask Register

Figure 7.6 DDR [0|1] Mask Register (DDR[0|1]MASK)

DDR 0 Alternate Base Register

Figure 7.7 DDR 0 Alternate Base Register (DDR0ABASE)

MASK

Description: Address Mask. This field determines which bits of the upper 16-bits of the address participate in
address comparisons. When a bit is set in this field, then the corresponding address bit partici-
pates in address comparisons. When a bit is cleared in this field, then the corresponding address
bit is masked and does not participate in address comparisons.
When the MASK field is zero, the DDR space is disabled and does not appear in the memory
map.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

BASEADDR

Description: Base Address. This 16-bit field specifies the upper 16 bits of the alternate DDR 0 base address.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

DDR[0|1]MASK
031

16

MASK

16

0

DDR0ABASE
031

16 16

BASEADDR 0
ence Manual 7 - 13 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
 DDR 0 Alternate Mask Register

Figure 7.8 DDR 0 Alternate Mask Register (DDR0AMASK)

DDR 0 Alternate Mapping Register

Figure 7.9 DDR 0 Alternate Mapping Register (DDR0AMAP)

DDR Data Bus Multiplexing

The DDR controller supports data bus multiplexing when the Data Bus Multiplexing (DBM) bit is set in
the DDRC register. Data bus multiplexing allows the RC32438’s 16-bit or 32-bit data bus1 to interface to
DDR memory systems having a data bus width of 64-bits. This is necessary when interfacing the RC32438
to standard DDR memory modules such as DDR DIMMs and SODIMMs.

To support data bus multiplexing, external bus switches must be placed between the RC32438 and
external DDR memory banks. These bus switches are used to isolate unused data bits and strobes from
the RC32438 allowing 16-bit or 32-bit data quantities to be read from a 64-bit bus. The RC32438
DDROEN[3:0] pins are output enabled for these buffers.

MASK

Description: Address Mask. This field determines which bits of the upper 16-bits of the address participate in
address comparisons. When a bit is set in this field, then the corresponding address bit partici-
pates in address comparisons. When a bit is cleared in this field, then the corresponding address
bit is masked and does not participate in address comparisons.
When the MASK field is zero, the alternate DDR space is disabled and does not appear in the
memory map.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

MAP

Description: Map Address. This field contains the DDR mapping address for transactions mapped to DDR
chip select zero using the alternate address mapping range. Address bits that participated in
address comparison are substituted with values in this field.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

1. Mode is determined by the state of the Data Bus Width (DBW) bit in the DDRC register.

DDR0AMASK
031

16

MASK

16

0

DDR0AMAP
031

16 16

MAP 0
ence Manual 7 - 14 May 11, 2005

IDT DDR Controller DDR Registers

79RC32438 User Refer

Notes
 When data bus multiplexing is enabled, the address range allocated to a DDR chip select should be
expanded to twice the space allocated in a 32-bit mode system or four times the space allocated in a 16-bit
mode system by programming the corresponding base and mask registers. The 32-bit Mode section in
Figure 7.10 illustrates this address range expansion for a 32-bit mode system using 32M x 8 x 4 bank (i.e.,
1Gb) DDRs. Eight of these DDRs create a 64-bit data bus that interfaces to the RC32438’s 32-bit DDR data
bus through external bus switches as shown in Figure 7.11. The total space allocated for the DDR chip
select is 1GB. When an access is made to the lower 512 MB, the DDROEN[1:0] signals are asserted.
During writes to this region, the DDRDM[3:0] signals are used to select enabled byte lanes. When an
access is made to the upper 512 MB, the DDROEN[3:2] signals are asserted and DDRDM[7:4] are used to
select enabled byte lanes during writes.

Memory Range Memory Range

Figure 7.10 DDR Data Bus Multiplexing Address Range Expansion

Figure 7.11 32-bit Bank DDR Data Bus Multiplexing

Operation in 16-bit mode parallels that in 32-bit mode. Using the same DDR devices as in the above
example, a 16-bit mode system with data bus multiplexing has 4 regions per chip select as shown in the 16-
bit mode section of Figure 7.10. Eight of these DDRs create a 64-bit data bus that interfaces to the
RC32438’s 16-bit DDR data bus through external bus switches as shown in Figure 7.12. When an access is
made to the lower 256 MB, DDROEN[0] is asserted and DDRDM[1:0] are used to select byte lanes during
writes. When an access is made to the next 256 MB, DDROEN[1] is asserted and DDRDM[3:2] are used to
select byte lanes during writes. The pattern continues for the upper two memory regions.

256 MB DDRDM[1:0]
DDROEN[0]

256 MB DDRDM[3:2]
DDROEN[1]

256 MB DDRDM[5:4]
DDROEN[2]

256 MB DDRDM[7:6]
DDROEN[3]

512 MB DDRDM[3:0]
DDROEN[1:0]

512 MB DDRDM[7:4]
DDROEN[3:2]

 32-bit Mode 16-bit Mode

External
DDR
Bank

(32-bits)

DM

DQS

D

Bus Switch

OE

Bus Switch

OE

RC32438

4

4

32

4

DDRDM[3:0]

DDRDQS[3:0]

DDRDATA[31:0]

DDRDM[7:4]

DDROEN[1:0]

DDROEN[3:2]

2

2

CS

External
DDR
Bank

(32-bits)

DM

DQS

D

CS

DDRCSNx
ence Manual 7 - 15 May 11, 2005

IDT DDR Controller DDR Initialization

79RC32438 User Refer

Notes
Figure 7.12 16-bit Bank DDR Data Bus Multiplexing

DDR Initialization
DDR SDRAMs must be powered up and initialized in a predefined manner before they may be used.

See the DDR data sheet for power sequencing and timing initialization requirements. During a cold reset,
the RC32438 maintains DDRCKE at an LVCMOS low level to ensure that the DQ and DQS outputs of any
connected DDRs are tri-stated. CKE will remain at a LVCMOS low level until the first DDR custom transac-
tion is performed at which point CKE will take on the appropriate SSTL_2 low or high value or until the first
normal DDR transaction at which point CKE will take on an SSTL_2 high value. Note CKE will take on a
SSTL_2 high value whenever a non-custom DDR transaction is executed.

Each DDR contains two mode registers that define the specific mode of operation for the DDR. The first
mode register selects: the burst length, the burst type, CAS latency, and operating mode. The second, or
extended, mode register is used to reset the DLL within the DDR and to configure its operating parameters.
Both mode registers are programmed using a DDR LOAD MODE REGISTER command.

Note: Care should be taken when programming these registers. If not properly programmed, the
DDR SDRAM chips may inhibit the assertion of the DDRDQS signal, causing the RC32438
device to lock-up.

In order to support compatibility with a wide range of devices, the DDR controller does not directly
support DDR LOAD MODE REGISTER commands. Instead, this command must be synthesized using a
DDR custom transaction. To initiate a DDR custom transaction, one or both chip selects in the CS field of
the DDRCUST register are selected. The desired DDR command is then programmed by setting the BA,
CKE, CAS, RAS, WE, and CS fields to the desired state in the DDRCUST register. On the next decoded
DDR memory cycle, a transaction will be issued to the DDR with the command programmed in the

Bus Switch

OE

Bus Switch
OE

RC32438

2

2

16

2

DDRDM[1:0]

DDRDQS[1:0]

DDRDATA[15:0]

DDRDM[3:2]

DDROEN[0]

DDROEN[1]

Bus Switch

OE

Bus Switch

OE

DDROEN[2]

DDROEN[3]

2

2

DDRDM[5:4]

DDRDM[7:6]

External
DDR
Bank

(16-bits)

DM

DQS

D

CS

External
DDR
Bank

(16-bits)

DM

DQS

D

CS

External
DDR
Bank

(16-bits)

DM

DQS

D

CS

External
DDR
Bank

(16-bits)

DM

DQS

D

CS

DDRCSNx
ence Manual 7 - 16 May 11, 2005

IDT DDR Controller DDR Initialization

79RC32438 User Refer

Notes
 DDRCUST register. The chip select signals selected in the CS field are asserted for one clock cycle but the
state of the other control signals — DDRRASN, DDRCASN, DDRCKEN, and DDRWEN — reflect the state
programmed in the DDRCUST register until a new transaction is issued by the DDR controller. The DDR
address DDR bus (i.e., DDRADDR[13:0]) is driven with the CPU address bits (i.e., A[15:2]) that generated
the DDR custom transaction. Using this mechanism, most DDR commands, including LOAD MODE
REGISTER, may be synthesized by the CPU. Note that during a DDR custom transaction, no data is read
from or written to the DDR (i.e., the DDR data bus remains tri-stated). After the DDR custom transaction
completes, the value of the CS field in the DDRCUST register is automatically reset to zero.

DDR Custom Transaction Register

Figure 7.13 DDR Custom Transaction Register (DDRCUST)

CS

Description: DDR Chip Select. This field is used to enable a DDR custom transaction and specifies which
chip select(s) should be asserted during the transaction. After the DDR custom transaction com-
pletes, the value of this field is automatically reset to zero.

0 Neither DDRCSN[0] or DDRCSN[1] are asserted
1 DDRCSN[0] is asserted
2 DDRCSN[1] is asserted
3 DDRCSN[0] and DDRCSN[1] are both asserted

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written (or zero after a DDR custom transaction completes)

Write Effect: Modify value

WE

Description: DDR Write Enable. This field specifies the state of the DDRWEN signal during a DDR custom
transaction.

Initial Value: 0x1 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

RAS

Description: DDR RAS Status. This field specifies the state of the DDRRASN signal during a DDR custom
transaction.

Initial Value: 0x1 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

CAS

Description: DDR CAS Status. This field specifies the state of the DDRCASN signal during a DDR custom
transaction.

Initial Value: 0x1 (this field is not modified due to a warm reset)

DDRCUST
031

24

0 CKE CAS RAS

1

WE CS

2

BA

2 1 1 1
ence Manual 7 - 17 May 11, 2005

IDT DDR Controller DDR Refresh Timer

79RC32438 User Refer

Notes
DDR Refresh Timer
The DDR controller contains a refresh timer which may be used to automatically issue DDR refresh

transactions. The DDR refresh timer is a 16-bit timer which uses the IPBus clock (ICLK) as its time base.
When enabled, the counter begins counting up from zero. The current value of the counter may be deter-
mined by reading the COUNT field in the RCOUNT register. When the value in this count field is equal to
the COMPARE field of the RCOMPARE register, the refresh timer expires. This causes the TO bit in the
RTC register to be set, an DDR refresh transaction to be queued if the RE bit in the DDRC register is set,
and the counter to reset and begin counting up from zero.

When a refresh transaction is queued, the DDR controller waits for the DDR bus to become available
(i.e., current transaction to complete). A refresh transaction is then issued with both DDR chip selects
asserted. The DDR refresh timer may queue up to a maximum of eight refresh transactions. If the DDR
refresh timer attempts to queue more than eight refresh transactions, the Refresh Queue Exceeded (RQE)
bit is set in the RTC register and the refresh transaction is discarded.

When automatic generation of DDR refresh transactions is not required, the DDR refresh timer may be
used as a general purpose timer. This is done by setting the RE bit in the DDRC register to zero which
disables the queueing of DDR refresh transactions. The TO sticky bit in the RTC register is an input to the
interrupt controller.

Refresh Timer Count Register

Figure 7.14 Refresh Timer Count Register (RCOUNT)

Read Value: Previous value written

Write Effect: Modify value

CKE

Description: DDR Clock Enable. This field specifies the state of the DDRCKE signal during a DDR custom
transaction.

Initial Value: 0x1 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

BA

Description: DDR Bank Address. This field specifies the state of the DDRBA[1:0] signals during a DDR cus-
tom transaction.

Initial Value: 0x3 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

COUNT

Description: Current Count. This 16-bit field contains the current refresh timer count value.

Initial Value: 0x0000 (this field is not modified due to a warm reset)

RCOUNT
031

16 16

0 COUNT
ence Manual 7 - 18 May 11, 2005

IDT DDR Controller DDR Refresh Timer

79RC32438 User Refer

Notes
Refresh Timer Compare Register

Figure 7.15 Refresh Timer Compare Register (RCOMPARE)

Refresh Timer Control Register

Figure 7.16 Refresh Timer Control Register (RTC)

Read Value: Current refresh timer count

Write Effect: Read-only

COMPARE

Description: Compare Value. This 16-bit field contains the maximum refresh timer count value. When the
value in the RCOUNT register equals this value, the refresh timer expires. When the refresh
timer is enabled, writing to this register causes the refresh timer to abort its current count and
begin counting from zero.

Initial Value: 0xFFFF (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

CE

Description: Counter Enable. When this bit is set to a zero the refresh timer is disabled. Setting this bit to a
one enables the refresh timer. When enabled the refresh timer begins counting up from zero.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Previous value written

Write Effect: Modify value

TO

Description: Time-out. This bit is set to a one to indicate that the refresh timer has expired. Once this bit is set
it will remain set until a zero is written into this field by the CPU. This bit is not automatically
cleared when the CE bit is cleared. If both the counter timer and the CPU attempt to update this
field concurrently, the counter timer will take precedence.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

RCOMPARE
031

16 16

0 COMPARE

RTC
031

29

0 TO CE

1 1

RQE

1

ence Manual 7 - 19 May 11, 2005

IDT DDR Controller DDR Read Transaction

79RC32438 User Refer

Notes
DDR Read Transaction
This section describes the DDR read transaction. All DDR read transactions consist of a burst read of an

even number of 16-bit/32-bit data quantities.
The transaction involves four programmable parameters:

Active to Read or Write Delay (RCD). RCD may be programmed to be any value between 1 and 4
DDR clock cycles.
CAS Latency (CL). CL may be programmed to values between 2 and 4 DDR clock cycles.
Precharge Delay (RP). RP may be programmed to be any value between 1 and 4 DDR clock
cycles.
Active to Precharge (ATP). ATP may be programmed to be any value between 5 and 8 DDR clock
cycles.

When the auto precharge bit (AP) in the DDRC register is set, only the last read operation in the transac-
tion has the auto precharge address bit (i.e., DDRADDR[10] or DDRADDR[8] depending on the DDR type
and organization) address bit set. That is, only the last read operation performs an automatic precharge.

Figure 7.17 DDR SDRAM Read Transaction with Wrong Page Active in Bank (Bank Page Miss)1

RQE

Description: Refresh Queue Exceeded. This bit is set to a one to indicate that the refresh queue limit of eight
refresh transactions has been exceeded and that a DDR refresh transaction has been discarded.
This bit should never be set under normal operation.

Initial Value: 0x0 (this field is not modified due to a warm reset)

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

1. The programmable parameters shown in Figure 7.17 are for illustrative purposes only and may vary.

Row A Col A0 Col A2

NOP PRECHG NOP ACTV NOP RD RD NOP NOP NOP NOP PRECHG NOP

BNKx BNKx BNKx BNKx BNKx

D0 D1 D2 D3

DDRCKPx

DDRCKNx

DDRCSNx

DDRADDR[13:0]

DDRCMD

DDRCKE

DDRBA[1:0]

DDRDM[7:0]

DDROEN[3:0]

DDRDQSx

DDRDATA[Y:0]

 RP = 2 RCD = 2 CL = 2

ATP = 8

NOTES:
1. Y = 31 in 32-bit mode, 15 in 16-bit mode. Refer to DBW bit in DDRC register for details.
2. DDRCMD represents the concatenation of DDRRASN, DDRCASN, and DDRWEN.

Transaction READ TRANSACTION

 AP = 0

NEXT TRANSACTION
ence Manual 7 - 20 May 11, 2005

IDT DDR Controller DDR Write Transaction

79RC32438 User Refer

Notes
 A DDR SDRAM read transaction in which the wrong page is active in a bank is shown in Figure 7.17. If
no pages had been active, then the transaction would have started with the ACTIVE command (i.e., step
three below). If the correct page had been active (bank page hit), then the transaction would have started
with the READ command (i.e., step five below). A DDR SDRAM read transaction in which the wrong page is
active in a bank consists of the following steps.

1. The RC32438 asserts the appropriate DDR SDRAM chip select (DDRCSNx), drives the bank select
pins (DDRBA[1:0]) with the value of the bank to be precharged, drives the AP address bit low (see
Tables 7.3 and 7.4) to indicate that only that bank is to be precharged, and drives the PRECHARGE
command (see Table 7.5) on the rising edge of DDRCKPx. This indicates the start of a transaction.

2. One clock cycle after step #1, the RC32438 drives the NOP command (see Table 7.5).
3. RP clock cycles after step #1, the RC32438 drives the bank select pins (DDRBA[1:0]) with the value

of the bank to be accessed, drives the address bus (DDRADDR[13:0]) with the DDR SDRAM row
address, and drives the ACTIVE command (see Table 7.5) on the rising edge of DDRCKPx. Note
that step #2 is skipped if the value of RP = 1 (see DDRC Register).

4. One clock cycle after step #1, the RC32438 drives the NOP command (see Table 7.5).
5. RCD clock cycles after step #3, the RC32438 drives the address bus (DDRADDR[13:0]) with the

DDR SDRAM column address, and drives the READ command (see Table 7.5). Note that step #4
is skipped if the value of RCD = 1 (see DDRC register).

6. One clock cycle after step #5, the RC32438 may drive the NOP or READ command depending on
the amount of data to be read. Figure 7.17 shows a read of four words, and thus two read commands
are issued (each read command returns a pair of data). During the last read command issued, the
RC32438 may assert the auto-precharge (AP) bit of the address bus (see Tables 7.3 and 7.4)
depending on the state of the AP field in the DDRC register.

7. One clock cycle after step #6, the RC32438 drives the NOP command.
8. CL clock cycles after step #5, the RC32438 opens its input buffers and accepts the read data from

the data bus (DDRDATA[31:0]) as well as the DDR read data strobes (DDRDQS[3:0]). The input
buffers remain open until the data and strobes corresponding to the last read command reach the
RC32438.1

9. One clock cycle after the data and strobes for the last read command are accepted into the
RC32438, the appropriate DDRCSNx is negated, the transaction is completed, and a new transac-
tion may begin.

DDR Write Transaction
This section describes the DDR write transaction. All DDR write transactions consist of a burst write of

an even number of 16-bit/32-bit data quantities. The DDR byte write masks (DDRDM[7:0]) are used to
mask bytes which should not be modified.

The transaction involves four programmable parameters:
Active to Read or Write Delay (RCD). RCD may be programmed to be any value between 1 and 4
DDR clock cycles.
Precharge Delay (RP). RP may be programmed to be any value between 1 and 4 DDR clock
cycles.
Write Recovery (WR). WR may be programmed to any value between 1 and 4 DDR clock cycles.
Active to Precharge (ATP). ATP may be programmed to be any value between 5 and 8 DDR clock
cycles.

When the auto precharge bit (AP) in the DDRC register is set, only the last write operation in the trans-
action has the auto precharge address bit (i.e., DDRADDR[10] or DDRADDR[8] depending on the DDR
type and organization) address bit set. That is, only the last write operation performs an automatic
precharge.

1. The input buffers remain open for a maximum of (CL+ 2) DDRCKP cycles after the last read command is issued.
This puts an upper time limit on the read data access loop (DDRCKPx -> DDRDATA) of a system.
ence Manual 7 - 21 May 11, 2005

IDT DDR Controller DDR Write Transaction

79RC32438 User Refer

Notes
Figure 7.18 DDR SDRAM Write Transaction with Wrong Page Active in Bank (Bank Page Miss)1

A DDR SDRAM write transaction in which the wrong page is active in a bank is shown in Figure 7.18. If
no pages had been active, then the transaction would have started with the ACTIVE command (i.e., step
three below). If the correct page had been active (bank page hit), then the transaction would have started
with the WRITE command (i.e., step five below). A DDR SDRAM write transaction in which the wrong page
is active consists of the following steps.

1. The RC32438 asserts the appropriate DDR SDRAM chip select (DDRCSNx), drives the bank select
pins (DDRBA[1:0]) with the value of the bank to be precharged, drives the AP address bit low (see
Tables 7.3 and 7.4) to indicate that only that bank is to be precharged, and drives the PRECHARGE
command (see Table 7.5) on the rising edge of DDRCKPx. This indicates the start of a transaction.

2. One clock cycle after step #1, the RC32438 drives the NOP command (see Table 7.5).
3. RP clock cycles after step #1, the RC32438 drives the bank select pins (DDRBA[1:0]) with the value

of the bank to be accessed, drives the address bus (DDRADDR[13:0]) with the DDR SDRAM row
address, and drives the ACTIVE command (see Table 7.5) on the rising edge of DDRCKPx. Note
that step #2 is skipped if the value of RP = 1 (see DDRC Register).

4. One clock cycle after step one, the RC32438 drives the NOP command (see Table 7.5).
5. RCD clock cycles after step #3, the RC32438 drives the address bus (DDRADDR[13:0]) with the

DDR SDRAM column address, and drives the WRITE command (see Table 7.5). At this time the
RC32438 may also assert the appropriate buffer output enables (DDROEN[3:0]) if the DBM bit in
the DDRC register is set. Note that step #4 is skipped if the value of RCD = 1 (see DDRC register).

6. One clock cycle after step #5, the RC32438 may drive the NOP or WRITE command depending on
the amount of data to be written. Figure 7.18 shows a write of four words, and thus two write
commands are issued (each write command writes a pair of data). During the last write command
issued, the RC32438 may assert the auto-precharge (AP) bit of the address bus (see Tables 7.3 and
7.4) depending on the state of the AP field in the DDRC register.

1. The programmable parameters shown in Figure 7.18 are for illustrative purposes only and may vary.

RP = 2 RCD = 2 WR = 3

ATP = 8

Row A Col A0 Col A2

NOP PRECHG NOP ACTV NOP WR WR NOP NOP NOP NOP PRECHG NOP

BNKx BNKx BNKx BNKx BNKx

FF DM0 DM1 DM2 DM3 FF

D0 D1 D2 D3

DDRCKPx

DDRCKNx

DDRCSNx

DDRADDR[13:0]

DDRCMD

DDRCKE

DDRBA[1:0]

DDROEN[3:0]

DDRDM[7:0]

DDRDQSx

DDRDATA[Y:0]

 WRITE TRANSACTIONTransaction NEXT TRANSACTION
ence Manual 7 - 22 May 11, 2005

IDT DDR Controller DDR Refresh Transaction

79RC32438 User Refer

Notes
 7. A half clock cycle after step #6, the RC32438 starts driving the DDR data bus (DDRDATA[31:0]) as
well as the DDR data strobes (DDRDQS[3:0]). This ensures that the RC32438 meets the DDR
SDRAM’s write-preamble requirement.

8. A half clock cycle after step #7, the RC32438 starts to toggle the DDR data strobes (DDRDQS[3:0]).
For each write command issued, each strobe is toggled twice (first low to high and then high to low).
In Figure 7.18, two write commands are issued and thus each strobe is toggled four times. Note that
at this time the RC32438 also drives the DDR data bus (DDRDATA[31:0]) and DDR data masks
(DDRDM[7:0]) in such a way that for each data the DDR strobes toggle at the center of the data
window.

9. A half clock cycle after the RC32438 stops toggling the DDR data strobes, the RC32438 starts its
write recovery count (WR field of the DDRC register).

10. A full clock cycle after the RC32438 stops toggling the DDR data strobes, the RC32438 stops driving
the strobes and data bus. This ensures that the RC32438 meets the DDR SDRAM’s write-post-
amble requirement.1

11. WR-2 clock cycles after step #9, the RC32438 negates all buffer output enables (DDROEN[3:0]),
negates the appropriate DDRCSNx, the transaction is completed, and a new transaction may begin.

DDR Refresh Transaction
This section describes the DDR refresh transaction. The transaction involves three programmable

parameters:
Precharge Delay (RP). RP may be programmed to be any value between 1 and 4 DDR clock cycles
Refresh Clock Cycles (RFC). RFC may be programmed to be any value between 1 and 15 DDR
clock cycles.

Figure 7.19 DDR SDRAM Refresh Transaction with Active Pages2

1. The RC32438 meets the minimum write postamble requirement set by the DDR SDRAM specification. The
maximum limit for this parameter is not required to be met, even though DDR SDRAM specification has a value
for it. Not meeting this requirement does not affect the DDR SDRAM chip nor the RC32438’s bus turn-around
time.
2. The programmable parameters shown in Figure 7.18 are for illustrative purposes only and may vary.

 RP = 2 RFC = 7

AP=1

NOP PRECHG NOP AR NOP NOP NOP NOP NOP NOP NOP ACTV NOP

BNKx

DDRCKPx

DDRCKNx

DDRCSN[1:0]

DDRADDR[13:0]

DDRCMD

DDRCKE

DDRBA[1:0]

DDRDM[7:0]

DDROEN[3:0]

DDRDQS[3:0]

DDRDATA[31:0]

Transaction REFRESH TRANSACTION NEXT TRANSACTION
ence Manual 7 - 23 May 11, 2005

IDT DDR Controller DDR Custom Transaction

79RC32438 User Refer

Notes
 A DDR SDRAM refresh transaction is queued for execution whenever the DDR Refresh Timer expires
and the refresh enable bit (RE) in the DDRC register is set. If no active pages exists in any of the DDR
SDRAM banks, then the refresh transaction simply consists of an auto refresh command followed by RFC
clock cycles (i.e., the transaction starts with step three below). If there exists an active page in any of the
DDR SDRAMs, then a precharge-all command is first issued to deactivate all banks in all of the DDRs. This
is then followed by an auto-refresh command followed by RFC clock cycles. A DDR SDRAM refresh trans-
action with active pages is shown in Figure 7.19 and consists of the following steps.

1. The RC32438 asserts both DDR SDRAM chip selects (DDRCSN[1:0]), drives the AP address bit
high (see Tables 7.3 and 7.4) to indicate that all banks are to be precharged, and drives the
PRECHARGE command (see Table 7.5) on the rising edge of DDRCKPx. This indicates the start of
a transaction.

2. One clock cycle after step #1, the RC32438 drives the NOP command (see Table 7.5).
3. RP clock cycles after step #1, the RC32438 drives the AUTO-REFRESH command (see Table 7.5).

Note that step two is skipped if the value of RP = 1 (see DDRC register).
4. One clock cycle after step #3, the RC32438 drives the NOP command (see Table 7.5).
5. RFC clock cycles after step #4, the RC32438 negates the DDR SDRAM chip selects

(DDRCSN[1:0]), the transaction is completed, and a new transaction may begin.

DDR Custom Transaction
This section describes the SDRAM custom transaction. The transaction involves seven programmable

parameters:
DDR Chip Select (CS). CS may be programmed to select DDRCSN[0], DDRDCSN[1] or both
DDR Write Enable Status (WE). WE specifies the state of the DDRWEN pin during a DDR custom
transaction
DDR RAS Status (RAS). RAS specifies the state of the DDRRASN pin during a DDR custom trans-
action
DDR CAS Status (CAS). CAS specifies the state of the DDRCASN signal during a DDR custom
transaction
DDR Clock Enable Status (CKE). CKE specifies the state of the DDRCKE signal during a DDR cus-
tom transaction.
DDR Bank Address Status (BA). BA specifies the state of the DDRBA[1:0] signals during a DDR
custom transaction.
DDR Auto Precharge Enable (AP). AP specifies the state of the auto precharge address bit during
a DDR custom transaction.
ence Manual 7 - 24 May 11, 2005

IDT DDR Controller Example of DDR SDRAM Initialization

79RC32438 User Refer

Notes
Figure 7.20 DDR SDRAM Custom Transaction

A DDR SDRAM Custom transaction is shown in Figure 7.20 and consists of the following steps.

1. The CPU configures the programmable parameters in the DDRCUST register for the desired DDR
SDRAM custom transaction.

2. The CPU performs a write operation to DDR SDRAM space. This causes the RC32438 to assert the
chip selects (DDRCSNx) programmed in the CS field of the DDRCUST register, drive the address
bus (DDRADDR[13:0]) with the CPU address bits [15:2], drive the bank select pins (DDRBA[1:0])
with the value programmed in the BA field of the DDRCUST register, drive the DDRCKE pin with the
value programmed in the CKE field of the DDRCUST register, and drive the DDR SDRAM custom
command programmed in the RAS, CAS, and WE fields of the DDRCUST register. Note that the
DDRDM[7:0] and DDROEN[3:0] pins are automatically negated during custom transactions, and
that the DDRDATA[31:0] and DDRDQS[3:0] pins are not driven.

3. One clock cycle after step #2, the RC32438 negates all of the asserted chip selects and clears the
address and bank select pins. The DDR SDRAM custom command programmed in the DDRCUST
register continues to be driven until the next DDR transaction. At this point the transaction is
completed and a new transaction may begin.

4. Note that step #2 must be a write operation to DDR SDRAM space. Still, the write data for this oper-
ation is meaningless. Only the address bits [15:2] of the transaction are meaningful as they are
driven onto the DDRADDR[13:0] pins.

Example of DDR SDRAM Initialization
The EB438 board uses two Micron MT46V16M16 (4 Meg x 16 x 4 banks) DDR SDRAM devices tied to

DDRCSN[0].
The specifics of the DDR SDRAM devices are listed below:

#define DDR_CTL_BASE PHYS_TO_K1(0x18018010) /* DDR controller regs */

#define DATA_PATTERN 0xA5A5A5A5
#define RCOUNT PHYS_TO_K1(0x18028024)

A[15:2]

NOP NOP NOP Custom Custom Custom Custom Custom Custom Custom Custom ACTV NOP

Custom BNKx

DDRCKPx

DDRCKNx

DDRCSNx

DDRADDR[13:0]

DDRCMD

DDRCKE

DDRBA[1:0]

DDRDM[7:0]

DDROEN[3:0]

DDRDQS[3:0]

DDRDATA[31:0]

Transaction CUSTOM TRANS NEXT TRANSACTION
ence Manual 7 - 25 May 11, 2005

IDT DDR Controller Example of DDR SDRAM Initialization

79RC32438 User Refer

Notes

#define DDR0_BASE_VAL 0x00000000
#define DDR0_MASK_VAL 0xFC000000
#define DDR1_BASE_VAL 0x04000000
#define DDR1_MASK_VAL 0x00000000
#define DDR0_ABASE_VAL 0x08000000
#define DDR0_AMASK_VAL 0x00000000

#if MHZ == 100000000
#define DDRC_VAL_NORMAL 0x82984940
#define DDRC_VAL_AT_INIT 0x02984940
#define DDR_REF_CMP_VAL 0x0000030c
#elif MHZ == 133000000
#define DDRC_VAL_NORMAL 0xA32A4980
#define DDRC_VAL_AT_INIT 0x232A4980
#define DDR_REF_CMP_VAL 0x0000040e
#endif

#define DDR_REF_CMP_FAST 0x00000080
#define DDR_REF_CMP_VAL_OLD 0x00000080

#define DDR_CUST_NOP 0x0000003F
#define DDR_CUST_PRECHARGE 0x00000033
#define DDR_CUST_REFRESH 0x00000027
#define DDR_LD_MODE_REG 0x00000023
#define DDR_LD_EMODE_REG 0x00000063

/*
 * All generated addresses for DDR init during custom transactions are shifted
 * by two address lines - see spec for used DDR chip
 */
#define DDR_PRECHARGE_OFFSET 0x00001000 /* 0x0400 - 9-bit page*/
#define DDR_EMODE_VAL 0x00000000 /* 0x0000 */
#define DDR_DLL_RES_MODE_VAL 0x00000584 /* 0x0161 - Reset DLL, CL2.5 */
#define DDR_DLL_MODE_VAL 0x00000184 /* 0x0061 - CL2.5 */

#define DELAY_200USEC 25000 /* not exactly */

/*-------------- Initialize DDR Base and Mask Registers --------------------*/
ence Manual 7 - 26 May 11, 2005

IDT DDR Controller Example of DDR SDRAM Initialization

79RC32438 User Refer

Notes

 li t0, DDR_BASE

 /* Load the DDRC, reset Refresh Enable */
 li t1, DDRC_VAL_AT_INIT
 sw t1, 0x10(t0)

 sw zero, 0x4(t0)
 sw zero, 0xc(t0)
 sw zero, 0x18(t0)

 /* Store DDR0BASE */
 li t1, DDR0_BASE_VAL
 sw t1, 0x0(t0)

 /* Store DDR0MASK */
 li t1, DDR0_MASK_VAL
 sw t1, 0x4(t0)

 /* Store DDR1BASE */
 li t1, DDR1_BASE_VAL
 sw t1, 0x8(t0)

 /* Load DDR1MASK to disable DDR CS1 */
 li t1, DDR1_MASK_VAL
 sw t1, 0x0C(t0)

 /* Store DDR0ABASE */
 li t1, DDR0_BASE_VAL
 sw t1, 0x14(t0)

 /* Load DDR0AMASK to disable alternate Mapping */
 li t1, DDR0_AMASK_VAL
 sw t1, 0x18(t0)

 li t1, DDR_CUST_NOP /* Write to DDR Custom transaction register */
 sw t1, 0x20(t0)

 li t2, DATA_PATTERN
ence Manual 7 - 27 May 11, 2005

IDT DDR Controller Example of DDR SDRAM Initialization

79RC32438 User Refer

Notes
 li t1, 0xA0000000 | DDR0_BASE_VAL
 sw t2, 0x0(t1)

 /* Add 200 microseconds of delay */
 li t1, 0x0
 li t2, DELAY_200USEC
1:
 add t1, 1
 bne t1, t2, 1b
 nop

 /* Register t0 carries pointer to the DDR_BASE: 0xB8018000 */
 li t1, DDR_CUST_PRECHARGE
 sw t1, 0x20(t0) /* Write to DDR Custom transaction register */

 /* Generate A10 high to pre-charge both the banks */
 li t2, DATA_PATTERN
 li t1, 0xA0000000 | DDR_PRECHARGE_OFFSET | DDR0_BASE_VAL
 sw t2, 0x0(t1)

 /* Register t0 carries pointer to the DDR_BASE: 0xB8018000 */
 li t1, DDR_LD_EMODE_REG
 sw t1, 0x20(t0) /* Write to DDR Custom transaction register */

 /* Generate EMODE register contents on A15-A2 */
 li t2, DATA_PATTERN
 li t1, 0xA0000000 | DDR_EMODE_VAL | DDR0_BASE_VAL
 sw t2, 0x0(t1)

 /* Register t0 carries pointer to the DDR_BASE: 0xB8018000 */
 li t1, DDR_LD_MODE_REG
 sw t1, 0x20(t0) /* Write to DDR Custom transaction register */

 /* Generate Mode register contents on the address bus A15-A2 */
 li t2, DATA_PATTERN
 li t1, 0xA0000000 | DDR_DLL_RES_MODE_VAL | DDR0_BASE_VAL
 sw t2, 0x0(t1)

 /* Delay of 1.6 microseconds ~ 300 delay iteration value */
ence Manual 7 - 28 May 11, 2005

IDT DDR Controller Example of DDR SDRAM Initialization

79RC32438 User Refer

Notes
 li t1, 0x0
 li t2, 500
1:
 add t1, 1
 bne t1, t2, 1b
 nop

 /* Register t0 carries pointer to the DDR_BASE: 0xB8018000 */
 li t1, DDR_CUST_PRECHARGE
 sw t1, 0x20(t0) /* Write to DDR Custom transaction register */

 /* Generate A10 high to pre-charge both the banks */
 li t2, DATA_PATTERN
 li t1, 0xA0000000 | DDR_PRECHARGE_OFFSET | DDR0_BASE_VAL
 sw t2, 0x0(t1)

 /* Implements 9 cycles of Auto refresh allowing
 sufficient margin for stability*/
 li t4, 9
 li t3, 0
1:
 li t1, DDR_CUST_REFRESH
 sw t1, 0x20(t0) /* Write to DDR Custom transaction register */

 /* Access DDR */
 li t2, DATA_PATTERN
 li t1, 0xA0000000 | DDR0_BASE_VAL
 sw t2, 0x0(t1)

 add t3, 1
 bne t3, t4, 1b
 nop

 /* Register t0 carries pointer to the DDR_BASE: 0xB8018000 */
 li t1, DDR_LD_MODE_REG
 sw t1, 0x20(t0) /* Write to DDR Custom transaction register */

 /* Generate Mode Register contents on the address bus A12-A0 */
 li t2, DATA_PATTERN
ence Manual 7 - 29 May 11, 2005

IDT DDR Controller Example of DDR SDRAM Initialization

79RC32438 User Refer

Notes
 li t1, 0xA0000000 | DDR_DLL_MODE_VAL | DDR0_BASE_VAL
 sw t2, 0x0(t1)

 /* Initialize the refresh timer with fast refresh count */
 li t0, RCOUNT
 li t1, DDR_REF_CMP_FAST

 /* Set the RCOMPARE register */
 sw t1, 0x4(t0)

 /* Enable the Refresh timer */
 li t1, 0x1 /* CE set to enabled the Refresh counter */
 sw t1, 0x8(t0)

 /* Enable RE-refresh enable in the DDRC register */
 li t0, DDR_BASE
 li t1, DDRC_VAL_NORMAL
 sw t1, 0x10(t0)

 /* Add 200 microseconds of delay */
 li t1, 0x0
 li t2, DELAY_200USEC
1:
 add t1, 1
 bne t1, t2, 1b
 nop

 li t0, RCOUNT

 /* Find Refresh Timer Compare value based on revision - Check for IP7 */
 li t2, 0x1
 mtc0 t2, C0_COMPARE
 mtc0 zero, C0_COUNT
 nop
 nop
 mfc0 t1, C0_CAUSE
 nop
 li t3, DDR_REF_CMP_VAL
 andi t1, 0x8000
ence Manual 7 - 30 May 11, 2005

IDT DDR Controller Example of DDR SDRAM Initialization

79RC32438 User Refer

Notes
 bnez t1, acacia_zb
 nop
 li t3, DDR_REF_CMP_VAL_OLD
acacia_zb:
 /* Disable the refresh counter before changing the compare value */
 sw zero, 0x8(t0)

 /* Set the RCOMPARE register with value gotten above */
 sw t3, 0x4(t0)

 /* Enable the Refresh timer */
 li t1, 0x1 /* CE set to enabled the Refresh counter */
 sw t1, 0x8(t0)
ence Manual 7 - 31 May 11, 2005

IDT DDR Controller Example of DDR SDRAM Initialization

79RC32438 User Refer

Notes
ence Manual 7 - 32 May 11, 2005

Notes

79RC32438 User Reference Manual 8 - 1 M
Chapter 8
Interrupt Controller
Introduction
This chapter describes the operation of the Interrupt Controller which multiplexes all the interrupt

sources from on-chip modules and the GPIO pins onto the five available interrupt sources of the CPU
(IP[6:2]). These interrupt inputs correspond to the IP[6:2] bits of the CPU CP0 CAUSE register. (IP[1:0] are
software interrupts, and IP[7] is used by the counter timer in the CPU.)

Each of the IP[6:2] bits in the CPU CAUSE Register has three corresponding registers in the Interrupt
Controller:

The Interrupt Pending Register, a 32-bit register that indicates the source of the interrupt.
The Interrupt Mask Register, a 32-bit register. Each bit in the Interrupt Mask Register corresponds
to the equivalent bit in the Interrupt Pending Register. Setting a bit in the Interrupt Mask Register
masks the generation of an interrupt for this source.
The Interrupt Test Register, a 32-bit register. Each bit in the Interrupt Test Register corresponds to a
bit in the Interrupt Pending Register. Setting a bit in the Interrupt Test Register causes the same
behavior as an interrupt request from the corresponding interrupt source in the Interrupt Pending
Register. This register may be used to test software interrupt handlers without the need to actually
generate the condition required to produce an interrupt request.

The Interrupt Controller has no priority levels. All sources have the same priority. If multiple interrupts
are pending, it is the responsibility of the software to assign any priority.

The Interrupt Controller multiplexes the interrupt sources to the CPU. The interrupt clearing or assertion
may take several clock cycles to show up in the Interrupt Pending Register, depending on the source of the
interrupt. To clear the interrupt, the software must clear the source.

Features
Allows status of all interrupt sources to be read
Each interrupt source may be masked
Provides interrupt test capability
ay 11, 2005

IDT Interrupt Controller Block Diagram

79RC32438 User Refer

Notes
 Block Diagram

Figure 8.1 Mapping of Interrupts to the CPU Cause Register

Interrupt Controller Register Description

Register Offset1

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

Register Name Register Function Size

0x03_8000 IPEND2 Interrupt pending 2 32-bit

0x03_8004 ITEST2 Interrupt test 2 32-bit

0x03_8008 IMASK2 Interrupt mask 2 32-bit

0x03_800C IPEND3 Interrupt pending 3 32-bit

0x03_8010 ITEST3 Interrupt test 3 32-bit

0x03_8014 IMASK3 Interrupt mask 3 32-bit

0x03_8018 IPEND4 Reserved 32-bit

0x03_801C ITEST4 Reserved 32-bit

0x03_8020 IMASK4 Reserved 32-bit

0x03_8024 IPEND5 Interrupt pending 5 32-bit

0x03_8028 ITEST5 Interrupt test 5 32-bit

0x03_802C IMASK5 Interrupt mask 5 32-bit

0x03_8030 IPEND6 Interrupt pending 6 32-bit

0x03_8034 ITEST6 Interrupt test 6 32-bit

0x03_8038 IMASK6 Interrupt mask 6 32-bit

0x03_803C NMIPS Non-maskable interrupt pin status 32-bit

0x03_8040 through 0x03_FFFF Reserved

Table 8.1 Interrupt Controller Register Map

IPEND2

IPEND3

IPEND4

IPEND5

IPEND6

IMASK2

IMASK3

IMASK4

IMASK5

IMASK6

IP[2]

IP[3]

IP[4]

IP[5]

IP[6]

31
0 ...

31
0 ...

31
0 ...

31
0 ...

31
0 ...

RC32438 MIPS32 CPU
Interrupt Controller Registers Cause Register
ence Manual 8 - 2 May 11, 2005

IDT Interrupt Controller Interrupt Controller Register Description

79RC32438 User Refer

Notes
 Interrupt Pending [2..6] Register
Note: IPEND4 is reserved. Use only IPEND2, IPEND3, IPEND5, and IPEND6.

Figure 8.2 Interrupt Pending [2..6] Register (IPEND[2..6])

Interrupt Test [2..6] Register
Note: ITEST4 is reserved. Do not use.

Figure 8.3 Interrupt Test [2..6] Register (ITEST[2..6])

IPEND

Description: Interrupt Pending. Each bit in this field corresponds to an interrupt source. When a bit is set the
corresponding interrupt source is requesting service. Note that this register shows interrupts
which are currently requesting service but may be “masked” from actually generating an interrupt
exception.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

ITEST

Description: Interrupt Test. Each bit in this field corresponds to an interrupt source in the corresponding Inter-
rupt Pending (IPEND) register. When a bit in this field is set, it appears to the interrupt controller
that the corresponding interrupt source in the IPEND register is requesting service.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPEND[2..6]
031

32

IPEND

ITEST[2..6]
031

32

ITEST
ence Manual 8 - 3 May 11, 2005

IDT Interrupt Controller Interrupt Status Description

79RC32438 User Refer

Notes
 Interrupt Mask [2..6] Register
Note: IMASK4 is reserved. Do not use.

Figure 8.4 Interrupt Mask [2..6] Register (IMASK[2..6])

Interrupt Status Description

IMASK

Description: Interrupt Mask. Each bit in this register masks the corresponding interrupt source in the IPENDx
register. When a bit in this field is set, the corresponding interrupt source (as well as interrupt test
bit) is masked from generating an interrupt exception.

Initial Value: Bits that correspond to an interrupt source in the IPENDx register are initialized to 0x1. Reserved
bits are initialized to 0x0 and cannot be modified.

Read Value: Previous value written

Write Effect: Modify value

Bit Interrupt/Status Description Refer to

0 Counter Timer 0. Corresponds to the TO bit in the CTC0 register. Chapter 14

1 Counter Timer 1. Corresponds to the TO bit in the CTC1 register. Chapter 14

2 Counter Timer 2. Corresponds to the TO bit in the CTC2 register. Chapter 14

3 Refresh Timer. Corresponds to TO bit in the RTC register. Chapter 7

4 Watchdog Timer Time-Out. Corresponds to TO bit in the WTC register. Chapter 4

5 Undecoded CPU Write. Corresponds to UCW bit in the ERRCS register. Chapter 4

6 Undecoded CPU Read. Corresponds to UCR bit in the ERRCS register. Chapter 4

7 Undecoded PCI Write. Corresponds to UPW bit in the ERRCS register. Chapter 4

8 Undecoded PCI Read. Corresponds to UPR bit in the ERRCS register. Chapter 4

9 Undecoded DMA Write. Corresponds to UDW bit in the ERRCS register. Chapter 4

10 Undecoded DMA Read. Corresponds to UDR bit in the ERRCS register. Chapter 4

11 IPBUs Slave Acknowledge Error. Corresponds to SAE bit in the ERRCS register. Chapter 4

12-31 Reserved

Table 8.2 IPEND2 Interrupt Source Description

Bit Interrupt/Status Description Refer to

0 DMA Channel 0. OR of the bits in the DMA0S not masked by DMA0SM. Chapter 9

1 DMA Channel 1. OR of the bits in the DMA1S not masked by DMA1SM. Chapter 9

2 DMA Channel 2. OR of the bits in the DMA2S not masked by DMA2SM. Chapter 9

Table 8.3 IPEND3 Interrupt Source Description

IMASK[2..6]
031

32

IMASK
ence Manual 8 - 4 May 11, 2005

IDT Interrupt Controller Interrupt Status Description

79RC32438 User Refer

Notes

3 DMA Channel 3. OR of the bits in the DMA3S not masked by DMA3SM. Chapter 9

4 DMA Channel 4. OR of the bits in the DMA4S not masked by DMA4SM. Chapter 9

5 DMA Channel 5. OR of the bits in the DMA5S not masked by DMA5SM. Chapter 9

6 DMA Channel 6. OR of the bits in the DMA6S not masked by DMA6SM. Chapter 9

7 DMA Channel 7. OR of the bits in the DMA7S not masked by DMA7SM. Chapter 9

8 DMA Channel 8. OR of the bits in the DMA8S not masked by DMA8SM. Chapter 9

9 DMA Channel 9. OR of the bits in the DMA9S not masked by DMA9SM. Chapter 9

10-31 Reserved

Bit Interrupt/Status Description Refer to

0 UART General Interrupt 0. Chapter 13

1 UART TXRDY 0 Interrupt. Chapter 13

2 UART RXRDY 0 Interrupt. Chapter 13

3 UART General Interrupt 1. Chapter 13

4 UART TXRDY 1 Interrupt. Chapter 13

5 UART RXRDY 1 Interrupt. Chapter 13

6 PCI Interrupt. OR of bits in PCIS not masked by PCISM. Chapter 10

7 PCI Decoupled Access Interrupt. OR of bits in the PCIDAS register not masked by
PCIDASM.

Chapter 10

8 SPI Interrupt. Corresponds to SPIF and MODF bits in the SPS register. Chapter 16

9 Device Decoupled Operation Done. Corresponds to the F bit in the DEVDACS regis-
ter.

Chapter 6

10 I2C-bus Master Interface Interrupt. OR of bits in I2CMS not masked by I2CMSM. Chapter 15

11 I2C-bus Slave Interface Interrupt. OR of bits in I2CSS not masked by I2CSSM. Chapter 15

12 Ethernet 0 Input FIFO Overflow. Corresponds to OVR bit in ETH0INTFC register. Chapter 11

13 Ethernet 0 Output FIFO Underflow. Corresponds to UND bit in ETH0INTFC register. Chapter 11

14 Ethernet 0 Pause Frame Done. Corresponds to PFD bit in ETH0OS register. Chapter 11

15 Ethernet 1 Input FIFO Overflow. Corresponds to OVR bit in ETH1INTFC register. Chapter 11

16 Ethernet 1 Output FIFO Underflow. Corresponds to UND bit in ETH1INTFC register. Chapter 11

17 Ethernet 1 Pause Frame Done. Corresponds to PFD bit in ETH1OS register. Chapter 11

18-31 Reserved

Table 8.4 IPEND5 Interrupt Source Description

Bit Interrupt/Status Description Refer to

0 GPIO 0. Corresponds to bit 0 of the GPIOISTAT register. Chapter 12

1 GPIO 1. Corresponds to bit 1 of the GPIOISTAT register. Chapter 12

2 GPIO 2. Corresponds to bit 2 of the GPIOISTAT register. Chapter 12

3 GPIO 3. Corresponds to bit 3 of the GPIOISTAT register. Chapter 12

Table 8.5 IPEND6 Interrupt Source Description (Part 1 of 2)

Bit Interrupt/Status Description Refer to

Table 8.3 IPEND3 Interrupt Source Description
ence Manual 8 - 5 May 11, 2005

IDT Interrupt Controller Non-Maskable Interrupts

79RC32438 User Refer

Notes
Non-Maskable Interrupts
Sources of non-maskable interrupts

– Watchdog timer time-out
– Setting the NMI bit in the PCI Management (PMGT) register
– GPIO pin(s) programmed to generate an NMI

The source of an NMI may be determined by checking corresponding status registers

4 GPIO 4. Corresponds to bit 4 of the GPIOISTAT register. Chapter 12

5 GPIO 5. Corresponds to bit 5 of the GPIOISTAT register. Chapter 12

6 GPIO 6. Corresponds to bit 6 of the GPIOISTAT register. Chapter 12

7 GPIO 7. Corresponds to bit 7 of the GPIOISTAT register. Chapter 12

8 GPIO 8. Corresponds to bit 8 of the GPIOISTAT register. Chapter 12

9 GPIO 9. Corresponds to bit 9 of the GPIOISTAT register. Chapter 12

10 GPIO 10. Corresponds to bit 10 of the GPIOISTAT register. Chapter 12

11 GPIO 11. Corresponds to bit 11 of the GPIOISTAT register. Chapter 12

12 GPIO 12. Corresponds to bit 12 of the GPIOISTAT register. Chapter 12

13 GPIO 13. Corresponds to bit 13 of the GPIOISTAT register. Chapter 12

14 GPIO 14. Corresponds to bit 14 of the GPIOISTAT register. Chapter 12

15 GPIO 15. Corresponds to bit 15 of the GPIOISTAT register. Chapter 12

16 GPIO 16. Corresponds to bit 16 of the GPIOISTAT register. Chapter 12

17 GPIO 17. Corresponds to bit 17 of the GPIOISTAT register. Chapter 12

18 GPIO 18. Corresponds to bit 18 of the GPIOISTAT register. Chapter 12

19 GPIO 19. Corresponds to bit 19 of the GPIOISTAT register. Chapter 12

20 GPIO 20. Corresponds to bit 20 of the GPIOISTAT register. Chapter 12

21 GPIO 21. Corresponds to bit 21 of the GPIOISTAT register. Chapter 12

22 GPIO 22. Corresponds to bit 22 of the GPIOISTAT register. Chapter 12

23 GPIO 23. Corresponds to bit 23 of the GPIOISTAT register. Chapter 12

24 GPIO 24. Corresponds to bit 24 of the GPIOISTAT register. Chapter 12

25 GPIO 25. Corresponds to bit 25 of the GPIOISTAT register. Chapter 12

26 GPIO 26. Corresponds to bit 26 of the GPIOISTAT register. Chapter 12

27 GPIO 27. Corresponds to bit 27 of the GPIOISTAT register. Chapter 12

28 GPIO 28. Corresponds to bit 28 of the GPIOISTAT register. Chapter 12

29 GPIO 29. Corresponds to bit 29 of the GPIOISTAT register. Chapter 12

30 GPIO 30. Corresponds to bit 30 of the GPIOISTAT register. Chapter 12

31 GPIO 31. Corresponds to bit 31 of the GPIOISTAT register. Chapter 12

Bit Interrupt/Status Description Refer to

Table 8.5 IPEND6 Interrupt Source Description (Part 2 of 2)
ence Manual 8 - 6 May 11, 2005

IDT Interrupt Controller Non-Maskable Interrupts

79RC32438 User Refer

Notes
 Non-Maskable Interrupt Pin Status Register

Figure 8.5 Non-Maskable Interrupt Pin Status

GPIO

Description: GPIO Non-Maskable Interrupt. A GPIO non-maskable interrupt causes this sticky bit to be set.
A GPIO non-maskable interrupt occurs when a bit in GPIOSTAT register is set and the corre-
sponding bit is set in GPIONMIEN register (see Chapter 12). The assertion of this bit results in a
non-maskable interrupt.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

NMIPS
031

0

31

GPIO

1

ence Manual 8 - 7 May 11, 2005

IDT Interrupt Controller Non-Maskable Interrupts

79RC32438 User Refer

Notes
ence Manual 8 - 8 May 11, 2005

Notes

79RC32438 User Reference Manual 9 - 1 M
Chapter 9
DMA Controller
Introduction
The DMA controller consists of 10 independent DMA channels, all of which operate in exactly the same

manner. All DMA channels support fly-by DMA operations between memory and a peripheral device.1 A
single DMA channel may be multiplexed among two different devices using the device select (DS) field in a
DMA descriptor (refer to Table 9.2). The external DMA channels (i.e., DMA channels 0 and 1) use the
device select field to determine the direction of the DMA transfer (memory to external peripheral or external
peripheral to memory). The DS field is unused by the other DMA channels and must be set to zero.

Features
10 DMA channels

– Two channels for PCI (PCI to Memory and Memory to PCI)
– Four Ethernet channels — two for each Ethernet interface (transmit/receive)
– Two DMA channels for memory to memory DMA operations
– Two DMA channels for external DMA operations

Provides flexible descriptor based operation
Supports external peripheral DMA operations
Supports unaligned transfers (i.e., source or destination address may be on any byte boundary)
with arbitrary byte length

DMA Registers

1. DMA operations are automatically supported across memory regions (for example, across DDR bank 0 and
DDR bank 1) as long as the physical addresses are contiguous and the memory regions have a size which is
greater than 64 KB.

Register Offset1 Register Name Register Function Size

0x04_0000 DMA0C DMA 0 control 32-bit

0x04_0004 DMA0S DMA 0 status 32-bit

0x04_0008 DMA0SM DMA 0 status mask 32-bit

0x04_000C DMA0DPTR DMA 0 descriptor pointer 32-bit

0x04_0010 DMA0NDPTR DMA 0 next descriptor pointer 32-bit

0x04_0014 DMA1C DMA 1 control 32-bit

0x04_0018 DMA1S DMA 1 status 32-bit

0x04_001C DMA1SM DMA 1 status mask 32-bit

0x04_0020 DMA1DPTR DMA 1 descriptor pointer 32-bit

0x04_0024 DMA1NDPTR DMA 1 next descriptor pointer 32-bit

0x04_0028 DMA2C DMA 2 control 32-bit

0x04_002C DMA2S DMA 2 status 32-bit

Table 9.1 DMA Register Map (Part 1 of 3)
ay 11, 2005

IDT DMA Controller DMA Registers

79RC32438 User Refer

Notes

0x04_0030 DMA2SM DMA 2 status mask 32-bit

0x04_0034 DMA2DPTR DMA 2 descriptor pointer 32-bit

0x04_0038 DMA2NDPTR DMA 2 next descriptor pointer 32-bit

0x04_003C DMA3C DMA 3 control 32-bit

0x04_0040 DMA3S DMA 3 status 32-bit

0x04_0044 DMA3SM DMA 3 status mask 32-bit

0x04_0048 DMA3DPTR DMA 3 descriptor pointer 32-bit

0x04_004C DMA3NDPTR DMA 3 next descriptor pointer 32-bit

0x04_0050 DMA4C DMA 4 control 32-bit

0x04_0054 DMA4S DMA 4 status 32-bit

0x04_0058 DMA4SM DMA 4 status mask 32-bit

0x04_005C DMA4DPTR DMA 4 descriptor pointer 32-bit

0x04_0060 DMA4NDPTR DMA 4 next descriptor pointer 32-bit

0x04_0064 DMA5C DMA 5 control 32-bit

0x04_0068 DMA5S DMA 5 status 32-bit

0x04_006C DMA5SM DMA 5 status mask 32-bit

0x04_0070 DMA5DPTR DMA 5 descriptor pointer 32-bit

0x04_0074 DMA5NDPTR DMA 5 next descriptor pointer 32-bit

0x04_0078 DMA6C DMA 6 control 32-bit

0x04_007C DMA6S DMA 6 status 32-bit

0x04_0080 DMA6SM DMA 6 status mask 32-bit

0x04_0084 DMA6DPTR DMA 6 descriptor pointer 32-bit

0x04_0088 DMA6NDPTR DMA 6 next descriptor pointer 32-bit

0x04_008C DMA7C DMA 7 control 32-bit

0x04_0090 DMA7S DMA 7 status 32-bit

0x04_0094 DMA7SM DMA 7 status mask 32-bit

0x04_0098 DMA7DPTR DMA 7 descriptor pointer 32-bit

0x04_009C DMA7NDPTR DMA 7 next descriptor pointer 32-bit

0x04_00A0 DMA8C DMA 8 control 32-bit

0x04_00A4 DMA8S DMA 8 status 32-bit

0x04_00A8 DMA8SM DMA 8 status mask 32-bit

0x04_00AC DMA8DPTR DMA 8 descriptor pointer 32-bit

0x04_00B0 DMA8NDPTR DMA 8 next descriptor pointer 32-bit

0x04_00B4 DMA9C DMA 9 control 32-bit

0x04_00B8 DMA9S DMA 9 status 32-bit

0x04_00BC DMA9SM DMA 9 status mask 32-bit

Register Offset1 Register Name Register Function Size

Table 9.1 DMA Register Map (Part 2 of 3)
ence Manual 9 - 2 May 11, 2005

IDT DMA Controller Data Flow within the RC32438

79RC32438 User Refer

Notes
Data Flow within the RC32438
 The RC32438 is primarily an engine designed to efficiently move data between interfaces. Data is

received from one of the interfaces, stored in the main memory, then transferred out on another interface.
Thus, understanding the operation data flow within the RC32438 is very important in understanding the
behavior of the device and how to optimize the internal resources to meet the needs of the various applica-
tions.

The IPBus™
The internal IPBus in the RC32438 is the backbone of the device and is connected to every module in

the RC32438. It is used to transfer all the data within the device and to make the connection between the
external main memory and the on-chip peripherals. There are two potential bus masters on the IPBus: The
CPU core and the DMA Controller (through one of its DMA channels). The processor core and the DMA
Controller must arbitrate to acquire ownership of the IPBus (as described in Chapter 5, Bus Arbitration).
Once the IPBus is granted to a master, data can be transferred within the RC32438. All other interfaces
connected to the IPBus are slaves, including the Device Controller. To transfer data, one of the bus masters
must request data from or send data to the slave.

None of the on-chip peripherals on the RC32438 have IPBus mastership capability. Rather, each has its
internal FIFO to buffer the incoming and the outgoing data. The peripheral receives output data from the
IPBus (either DMA or CPU) in its transmit FIFO and sends it out the interface bus. Or it receives input data
from the interface bus in its receive FIFO and requests service from an IPBus master through an interrupt or
status flag to the CPU or a request to the DMA Controller. The internal FIFOs are only used to compensate
for the IPBus arbitration and access latency. The external memory (DDR or memory/IO) is used as the
primary storage location for the incoming and outgoing data. Thus, all the data movement within the
RC32438 must pass through the memory — either DDR through the DDR controller, or SRAM / dual port
through the Device Controller. The DMA Controller can transfer data between peripherals via external
memory. As an example, input data from the Ethernet port will be stored in external memory first. The CPU
will then process the data for appropriate protocol conversion. The data will then be transferred from the
DDR memory to the PCI interface.

The CPU core can access any of the on-chip peripherals for data transfer and reception. Some periph-
erals, like the Ethernet interface and PCI interface, have associated DMA channels that can be used to
transfer and receive data.

4Kc Core as Bus Master
When the 4Kc processor core is the IPBus master, it can read and write data from or to any peripheral to

transmit and receive the data. This is accomplished through the execution of the standard load and store
instructions of the 4Kc core. This usually includes several steps: The 4Kc core loads the data from main
memory into one of its internal registers and then writes it to the peripherals for transmission. The reverse
occurs for the reception of data. Usually, the internal peripherals will be accessed as non-cached entries by
the processor core. However, the use of the Prefetch-with-ignore-Hit instruction enables the processor core
to treat some of the peripherals as cached entries, thus speeding up the processing of the data by the 4Kc
core. This usually is used when the 4Kc core needs to process the header of a packet for decision making.
For most of the slow peripherals (like I2C), using the processor core is more than adequate to maintain the

0x04_00C0 DMA9DPTR DMA 9 descriptor pointer 32-bit

0x04_00C4 DMA9NDPTR DMA 9 next descriptor pointer 32-bit

0x04_00C8 through 0x04_3FFF Reserved

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

Register Offset1 Register Name Register Function Size

Table 9.1 DMA Register Map (Part 3 of 3)
ence Manual 9 - 3 May 11, 2005

IDT DMA Controller Data Flow within the RC32438

79RC32438 User Refer

Notes
 speed requirements of the interface. However, for fast interfaces like Ethernet, using the core to transfer the
data is not recommended. Rather, the associated DMA channels should be used to maintain the wire speed
of these interfaces.

DMA Controller
As mentioned above, a DMA channel should be used with a fast peripheral to maintain the wire speed

on the interface. The DMA Controller plays a critical role in the data movement within the RC32438 and in
maintaining the wire speed on the various interfaces. The DMA Controller is one of the most complex
blocks on the RC32438 and offers a number of capabilities tailored to enhance data movement capabilities.
Understanding the operation of the DMA Controller is critical to understanding the operation and the data
movement within the RC32438. The DMA Controller is tightly coupled to the internal IPBus and to the
various on chip peripherals to enable the RC32438 to meet the wire speed of the various interfaces. Figure
9.1 illustrates a simplified block diagram of the DMA Controller and the internal IPBus on the RC32438.

Figure 9.1 DMA Block Diagram

The DMA Controller supports ten DMA channels. These DMA channels can be grouped into two catego-
ries: dedicated channels and multiplexed channels. Each of the dedicated DMA channels service only one
peripheral in one direction (input or output). As an example, DMA channel 2 services the Ethernet
Controller in the input direction only. The multiplexed DMA channels service more than one peripheral in
both directions.

The DMA Controller implements fly-by DMA operations. A fly-by operation transfers data between an
on-chip peripheral and memory using a single transaction. Non-fly-by operations require two transactions:

– One to move data between an on-chip peripheral and an internal buffer
– Another to move the data from the internal buffer to memory.

The DMA Controller arbitrates for the IPBus and then monitors the fly-by transfer of data between the
Memory Controller and the on-chip peripheral. The fly-by implementation enhances the bandwidth of the
DMA because it eliminates the extra clock cycles that would be needed to temporarily store the data.

The DMA Controller supports any length of packet transfer. Each packet is divided into bursts of up to 16
words maximum. Some interfaces can generate smaller bursts. The DMA Controller re-arbitrates for the
IPBus at the end of each burst transfer. The maximum burst size of 16 words enables the software to main-
tain a balance between the DMA transfers and the 4Kc core instruction fetches and data transfers.

No Alignment Restrictions
To support the needs of most data communication protocols and standard data communication drivers,

the DMA Controller does not impose any alignment restrictions on the data. The data in memory to be
transferred by the DMA Controller can be located anywhere in the main memory and start on any byte
boundary. For example, the data to be transferred can start at byte 2 within a word and be 1000 bytes long.
Similarly, the received data can be stored anywhere in the main memory without any byte alignment or

DMA
State Machine

IPBus

Channel 0

Channel 9

DDR
Controller DDR

On-chip
peripherals

Device
Controller

Other
Memory

RC32438 External SystemsPMBus
ence Manual 9 - 4 May 11, 2005

IDT DMA Controller Data Flow within the RC32438

79RC32438 User Refer

Notes
 length restrictions. Further, there is no relationship required between the alignment or length of the trans-
mitted data and the received data. For example, the received data can start at byte 3 within the word and be
561 bytes long.

Data Flow Using the DMA Controller
The reception and transmission of data using the DMA Controller follows a series of standard steps. For

the data reception, the following steps highlight the data and control flow within the RC32438.
1. The 4Kc processor core initializes the DMA channel for the desired peripheral.
2. The peripheral starts receiving the data in its input FIFO. Depending on the peripheral used, once

the required number of bytes are received in the FIFO or when an “end of packet” is received, the
peripheral places a DMA request with its associated DMA channel.

3. The DMA channel transfers the data from the peripheral to memory.
4. The DMA Controller can be configured to generate an interrupt to the 4Kc core when it completes

transferring a packet to memory. This signals the 4Kc core to begin executing software for higher
level protocol processing.

The transmission of the data follows the same steps in reverse order. The following steps highlight the
data and control flow within the RC32438 when data is transmitted.

1. The upper layer software stacks ready the data for transmission.
2. The 4kc core sets up the DMA channel for transmission.
3. The DMA channel transfers the data from memory to the output FIFO of the peripheral.
4. The peripheral transmits the data on its bus.
5. The operation continues until the end of the packet. This usually triggers an interrupt to the 4Kc core

which ends the DMA operation.
Figure 9.2 illustrates the simplified data movement operation within the RC32438.

Figure 9.2 Anatomy of DMA Operations

Note: A DMA operation should not be started if the corresponding interface is disabled. Disabling
and re-enabling an interface should not be done without first disabling the corresponding DMA
channel, otherwise the DMA controller may generate undefined behavior.

Memory-to-Memory Transfer
The DMA Controller has a 16-word internal FIFO that is only used during memory-to-memory transfers.

This FIFO is needed to temporarily store the data between transfers. To do a memory-to-memory DMA
operation, the data is read from the source memory, stored in the DMA FIFO, then written in the destination
memory. Only DMA channels 6 and 7 can be used for memory-to-memory DMA operations.

Note: Memory-to-memory DMA operations using channel 6 will not start until channel 7 is
started.

DMA
State Machine

IPBus

Channel 0

Channel 9

DDR
Controller DDR

On-chip
peripherals

1. Issue request to transfer data

2. Appropriate channel is

3. Load descriptor from DDR

4. Transfer data

5. Store
descriptor
to memory
and end
the transfer

 selected
ence Manual 9 - 5 May 11, 2005

IDT DMA Controller DMA Channels

79RC32438 User Refer

Notes
 The maximum burst size is limited by the DMA FIFO size and is fixed at 16 words. Source and destina-
tion memories can be any type of memory or device connected to the DDR Controller or the Device
Controller. Endianness swapping is not supported during memory-to-memory DMA. Memory-to-memory
DMA is illustrated in Figure 9.3.

Figure 9.3 Memory to Memory DMA Transfers

DMA Channels

DMA Channel Device Select Device Description
Channel 0 0 External DMA Channel 0 (external peripheral to memory)

1 External DMA Channel 0 (memory to external peripheral)
2 reserved
3 reserved

Channel 1 0 External DMA Channel 1 (external peripheral to memory)
1 External DMA Channel 1 (memory to external peripheral)
2 reserved
3 reserved

Channel 2 0 Ethernet Channel 0 Receive
1 reserved
2 reserved
3 reserved

Channel 3 0 Ethernet Channel 0 Transmit
1 reserved
2 reserved
3 reserved

Channel 4 0 Ethernet Channel 1 Receive
1 reserved
2 reserved
3 reserved

Table 9.2 DMA Channels and Device Selects (Part 1 of 2)

DMA
State Machine

IPBus

Channel 6

Channel 9

DDR
Controller DDR

On-chip
peripherals

On-chip
DMA 16 word

FIFO

No endianness swapping supported
Source/destination can be memory, IO, DDR

1. Channel 6 reads the data.

2. Channel 7 writes the data.
ence Manual 9 - 6 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
Internal DMA Operation
All DMA operations are performed by reading DMA descriptors from memory. A DMA descriptor is read

from memory to determine control information when a DMA descriptor operation begins, and is written back
to memory with updated status information when a DMA descriptor operation completes. As shown in
Figure 9.4, a DMA descriptor consists of four words and must be word aligned.1 The first word of a
descriptor contains general DMA control and status information, such as the COUNT field which holds the
number of bytes to transfer.2 The three bit device command (DEVCMD) field is used to pass device specific
control information to a peripheral at the start of a DMA descriptor operation, and to record peripheral status
information at the end of a DMA descriptor operation. When a DMA descriptor operation begins, DEVCMD
is read from memory and transferred to the selected device. When a DMA descriptor operation completes,
updated status information is read from the selected device and written back to the DEVCMD field of the
DMA descriptor in memory. The device select (DS) field selects the peripheral device to be used during the
DMA descriptor operation. The encoding of this field for each of the ten DMA channels is shown in Table
9.2.

The second word of a DMA descriptor, the current address (CA) field, is initialized with the address of a
data buffer to which data DMAed from a peripheral is written, or from which data DMAed to a peripheral is
read. When a DMA descriptor operation begins, the starting address is loaded into a current address
register in the DMA controller. After each DMA data transfer, the current address register is modified by the
size of the data transfer. Thus, when a DMA descriptor operation completes, the CA field of the DMA
descriptor in memory contains the address of the next data quantity to be transferred had the DMA
descriptor operation not completed. For example, if CA is initialized to x and COUNT is initialized to y during

Channel 5 0 Ethernet Channel 1 Transmit
1 reserved
2 reserved
3 reserved

Channel 6 0 Memory to Memory (Memory to Holding FIFO)
1 reserved
2 reserved
3 reserved

Channel 7 0 Memory to Memory (Holding FIFO to Memory)
1 reserved
2 reserved
3 reserved

Channel 8 0 PCI (PCI to Memory)
1 reserved
2 reserved
3 reserved

Channel 9 0 PCI (Memory to PCI)
1 reserved
2 reserved
3 reserved

1. The address 0x0000_0000 is used to indicate the end of a DMA descriptor list. Therefore, a DMA descriptor
may begin at any word address except 0x0000_0000.
2. The DMA controller supports zero length DMA operations (i.e., descriptors with the COUNT field equal to zero).
Zero length DMA operations result in the transfer of DEVCMD and DEVCS as well as the updating of the DMA
descriptor but cause no data to be transferred.

DMA Channel Device Select Device Description

Table 9.2 DMA Channels and Device Selects (Part 2 of 2)
ence Manual 9 - 7 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
 a DMA operation from a peripheral to memory, then the first data quantity from the peripheral would be
written to physical address x. Assuming the DMA descriptor operation runs until the COUNT field reaches
zero, the value of the CA field in memory when the DMA operation completes would be x + y.

The third word of a DMA descriptor, the device control and status (DEVCS) field, is used to pass device
specific control information to a peripheral at the start of a DMA descriptor operation, and to record periph-
eral status information at the end of a DMA descriptor operation. When a DMA descriptor operation begins,
DEVCS is read from memory and transferred to the selected device. When a DMA descriptor operation
completes, updated status information is read from the selected device and written back to the DEVCS field
of the DMA descriptor in memory. The fourth word of a DMA descriptor, the link (LINK) field, contains the
physical address of the next DMA descriptor in a descriptor list (i.e., the next DMA descriptor in a linked list
of DMA descriptors).The link field is set to zero in the last descriptor within a descriptor list.

DMA Descriptor Register

Figure 9.4 DMA Descriptor Register

F Finished. This bit is set when the DMA controller finishes descriptor processing due to a finished
event (COUNT equal to zero). Note that this bit is not cleared if the condition did not occur. If this bit is
initially set in the Descriptor Register and the condition causing the DMA transaction to stop is not
related to this bit, then this bit will remain set in the DMA Descriptor written back to memory.

D Done. This bit is set when the DMA controller finishes descriptor processing due to a done event
(selected device generates done). Note that this bit is not cleared if the condition did not occur. If this
bit is initially set in the Descriptor Register and the condition causing the DMA transaction to stop is
not related to this bit, then this bit will remain set in the DMA Descriptor written back to memory.

T Terminated. This bit is set when DMA descriptor processing is abnormally terminated. This occurs
when the RUN bit in the DMA control register is cleared during a DMA operation, or when the bus
transaction timer times-out during a DMA bus transaction. Note that this bit is not cleared if the condi-
tion did not occur. If this bit is initially set in the Descriptor Register and the condition causing the DMA
transaction to stop is not related to this bit, then this bit will remain set in the DMA Descriptor written
back to memory.

IOD Interrupt On Done. When this bit is set, and the DMA controller finishes descriptor processing due to
a done event, then the D bit in the DMAxS register is set.

IOF Interrupt On Finished. When this bit is set, and the DMA controller finishes descriptor processing
due to a finished event, then the F bit in the DMAxS register is set.

COD Chain On Done. When this bit is set, and the DMA controller finishes descriptor processing due to a
done event, then the DMA controller loads the next descriptor pointed to by the DMAxNDPTR register.

COF Chain On Finished. When this bit is set and the DMA controller finishes descriptor processing due a
finished event, then the DMA controller loads the next descriptor pointed to by the DMAxNDPTR reg-
ister.

DEVCMD Device Command. This field is a device specific command field which is passed to the selected
device at the start of a DMA operation.

DS Device Select. This field selects the peripheral device used during the DMA descriptor operation. See
Table 9.2 on page 9-6 for the encoding of this field.

CA

F D IOD IOF COD COF

1 1 1 1 1 1

DEVCMD DS COUNT

DEVCS

LINK

T

1 183 2

reserved

2

ence Manual 9 - 8 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
DMA Registers
Each DMA channel has five registers. A channel is controlled by a DMA control (DMA[0..9]C) register,

and the status of a DMA channel is reported in a DMA status (DMA[0..9]S) register. The bits in a DMA
status register, which are not masked by the corresponding DMA status mask (DMA[0..9]SM) register, are
ORed together and presented to the interrupt controller. A DMA operation is begun by writing the starting
address of the first descriptor in a descriptor list into the DMA descriptor pointer (DMA[0..9]DPTR) register
of a DMA channel. As a side effect of writing this register, a DMA operation begins and the run (RUN) bit in
the corresponding DMAxC register is set. The DMA channel performs DMA descriptor processing,
executing the dictated DMA descriptor operations until a DMA descriptor is reached with a zero in its LINK
field. This signals the completion of DMA operation and causes the RUN bit in the DMAxC register to be
cleared and the halt (H) bit in the DMAxS register to be set. During DMA descriptor processing, the
DMAxDPTR register may be read to determine the address of the descriptor currently being processed.

DMA Stopping Conditions
A DMA descriptor operation has three stopping conditions: finished, done, and terminated. The stopping

conditions which cause a descriptor operation to complete is recorded in the finished (F), done (D), and
terminated (T) bits of the first word in a descriptor. When the DMA controller updates the first word of a
descriptor, only the F, D, and T bits are set. For example, if the T bit was initially set in the descriptor and the
DMA stopping condition was finished, the T bit would remain set in the descriptor written back to memory.

Finished Condition: When a DMA operation begins, the COUNT field is loaded from the descriptor in
memory into a byte counter associated with the DMA channel. The byte counter is decremented by the
DMA transfer size after each data transfer. The finished stopping condition occurs when the byte counter
reaches zero (i.e., there are no more bytes to transfer). This causes the F bit in the DMA descriptor to be
set. If the interrupt on finished (IOF) bit in the descriptor has been initialized to a one, then the F bit in the
DMAxS register is also set. If the chain on finished (COF) bit in the descriptor has been initialized to a one,
then a DMA chaining operation takes place.

Done Condition: The done stopping condition occurs when the selected device signals a done event.
Done events allow a selected peripheral to terminate a DMA operation at an arbitrary point (for example, at
the end of packet). The done stopping condition occurs when a done event is signalled by the selected
peripheral device. This causes the D bit in the DMA descriptor to be set. If the interrupt on done (IOD) bit in
the descriptor has been initialized to a one, then the D bit in the DMAxS register is also set. If the chain on
done (COD) bit in the descriptor has been initialized to a one, then a DMA chaining operation takes place.

It is possible for a DMA descriptor operation to complete due to multiple stopping conditions. For
example, it is possible to have a simultaneous finished and done stopping condition which causes both the
F and D bits in the DMA descriptor to be set.

Terminated Condition: A DMA operation is halted when the RUN bit in the DMAxC register is cleared.
A halted DMA operation results in a terminated stopping condition for the descriptor being processed and
causes the DMA operation to complete. When this occurs, the DMA controller performs the following:
discontinues the current DMA descriptor operation, sets the T bit, and updates all other status information in
the descriptor. The descriptor contents are then written back to memory. When the descriptor write
completes, the halt (H) bit in the DMAxS register is set to acknowledge that the DMA operation has been
halted. When a DMA operation is halted by clearing the RUN bit, writes to the DMAxDPTR and DMAx-
NDPTR should not be performed until the halt (H) bit is set.

COUNT Byte Count. This field specifies the number of bytes to transfer during the DMA descriptor operation.

CA Current Address. This 32-bit field is initialized with the DMA starting address at the start of a DMA
operation and is updated when descriptor processing is completed.

DEVCS Device Control and Status. This 32-bit field is initialized with peripheral device specific control infor-
mation. When descriptor processing completes, this field is updated with peripheral specific status
information.

LINK Link. This 32-bit field points to the next descriptor in the descriptor list.
ence Manual 9 - 9 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
 Note: Under certain conditions the Terminated status bit is not set. An example is when a zero
length DMA operation is performed.

The DMA controller may be incorrectly programmed with an address which does not map to a valid
device. When this occurs, the address space monitor reports an error to the DMA controller. If the DMA
controller attempts to read a DMA descriptor from an un-decoded address, the DMA operation is terminated
causing the error (E) bit and the halt (H) bit to be set in the DMAxS register and the RUN bit to be cleared
the DMAxC register. If the DMA controller attempts to read or write a DMA data buffer that corresponds to
an undecoded address, then the DMA operation is terminated. This results in the DMA discontinuing the
current DMA descriptor operation, clearing the RUN bit in the DMAxS register, setting the T bit in the
descriptor, and updating all other status information in the descriptor. Once the descriptor contents are
written back to memory, the halt (H) bit and error (E) bit in the DMAxS register are set.

Clearing the RUN bit in the DMAxC register provides a means of orderly halting a DMA operation but
sometimes a need exists to abort a DMA operation without cooperation from the peripheral. For example,
resetting a peripheral during a DMA operation may make it impossible to halt a DMA operation since the
DMA will wait indefinitely for the peripheral to supply updated DEVCS and DEVCMD values. A DMA opera-
tion may be aborted without cooperation from a peripheral by writing a one to the Abort (A) bit in the DMAxC
register. This causes the DMA channel to complete the current DMA transaction on the bus if one is in
progress, write back the descriptor1 with the terminated (T) bit set, set the Halt (H) bit in the DMAxS
register, and clear the run bit. If a DMA operation is aborted while the DMA is in the process of following a
link or performing a chaining operation, the terminated bit will not be set in any descriptor.

DMA Request Event
A DMA request event causes a data quantum to be transferred by the DMA controller between a periph-

eral device and memory. The amount of data contained in a DMA quantum is defined by the DMA transfer
size. The DMA transfer size is specified for each peripheral device and is the amount of data transferred by
the DMA controller when it gains ownership of the IP bus.

The mode field in the DMAxC register allows the DMA to be configured to operate in one of three
modes: auto request, burst request, and transfer request. In auto request mode, DMA request events
generated by the selected peripheral device are ignored, and the DMA controller generates internal request
events at the maximum possible rate. This causes a block of data to be transferred by the DMA controller
without the need for DMA request events to be generated by the peripheral device.

In burst request mode, a DMA request event signalled by the selected peripheral device causes the
DMA controller to begin internally generating request events until the DMA operation completes. Thus, in
this mode the first request event generated by the peripheral signals the start of a burst transfer. This mode
allows the peripheral device to externally signal the beginning of a burst DMA operation.

In transfer request mode, a DMA request event signalled by the selected peripheral device causes the
DMA controller to transfer a single data quantum between the peripheral device and memory. Thus, for
each data quantum of a DMA operation, the peripheral must signal to the DMA controller when the transfer
should take place. All of the DMA peripheral devices internal to the RC32438 operate in transfer request
mode. Configuring an internal peripheral device for auto request or burst request modes will produce unde-
sirable consequences. External DMA operations, described later in this chapter, support all three modes.

DMA Descriptor List and Chaining
A DMA descriptor list consists of a linked list of DMA descriptors, with the LINK field of each descriptor

pointing to the next descriptor in the list. The LINK field of the last descriptor in a descriptor list is zero.
Descriptor list processing begins when the address of a DMA descriptor is written to the DMAxDPTR
register. This causes the DMA controller to read a descriptor from memory, performs the specified DMA
operation, update the descriptor status information, and follows the LINK field to the next descriptor in the
descriptor list. The DMAxDPTR register may be read at any time to determine the currently active
descriptor in the descriptor list.

1. Aborting a DMA operation may result in undefined values in the DEVCS and DEVCMD fields.
ence Manual 9 - 10 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
 DMA chaining is enabled by initializing the DMA next descriptor pointer (DMAxNDPTR) with the starting
address of a DMA descriptor list. When the DMA controller completes the operation associated with the last
descriptor in a descriptor list, and DMA chaining is not enabled (that is, DMAxNDPTR is zero), then the halt
(H) bit in the DMAxS register is set and the DMA halts. If DMA chaining is enabled, then the DMA controller
loads the address in the DMAxNDPTR into the DMAxDPTR register, sets the value of the DMAxNDPTR
register to zero, sets the chain (C) bit in the DMAxS register, and begins processing the descriptor pointed
to by DMAxDPTR. The DMA controller continues processing descriptors until it once again reaches the end
of a descriptor list, at which point the above process repeats.

An example of DMA chaining is shown in Figure 9.5. In this example DMAxDPTR is initialized with the
starting address of the descriptor list ABC, and DMAxNDPTR is initialized with a pointer to the starting
address of descriptor list XYZ. When the DMA controller completes the operation associated with descriptor
C, the value in DMAxNDPTR is loaded into DMAxDPTR, DMAxNDPTR is set to zero, the C bit in the
DMAxS register is set, and the DMA continues with the DMA operation specified by descriptor X. If the
DMAxNDPTR register is not updated by the CPU during the processing of descriptor list XYZ, then the
completion of the DMA operation associated with descriptor Z causes the H bit in the DMA status register to
be set and the DMA to halt.

Figure 9.5 DMA Chaining Example

DMA chaining may be initiated in the middle of a descriptor list based on the descriptor stopping condi-
tion. If the chain on done (COD) bit is set in a descriptor and the DMA stopping condition for the descriptor
is due to a done event, DMA chaining takes place. This causes the DMA controller to stop processing
descriptors in the current descriptor list and to continue with those in the descriptor list pointed to by DMAx-
NDPTR. If DMAxNDPTR is zero, the DMA halts. Finished events may also be programmed to cause DMA
chaining. If the chain on finished (COF) bit is set in a descriptor and the DMA stopping condition for the
descriptor is due to a finished event, DMA chaining occurs.

Writing to the DMAxNDPTR register while the DMA is running (i.e., the RUN bit is set) simply modifies
the value of the register. Writing to the DMAxNDPTR register while the DMA is not running (i.e., the RUN bit
is cleared) not only modifies the value of DMAxNDTPR but also causes a chaining operation to take place.
This causes: DMAxNDPTR to be loaded into DMAxDPTR, the value of DMAxNDPTR to be set to zero, the
chain (C) bit to be set, the RUN bit to be set, and a DMA operation to begin.

DMAxNDPTR

A

DMAxDPTR

Data
Buffer

B

Data
Buffer

C

Data
Buffer

X

Data
Buffer

Y

Data
Buffer

Z

Data
Buffer
ence Manual 9 - 11 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
 DMA [0..9] Control Register

Figure 9.6 DMA [0..9] Control Register (DMA[0..9]C)

RUN

Description: RUN. This bit is automatically set to a one when a DMA operation begins (i.e., when a value is
written into the DMAxDPTR register). If this bit is set, writing a zero into it halts DMA descriptor
processing. The halting of DMA descriptor processing is acknowledged when the H bit in the
DMAxS register is set. When the RUN bit is cleared, writes should not be performed to the
DMAxDPTR and DMAxNDPTR registers until the H bit is set.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Writing a one has no effect; writing a zero clears the bit if it is set.

R

Description: Reserved. This bit performs no function.

Initial Value: Undefined. Must be set to zero.

Read Value: NA

Write Effect: NA

MODE

Description: DMA Mode. This field controls the operating mode of external DMA operations. All other DMA
operations ignore this field and use Transfer Request Mode.
0 Auto Request Mode. In this mode, DMA request events from the selected device are ignored
and the DMA controller automatically generates a continuous request event.
1 Burst Request Mode. In this mode, a DMA request event from the selected device initiates a
burst transfer (i.e., the transfer automatically progresses until a done or finished event). When
the DMA controller observes a request event, it automatically generates a continuous request
event for the remainder of the DMA operation.
2 Transfer Request Mode. In this mode, a DMA request event signals that a DMA transfer is
requested. The amount of data moved by the DMA is defined by the DMA transfer size for the
selected device.
3 Reserved

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

DMA[0..9]C
031

27

0 R

1

RUN

12

MODEABORT

1

ence Manual 9 - 12 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
DMA [0..9] Status Register

Figure 9.7 DMA [0..9] Status Register (DMA[0..9]S)

ABORT

Description: Abort. Writing a one to this field causes the DMA controller to abort the current DMA operation if
one is in progress. The aborting of a DMA operation is acknowledged when the H bit in the
DMAxS register is set. When a DMA operation is in the process of being aborted, writes should
not be performed to the DMAxDPTR and DMAxNDPTR registers until the H bit is set.
Aborting a DMA operation may result in an undefined value in the DEVCS and DEVCMD fields of
the descriptor currently being processed. In addition, the associated peripheral may be left in an
undefined state. Therefore, the corresponding peripheral should always be reset following the
abortion of a DMA operation.1

Initial Value: Undefined

Read Value: 0x0

Write Effect Writing a one to this field causes the DMA controller to abort the current DMA operation.
1. Following the abortion of a memory to memory DMA operation, the DMA holding FIFO may contain undefined data. This data
must be emptied by initiating DMA operations to empty the FIFO.

F

Description: Finished. This bit is set when a descriptor with the IOF bit set completes due to a finished event.

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

D

Description: Done. This bit is set when a descriptor with the IOD bit set completes due to a done event.

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

C

Description: Chain. This bit is set when a descriptor chaining operation takes place.

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

E

Description: Error. This bit is set when an error is detected by the DMA during descriptor processing.

D

DMA[0..9]S
031

27

0 F

1 1

C

1

E

1

H

1

ence Manual 9 - 13 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
DMA [0..9] Status Mask Register

Figure 9.8 DMA [0..9] Status Mask Register (DMA[0..9]SM)

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

H

Description: Halt. This bit is set when the DMA halts descriptor processing and is idle.

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

F

Description: Finished. When this bit is set, the F bit in the DMAxS register is masked from generating an
interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

D

Description: Done. When this bit is set, the D bit in the DMAxS register is masked from generating an inter-
rupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

C

Description: Chain. When this bit is set, the C bit in the DMAxS register is masked from generating an inter-
rupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

E

Description: Error. When this bit is set, the E bit in the DMAxS register is masked from generating an inter-
rupt.

DMA[0..9]SM

D

031

27

0 F

1 1

C

1

E

1

H

1

ence Manual 9 - 14 May 11, 2005

IDT DMA Controller Internal DMA Operation

79RC32438 User Refer

Notes
DMA [0..9] Descriptor Pointer Register

Figure 9.9 DMA [0..9] Descriptor Pointer Register (DMA[0..9]DPTR)

DMA [0..9] Next Descriptor Pointer Register

Figure 9.10 DMA [0..9] Next Descriptor Pointer Register (DMA[0..9]NDPTR)

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

H

Description: Halt. When this bit is set, the H bit in the DMAxS register is masked from generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

DPTR

Description: Descriptor Pointer. This 32-bit field is written with the physical address of the first descriptor in
a descriptor list. Writing a value to this register automatically starts DMA descriptor processing
and causes the RUN bit in the DMAxC register to be set. This register should not be modified
while the DMA is active (i.e., the RUN bit is set). The value read from this register is the address
of the currently active DMA descriptor if the DMA is running or the address of the last descriptor
processed if the DMA has halted.
Writing a zero to this field modifies its contents but does not cause DMA descriptor processing to
start.
The NDPTR field in the DMAxNDPTR register should be initialized to zero prior to initializing the
DPTR field since writing a descriptor address to DPTR will start DMA descriptor processing.

Initial Value: Undefined

Read Value: Physical address of currently active descriptor or last descriptor processed

Write Effect: Modify value and start DMA operation

DMA[0..9]DPTR
031

32

DPTR

DMA[0..9]NDPTR
031

32

NDPTR
ence Manual 9 - 15 May 11, 2005

IDT DMA Controller External DMA Operations

79RC32438 User Refer

Notes
External DMA Operations
An external DMA operation is one in which the DMA controller is used to transfer data between an

external peripheral and memory. The DMA controller supports two external DMA channels: external DMA
channel 0 (uses DMA channel 0) and external DMA channel one (uses DMA channel 1).

The DMA descriptor DS field is used to select the direction of the DMA transfer. When DS is zero, data
is transferred from the external peripheral to memory. When the DS field is one, data is transferred from
memory to the external peripheral.

The DMA descriptor DEVCS field, shown in Figure 9.11, holds the address of the external DMA periph-
eral. The DMA descriptor DEVCMD field, shown in Figure 9.12, contains a Transfer Size (TS) field that
specifies the DMA transfer burst size for external peripherals. The width of the TS field must be greater than
or equal to the width of the external DMA peripheral. During DMA burst transactions on the memory and
peripheral bus, the address field remains constant throughout the entire transaction and is equal to the
value in the Peripheral Address (ADDR) field.

Device Control and Status Field for External DMA

Figure 9.11 Device Control and Status Value for External DMA Descriptors

Device Command Field for External DMA

Figure 9.12 Device Command Field for External DMA Descriptors

NDPTR

Description: Next Descriptor Pointer. This 32-bit field contains the address of the first descriptor in the
descriptor list to be used for chaining. If this field is a zero, DMA chaining is disabled.
Writing to this register when the DMA is not running causes the DMA to start and a chaining
operation to take place.
Writing a zero to this field modifies its contents but does not cause DMA descriptor processing to
start.

Initial Value: Undefined

Read Value: Address of next descriptor in descriptor chain

Write Effect: Modify value

ADDR Peripheral Address. This 32-bit field specifies the address of the external DMA peripheral. The
address must map to a device on the memory and peripheral bus. The address should be
aligned to the size of the external DMA peripheral (e.g., address bit zero must be zero for a 16-bit
external DMA peripheral).

DEVCS
031

32

ADDR

DEVCMD
2

3

TS

0

ence Manual 9 - 16 May 11, 2005

IDT DMA Controller External DMA Operations

79RC32438 User Refer

Notes

An external peripheral generates a DMA request event by asserting a DMA request (DMAREQNx) input.
The DMAREQNx inputs are GPIO alternate functions (see Chapter 12, General Purpose I/O Controller).

Transfer Request: When the DMA is configured to operate in transfer request mode, a DMA request
instructs the DMA controller to perform one burst transaction to the external peripheral address in DEVCS.
The size of the burst transfer is selected in the TS field.

The assertion of chip select to the external peripheral acknowledges the DMA request and causes the
external peripheral to negate DMAREQNx. When the external peripheral samples chip select negated, it
may once again assert DMAREQNx. An example of a peripheral-to-memory external DMA operation in
transfer request mode is shown in Figure 9.13

Figure 9.13 External DMA Operation (Transfer Request Mode)

Burst Request: When the DMA is configured to operate in burst request mode, then the first DMA
request initiates the entire DMA transfer between the external peripheral and memory. An example of a
peripheral-to-memory DMA operation in burst request mode is shown in Figure 9.14.

TS Transfer Size. This field specifies the DMA burst transfer size used to access the external
peripheral.
0 - byte
1 - halfword
2 - word
3 - 2 words
4 - 4 words
5 - 6 words
6 - 8 words
7 - 16 words

DMA Request Event Assertion of DMAREQNx pin.

DMA Done Event Assertion of DMADONENx pin.

DMA Terminated Event An external device cannot signal a terminated event.

DMA Transfer Size Value programmed in the transfer size (TS) field of DEVCMD.

Limitations The width of the TS field must be greater than or equal to the width of the external
DMA peripheral.

Table 9.3 External DMA Operations

EXTCLK

DMAREQNx

CSNx

Transaction Transaction
to Memory

Transaction
to External Peripheral

Transaction
to External Peripheral

1 2 3 4 5 6 7

1. DMA requests data transfer by asserting DMAREQNx
2. The RC32438 acknowledges DMA request by asserting chip select (CSNx) to external peripheral. DMA control-

ler reads a transfer size data quantity from the external peripheral
3. External peripheral reacts to acknowledgment of DMA request (i.e., assertion of chip select) by negating

DMAREQNx
4. DMA controller writes data quantity read from external peripheral to memory
5. DMA requests next data transfer by asserting DMAREQNx
6. The RC32438 acknowledges next DMA request by asserting chip select and reading a transfer size data quan-

tity from the external peripheral
7. External peripheral reacts to acknowledgement of DMA request by negating DMAREQNx.
ence Manual 9 - 17 May 11, 2005

IDT DMA Controller External DMA Operations

79RC32438 User Refer

Notes
Figure 9.14 External DMA Operation (Burst Request Mode)

The DMA done (DMADONENx) inputs are GPIO alternate functions (see Chapter 12, General Purpose
I/O Controller) may be asserted by an external peripheral to signal a done event to the DMA controller. As
shown in Figure 9.15, during external peripheral read operations, DMADONENx is sampled on the same
clock edge as the data. As shown in Figure 9.16, during external peripheral write operations, DMADONENx
is sampled on the same clock edge as the byte writes are negated. The DMADONEx inputs are only
sampled in the last data transfer on the memory and peripheral bus of a burst transfer. In other words, if the
specified transfer size results in multiple memory and peripheral bus data transfers, the external peripheral
can only signal a done event during the last data transfer of the burst.

Figure 9.15 Sampling of DMADONENx During External Peripheral Read Transactions

Figure 9.16 Sampling of DMADONENx During External Peripheral Write Transactions

The DMA finished (DMAFINNx) outputs are GPIO alternate functions (See Table 12.1 in Chapter 12,
General Purpose I/O Controller). A DMA finished output is asserted by the DMA controller to signal a
finished event to an external peripheral. During a read transaction, DMAFINNx is asserted for one clock

EXTCLK

DMAREQN

CSNx

Transaction Transaction
to Memory

Transaction
to External Peripheral

Transaction
to External Peripheral

1 2 3 4 5

1. DMA requests data transfer by asserting DMAREQNx
2. The RC32438 acknowledges DMA request by asserting chip select (CSNx) to external DMA peripheral and per-

forming the burst transfer specified in the TS field.
3. External peripheral reacts to acknowledgment of DMA request by negating DMAREQNx
4. DMA controller writes data quantity read from external peripheral to memory
5. DMA controller performs remaining transfers in DMA operation without further DMA requests. A DMA operation

is completed when the byte count reaches zero or DMADONENx is asserted.

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Address Valid

Data Valid

DMADONENx

DMA Samples DMADONENx

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Address Valid

Data Valid

DMADONENx

DMA Samples DMADONENx
ence Manual 9 - 18 May 11, 2005

IDT DMA Controller Memory to Memory DMA Operations

79RC32438 User Refer

Notes
 cycle corresponding to a clock edge during which the final data quantity is read (i.e., the data quantity that
causes the byte counter to reach zero). This is shown in Figure 9.17 for a non-burst read transaction.
During a write transaction, DMAFINNx is asserted throughout the entire transaction in which the byte
counter reaches zero. This is shown in Figure 9.18.

Figure 9.17 Assertion of DMAFINNx During External Peripheral Read Transactions

Figure 9.18 Assertion of DMAFINNx During External Peripheral Write Transactions

Memory to Memory DMA Operations
A FIFO between DMA channels six and seven allows the DMA controller to be used for memory to

memory DMA transfers. When DMA channel six device zero is selected, data is read from memory and
written into a DMA FIFO. When DMA channel seven device zero is selected, data is read from the DMA
FIFO and written to memory. Thus, by using these DMA channels together, data may be DMAed from
memory to memory.

The DMA FIFO allows burst transfers of up to 16 words (64-bytes) to be buffered between DMA chan-
nels six and seven. The DMA channel six and seven descriptor DEVCMD field, shown in Figure 9.12,
contains a Transfer Size (TS) field that specifies the DMA transfer burst size. The DMA transfer burst size
for the two DMA channels need not be the same values.

Figure 9.19 Device Command Field for Memory to Memory DMA Descriptors

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Address Valid

Data Valid

DMAFINNx

EXTCLK

MADDR[25:0]

RWN

CSNx

BWEN[1:0]

OEN

MDATA[15:0]

Address Valid

Data Valid

DMAFINNx

DEVCMD
2

3

TS

0

ence Manual 9 - 19 May 11, 2005

IDT DMA Controller Examples

79RC32438 User Refer

Notes
The DEVCS field is not used during memory to memory DMA operations. Table 9.4 summarizes the
memory to DMA FIFO DMA operations and Table 9.5 summarizes DMA FIFO to memory DMA operations.

Examples
 Example 1: DMA operation using one descriptor list
 (program DMAxDPTR register)

 Set up interrupt controller
 Set up descriptor

 DMAxNDPTR = 0
 DMAxDPTR = starting address of the descriptor list
 while (DMA done or finished interrupt is not detected) {
 perform DMA descriptor operation
 DMA updates descriptor status

TS Transfer Size. This field specifies the DMA burst transfer size used to access memory during
memory to memory DMA operations.
0 - Reserved
1 - Reserved
2 - word
3 - 2 words
4 - 4 words
5 - 6 words
6 - 8 words
7 - 16 words

DMA Request Event DMA FIFO has room for a burst transfer of the size specified by the TS field.

DMA Done Event DMA done event is never generated.

DMA Terminated Event DMA terminated event is never generated by the FIFO.

DMA Transfer Size The DMA controller will attempt to transfer a burst of the size specified in the TS field
from memory to the DMA FIFO. Fewer words will be transferred if the byte count
reaches zero.

Limitations None. A DMA operation may start and end on any byte boundary and may contain any
number of words.

Table 9.4 Memory to DMA FIFO DMA Operations

DMA Request Event DMA FIFO contains enough data for a burst transfer of the size specified by the TS
field, or the last word of a DMA operation has been transferred to the FIFO.

DMA Done Event DMA done event is never generated.

DMA Terminated Event DMA terminated event is never generated.

DMA Transfer Size The DMA controller will attempt to transfer a burst of the specified size in the TS field
from the DMA FIFO to memory. Fewer words will be transferred if the byte count
reaches zero, or the last word of a DMA operation has been transferred to the FIFO.

Limitations None. A DMA operation may start and end on any byte boundary and may contain any
number of words.

Table 9.5 DMA FIFO to Memory DMA Operations
ence Manual 9 - 20 May 11, 2005

IDT DMA Controller Examples

79RC32438 User Refer

Notes
 DMA follows LINK field to next DMA descriptor
 }

 Read the status from DMAxS register and descriptors

Example 2: DMA operation using one descriptor list
 (program DMAxNDPTR register)

 Set up interrupt controller
 Set up descriptor

 DMAxNDPTR = starting address of the descriptor list
 while (DMA done or finished interrupt is not detected) {
 perform DMA descriptor operation
 DMA updates descriptor status
 DMA follows LINK field to next DMA descriptor
 }

 Read the status from DMAxS register and descriptors

Example 3: DMA operation using multiple descriptor lists
 (program DMAxNDPTR register)

 Set up interrupt controller
 Set up descriptors

 DMAxNDPTR = starting address of the first descriptor list

 while (DMA transfer is not completed) {
 while (DMA chain interrupt is not detected) {
 prepare the next descriptor list
 }

 clear the chain bit in DMAxS register
 DMAxNDPTR = starting address of the next descriptor list
 }

Example 4: DMA operation using multiple descriptor lists
 (program DMAxDPTR & DMAxNDPTR register)

 Set up interrupt controller
 Set up descriptors

 DMAxNDPTR = 0
 DMAxDPTR = starting address of the first descriptor list
ence Manual 9 - 21 May 11, 2005

IDT DMA Controller Examples

79RC32438 User Refer

Notes
 DMAxNDPTR = starting address of the second descriptor list

 while (DMA transfer is not completed) {
 while (DMA chain interrupt is not detected) {
 prepare the next descriptor list
 }

 clear the chain bit in DMAxS register
 DMAxNDPTR = starting address of the next descriptor list
 }
ence Manual 9 - 22 May 11, 2005

Notes

79RC32438 User Reference Manual 10 - 1 M
Chapter 10
PCI Bus Interface
Introduction
PCI bus interface complies with PCI Local Bus Specification Revision 2.2 and provides a bus bridge

between the RC32438’s internal IPBus and the PCI bus. The PCI bus interface may be configured to
operate in host or satellite mode. This is controlled by the PCI mode selected during boot configuration. The
operating mode can be determined by reading the PCI Mode (PCIM) field in the PCIC register.

The PCI clock is always an input and may be asynchronous to the master clock input. The PCI interface
supports operation at frequencies from 16 MHz to 66 MHz. The PCI clock may be stopped and there is no
minimum master clock to PCI clock ratios. The interface implements 3.3V PCI compliant pads. The PCI bus
interface never merges separate writes into a single transaction.

Figure 10.1 shows a block diagram of the PCI bus interface.

Figure 10.1 PCI Interface Block Diagram

Features
32-bit PCI revision 2.2 compliant
Supports host or satellite operation in both master and target modes
PCI clock

– Supports PCI clock frequencies from 16 MHz to 66 MHz
– PCI clock may be asynchronous to master clock (CLK)

PCI arbiter in Host mode
– Supports 6 external masters
– Fixed priority or round robin arbitration
– Bus parking

I2O “like” PCI Messaging Unit

PCI Bus

PCI
DMA

Output
FIFO

PCI
DMA
Input
FIFO

PCI
Regs.

PCI
Config.
Regs

PCI
Messaging

Unit

CPU
Master
Output
FIFO

CPU
Master
Input
FIFO

PCI
Target
Output
FIFO

PCI
Target
Input
FIFO

PCI Master Interface PCI Target Interface
PCI

Arbiter

IPBus Fly-by
DMA Interface IPBus Slave Interface

IPBus Master
Interface

IPBus

PCI Serial
EEPROM
ay 11, 2005

IDT PCI Bus Interface Use of Decoupled PCI Transactions

79RC32438 User Refer

Notes
 Use of Decoupled PCI Transactions
The PCI portion of the system controller sits on the IPBus. Therefore, read and write transactions to and

from this block consume some of the available IPBus bandwidth and must be factored into the overall
system bus utilization for a given system. To maximize performance, the number of local IPBus cycles
consumed for a given transaction should be minimized. The PCI system controller is designed to automati-
cally do this for most types of transactions.

In the case of DMA operations to or from the PCI, the transaction is initiated by the DMA. Prior to taking
control of the IPBus, the DMA automatically waits for the data to become available in the master read case
or for space to be available in the output FIFO for the master write case. This prevents the DMA from
wasting bandwidth sitting on the IPBus waiting for data to become available. In the case of target reads and
target writes from an external PCI master to the RC32438 as a PCI target, data is fetched or queued effi-
ciently. No user intervention is required.

However, in the case where the CPU core rather than the DMA controller initiates a master read or a
master write, users must be careful not to monopolize the IPBus which will reduce available bandwidth. The
RC32438 contains the following mechanism for decoupling both CPU master reads and CPU master writes.

In the master write case, the CPU core can check the status of the master write FIFO prior to beginning
the write via the OFE (Output FIFO Empty) bit, bit[3], of the PCI Decoupled Access Status Register
(PCIDAS). If this bit is set, the FIFO is empty. Then the CPU core can safely initiate a master write or a
burst of 4 writes, since enough space is guaranteed for the transaction to be queued immediately without
stalling the IPBus.

In the master read case, the user can enable the Decoupled Access Mode via the DEN bit in the PCI
Decoupled Access Control Register (PCIDAC). When the DEN bit is set, any master read to the PCI
memory space will return a "0" immediately. The program can then either rely on polling or use an interrupt
generated from the PCI Decoupled Access Status Register (PCIDAS) Done bit (D) to indicate that the read
has been completed. Upon completion, the data will be available in the PCI Decoupled Access Data
Register (PCIDAD).

If the user opts not to enable this mode, some amount of efficiency will be lost waiting for CPU-initiated
master reads to complete. In most applications, this is probably acceptable as the number of CPU-initiated
master reads is generally small. However, in the case of PCI bridges, failure to use the decoupled master
read mechanism could result in the read timing out and causing a bus error. This error occurs when the
CPU core attempts a master read while the bridge has data queued in its write FIFO and is attempting to
initiate target writes to the RC32438 device to clear the queue. The bridge will pass the read to the device
on the other side, but when that target PCI device returns the requested read data to the bridge, the bridge
will hold the data until the bridge manages to clear its write FIFO. However, since the CPU core is not using
decoupled reads, the CPU holds the IPBus until the transaction completes. As long as the CPU is sitting on
the IPBus, the bridge can only do writes until the target write FIFO fills up on the RC32438. When the target
write FIFO is full, the RC32438 refuses to take any further target writes. The RC32438 cannot empty the
target write FIFO — the IPBus must do that — and the CPU continues to wait for the read to complete.
Because the RC32438 will not take any more target writes and the bridge will not pass the read data
through until it completes its writes, the RC32438 and the bridge are now "deadlocked".

The deadlock will only be broken when the RC32438 PCI master transaction retry counter is exceeded.
At that point, the system will generate a bus error. The interrupt handler must correct the problem. This
obviously imposes a significant performance penalty.

Therefore, IDT strongly recommends the use of decoupled master reads and checking the status of the
output FIFO empty bit prior to generating CPU-initiated master reads or master writes, especially when the
RC32438 is being used with a PCI bridge.

IPBus Access
Access to the IPBus is determined by the IPBus arbiter.
ence Manual 10 - 2 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
 The PCI interface contains six FIFOs. The PCI DMA output FIFO is used for memory to PCI DMA oper-
ations. The PCI DMA input FIFO is used for PCI to memory DMA operations. The IPBus master output
FIFO is used for IPBus master (e.g., CPU) PCI write operations while the IPBus master input FIFO is used
for IPBus master PCI read operations. The PCI target output FIFO is used for external PCI master reads of
the RC32438 local address space while the PCI target input FIFO is used for external PCI master writes to
the RC32438 local address space.

PCI Register Description

FIFO Size

PCI DMA Output FIFO 64 words

PCI DMA Input FIFO 64 words

CPU Master Output FIFO 4 words

CPU Master Input FIFO 8 words

PCI Target Output FIFO 64 words

PCI Target Input FIFO 64 words

Table 10.1 PCI Bus Interface FIFO Sizes

Register Offset1 Register Name Register Function Size

PCI Bus Interface

0x08_0000 PCIC PCI control 32-bit

0x08_0004 PCIS PCI status 32-bit

0x08_0008 PCISM PCI status mask 32-bit

0x08_000C PCICFGA PCI configuration address 32-bit

0x08_0010 PCICFGD PCI configuration data 32-bit

0x08_0014 PCILBA0 PCI local base address 0 32-bit

0x08_0018 PCILBA0C PCI local base address 0 control 32-bit

0x08_001C PCILBA0M PCI local base address 0 mapping 32-bit

0x08_0020 PCILBA1 PCI local base address 1 32-bit

0x08_0024 PCILBA1C PCI local base address 1 control 32-bit

0x08_0028 PCILBA1M PCI local base address 1 mapping 32-bit

0x08_002C PCILBA2 PCI local base address 2 32-bit

0x08_0030 PCILBA2C PCI local base address 2 control 32-bit

0x08_0034 PCILBA2M PCI local base address 2 mapping 32-bit

0x08_0038 PCILBA3 PCI local base address 3 32-bit

0x08_003C PCILBA3C PCI local base address 3 control 32-bit

0x08_0040 PCILBA3M PCI local base address 3 mapping 32-bit

0x08_0044 PCIDAC PCI decoupled access control 32-bit

0x08_0048 PCIDAS PCI decoupled access status 32-bit

Table 10.2 PCI Register Map (Part 1 of 2)
ence Manual 10 - 3 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
PCI Control Register

Figure 10.2 PCI Control Register (PCIC)

0x08_004C PCIDASM PCI decoupled access status mask 32-bit

0x08_0050 PCIDAD PCI decoupled access data 32-bit

0x08_0054 PCIDMA8C PCI DMA channel 8 configuration 32-bit

0x08_0058 PCIDMA9C PCI DMA channel 9 configuration 32-bit

0x08_005C PCITC PCI target control 32-bit

0x08_0060 through 0x08_7FFF Reserved

PCI Messaging Unit

0x08_8000 through 0x08_800C Reserved

0x08_8010 PCIIM0 PCI Inbound Message 0 32-bit

0x08_8014 PCIIM1 PCI Inbound Message 1 32-bit

0x08_8018 PCIOM0 PCI Outbound Message 0 32-bit

0x08_801C PCIOM1 PCI Outbound Message 1 32-bit

0x08_8020 PCIID PCI Inbound Doorbell 32-bit

0x08_8024 PCIIIC PCI Inbound Interrupt Cause 32-bit

0x08_8028 PCIIIM PCI Inbound Interrupt Mask 32-bit

0x08_802C PCIOD PCI Outbound Doorbell 32-bit

0x08_8030 PCIOIC PCI Outbound Interrupt Cause 32-bit

0x08_8034 PCIOIM PCI Outbound Interrupt Mask 32-bit

0x08_8038 through 0x8_FFFF Reserved

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

EN

Description: Enable. When this bit is set, the PCI bus interface is enabled. When this bit is cleared, the PCI
bus interface is disabled and enters a benign low power mode. While in this mode, all transac-
tions except for configuration accesses will be ignored. Configuration accesses will receive a
retry response. Disabling and then re-enabling the PCI bus interface resets all of the logic asso-
ciated with the PCI bus interface.

Register Offset1 Register Name Register Function Size

Table 10.2 PCI Register Map (Part 2 of 2)

PCIC
031

0

22

EN

13

PCIM TNR

1

SCE

1

IEN

1

AAA

1

EAP

1

IGM

1

ence Manual 10 - 4 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
 Initial Value: The enable bit is set when the PCI mode boot configuration selects a PCI satellite mode. In all
other modes, the enable bit is cleared. See PCI mode boot configuration in Table 3.3 of Chapter
3.
(A warm reset does not modify this field except under the following conditions: the warm
reset occurs as a result of the assertion of the PCI reset signal and the RC32438 is operat-
ing in PCI satellite mode. When a warm reset occurs under the above conditions, this field
takes on its initial value.)

Read Value: Previous value written

Write Effect: Modify value

TNR

Description: Target Not Ready. When this bit is set, the PCI bus interface issues a retry to all target transac-
tions. When this bit is set, delayed reads are never performed.
0x0 - Normal operation
0x1 - Target not ready (retry all target transactions)

Initial Value: See PCI mode boot configuration inTable 3.3 of Chapter 3.

Read Value: Previous value written

Write Effect: Modify value

SCE

Description: Suspend CPU Execution. When this bit is set, CPU execution is suspended.

Note: Software should never set this bit because it may cause the system to lock-up.

Initial Value: See PCI mode boot configuration in Table 3.3 of Chapter 3.
(A warm reset does not modify this field except under the following conditions: the warm
reset occurs as a result of the assertion of the PCI reset signal and the RC32438 is operat-
ing in PCI satellite mode. When a warm reset occurs under the above conditions, this field
takes on its initial value.)

Read Value: Previous value written

Write Effect: Modify value

IEN

Description: IPBus Error Enable. When this bit is set, the PCI interface will signal IPBus slave acknowledge
errors during CPU master read transactions when an error occurs. When this bit is cleared,
IPBus slave acknowledge errors are masked.

Initial Value: 0x1
(A warm reset does not modify this field except under the following conditions: the warm
reset occurs as a result of the assertion of the PCI reset signal and the RC32438 is operat-
ing in PCI satellite mode. When a warm reset occurs under the above conditions, this field
takes on its initial value.)

Read Value: Previous value written

Write Effect: Modify value

AAA

Description: Arbiter Arbitration Algorithm. When the PCI bus interface is configured to operate in PCI host
with internal arbiter mode, this bit selects the arbitration algorithm used by the internal arbiter.
This bit has no effect in PCI satellite mode or in PCI host mode using an external arbiter.
0x0 - Round robin arbitration algorithm
0x1 - Fixed priority arbitration algorithm
ence Manual 10 - 5 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
 Initial Value: See PCI mode boot configuration in Table 3.3 of Chapter 3.
(A warm reset does not modify this field except under the following conditions: the warm
reset occurs as a result of the assertion of the PCI reset signal and the RC32438 is operat-
ing in PCI satellite mode. When a warm reset occurs under the above conditions, this field
takes on its initial value.)

Read Value: Previous value written

Write Effect: Modify value

EAP

Description: Enable Arbiter Parking. When this bit is set and the PCI bus interface is configured to operate
in PCI host mode with an internal arbiter, then PCI bus parking is enabled. Enabling bus parking
causes the internal PCI arbiter to “park” the bus on the last master granted the bus as long as no
other master requests the bus.

Initial Value: 0x0
(A warm reset does not modify this field except under the following conditions: the warm
reset occurs as a result of the assertion of the PCI reset signal and the RC32438 is operat-
ing in PCI satellite mode. When a warm reset occurs under the above conditions, this field
takes on its initial value.)

Read Value: Previous value written

Write Effect: Modify value

PCIM

Description: PCI Mode. This field indicates the PCI operating mode selected during boot configuration.
0x0 - Disabled (EN bit in PCIC register is cleared)
0x1 - PCI satellite mode with PCI target not ready
0x2 - PCI satellite mode with suspended CPU execution
0x3 - PCI host mode with external arbiter
0x4 - PCI host mode with internal arbiter using fixed priority arbitration algorithm
0x5 - PCI host mode with internal arbiter using round robin arbitration algorithm
0x6 - reserved
0x7 - reserved

Initial Value: See PCI mode boot configuration in Table 3.3 of Chapter 3.

Read Value: Status

Write Effect: Read-only

IGM

Description: Idle Grant Mode. This bit controls the operation of the internal arbiter when the PCI interface is
configured to operate in a PCI host mode with internal arbiter. When the internal arbiter is used
and this bit is cleared, the arbiter operates in a static idle grant mode. This means that once a
grant is asserted to a given master, the grant will remain asserted until the requested transaction
completes and 16 PCI clock cycles have elapsed. When the internal arbiter is used and this bit is
set, the arbiter operates in a dynamic idle grant mode. This means that while the PCI bus is idle,
the arbiter may take away a grant from one master and pass it to another. For optimal PCI
throughput, this bit should be set to one.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 10 - 6 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
 PCI Status Register

Figure 10.3 PCI Status Register (PCIS)

EED

Description: PCI Serial EEPROM Done. This bit is set while the PCI bus interface has completed using the
PCI serial EEPROM interface. After a cold reset in PCI satellite mode with suspended CPU exe-
cution, this bit is cleared and remains cleared until the PCI interface completes loading configura-
tion information from the PCI serial EEPROM. This bit is always cleared in the other PCI modes.

Initial Value: 0x0

Read Value: Status

Write Effect: Read only

WR

Description: Warm Reset. This bit is set when a PCI master or the CPU writes a one to the Warm Reset (WR)
bit in the PCI Management (PMGT) register. The state of this bit is preserved across warm
resets.

Initial Value: 0x0
(A warm reset does not modify this field except under the following conditions: the warm
reset occurs as a result of the assertion of the PCI reset signal and the RC32438 is operat-
ing in PCI satellite mode. When a warm reset occurs under the above conditions, this field
takes on its initial value.)

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

NMI

Description: Non-maskable Interrupt. This bit is set when a PCI master or the CPU writes a one to the Non-
maskable Interrupt (NMI) bit in the PCI Management (PMGT) register.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

II

Description: Inbound Interrupt. This bit represents the OR of all of the bits in the PCI Inbound Interrupt
Cause (PCIIC) register which are not masked in the PCI Inbound Interrupt Mask (PCIIM) register.

Initial Value: 0x0

PCIS
1631

0

14

015

NMI WR

1

STA MDPERMA RTAPE SSE

1111111

II

1

EED

1

TAE

1

RLE

1

BME

1

CWE

1

CRE

1

PRD

1

RIP

1

OSE

1

ence Manual 10 - 7 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
 Read Value: Status

Write Effect: Read only

CWE

Description: CPU Write Error. This bit is set if a CPU PCI write transaction experienced an error and the
IPBus Error Enable (IEN) bit is set in the PCIC register.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

CRE

Description: CPU Read Error. This bit is set if a CPU PCI read transaction experienced an error and the
IPBus Error Enable (IEN) bit is set in the PCIC register.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

MDPE

Description: Master Data Parity Error Detected. This bit is set whenever the MDPE bit in the PCI Configura-
tion STATUS register is set.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

STA

Description: Signalled Target Abort Status. This bit is set whenever the STA bit in the PCI Configuration
STATUS register is set.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

RTA

Description: Received Target Abort Status. This bit is set whenever the RTA bit in the PCI Configuration
STATUS register is set.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit. When set, this bit cannot be cleared until the corresponding bit in the Status Register is
cleared.

RMA

Description: Received Master Abort Status. This bit is set whenever the RMA bit in the PCI Configuration
STATUS register is set.

Initial Value: 0x0
ence Manual 10 - 8 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
 Read Value: Status

Write Effect: Sticky bit. When set, this bit cannot be cleared until the corresponding bit in the Status Register is
cleared.

SSE

Description: Signalled System Error. This bit is set whenever the SSE bit in the PCI Configuration STATUS
register is set.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

OSE

Description: Observed System Error. This bit is set whenever a system error is observed on the PCI bus
(i.e., the SERRN pin is asserted).

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

PE

Description: Parity Error. This bit is set whenever the PE bit in the PCI Configuration STATUS register is set.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

TAE

Description: Target Address Error. This bit is set if the PCI bus interface terminates a target transaction with
a Target Abort due to an invalid transaction local address reported by the address space monitor.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

RLE

Description: Retry Limit Exceeded. This bit is set if the PCI bus interface terminated a master transaction
with an error because the retry limit specified in the RETRY_LIMIT register in PCI configuration
space was exceeded.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

BME

Description: Bus Master Error. This bit is set if the PCI bus interface terminated a master transaction with an
error because the transaction could not be completed since the Bus Master Enable (BM) bit in the
COMMAND register in PCI configuration space was not set.

Initial Value: 0x0
ence Manual 10 - 9 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
PCI Status Mask Register

Figure 10.4 PCI Status Mask Register (PCISM)

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

PRD

Description: Pending Read Discarded. This bit is set if a pending read was discarded because the discard
timer expired.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

RIP

Description: Reset In Progress. When the EN bit is cleared, the PCI interface is reset (note that this does
NOT result in a PCI reset). This bit is set to indicate that a PCI interface reset is in progress. This
reset may take several clock cycles to complete due to the crossing of clock domains. When the
PCI interface reset has completed, this bit is cleared and the PCI interface may be re-enabled by
setting the EN bit.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

EED

Description: PCI Serial EEPROM Done. When this bit is set, the EED bit in the PCIS register is masked from
generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

WR

Description: Warm Reset. When this bit is set, the WR bit in the PCIS register is masked from generating an
interrupt.

Initial Value: 0x1

PCISM
1631

0

14

015

NMI WR

1

STA MDPERMA RTAPE SSE

1111111

II

1

EED

1

TAE

1

RLE

1

BME

1

CWE

1

CRE

1

PRD

1

RIP

1

OSE

1

ence Manual 10 - 10 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
 Read Value: Previous value written

Write Effect: Modify value

NMI

Description: Non-maskable Interrupt. When this bit is set, the NMI bit in the PCIS register is masked from
generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

II

Description: Inbound Interrupt. When this bit is set, the II bit in the PCIS register is masked from generating
an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

CWE

Description: CPU Write Error. When this bit is set, the CWE bit in the PCIS register is masked from generat-
ing an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

CRE

Description: CPU Read Error. This bit is set if a CPU PCI read transaction experienced an error and the
IPBus Error Enable (IEN) bit is set in the PCIC register.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

MDPE

Description: Master Data Parity Error. When this bit is set, the MDPE bit in the PCIS register is masked from
generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

STA

Description: Signalled Target Abort. When this bit is set, the STA bit in the PCIS register is masked from
generating an interrupt.

Initial Value: 0x1
ence Manual 10 - 11 May 11, 2005

IDT PCI Bus Interface PCI Register Description

79RC32438 User Refer

Notes
 Read Value: Previous value written

Write Effect: Modify value

RTA

Description: Received Target Abort. When this bit is set, the RTA bit in the PCIS register is masked from
generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

RMA

Description: Received Master Abort Status. When this bit is set, the RMA bit in the PCIS register is masked
from generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

SSE

Description: Signalled System Error. When this bit is set, the SSE bit in the PCIS register is masked from
generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

OSE

Description: Observed System Error. When this bit is set, the OSE bit in the PCIS register is masked from
generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

PE

Description: Parity Error. When this bit is set, the PE bit in the PCIS register is masked from generating an
interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

TAE

Description: Target Address Error. When this bit is set, the TAE bit in the PCIS register is masked from gen-
erating an interrupt.

Initial Value: 0x1
ence Manual 10 - 12 May 11, 2005

IDT PCI Bus Interface Reset

79RC32438 User Refer

Notes
Reset
Upon assertion of the PCI reset, either a warm or cold reset causes all of the PCI interface pins to be tri-

stated during the reset condition.1 This reaction is asynchronous to the PCI clock or master clock input
(CLK) and is immediate.

A warm or cold reset and the subsequent enabling of the PCI interface may result in the PCI bus inter-
face being enabled during an active bus (e.g., in the middle of a burst transfer between two other devices).
This may also occur due to the delay in locking the PLL following a PCI reset when the RC32438 is used in
satellite mode. The PCI bus interface handles this condition. If the RC32438 becomes active during a PCI
transaction, the RC32438 will ignore events on the PCI bus until the transaction is completed. For additional
information, refer to the Reset Implementation note in section 4.3.2 of PCI Specification 2.2.

Read Value: Previous value written

Write Effect: Modify value

RLE

Description: Retry Limit Exceeded. When this bit is set, the RLE bit in the PCIS register is masked from gen-
erating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

BME

Description: Bus Master Error. When this bit is set, the BME bit in the PCIS register is masked from generat-
ing an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

PRD

Description: Pending Read Discard. When this bit is set, the PRD bit in the PCIS register is masked from
generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

RIP

Description: Reset In Progress. When this bit is set, the RIP bit in the PCIS register is masked from generat-
ing an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

1. An exception to this is the PCI reset signal PCIRSTN. When the RC32438 is configured to operate in PCI host
mode, PCIRSTN will be asserted whenever the EN bit is cleared (set to zero).
ence Manual 10 - 13 May 11, 2005

IDT PCI Bus Interface Disabled Mode

79RC32438 User Refer

Notes
 During a cold reset, the RC32438’s PCI reset output is tri-stated since it is not yet known if the RC32438
will be operating in host or satellite mode. Therefore, system designers should pull the PCI reset signal
down so that it is held low following the application of power to the system.

Disabled Mode
When the EN bit in the PCIC register is cleared, the PCI bus interface is disabled. The PCI bus interface

may be permanently disabled during boot configuration by selecting the disable PCI mode. When disabled,
the PCI bus interface enters a benign low-power mode. While in this mode, all transactions except for
configuration accesses will be ignored. Configuration accesses will receive a retry response. The values on
all PCI input pins are ignored. The PCI clock (PCICLK) should be driven to a valid logic level on the board.

When the PCI bus interface is disabled, all of the PCI pins are tri-stated, except PCIGNTN[3:1], and thus
should be held at a valid logic level on the board. PCIGNTN[3:1] signals are driven high when the interface
is disabled. The PCI bus interface may be disabled at any time after a cold reset by clearing the enable
(EN) bit in the PCI configuration (PCIC) register.

Disabling and then re-enabling the PCI bus interface resets all of the logic associated with the PCI bus
interface and causes all FIFOs to be reset. The states of all status registers are reset to their initial values,
but the states of all configuration registers are preserved.

PCI Host Mode

Reset and Initialization
In PCI host mode, the PCI reset pin (PCIRSTN) is an output. The PCIRSTN pin is asserted whenever

the EN bit in the PCIC register is cleared (e.g., as the result of a warm or cold reset). Software should
ensure that the PCIRSTN pin is asserted for a minimum of 1 ms after power has stabilized and 100 µs after
the PCI clock has stabilized.

After reset, the RC32438 boots from the boot device. The PCI interface is then enabled, causing the PCI
reset pin to be de-asserted (i.e., taking the PCI bus out of reset). Initially, the Target Not Ready (TNR) bit is
set in the PCIC register. This causes all PCI bus interface target transactions to be retried and allows the
RC32438 to initialize the PCI interface and configuration registers. Once the RC32438 device completes
the initialization sequence, it clears the Target Not Ready (TNR) bit, allowing PCI masters to access the
RC32438.

A warm reset may be initiated by writing to the Warm Reset (WR) bit in the PCI Management (PMGT)
register in PCI configuration space. An NMI to the CPU core may be initiated by writing to the Non-
Maskable Interrupt (NMI) bit in the PMGT register. A PCI host may use these features to reset/reboot the
RC32438 device.

The CPU core may generate a PCI reset by clearing the EN bit in the PCIC register or by initiating a
warm or cold reset. Note that system designers may choose to generate the PCI reset signal using external
logic rather than the RC32438 PCIRSTN signal to reset other external devices. In such a configuration, the
externally generated reset should be configured to generate a warm or cold reset.

Bus Arbitration
PCI arbitration mode in host mode is determined by the PCI mode selected during boot configuration.

The PCI host can be configured to use an external arbiter or internal arbiter. The function of the
PCIREQN[5:0] and PCIGNTN[5:0] signals is determined by the PCI mode selected 1 and is dependent on
whether the internal arbiter is used or an external arbiter is selected.

1. PCIREQN[4] is an alternate function of GPIO[24], PCIREQN[5] is an alternate function of GPIO[27],
PCIGNTN[4] is an alternate function of GPIO[26], and PCIGNTN[5] is an alternate function of GPIO[28].
ence Manual 10 - 14 May 11, 2005

IDT PCI Bus Interface PCI Satellite Mode

79RC32438 User Refer

Notes
The internal arbiter supports up to six external devices. The default arbitration algorithm used by the
internal arbiter is selected by the PCI mode during boot configuration. The algorithm may be modified
through the Arbiter Arbitration Algorithm (AAA) bit in the PCIC register. The two algorithms are:

Round robin arbitration algorithm - ownership is granted in a fixed rotating sequence (RC32438,
PCIREQN[0], PCIREQN[1], PCIREQN[2], PCIREQN[3], PCIREQN[4], PCIREQN[5]).
Fixed priority arbitration algorithm - the priority order (highest to lowest) is RC32438, PCIREQN[0],
PCIREQN[1], PCIREQN[2], PCIREQN[3], PCIREQN[4], PCIREQN[5].

The RC32438 internal arbiter will guarantee that the PCI “Trhff” (time from reset high-to-first-frame#
assertion) specification will be met by not granting the bus for at least eight clock cycles after negation of
the PCI reset or the enabling of the PCI interface.

Interrupts
In host mode, the RC32438 does not provide any dedicated interrupt inputs. GPIO pins may be used as

interrupt inputs. Although no GPIO pins are dedicated for PCI interrupts, GPIO pins GPIO[29:26] have PCI
buffers (refer to Table 1.3 in Chapter 1).

The PCI messaging unit operates in both satellite and host modes. The PCI messaging unit interrupt
output (i.e., PCIMUINTN) is a GPIO alternate function output (refer to Table 12.1 in Chapter 12). When
configured as an alternate function, this pin is tri-stated when not asserted (i.e., it acts as an open collector
output).

PCI Satellite Mode

Reset and Initialization
In PCI satellite mode, the PCI reset pin (PCIRSTN) is an input. Assertion of the PCI reset pin causes the

RC32438 to perform a warm reset and to reset the state of all registers in the PCI interface to their initial
value (including PCI configuration registers).

The PCI bus interface supports two PCI satellite operating modes. The two satellite operating modes
are: PCI satellite mode with target not ready, and PCI satellite mode with suspended CPU execution. The
operating mode is selected by the PCI mode field during boot configuration.

Pin Name Type Description

PCIREQN[5:0] I PCI Request. The assertion of these signals indicates to the internal
RC32438 arbiter that an agent desires use of the PCI bus.

PCIGNTN[5:0] O PCI Grant. The assertion of these signals indicates to the agent that the
internal RC32438 arbiter has granted the agent access to the PCI bus.

Table 10.3 PCI Arbitration Pin Functionality in PCI Host Mode with Internal Arbiter Enabled

Pin Name Type Description

PCIREQN[0] O PCI Request. This signal is asserted by the RC32438 to request use of
the PCI bus. While PCIRSTN is asserted, the RC32438 tri-states this
signal.

PCIREQN[5:1] O Unused. These signals are unused in this mode and driven high.

PCIGNTN[0] I PCI Grant. This signal is asserted by an external arbiter to indicate to
the RC32438 that access to the PCI bus has been granted. While PCIR-
STN is asserted, the RC32438 ignores the state of this signal.

PCIGNTN[5:1] O Unused. These signals are unused in this mode and driven high.

Table 10.4 PCI Arbitration Pin Functionality in PCI Host Mode Using External Arbiter
ence Manual 10 - 15 May 11, 2005

IDT PCI Bus Interface PCI Satellite Mode

79RC32438 User Refer

Notes
 An RC32438 warm reset may be initiated by writing to the Warm Reset (WR) bit in the PCI Management
(PMGT) register in PCI configuration space. A CPU NMI may be initiated by writing to the Non-Maskable
Interrupt (NMI) bit in the PMGT register. A PCI host may use this feature to reset/reboot the RC32438.

PCI Satellite Mode with Target Not Ready
In this mode, the sequence of events after reset is as follows: the RC32438 boots from the boot device.

Initially the Target Not Ready (TNR) bit is set in the PCIC register. This causes all PCI bus interface target
transactions to be retried. It also allows the RC32438 to boot, initialize the system, and initialize the PCI
interface and configuration registers. Once the initialization is completed, it clears the Target Not Ready
(TNR) bit, allowing PCI masters to access the RC32438.

PCI Satellite Mode with Suspended CPU execution
In this mode, the execution of the RC32438 device is suspended when the system is reset because the

Suspend CPU Execution (SCE) bit is set in the PCIC register. Since execution of the CPU core is
suspended in this mode, the watchdog timer should be initially disabled by setting the Disable Watchdog
Timer bit in the boot configuration vector (refer to Table 3.3 in Chapter 3).

In addition, the Target Not Ready (TNR) bit is initially set in the PCIC register. The PCI configuration
registers are loaded from the PCI Serial EEPROM. Once the PCI configuration registers are initialized, the
TNR bit is automatically cleared, allowing PCI hosts to access all of the RC32438’s memory mapped regis-
ters and local memory.

The PCI host can configure a significant proportion of the RC32438 device. For example, it can initialize
the device controller or DDR controller and load boot code into memory. The PCI host can also change PCI
and device address mapping, allowing the CPU to boot directly from PCI memory.

Note that there are two address mapping regions for DDR0. This allows DDR0 space to be mapped to
address 0x0000_0000 using the normal mapping mechanism and it allows the CPU core boot exception
vector memory space starting at 0x1FC0_00000 to be mapped to DDR0 using the second mapping region.
For more information, refer to Chapter 7, DDR Controller.

When the PCI host has completed configuring the RC32438 device and/or loading boot code, it clears
the SCE bit, allowing the CPU core to begin execution. The CPU begins executing at the MIPS reset excep-
tion vector whose physical address is 0x1FC0_0000. The CPU core can only boot from a 32-bit wide device
on the PCI bus. There is no need to disable the bus timer in this mode since setting the SCE bit disables
CPU accesses to the PMBus. Since there is no CPU transaction on the PMBus or IPBus, there is no possi-
bility of a bus time-out.

Bus Arbitration
In satellite mode, the RC32438 device always uses an external arbiter. Table 10.5 summarizes the func-

tion of the bus arbitration pins in satellite mode.

Pin Name Type Description

PCIREQN[0] O PCI Request. This signal is asserted by the RC32438 to request use of
the PCI bus. While PCIRSTN is asserted, the RC32438 tri-states this
signal.

PCIREQN[1] I Initialization Device Select. In satellite mode this signal takes on the
alternate function of PCIIDSELP and is used as a chip select during
configuration read and write transactions.

PCIREQN[5:2] O Unused. These signals are unused in this mode and driven high.

Table 10.5 PCI Arbitration Pin Functionality in PCI Satellite Mode (Part 1 of 2)
ence Manual 10 - 16 May 11, 2005

IDT PCI Bus Interface PCI Transactions

79RC32438 User Refer

Notes
Interrupts
In satellite mode, the RC32438 device does not provide any dedicated interrupt outputs. The PCI

messaging unit operates in both satellite and host modes. The PCI messaging unit interrupt output (i.e.,
PCIMUINTN) is a GPIO alternate function output (refer to Table 12.1 in Chapter 12). Although no GPIO pins
are dedicated for PCI interrupts, GPIO pins 29:26 have PCI buffers (refer to Table 1.3 in Chapter 1).

PCI Serial EEPROM Interface
When the RC32438 device is booted in PCI satellite mode with the execution of the CPU core

suspended, the PCI serial EEPROM is used to load PCI configuration registers whose addresses are less
than 0x40 in PCI configuration space. The PCI serial EEPROM interface provides a National Semicon-
ductor MICROWIRE™ compatible serial EEPROM interface. The interface only supports 93C46-compat-
ible serial EEPROMs. The PCI Serial EEPROM done bit (EED) in the PCIS register is set when the loading
of configuration information has been completed and the Serial I/O signals have been released. Only
EEPROMs which are 2048-bits in size should be used.

Each EEPROM address corresponds to a 16-bit data quantity. This is in contrast to PCI configurations
which correspond to 8-bit quantities. For this reason, corresponding EEPROM addresses are equal to one
half of their PCI configuration space addresses. Unused EEPROM locations (i.e., those whose initial values
are don’t care) may be used to store application-specific information. Application-specific information may
be accessed after PCI initialization from EEPROM using the PCI interface.

For information on the operation of the PCI serial EEPROM I/O pins, see Chapter 16, Serial Peripheral
Interface.

PCI Transactions
Table 10.6 summarizes the PCI command codes supported by the PCI bus interface. The sections

following this table describe how these transactions are generated for master and target configurations.

PCIGNTN[0] I PCI Grant. This signal is asserted by an external arbiter to indicate to
the RC32438 that access to the PCI bus has been granted. While PCIR-
STN is asserted, the RC32438 ignores the state of this signal.

PCIGNTN[1] O PCI EEPROM Chip Select. In satellite mode this signal takes on the
alternate function of PCIEECS and is used as a PCI Serial EEPROM
chip select.

PCIGNTN[5:2] O Unused. These signals are unused in this mode and driven high.

CBEN[3:0] Command IPBus
Master

DMA
Ch. 8 PCI
Master

DMA
Ch. 9 PCI
Master

PCI
Target

0000 Interrupt Acknowledge No No No Ignored

0001 Special Cycle No No No Ignored

0010 I/O Read Yes Yes No Yes

0011 I/O Write Yes No Yes Yes

0100 Reserved No No No Ignored

0101 Reserved No No No Ignored

0110 Memory Read Yes Yes No Yes

Table 10.6 Supported PCI Transactions (Part 1 of 2)

Pin Name Type Description

Table 10.5 PCI Arbitration Pin Functionality in PCI Satellite Mode (Part 2 of 2)
ence Manual 10 - 17 May 11, 2005

IDT PCI Bus Interface Endianness and PCI Swapping

79RC32438 User Refer

Notes
Endianness and PCI Swapping
When the RC32438 acts as a PCI master or target, its endianness may be different from that of the PCI

bus. A PCI bus typically operates in little endian while the CPU may operate in either big or little endian. To
support systems in which the endianness of the CPU differs from that of the PCI bus, the RC32438
provides swap bits as follows.

– SB bits in the PCI Base Address Control (PBA[0|1|2|3]C) registers. These bits control swapping
of data during RC32438 PCI target transactions.

– SB bits in the PCI Local Base Address (PCILBA[0|1|2|3]C) registers. These bits control swapping
of data during the RC32438 PCI master transactions generated by the CPU.

– SB bits in the DEVCMD field of the PCI DMA descriptors. These bits control swapping of data
during the RC32438 PCI master transactions generated by the DMA.

PCI Master
The PCI master interface, shown in Figure 10.1, provides the ability for the CPU core to read and write

to PCI memory and I/O space. In addition, it allows the CPU core to perform PCI configuration operations.
Although the PCI master interface is an IPBus slave interface, it does not support transactions from masters
other than the CPU core itself. A transaction to memory by any IPBus master other than the CPU core that
maps to PCI space is not acknowledged by the PCI interface and results in an undecoded address error.

The PCI bus interface provides four mapping regions from an IPBus local address space to the PCI bus.
Each mapping region has a corresponding PCI Local Base Address (PCILBAx) register, PCI Local Base
Address Control (PCILBAxC) register, and PCI Local Base Address Mapping (PCILBAxM) register. The
PCILBAx holds the local address space base address. The PCILBAxC register holds the configuration
information for the mapping region. The PCILBAxM register holds the base address of PCI transactions that
map to the PCI Bus address space through PCILBAx. Local Base Addresses in PCILBAx registers should
be non-overlapping. If they are overlapping, one will be chosen. The PCI addresses which are mapped by
one or more PCILBAxM registers may overlap.

The PCI master interface does not support PCI locking and thus will never assert the PCILOCKN signal.
The PCI master interface will queue a maximum of four writes to the PCI bus and one read from the PCI
bus. The PCI master interface honors byte enables, allowing individual bytes to be read and written using
I/O and memory PCI transactions.

When a PCI master interface issues a memory read, memory read line, or a memory read multiple
transaction that is terminated early (e.g., a target disconnect), the PCI master may reissue the read using
the preferred read transaction. See the PCI specification 2.2 section 3.1.2 for the definition of preferred read
transactions.

0111 Memory Write Yes No Yes Yes

1000 Reserved No No No Ignored

1001 Reserved No No No Ignored

1010 Configuration Read Yes No No Yes

1011 Configuration Write Yes No No Yes

1100 Memory Read Multiple No Yes No Yes

1101 Dual Address Cycle No No No Ignored

1110 Memory Read Line Yes Yes No Yes

1111 Memory Write-and-Invalidate No No Yes Yes

CBEN[3:0] Command IPBus
Master

DMA
Ch. 8 PCI
Master

DMA
Ch. 9 PCI
Master

PCI
Target

Table 10.6 Supported PCI Transactions (Part 2 of 2)
ence Manual 10 - 18 May 11, 2005

IDT PCI Bus Interface PCI Master

79RC32438 User Refer

Notes
 Master I/O Read
All IPBus read transactions whose addresses match the base address in a PCI Local Base Address

(PCILBAx) register configured for I/O space (i.e., the MSI bit is set in the corresponding PCI Local Base
Address Control (PCILBAxC) register) result in an I/O read transaction on the PCI bus. The value in the
corresponding PCI Local Base Address Map (PCILBAxM) register maps the upper bits of the local IPBus
address to the PCI I/O read address, as indicated by the SIZE field of the PCILBAxC register. The byte
enables on the PCI bus correspond to the size/byte enables of the IPBus read operation (i.e., byte, half-
word, triple-byte or word). All IPBus initiated I/O read transactions translate into single data phase PCI
transactions even if a burst transaction was generated on the IPBus (i.e., bursts are not supported).

Master I/O Write
All IPBus write transactions whose addresses match the base address in a PCI Local Base Address

(PCILBAx) register configured for I/O space (i.e., the MSI bit is set in the corresponding PCI Local Base
Address Control (PCILBAxC) register) result in an I/O write transaction on the PCI bus. The value in the
corresponding PCI Local Base Address Map (PCILBAxM) register maps the upper bits of the local IPBus
address, as indicated by the SIZE field of the PCILBAxC register, to the PCI I/O read address. The value
written on the PCI bus corresponds to the data value of the IPBus write transaction. The byte enables on
the PCI bus correspond to the size/byte enables of the IPBus write operation (i.e., byte, halfword, triple-
byte, or word). IPBus initiated I/O write transactions may contain one or more data phases (i.e., bursts are
supported).

Master Memory Read
An IPBus read transaction will result in a memory read transaction on the PCI Bus when the following

conditions are met:
– The address matches the base address in a PCI Local Base Address (PCILBAx) register that is

configured for memory space (i.e., the MSI bit is cleared in the corresponding PCI Local Base
Address Control (PCILBAxC) register)

– Read Transaction (RT bit in corresponding PCILBAxC) bit is cleared, resulting in a memory read
transaction on the PCI bus.

The value in the corresponding PCI Local Base Address Map (PCILBAxM) register maps the upper bits
of the local IPBus address, as indicated by the SIZE field of the PCILBAxC register, to the PCI memory read
address. The byte enables on the PCI bus correspond to the size/byte enables of the IPBus read operation
(i.e., byte, halfword, triple-byte, or word).

Master Memory Write
All IPBus write transactions whose addresses match the base address in a PCI Local Base Address

(PCILBAx) register that is configured for memory space (i.e., the MSI bit is cleared in the corresponding PCI
Local Base Address Control (PCILBAxC) register) result in a memory write transaction on the PCI bus. The
value in the corresponding PCI Local Base Address Map (PCILBAxM) register maps the upper bits of the
local IPBus address, as indicated by the SIZE field of the PCILBAxC register, to the PCI memory write
address. The value written on the PCI bus corresponds to the data value of the IPBus write transaction. The
byte enables on the PCI bus correspond to the size/byte enables of the IPBus write operation (i.e., byte,
halfword, triple-byte, or word).

The PCI bus interface will attempt to perform burst PCI memory write transactions whenever possible.
The PCI interface will add a data phase to the memory write transaction in progress if:

– Data exists in the CPU master output FIFO whose address is equal to that of the current data
quantity being transferred plus four

– The Master Latency Timer has not expired.

Master Configuration Read
To generate a PCI configuration read transaction, an IPBus master (e.g., CPU core) writes the desired

configuration register address to the PCI Configuration Address (PCICFGA) register and performs a read
from the PCI Configuration Data (PCICFGD) register. The value returned to the IPBus master will be that
ence Manual 10 - 19 May 11, 2005

IDT PCI Bus Interface PCI Master

79RC32438 User Refer

Notes
 received from the configuration read transaction. During the configuration read transaction, the PCI byte
enables will correspond to the size of the data read from the PCICFGD register (i.e., byte, halfword, triple-
byte, or word).

If the BUS field in the PCI Configuration Address (PCICFGA) register is zero, a Type 0 configuration
read transaction is performed. If the BUS field is non-zero, a Type 1 configuration read transaction is
performed. See section 3.2.2.3 of PCI Specification 2.2 for more information. For Type 1 configuration
transactions, the PCIAD[30:2] takes on the value of the corresponding bit positions in the PCICFGA
register. PCIAD[1:0] takes on the value 0x01 and PCIAD[31] takes on the value 0x0. For Type 0 configura-
tion transactions, the DEVICE field in the PCI Configuration Address (PCICFGA) register is used to select
the IDSEL line of the PCI satellite to be configured. The DEVICE field to IDSEL mapping is shown in Table
10.7.

A Type 0 configuration transaction whose corresponding DEVICE field is 0x00 corresponds to the
RC32438 and is handled internally without generating a PCI transaction. When one of the PCI address bits
(PCIAD[31:11]) is set to one and PCIAD[1:0] are both zero, a PCI configuration read transaction is gener-
ated for the corresponding DEVICE field.

All PCI configuration transactions use address stepping to allow for IDSEL predriving. Refer to PCI
Specification 2.2, section 3.2.2.5 for more information. Performing a PCI configuration read from a nonex-
isting device results in the DEVSELN signal not being asserted by a PCI target. This results in a master
abort of the transaction and the setting of the Receive Master Abort Status (RMA) bit in the STATUS
register in PCI configuration space, value 0xFFFF_FFFF being returned to the IPBus master, and an IPBus
slave acknowledge error if the IPBus Error Enable (IEN) bit is set in the PCICFG register. The setting of the
RMA bit may be used to signal a CPU interrupt.

The RC32438 does not support the generation of burst configuration read transactions. All configuration
read transactions have a single data phase. When the PCI interface is set to operate in decoupled mode
(i.e., the Decoupled Access Enable (DEN) bit is set in the PCI Decoupled Access Control (PCIDAC)
register), then the value read from the PCICFGD is not valid until the Done (D) bit is set in the PCI Decou-
pled Access Status (PCIDAS) register. The Error (E) and Busy (B) bits in the PCIDAS register reflect the
status of the operation.

Master Configuration Write
To generate a PCI configuration write transaction, an IPBus master (e.g., CPU core) writes the desired

configuration register address to the PCI Configuration Address (PCICFGA) register and performs a write to
the PCI Configuration Data (PCICFGD) register. The value written by the IPBus master will be used for the
PCI configuration write, and the PCI byte enables will correspond to the size of the data written (i.e., byte,
halfword, triple-byte, or word).

Device
Number

Address
Line

Device
Number

Address
Line

Device
Number

Address
Line

0x00 Internal Access 0x08 PCIAD[18] 0x10 PCIAD[26]
0x01 PCIAD[11] 0x09 PCIAD[19] 0x11 PCIAD[27]
0x02 PCIAD[12] 0x0A PCIAD[20] 0x12 PCIAD[28]
0x03 PCIAD[13] 0x0B PCIAD[21] 0x13 PCIAD[29]
0x04 PCIAD[14] 0x0C PCIAD[22] 0x14 PCIAD[30]
0x05 PCIAD[15] 0x0D PCIAD[23] 0x15 PCIAD[31]
0x06 PCIAD[16] 0x0E PCIAD[24]
0x07 PCIAD[17] 0x0F PCIAD[25]

Table 10.7 PCI Device Fields to IDSEL Mapping
ence Manual 10 - 20 May 11, 2005

IDT PCI Bus Interface PCI Master

79RC32438 User Refer

Notes
 If the BUS field in the PCI Configuration Address (PCICFGA) register is zero, a Type 0 configuration
read transaction is performed. If the BUS field is non-zero, a Type 1 configuration read transaction is
performed. See section 3.2.2.3 of PCI Specification 2.2 for more information. For Type 1 configuration
transactions, the PCIAD[30:2] takes on the value of the corresponding bit positions in the PCICFGA
register. PCIAD[1:0] takes on the value 0x01 and PCIAD[31] takes on the value 0x0. For Type 0 configura-
tion transactions, the DEVICE field in the PCI Configuration Address (PCICFGA) register is used to select
the IDSEL line of the PCI satellite to be configured. The DEVICE field to IDSEL mapping is shown in Table
10.7. A Type 0 configuration transaction whose corresponding DEVICE field is 0x00 corresponds to the
RC32438 and is handled internally without generating a PCI transaction. When one of the PCI address bits
(PCIAD[31:11]) is set to one and PCIAD[1:0] are both zero, a PCI configuration write transaction is gener-
ated for the corresponding DEVICE field.

All PCI configuration transactions use address stepping to allow for IDSEL predriving. Refer to the PCI
Specification 2.2, section 3.2.2.5 for more information. Performing a PCI configuration write to a nonexisting
device results in the DEVSELN signal not being asserted by a PCI target. This results in a master abort of
the transaction and the setting of the Receive Master Abort Status (RMA) bit in the STATUS register in PCI
configuration space. The setting of the RMA bit may be used to signal a CPU interrupt. The RC32438 does
not support generation of burst configuration write transactions. All configuration write transactions have a
single data phase.

When the PCI interface is set to operate in decoupled mode (i.e., the Decoupled Access Enable (DEN)
bit is set in the PCI Decoupled Access Control (PCIDAC) register), then the Done (D), Error (E), and Busy
(B) bits in the PCI Decoupled Access Status (PCIDAS) register reflect the status of the operation.

Master Memory Read Line
All IPBus read transactions whose address matches the base address in a PCI Local Base Address

(PCILBAx) register that is configured for memory space (i.e., the MSI bit is cleared in the corresponding PCI
Local Base Address Control (PCILBAxC) register) and whose Read Transaction (RT bit in corresponding
PCILBAxC) bit is set result in a memory read line transaction on the PCI bus. The value in the corre-
sponding PCI Local Base Address Map (PCILBAxM) register maps the upper bits of the local IPBus
address, as indicated by the SIZE field of the PCILBAxC register, to the PCI memory read address.

Setting the Read Transaction (RT) bit in the corresponding PCILBAxC register indicates to the PCI inter-
face that a memory read line transaction should be used to prefetch data when the read transaction maps
to the corresponding PCILBAx register. The PCI bus interface will supply the data quantity requested by the
IPBus master read and will queue prefetch data in the IPBus Master PCI input FIFO. Subsequent sequen-
tial reads that map to PCILBAx will result in queued data being returned.

The memory read line is used when a PCI master will read more than one word but no more than a
cache line. Memory read line transactions resulting from IPBus master read transactions will cause the PCI
bus interface to issue a memory read line burst transaction that transfers either an entire cache line or eight
words, whichever is smaller. The 8 word limit allows the CACHE_LINE_SIZE register in PCI configuration
space to be set larger than the size of the IPBus master PCI input FIFO. For example, setting the
CACHE_LINE_SIZE register to 16 words still results in only 8 words being transferred.

Prefetch data in the CPU master input FIFO is flushed when an IPBus write transaction maps to the PCI
bus.

Master Error Handling
IPBus master fatal errors are: target timeout error, PCI target terminates with a Target Abort, transaction

could not be completed because the RETRY_LIMIT was exceeded, parity error, and the transaction could
not be completed because the BM bit is not set in the COMMAND register.

An IPBus master fatal error is not propagated to the IPBus on prefetched data that is not subsequently
read by an IPBus master (i.e., if the error occurs on prefetched data, it is ignored unless the data is actually
used). If a CPU generated PCI master read transaction experiences a fatal error, the CPU master input
ence Manual 10 - 21 May 11, 2005

IDT PCI Bus Interface PCI Master

79RC32438 User Refer

Notes
 FIFO is flushed and an IPBus slave acknowledge error is generated if the IPBus Error Enable (IEN) bit is
set in the PCI Control (PCIC) register. When a slave acknowledge error is generated, the CPU Read Error
(CRE) bit is set in the PCI Status (PCIS) register. If IEN is not set, the error is ignored.

If a CPU generated PCI master write transaction experiences a fatal error, an IPBus slave acknowledge
error is generated and the CPU Write Error (CWE) bit is set in the PCIS register. A slave acknowledge error
is not generated.

PCI Configuration Address Register

Figure 10.5 PCI Configuration Address Register (PCICFGA)

REG

Description: Register. This field specifies the PCI register address (i.e., the address of a 32-bit quantity within
the target function’s configuration space).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

FUNC

Description: Function. This field specifies the PCI function number.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DEV

Description: Device. This field specifies the PCI device number. PCI address bits 31 through 11 (i.e.,
PCIAD[31:11]) are all set to one for device numbers 0x1 through 0x15. PCI device number 0
refers to the RC32438’s host device (i.e., itself).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

BUS

Description: Bus. This field specifies the PCI bus number.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PCICFGA
031

8

0

7

EN

1 2

0BUS

5

DEV

3

FUNC

6

REG
ence Manual 10 - 22 May 11, 2005

IDT PCI Bus Interface PCI Master

79RC32438 User Refer

Notes
PCI Configuration Data Register

Figure 10.6 PCI Configuration Data Register (PCICFGD)

PCI Local Base Address [0|1|2|3] Register

Figure 10.7 PCI Local Base Address [0|1|2|3] Register (PCILBA[0|1|2|3])

EN

Description: Enable. When this bit is set, accesses to the PCI Configuration Data (PCICFGD) register are
translated into PCI configuration accesses. Since there is no analogous PC-AT I/O address
space in the MIPS architecture, this bit cannot be cleared and is read-only.

Initial Value: 0x1

Read Value: 0x1

Write Effect: Read-only

DATA

Description: Data. Reading this register results in a PCI configuration read transaction using the information
in the PCI Configuration Address (PCICFGA) register. The value returned to the processor is the
result of the read. Writing this register results in a PCI configuration write transaction using the
data value written to this register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

BADDR

Description: Base Address. This field specifies the local address bits to use for decoding IPBus transactions
to PCI transactions. All of the local address bits that are active (i.e., those whose bit position is
greater than or equal to size) are compared to the corresponding bits in this field. If they all
match, then the corresponding transaction is mapped to the PCI bus.

Initial Value: 0x0

PCICFGD
031

32

DATA

PCILBA[0|1|2|3]
031

24

BADDR 0

8

ence Manual 10 - 23 May 11, 2005

IDT PCI Bus Interface PCI Master

79RC32438 User Refer

Notes
PCI Local Base Address [0|1|2|3] Control

Figure 10.8 PCI Local Base Address [0|1|2|3] Control (PCILBA[0|1|2|3]C)

Read Value: Previous value written

Write Effect: Modify value

MSI

Description: Memory Space Indicator. The value of this bit determines the type of transaction issued on the
PCI bus for local transactions that map to the PCI bus through PCILBAx.
0x0 - Memory transactions
0x1 - I/O transactions

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SIZE

Description: Address Space Size. This field indicates the size (in bits) of the address space for the corre-
sponding local base address register. A size value less than eight disables the address space
(i.e., no addresses will match).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

FE

Description: Force Endianess. This bit controls the endianess for local transactions that map the PCI bus
through the PCIBLAx register. This register overrides the system controller endianess settings
and will swap bytes as needed to maintain the desire endianess for all PCI transactions that map
through the affected register.
0x0 - Big Endian
0x1 - Little Endian

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PCILBA[0|1|2|3]C
031

1

MSI

1

0SIZE

51

FE

1

RT

23

0

ence Manual 10 - 24 May 11, 2005

IDT PCI Bus Interface Decoupled PCI Master Transactions

79RC32438 User Refer

Notes
PCI Local Base Address [0|1|2|3] Mapping Register

Figure 10.9 PCI Local Base Address [0|1|2|3] Mapping Register (PCILBA[0|1|2|3]M)

Decoupled PCI Master Transactions
CPU core accesses to the PCI bus may take a significantly longer time to complete than normal IPBus

transactions. One reason for this is the fact that the PCI bus can run at one quarter the frequency of the
IPBus. Other reasons are: PCI arbitration delays, retried PCI transactions, and PCI wait states.

Reads from the CPU core to the PCI bus will lock up the IPBus until the transaction completes. Writes
from the CPU core to the PCI bus when the CPU master output FIFO is full will also lock up the IPBus until
a write transaction completes and space becomes available in the FIFO. Locking up the IPBus may have
adverse affects on the real-time performance of the system. For example, it may lead to Ethernet FIFO
overflows and underflows.

The programmer may avoid locking up the IPBus due to CPU core-initiated writes to the PCI bus by
making sure that the CPU master output FIFO is not full prior to performing a write. This may be determined
by observing the state of the Output FIFO Full (OFF) bit in the PCI Decoupled Access Status (PCIDAS)
Register. Since the IPBus does not support split transactions, there is no way to avoid locking up the IPBus
using traditional CPU reads of the PCI bus.

RT

Description: Read Transaction. This bit controls the type of PCI transaction(s) issued in response to IPBus
master reads that map through PCILBAx to the PCI bus when the MSI bit configures PCILBAx to
use memory transactions. When the MSI bit is set, IPBus read operations use PCI I/O read
transactions regardless of the state of this bit.
0x0 - Issue memory read transaction(s) on PCI bus and pass data to IPBus as it becomes avail-
able.
0x1 - Issue memory read line transaction(s) on the PCI bus and prefetch entire cache lines in
anticipation of future IPBus reads.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MADDR

Description: Mapping Address. This field contains the PCI base address for local transactions mapped to
the PCI bus through the PCILBAx register. Local transaction address bits 31 through the value of
the SIZE field in the PCILBAxC register are replaced by corresponding bits in this field for local
transactions that map to the PCI bus through the PCILBAx register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PCILBA[0|1|2|3]M
031

24

MADDR 0

8

ence Manual 10 - 25 May 11, 2005

IDT PCI Bus Interface Decoupled PCI Master Transactions

79RC32438 User Refer

Notes
 To overcome this difficulty, the PCI bus interface supports decoupled read accesses. Decoupled read
accesses are enabled when the Decoupled Access Enable (DEN) bit is set in the PCI Decoupled Access
Control (PCIDAC) register. When the DEN bit is set, any CPU core-initiated read of an address that maps to
PCI space is completed immediately with a value of zero being returned to the CPU core. The PCI bus
interface then performs the read operation on the PCI bus. While a decoupled access is in progress, the
Busy (B) bit is set in the PCIDAS register. When the read operation completes, the Done (D) bit is set in the
PCIDAS register, the B bit is cleared, and the value read from the PCI bus is available in the PCI Decoupled
Access Data (PCIDAD) register. The CPU may read this value, thus completing the decoupled PCI read
operation. If an error was detected while performing the PCI read, the Error (E) bit is set and the value in the
PCIDAD register is undefined. Note that the D bit will not be set under this condition.

The state of the PCI CPU input and output FIFOs may be determined by examining the state of the
OFE, OFF, IFE, and IFF bits in the PCI decoupled access status register. All of the bits in the PCIDAS
register not masked by the PCI decoupled access status mask register are ORed together and presented to
the interrupt controller as the PCI decoupled access interrupt.

Note that when the DEN bit is set in the PCIDAC register, configuration read and write transactions to
devices other than the RC32438 are also performed in a decoupled manner. Configuration read and writes
to internal RC32438 configuration registers are never performed in a decoupled manner. Also note that
IPBus bursts from the CPU core do not translate into PCI bus burst transactions. In general, IPBus burst
transactions are split into a series of PCI transactions. The exception to this is when a decoupled transac-
tion maps to a PCI region that is configured to perform prefetching (i.e., a memory read line transaction).
When this occurs, a PCI burst transaction is generated to prefetch the data.

PCI Decoupled Access Control Register

Figure 10.10 PCI Decoupled Access Control Register (PCIDAC)

DEN

Description: Decoupled Access Enable. When this bit is set, PCI decoupled mode is enabled and all CPU
PCI read transactions are decoupled. This mode affects all IPBus read transactions that map to
the IPBus including those generated by the DMA.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PCIDAC
031

0

31

DEN

1

ence Manual 10 - 26 May 11, 2005

IDT PCI Bus Interface Decoupled PCI Master Transactions

79RC32438 User Refer

Notes
 PCI Decoupled Access Status Register

Figure 10.11 PCI Decoupled Access Status Register (PCIDAS)

D

Description: Done. This bit is set when a decoupled CPU PCI read operation has completed and a valid value
may be read from the PCIDAD register.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

B

Description: Busy. This bit is set while a decoupled CPU PCI read operation is being processed.

Initial Value: 0x0

Read Value: Status

Write Effect: Read Only

E

Description: Error. This bit is set if an error was detected while performing a decoupled access PCI read.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit

OFE

Description: Output FIFO Empty. This bit is set while the CPU master output FIFO is empty.

Initial Value: 0x1

Read Value: Status

Write Effect: Read Only

OFF

Description: Output FIFO Full. This bit is set while the CPU master output FIFO is full.

Initial Value: 0x0

Read Value: Status

Write Effect: Read Only

IFE

Description: Input FIFO Empty. This bit is set while the CPU Master Input FIFO is empty.

Initial Value: 0x1

PCIDAS
031

0

25

D

1

B

1

OFE

1

OFF

1

IFE

1

IFF

1

E

1

ence Manual 10 - 27 May 11, 2005

IDT PCI Bus Interface Decoupled PCI Master Transactions

79RC32438 User Refer

Notes
PCI Decoupled Access Status Mask Register

Figure 10.12 PCI Decoupled Access Status Mask Register (PCIDASM))

Read Value: Status

Write Effect: Read Only

IFF

Description: Input FIFO Full. This bit is set while the CPU Master Input FIFO is full.

Initial Value: 0x0

Read Value: Status

Write Effect: Read Only

D

Description: Done. When this bit is set, the D bit in the PCIDAS register is masked from generating a PCI
decoupled access interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

B

Description: Busy. When this bit is set, the B bit in the PCIDAS register is masked from generating a PCI
decoupled access interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

E

Description: Error. When this bit is set, the E bit in the PCIDAS register is masked from generating a PCI
decoupled access interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

OFE

Description: Output FIFO Empty. When this bit is set, the OFE bit in the PCIDAS register is masked from
generating a PCI decoupled access interrupt.

Initial Value: 0x1

PCIDASM
031

0

25

D

1

B

1

OFE

1

OFF

1

IFE

1

IFF

1

E

1

ence Manual 10 - 28 May 11, 2005

IDT PCI Bus Interface Decoupled PCI Master Transactions

79RC32438 User Refer

Notes
PCI Decoupled Access Data Register

Figure 10.13 PCI Decoupled Access Data Register (PCIDAD)

Read Value: Previous value written

Write Effect: Modify value

OFF

Description: Output FIFO Full. When this bit is set, the OFF bit in the PCIDAS register is masked from gen-
erating a PCI decoupled access interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

IFE

Description: Input FIFO Empty. When this bit is set, the IFE bit in the PCIDAS register is masked from gen-
erating a PCI decoupled access interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

IFF

Description: Input FIFO Full. When this bit is set, the IFF bit in the PCIDAS register is masked from generat-
ing a PCI decoupled access interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

DATA

Description: Data Field. This register contains the return value of a decoupled PCI CPU read operation.

Initial Value: 0x0

Read Value: Return value of previously initiated decoupled PCI CPU read operation

Write Effect: Modify value

PCIDAD
031

DATA

32
ence Manual 10 - 29 May 11, 2005

IDT PCI Bus Interface PCI Master—PCI to Memory DMA (DMA Channel 8)

79RC32438 User Refer

Notes
 PCI Master—PCI to Memory DMA (DMA Channel 8)
DMA channel 8 allows DMA operations to be performed that transfer data from the PCI bus to either the

DDR or local memory. PCI DMA operations do not use local mapping registers. The starting PCI address
for a DMA operation is specified in the DEVCS field of the DMA descriptor. This starting address is used for
I/O as well as memory PCI transactions. The PCI starting address in DEVCS and the local starting address
(specified in the CA field of the descriptor) may start on any byte boundary. These DMA operations are
limited to 32KB minus 8 bytes (0x7FF8 bytes) per DMA descriptor. Initiating a PCI to memory DMA opera-
tion with more than 32KB minus 8 bytes (0x7FF8 bytes) per DMA descriptor produces undefined results.

The PT field in the DEVCMD field of the DMA descriptor specifies the type of PCI transaction to use for
the DMA operation. The SB field indicates whether bytes read from the PCI bus should be swapped or
passed unmodified into the PCI DMA input FIFO. The PCI bus interface will begin issuing PCI bus transac-
tions based on the type specified in the PT field of the DMA descriptor’s DEVCMD field, starting at the
address specified in the DEVCS field. Data will be read from the PCI bus whenever there is space for at
least 16 words in the PCI DMA input FIFO.

The PCI bus interface will attempt to burst as much data from the PCI bus as possible during a transac-
tion. The PCI burst length is determined by system conditions. The transaction will continue as long as the
following conditions exist:

– it is not terminated by the PCI target
– there exists at least one free word in the PCI DMA input FIFO
– the byte count specified in the COUNT field of the DMA descriptor has not reached zero
– the number of data phases has not exceeded that specified in the Maximum Burst Size (MBS)

field of the PCIDMA8C register, and the Master Latency Timer has not expired.
The DMA controller transfers data from the PCI DMA input FIFO to memory whenever a DMA request

event is generated. The PCI bus interface generates a DMA request event to the DMA controller for DMA
channel 8 whenever there are 16 words of data or data corresponding to the end of a DMA operation in the
PCI DMA input FIFO. A summary of DMA events is shown in Table 10.8.

Event Description

DMA Request Event A request event is generated whenever 16 words of data or data corre-
sponding to the end of a DMA operation are present in the PCI DMA
input FIFO. PCI to memory DMA operations will generate DMA request
events during IPBus transactions as long as the above conditions are
met for subsequent data in the FIFO.

DMA Done Event A DMA done event is never generated.

DMA Terminated Event A DMA terminated event is generated if any of the following occur: PCI
master terminates transaction with a Master Abort (i.e., no target
responds to transaction), PCI target terminates transaction with a Tar-
get Abort, transaction could not be completed because the
RETRY_LIMIT was exceeded, the transaction could not be completed
because the BM bit is not set in the COMMAND register, and detection
of a PCI parity error.

DMA Transfer Size 16 words.

Limitations None. A DMA operation may start and end on any local address or PCI
address byte boundary and may contain any number of bytes

Table 10.8 PCI to Memory DMA Operations
ence Manual 10 - 30 May 11, 2005

IDT PCI Bus Interface PCI Master—PCI to Memory DMA (DMA Channel 8)

79RC32438 User Refer

Notes
 \

Figure 10.14 Device Command Field for PCI to Memory DMA Descriptors

Figure 10.15 Device Control and Status Value for PCI to Memory DMA Descriptors

Channel 8 Memory Read
PCI memory read transactions are generated during PCI to memory DMA operations if the PCI Transac-

tion (PT) field in the DEVCMD field of the DMA descriptor is set to memory read. The PCI bus interface will
attempt to generate a burst transaction when possible.

Channel 8 Memory Read Multiple
PCI memory read transactions are generated during PCI to memory DMA operations if the PCI Transac-

tion (PT) field in the DEVCMD field of the DMA descriptor is set to memory read multiple. The PCI bus inter-
face will attempt to generate a burst transaction when possible. After a PCI disconnect, the PCI to memory
DMA operation may generate a “preferred” memory read transaction (i.e., a memory read line or memory
read transaction). For a definition of preferred memory, refer to PCI Specification 2.2.

Channel 8 Memory Read Line
PCI memory read transactions are generated during PCI to memory DMA operations if the PCI Transac-

tion (PT) field in the DEVCMD field of the DMA descriptor is set to memory read line. The PCI bus interface
will attempt to generate a burst transaction when possible. After a PCI disconnect, the PCI to memory DMA
operation may generate a preferred memory read transaction (i.e., a memory read transaction.)

Channel 8 I/O Read
PCI/IO read transactions are generated during PCI to memory DMA operations if the PCI Transaction

(PT) field in the DEVCMD field of the DMA descriptor is set to I/O read. The PCI bus interface will attempt to
generate a burst transaction when possible.

PT PCI Transaction. This field specifies the PCI transaction to use to read data from the PCI bus.
0x0 Memory Read
0x1 Memory Read Line
0x2 Memory Read Multiple
0x3 I/O Read

SB Swap Bytes. This field controls byte swapping for a data read from the PCI bus during a PCI to
memory DMA operation.

PCIADDR PCI Address. This field specifies the starting PCI address for PCI to memory DMA operations.

DEVCMD
2

2

PT

0

1

SB

DEVCS
031

32

PCIADDR
ence Manual 10 - 31 May 11, 2005

IDT PCI Bus Interface PCI Master—PCI to Memory DMA (DMA Channel 8)

79RC32438 User Refer

Notes
 Channel 8 Error Handling
PCI to memory fatal errors are:

– PCI target terminates with a Target Abort
– transaction could not be completed because the RETRY_LIMIT was exceeded
– transaction could not be completed because the BM bit is not set in the COMMAND register
– detection of a PCI parity error.

If any of the above fatal errors are detected during a DMA operation, the DMA operation is halted with a
terminated condition (i.e., the T bit is set in the descriptor) and the DMA descriptor’s DEVCS field is
updated with the address of the error. The DMA descriptor’s Current Address (CA) field contains the
address to which the data (where the error occurred) should have been written. Note that no write actually
takes place. The COUNT field contains the actual number of bytes transferred. All data queued in the PCI
DMA input FIFO before the error occurred is written to memory before the DMA operation is halted.

PCI DMA Channel 8 Configuration Register

Figure 10.16 PCI DMA Channel 8 Configuration Register (PCIDMA8C)

MBS

Description: Maximum Burst Size. This field specifies the maximum number of words allowed in a PCI to
memory DMA operation. A value of 0x0 corresponds to 0x1000 (i.e., 4K word transfer).

Initial Value: 0x8

Read Value: Previous value written

Write Effect: Modify value

OUR

Description: Optimize Unaligned Burst Reads. When this bit is cleared, the PCI interface honors byte
enables at the start and end of unaligned PCI burst read transfers generated by the DMA control-
ler. This results in the PCI interface potentially generating three separate transactions for a sin-
gle unaligned DMA burst read transfer; one PCI transaction for the partial byte transfer at the
start of the burst, one PCI transaction for the aligned portion of the burst transfer, and one PCI
transaction for the partial byte transfer at the end of the burst transfer. These three transactions
are treated by the PCI interface as three independent transactions.
In most cases, byte enables generated during partial word PCI memory transactions are irrele-
vant as they have no side effect. Thus, entire words could simply have been read from memory
and unneeded data discarded. When this bit is set during a DMA read transfer that is pro-
grammed to generate Memory Read, Memory Read Line, or Memory Read Multiple transactions,
then the PCI interface will read complete words and discard unneeded data. This improves
unaligned PCI burst read transfer performance as it allows an entire burst read transfer gener-
ated by the DMA controller to be serviced as one PCI transaction.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PCIDMA8C
031

12

MBS

19

0

1

OUR
ence Manual 10 - 32 May 11, 2005

IDT PCI Bus Interface PCI Master — Memory to PCI DMA (DMA Channel 9)

79RC32438 User Refer

Notes
 PCI Master — Memory to PCI DMA (DMA Channel 9)
DMA channel 9 allows DMA operations to be performed that transfer data from either the DDR or local

memory to the PCI bus. PCI DMA operations do not use local mapping registers. The starting PCI address
for a DMA operation is specified in the DEVCS field of the DMA descriptor. This starting address is used for
I/O as well as memory PCI transactions. The PCI starting address in DEVCS and the local starting address
(specified in the CA field of the descriptor) may start on any byte boundary. These DMA operations are
limited to 32KB minus 8 bytes (0x7FF8 bytes) per DMA descriptor. Initiating a PCI to memory DMA opera-
tion with more than 32KB minus 8 bytes (0x7FF8 bytes) per DMA descriptor produces undefined results.

The PT field in the DEVCMD field of the DMA descriptor specifies the type of PCI transaction to use for
the DMA operation. The SB field indicates whether bytes read from the RC32438’s memory and written to
the PCI bus should be swapped or passed unmodified. The PCI bus interface will begin issuing PCI bus
transactions of the type specified in the PT field of the DMA descriptor’s DEVCMD field and starting at the
address specified in the DEVCS field. Data will be written to the PCI bus whenever there are at least 16
words in the PCI DMA output FIFO or the PCI DMA output FIFO contains the last word of a DMA transfer.

The PCI bus interface will attempt to burst as much data to the PCI bus as possible during a transaction.
For memory write, memory write and invalidate, and I/O write transactions, the PCI burst transaction length
is determined by system conditions. The transaction will continue as long as the following conditions exist:

– it is not terminated by the PCI target
– there exists at least one available word in the PCI DMA output FIFO
– the byte count specified in the COUNT field of the DMA descriptor has not reached zero
– the number of data phases has not exceeded that specified in the Maximum Burst Size (MBS)

field of the PCIDMA9C register
– the Master Latency Timer has not expired.

The DMA controller transfers data from the RC32438’s memory to the PCI DMA output FIFO whenever
a DMA request event is generated. The PCI bus interface generates a DMA request event to the DMA
controller for DMA channel 9 whenever there are 16 free words available in the PCI DMA output FIFO. A
summary of DMA events is shown in Table 10.9.

Event Description

DMA Request Event A request event is generated whenever 16 free words are available in
the PCI DMA output FIFO. Memory to PCI DMA operations will gener-
ate DMA request events during IPBus transactions as long as the above
conditions are met for subsequent data in the FIFO.

DMA Done Event A DMA done event is never generated.

DMA Terminated Event A DMA terminated event is generated if any of the following occur: PCI
master terminates transaction with a Master Abort (i.e., no target
responds to transaction), PCI target terminates with a Target Abort,
transaction could not be completed because the RETRY_LIMIT was
exceeded, the transaction could not be completed because the BM bit is
not set in the COMMAND register, and detection of a PCI parity error.

DMA Transfer Size 16 words.

Limitations None. A DMA operation may start and end on any local address or PCI
address byte boundary and may contain any number of bytes

Table 10.9 Memory to PCI DMA Operations
ence Manual 10 - 33 May 11, 2005

IDT PCI Bus Interface PCI Master — Memory to PCI DMA (DMA Channel 9)

79RC32438 User Refer

Notes
Figure 10.17 Device Command Field for Memory to PCI DMA Descriptors

Figure 10.18 Device Control and Status Value for Memory to PCI DMA Descriptors

Channel 9 Memory Write
PCI memory write transactions are generated during memory to PCI DMA operations if the PCI Transac-

tion (PT) field in the DEVCMD field of the DMA descriptor is set to memory write. The PCI bus interface will
attempt to generate a burst transaction when possible.

Channel 9 Memory Write and Invalidate
PCI memory write and invalidate transactions are generated during memory to PCI DMA operations if

the PCI Transaction (PT) field is set to memory write and invalidate and the MWI bit is set in the COMMAND
register in PCI configuration space. If the Memory Write and Invalidate Enable (MWI) bit is not set in the
COMMAND register in PCI configuration space and the PT field indicates memory write and invalidate
transactions, the DMA will perform the operation using memory write transactions.

It is the responsibility of software to make sure that memory to PCI DMA operations that use memory
write and invalidate transactions start on a cache line boundary and transfer an integral number of cache
lines. To ensure this, the PCI bus interface will wait until the required number of words for a cache line are
present in the PCI DMA output FIFO before initiating a memory write and invalidate transaction on the PCI
bus.

If the starting address for a DMA transfer is not on a cache line boundary or does not contain the
number of words required for a complete cache line, the PCI bus interface will use memory write transac-
tions. If the MWI bit is not set in the COMMAND register in PCI configuration space, the PCI bus interface
will use memory write transactions. If a target disconnects before a complete cache line is transferred, the
PCI bus interface will complete the remainder of the transfer using memory write transaction(s).

PT PCI Transaction. This field specifies the PCI transaction to use to write data to the PCI bus.
0x0 Memory Write
0x1 Memory Write and Invalidate
0x2 Reserved
0x3 I/O Write

SB Swap Bytes. This field control byte swapping for data written to the PCI bus during a memory to
PCI DMA operation.

PCIADDR PCI Address. This field specifies the starting PCI address for memory to PCI DMA operations.

DEVCMD
2

2

PT

0

1

SB

DEVCS
031

32

PCIADDR
ence Manual 10 - 34 May 11, 2005

IDT PCI Bus Interface PCI Target

79RC32438 User Refer

Notes
 Channel 9 I/O Write
PCI I/O write transactions are generated during memory to PCI DMA operations if the PCI Transaction

(PT) field in the DEVCMD field of the DMA descriptor is set to I/O write. The PCI bus interface will attempt
to generate a burst transaction when possible.

Channel 9 Error Handling
Memory to PCI fatal errors are:

– PCI target terminates with a Target Abort
– transaction could not be completed because the RETRY_LIMIT was exceeded
– transaction could not be completed because the BM bit is not set in the COMMAND register
– detection of a PCI parity error.

If any of the above fatal errors are detected during a DMA operation, the DMA operation is halted with a
terminated condition (i.e., the T bit is set in the descriptor) and the DMA descriptor’s DEVCS field is
updated with the approximate address of the error. The address is approximate as it may be off by several
words. The DMA descriptor’s Current Address (CA) field contains the address of the last data quantity
transferred to the PCI DMA output FIFO, not the corresponding address of where the PCI error occurred.
Similarly, the COUNT field contains the number of bytes transferred to the PCI DMA output FIFO, not the
number of bytes written to the PCI bus. All data queued in the PCI DMA output FIFO is discarded (i.e., the
FIFO is flushed) when a fatal error is detected.

PCI DMA Channel 9 Configuration Register

Figure 10.19 PCI DMA Channel 9 Configuration Register (PCIDMA9C)

PCI Target
PCI target mode will support up to 11 queued commands. These commands can be either 11 queued

writes or 10 queued writes and one queued read. Exceeding these queue limits will result in the PCI host
transaction being retried until the command can be accepted.

The PCI target interface, shown in Figure 10.1, allows an external PCI master to read and write any
RC32438 local memory address in the same manner as the CPU core. This allows a PCI master to access
the RC32438’s memory (i.e., DDR or a device) or any internal register. The PCI target interface allows PCI
masters to access 8/16/32-bit memory. The PCI target interface will automatically perform byte scattering
(writes) and gathering (reads) for devices on the memory and peripheral bus and DDR SDRAM. The PCI
target interface is expected to obey the same access and alignment rules as the CPU for accesses to
internal RC32438 registers.

MBS

Description: Maximum Burst Size. This field specifies the number the maximum number of words allowed in
a memory to PCI DMA operation. A value of 0x0 corresponds to 0x1000 (i.e., 4K word transfers).

Initial Value: 0x8

Read Value: Previous value written

Write Effect: Modify value

PCIDMA9C
031

12

MBS

20

0

ence Manual 10 - 35 May 11, 2005

IDT PCI Bus Interface PCI Target

79RC32438 User Refer

Notes
 The PCI bus interface provides four mapping regions from the PCI space to the RC32438’s local
address space. Each mapping region has a corresponding PCI Base Address (PBAx) register, PCI Base
Address Control (PBAxC) register, and PCI Base Address Mapping (PBAxM) register. These registers are
all part of the PCI configuration. The PBAx registers correspond to the BAR registers in PCI Specification
2.2. Their initial values and configuration, however, are controlled by the PBAxC register. The PBAxC
register holds the configuration information for the mapping region.

The Memory Space Indicator (MSI) field in a PBAxC controls how space is advertised (I/O or memory).
If the space is advertised by the MSI as memory, the Prefetchable (P) bit controls prefetching. If the space
is advertised as I/O, the Prefetchable bit is inactive. The Swap Bytes (SB) field in a PBAxC controls whether
bytes are swapped or passed unmodified between the IPBus and the PCI bus when the PCI bus interface is
accessed as a target. The PBAxM register holds the local address space base address of PCI transactions
that map to the local address space through PBAx.

The local address mapped by a PBAxM register may be any valid local address. These local addresses
are decoded in the same manner as CPU physical addresses. The local addresses mapped by one or more
PBAxM registers may be overlapping. PCI Base Addresses in PBAx registers should be non-overlapping. If
they are overlapping, one will be chosen.

PCI target burst transactions which attempt to burst data beyond the address space allocated to a PBAx
will terminate with a target disconnect without data. The PCI address spaces mapped by two PBAx regis-
ters may be contiguous. PCI target burst transactions which attempt to burst data across adjacent address
spaces mapped by PBAx registers will terminate with a target disconnect without data. The PCI Target
Control Register (PCITC) contains fields which control the behavior of the PCI bus interface when acting as
a PCI target.

The retry timer controls the number of PCI clock cycles the PCI interface will wait for the first data of an
access before issuing a retry. This is used during read operations (i.e., memory read, memory read
multiple, memory read line, and I/O read) to specify the number of PCI clock cycles the PCI bus interface is
allowed (delay supplying the first data quantity of a transaction) before the transaction must be retried.
During write operations (i.e., memory write, memory write and invalidate, and I/O write), this field specifies
the number of PCI clock cycles the PCI bus interface is allowed to wait for space to appear in the PCI target
input FIFO before a transaction must be retried.

The initial value for the retry timer is specified in the Retry Timer (RTIMER) field of the PCITC register.
PCI Specification 2.2 sets the maximum to 16 PCI clock cycles, but the RC32438 allows this limit to be
extended to 255 clock cycles. The disconnect timer controls the number of PCI clock cycles the PCI inter-
face will wait for between data transfers. If the PCI bus interface is unable to accept data before the timer
expires, it issues a disconnect. PCI Specification 2.2 sets the maximum to 8 PCI clock cycles, but the
RC32438 allows this limit to be extended to 255 clock cycles.

The PCI bus interface supports target delayed reads. The PCI bus interface supports only one pending
delayed read. If a read is attempted while a delayed read is pending, the transaction is retried and a
delayed read is not initiated for the transaction. The PCI master that initiates a delayed read is expected to
retry the transaction until the read completes. The PCI bus interface contains a discard timer. If the master
does not repeat a delayed read request within 215 clock cycles, the discard timer will expire and discard the
pending read. This is necessary to ensure that a malfunctioning PCI master (e.g., one which has a pending
delayed read) does not cause the RC32438 to deadlock. If the discard timer expires and a pending read is
discarded, the Pending Read Discarded (PRD) bit is set in the PCIS register. The discard timer may be
disabled by setting the Disable Discard Timer (DDT) bit in the PCITC register.

The PCI transaction ordering constraints may be viewed as favoring target write operations since only a
single delayed read is allowed when there are posted writes. By contrast, multiple posted writes are allowed
when there is a delayed read. In an effort to provide some level of fairness, the PCI bus interface supports
a mode in which all transactions are retried when there is a delayed read. When the Retry when Delayed
Read (RDR) bit is set in the PCITC register, all PCI target transactions are retired as long as there is a
pending delayed read.
ence Manual 10 - 36 May 11, 2005

IDT PCI Bus Interface PCI Target

79RC32438 User Refer

Notes
 The PCI bus interface allows normal PCI target transaction ordering constraints to be overridden for
improved efficiency in some system scenarios. For more information, see the Transaction Ordering section
later in this chapter. The PCI bus interface supports target locking. Once a lock has been established, all
PCI target transactions to the RC32438 are retried until the lock has been released. The RC32438 does not
implement locked operations on the IPBus. Therefore, lock operations are only useful for creating atomic
sequences as seen by masters on the PCI bus.

The RC32438 does not support IPBus master accesses to PCI addresses that map to its PCI target
interface. An IPBus master access to a PCI address that maps to the RC32438’s PCI target interface
results in a master abort. Also, the RC32438 does not support PCI bus master accesses to the RC32438’s
local memory that maps to PCI space. These operations do not damage hardware, but their results are
undefined.

Target I/O Read
PCI I/O read transactions that map to a PCI Base Address (PBAx) register are converted to local IPBus

read operations. Data from an I/O read transaction is translated using the PBAxM register into a local IPBus
address. PCI I/O read transactions are not allowed to burst.

The PCI memory write maximum completion time limit of 10 microseconds (see section 3.5.3 in PCI
Specification 2.2) is met under normal system conditions, but this limit may be violated in some system
configurations. For example, setting the RDR bit may violate this specification. Another example is when
PCI target bus requests are masked in the IPBus arbiter. It is the responsibility of the system designer
(hardware and software) to guarantee adherence to this requirement.

Target I/O Write
PCI I/O write transactions that map to a PCI Base Address (PBAx) register are converted to local IPBus

write operations and posted to the PCI target input FIFO. PCI I/O write transactions are posted to the PCI
target input FIFO and are not allowed to burst.

Target Memory Read
PCI memory read transactions that map to a PCI Base Address (PBAx) register are mapped to local

IPBus read operation(s). The behavior of PCI target memory read operations is determined by the state of
the Memory Read Behavior (MR) field in the corresponding PBAxC register. If MR field is 0x0, the memory
read behaves as described below. If the MR field is 0x1, the memory read transaction behaves in the same
manner as a memory read line transaction. If the MR field is 0x2, the memory read transaction behaves in
the same manner as a memory read multiple transaction.

PCI memory read transactions that map to a PCI Base Address (PBAx) register are mapped to a local
IPBus word read operation. PCI memory read transactions are not allowed to burst unless the memory read
is mapped to a memory read line or memory read multiple.

Target Memory Write
PCI memory write transactions that map to a PCI Base Address (PBAx) register are mapped to a local

IPBus write operation(s) and posted into the PCI target input FIFO. The PCI bus interface will attempt to
extend memory write burst transaction for as long as possible. A burst transaction will be retried by the
RC32438 if the PCI target input FIFO is full for a period of time which exceeds the programmed RTIMER/
DTIMER value in the PCITC register.

Target Configuration Read
PCI configuration read transactions return the value of the register in PCI configuration space with

address PCIAD[7:2]. The PCI bus interface does not support target burst configuration read transactions. If
a configuration read transaction consists of more than a single data phase, the target will terminate the
transaction with a disconnect.
ence Manual 10 - 37 May 11, 2005

IDT PCI Bus Interface PCI Target

79RC32438 User Refer

Notes
 Target Configuration Write
PCI configuration write transactions return the value of the register in PCI configuration space with

address PCIAD[7:2]. The PCI bus interface will use the byte enables to determine which bytes of the word
address by PCIAD[7:2] are being modified. The PCI bus interface does not support target burst configura-
tion write transaction. If a configuration write transaction consists of more than a single data phase, the
target will terminate the transaction with a disconnect.

Target Memory Read Multiple
PCI memory read multiple transactions that map to a PCI Base Address (PBAx) register are mapped to

local IPBus read operations. Memory read multiple transactions fetch not only the data requested by the
data phase of the transaction but cause the PCI bus interface to prefetch additional data. The prefetching
behavior is controlled by the Memory Read Multiple Prefetching Behavior (MRM) bit. If cleared, the PCI bus
interface performs conservative prefetching. Otherwise, the PCI bus interface performs aggressive
prefetching.

In conservative prefetching, the PCI bus interface will prefetch 16 words whenever a memory read
multiple transaction is in progress and there are less than 8 words available in the PCI target output FIFO.
In aggressive prefetching, the PCI bus interface will continue prefetching bursts of 16 words as long as
room exists in the PCI target output FIFO. The PCI target output FIFO will discard prefetched data in the
FIFO when a memory read line multiple burst transaction completes.

Target Memory Read Line
PCI memory read multiple transactions that map to a PCI Base Address (PBAx) register are mapped to

local IPBus read operations. The prefetching behavior is controlled by the Memory Read Line Prefetching
Behavior (MRL) bit. If cleared, the PCI bus interface will prefetch data to the end of the cache line. If the
MRL bit is set, the PCI bus interface will translate a memory read line transaction to a memory read multiple
transaction.

Target Memory Write and Invalidate
PCI memory write and invalidate transactions that map to a PCI Base Address (PBAx) register are

translated into memory write transactions.

Target Error Handling
Data parity errors detected during target transactions are handled as defined in PCI Specification 2.2

(i.e., the PE bit in the STATUS register is set and PERRN is asserted if the PEN bit is set in the COMMAND
register) and the transaction is completed as though no error was detected (i.e., writes are performed and
reads deliver possibly corrupted data).

Address parity errors detected during target read transactions result in termination of the transaction
with a Target Abort. An IPbus transaction is not generated when an address parity error is detected during a
target read transaction. Address parity errors detected during target write transactions result in termination
of the transaction with a Target Abort. An IPbus transaction is not generated when an address parity error is
detected during a target write transaction.

The PCI bus interface terminates a target read or write transaction with a Target Abort if the address
space monitor detects a PCI master attempting to access an invalid local address range. For more informa-
tion, refer to the Address Space Monitor section in Chapter 4, System Integrity Functions. If the transaction
was a delayed read, a target abort is signaled when the transaction is retried. If the PCI transaction was a
posted write, the transaction is viewed as completed by the PCI bus master and results in the PCI bus inter-
face signalling a PCI system error by asserting SERRN for one PCI clock cycle if the System Error Enable
(SEN) and Parity Error Enable (PEN) bits are set in the COMMAND register.

An address space monitor error detected during servicing of a posted target write transaction may result
in multiple assertions of SERRN. Data for a posted write transaction is queued in the PCI target input FIFO
and segmented into one or more IPBus transactions. Each IPBus transaction is treated independently. If an
undecoded address is detected in an IPBus transaction, the remaining IPBus transaction data in the input
ence Manual 10 - 38 May 11, 2005

IDT PCI Bus Interface PCI Target

79RC32438 User Refer

Notes
 FIFO is discarded and SERRN is asserted for one PCI clock cycle if the SEN and PEN bits are set. Since a
posted PCI write transaction may result in multiple IPBus transactions, this may result in multiple assertions
of SERRN.

PCI Target Control Register

Figure 10.20 PCI Target Control Register (PCITC)

RTIMER

Description: Retry Timer. This field specifies the number of PCI clock cycles the PCI interface will wait for the
first data of an access before issuing a retry. PCI Specification 2.2 sets the maximum limit of this
timer at 16 PCI clock cycles, but in some systems it may be necessary to extend this limit.
The minimum retry timer value is eight. Values less than eight are aliased to eight.

Initial Value: 0x10

Read Value: Previous value written

Write Effect: Modify value

DTIMER

Description: Disconnect Timer. This field specifies the number of PCI clock cycles the PCI interface will wait
between data phases in an access before issuing a disconnect. PCI Specification 2.2 sets the
maximum limit of this timer at 8 PCI clock cycles, but in some systems it may be necessary to
extend this limit.
The minimum disconnect timer value is four. Values less than four are aliased to four.

Initial Value: 0x8

Read Value: Previous value written

Write Effect: Modify value

RDR

Description: Retry When Delayed Read. When this bit is set, all transactions are retried as long as there is
an uncompleted delayed read.
Warning: setting this bit may violate PCI Specification 2.2 -- see implementation note in
PCI Specification 2.2, section 3.3.3.3.4.
0x0 - Post writes
0x1 - Retry writes when delayed read

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DDT

Description: Disable Discard Timer. When a master does not repeat a delayed read request within 215 PCI
clock cycles the PCI interface discards the delayed completion. When this bit is set, delayed
completions are never discarded.
0x0 - Discard timer enabled
0x1 - Discard timer disabled

PCITC
031

12

0 RTIMER

8

DTIMER

8

DDT

1

RDR

1 2

0

ence Manual 10 - 39 May 11, 2005

IDT PCI Bus Interface Transaction Ordering

79RC32438 User Refer

Notes
Transaction Ordering
IPBus master (i.e., CPU) reads and writes to the PCI bus maintain the total ordering defined by the

ordering of transactions on the IPBus. IPBus master PCI read and write transactions are given precedence
over PCI DMA read and write operations.

PCI DMA read and write operations are given fair access to the PCI bus. This means that if PCI to
Memory and Memory to PCI DMA operations are in progress, access to the PCI bus will alternate between
PCI DMA reads and PCI DMA writes. Prefetched data in the CPU master input FIFO is flushed if an IPBus
master write is performed that maps to the PCI bus. IPBus master writes may be posted in the CPU master
output FIFO. A IPBus master read from the PCI bus cannot complete until all posted writes in the CPU
master output FIFO have completed.

Software may use the IPbus master (i.e., CPU) read/write ordering constraints to flush the CPU master
output FIFO. A CPU read will not complete until all writes in the CPU master output FIFO have completed.
No ordering constraints are enforced between CPU and DMA transactions. No ordering constraints are
enforced between PCI to Memory and Memory to PCI DMA operations.

A PCI to Memory DMA operation completes when the last data quantity of the DMA operation is written
to the RC32438’s local memory (i.e., DDR or device). A Memory to PCI DMA operation completes when the
last data quantity of the DMA operation is written to the PCI. This implies that the PCI DMA output FIFO can
only contain data associated with one DMA operation at a time.

Target writes which are posted by the PCI bus interface must complete in the order in which they
occurred on the PCI bus. No ordering constraints are enforced between writes posted by an IPBus master
(i.e., CPU core) and by an external PCI master to the RC32438’s PCI target interface.

Due to transaction ordering constraints, a PCI target read is not allowed to complete as long as there
are posted writes in the PCI target input FIFO. The RC32438 will retry the read if it cannot be completed in
the allotted time. The PCI target interface supports one delayed read. The delayed read cannot complete
until all previous posted writes have completed.

The PCI transaction ordering constraints may be viewed as favoring target write operations since only a
single delayed read is allowed when there are posted writes, while multiple posted writes are allowed when
there is a delayed read. In an effort to provide some level of fairness, the PCI bus interface supports a mode
in which all transactions are retried when there is a delayed read. When the Retry when Delayed Read
(RDR) bit is set in the PCITC register, all PCI target transactions are retired as long as there is a pending
delayed read.

In some system scenarios, it may be desirable to violate PCI target transaction ordering constraints in
order to improve performance. Normally, a PCI target read is not allowed to complete until all previously
posted writes to the target have completed. In situations where one can guarantee that input and output
buffers never overlap, this constraint may be overly restrictive.

When the Target Read Priority (TRP) bit is set in a PCI Base Address Control (PBAxC) register, target
read transactions that map to the RC32438’s local address space using that PCI base address are allowed
to complete even if there are posted targeted write transactions. Since the TRP bit only affects target reads
that map using that PCI base address, a synchronization barrier may be implemented by performing a
target read to a different PCI base address that does not have the TRP bit set.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 10 - 40 May 11, 2005

IDT PCI Bus Interface PCI Messaging Unit

79RC32438 User Refer

Notes
 PCI Messaging Unit
The RC32438 provides message and doorbell registers to facilitate efficient communication between

PCI agents and the CPU. The messaging unit is a subset of the I2O Messaging Unit as well as that imple-
mented by the Intel i960Rx. There are different behaviors for some of the registers depending on if they are
written by the CPU or by a PCI master. All of the bits in the PCI Inbound Interrupt Cause (PCIIIC) register
which are not masked by the PCI Inbound Interrupt Mask (PCIIIM) register are ORed and result in the
status of the Inbound Interrupt (II) bit in the PCI Status (PCIS) register. All of the bits in the PCI Outbound
Interrupt Cause (PCIOIC) register which are not masked by the PCI Outbound Interrupt Mask (PCIOIM)
register are ORed together. If this ORed value is a one, the PCI Messaging Unit Interrupt (PCIMUINTN)
signal is driven low. Otherwise, if the ORed value is a zero, the PCIMUINTN signal is tri-stated. The
PCIMUINTN signal is a GPIO alternate function output (for more information, refer to Chapter 12, General
Purpose I/O Controller).

PCI Inbound Message [0|1] Register

Figure 10.21 PCI Inbound Message [0|1] Register (PCIIM[0|1])

PCI Outbound Message [0|1] Register

Figure 10.22 PCI Outbound Message [0|1] Register (PCIOM[0|1])

MSG

Description: Message. When written, the value of the register is modified and the corresponding message bit
(IM0 or IM1) is set in the PCI Inbound Interrupt Cause (PCIIIC) register. This register is intended
for passing messages from the PCI bus to the CPU and thus can only be written by PCI bus
masters. The CPU may read this register, but CPU writes are ignored.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value (CPU writes are ignored)

MSG

Description: Message. When written, the value of the register is modified and the corresponding message bit
(OM0 or OM1) is set in the PCI Outbound Interrupt Cause (PCIOIC) register. This register is
intended for passing messages from the CPU to the PCI bus and thus may only be written by the
CPU. PCI bus masters may read this register, but PCI bus master writes are ignored.

Initial Value: 0x0

PCIIM[0|1]
031

32

MSG

PCIOM[0|1]
031

32

MSG
ence Manual 10 - 41 May 11, 2005

IDT PCI Bus Interface PCI Messaging Unit

79RC32438 User Refer

Notes
PCI Inbound Doorbell Register

Figure 10.23 PCI Inbound Doorbell Register (PCIID)

PCI Inbound Interrupt Cause Register

Figure 10.24 PCI Inbound Interrupt Cause Register (PCIIIC)

Read Value: Previous value written

Write Effect: Modify value (PCI bus master writes are ignored)

INDOOR

Description: Inbound Doorbell. Writing a one to a bit in this field by a PCI bus master causes the bit to be
set. Writing a one to a bit in this field by the CPU clears the bit if it was set. The Inbound Doorbell
(ID) bit in the PCI Inbound Interrupt Cause (PCIIIC) register is set if any of the bits in this register
are set.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value (PCI bus master writes one to set bit, CPU writes one to clear bit)

IM0

Description: Inbound Message 0. This bit is set when the PCI Inbound Message 0 (PCIIM0) register is writ-
ten by a PCI bus master.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky, writing a one clears this bit

IM1

Description: Inbound Message 1. This bit is set when the PCI Inbound Message 1 (PCIIM1) register is writ-
ten by a PCI bus master.

Initial Value: 0x0

PCIID
031

32

INDOOR

PCIIIC
031

29

0

1

IM0

1

IM1

1

ID
ence Manual 10 - 42 May 11, 2005

IDT PCI Bus Interface PCI Messaging Unit

79RC32438 User Refer

Notes
PCI Inbound Interrupt Mask Register

Figure 10.25 PCI Inbound Interrupt Mask Register (PCIIIM)

Read Value: Status

Write Effect: Sticky, writing a one clears this bit

ID

Description: Inbound Doorbell. This bit is set when any bit in the PCI Inbound Doorbell (PCIID) register is
set. This bit is read-only and simply represents the OR of all the bits in the PCIID register.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

IM0

Description: Inbound Message 0. When this bit is set, the IM0 bit in the PCIIC register is masked from set-
ting the Inbound Interrupt (II) bit in the PCI Status (PCIS) register.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

IM1

Description: Inbound Message 1. When this bit is set, the IM1 bit in the PCIIC register is masked from set-
ting the Inbound Interrupt (II) bit in the PCI Status (PCIS) register.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

ID

Description: Inbound Doorbell. When this bit is set, the ID bit in the PCIIC register is masked from setting
the Inbound Interrupt (II) bit in the PCI Status (PCIS) register.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

PCIIIM
031

29

0

1

IM0

1

IM1

1

ID
ence Manual 10 - 43 May 11, 2005

IDT PCI Bus Interface PCI Messaging Unit

79RC32438 User Refer

Notes
 PCI Outbound Doorbell Register

Figure 10.26 PCI Outbound Doorbell Register (PCIOD)

PCI Outbound Interrupt Cause Register

Figure 10.27 PCI Outbound Interrupt Cause Register (PCIOIC)

OUTDOOR

Description: Outbound Doorbell. Writing a one to a bit in this field by the CPU causes the bit to be set. Writ-
ing a one to a bit in this field by a PCI master clears the bit if it was set. The Outbound Doorbell
(OD) bit in the PCI Outbound Interrupt Cause (PCIOIC) register is set if any of the bits in this reg-
ister are set.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value (CPU writes one to set bit, PCI bus master writes one to clear bit)

OM0

Description: Outbound Message 0. This bit is set when the PCI Outbound Message 0 (PCIOM0) register is
written by the CPU.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky, writing a one clears this bit

OM1

Description: Outbound Message 1. This bit is set when the PCI Outbound Message 1 (PCIOM1) register is
written by the CPU.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky, writing a one clears this bit

OD

Description: Outbound Doorbell.This bit is set when the OD bit in the PCIOIC register is masked from gen-
erating a PCI interrupt output.

PCIOD
031

32

OUTDOOR

PCIOIC
031

29

0

1

OM0

1

OM1

1

OD
ence Manual 10 - 44 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
PCI Outbound Interrupt Mask Register

Figure 10.28 PCI Outbound Interrupt Mask Register (PCIOIM)

PCI Configuration Registers
The registers in this section are not memory mapped in the RC32438’s memory space. They may be

read and written by the CPU core or the Ethernet PCI master using PCI configuration read and write opera-
tions.Table 10.10 shows the PCI configuration space registers.

Addresses between 0x00 and 0x3F follow the Type 00h Configuration Space Header defined by PCI
Specification 2.2. Addresses between 0x40 and 0x7F contain device dependent registers. Addresses
between 0x80 and 0xFF are not used. Shaded fields are read-only to an external PCI bus master. The CPU
core may read and modify any PCI configuration register or field in either host or satellite mode.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

OM0

Description: Outbound Message 0. This bit is set when the OM0 bit in the PCIOIC register is masked from
generating a PCI interrupt output.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

OM1

Description: Outbound Message 1. This bit is set when the OM1 bit in the PCIOIC register is masked from
generating a PCI interrupt output.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

OD

Description: Outbound Doorbell. This bit is set when the OD bit in the PCIOIC register is masked from gen-
erating a PCI interrupt output.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PCIOIM
031

29

0

1

OM0

1

OM1

1

OD
ence Manual 10 - 45 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 The PCI serial EEPROM interface loads the initial value of all PCI configuration registers, shown as
shaded in Table 10.10. Values shown as “xxxxxxxx” are don’t care values. Registers in PCI configuration
space are unaffected by a warm reset except when the warm reset is the result of the assertion of the PCI
reset signal when operating in PCI satellite mode. When this occurs, all PCI registers are set to their initial
values.

Address 31 0

0x00 DEVICE_ID VENDOR_ID

0x04 STATUS COMMAND

0x08 CLASS _CODE REVISION_ID

0x0C BIST HEADER_TYPE MASTER_LATENCY CACHE_LINE_SIZE

0x10 PBA0

0x14 PBA1

0x18 PBA2

0x1C PBA3

0x20 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

0x24 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

0x28 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

0x2C SUBSYSTEM_ID SUBSYSTEM_VENDOR_ID

0x30 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx

0x34 Reserved1

1. Writes to reserved fields are ignored. Reserved fields always return a value of zero when read.

0x38 Reserved1

0x3C MAX_LAT MIN_GNT INTERRUPT_PIN INTERRUPT_LINE

0x40 Reserved1 RETRY_LIMIT TRDY_TIMEOUT

0x44 PBA0C

0x48 PBA0M

0x4C PBA1C

0x50 PBA1M

0x54 PBA2C

0x58 PBA2M

0x5C PBA3C

0x60 PBA3M

0x64 PMGT

 0x68 - 0x7F Reserved1

0x80 - 0xFF Reserved (not loaded from PCI Serial EEPROM)1

Table 10.10 PCI Configuration Registers
ence Manual 10 - 46 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Vendor ID Register

Figure 10.29 Vendor ID Register (VENDOR_ID)

Device ID Register

Figure 10.30 Device ID Register (DEVICE_ID)

Command Register

Figure 10.31 Command Register (COMMAND)

ID

Description: ID. This field specifies the vendor of the device. It should be initialized to 0x111D which corre-
sponds to the vendor IDT.

Initial Value: 0x111D or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

ID

Description: ID. This field specifies the device ID. Initialize this field to:
0x0207 — RC32438

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

I/O

Description: I/O Enable. When this bit is set the device responds to I/O space accesses.

VENDOR_ID
015

16

ID

DEVICE_ID
015

16

ID

COMMAND

1

IO

1

MEM

1

BM

1

0

1

MWI

1

0

1

PEN

1

0

1

SEN

1

FBB

015

6

0

ence Manual 10 - 47 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MEM

Description: Memory Enable. When this bit is set the device responds to memory space accesses.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

BM

Description: Bus Master Enable. When this bit is set, the device is allowed to act as a PCI master.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MWI

Description: Memory Write and Invalidate Enable. When this bit is set, the PCI bus interface may generate
memory write and invalidate transactions on the PCI bus.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PEN

Description: Parity Error Enable. When this bit is set, the device must take its normal action when a parity
error is detected (See PCI Specification 2.2). When this bit is cleared, the devices sets its Parity
Error (PE) bit in the PCI STATUS register, does not assert PERRN, and continues normal oper-
ation.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SEN

Description: System Error Enable. When this bit is set, the SERRN drive is enabled. When this bit is cleared,
the SERRN driver is disabled.
This bit and the PEN bit must be set to report address phase parity errors.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 10 - 48 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
Status Register

Figure 10.32 Status Register (STATUS)

FBB

Description: Fast Back to Back Enable. When this bit is set, the PCI bus interface is allowed to generate fast
back-to-back transactions to different agents as described in PCI Specification 2.2, section 2.4.2.
When this bit is cleared, fast back-to-back transactions are only performed to the same agent.
Note: RC32438 never generates fast back-to-back transactions.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

M66

Description: 66 MHz Capable. When this bit is set, it indicates that the device PCI bus interface can be oper-
ated at 66 MHz.

Initial Value: 0x1

Read Value: Current value

Write Effect: No effect, this bit is hardwired to a one.

FBB

Description: Fast Back-to-Back Capable. When this bit is set it indicates the target is capable of accepting
fast back-to-back transactions when the transactions are not to the same agent.

Initial Value: 0x1

Read Value: Current value

Write Effect: No effect, this bit is hardwired to a one.

MDPE

Description: Master Data Parity Error Detected. This bit is set when three conditions are met: (1) the bus
agent asserted PERRN on a read or observed PERRN asserted on a write; (2) the agent setting
the bit acted as the bus master for the operation in which the error occurred; and (3) the PEN bit
is set in the COMMAND register.

Initial Value: 0x0

Read Value: Status

Write Effect: PCI Sticky bit (set by hardware: write of one clears bit, write of zero has no effect).

DST

Description: Device Select Timing. This field indicates the slowest timing of PCIDEVSELN when the PCI
bus interface responds to a PCI transaction as a target.

STATUS

5

0

1

M66

1

0

1

FBB

1

MDPE

2

DST

1

STA

1

RTA

1

RMA

1

SSE

015

1

PE
ence Manual 10 - 49 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Initial Value: 0x1

Read Value: 0x1

Write Effect: No effect, this field is hardwired to a 0x1.

STA

Description: Signalled Target Abort Status. This bit is set by the PCI bus interface whenever it acts as a
PCI target and terminates a transaction with a Target-Abort.

Initial Value: 0x0

Read Value: Status

Write Effect: PCI Sticky bit (set by hardware: write of one clears bit, write of zero has no effect).

RTA

Description: Received Target Abort Status. This bit is set by the PCI bus interface whenever it acts as a
master and a transaction is terminated with a Target-Abort.

Initial Value: 0x0

Read Value: Status

Write Effect: PCI Sticky bit (set by hardware: write of one clears bit, write of zero has no effect).

RMA

Description: Received Master Abort Status. This bit is set by the PCI bus interface whenever it acts as a
PCI master and terminates a host-to-PCI transaction with a Master Abort.

Initial Value: 0x0

Read Value: Status

Write Effect: PCI Sticky bit (set by hardware: write of one clears bit, write of zero has no effect).

SSE

Description: Signaled System Error. This bit is set by the PCI bus interface whenever it asserts PCISERRN.

Initial Value: 0x0

Read Value: Status

Write Effect: PCI Sticky bit (set by hardware: write of one clears bit, write of zero has no effect).

PE

Description: Parity Error. This bit is set by the device whenever it detects a parity error, even if parity error
handling is disabled.

Initial Value: 0x0

Read Value: Status

Write Effect: PCI Sticky bit (set by hardware: write of one clears bit, write of zero has no effect).
ence Manual 10 - 50 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Device Revision ID Register

Figure 10.33 Device Revision ID Register (REVISION_ID)

Class Code Register

Figure 10.34 Class Code Register (CLASS_CODE)

ID

Description: ID. This register contains the current revision identifier for the device.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

CCV

Description: Class Code Value. This field identifies the function of the device. See Appendix D in the PCI
Specification 2.2 for a complete list of class codes.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

REVISION_ID
07

8

ID

CLASS_CODE
023

24

CCV
ence Manual 10 - 51 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Cache Line Size Register

Figure 10.35 Class Code Register (CLASS_CODE)

Master Latency Register

Figure 10.36 Master Latency Register (MASTER_LATENCY)

CLS

Description: Cache Line Size. This field specifies the size of a cache line in 32-bit words. This field may only
be initialized to the following values: 0, 1, 2, 4, 8, 16, 32, 64, 128. Initializing this field to any other
value results in the same behavior as initializing this field to zero.
Note: The PCI master and PCI target transactions use these values differently. For PCI master
transactions where the processor is the master initiating a read from another device on the PCI
bus, initializing this field to 4 or less results in a 4 word prefetch on the PCI bus while initializing
this field to 8 or greater results in an 8 word prefetch (see “Master Memory Read Line” on page
10-21). For PCI target read transactions where the processor is the target device, this field
directly controls the number of bytes prefetched. A setting of zero results in a one byte prefetch,
otherwise the prefetch matches the setting, e.g., 1 if setting is 1, 2 if setting is 2 64 if setting is
64, and 128 if setting is 128.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

ML

Description: Master Latency. This field specifies the minimum time the PCI bus interface, when operating as
a PCI bus master, is allowed to retain ownership of the bus after it has acquired bus ownership
and initiated a transaction. In the RC32438, the minimum value is four PCI bus clock cycles.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

CACHE_LINE_SIZE
07

8

CLS

MASTER_LATENCY
07

6

ML

2

0

ence Manual 10 - 52 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Header Type Register

Figure 10.37 Header Type Register (HEADER_TYPE)

BIST Register

Figure 10.38 Header Type Register (BIST)

HT

Description: Header Type. This field identifies the layout of the second part of the predefined header (begin-
ning at byte 0x10 in PCI configuration space). See section 6.2.1 of PCI Specification 2.2 for infor-
mation on this field.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

BIST

Description: Built In Self Test. The RC32438 does not implement this optional PCI register and functionality.
Thus, the value of this field should be zero.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Current value

Write Effect: No effect, this bit is hardwired to a 0x0.

HEADER_TYPE
07

8

HT

BIST
07

8

BIST
ence Manual 10 - 53 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 PCI Base Address [0|1|2|3] Register

Figure 10.39 PCI Base Address [0|1|2|3] Register (PBA[0|1|2|3])

MSI

Description: Memory Space Indicator. This bit determines if the base address register maps into memory or
I/O space.
0x0 - Memory space
0x1 - I/O space

Initial Value: 0x0

Read Value: Value in MSI field of corresponding PBAxC register

Write Effect: Read only

P

Description: Prefetchable. When the MSI field indicates that the base address register maps into memory
space, this bit indicates if the memory is prefetchable.
0x0 - Non-prefetchable
0x1 - Prefetchable (no side effect on reads and write merging is allowed)

Initial Value: 0x0

Read Value: Value in P field of corresponding PBAxC register

Write Effect: Read only

BADDR

Description: Base Address. This field specifies the PCI address bits to use for decoding a PCI transaction to
a local transaction. See the PCI specification for more information.
The value of the SIZE field in the corresponding PBAxC register controls which bits in this field
may be modified by a PCI master or the CPU. Bits that cannot be modified are always zero.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PBA[0|1|2|3]
031

24

BADDR

1

MSI0

21

P0

4

ence Manual 10 - 54 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Subsystem Vendor ID

Figure 10.40 Subsystem Vendor ID Register (SVI)

Subsystem ID Register

Figure 10.41 Subsystem ID Register (SUBSYSTEM_ID)

Interrupt Line Register

Figure 10.42 Interrupt Line Register (INTERRUPT_LINE)

SVI

Description: Subsystem Vendor ID. This field identifies the vendor of the PCI device subsystem.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

SI

Description: Subsystem ID. This field identifies the subsystem of the PCI device subsystem.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus.

IL

Description: Interrupt Line. The value of this field identifies the system controller(s) input to which the inter-
rupt pin of the device is connected.

SUBSYSTEM_VENDOR_ID
015

16

SVI

SUBSYSTEM_ID
015

16

SI

INTERRUPT_LINE
07

8

IL
ence Manual 10 - 55 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
Interrupt Pin Register

Figure 10.43 Interrupt Pin Register (INTERRUPT_PIN)

Minimum Grant Register

Figure 10.44 Minimum Grant Register (MIN_GNT)

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IP

Description: Interrupt Pin. This field identifies the interrupt pin the device (or device function) uses.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

MIN_GNT

Description: Minimum Grant. This field identifies how long of a burst period is needed. Units are in 0.25 µsec
increments assuming a 33 MHz PCI clock. A value of 0 indicates no restriction is needed. See
PCI Specification 2.2, Section 6.2.4 for details and a FIFO resource example.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

INTERRUPT_PIN
07

8

IP

MIN_GNT
07

8

MIN_GNT
ence Manual 10 - 56 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Maximum Latency Register

Figure 10.45 Maximum Latency Register (MAX_LAT)

Target Ready Time-out Register

Figure 10.46 Target Time-out Register (TRDY_TIMEOUT)

MAX_LAT

Description: Maximum Latency. This field identifies how often access to the PCI bus is needed. Units are in
0.25 µsec increments assuming a 33 MHz PCI clock. A value of 0 indicates no restrictions are
needed. See PCI Specification 2.2, Section 6.2.4 for details and a FIFO resource example.

Initial Value: 0x0 or value initialized from PCI serial EEPROM

Read Value: Previous value written

Write Effect: CPU can modify value, read-only from PCI bus

TT

Description: Target Time-out. This field indicates how many PCI clock cycles the PCI bus interface will wait
as a master for the assertion of TRDYN. Setting this field to zero results in an infinite time-out
period (i.e., no time-out).

Initial Value: 0x80

Read Value: Previous value written

Write Effect: Modify value

MAX_LAT
07

8

MAX_LAT

TRDY_TIMEOUT
07

8

TT
ence Manual 10 - 57 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 Retry Limit Register

Figure 10.47 Retry Limit Register (RETRY_LIMIT)

PCI Base Address [0|1|2|3] Control

Figure 10.48 PCI Base Address [0|1|2|3] Control (PBA[0|1|2|3]C)

RL

Description: Retry Limit. This field indicates how many times the PCI bus interface will retry a transaction.
Setting this field to zero results in an infinite retry limit (i.e., no limit).

Initial Value: 0x80

Read Value: Previous value written

Write Effect: Modify value

MSI

Description: Memory Space Indicator. The value of this bit determines the value advertised in the MSI bit of
the corresponding PBAx register.
0x0 - Memory space
0x1 - I/O space

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

P

Description: Prefetchable. The value of this bit determines the value advertised in the P bit of the corre-
sponding PBAx register. This bit does not affect operation of the PCI interface (i.e., it may not
actually perform pefetching). Prefetching operation for PCI PARx mapped transactions is con-
trolled by the Perform Prefetch (PP) bit in this register.
0x0 - Non-prefetchable
0x1 - Prefetchable

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RETRY_LIMIT
07

8

RL

PBA[0|1|2|3]C
031

1

MSI

1

PSIZE

51

SB

1

PP

1

MRL

1

MRM

2

MR

18

0

1

TRP
ence Manual 10 - 58 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 SIZE

Description: Address Space Size. This field indicates the size of the address space for the corresponding
PCI base address register. All bits greater than or equal to SIZE in PBAx may be modified. Bits
less than SIZE and greater than or equal to bit four always return a value of zero when read and
cannot be modified. Setting the SIZE field to a value less than eight results in all bits in the corre-
sponding PBAx register taking on a zero value. This effectively disables the PCI base address
register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SB

Description: Swap Bytes. This bit controls byte swapping for PCI transactions that map to the local bus
through the PBAx register.
0x0 - No byte swapping
0x1 - Swap bytes

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PP

Description: Perform Prefetching. This bit controls the prefetching behavior for PCI read transactions that
map to the local bus through PBAx.
0x0 - Do not perform prefetching for any transactions
0x1 - Perform prefetching as indicated by the MR, MRL, and MRM fields in this register

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

MR

Description: Memory Read Behavior. This bit controls the behavior of PCI memory read transactions.
0x0 - Read data indicated by transaction (no prefetching)
0x1 - Treat memory read transactions as memory read line transaction
0x2 - Treat memory read transactions as memory read multiple transaction
0x3 - reserved

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MRL

Description: Memory Read Line Prefetching Behavior. This bit controls the behavior of PCI memory read
line transactions.
0x0 - Prefetch data to end of cache line
0x1 - Treat memory read line transactions as memory read multiple transactions

Initial Value: 0x0
ence Manual 10 - 59 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
PCI Base Address [0|1|2|3] Mapping Register

Figure 10.49 PCI Base Address [0|1|2|3] Mapping Register (PBA[0|1|2|3]M)

Read Value: Previous value written

Write Effect: Modify value

MRM

Description: Memory Read Multiple Prefetching Behavior. This bit controls the behavior of PCI memory
read multiple transactions on the local bus.
0x0 - Conservative Prefetching. Prefetch a 16 word burst from local address space whenever
there are less than 8 words in the PCI target output FIFO.
0x1 - Aggressive Prefetching. Keep prefetching 16 word bursts from local address space as long
as room exists for them in the PCI target output FIFO.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

TRP

Description: Target Read Priority. When this bit is set, PCI target read transactions that map to the
RC32438’s local address space using the corresponding base address are given priority over
posted writes in the PCI target input buffer. When this bit is set, PCI transaction ordering con-
straints are violated. For more information, see section “Transaction Ordering” on page 10-40.
Warning: setting this bit will violate the PCI Specification 2.2 since read transactions will
be completed before posted write transactions.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MADDR

Description: Mapping Address. This field contains the local base address for PCI transactions mapped to
the local bus through the PBAx register. PCI transaction address bits 31 through the value of the
SIZE field in the PBAxC register are replaced by corresponding bits in this field for PCI transac-
tions that map to the local bus through the PBAx register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PBA[0|1|2|3]M
031

24

MADDR 0

8

ence Manual 10 - 60 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
 PCI Management Register

Figure 10.50 PCI Management Register (PMGT)

WR

Description: Warm Reset. Writing a one to this register generates a warm reset.

Initial Value: 0x0

Read Value: Current warm reset state
0x0 - normal operation
0x1 - warm reset

Write Effect: Writing a one generates a warm reset.

NMI

Description: Non-Maskable Interrupt. Writing a one to this register causes the NMI bit to be set in the PCI
Status (PCIS) register and results in a CPU non-maskable interrupt.

Initial Value: 0x0

Read Value: 0x0

Write Effect: Writing a one generates a non-maskable interrupt.

PMGT
031

1

WR

30

0

1

NMI
ence Manual 10 - 61 May 11, 2005

IDT PCI Bus Interface PCI Configuration Registers

79RC32438 User Refer

Notes
ence Manual 10 - 62 May 11, 2005

Notes

79RC32438 User Reference Manual 11 - 1 M
Chapter 11
Ethernet Interfaces
Introduction
This chapter describes the two Ethernet interfaces on the RC32438 device. Both channels are nearly

identical (Ethernet 0 channel has MII management functions; Ethernet 1 channel does not).

Features
10 and 100 Mb/s ISO/IEC 8802-3:1996 compliant
Two IEEE 802.3u compatible Media Independent Interfaces (MII) with serial management interface
MII supports IEEE 802.3u auto-negotiation speed selection
Supports 64 entry hash table based multicast address filtering
512 byte transmit and receive FIFOs
Supports flow control functions outlined in IEEE Std. 802.3x-1997

Block Diagram

Figure 11.1 Ethernet Interface with Management Feature

Functional Overview
The RC32438 contains two nearly identical 10/100 Mb/s ISO/IEC 8802-3:1996 compliant Ethernet inter-

faces (only 0 channel has MII management functions). Figure 11.1 shows a block diagram with a manage-
ment function. An external Ethernet physical layer device (PHY) connects to each Ethernet interface
through an IEEE Std 802.3u-1995 Media Independent Interface (MII). This allows each Ethernet interface to
be used with a multitude of physical layers such as: 10BASE-T, 100BASE-TX, and 100BASE-FX. Each
Ethernet interface is capable of performing control flow functions outlined in IEEE Std 802.3x-1997.

Management

MII Logic

CSMA/CD MAC

DMA
Interface

IPBus™

Media Independent Interface

Ethernet MAC

Address
Recognition

Logic
ay 11, 2005

IDT Ethernet Interfaces Input and Output FIFOs

79RC32438 User Refer

Notes
 Since both Ethernet interfaces are nearly identical, the remainder of this chapter describes the function-
ality of a single interface. It should be understood that there are two copies of all Ethernet registers, one for
Ethernet interface zero (denoted by the prefix ETH0 or MII0) and one for interface one (denoted by the
prefix ETH1 or MII1).

As illustrated in Figure 11.1, an Ethernet interface consists of five major blocks:

– An Ethernet MAC (medium access controller), which includes a CSMA/CD MAC, a management
interface, and a MII pin level interface

– A 512 byte input FIFO connected to the MAC
– A 512 byte output FIFO connected to the MAC
– Address recognition logic, which determines if an Ethernet frame received on the MII should be

passed to the input FIFO
– DMA interface, which allows the input and output FIFOs to be read and written by the DMA

Controller.
The Ethernet interface is enabled by setting the EN bit in the Ethernet interface control (ETH[0|1]INTFC)

register.

Input and Output FIFOs
The input and output FIFOs are not intended to hold entire packets, but merely to compensate for

latency in accessing data by the DMA Controller. Each 512 byte FIFO is organized as 128 32-bit words.
During boot configuration, the system may be configured to operate in either big endian or little endian
mode. Although Ethernet packet data is packed into words in the FIFOs, packet data is referenced as bytes
(also called octets) by the CPU core and Ethernet MAC. Data is always stored in big endian format within
FIFO data words, with endianness conversion taking place as data is transferred between the IPBus and
the FIFOs. Thus, data stored in the FIFOs always appears to the programmer in the endianness selected
during boot configuration.

Packet data to be transmitted is written by the DMA Controller into the output FIFO. When the amount of
packet data in the output FIFO exceeds the threshold programmed in the transmit threshold (TTH) field of
the Ethernet FIFO transmit threshold register (ETH[0|1]FIFOTT), or when the last byte of a packet is written
to the output FIFO, the MAC will check if the line is busy. If the line is not busy, the MAC will begin transmit-
ting the preamble, start of frame delimiter, and the packet data.

If a collision is detected during the collision window, the MAC will back off and attempt to retransmit the
frame. Attempts are made to retransmit the frame until the collision threshold specified in the maximum
retransmissions (MAXRET) field of the ETH[0|1]CLRT register is reached. When this occurs, the excessive
collisions (EC) bit is set in the DEVCS field of the DMA descriptor.

For correct operation, the transmit threshold (TTH) must be set to a value equal to or greater than the
value selected for the collision window size in the COLWIN field of the Ethernet collision window and retry
(ETH[0|1]CLRT) register minus two words or eight bytes (the collision window size includes the preamble
and SFD which are generated by the MAC and are not part of a packet).

Ethernet Register Description

Register Offset1 Register Name Register Function Size

0x05_8000 ETH0INTFC Ethernet 0 interface control 32-bit

0x05_8004 ETH0FIFOTT Ethernet 0 FIFO transmit threshold 32-bit

0x05_8008 ETH0ARC Ethernet 0 address recognition control 32-bit

0x05_800C ETH0HASH0 Ethernet 0 hash table 0 32-bit

0x05_8010 ETH0HASH1 Ethernet 0 hash table 1 32-bit

0x05_8014 through 0x05_8020 Reserved

Table 11.1 Ethernet Register Map (Part 1 of 4)
ence Manual 11 - 2 May 11, 2005

IDT Ethernet Interfaces Ethernet Register Description

79RC32438 User Refer

Notes

0x05_8024 ETH0PFS Ethernet 0 pause frame status 32-bit

0x05_8028 ETHMCP Ethernet management clock prescalar 32-bit

0x05_802C through 0x05_80FF Reserved

0x05_8100 ETH0SAL0 Ethernet 0 station address 0 low 32-bit

0x05_8104 ETH0SAH0 Ethernet 0 station address 0 high 32-bit

0x05_8108 ETH0SAL1 Ethernet 0 station address 1 low 32-bit

0x05_810C ETH0SAH1 Ethernet 0 station address 1 high 32-bit

0x05_8110 ETH0SAL2 Ethernet 0 station address 2 low 32-bit

0x05_8114 ETH0SAH2 Ethernet 0 station address 2 high 32-bit

0x05_8118 ETH0SAL3 Ethernet 0 station address 3 low 32-bit

0x05_811C ETH0SAH3 Ethernet 0 station address 3 high 32-bit

0x05_8120 ETH0RBC Ethernet 0 receive byte count 32-bit

0x05_8124 ETH0RPC Ethernet 0 receive packet count 32-bit

0x05_8128 ETH0RUPC Ethernet 0 receive undersized packet count 32-bit

0x05_812C ETH0RFC Ethernet 0 receive fragment count 32-bit

0x05_8130 ETH0TBC Ethernet 0 transmit byte count 32-bit

0x05_8134 ETH0GPF Ethernet 0 generate pause frame 32-bit

0x05_8138 through 0x05_81FF Reserved

0x05_8200 ETH0MAC1 Ethernet 0 MAC configuration 1 32-bit

0x05_8204 ETH0MAC2 Ethernet 0 MAC configuration 2 32-bit

0x05_8208 ETH0IPGT Ethernet 0 back-to-back inter-packet gap 32-bit

0x05_820C ETH0IPGR Ethernet 0 non back-to-back inter-packet
gap

32-bit

0x05_8210 ETH0CLRT Ethernet 0 collision window retry 32-bit

0x05_8214 ETH0MAXF Ethernet 0 maximum frame length 32-bit

0x05_8218 Reserved

0x05_821C ETH0MTEST Ethernet 0 MAC test 32-bit

0x05_8220 MIIMCFG MII management configuration 32-bit

0x05_8224 MIIMCMD MII management command 32-bit

0x05_8228 MIMMADDR MII management address 32-bit

0x05_822C MIIMWTD MII management write data 32-bit

0x05_8230 MIIMRDD MII management read data 32-bit

0x05_8234 MIIMIND MII management indicators 32-bit

0x05_8238 through 0x05_823c Reserved

0x05_8240 ETH0CFSA0 Ethernet 0 control frame station address 0 32-bit

0x05_8244 ETH0CFSA1 Ethernet 0 control frame station address 1 32-bit

0x05_8244 ETH0CFSA2 Ethernet 0 control frame station address 2 32-bit

Register Offset1 Register Name Register Function Size

Table 11.1 Ethernet Register Map (Part 2 of 4)
ence Manual 11 - 3 May 11, 2005

IDT Ethernet Interfaces Ethernet Register Description

79RC32438 User Refer

Notes

0x05_824C through 0x05_FFFF Reserved

0x06_0000 ETH1INTFC Ethernet 1 interface control 32-bit

0x06_0004 ETH1FIFOTT Ethernet 1 FIFO transmit threshold 32-bit

0x06_0008 ETH1ARC Ethernet 1 address recognition control 32-bit

0x06_000C ETH1HASH0 Ethernet 1 hash table 0 32-bit

0x06_0010 ETH1HASH1 Ethernet 1 hash table 1 32-bit

0x06_0014 through 0x06_0020 Reserved

0x06_0024 ETH1PFS Ethernet 1 pause frame status 32-bit

0x06_0028 through 0x6_00FF Reserved

0x06_0100 ETH1SAL0 Ethernet 1 station address 0 low 32-bit

0x06_0104 ETH1SAH0 Ethernet 1 station address 0 high 32-bit

0x06_0108 ETH1SAL1 Ethernet 1 station address 1 low 32-bit

0x06_010C ETH1SAH1 Ethernet 1 station address 1 high 32-bit

0x06_0110 ETH1SAL2 Ethernet 1 station address 2 low 32-bit

0x06_0114 ETH1SAH2 Ethernet 1 station address 2 high 32-bit

0x06_0118 ETH1SAL3 Ethernet 1 station address 3 low 32-bit

0x06_011C ETH1SAH3 Ethernet 1 station address 3 high 32-bit

0x06_0120 ETH1RBC Ethernet 1 receive byte count 32-bit

0x06_0124 ETH1RPC Ethernet 1 receive packet count 32-bit

0x06_0128 ETH1RUPC Ethernet 1 receive undersized packet count 32-bit

0x06_012C ETH1RFC Ethernet 1 receive fragment count 32-bit

0x06_0130 ETH1TBC Ethernet 1 transmit byte count 32-bit

0x06_0134 ETH1GPF Ethernet 1 generate pause frame 32-bit

0x06_0138 through 0x06_01FF Reserved

0x06_0200 ETH1MAC1 Ethernet 1 MAC configuration 1 32-bit

0x06_0204 ETH1MAC2 Ethernet 1 MAC configuration 2 32-bit

0x06_0208 ETH1IPGT Ethernet 1 back-to-back inter-packet gap 32-bit

0x06_020C ETH1IPGR Ethernet 1 non back-to-back inter-packet
gap

32-bit

0x06_0210 ETH1CLRT Ethernet 1 collision window retry 32-bit

0x06_0214 ETH1MAXF Ethernet 1 maximum frame length 32-bit

0x06_0218 Reserved

0x06_021C ETH1MTEST Ethernet 1 MAC test 32-bit

0x06_0220 through 0x06_023C Reserved

0x06_0240 ETH1CFSA0 Ethernet 1 control frame station address 0 32-bit

Register Offset1 Register Name Register Function Size

Table 11.1 Ethernet Register Map (Part 3 of 4)
ence Manual 11 - 4 May 11, 2005

IDT Ethernet Interfaces Ethernet Register Description

79RC32438 User Refer

Notes
Ethernet Interface Control Register

Figure 11.2 Ethernet Interface Control Register (ETH[0|1]INTFC)

0x06_0244 ETH1CFSA1 Ethernet 1 control frame station address 1 32-bit

0x06_0248 ETH1CFSA2 Ethernet 1 control frame station address 2 32-bit

0x06_024C through 0x06_FFFF Reserved

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

EN

Description: Enable. When this bit is set to 1, the Ethernet interface is enabled. When this bit is set to 0, the
Ethernet interface is disabled. Disabling and then re-enabling the Ethernet interface initializes all
of the Ethernet interface logic to its initial default state (i.e., all registers are set to their initial val-
ues and input and output FIFOs are empty.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

ITS

Description: Ignore Transmit Status. When this bit is set to 1, multiple Ethernet packets may be queued by
the DMA Controller in the output FIFO. In this mode, control bits in the DEVCS field of the DMA
descriptor should be initialized to 0, and status information is not written back to the DEVCS field
when a packet is transmitted. When this bit is set to 0, the output FIFO can only hold one packet.
The DMA controller will update the status information in the DEVCS field after the packet has
been transmitted.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RIP

Description: Reset In Progress. When the EN bit is cleared to 0, an Ethernet interface reset is generated,
and this bit is set to indicate that an Ethernet interface reset is in progress. The reset may take
several clock cycles to complete due to the crossing of multiple clock domains. When the reset
has completed, this bit is cleared to 0 and the Ethernet interface may be re-enabled by setting
the EN bit to 1.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

Register Offset1 Register Name Register Function Size

Table 11.1 Ethernet Register Map (Part 4 of 4)

ETH[0|1]INTFC
031

EN

1

0

26

ITS

11

RIP

1

JAM

1

OVR

1

UND
ence Manual 11 - 5 May 11, 2005

IDT Ethernet Interfaces Ethernet Register Description

79RC32438 User Refer

Notes
 Because the packet portion of the collision window for a frame to be transmitted fits entirely in the
output FIFO, and remains there until it is transmitted without collision, there is never a need to re-fetch data
to be transmitted.

When an output FIFO underflow occurs during packet transmission, then the UND bit is set in the
ETH[0|1]INTFC register and also in the DEVCS field of the DMA descriptor if the ITS bit is not set in the
ETH[0|1]INTFC register. The state of the UND bit in the ETH[0|1]INTFC register is presented to the interrupt
controller as an interrupt source.

When the MAC observes a valid preamble and start of frame delimiter, it begins receiving an Ethernet
frame. If the destination address in the packet is not rejected by the address recognition logic, the packet
data is written by the MAC into the input FIFO. Once data beyond the collision window is received without
error, the DMA Controller is signalled that valid packet data exists in the input FIFO. If a collision is detected
within the collision window programmed in the COLWIN field, the resulting runt frame is automatically
flushed from the input FIFO by the MAC.

Note: Collision frames, runt frames, and frames whose destination addresses are not accepted
by the address recognition logic are never passed to the DMA Controller.

When an input FIFO overflow occurs during packet reception, the OVR bit is set in the ETH[0|1]INTFC
register. If less than 64-bytes of the packet have been written into the FIFO, then the packet is discarded
from the input FIFO. If 64-bytes or more have been written into the FIFO, the remaining bytes of the packet
are discarded but data already written to the FIFO is not flushed. When the DMA transfers a packet in which
an overflow occurred to memory, the OVR bit is set in the DEVCS field of the DMA descriptor. The state of
the OVR bit in the ETH[0|1]INTFC register is presented to the interrupt controller as an interrupt source.

JAM

Description: Transmit Half Duplex Flow Control. When this bit is set to 1, the Ethernet MAC transmits a
preamble on the wire causing other MACs to defer. This may be used as a means of achieving
half duplex flow control. When this bit is set to 0, the preamble is not transmitted.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

OVR

Description: Input FIFO Overflow. This bit is set to 1 when the input FIFO overflows. If the overflow occurs
before 64-bytes of a packet are received and written into the input FIFO, then the entire contents
of the packet are discarded. If more than 64-bytes of the packet are received and written into the
input FIFO and an overflow occurs, then the remaining bytes of the packet are discarded and the
OVR bit is set in the DMA descriptor when the packet is transferred to memory. Once the input
FIFO overflows, all subsequent packets are discarded until space becomes available in the input
FIFO. Note that for all other errors, packets are received.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

UND

Description: Output FIFO Underflow. This bit is set to 1 if frame transmission is aborted due to an output
FIFO underflow. An output FIFO underflow condition would typically be due to latencies within
the system and should not occur under normal operating conditions. When this condition occurs,
the remainder of the data for the current frame is discarded. However, subsequent frames are
transmitted properly.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)
ence Manual 11 - 6 May 11, 2005

IDT Ethernet Interfaces Address Recognition Logic

79RC32438 User Refer

Notes
 Ethernet FIFO Transmit Threshold Register

Figure 11.3 Ethernet FIFO Transmit Threshold Register (ETH[0|1]FIFOTT)

Address Recognition Logic
Ethernet frames contain the address of the source and of the destination. Both addresses are 48-bits in

length and are typically represented as a series of six bytes separated by hyphens in the order that they are
transmitted (left to right) on the wire. The bits within bytes are transmitted on the wire from right to left (that
is, least significant bit first and most significant bit last). These addresses are referred to as Medium Access
Control (MAC) addresses.

An example of a MAC address, and the order in which its bits are transmitted on the wire, is shown in
Figure 11.4.

Figure 11.4 Representation of MAC Address

Based on the destination address in a received Ethernet frame, the address recognition logic deter-
mines if the packet should be accepted by the Ethernet interface and passed to the DMA Controller or if the
frame should be rejected.

TTH

Description: Transmit Threshold. This field contains the number of words which must be present in the
Ethernet output FIFO in order for the MAC to start transmitting the frame. The MAC will begin
transmitting the frame before the threshold is reached if the last byte of a packet is written into
the FIFO.
For correct operation of the Ethernet interface, this field should be set to a value greater than or
equal to the number of words programmed in the COLWIN field in the ETH[0|1]CLRT register
minus two words (that is, do not count SFD or preamble).
Care should be exercised in determining the value selected for the transmit threshold, since mis-
configuration could lead to a deadlock. For example, if this field is set to 125 words and the trans-
mit FIFO contains 120 words, then further DMA transmit requests will not be generated since the
remaining space in the transmit FIFO is not at least 16 words. In addition, the Ethernet MAC will
not start transmitting the frame since the transmit threshold has not been reached, thus resulting
in a deadlock.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

ETH[0|1]FIFOTT
031

TTH

25 7

0

Byte 0
AC

Byte 1
DE

Byte 2
48

Byte 3
00

Byte 4
00

Byte 5
80

Binary Representation: 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 1 0 0 0 1 0 0 1 0 1

Universally/Locally Administered Address Bit (2nd bit on the wire)

Individual/Group Address Bit (1st bit on the wire)

MAC Address: AC-DE-48-00-00-80
ence Manual 11 - 7 May 11, 2005

IDT Ethernet Interfaces Address Recognition Logic

79RC32438 User Refer

Notes
 There are two types of destination addresses, individual addresses and group addresses. An individual
address is associated with a particular station on the network, while a group address is associated with one
or more stations on the network. A group address can be further classified as either a multicast address (an
address associated by a higher level convention with a group of logically related stations) or a broadcast
address (an address that denotes the set of all stations on a given LAN).

The Ethernet interface contains four station address registers. A station address is a 48-bit MAC
address stored in a station address low and high register pair. There are four station address register pairs:

ETHSAL[0|1|2|3]
ETHSAH[0|1|2|3]

Note: To ensure proper operation, all four Ethernet station address registers MUST be
programmed with the same value.

The MAC address used for control frames is contained in the ETHCFSA[0|1|2] registers.
A hash table approach is used to determine if multicast group destination address packets should be

accepted.1 When a packet with a multicast group destination address is received, a 6-bit hash value is
computed by passing the 48-bit destination address through the frame check sequence CRC calculator.
The hash value, consisting of bits 26 through 31 of the computed CRC, is used as an index into a 64 bin
hash table in which each bin is represented by a single bit. If the selected bit in the hash table is a one and
the Accept Filtered Multicast Packets (AFM) bit in the Ethernet address recognition control (ETH[0|1]ARC)
register is set, the packet is accepted.

The 64-bit hash table is stored in the HASH[0|1] registers. HASH0 contains bits 0 through 31 of the hash
table, while HASH1 contains bits 32 through 63 of the hash table.

The hash table filtering algorithm is not perfect, and therefore packets must be further filtered by soft-
ware to determine if they do, in fact, match a multicast address that should be accepted. If the Accept All
Multicast Packets (AM) bit in the ETH[0|1]ARC register is set, all multicast packets are accepted regardless
of whether or not they pass the hash table filtering algorithm.

A broadcast address is a MAC address consisting of all ones (that is, FF-FF-FF-FF-FF-FF). If the
Accept Broadcast Packets (AB) bit in the ETH[0|1]ARC register is set, all broadcast packets are accepted
by the Ethernet interface. When this bit is cleared, all broadcast packets are rejected. When a packet is
accepted by the Ethernet interface, three bits are updated in the DEVCS field of a DMA descriptor.

The Filter Match (FM) bit is set when one of the following conditions occurs:
– The packet matches an individual station address
– The packet passes the hash table filtering algorithm described above
– The packet is a multicast packet and was accepted because the AM bit in the ETH[0|1]ARC

register was set
– The packet is a broadcast packet and was accepted because the AB bit in the ETH[0|1]ARC

register was set.
The Multicast Packet (MP) bit is set when the accepted packet is a multicast packet, and the Broadcast

Packet (BP) bit is set when the accepted packet is a broadcast packet.
The Ethernet interface has a promiscuous mode which is enabled by setting the Promiscuous Mode

(PRO) bit in the ETH[0|1]ARC register. In this mode, the address recognition logic accepts all incoming
packets regardless of their destination address. While in this mode, the Filter Match (FM) bit in the DEVCS
field of a DMA descriptor is still set only in the conditions outlined above. The address filtering algorithm is
summarized in Figure 11.6.

1. The only exception to this is the multicast address 01-80-c2-00-00-01 which is always received regardless of the
setting of the corresponding Ethernet hash table entry.
ence Manual 11 - 8 May 11, 2005

IDT Ethernet Interfaces Address Recognition Logic

79RC32438 User Refer

Notes
 Ethernet Address Recognition Control Register

Figure 11.5 Ethernet Address Recognition Control Register (ETH[0|1]ARC)

PRO

Description: Promiscuous Mode. When this bit is set to 1, all incoming packets are received regardless of
their destination address and other address registers are overridden. When this bit is set to 0,
this function is disabled.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

AM

Description: Accept All Multicast Packets. When this bit is set to 1, all incoming packets with a multicast
destination address are accepted. When this bit is set to 0, this function is disabled.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

AFM

Description: Accept Filtered Multicast Packets. When this bit is set to 1, multicast packets which pass
address filtering are accepted. When this bit is set to 0, this function is disabled.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

AB

Description: Accept Broadcast Packets. When this bit is set to 1, all incoming packets with a broadcast des-
tination address are received. When this bit is set to 0, this function is disabled.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

ETH[0|1]ARC
031

28

0 PRO

1

AM

1

AFM

1

AB

1

ence Manual 11 - 9 May 11, 2005

IDT Ethernet Interfaces Address Recognition Logic

79RC32438 User Refer

Notes

match = FALSE

if (DA == individual address) {
if (DA == local station address 1 or

 DA == local station address 2 or
 DA == local station address 3 or
 DA == local station address 4) {

accept packet
set FM bit in descriptor/status register
match = TRUE

}
} else {

if (DA == broadcast address) {
if (AB bit set in ETHxARC) {

accept packet
set FM bit in descriptor/status register
set BP bit in descriptor/status register
match = TRUE

}
} else if (AFM bit set in ETHxARC && hash_table[hash(DA)] == 1) {

accept packet
set FM bit in descriptor/status register
set MP bit in descriptor/status register
match = TRUE

} else if (AM bit set in ETHxARC) {
accept packet
clear FM bit in descriptor/status register
set MP bit in descriptor/status register
match = TRUE

}
}

if (PRO bit set in ETHxARC and match == FALSE) {
accept packet
clear FM bit in descriptor/status register
if (DA == broadcast address) {

set BP bit in descriptor/status register
} else if (DA == multicast address) {

set MP bit in descriptor/status register
}

}
Figure 11.6 Ethernet Address Filtering Algorithm
ence Manual 11 - 10 May 11, 2005

IDT Ethernet Interfaces Address Recognition Logic

79RC32438 User Refer

Notes
 Ethernet Hash Table [0|1] Register

Figure 11.7 Ethernet Hash Table [0|1] Register (ETH[0|1]HASH[0|1])

Ethernet Station Address [0|1|2|3] Low Register

Figure 11.8 Ethernet Station Address [0|1|2|3] Low Register (ETH[0|1]SAL[0|1|2|3])

HASH

Description: Hash Table Bit Vector. This 32-bit field contains a hash table used for multicast address filter-
ing. The hash table is 64 bits in size with the lower 32 bits stored in HASH0 and the upper 32 bits
stored in HASH1. Bit x in the HASHy register corresponds to bit 32y+x in the hash table.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

BYTE5

Description: Byte Five. This field contains byte five of the 48-bit MAC address. For example, for the MAC
address AC-DE-48-00-00-80, this field holds the value 80.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

BYTE4

Description: Byte Four. This field contains byte four of the 48-bit MAC address. For example, for the MAC
address AC-DE-48-00-00-80, this field holds the value 00.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

BYTE3

Description: Byte Three. This field contains byte three of the 48-bit MAC address. For example, for the MAC
address AC-DE-48-00-00-80, this field holds the value 00.

Initial Value: Undefined

ETH[0|1]HASH[0|1]
031

32

HASH

ETH[0|1]SAL[0|1|2|3]
031

8

BYTE4

8

BYTE3

8

BYTE2

8

BYTE5
ence Manual 11 - 11 May 11, 2005

IDT Ethernet Interfaces DMA Interface

79RC32438 User Refer

Notes
Ethernet Station Address [0|1|2|3] High Register

Figure 11.9 Ethernet Station Address [0|1|2|3] High Register (ETH[0|1]SAH[0|1|2|3])

DMA Interface
An Ethernet interface supports DMA operations from the input FIFO to memory, and DMA operations

from memory to the output FIFO (See Chapter 9, DMA Controller). Ethernet DMA operations do not use the
DMA descriptor device command (DEVCMD) field.

Ethernet Input DMA Operations
Table 11.2 summarizes Ethernet interface input DMA operations. As shown in Figure 11.10, the DMA

descriptor device control and status (DEVCS) field is used to record status information for received packets.
A DMA request event is generated whenever 16 full FIFO data words exist in the input FIFO or when a

FIFO data word tagged as an end-of-packet is present in the input FIFO. This causes the DMA to transfer
data from the input FIFO to memory.

Read Value: Previous value written

Write Effect: Modify value

BYTE2

Description: Byte Two. This field contains byte Two of the 48-bit MAC address. For example, for the MAC
address AC-DE-48-00-00-80, this field holds the value 48.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

BYTE1

Description: Byte One. This field contains byte one of the 48-bit MAC address. For example, for the MAC
address AC-DE-48-00-00-80, this field holds the value DE.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

BYTE0

Description: Byte Zero. This field contains byte zero of the 48-bit MAC address. For example, for the MAC
address AC-DE-48-00-00-80, this field holds the value AC.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

ETH[0|1]SAH[0|1|2|3]
031

16

0

8

BYTE0

8

BYTE1
ence Manual 11 - 12 May 11, 2005

IDT Ethernet Interfaces DMA Interface

79RC32438 User Refer

Notes
 A DMA done event is generated whenever a FIFO data word tagged as an end-of-packet is transferred
from the input FIFO to memory. The Last Descriptor (LD) bit in the DEVCS field is set in the last descriptor
of a DMAed packet (that is, one in which a done event was generated).

The remaining status fields in the DEVCS field are updated in the last DMA descriptor of a packet (i.e.,
the LD bit is set to 1). All other DMA descriptors of a packet contain zeros in these fields.

Device Control and Status Value for Ethernet Receive Descriptors

Figure 11.10 Device Control and Status Value for Ethernet Receive Descriptors

DMA Request Event A request event is generated whenever 16 full FIFO data words are present in the input
FIFO, or when less than 16 full FIFO data words are present in the input FIFO but one
exists which is tagged as an end-of-packet.

DMA Done Event A DMA done event is generated after an end-of-packet tagged FIFO data word has
been transferred.

DMA Terminated Event A DMA terminated event is never generated.

DMA Transfer Size The DMA Controller usually transfers 16 FIFO data words from the input FIFO to mem-
ory. Fewer FIFO data words are transferred if a FIFO data word tagged as an end-of-
packet is reached or if the byte count reaches zero.

Limitations None. A DMA operation may start and end on any byte boundary and may contain any
number of bytes.

Table 11.2 Ethernet Interface Input DMA Operations

RSV Reserved.

LD Last Descriptor. This bit is set to 1 if this descriptor is the last descriptor of a packet.

ROK Received OK. This bit is set to 1 if the packet was received without error. This bit is set if and only
if the OVR, CRC, CV, and LE bits are all cleared to 0. This field is valid only in the last descriptor
of a packet.

FM Filter Match. This bit is set to 1 if the packet passed address recognition filtering. This field is valid
only in the last descriptor of a packet.

MP Multicast Packet. This bit is set to 1 when the packet has a multicast address. This field is valid
only in the last descriptor of a packet.

BP Broadcast Packet. This bit is set to 1 when the packet has a broadcast address. This field is valid
only in the last descriptor of a packet.

VLT VLAN Tag Detected. This bit is set to 1 when the packet is a VLAN tagged packet. This field is
valid only in the last descriptor of a packet.

CF Control Frame. This bit is set to 1 to indicate that the packet was recognized as a control frame.
Received control frames are normally discarded unless the PAF bit is set in the ETH[0|1]MAC1
register. This field is valid only in the last descriptor of a packet.

DEVCS
1631

16

LENGTH

015

RSV

1

LD

1

ROK

1

FM

1

MP

1

BP

1

VLT

1

CF

1

OVR

1

CRC

1

CV

1

DB

1

LE

1

LOR

1

CES

1

0

1

ence Manual 11 - 13 May 11, 2005

IDT Ethernet Interfaces DMA Interface

79RC32438 User Refer

Notes
Ethernet Output DMA Operations
Table 11.3 summarizes Ethernet interface output DMA operations. As shown in Figure 11.11, the DMA

descriptor DEVCS field is used to record status information for transmitted packets.
A DMA request event is generated whenever 16 free FIFO data words exist in the output FIFO. This

causes the DMA to transfer data from memory to the output FIFO.
A DMA done event is never generated during Ethernet output DMA operations. The last descriptor (LD)

bit in the DEVCS field is set in the last descriptor of a packet.

When the byte count in a DMA descriptor reaches zero, a finished event is generated. This causes the
FIFO data word associated with the last byte transferred prior to the finished event to be tagged as an end-
of-packet in the output FIFO if this descriptor is the last descriptor of the packet. Because the number of
bytes in a packet need not be an integer multiple of four, the FIFO data word tagged with an end-of-packet
need not have all bytes valid.

The FD, LD, OEN, PEN, CEN, and HEN fields of the DEVCS field are packet control bits initialized by
the CPU prior to an Ethernet output DMA operation. The remaining bits of the DEVCS field are status bits
which are zero for all DMA descriptors except the last one of a packet.

OVR Receive FIFO Overflow. This bit is set to 1 when the input FIFO overflowed during packet recep-
tion. Once an overflow occurs, the remaining contents of the packet are discarded.

CRC CRC Error. This bit is set to 1 when the received packet has a CRC error. This field is valid only in
the last descriptor of a packet. CRC error packets are not discarded.

CV Code Violation. This bit is set to 1 when a coding violation was detected somewhere in the
packet. This field is valid only in the last descriptor of a packet. Code violation error packets are
not discarded.

DB Dribble Bits Detected. This bit is set to 1 when between one and seven dribbling bits are
detected at the end of the packet. This field is valid only in the last descriptor of a packet. Dribble
bit error packets are not discarded

LE Length Error. This bit is set to 1 when the packet length field does not match the actual length of
the packet. This field is valid only in the last descriptor of a packet. Length error packets are not
discarded.

LOR Length Out of Range. This bit is set to 1 when the packet type/length field is larger than 1518.
This field is valid only in the last descriptor of a packet. If this bit is set, type/length field is used as
type field. Length out of range error packets are not discarded.

CES Carrier Event Seen. This bit is set to 1 to indicate that something less than a well formed pream-
ble or start of frame delimiter has been received (as specified in IEEE 802.3 clause 24.2.4.4.2).
This field is valid only in the last descriptor of a packet. Carrier error packets are not discarded.

LENGTH Length. This 16-bit field contains the length of the received frame. This field is valid only in the
last descriptor of a packet.

DMA Request Event A request event is generated whenever 16 free FIFO data words are present in the out-
put FIFO.

DMA Done Event A DMA done event is never generated.

DMA Terminated Event A DMA terminated event is never generated.

DMA Transfer Size The DMA Controller usually transfers 16 FIFO data words from memory to the output
FIFO. Fewer words are transferred if the byte count reaches zero.

Limitations None. A DMA operation may start and end on any byte boundary and may contain any
number of bytes.

Table 11.3 Ethernet Interface Output DMA Operations
ence Manual 11 - 14 May 11, 2005

IDT Ethernet Interfaces DMA Interface

79RC32438 User Refer

Notes
 The packet override enable bit (OEN) allows MAC control settings to be overridden on a per packet
basis. This bit is examined in the first DMA descriptor of a packet, one in which the FD bit has been set in
the descriptor. If the OEN bit is set, then the pad enable (PE), CRC enable (CE), and huge frame enable
(HFE) bits in the Ethernet MAC configuration register #2 (ETH[0|1]MAC2) are overridden by the values in
the PEN, CEN, and HEN fields in the DEVCS field for the entire packet. The packet padding enable (PEN)
field controls whether or not short frames are padded by the MAC. The packet CRC enable (CEN) field
controls whether or not the CRC is computed and appended by the MAC. The huge frame enable (HEN)
field controls if large Ethernet frames are transmitted by the MAC.

The status information contained in the DEVCS field of the last DMA descriptor in a packet is updated
when the Ethernet packet is transmitted by the MAC, or when transmission of the packet is aborted. This
allows only a single packet to be buffered in the transmit FIFO at a time, since a DMA operation for the next
packet cannot begin until the last descriptor of the previous packet has been written to memory.

Some applications may not require the status values contained in the DEVCS field. Setting the Ignore
Transmit Status (ITS) bit in the ETH[0|1]INTFC register causes the status fields of the DEVCS field in the
descriptor to always be written back to memory with zeros and allows multiple packets to be queued by the
DMA Controller in the output FIFO. This implies that the status information for the last descriptor of a packet
may not be updated for quite some time after the data has been transferred from memory to the output
FIFO.

Figure 11.11 Device Control and Status Value for Ethernet Transmit Descriptors

FD First Descriptor. This bit is set to 1 if this descriptor is the first descriptor of a packet. This bit is exam-
ined in every descriptor and is initialized by the CPU prior to an Ethernet output DMA operation.

LD Last Descriptor. This bit is set to 1 if this descriptor is the last descriptor of a packet. This bit is examined
in every descriptor and is initialized by the CPU prior to an Ethernet output DMA operation.

OEN Override Enable. When this bit is set to 1, PEN, CEN, and HEN are enabled. This bit is examined in the
first packet descriptor and is initialized by the CPU prior to a Ethernet output DMA operation.

PEN Packet Padding Enable. When the OEN bit is set, the PEN bit controls whether or not short Ethernet
packets are padded and a CRC is appended. When PEN is set, short transmit frames are padded and a
CRC is computed and appended to all transmit frames. When PEN is cleared, short packets are not pad-
ded and a CRC is appended only if CEN is set. The PEN bit is examined in the first packet descriptor and
is initialized by the CPU prior to an Ethernet output DMA operation.

CEN Packet CRC Enable. When the OEN bit is set to 1, it controls whether the MAC appends an CRC to the
Ethernet packet. If CEN is set, then the CRC is appended to the packet. When CEN is cleared, CRC is
not appended to the packet. This bit is examined in the first packet descriptor and is initialized by the
CPU prior to an Ethernet output DMA operation.

HEN Huge Frame Enable. When the OEN bit is set to 1, this bit controls whether large Ethernet packets (that
is, packets that exceed the value in the ETH[0|1]MAXF register) are transmitted. When HEN is set, then
large Ethernet frames are transmitted. If HEN is cleared to 0, then transmission is aborted after the length
in ETH[0|1]MAXF has been reached and the remainder of the frame is discarded. This bit is examined in
the first packet descriptor and is initialized by the CPU prior to an Ethernet output DMA operation.

FD

DEVCS
1631

11

0

015

1

TOK

1

MP

1

BP

1

UND

1

OF

1

ED

1

EC

1

LC

1

TD

1

CRC

1

LE

1

LD

1

OEN

1

PEN

1

CEN

1

HEN

1

CC

4

ence Manual 11 - 15 May 11, 2005

IDT Ethernet Interfaces Ethernet Statistics

79RC32438 User Refer

Notes
Ethernet Statistics
The Ethernet interface contains five 32-bit counters which may be used to gather statistics. Each

counter increments by one each time the specified receive or transmit event occurs. The CPU may read
these counters at any time, provided that the MII clocks are supplied and the RIP bit in the ETH[0|1]INTFC
register is not set to 1. The act of reading a counter causes its value to be reset to zero as an atomic opera-
tion. This prevents the loss of events due to non-atomic read and clear operations.

Ethernet Receive Byte Count Register

Figure 11.12 Ethernet Receive Byte Count (ETH[0|1]RBC)

TOK Transmit OK. This bit is set to 1 when the packet is transmitted without error. This bit is set if and only if
the UND, OF, ED, EC, and LC bits are all cleared. This field is valid only in the last descriptor of a packet.

MP Multicast Packet. This bit is set to 1 when the transmitted packet has a multicast address. This field is
valid only in the last descriptor of a packet.

BP Broadcast Packet. This bit is set to 1 when the transmitted packet has a broadcast address. This field is
valid only in the last descriptor of a packet.

UND Transmit FIFO Underflow. This bit is set to 1 if frame transmission was aborted due to an output FIFO
underflow. This field is valid only in the last descriptor of a packet.

OF Oversized Frame. This bit is set to 1 if transmission was aborted due to an attempt to transmit a frame
larger than the value in the ETH[0|1]MAXF register. The contents of the frame beyond ETH[0|1]MAXF
are discarded. This field is valid only in the last descriptor of a packet.

ED Excessive Deferral. This bit is set to 1 if transmission was aborted due to excessive deferrals. This field
is valid only in the last descriptor of a packet.

EC Excessive Collisions. This bit is set to 1 if transmission was aborted due to excessive collisions. This
field is valid only in the last descriptor of a packet.

LC Late Collision. This bit is set to 1 if transmission was aborted due to a collision beyond the collision win-
dow. This field is valid only in the last descriptor of a packet.

TD Transmit Deferred. This bit is set to 1 if transmission of the frame was deferred on the first transmission
attempt. This field is valid only in the last descriptor of a packet.

CRC CRC Error. This bit is set to 1 if the CRC in the transmitted frame does not match the CRC computed by
the MAC. If the MAC is configured to automatically compute and append the CRC to transmitted frames,
then the value of this bit should be ignored. This field is valid only in the last descriptor of a packet.

LE Length Error. This bit is set to 1 if the value of the length field of the transmitted frame does not match
the actual length. This field is valid only in the last descriptor of a packet.

CC Collision Count. This 4-bit field indicates the number of collisions that the successfully transmitted frame
experienced. This field is not valid if frame transmission was aborted due to excessive collisions. This
field is valid only in the last descriptor of a packet.

ETHRBC

Description: Ethernet Receive Byte Count. Total number of bytes in all packets received by the Ethernet
interface (including bad packets, packets discarded by hardware, and control frames). This value
does not include SFD or preamble bytes. Reading this register atomically clears its value to zero.

ETH[0|1]RBC
031

32

ETH[0|1]RBC
ence Manual 11 - 16 May 11, 2005

IDT Ethernet Interfaces Ethernet Statistics

79RC32438 User Refer

Notes
Ethernet Receive Packet Count Register

Figure 11.13 Ethernet Receive Packet Count (ETH[0|1]RPC)

Ethernet Receive Undersized Packet Count Register

Figure 11.14 Ethernet Receive Undersized Packet Count (ETH[0|1]RUPC)

Initial Value: Undefined

Read Value: Return value and reset field to zero

Write Effect: Read-only

ETHRPC

Description: Ethernet Receive Packet Count. Total number of Ethernet packets received (including packets
discarded by hardware as well as control packets). Reading this register automatically clears its
value to zero.

Initial Value: Undefined

Read Value: Return value and reset field to zero

Write Effect: Read-only

ETHRUPC

Description: Ethernet Receive Undersize Packet Count. Total number of Ethernet packets discarded by
hardware since they were less than 64 bytes in size but were otherwise well formed. Reading
this register atomically clears its value to zero.

Initial Value: Undefined

Read Value: Return value and reset field to zero

Write Effect: Read-only

ETH[0|1]RPC
031

32

ETHRPC

ETH[0|1]RUPC
031

32

ETHRUPC
ence Manual 11 - 17 May 11, 2005

IDT Ethernet Interfaces PAUSE Control Frames

79RC32438 User Refer

Notes
 Ethernet Receive Fragment Count Register

Figure 11.15 Ethernet Receive Fragment Count (ETH[0|1]RFC)

Ethernet Transmit Byte Count Register

Figure 11.16 Ethernet Transmit Byte Count (ETH[0|1]TBC)

PAUSE Control Frames
The Ethernet interface supports PAUSE control frames as defined by IEEE Std 802.3x-1997. Received

PAUSE control frames are handled by the Ethernet MAC. A control frame is a frame with a type/length field
that identifies a control frame (i.e., 0x88_08). Control frames are accepted or rejected in the same manner
as all other frames (i.e., using the method specified in the Address Recognition Logic section of this
chapter). The only exception to this is the multicast address 01-80-c2-00-00-01 which is always received
regardless of the setting of the corresponding Ethernet hash table entry.

A PAUSE control frame is a control frame with a multicast address of 01-80-c2-00-00-01 and an opcode
field that corresponds to a PAUSE frame (i.e., 0x00_01). The MAC normally processes PAUSE control
frames but it may be configured to ignore PAUSE control frames by clearing the Receive Flow Control
(RFC) bit in the Ethernet MAC 1 (ETH[0|1]MAC1) register. Control frames are normally discarded after
required processing by the MAC. However, if the Pass All Frames (PAF) bit is set in the ETH[0|1]MAC

ETHRFC

Description: Ethernet Receive Fragment Count. Total number of Ethernet packets discarded by hardware
since they were less than 64 bytes in size and had either a CRC error or an alignment error (that
is, not an integral number of bytes). Reading this register atomically clears its value to zero.

Initial Value: Undefined

Read Value: Return value and reset field to zero

Write Effect: Read-only

ETHTBC

Description: Ethernet Transmit Byte Count. Total number of bytes transmitted by the Ethernet interface
(includes control frames and retransmissions). This value does not include SFD, preamble, or
jam bytes. Reading this register atomically clears its value to zero.

Initial Value: Undefined

Read Value: Return value and reset field to zero

Write Effect: Read-only

ETH[0|1]RFC
031

32

ETHRFC

ETH[0|1]TBC
031

32

ETHTBC
ence Manual 11 - 18 May 11, 2005

IDT Ethernet Interfaces PAUSE Control Frames

79RC32438 User Refer

Notes
 register, all frames (i.e., normal frames and control frames) are passed to the Ethernet input FIFO. When
the MAC is configured to ignore control frames, they are still passed to the Ethernet input FIFO if the PAF
bit is set.

A PAUSE control frame may be generated either by transferring the contents of such a frame to the
output FIFO using the DMA or by writing to the Ethernet Generate Pause Frame (ETH[0|1]GPF) register. A
write to the ETH[0|1]GPF register causes the MAC to transmit a PAUSE control frame with the PAUSE
timer value set to the value written to the PAUSE Timer Value (PTV) field of the ETH[0|1]GPF register.

The Source Address (SA) of the MAC generated PAUSE frame is equal to that specified by
ETH[0|1]CFSA0, ETH[0|1]CFSA1, and ETH[0|1]CFSA2. When the MAC completes transmission of a
PAUSE control frame, the PAUSE Frame Done (PFD) bit is set in the Ethernet Pause Frame Status
(ETH[0|1]PFS) register. The PFD bit is presented to the interrupt handler as an interrupt source.

Writes to the ETH[0|1]PGF register before the MAC has completed transmitting a PAUSE control frame
due to a prior write are ignored (that is, they neither modify the register’s contents nor result in the genera-
tion of a PAUSE control frame). The MAC may be blocked from generating pause control frames by clearing
the Transmit Flow Control (TFC) bit in the ETH[0|1]MAC1 register.

Ethernet Generate Pause Frame Register

Figure 11.17 Ethernet Generate Pause Frame Register (ETH[0|1]GPF)

Ethernet Pause Frame Status Register

Figure 11.18 Ethernet Pause Frame Status Register (ETH[0|1]PFS)

PTV

Description: Pause Timer Value. Writing any value into this register causes a PAUSE control frame to be
generated by the MAC. The value written to this field (PTV) is used as the PAUSE timer value for
the generated frame. Once the MAC has completed transmitting the PAUSE control frame, the
Pause Frame Done (PFD) bit is set in the ETH[0|1]PFS register.
Writes to this register before the MAC has completed transmitting a PAUSE control frame due to
a prior write are ignored (that is, they neither modify the register’s contents nor result in the gen-
eration of a PAUSE control frame).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value and generate PAUSE control frame

ETH[0|1]GPF
015

PTV

16

0

16

ETH[0|1]PFS
031

31

0 PFD

1

ence Manual 11 - 19 May 11, 2005

IDT Ethernet Interfaces PAUSE Control Frames

79RC32438 User Refer

Notes
Ethernet Control Frame Station Address 0 Register

Figure 11.19 Ethernet Control Frame Station Address 0 (ETH[0|1]CFSA0)

PFD

Description: Pause Frame Done. This bit is set to 1 when the MAC completes PAUSE control frame trans-
mission. The state of this bit is presented to the interrupt handler as an interrupt source.

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

CFSA4

Description: Control Frame Station Address 4. This field holds byte 4 of the station address used for control
frames. For example, for the MAC address AC-DE-48-00-00-80, this field holds the value 00.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

CFSA5

Description: Control Frame Station Address 5. This field holds byte 5 of the station address used for control
frames. For example, for the MAC address AC-DE-48-00-00-80, this field holds the value 80.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

ETH[0|1]CFSA0

015

1631

16

0

8 8

CFSA5 CFSA4
ence Manual 11 - 20 May 11, 2005

IDT Ethernet Interfaces PAUSE Control Frames

79RC32438 User Refer

Notes
 Ethernet Control Frame Station Address 1 Register

Figure 11.20 Ethernet Control Frame Station Address 1 (ETH[0|1]CFSA1)

Ethernet Control Frame Station Address 2 Register

Figure 11.21 Ethernet Control Frame Station Address 2 (ETH[0|1]CFSA2)

CFSA2

Description: Control Frame Station Address 2. This field holds byte 2 of the station address used for control
frames. For example, for the MAC address AC-DE-48-00-00-80, this field holds the value 48.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

CFSA3

Description: Control Frame Station Address 3. This field holds byte 3 of the station address used for control
frames. For example, for the MAC address AC-DE-48-00-00-80, this field holds the value 00.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

CFSA0

Description: Control Frame Station Address 0. This field holds byte 0 of the station address used for control
frames. For example, for the MAC address AC-DE-48-00-00-80, this field holds the value AC.

Initial Value: 0x0

ETH[0|1]CFSA1

015

1631

16

0

8 8

CFSA3 CFSA2

ETH[0|1]CFSA2

015

1631

16

0

8 8

CFSA1 CFSA0
ence Manual 11 - 21 May 11, 2005

IDT Ethernet Interfaces Ethernet Medium Access Controller (MAC)

79RC32438 User Refer

Notes
Ethernet Medium Access Controller (MAC)
This section describes the configurable parameters for the Ethernet MAC. The function of the control

bits in the MAC configuration registers are self-explanatory.

Ethernet MAC Configuration Register #1

Figure 11.22 Ethernet MAC Configuration Register #1 (ETH[0|1]MAC1)

Read Value: Previous value written

Write Effect: Modify value

CFSA1

Description: Control Frame Station Address 1. This field holds byte 1 of the station address used for control
frames. For example, for the MAC address AC-DE-48-00-00-80, this field holds the value DE.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RE

Description: Receive Enable. When this bit is set to 1, the MAC is enabled to receive Ethernet frames. When
this bit is set to 0, this function is disabled and all incoming traffic is discarded.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PAF

Description: Pass All Frames. When this bit is set to 1, the MAC passes all frames to the input FIFO regard-
less of the frame type (i.e., normal frame or control frame). When this bit is set to 0, control
frames are discarded and only normal frames are written to the input FIFO.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RFC

Description: Receive Flow Control. When this bit is set to 1, the MAC will act upon received PAUSE flow
control frames. When this bit is set to 0, PAUSE flow control frames are ignored.

ETH[0|1]MAC1

PAF

015

RE

1 1

TFC RFC

1 1

LB

1

MR

1

0

10

1631

16

0

ence Manual 11 - 22 May 11, 2005

IDT Ethernet Interfaces Ethernet Medium Access Controller (MAC)

79RC32438 User Refer

Notes
Ethernet MAC Configuration Register #2

Figure 11.23 Ethernet MAC Configuration Register #2 (ETH[0|1]MAC2)

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

TFC

Description: Transmit Flow Control. When this bit is set to 1, the MAC will transmit PAUSE flow control
frames. When this bit is set to 0, pause flow control frames are blocked.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

LB

Description: Loopback. When this bit is set to 1, the MAC transmit interface is looped back to the MAC
receive interface. When this bit is set to 0, the MAC is in its normal operation mode.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MR

Description: MAC Reset. When this bit is set to 1, the MAC logic is reset. When this bit is set to 0, the MAC is
in its normal operation mode.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

FD

Description: Full Duplex. When this bit is set to 1, the MAC is selected to operate in full-duplex mode. When
this bit is set to 0, the MAC is selected to operate in half-duplex mode.

Initial Value: 0x0

Read Value: Status

Write Effect: Modify Value

ETH[0|1]MAC2

FLC

015

FD

1 1

DC HFE

1 1

PE

1

ED

1

APE VPE

1 1

PPE

1

NB LPE

1 1

BP

1

0

1

0

2

1631

16

0

CEN

1

ence Manual 11 - 23 May 11, 2005

IDT Ethernet Interfaces Ethernet Medium Access Controller (MAC)

79RC32438 User Refer

Notes
 FLC

Description: Frame Length Checking. When this bit is set to 1, both transmit and receive frame lengths are
compared to the length/type field. If the length/type field represents a length, a check is per-
formed. When this bit is set to 0, Frame Length Checking is disabled.

Initial Value: 0x0

Read Value: Status

Write Effect: Modify Value

HFE

Description: Huge Frame Enable. When this bit is set to 1, frames of any length may be transmitted and
received. When this bit is set to 0, transmission is aborted after the length in ETH[0|1]MAXF has
been reached and the remainder of the frame is discarded.

Initial Value: 0x0

Read Value: Status

Write Effect: Modify Value

DC

Description: Delayed CRC. When this bit is set to 1, a four byte proprietary header exists on the front of all
IEEE 802.3 frames. CRCs are not computed over the proprietary header. Thus, when this bit is
set to 1, CRC calculations are delayed by four bytes. When this bit is set to 0, Delayed CRC is
disabled.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

CEN

Description: CRC Enable. When this bit is set to 1, the MAC pads all short frames and appends a CRC to
every frame. When this bit is cleared to 0, frames passed to the MAC are assumed to have a
valid length and CRC (that is, these operations are performed in software). Refer to Table 11.4.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PE

Description: Pad Enable. When this bit is set to 1, the MAC pads short transmit frames and computes and
appends a CRC on all transmit frames. When this bit is set to 0, frames are padded prior to being
passed to the MAC (i.e., padding operation is performed by software). Refer to Table 11.4.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

VPE

Description: VLAN Pad Enable. When this bit is set to 1 and padding is enabled, short transmit frames are
padded to 64 bytes. If padding is enabled and this bit is cleared to 0, short transmit frames are
padded to 60 bytes. Refer to Table 11.4.

Initial Value: 0x0
ence Manual 11 - 24 May 11, 2005

IDT Ethernet Interfaces Ethernet Medium Access Controller (MAC)

79RC32438 User Refer

Notes
 Read Value: Previous value written

Write Effect: Modify value

APE

Description: Auto Pad Enable. When this bit is set to 1 and padding is enabled, the MAC automatically
detects the frame type, either tagged or untagged, by comparing the two bytes following the
source address with 0x1800 (VLAN protocol ID) and pads accordingly. Untagged frames are
padded to 60 bytes while tagged frames are padded to 64 bytes. When this bit is set to 0, the
Auto Padding function is disabled. Refer to Table 11.4.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PPE

Description: Pure Preamble Enforcement. When this bit is set to 1, the MAC will verify the content of the
preamble to ensure it contains 0x55 and is error-free. A frame with an error in the preamble is
discarded. When this bit is cleared, no preamble checking is performed.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

LPE

Description: Long Preamble Enforcement. When this bit is set to 1, the MAC only allows receive frames
which contain preamble fields less than 12 bytes in length. When this bit is cleared to 0, the MAC
allows any length preamble.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

NB

Description: No Backoff. When this bit is set to 1, the MAC will immediately retransmit following a collision
rather than using the Binary Exponential Backoff algorithm. When this bit is set to 0, the MAC will
use the Binary Exponential Backoff algorithm.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

BP

Description: Back Pressure / No Backoff. When this bit is set to 1, after incidentally causing a collision dur-
ing back pressure, the MAC will immediately retransmit without backoff. This reduces the chance
of further collisions and ensures that transmit frames get sent.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 11 - 25 May 11, 2005

IDT Ethernet Interfaces Ethernet Medium Access Controller (MAC)

79RC32438 User Refer

Notes
 ED

Description: Excess Defer. When this bit is set to 1, the MAC will defer indefinitely. When this bit is set to 0,
the MAC will abort when the excess deferral limit is reached.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

APE VPE PE CEN Result

0 0 0 0 No Pad or CRC appended.

0 0 0 1 CRC appended.

0 0 1 0 Pad to 60 bytes (if necessary), append CRC (min size = 64) with CRC Error.

0 0 1 1 Pad to 60 bytes (if necessary), append CRC (min size = 64).

0 1 0 0 No Pad or CRC appended.

0 1 0 1 CRC appended.

0 1 1 0 Pad to 64 bytes (if necessary), append CRC (min size = 68) with CRC Error.

0 1 1 1 Pad to 64 bytes (if necessary), append CRC (min size = 68).

1 0 0 0 No Pad or CRC appended.

1 0 0 1 CRC appended.

1 0 1 0 If untagged, pad to 60 bytes, add CRC with CRC Error.
If tagged, pad to 64 bytes, add CRC with CRC Error.

1 0 1 1 If untagged, pad to 60 bytes, add CRC.
If tagged, pad to 64 bytes, add CRC.

1 1 0 0 No Pad or CRC appended.

1 1 0 1 CRC appended.

1 1 1 0 If untagged, pad to 60 bytes, add CRC with CRC Error.
If tagged, pad to 64 bytes, add CRC with CRC Error.

1 1 1 1 If untagged, pad to 60 bytes, add CRC.
If tagged, pad to 64 bytes, add CRC.

Table 11.4 Padding Operation
ence Manual 11 - 26 May 11, 2005

IDT Ethernet Interfaces Ethernet Medium Access Controller (MAC)

79RC32438 User Refer

Notes
 Ethernet Back-to-Back Inter-Packet Gap Register

Figure 11.24 Ethernet Back-to-Back Inter-Packet Gap Register (ETH[0|1]IPGT)

Ethernet Non Back-to-Back Inter-Packet Gap Register

Figure 11.25 Ethernet Non Back-to-Back Inter-Packet Gap Register (ETH[0|1]IPGR)

IPGT

Description: Inter-Packet Gap. This is a programmable field representing the nibble time offset of the mini-
mum possible period between the end of any transmitted packet to the beginning of the next. In
Full-Duplex mode, the register value should be the desired period in nibble times minus 3. In
Half-Duplex mode, the register value should be the desired period in nibble times minus 6. In
Full-Duplex mode, the recommended setting is 0x15 (21d), which represents the minimum IPG
of 0.96 µs (in 100 Mb/s) or 9.6 µs (in 10 Mb/s). In Half-Duplex the recommended setting is 0x12
(18d), which also represents the minimum IPG of 0.96 µs (in 100 Mb/s) or 9.6 µs (in 10 Mb/s).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPGR2

Description: Non Back-to-Back Inter-Packet Gap Part 2. This field contains a field which represents the non
back-to-back inter-packet gap. The default value of 0x12 represents a minimum value of 0.96 µs
at 100 Mb/s or 9.6 µs at 10 Mb/s.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

ETH[0|1]IPGT

015

IPGT

7

0

9

1631

16

0

ETH[0|1]IPGR

015

IPGR2

7

0

1

0

1

IPGR1

7

1631

16

0

ence Manual 11 - 27 May 11, 2005

IDT Ethernet Interfaces Ethernet Medium Access Controller (MAC)

79RC32438 User Refer

Notes
Ethernet Collision Window and Retry Register

Figure 11.26 Ethernet Collision Window and Retry Register (ETH[0|1]CLRT)

IPGR1

Description: Non Back-to-Back Inter-Packet Gap Part 1. This field contains the field which represents the
optional carrier sense window referenced in IEEE 802.3/4.2.3.2.1 “Carrier Deference.” If carrier
is detected during the timing of IPGR1, the MAC defers to carrier. If carrier becomes active after
IPGR1, the MAC continues timing IPGR2 and transmits, knowingly causing a collision, thus
ensuring fair access to the medium. Its range of values are 0x0 to IPGR2.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MAXRET

Description: Maximum Retransmissions. This field specifies the number of retransmission attempts follow-
ing a collision before transmission of the frame is aborted due to excessive collisions.

Initial Value: 0xF

Read Value: Previous value written

Write Effect: Modify value

COLWIN

Description: Collision Window. This field represents the slot time or collision window during which collisions
occur in properly configured networks. Since the collision window starts at the beginning of trans-
mission, the preamble and SFD are included. Its default value of 0x37 corresponds to the count
of frame bytes at the end of the window.

Initial Value: 0x37

Read Value: Previous value written

Write Effect: Modify value

ETH[0|1]CLRT

015

MAXRET

4

0

2

0

4

COLWIN

6

1631

16

0

ence Manual 11 - 28 May 11, 2005

IDT Ethernet Interfaces Ethernet Medium Access Controller (MAC)

79RC32438 User Refer

Notes
 Ethernet Maximum Frame Length Register

Figure 11.27 Ethernet Maximum Frame Length Register (ETH[0|1]MAXF)

Ethernet MAC Test Register

Figure 11.28 Ethernet MAC Test Register (ETH[0|1]MTEST)

MAXF

Description: Maximum Frame Length. This field contains the maximum frame length supported by the MAC.
The default value 0x0600 represents a maximum receive frame of 1536 bytes. The maximum
untagged Ethernet frame size is 1518 bytes. A tagged frame adds four bytes for a total of 1522
bytes.

Initial Value: 0x0600

Read Value: Previous value written

Write Effect: Modify value

TB

Description: Test Back pressure. When this bit is set to 1, the MAC asserts back pressure on the link. Back
pressure causes the preamble to be transmitted, raising carrier sense. When this bit is set to 0,
the Test Back pressure function is disabled.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

ETH[0|1]MAXF

015

16

MAXF

1631

16

0

0

ETH[0|1]MTEST

015

2

TB

1

0

13

1631

16

0

ence Manual 11 - 29 May 11, 2005

IDT Ethernet Interfaces Ethernet MII Management Interface

79RC32438 User Refer

Notes
 Ethernet MII Management Interface
The MII management interface provides a simple serial interface for controlling PHYs and for gathering

status from PHYs. Both Ethernet interfaces share a single MII management interface. The interface
consists of two pins for reading and writing registers in a PHY:

Clock pin (MIIMDC)
Bidirectional data pin (MIIDIO)

The clock for the management interface is generated by the CPU core and driven on the MIIMDC pin.
The clock frequency driven on this pin is based on the Ethernet management clock generated by the
Ethernet clock prescalar. The Ethernet clock prescalar value should be selected such that the minimum
high and low times for the MIIMDC pin are at least 160 ns, and the minimum period is 400 ns.

A PHY register is read by first writing the desired PHY address into the PHY address (PHYADDR) field
of the MII management address (MIIMADDR) register and writing the desired register address in the
register address (REGADDR) field of the MIIMADDR register. One of two operations can then be selected:

Setting the read (RD) bit in the MII management command (MIICMD) register causes a single read
operation to be performed.
Setting the scan (SCN) bit in the MIICMD register causes repeated reads to be performed from the
selected PHY register.

Once the read data not valid (NV) bit in the MII management indicators register (MIIMIND) is cleared to
0, the value read from the selected PHY register may be read from the MII management read data register
(MIIMRDD) by the CPU core.

A PHY register may be written by writing the desired PHY address into the PHY address (PHYADDR)
field of the MIIMADDR register, and then writing the data to the MII management write data (MIIWTD)
register. A side effect of writing into the MIIWTD register is that a write is performed by the MII management
interface to the selected PHY register. The PHY write operation is completed when the busy (BSY) bit in the
MIIMIND register is cleared.

MII Management Configuration Register

Figure 11.29 MII Management Configuration Register (MIIMCFG)

RSV

Description: Reserved. Any value may be written to this field.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

MIIMCFG

015

0

2

R

1

0

11

RSV

2

1631

16

0

ence Manual 11 - 30 May 11, 2005

IDT Ethernet Interfaces Ethernet MII Management Interface

79RC32438 User Refer

Notes
MII Management Command Register

Figure 11.30 MII Management Command Register (MIIMCMD)

R

Description: Reset MII Management Logic. When this bit is set to 1, the Ethernet MII management logic is
reset. When this bit is set to 0, the Ethernet MII management logic is in normal operational mode.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

RD

Description: Read. When this bit is set to 1, the MII management interface performs a single read operation.
The data read is returned in the MII management read data (MIIMRDD) register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SCN

Description: Scan. When this bit is set to 1, the MII management interface performs continuous read opera-
tions. This is useful for monitoring status.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MIIMCMD

015

0

14

RD

1

SCN

1

1631

16

0

ence Manual 11 - 31 May 11, 2005

IDT Ethernet Interfaces Ethernet MII Management Interface

79RC32438 User Refer

Notes
 MII Management Address Register

Figure 11.31 MII Management Address Register (MIIMADDR)

MII Management Write Data Register

Figure 11.32 MII Management Write Data Register (MIIMWTD)

REGADDR

Description: Register Address. This field contains the 5-bit register address used for MII management oper-
ations.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PHYADDR

Description: PHY Address. This field contains the 5-bit PHY address used for MII management operations.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

WDATA

Description: Write Data. When this field is written, a MII management write cycle is performed using the 16-
bit data value written and the pre-configured PHY and register address from the MII manage-
ment address (MIIMADDR) register.

Initial Value: 0x0000

Read Value: Previous value written

Write Effect: Modify value and initiate a MII management write cycle

MIIMADDR

015

REGADDR

5

0

3

PHYADDR

5

0

3

1631

16

0

MIIMWTD

015

16

WDATA

1631

16

0

ence Manual 11 - 32 May 11, 2005

IDT Ethernet Interfaces Ethernet MII Management Interface

79RC32438 User Refer

Notes
 MII Management Read Data Register

Figure 11.33 MII Management Read Data Register (MIIMRDD)

MII Management Indicators Register

Figure 11.34 MII Management Indicators Register (MIIMIND)

RDATA

Description: Read Data. Following a MII management read cycle, this field contains the data read. The NV bit
is set to 0 when data is valid following the read operation.

Initial Value: 0x0000

Read Value: Data read from MII management interface

Write Effect: Read-only

BSY

Description: Busy. When this bit is set to 1, a MII management read cycle or write cycle is in progress and
subsequent reads or writes are ignored until this bit is cleared to 0.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

SCN

Description: SCAN. When this bit is set to 1, a MII management scan operation is in progress.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

MIIMRDD

015

16

RDATA

1631

16

0

MIIMIND

015

0

13

BSY

1

SCN

1

NV

1

1631

16

0

ence Manual 11 - 33 May 11, 2005

IDT Ethernet Interfaces Ethernet Clock Prescalar

79RC32438 User Refer

Notes
Ethernet Clock Prescalar
The Ethernet interfaces share an 8-bit clock prescalar which is used to generate the Ethernet manage-

ment clock for shared MII management interface. The ethernet management clock is the media indepen-
dent interface management data clock on the MIIMDC pin. The Ethernet management clock is equal to the
IPBus clock (ICLK) frequency divided by the clock prescalar divisor (DIV) field in the Ethernet management
clock prescalar register (ETHMCP).

Figure 11.35 Ethernet Management Clock Prescalar Register (ETHMCP)

Programming Example
Disclaimer: Code examples provided by IDT are for illustrative purposes only and should not be relied

upon for developing applications. IDT does not assume liability for any loss or damage that may result from
the use of this code.

*/

#define ETHIPGT_HALF_DUPLEX 0x12

#define ETHIPGT_FULL_DUPLEX 0x15

int reginit(void) ;

int io_fifo(void) ;

int addr_rec(void) ;

int cpu_infc(void) ;

int eth_mac(void) ;

int eth_prescale(void) ;

NV

Description: Read Data Not Valid. When this bit is set to 1, a MII management read operation has not com-
pleted and the value in the MII management read data (MIIMRDD) register is not valid.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

DIV

Description: Clock Prescalar Divisor. When the DIV field equals zero, one, two, or three, the internally gen-
erated ethernet management clock is equal to the system clock divided by four. For all other
even values of the DIV field up to 255, the Ethernet management clock is equal to the system
clock divided by the DIV field. Bit zero of the DIV field is always assumed to be zero.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

ETHMCP
031

DIV0

24 8
ence Manual 11 - 34 May 11, 2005

IDT Ethernet Interfaces Programming Example

79RC32438 User Refer

Notes
 int eth_mii(void) ;

int reginit(void)

{

 addr_rec();

 eth_mac();

 io_fifo();

 eth_prescale();

 reset_phy();

 return(0);

}

/* Set up the four physical station addresses for the MAC */

int addr_rec(void)

{

/* Accept only packets destined for THIS Ethernet device address */

ethernet.etharc = 0x0;

/* Set all Ethernet address registers to the same initial values */

/* set all four addresses to 66-88-aa-cc-dd-ee */

ethernet.ethsal0 = 0xaaccddee;

ethernet.ethsah0 = 0x00006688;

ethernet.ethsal1 = 0xaaccddee;

ethernet.ethsah1 = 0x00006688;

ethernet.ethsal2 = 0xaaccddee;

ethernet.ethsah2 = 0x00006688;

ethernet.ethsal3 = 0xaaccddee;

ethernet.ethsah3 = 0x00006688;

return(0);

}

int eth_mac(void)

{

/* Receive is ENABLED */

ethernet.ethmac1 = ETHERMAC1_RE;

/* enable full duplex */

ethernet.ethmac2 = ETHERMAC2_FD;

/* Back-to-back inter-packet-gap, full-duplex */

ethernet.ethipgt = ETHIPGT_FULL_DUPLEX;

/* None back-to-back inter-packet-gap, IPGR2 */

ethernet.ethipgr = 0x12;

return(0);

}

int eth_prescale(void)
ence Manual 11 - 35 May 11, 2005

IDT Ethernet Interfaces Programming Example

79RC32438 User Refer

Notes
 {

/* system clock divisor for MII bus */

ethernet.ethmcp = 0x28; /* 50 MHZ / 40 = 1.25 MHZ */

return(0);

}

int io_fifo(void)

{

unsigned int i, xthres;

ethernet.ethintfc = 0; /* reset ethernet interfce */

i = ethernet.ethintfc;

printf("intfc = %x\n",i);

for(i=0xffff;i>0;i--){

if(!(ethernet.ethintfc & ETHERINTFC_RIP))

break;

}

/* Enable Ethernet Interface */

ethernet.ethintfc = ETHERINTFC_EN;

v /* Fifo Tx Threshold Level */

ethernet.ethfifott = 0x40;

return(0);

}

/* reset ethernet phy chip */

int reset_phy(void)

{

unsigned int tmp,i;

ethernet.miimcfg = 0x8000; /* set mii reset bit */

for(i=0;i<0xffff;i++);/* allow for slow mii clock */

ethernet.miimcfg = 0;/* clear reset bit */

/* PHY default is 10/100 full duplex mode */

tmp = read_phy_reg(0);

printf("read phy reg 0 = %x\n",tmp);

tmp = read_phy_reg(0);

printf("read phy reg 0 = %x\n",tmp);

tmp = read_phy_reg(1);

printf("read phy reg 1 = %x\n",tmp);

while(!(tmp& 0x04))/* link is down */

tmp = read_phy_reg(1);

printf("read phy reg 1 = %x\n",tmp); /* link is up */

return(0);

}

ence Manual 11 - 36 May 11, 2005

IDT Ethernet Interfaces Programming Example

79RC32438 User Refer

Notes
 #define MII_TIMEOUT 0xf000

int write_phy_reg(int reg, int data)

{

int i;

i=MII_TIMEOUT;

while((ethernet.miimind & ETHERMIIMIND_BSY) && i)

i--;

if(i == 0){

printf("write phy reg timed out waiting for mii busy\n");

return (1);

}

ethernet.miimaddr = reg;

i=MII_TIMEOUT;

while((ethernet.miimind & ETHERMIIMIND_BSY) && i)

i--;

if(i == 0){

printf("write phy reg timed out waiting for mii busy\n");

return (2);

}

ethernet.miimwtd = data;

i=MII_TIMEOUT;

while((ethernet.miimind & ETHERMIIMIND_BSY) && i)

i--;

if(i == 0){

printf("write phy reg timed out waiting for mii busy\n");

return (3);

}

return(0);

}

int read_phy_reg(int reg)

{

int i, data;

i=MII_TIMEOUT;

while((ethernet.miimind & ETHERMIIMIND_BSY) && i)

i--;

if(i == 0){

printf("read phy reg timed out waiting for mii busy\n");

return (0x1);

}

ethernet.miimaddr = reg;

i=MII_TIMEOUT;

while((ethernet.miimind & ETHERMIIMIND_BSY) && i)
ence Manual 11 - 37 May 11, 2005

IDT Ethernet Interfaces Programming Example

79RC32438 User Refer

Notes
 i--;

if(i == 0){

printf("read phy reg timed out waiting for mii busy\n");

return (0x1);

}

ethernet.miimcmd = ETHERMIIMCMD_RD;

i=MII_TIMEOUT;

while((ethernet.miimind & ETHERMIIMIND_BSY) && i)

i--;

if(i == 0){

printf("read phy reg timed out waiting for mii busy\n");

return (0x2);

}
if(ethernet.miimind & ETHERMIIMIND_NV){

printf("read phy reg failed, data not valid\n");
return(0x3);
}

data = ethernet.miimrdd;
ethernet.miimcmd = 0;/* clear read bit */
return(data);

}

int scan_phy_reg(int reg)
{

int i, data;
i=MII_TIMEOUT;
while((ethernet.miimind & ETHERMIIMIND_BSY) && i)

i--;
if(i == 0){

printf("read phy reg timed out waiting for mii busy\n");
return (0x1);
}

ethernet.miimaddr = reg;
i=MII_TIMEOUT;
while((ethernet.miimind & ETHERMIIMIND_BSY) && i)

i--;
if(i == 0){

printf("read phy reg timed out waiting for mii busy\n");
return (0x1);
}

ethernet.miimcmd = ETHERMIIMCMD_SCN;
while(1){
i=MII_TIMEOUT;
while((ethernet.miimind & ETHERMIIMIND_NV) && i)

i--;
ence Manual 11 - 38 May 11, 2005

IDT Ethernet Interfaces Programming Example

79RC32438 User Refer

Notes
 if(i == 0){
printf("read phy reg timed out waiting for mii not vaild\n");
return (0x2);
}

data = ethernet.miimrdd;
printf("reg %d = %x\r",reg,data);
if(data == 0x782d)

break;
}
ethernet.miimcmd = 0;/* clear scan bit */
return(data);

}

ence Manual 11 - 39 May 11, 2005

IDT Ethernet Interfaces Programming Example

79RC32438 User Refer

Notes
ence Manual 11 - 40 May 11, 2005

Notes

79RC32438 User Reference Manual 12 - 1 M
Chapter 12
General Purpose I/O
Controller
Introduction
This chapter describes the operation of the General Purpose I/O (GPIO) Controller and the operation of

the general purpose I/O pins. This chapter also describes how the GPIO Controller and pins are configured
to operate as a general purpose I/O or as an alternate function.

Functional Overview
The general purpose I/O controller provides 32 general purpose I/O pins which may be individually

configured as:
General purpose input
General purpose output
Alternate functions

When configured as general purpose input, each pin can be used as an active high or active low level
interrupt input.

As shown in Table 12.1, each general purpose I/O (GPIO) bit is shared with another on-chip function.
The GPIO function (GPIOFUNC) field in the general purpose I/O function (GPIOFUNC) register controls
whether a GPIO bit operates as a general purpose I/O or as the specified alternate function.

GPIO
Pin

Alternate
Function
Pin Name

Alternate Function Description
Alternate
Function
Pin Type

0 U0SOUT UART channel 0 serial output (see Chapter 13) Output

1 U0SINP UART channel 0 serial input (see Chapter 13) Input

2 U0RIN UART channel 0 ring indicator (see Chapter 13) Input

3 U0DCDN UART channel 0 data carrier detect (see Chapter 13) Input

4 U0DTRN UART channel 0 data terminal ready (see Chapter 13) Output

5 U0DSRN UART channel 0 data set ready (see Chapter 13) Input

6 U0RTSN UART channel 0 request to send (see Chapter 13) Output

7 U0CTSN UART channel 0 clear to send (see Chapter 13) Input

8 U1SOUT UART channel 1 serial output (see Chapter 13) Output

9 U1SINP UART channel 1 serial input (see Chapter 13) Input

10 U1DTRN UART channel 1 data terminal ready (see Chapter 13) Output

11 U1DSRN UART channel 1 data set ready (see Chapter 13) Input

12 U1RTSN UART channel 1 request to send (see Chapter 13) Output

13 U1CTSN UART channel 1 clear to send (see Chapter 13) Input

14 DMAREQN0 External DMA channel 0 request (see Chapter 9) Input

15 DMAREQN1 External DMA channel 1 request (see Chapter 9) Input

Table 12.1 General Purpose I/O Pin Alternate Function (Part 1 of 2)
ay 11, 2005

IDT General Purpose I/O Controller Theory of Operation

79RC32438 User Refer

Notes
Theory of Operation
After reset, all GPIO pins default to the GPIO input function. When a GPIO pin is configured for use as a

GPIO pin, the alternate function associated with that pin is held in an inactive state by internal logic. Care
should be exercised when configuring GPIO pins as outputs because an incorrect configuration (for
example, mistakenly configuring an input pin as an output pin) could cause damage to external components
as well as to the RC32438 device itself.

Each GPIO pin is controlled by its corresponding bit in each GPIO register. For example, GPIO bit [0] is
controlled by GPIOFUNC[0], GPIOCFG[0], GPIOD[0], GPIOILEVEL[0], GPIOISTAT[0], and
GPIONMIEN[0]. In another example, GPIO bit [2] is controlled by GPIOFUNC[2], GPIOCFG[2], GPIOD[2],
GPIOILEVEL[2], GPIOISTAT[2], and GPIONMIEN[2].

All GPIO pins except GPIO[24] and GPIO[30:26] have LVTTL I/O buffers. GPIO pins 24 and 26 through
30 have PCI I/O buffers which allow these pins to be used for PCI interrupts.

GPIO Pin Configured As Input

When configured as an input in the GPIO configuration register (GPIOCFG) and as a GPIO function in
the GPIO function register (GPIOFUNC), the GPIO pin value will be sampled and registered in the GPIO
data register (GPIOD) each master clock cycle (after double registering to prevent metastability). The value
of the input pin can be determined at any time by reading GPIOD.

GPIO Pin Configured As Output

When configured as an output in GPIOCFG and as a GPIO function in GPIOFUNC, the value written
into GPIOD will be output at the pin. The value of the output pin can be determined at any time by reading
GPIOD.

16 DMADONEN0 External DMA channel 0 done (see Chapter 9) Input

17 DMADONEN1 External DMA channel 1 done (see Chapter 9) Input

18 DMAFINN0 External DMA channel 0 finished (see Chapter 9) Output

19 DMAFINN1 External DMA channel 1 finished (see Chapter 9) Output

20 MADDR[22] Memory and peripheral bus address (see Chapter 6) Output

21 MADDR[23] Memory and peripheral bus address (see Chapter 6) Output

22 MADDR[24] Memory and peripheral bus address (see Chapter 6) Output

23 MADDR[25] Memory and peripheral bus address (see Chapter 6) Output

24 PCIREQN[4] PCI Request 4 (see Chapter 10) Input

25 AFSPARE1 reserved Input

26 PCIGNTN[4] PCI Grant 4 (see Chapter 10) Output

27 PCIREQN[5] PCI Request 5 (see Chapter 10) Input

28 PCIGNTN[5] PCI Grant 5 (see Chapter 10) Output

29-31 Reserved

GPIO
Pin

Alternate
Function
Pin Name

Alternate Function Description
Alternate
Function
Pin Type

Table 12.1 General Purpose I/O Pin Alternate Function (Part 2 of 2)
ence Manual 12 - 2 May 11, 2005

IDT General Purpose I/O Controller General Purpose I/O Register Description

79RC32438 User Refer

Notes
 GPIO Pin Configured As an Alternate Function

When configured as an alternate function in GPIOFUNC register, the pin behaves as described in each
chapter associated with that function. The value of the alternate function pin can be determined at any time
by reading GPIOD.

GPIO Pins As Interrupt Sources

Each pin can also generate an interrupt to the Interrupt Controller, regardless of the configuration in
GPIOFUNC or GPIOCFG. This allows an alternate function, a write to GPIOD, or a GPIO input from an
external device, to generate an interrupt.

Interrupt generation is controlled using the GPIO interrupt level register (GPIOILEVEL) and GPIO inter-
rupt status register (GPIOISTAT). GPIOILEVEL describes the interrupt level (either active high or low) of the
signal that will cause the interrupt. When the value of a pin matches the level in GPIOILEVEL, the corre-
sponding bit in the GPIO interrupt status register (GPIOISTAT) will be set high. Once set, the bit in GPIO-
ISTAT will remain set even if the value of the GPIO pin changes. All GPIOISTAT bits are sent to the Interrupt
Controller to request interrupt servicing.

To clear the interrupt, the source of the interrupt must be cleared or serviced. (This could be an alternate
function service or clearing of GPIOD.) Then the bit in GPIOISTAT must also be cleared.

Note that if an interrupt is not wanted from a GPIO pin, it must be masked in the Interrupt Controller
Interrupt Mask 6 Register (IMASK6). See Chapter 8, Interrupt Controller.

GPIO Pins As Non-maskable Interrupt Sources

Each GPIO pin can also be programmed to generate a non-maskable interrupt (NMI) to the CPU regard-
less of the configuration in GPIOFUNC or GPIOCFG. GPIOILEVEL and GPIOISTAT must be set up to
generate an interrupt as described in the previous section. The GPIO Non-maskable Interrupt Enable
Register (GPIONMIEN) enables the corresponding bit in the GPIOISTAT register to generate an NMI. All
enabled NMI sources are logically combined to generate a single NMI to the CPU core. The GPIOSTAT
register can be read to determine the cause of the NMI.

Note that in addition to the generation of the NMI, an interrupt is also generated unless masked in the
Interrupt Controller.

General Purpose I/O Register Description

GPIOFUNC GPIOCFG Pin Function

0 0 GPIO input

0 1 GPIO output

1 Don’t care Alternate 1 function

Table 12.2 Possible GPIO Configurations

Register Offset1 Register Name Register Function Size

0x04_8000 GPIOFUNC GPIO function 32-bit

0x04_8004 GPIOCFG GPIO configuration 32-bit

0x04_8008 GPIOD GPIO data 32-bit

0x04_800C GPIOILEVEL GPIO interrupt level 32-bit

Table 12.3 Ethernet Register Map (Part 1 of 2)
ence Manual 12 - 3 May 11, 2005

IDT General Purpose I/O Controller General Purpose I/O Register Description

79RC32438 User Refer

Notes
GPIO Function Register

Figure 12.1 GPIO Function Register (GPIOFUNC)

GPIO Configuration Register

Figure 12.2 GPIO Configuration Register (GPIOCFG)

0x04_8010 GPIOISTAT GPIO interrupt status 32-bit

0x04_8014 GPIONMIEN GPIO nonmaskable interrupt enable 32-bit

0x04_8018 through 0x04_FFFF Reserved

1. The address of the register is equal to the register offset added to the base value of 0x1800_0000.

GPIOFUNC

Description: GPIO Function. Each bit in this field controls its corresponding GPIO pin. When a bit is set to a
one, the corresponding GPIO pin operates as the alternate 1 function as defined in Table 12.1.
When a bit is set to a zero, the corresponding GPIO pin operates as a general purpose I/O pin.

Initial Value: 0x0

Read Value: Current value

Write Effect: Modify value

GPIOCFG

Description: GPIO Configuration. Each bit in this field controls its corresponding GPIO pin. When a bit is
configured as a general purpose I/O pin and the corresponding bit in this field is set, then the pin
is configured as an output. When a bit is configured as a general purpose I/O pin and the corre-
sponding bit in this field is a zero, the pin is configured as in input. When the pin is configured as
an alternate function, the behavior of the pin is defined by the alternate 1 function.

Initial Value: 0x0

Read Value: Current value

Write Effect: Modify value

Register Offset1 Register Name Register Function Size

Table 12.3 Ethernet Register Map (Part 2 of 2)

GPIOFUNC
031

32

GPIOFUNC

GPIOCFG
031

32

GPIOCFG
ence Manual 12 - 4 May 11, 2005

IDT General Purpose I/O Controller General Purpose I/O Register Description

79RC32438 User Refer

Notes
 GPIO Data Register

Figure 12.3 GPIO Data Register (GPIOD)

GPIO Interrupt Level Register

Figure 12.4 GPIO Interrupt Level Register (GPIOILEVEL)

GPIO Interrupt Status Register

Figure 12.5 GPIO Interrupt Status Register (GPIOISTAT)

GPIOD

Description: GPIO Data. Each bit in this field controls its corresponding GPIO pin. Reading this field returns
the current value of each GPIO pin. Writing a value to this field causes the corresponding pins
which are configured as GPIO outputs to change state to the value written.

Initial Value: Undefined

Read Value: GPIO pin status

Write Effect: Modify GPIO output pin status

GPIOILEVEL

Description: GPIO Interrupt Level. When the value of a GPIO pin matches the value of the corresponding bit
in this field, then the corresponding bit is set in the GPIOISTAT field is set.

Initial Value: Undefined

Read Value: Current value

Write Effect: Modify value

GPIOISTAT

Description: GPIO Interrupt Status. Each bit in this field controls its corresponding GPIO pin. When a bit in
this field is set to 1, the GPIO pin value matches that of the corresponding bit in the GPIOILEVEL
field. Each bit in this field is presented to the interrupt controller as an interrupt input. Bits in this
field are typically cleared by an interrupt service routine.

GPIOD
031

32

GPIOD

GPIOILEVEL
031

32

GPIOILEVEL

GPIOISTAT
031

32

GPIOISTAT
ence Manual 12 - 5 May 11, 2005

IDT General Purpose I/O Controller General Purpose I/O Register Description

79RC32438 User Refer

Notes
GPIO Non-maskable Interrupt Enable Register

Figure 12.6 GPIO Non-maskable Interrupt Enable Register (GPIONMIEN)

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit1

1. A sticky bit is set by the hardware and can only be cleared by the CPU.

NMIEN

Description: GPIO Non-maskable Interrupt Enable. When a bit in the GPIOISTAT register is set to 1 and
the corresponding bit in the NMIEN field of the GPIONMIEN register is set to 1, a GPIO non-
maskable interrupt request is generated. This results in the GPIO bit being set in the NMIPS reg-
ister (see “Non-Maskable Interrupt Pin Status Register” on page 8-7) which causes a non-
maskable interrupt exception.

Initial Value: 0x0000_0000

Read Value: Previous value written

Write Effect: Modify value

GPIONMIEN
031

32

NMIEN
ence Manual 12 - 6 May 11, 2005

Notes

79RC32438 User Reference Manual 13 - 1 M
Chapter 13
UART Controller
Introduction
The RC32438 contains two completely separate but identical serial channels (UARTs). Each UART is

compatible with the industry standard 165501 UART. The two UARTs (referred to as channel 0 and channel
1) are functionally identical, except UART channel 1 does not use all the available modem control pins.

Features
Compatible with the 16550 and 16450 UARTs
Two completely separate serial channels
Modem control functions (CTS, RTS, DSR, DTR, RI, DCD)
16-byte transmit and receive buffers
Programmable baud rate generator derived from the system clock
Fully programmable serial characteristics:
5, 6, 7, or 8 bit characters
Even, odd or no parity bit generation and detection
1, 1-1/2, or 2 stop bit generation
Line break generation and detection
False start bit detection
Internal loopback mode

Functional Overview
The 16550 UART is an enhanced version of the 16450 UART. Upon power-up, each UART defaults to

the 16450 mode. The 16550 contains two 16-byte buffers: one in the receive data path and one in the
transmit data path. The buffers reduce the overhead on the CPU core in managing the data flow. The 16450
does not use the buffers in the data path.

The CPU core can read the status of either UART channel at any time during operation. Status informa-
tion that is available includes the type and condition of the transfer operation, as well as any error condition
(parity, overrun, framing, or break interrupt). The baud rate generator divides down the IPBus clock and
provides a 16X clock for driving the transmitter and receiver logic.

The UART pins shown in Table 13.1 are multiplexed with the GPIO pins as shown in Table 12.1.

1. PC 16550D Dual Universal Asynchronous Receiver/Transmitter with FIFOs, June 1995, National Semicon-
ductor.

Signal Description Direction

U0SOUT UART Channel 0 Serial Output Output

U0SINP UART Channel 0 Serial Input Input

U0RIN UART Channel 0 Ring Indicator Input

U0DCRN UART Channel 0 Data Carrier Detect Input

U0DTRN UART Channel 0 Data Terminal Ready Output

U0DSRN UART Channel 0 Data Set Ready Input

Table 13.1 UART Input/Output Pins (Part 1 of 2)
ay 11, 2005

IDT UART Controller UART Register Description

79RC32438 User Refer

Notes
The UART must be configured before operation may begin. To configure the UART:
1. Set up the transmit and receive parameters in the line control (UARTxLC) register.
2. Program the baud rate in the divisor latch low (UARTDLL) and divisor latch high (UARTDLH) regis-

ters.
3. Enable, if desired, the 16550 buffer mode in the FIFO control (UARTxFC) register.
The general purpose I/O controller must be configured to use the desired UART pins as alternate func-

tion GPIO pins. The UART contains a baud rate generator which is used to operate the transmit and receive
logic at the baud rate determined by the divisor latches.

UART Register Description
In order to maintain full compatibility with the 16550, all registers in the UART are 8-bits in size and have

the addressing architecture of the 16550. Despite the fact that the registers are 8-bits in size, they are word
aligned. As in the 16550, the exact register which is selected when accessing the UART is dependent on
the divisor latch access bit (DLAB) in the line control (UARTxLC) register and on whether a read or write
operation is performed. Table 13.2 lists the UART registers.

U0RTSN UART Channel 0 Request to Send Output

U0CTSN UART Channel 0 Clear to Send Input

U1SOUT UART Channel 1 Serial Output Output

U1SINP UART Channel 1 Serial Input Input

U1DTRN UART Channel 1 Data Terminal Ready Output

U1DSRN UART Channel 1 Data Set Ready Input

U1RTSN UART Channel 1 Request to Send Output

U1CTSN UART Channel 1 Clear to Send Input

Register
Offset

Register Name
Register Function Size

DLAB = 0 DLAB = 1

0x05_0000 UART0RB (read)
UART0TH (write)

UART0DLL UART 0 receive buffer / UART 0 trans-
mit holding / UART 0 divisor latch low

32-bit

0x05_0004 UART0IE UART0DLH UART 0 interrupt enable / UART 0 divi-
sor latch high

32-bit

0x05_0008 UART0II (read)
UART0FC (write)

none UART 0 interrupt identification / UART
0 FIFO control

32-bit

0x05_000C UART0LC UART 0 line control 32-bit

0x05_0010 UART0MC UART 0 modem control 32-bit

0x05_0014 UART0LS UART 0 line status 32-bit

0x05_0018 UART0MS UART 0 modem status 32-bit

0x05_001C UAART0S UART 0 scratch 32-bit

0x05_0020 UART1RB (read)
UART1TH (write)

UART1DLL UART 1 receive buffer / UART 1 trans-
mit holding / UART 1 divisor latch low

32-bit

0x05_0024 UART1IE UART1DLH UART 1 interrupt enable / UART 1 divi-
sor latch high

32-bit

Table 13.2 UART Register Map (Part 1 of 2)

Table 13.1 UART Input/Output Pins (Part 2 of 2)
ence Manual 13 - 2 May 11, 2005

IDT UART Controller Baud Rate Selection

79RC32438 User Refer

Notes
Baud Rate Selection
The baud rate is determined by a two-byte divisor that divides down the IPBus clock (ICLK). The divisor,

in binary, is loaded into the UARTDLL and UARTDLH registers. A divisor value of zero or one is interpreted
as a divisor of 32 decimal (0020 hex) by the baud rate generator.

To calculate the baud rate, use the following formula (the constant, 16, is used in the formula because
the output frequency of the baud rate generator is 16 times the baud):

Baud rate = (system frequency) / (divisor * 16)

Or, to calculate the divisor to load into the Divisor Latches, use the following formula:
Divisor = system frequency / (baud rate * 16)

As an example, for a system frequency of 66 MHz and a baud rate of 9600 (values shown are decimal),
calculate the divisor as follows:

Divisor = 66,000,000 / (9600 * 16) = 429.6875

Round off the ideal divisor to the nearest whole number, 430, to load into the divisor latches. Load
0000_0001_1010_1110 into the divisor latches: 0000_0001 into UARTDLH and 1010_1110 into UARTDLL.
Some divisors and system frequencies will give a more accurate baud rate than others.

To calculate the percent error of the divisor, use this formula:
% error = ((difference of the whole divisor and the ideal fractional divisor) / ideal fractional divisor) * 100.
In this example, the error is ((430 - 429.6875) / 429.6875) * 100 = 0.073%. Divisor values for typical

baud rates and system clock frequencies are provided in Table 13.3.

0x05_0028 UART1II (read)
UART1FC (write)

none UART 1 interrupt identification / UART
1 FIFO control

32-bit

0x05_002C UART1LC UART 1 line control 32-bit

0x05_0030 UART1MC UART 1 modem control 32-bit

0x05_0034 UART1LS UART 1 line status 32-bit

0x05_0038 UART1MS UART 1 modem status 32-bit

0x05_003C UART1S UART 1 scratch 32-bit

0x05_0040 UART0RR UART 0 Reset 32-bit

0x05_0044 UART1RR UART 1 Reset 32-bit

0x05_0048 through
0x05_7FFF

Reserved

IPBus Clock
Frequency Baud Rate Divisor (decimal)

133 MHz 19200 433

116.5 MHz 19200 379

100 MHz 9600 651

66 MHz 19200 214

Table 13.3 Divisor Values for Typical Baud Rates and IPBus Clock Frequencies (Part 1 of 2)

Register
Offset

Register Name
Register Function Size

DLAB = 0 DLAB = 1

Table 13.2 UART Register Map (Part 2 of 2)
ence Manual 13 - 3 May 11, 2005

IDT UART Controller UART Interrupts

79RC32438 User Refer

Notes
UART Interrupts
The UART generates six interrupt requests to the interrupt controller:

General Interrupt 0. Activated when one of the conditions in the UART0IE register is enabled and
the necessary condition has occurred. This is bit (0) in the UART0II register, inverted, and sent to
the interrupt controller.
TXRDY 0 Interrupt. Activated depending on the DMA mode set in the FIFO Control Register for
channel 0. An interrupt request is generated under the same conditions that the TXRDY pin for
channel 0 would be asserted. (Refer to industry standard 16550 UART specification.)1

RXRDY 0 Interrupt. Activated depending on the DMA mode set in the FIFO Control Register for
channel 0. An interrupt request is generated under the same conditions that the RXRDY pin for
channel 0 would be asserted. (Refer to industry standard 16550 UART specification.)1

General Interrupt 1. Activated when one of the conditions in the UART1IE register is enabled and
the necessary condition has occurred. This is bit (0) in the UART1II register, inverted, and sent to
the interrupt controller.
TXRDY 1 Interrupt. Activated depending on the DMA mode set in the FIFO Control Register for
channel 1. An interrupt request is generated under the same conditions that the TXRDY pin for
channel 1 would be asserted. (Refer to industry standard 16550 UART specification.)1

RXRDY 1 Interrupt. Activated depending on the DMA mode set in the FIFO Control Register for
channel 1. An interrupt request is generated under the same conditions that the RXRDY pin for
channel 1 would be asserted. (Refer to industry standard 16550 UART specification.)1

UART Channel Reset
The UART provides two independent serial channels. When switching a UART channel between 16550

and 16450 modes, the internal UART FIFOs are not cleared. To support clean switching between modes, a
UART Reset Register (UART[0|1]RR) is added to the standard 16550 UART register definition for each
channel.

The standard 16550 UART registers are described in the Functional Overview section at the beginning
of this chapter.

UART Registers
This section describes the UART registers. For additional information on configuring and operating the

UART, see the 16550 data sheet2.

66MHz 9600 430

66MHz 2400 1719

50MHz 9600 326

40MHz 9600 260

33MHz 9600 215

25MHz 9600 163

1. PC 16550D Dual Universal Asynchronous Receiver/Transmitter with FIFOs, June 1995, National Semicon-
ductor.
2. PC 16550D Dual Universal Asynchronous Receiver/Transmitter with FIFOs, June 1995, National Semicon-
ductor.

IPBus Clock
Frequency Baud Rate Divisor (decimal)

Table 13.3 Divisor Values for Typical Baud Rates and IPBus Clock Frequencies (Part 2 of 2)
ence Manual 13 - 4 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
 Reset Register

Figure 13.1 UART [0|1] Reset Register

Receive Buffer Register

Figure 13.2 UART [0|1] Receive Buffer Register (UART[0|1]RB)

Transmit Holding Register

Figure 13.3 UART [0|1] Transmit Holding Register (UART[0|1]TH)

R

Description: Reset. A write of any value to this register causes the corresponding UART channel to be reset.

Initial Value: Undefined

Read Value: Undefined

Write Effect: Write of any value causes UART channel reset

DATA

Description: DATA. Reading this field returns a byte from the UART receive buffer.

Initial Value: Undefined

Read Value: Byte from UART receive buffer

Write Effect: Read-only

DATA

Description: DATA. Writing a byte to this field places the byte into the UART transmit buffer.

Initial Value: Undefined

UART[0|1]RR
031

32

R

31
UART[0|1]RB

0

8

DATA

24

0

UART[0|1]TH
0

8

DATA

31

24

0

ence Manual 13 - 5 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
Interrupt Enable Register

Figure 13.4 UART [0|1] Interrupt Enable Register (UART[0|1]IE)

Read Value: Write-only

Write Effect: Write byte into UART transmit buffer

RDA

Description: Enable Receive Data Available Interrupt. When set to 1, this bit enables receiver data available
interrupts and time-out interrupts in FIFO mode.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

THE

Description: Enable Transmitter Holding Register Empty Interrupt. When set to 1, this bit enables transmit-
ter holding register empty interrupts.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RLS

Description: Enable Receiver Line Status Interrupt. When set to 1, this bit enables receiver line status inter-
rupts.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

EMS

Description: Enable Modem Status Interrupt. When set to 1, this bit enables modem status interrupts.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

UART[0|1]IE
0

4

0

1

RDA

1

THE

1

RLS

1

EMS

31

24

0

ence Manual 13 - 6 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
 Interrupt Identification Register

Figure 13.5 UART [0|1] Interrupt Identification Register (UART[0|1]II)

PI

Description: Pending Interrupt. When this bit is set to 1, no interrupt request is pending. When this bit is
cleared, an interrupt request is pending.

Initial Value: 0x1

Read Value: Status

Write Effect: Read-only

IID

Description: Interrupt ID. These bits identify the highest priority pending interrupt.
0x0 Modem Status. Clear to send, data set ready, ring indicator or data carrier detect.
0x1 Transmitter Holding Register Empty. Writing to UARTxTH will reset this interrupt.
0x2 Received Data Available. RX data is available to read or the specified trigger level is
reached. Reading either UARTxRB or if the buffer level drops below the trigger point resets the
interrupt.
0x3 Receiver Line Status. Occurs during an overrun error, parity error, framing error or break
interrupt. Reading UARTxLS resets the interrupt.
0x4 Reserved
0x5 Reserved
0x6 Character Time-out Indication. No characters have been removed from or input to the
receiver buffer during the last four character times and there is at least 1 character in it during
this time.
0x7 Reserved

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

FIFOEN

Description: FIFO Enables. These two bits are set when FIFO mode is enabled.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

UART[0|1]II
0

2

0

1

PI

3

IID

2

FIFOEN

31

24

0

ence Manual 13 - 7 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
 FIFO Control Register

Figure 13.6 UART [0|1] FIFO Control Register (UART[0|1]FC)

EN

Description: FIFO Enable. When this bit is set, the transmit and receive FIFOs are enabled for 16550 mode.
When switching between 16550 and 16450, always reset the buffers.

Initial Value: 0x0

Read Value: Write-only

Write Effect: Modify value

RR

Description: Reset Receive FIFO. Writing a 1 into this bit position resets the receive FIFO.

Initial Value: 0x0

Read Value: Write-only

Write Effect: Modify value

TR

Description: Reset Transmit FIFO. Writing a 1 into this bit position resets the transmit FIFO.

Initial Value: 0x0

Read Value: Write-only

Write Effect: Modify value

DMS

Description: DMA Mode Select. Writing a 1 into this bit position changes the DMA mode. The TXRDY and
RXRDY signals of the 16550 go to the interrupt controller as an interrupt source. (Refer to indus-
try standard 16550 UART specification.)1

Initial Value: 0x0

Read Value: Write-only

Write Effect: Modify value

RT

Description: Receiver Trigger. This field designates the interrupt trigger level. When the number of bytes in
the receive FIFO equals the designated interrupt level, a receive data available interrupt is acti-
vated.
0x0 1-byte in the receive buffer
0x1 4-bytes in the receive buffer
0x2 8-bytes in the receive buffer
0x3 14-bytes in the receive buffer

Initial Value: 0x0

UART[0|1]FC
0

2

0

1

EN

2

RT

1

RR

1

TR

1

DMS

31

24

0

ence Manual 13 - 8 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
Line Control Register

Figure 13.7 UART [0|1] Line Control Register (UART[0|1]LC)

Read Value: Write-only

Write Effect: Modify value
1. PC 16550D Dual Universal Asynchronous Receiver/Transmitter with FIFOs, June 1995, National Semiconductor.

WLS

Description: Word Length Select. This field specifies the number of data bits in transmit and receive serial
characters.
0x0 5-bits
0x1 6-bits
0x2 7-bits
0x3 8-bits

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

STB

Description: Number of Stop Bits. This bit specifies the number of stop bits transmitted with each serial
character.
0x0 One stop bit generated
0x1 5-bit word length: 1.5 stop bits generated. 6, 7 or 8-bit word length: 2 stop bits generated

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

PEN

Description: Parity Enable. When this bit is set to 1, parity is generated on transmit data and checked on
receive data.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

EPS

Description: Even Parity Select. When parity is enabled and this bit is set to 1, an odd number of logic 1s is
transmitted or checked. When parity is enabled and this bit is cleared, an even number of 1s is
transmitted or checked.
0x1 even parity
0x0 odd parity

Initial Value: 0x0

UART[0|1]LC
0

2

WLS

1

STB

1

PEN

1

EPS

1

SP

1

SB

1

DLAB

31

24

0

ence Manual 13 - 9 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
Modem Control Register

Figure 13.8 UART[0|1] Modem Control Register (UART0MC)

Read Value: Previous value written

Write Effect: Modify value

SP

Description: Stick Parity. When parity is enabled, this bit is used in conjunction with EPS to select Mark or
Space parity.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SB

Description: Set Break. When this bit is set to 1, a break is transmitted.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DLAB

Description: Divisor Latch Access Bit. This bit must be set to access the divisor latches of the baud rate
generator or the alternate functions register. When this bit is cleared, access to other registers is
enabled.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DTR

Description: Data Terminal Ready. When this bit is set to 1, the data terminal ready output (UxDTRN) is
asserted.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RTS

Description: Request To Send. When this bit is set to 1, the request to send output (UxRTSN) is asserted.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

UART0MC
0

1

O1

1

O2

1

LP

3

0

1

DTR

1

RTS

31

24

0

ence Manual 13 - 10 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
Line Status Register

Figure 13.9 UART [0|1] Line Status Register (UART[0|1]LS)

O1

Description: Out 1. In local loopback mode this bit controls bit 2 of the modem status register. No connection
to pin.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

O2

Description: Out 2. In local loopback mode this bit controls bit 3 of the modem status register. No connection
to pin.

Initial Value: 0x0

Read Value: Previous value written

LP

Description: Loop. This bit provides a local loopback feature for diagnostic testing of the associated serial
channel.
0x0 loopback disabled
0x1 loopback enabled

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DR

Description: Data Ready. This bit is set whenever a character has been received and may be read from the
receive buffer.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

OE

Description: Overrun Error. This bit is set whenever a receiver overrun occurs.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

UART[0|1]LS
0

1

PE

1

FE

1

BI

1

DR

1

OE

1

THR

1

TE

1

RFE

31

24

0

ence Manual 13 - 11 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
 PE

Description: Parity Error. This bit is set when a character with incorrect parity is received.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

FE

Description: Framing Error. This bit is set whenever a received character does not have a valid stop bit.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

BI

Description: Break Interrupt. This bit is set when a break is received.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

THR

Description: Transmitter Holding Register. This bit is set to indicate that the serial channel is ready to
accept a new character for transmission.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

TE

Description: Transmitter Empty. This bit is set when both the transmitter holding register and the transmitter
shift register are empty.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

RFE

Description: Receive FIFO Error. This bit is set when there is a character with a parity error or a framing
error, or there is a break indication in the FIFO.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only
ence Manual 13 - 12 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
 Modem Status Register

Figure 13.10 UART[0|1] Modem Status Register (UART0MS)

DCTS

Description: Delta Clear to Send. When this bit is set to 1, it indicates that the clear to send input has
changed since the last time it was read by the CPU.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

DDSR

Description: Delta Data Set Ready. When this bit is set to 1, it indicates that the data set ready input has
changed since the last time it was read by the CPU.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

TERI

Description: Trailing Edge Ring Indicator. This bit is set when the ring indicator input changes from a low to
a high state.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

DDCD

Description: Delta Data Carrier Detect. When this bit is set to 1, it indicates that the data carrier detect input
has changed since the last time it was read by the CPU.

Initial Value: Undefined

Read Value: Status

Write Effect: Modify value

CTS

Description: Clear to Send. This bit is the complement of the clear to send (UxCTSN) input.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

DSR

Description: Data Set Ready. This bit is the complement of the data set ready (UxDSRN) input.

UART0MS
0

1

TERI

1

DDCD

1

CTS

1

DCTS

1

DDSR

1

DSR

1

RI

1

DCD

31

24

0

ence Manual 13 - 13 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
Scratch Register

Figure 13.11 UART [0|1] Scratch Register (UART[0|1]S)

Divisor Latch Low Register

Figure 13.12 UART [0|1] Divisor Latch Low Register (UART[0|1]DLL)

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

RI

Description: Ring Indicator. The bit is the complement of the ring indicator (U0RIN) input for UART channel
0. UART channel 1 does not implement a ring indicator input. Thus, this field is undefined for
UART channel 1.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

DCD

Description: Data Carrier Detect. This bit is the complement of the data carrier detect (U0DCRN) input for
UART channel 0. UART channel 1 does not implement a data carrier detect input. Thus, this field
is undefined for UART channel 1.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

DATA

Description: DATA. This register may be used by the programmer to hold temporary data and does not con-
trol the serial channel in any way.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

UART[0|1]S
0

8

DATA

31

24

0

UART[0|1]DLL
0

8

DATA

31

24

0

ence Manual 13 - 14 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
Divisor Latch High Register

Figure 13.13 UART [0|1] Divisor Latch High Register (UART[0|1]DLH)

DATA

Description: DATA. This field contains the lower 8-bits of the 16-bit baud rate divisor. See Table 13.3 for addi-
tional baud rate information.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

DATA

Description: DATA. This field contains the upper 8-bits of the 16-bit baud rate divisor. See Table 13.3 for
additional baud rate information.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

UART[0|1]DLH
0

8

DATA

31

24

0

ence Manual 13 - 15 May 11, 2005

IDT UART Controller UART Registers

79RC32438 User Refer

Notes
ence Manual 13 - 16 May 11, 2005

Notes

79RC32438 User Reference Manual 14 - 1 M
Chapter 14
Counter/Timers
Functional Overview
The RC32438 contains three general purpose 32-bit counter/timers that operate at the IPBus clock

(ICLK) frequency.
Each timer/counter is composed of three registers:

The Count Register, which is a 32-bit register that holds the current value of timers. It is incre-
mented on every clock ICLK clock cycle.
The Compare Register, which is a 32-bit register that holds the value to which the count register is
compared.
The Control Register, which holds the status and control information of the counter.

Counter/Timers Register Description

Theory of Operation
A counter timer is enabled by setting the enable bit (EN) in the corresponding counter timer [0|1|2]

control (CTC[0|1|2]) register. When this occurs, the counter timer begins incrementing its current counter
timer count value with each IPBus (ICLK) clock cycle. The CPU may determine the current timer count
value by reading the corresponding counter timer [0|1|2] count (COUNT[0|1|2]) register. Writing to this
register modifies the counter timer count value. For normal operation, this register should be initialized to
zero prior to enabling a counter timer.

Register Offset Register Name Register Function Size

0x02_8000 COUNT0 Counter timer 0 count 32-bit

0x02_8004 COMPARE0 Counter timer 0 compare 32-bit

0x02_8008 CTC0 Counter timer 0 control 32-bit

0x02_800C COUNT1 Counter timer 1 count 32-bit

0x02_8010 COMPARE1 Counter timer 1 compare 32-bit

0x02_8014 CTC1 Counter timer 1 control 32-bit

0x02_8018 COUNT2 Counter timer 2 count 32-bit

0x02_801C COMPARE2 Counter timer 2 compare 32-bit

0x02_8020 CTC2 Counter timer 2 control 32-bit

0x02_8024 RCOUNT Refresh timer count 32-bit

0x02_8028 RCOMPARE Refresh timer compare 32-bit

0x02_802C RTC Refresh timer control 32-bit

0x02_8030 through 0x02_FFFF Reserved
ay 11, 2005

IDT Counter/Timers Theory of Operation

79RC32438 User Refer

Notes
 When the counter timer count value matches the value in the corresponding counter timer [0|1|2]
compare register (COMPARE[0|1|2]), the timer expires1. When this occurs: the time-out (TO) bit in CTCx
register is set, the counter timer count value is reset to zero, and the counter begins incrementing at the
master clock frequency. The TO bit is presented as an interrupt source to the interrupt controller. The oper-
ation of the timer/counter can be stopped at any time by writing 0 to the enable bit [EN].

Counter Timer [0|1|2] Count Register

Figure 14.1 Counter Timer [0|1|2] Count Register (COUNT[0|1|2])

Counter Timer [0|1|2] Compare Register

Figure 14.2 Counter Timer [0|1|2] Compare Register (COMPARE[0|1|2])

1. The counter timer expires at the point when the value in the COUNTx register first equals the value in the
COMPAREx register (that is, COUNTx == COMPAREx) or when the counter timer is first enabled with COUNTx
equal to COMPAREx.

COUNT

Description: Current Count. This field contains the current counter timer count value.

Initial Value: 0x0000_0000

Read Value: Current counter timer count value

Write Effect: Set counter timer count value

COMPARE

Description: Compare Value. This 32-bit field contains the maximum counter timer count value. When the
value in the corresponding COUNTx register equals this value, the counter timer expires.

Initial Value: 0xFFFF_FFFF

Read Value: Previous value written

Write Effect: Modify value

COUNT[0|1|2]
031

32

COUNT

COMPARE[0|1|2]
031

32

COMPARE
ence Manual 14 - 2 May 11, 2005

IDT Counter/Timers Theory of Operation

79RC32438 User Refer

Notes
 Counter Timer [0|1|2] Control Register

Figure 14.3 Counter Timer [0|1|2] Control Register (CTC[0|1|2])

EN

Description: Enable. When this bit is set the counter timer is enabled. Clearing this bit disables the counter
timer. Neither enabling nor disabling the counter timer affects the counter timer count value.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

TO

Description: Time-out. This bit is set to a one to indicate that the counter timer has expired. Once this bit is
set, it will remain set until a zero is written into this field. Writing 0 to this value will to clear the
source of the interrupt.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

CTC[0|1|2]
031

30

0 TO EN

1 1
ence Manual 14 - 3 May 11, 2005

IDT Counter/Timers Theory of Operation

79RC32438 User Refer

Notes
ence Manual 14 - 4 May 11, 2005

Notes

79RC32438 User Reference Manual 15 - 1 M
Chapter 15
I2C Bus Interface
Introduction
This chapter describes the standard I2C bus interface that is implemented on the RC32438 device. The

I2C bus interface allows the RC32438 device to connect to a number of standard external peripherals. The
I2C implementation on the RC32438 device supports both master and slave operations, allowing it to be
used in a variety of applications.

Features
Supports standard 100 kbps mode as well as 400 kbps fast mode
Supports 7-bit and 10-bit addressing
Supports four modes:

– Master transmitter
– Master receiver
– Slave transmitter
– Slave receiver

Block Diagram

Figure 15.1 I2C Bus Interface Block Diagram

Functional Overview and Theory of Operation
The RC32438 contains an I2C bus interface and supports both master and slave modes.1 Figure 15.1

shows a block diagram of the I2C bus interface. The interface has three major components:
– I2C bus master interface
– I2C bus slave interface
– I2C bus interface common logic.

The I2C bus interface connects to an external I2C bus using two pins: an I2C bus clock pin (SCL), and an
I2C bus data pin (SDA). The I2C bus interface is controlled by the I2C bus control (I2CC) register. If the bus
prescalar clock is running, setting the master enable (MEN) bit in this register enables the I2C bus master
interface. Likewise, if the bus prescalar clock is running, setting the slave enable (SEN) bit enables the I2C
bus slave interface.The I2C bus interface contains a 16-bit clock prescalar which is used to generate an

1. For a reference work on the I2C bus, see The I2C-bus Specification, Version 2.0, December 1998, Philips Semi-
conductor.

IP Bus

I2C Bus
Master Interface

I2C Bus
Slave Interface

SDA
SCLI2C Bus

Interface
Common

Logic
ay 11, 2005

IDT I2C Bus Interface I2C Register Description

79RC32438 User Refer

Notes
 internal I2C bus prescalar clock (I2CPCLK) that is used as a time base by the master and slave inter-
faces.2The internally generated I2C bus prescalar clock is equal to the IPBus clock input divided by the
clock prescalar divisor (DIV) field in the I2C bus clock prescalar (I2CCP) register. 2

The master and slave interfaces may be independently enabled and disabled at any point in time,2

allowing the interface to operate as an I2C bus master, an I2C bus slave, or concurrently as master and
slave.2When configured to operate concurrently as a master and slave, it is possible for the master inter-
face to initiate transactions to the slave interface2(that is,2it is possible to perform loop-back operations).2

A central part of the I2C bus interface common logic is the I2C bus data input (I2CDI) and I2C bus data
output (I2CDO) registers.2The I2CDI register is used by both the master and slave interfaces to receive
data from the I2C bus. During the data phase of any I2C bus operation, data present on the SDA pin is
shifted into this register. Thus, at the end of each I2C bus data transfer, this register contains the data byte
present on the I2C bus. Data to be driven onto the I2C bus is written to I2CDO register by the CPU. During
the data phase of an I2C bus transmit operation, the contents of this register are shifted out a bit at a time
on the SDA pin. 2

I2C Register Description

I2C Bus Control Register

Figure 15.2 I2C Bus Control Register (I2CC)

Register Offset Register Name Register Function Size

0x7_0000 I2CC I2C bus control 32-bit

0x7_0004 I2CDI I2C bus data input 32-bit

0x7_0008 I2CDO I2C bus data output 32-bit

0x7_000C I2CCP I2C bus clock prescalar 32-bit

0x7_0010 I2CMCMD I2C bus master command 32-bit

0x7_0014 I2CMS I2C bus master status 32-bit

0x7_0018 I2CMSM I2C bus master status mask 32-bit

0x7_001C I2CSS I2C bus slave status 32-bit

0x7_0020 I2CSSM I2C bus slave status mask 32-bit

0x7_0024 I2CSADDR I2C bus slave address 32-bit

0x7_0028 I2CSACK I2C bus slave acknowledge 32-bit

0x7_002C through 0x7_7FFF Reserved

Table 15.1 I2C Register Map

I2CC
031

MEN0

29 1

SEN

1

IOM

1

ence Manual 15 - 2 May 11, 2005

IDT I2C Bus Interface I2C Register Description

79RC32438 User Refer

Notes
I2C Bus Data Input Register

Figure 15.3 I2C Bus Data Input Register (I2CDI)

MEN

Description: Master Enable. When the bus prescalar clock is running and this bit is set, the I2C bus master
interface is enabled. When this bit is cleared, the I2C bus master interface is disabled and all
commands written to the I2CMCMD register are ignored. When disabled, the SLC and SDA pins
are tri-stated by the I2C bus master interface. Disabling and then enabling the master interface
causes all logic associated with the master interface to be reset.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SEN

Description: Slave Enable. When the bus prescalar clock is running and this bit is set, the I2C bus slave inter-
face is enabled. When this bit is cleared, the slave is disabled. When disabled, the slave does
not respond to any operations and the SLC and SDA pins are tri-stated. Disabling and then
enabling the slave interface causes all logic associated with the slave interface to be reset.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IOM

Description: Ignore Other Masters. When this bit is set, the I2C bus master interface will arbitrate for the I2C
bus but will assume that it always wins arbitration. This mode is used for testing and may be set
in single master systems.
When this bit is cleared, the I2C bus master will arbitrate for the I2C bus, as outlined in The I2C-
bus Specification, Version 2.0, December 1998, Philips Semiconductor.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DATA

Description: Data. This field is used to receive data from the I2C bus and always contains the last byte
present on the I2C bus. The most significant bit of this field contains the first bit received from the
I2C bus.

Initial Value: Undefined

I2CDI
031

DATA0

24 8
ence Manual 15 - 3 May 11, 2005

IDT I2C Bus Interface I2C Bus Clock Prescalar

79RC32438 User Refer

Notes
I2C Bus Data Output Register

Figure 15.4 I2C Bus Data Output Register (I2CDO)

I2C Bus Clock Prescalar
The I2C bus interface contains a 16-bit clock prescalar which is used to generate an internal I2C bus

prescalar clock (I2CPCLK) that is used as a time base by the master and slave interfaces.2The internally
generated I2C bus prescalar clock is equal to the IPBus clock frequency (ICLK) divided by the clock pres-
calar divisor (DIV) field in the I2C bus clock prescalar (I2CCP) register. The generated clock may not be
symmetric, but is guaranteed to meet I2C bus tolerances. The I2C bus prescalar clock is stopped and the
master and slave interfaces are held in reset when the DIV field is set to zero or one. 2 2

The I2C bus interface operates at the I2C bus prescalar clock divided by eight. Therefore, the I2C data
transfer rate may be calculated as follows: 2

I2C transfer rate = ICLK ÷ I2CCP ÷ 8

Figure 15.5 I2C Bus Clock Prescalar Register (I2CCP)

Read Value: Previous value received from I2C bus

Write Effect: Read-only

DATA

Description: Data. This field is used to transmit data onto the I2C bus. During I2C bus transmit operations the
first bit to be transmitted is in the most significant bit of this field.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

I2CDO
031

DATA0

24 8

I2CCP
031

DIV0

16 16
ence Manual 15 - 4 May 11, 2005

IDT I2C Bus Interface I2C Bus Master Interface

79RC32438 User Refer

Notes
I2C Bus Master Interface
The I2C bus master interface operates by having the CPU issue commands to the I2C bus master

command (I2CMCMD) register and obtaining status from the I2C bus master status register (I2CMS). All of
the bits in the I2CMS register, which are not masked by the I2C bus master status mask (I2CMSM) register,
are ORed together and presented as the I2C bus master interface interrupt. I2C bus master commands are
summarized in Table 15.2.2Each command in this table consists of a simple action performed on the I2C
bus. Commands may be composed sequentially to perform complex I2C bus transactions.2

DIV

Description: Clock Prescalar Divisor. The internally generated I2C bus prescalar clock is equal to the IPBus
clock divided by the DIV field. The I2C data transfer rate may be calculated as follows:

I2C transfer rate = IPBus clock frequency ÷ I2CCP ÷ 8
When the DIV field is equal to zero or one, the I2C bus prescalar clock is stopped, and both the
master and slave interfaces are held in reset. Starting or stopping the clock always occurs
cleanly, but the clock may glitch when the period is modified. Therefore, the clock should be
stopped before modifying the period.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

Command
Encoding Mnemonic Description

0000 NOP No Operation. Release I2C bus and put master transmitter into idle state. When
this command is issued the SDA and SCL signals are tri-stated. This command
completes when a new command is written to the I2CMCMD register.

0001 START Start. Wait for any alternate bus master transaction to complete, then generate a
START condition on the I2C bus. When this command completes the D bit is set.
For more information on the D bit, refer to the I2C Bus Master Status Register
section later in this chapter.

0010 STOP Stop. Generate a STOP condition on the I2C bus. When this command com-
pletes, the D bit is set. Unlike other commands which suspend the I2C bus when
the D bit is set, the completion of the STOP command sets the2D bit but does not
suspend the I2C bus. The completion of the STOP command is automatically fol-
lowed by a NOP command.

0011 Reserved Same effect as NOP.

0100 RD Read Data. Receive 8-bits of data from the I2C bus and store it in the I2CDI reg-
ister. When this command completes the D bit is set and the NA, LA, and ERR
status bits are valid.

0101 RDACK Read Data and Acknowledge. Receive 8-bits of data from the I2C bus and store
it in the I2CDI register. After data has been received, generate an acknowledge.
When this command completes the D bit is set and the NA, LA, and ERR status
bits are valid.

Table 15.2 I2C Bus Master Interface Commands (Part 1 of 2)
ence Manual 15 - 5 May 11, 2005

IDT I2C Bus Interface I2C Bus Master Interface

79RC32438 User Refer

Notes
The I2C bus SCL and SDA signals are wired-AND, allowing the clock signal to be used as a synchroni-
zation mechanism. A device on the I2C bus can slow down, or stop, the I2C bus clock at any point by
extending the low period of the clock.2This can be done after each bit, or after a complete operation is
performed.2Thus, the speed of the master is automatically adapted to the operating rate of the slowest
device. This is illustrated in Figure 15.6. 2

Figure 15.6 Using the I2C Bus Clock (SCL) to Adapt the Operating Rate

When a command is written to the I2CMCMD register, the specified action is initiated on the I2C bus. For
commands other than NOP, this consists of generating the I2C bus clock (SCL) and possibly driving the I2C
bus data pin (SDA).2 The completion of the command is signaled to the CPU by setting the done (D) bit in
the I2CMS register.2Depending on the command, other status bits in this register may also become
valid.2When the done bit is set, the master interface holds the SCL signal low, allowing the CPU core to
respond to the received status information and issue the next command1. All of the status bits in the I2CMS
register,2including the done bit,2are automatically cleared and SCL signal is released when a command is
written to the I2CMCMD2register.2

The2Read Data (RD), Read Data with Acknowledge (RDACK), Write Data (WD), and Write Data with
Acknowledge (WDACK) commands all participate in I2C bus arbitration. When one of these commands is
issued, the master interface observes the state of SDA. Arbitration is lost when a master I2C bus interfaces
transmits a high value but observes a low value on the SDA signal. When this occurs the master I2C bus

0110 WD Write Data. Transmit 8-bits of data from the I2CDO register onto the I2C bus.
When this command completes the D bit is set and the NA, LA, and ERR status
bits are valid.

0111 WDACK Write Data and Acknowledge. (This command is for debug purposes only.)
Transmit 8-bits of data from the I2CDO register onto the I2C bus. After the data
has been transmitted, generate an acknowledge. When this command com-
pletes the D bit is set and the NA, LA, and ERR status bits are valid.

1000 through
1111

Reserved Same effect as NOP.

1. This is true for all commands except the STOP command. At the completion of the STOP command, the D bit is
set, the I2C bus is released by tri-stating the SDA and SCL signals, and the master goes into an idle state.

Command
Encoding Mnemonic Description

Table 15.2 I2C Bus Master Interface Commands (Part 2 of 2)

I2CPCLK

SCL

1 5 6

1. A slave becomes not-ready, so it pulls SCL low. Since SCL is wired-AND, it is held low as long as the slave is not-ready.
The I2C bus master is suspended.

2. Slave becomes ready and releases SCL. This allows the clock to progress.
3. A device may pull SCL low even before I2CPCLK (the internally generated I2C bus prescalar clock) goes low. This may

occur for example during I2C bus arbitration when multiple masters drive the bus.
4. An external device can release SCL at any point. The master interface must make sure that “runt” clocks are not gener-

ated which have a period smaller than that programmed in the I2CCP register. This may mean that the master interface
stretches the clock and waits for the next rising edge of I2CPCLK.

5. A slave becomes not-ready.
6. A slave becomes ready.

2 3 4
ence Manual 15 - 6 May 11, 2005

IDT I2C Bus Interface I2C Bus Master Interface

79RC32438 User Refer

Notes
 interface sets the lost arbitration (LA) and the done (D)2bits in the I2CMS register and tri-states the SCL and
SDA signals.2The master interface does not automatically re-execute commands for which arbitration is
lost; it is the responsibility of the2software driver to notice that the LA bit is set and re-execute the
command.2Arbitration may be lost while executing the WD and WDACK commands when the 8-bit data
quantity is driven on the bus, or during transmission of acknowledgment status.2For the RD and RDACK
commands, arbitration may only be lost during transmission of acknowledgment status.2Arbitration is lost
during the acknowledgment status phase of a command when the I2C bus master reports not acknowledge
(that is, a logic high) while another I2C bus master reports an acknowledge (that is, a logic low).

At the completion of each RD, RDACK, WD, and WDACK command, the status of the acknowledgment
is reported in the no acknowledge (NA) bit of the I2CMS register.2The error (ERR) bit in the I2CMS register
is set whenever an unexpected I2C bus start or stop condition is detected during execution of a command
by the I2C bus master interface. When this occurs, the master interface immediately sets the D and ERR
bits in the I2CMS register, and tri-states both the SCL and SDA signals.2

Example I2C Bus Transactions

This section illustrates how the I2C bus master interface commands shown in Table 15.3 may be
composed by the CPU to generate complete I2C bus transactions. Table 15.3 shows abbreviations used by
figures in this section..2
2

Figure 15.7 shows a master transmitter transaction to a slave with a 7-bit slave address.2At the comple-
tion of the previous transaction issued by the master interface,2or immediately following the enabling of the
master interface, a NOP command was issued.2This caused the master interface to tri-state the SCL and
SDA signals.2To begin a transaction, the CPU writes the START command to the I2CMCMD register. This
causes the I2C bus master interface to wait for any transaction in progress by an alternate bus master to
complete, and for a start condition to be driven on the I2C bus. Once the start condition has been gener-
ated, the command stops causing the2D bit in the I2CMS register to be set and stops causing the master
interface to suspend the I2C bus by holding the SCL signal low until the next command is written to the
I2CMCMD register.2

Abbreviation Explanation

S Start condition

SLA7 7-bit slave address

SLA10 8-bits of 10-bit slave address

R Read bit (high on SDA)

W Write bit (low on SDA)

A Acknowledge bit (low on SDA)

A Not acknowledge bit (high on SDA)

Data 8-bit data byte

P Stop condition

Table 15.3 I2C Bus Data Transfer Abbreviations
ence Manual 15 - 7 May 11, 2005

IDT I2C Bus Interface I2C Bus Master Interface

79RC32438 User Refer

Notes
Figure 15.7 Master Operation: Master Transmitter Addressing a Slave Receiver (7-bit Address)

At the completion of the start command, the CPU initializes the I2CDO register with an 8-bit data quan-
tity which consists of the 7-bit slave address and a read/write bit set to write.2The CPU then writes the
transfer data (WD) command to the I2CMCMD register.2 This causes the master interface to release the
I2C bus and drive the slave address and write bit onto the I2C bus. The addressed slave device indicates
that it can accept data by generating an acknowledge.2At the completion of the WD command, the D bit is
set in the I2CMS register and the master interface suspends the I2C bus. In addition to the D bit being set,
the I2CMS register contains additional status information.2The NA bit is cleared if a slave generated an
acknowledge.2The LA bit is set if the master interface lost an arbitration with an alternate bus master.
Finally, the ERR bit is set if an unexpected start or stop condition was detected on the I2C bus during execu-
tion of the command.2

Continuing the example shown in Figure 15.7, the CPU transmits data to the addressed slave by writing
the 8-bit data quantity to be transmitted to the I2CDO register and issuing a WD command.2At the comple-
tion of each command, the status bits in the I2CMS register become valid and the I2C bus is suspended
until the next command is issued.2When the CPU wishes to end the transaction because it has no more
data to transmit, or because no acknowledgment was observed,2it issues a STOP command.2This causes
a stop condition to be driven on the I2C bus. When the command completes, the done bit in the I2CMS
register is set. At this point, the CPU may begin a new transaction.2

Figure 15.8 shows a master receiver transaction to a slave with a 7-bit slave address. The transaction is
similar to the master transmitter transaction shown2in Figure 15.7 except that data is driven by the
slave.2To transfer data the CPU issues an RDACK command.2This causes the master interface to issue
clock pulses on the SCL signal and the slave transmitter to drive data on the SDA signal.2The data driven
by the slave transmitter is shifted into the I2CDI register.2After the data has been transferred, the master
interface generates an acknowledge.2This completes the command, causing the D bit to be set, status
information in the I2CS register to be valid, and the master interface to suspend the I2C bus. The RDACK
command will always cause the NA status bit to be cleared.2The master interface signals the end of data to
the slave transmitter by not generating an acknowledge.2This is done by issuing an RD command rather
than an RDACK command.2

Figure 15.8 Master Operation: Master Receiver Addressing a Slave Transmitter (7-bit Address)

S SLA7

NOP START WD

W A

Status:
D

Status:
D

Data A

Status:
D

WD WD

Data A P

Status:
D

NA

STOP

Status:
D

NOP

Idle bus
From master to slave
Bus suspended by master
From slave to master

S SLA7

NOP START WD

R A

Status:
D

Status:
D

Data A

Status:
D

RDACK RD

Data A P

Status:
D

NA

STOP

Status:
D

NOP

Idle bus
From master to slave
Bus suspended by master
From slave to master
ence Manual 15 - 8 May 11, 2005

IDT I2C Bus Interface I2C Bus Master Interface

79RC32438 User Refer

Notes
 A repeated start condition allows a master to begin a new transaction on the I2C bus without relin-
quishing control of the bus.2Thus, rather than generating a stop condition at the end of a transaction, the
master generates a start condition and addresses a slave.2As shown in Figure 15.9, master interface
commands may be composed to generate a repeated start condition.2

Figure 15.9 Master Operation: Master Interface Initiated Repeated Start Condition

The I2C bus has been extended to support 10-bit slave addressing. As shown in Figure 15.10, the
master interface commands listed in Table 15.2 may be used to address 10-bit slave devices.2Following an
initial START command,2the CPU issues a WD command with the I2CDO register initialized with the bit
address 0b11110XX and the read/write bit set to write.2The X’s in the address 0b11110XX represent the two
high order bits of the 10-bit slave address.2More than one slave may match this address, and may thus
acknowledge the address. The CPU next issues a WD command, 2with the low order 8-bits of the 10-bit
slave address.2Only one slave will find a match and generate an acknowledge. At this point the CPU can
write data to the addressed slave receiver.2If the CPU wants to read data from a 10-bit slave receiver, it
must issue a repeated START2condition followed by a WD command with the slave address equal to
0b11110XX as before, but this time with the read/write bit set to read.2The matching slave remembers that it
was addressed before.2This slave checks if the address after the repeated start condition is the same as in
the previous transaction and tests if the read/write bit is set to read.2If there is a match, the slave declares
that it has been addressed as a 10-bit slave transmitter and generates an acknowledge.2The CPU is then
free to read from the slave 2using RDACK and RD commands as shown in Figure 15.8.2

Figure 15.10 Master Operation: Addressing a 10-bit Slave as a Slave Transmitter

I2C Bus Master Command Register

Figure 15.11 I2C Bus Master Command Register (I2CMCMD)

S SLA7

START WD

R A

Status:
D

Status:
D

RD

Data A

Status:
D

NAIdle bus
From master to slave
Bus suspended by master
From slave to master

S SLA7

START WD

W A

Status:
D

Status:
D

Data

WD

S SLA7

START WD

W A

Status:
D

Status:
D

WD

Status:
D

Idle bus
From master to slave
Bus suspended by master
From slave to master

S SLA7

START WD

R A

Status:
D

Status:
D

Data

RDACK

SLA10 A

I2CMCMD
031

CMD0

28 4
ence Manual 15 - 9 May 11, 2005

IDT I2C Bus Interface I2C Bus Master Interface

79RC32438 User Refer

Notes
I2C Bus Master Status Register

Figure 15.12 I2C Bus Master Status Register (I2CMS)

CMD

Description: Command. When a value is written into this field, the corresponding command is initiated on the
I2C bus. Completion of the command is signalled when the done (D) bit in the I2CMS register is set.

Initial Value: 0x0 (NOP)

Read Value: Previous command

Write Effect: Initiate command on I2C bus

D

Description: Done. This bit is set when the command written to the I2CMCMD register has been completed
and the remaining status bits in this register are valid. At the completion of each command except
stop, the I2C bus SCL signal is held in a low state. This bit is automatically cleared when a com-
mand is written to the I2CMCMD register.

Initial Value: 0x0

Read Value: Status

Write Effect: Read-only

NA

Description: No Acknowledge. At the completion of each data transfer initiated by the I2C bus master inter-
face, if there was a “no acknowledge” signal, this bit is set to one. If there was an “acknowledge”
signal, this bit is cleared to zero. The absence or presence of the acknowledge signal is recorded
in this bit whether the acknowledge signal comes from the I2C bus master interface or an external
slave. This bit is automatically cleared when a command is written to the I2CMCMD register.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

LA

Description: Lost Arbitration. Arbitration takes place during each byte transmitted by the I2C bus master inter-
face. If the I2C bus master interface transmits a HIGH level during a bit period while another mas-
ter transmits a LOW level, then the I2C bus master interface has lost arbitration. When this occurs,
this bit is set and the I2C bus master interface tri-states the SLC pin for the remainder of the byte
transfer. This bit is automatically cleared when a command is written to the I2CMCMD register.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

I2CMS
031

D0

28 1

NA

1

LA

1

ERR

1

ence Manual 15 - 10 May 11, 2005

IDT I2C Bus Interface I2C Bus Master Interface

79RC32438 User Refer

Notes
I2C Bus Master Status Mask Register

Figure 15.13 I2C Bus Master Status Mask Register (I2CMSM)

ERR

Description: Error. This bit is set if a misplaced START or STOP condition is detected during execution of a
command by the I2C bus master interface. This bit is automatically cleared when a command is
written to the I2CMCMD register.

Initial Value: Undefined

Read Value: Status

Write Effect: Read-only

D

Description: Done. When this bit is set, the D bit in the I2CMS register is masked from generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

NA

Description: No Acknowledge. When this bit is set, the NA bit in the I2CMS register is masked from generat-
ing an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

LA

Description: Lost Arbitration. When this bit is set, the LA bit in the I2CMS register is masked from generating
an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

ERR

Description: Error. When this bit is set, the ERR bit in the I2CMS register is masked from generating an inter-
rupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

I2CMSM
031

D0

28 1

NA

1

LA

1

ERR

1

ence Manual 15 - 11 May 11, 2005

IDT I2C Bus Interface I2C Bus Slave Interface

79RC32438 User Refer

Notes
 I2C Bus Slave Interface
The I2C bus slave interface operates by monitoring the state of the I2C bus and suspending the I2C bus

clock at points where CPU intervention is required. Status is reported in the I2C bus slave status (I2CSS)
register. All of the bits in this register which are not masked by the I2C bus slave status mask (I2CSSM)
register are ORed together and presented to the interrupt controller as the I2C bus slave interface interrupt.
The I2C bus is suspended by the slave interface when any of the following bits: read request (RR), write
request (WR), or slave addressed (SA) bits in the I2CSS register are set.2The slave interface releases the
I2C bus when the these bits are cleared by the CPU.

The I2C bus slave acknowledge (I2CSACK) register controls how the slave interface responds during
acknowledgment phases on the I2C bus. If the acknowledge (ACK) bit is set in this register and the slave is
addressed, then the slave responds with an acknowledge during I2C bus acknowledgment phases. Other-
wise, the slave tri-states the SDA pin during acknowledgment phases (that is,2it issues a “no acknowl-
edge”).2

The I2C bus slave interface may be configured to operate with either a 7-bit or a 10-bit slave address.
When the A10 bit is set in the I2C bus slave address (I2CSADDR) register, the slave interface operates
using the 10-bit slave address in the address (ADDR) field of the I2CSADDR register.2When the A10 bit is
cleared, the slave interface operates using the address in the bottom 7-bits of the ADDR field.2The general
call enable (GCE) bit in the I2CSADDR register controls whether the slave interface responds to the I2C
bus general call address.2If the GCE bit is set, the slave interface responds to both the address in the
ADDR field and the general call address. A general call address is one in which the 7-bit I2C bus address is
bit address 0b0000000 and the read/write bit is set to write (that is, low).2A general call transaction is similar
to a master transmitter transaction in its operation.2

An I2C bus master may generate start byte transactions to allow a microcontroller sampling at a slow
sampling rate to detect a start condition2A start byte transaction consists of a start condition followed by a
7-bit address equal to 0b0000000 and with the read/write bit set to read (that is, high).2This is then followed
by another start condition and a transaction with the address of the actual slave to be addressed. The I2C
bus slave interface ignores all start byte transactions.2

Example of I2C Bus Transaction

Figure 15.14 shows a master transmitter transaction with a 7-bit slave address issued to the slave inter-
face.2The master transmitter generates a start condition followed by the 7-bit address of the slave and the
read/write bit set to write.2The slave interface compares the address to the value in its ADDR field. If the
address matches the bottom seven bits of this field2and the A10 bit is cleared, then the slave interface is
addressed. When this occurs, the slave interface suspends the I2C bus and sets the slave addressed (SA)
bit in the I2CSS register. If the address on the I2C bus was the general call address and the GCE bit was
set, then in addition to suspending the I2C bus and setting the SA bit, the slave interface sets the general
call (GC) bit in the I2CSS register.2 The setting of the SA bit indicates to the CPU the beginning of an I2C
bus transaction addressed to the slave interface.2The CPU may examine the address and read/write bit
driven by the master by reading the I2CDI register.2If the CPU wishes to acknowledge that it has been
addressed, it sets the ACK bit in the I2CSACK register. 2When the CPU clears the SA bit it releases the I2C
bus and allows the transaction to progress.2
ence Manual 15 - 12 May 11, 2005

IDT I2C Bus Interface I2C Bus Slave Interface

79RC32438 User Refer

Notes
Figure 15.14 Slave Operation: Master Transmitter Addressing a Slave Receiver (7-bit Address)

The master transmitter then drives the 8-bit data quantity to be transmitted on the I2C bus. At the
completion of the data transfer, the write request (WR)2bit in the I2CSS is set and the slave interface once
again suspends the I2C bus. The NA bit will be cleared to indicate that an acknowledge was observed in the
previous acknowledgment phase in which the slave interface was addressed.2The CPU may read the value
transmitted by the master by reading the I2CDI register.2If the CPU wishes to acknowledge the data
transfer, it sets the ACK bit in the I2CSACK register.2When the CPU clears the WR bit it releases the I2C
bus and allows the transaction to progress.2

The master transmitter completes a transaction by generating a stop or repeated start condition. When
this occurs while the slave is addressed, the transaction finished (TF) bit in the I2CSS register is set.2This
indicates to the CPU that the current transaction has completed.2If an unexpected start or stop condition is
detected by the slave interface while it is addressed,2then the error (ERR) bit in the I2CSS register is set
along with the TF bit thus aborting the current transaction.2

Figure 15.15 shows a master receiver transaction with a 7-bit slave address issued to the slave inter-
face. After acknowledgment of the save address, the slave interface suspends the I2C bus and sets the
read request (RR) bit in the I2CSS register. In response to2this bit being set, the CPU writes the 8-bit quan-
tity to be transmitted to the master into the I2CDO register and clears the RR bit.2This releases the I2C bus
and allows the data transfer to progress. At the completion of the data transfer the I2C bus is once again
suspended and the RR bit is set.2The acknowledgment status from the master transmitter during the
previous data transfer is reported in the NA bit.2If the NA bit is cleared and RR bit is set, the CPU writes the
next 8-bit quantity to2be transmitted into the I2CDO register and clears the RR bit allowing the transfer to
progress. Otherwise,2if the NA bit is set, the master receiver did not acknowledge the previous data
transfer.2This indicates the end of data transfer to the slave. The CPU clears the NA and RR bits allowing
the2master receiver to generate a stop or repeated start condition. After the stop or repeated start condition,
the TF bit is set.2This indicates to the CPU that the transaction has completed.2

Figure 15.15 Slave Operation: Master Receiver Addressing a Slave Transmitter (7-bit Address)

Figure 15.16 shows a master receiver transaction to the slave interface using a 10-bit slave address.
The master first generates a start condition followed by2a bit address of 0b11110XX and the read/write bit
set to write.2The X’s in the bit address 0b11110XX represent the high order two bits of the 10-bit slave
address. If the A10 bit is set, the slave interface compares the2value in the X’s to the high order two bits of
the ADDR field. If they match, the slave interface automatically generates an acknowledge.2The master

S SLA7 W A

Status:
SA

Status:
WR

Data A Data A P

Idle bus
From master to slave
Bus suspended by slave
From slave to master

Status:
WR

Status:
TF
NA

S SLA7 R A

Status:
SA

Status:
RR

Data A

Status:
RR

Data A P

Idle bus
From master to slave
Bus suspended by slave
From slave to master

Status:
RR

Status:
TF

NA
ence Manual 15 - 13 May 11, 2005

IDT I2C Bus Interface I2C Bus Slave Interface

79RC32438 User Refer

Notes
 then transmits the remaining 8-bits of the 10-bit slave address.2If these 8-bits match the bottom 8-bits of the
ADDR field, then the slave interface suspends the I2C bus and sets the SA bit. At this point the slave is
addressed as a slave receiver and the master may write data2to the slave interface using the same mecha-
nism as shown in Figure 15.14 for slaves with 7-bit addresses.2If the master wishes to read data from a 10-
bit slave, it must issue a repeated start condition followed by2the same address 0b11110XX as before, but
this time with the read/write bit set to read.2The slave interface remembers that it was addressed in the
previous transaction. It checks if the address after the repeated start condition is the2same as it was in the
previous transaction and tests if the read/write bit is set to read.2If there is a match, the slave interface is
addressed as a slave transmitter. It suspends the I2C bus and set the SA bit. From this point on the transac-
tion is the same as that shown in Figure 15.15 for a slave transmitter with a 7-bit address.2

Figure 15.16 Slave Operation: Addressing a 10-bit Slave as a Slave Transmitter

I2C Bus Slave Status Register

Figure 15.17 I2C Bus Slave Status Register (I2CSS)

RR

Description: Read Request. This bit is set when a master initiates a read request of an 8-bit data quantity
from the slave interface. The value to be returned to the master is written to the I2CDO register
and this bit cleared. Clearing the RR bit causes the slave interface to release the I2C bus.

Initial Value: Undefined

Read Value: Status

Write Effect: Clear to release I2C bus

WR

Description: Write Request. This bit is set when a master initiates a write request of an 8-bit data quantity to
the slave interface. The value transmitted by the master is written to the I2CDI register. Once the
value has been read by the CPU the WR bit is cleared. Clearing this bit causes the slave inter-
face to release the I2C bus.

Initial Value: Undefined

Read Value: Status

Write Effect: Clear to release I2C bus

S SLA7 W A

Idle bus
From master to slave
Bus suspended by slave
From slave to master

S SLA7 R A DataSLA10 A

Status:
SA

Status:
RR

Status:
SA

Status:
TF

I2CSS
031

RR0

25 1

WR

1

TF

1

NA

1

ERR

1

SA

1

GC

1

ence Manual 15 - 14 May 11, 2005

IDT I2C Bus Interface I2C Bus Slave Interface

79RC32438 User Refer

Notes
I2C Bus Slave Status Mask Register

Figure 15.18 I2C Bus Slave Status Mask Register (I2CSSM)

SA

Description: Slave Addressed. This bit is set when the slave interface determines that it has been addressed
by an I2C bus master. This occurs when an address on the I2C bus matches that in the
I2CSADDR register, or when the general call address (zero) is observed and the GCE bit is set
in the I2CSADDR register. Clearing this bit causes the slave interface to release the I2C bus.

Initial Value: Undefined

Read Value: Status

Write Effect: Clear to release I2C bus

TF

Description: Transaction Finished. This bit is set when the slave interface determines that it is no longer
addressed by an I2C bus master. This occurs as the result of a stop or repeated start condition.

Initial Value: Undefined

Read Value: Status

Write Effect: Clear to release I2C bus

GC

Description: General Call. This bit is set when the slave interface observes a general call address on the I2C
bus and the GCE bit in the I2CSADDR register is set.

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

NA

Description: No Acknowledge. This bit reflects the state of the acknowledgment signal driven during the pre-
vious I2C bus acknowledge phase in which the slave interface was addressed (that is, it reflects
the value of the ACK on the wire).

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

ERR

Description: Error. This bit is set when a start or stop condition is detected in an illegal position during a I2C
bus transaction in which the slave interface is addressed.

Initial Value: Undefined

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

I2CSSM
031

RR0

25 1

WR

1

TF

1

NA

1

ERR

1

SA

1

GC

1

ence Manual 15 - 15 May 11, 2005

IDT I2C Bus Interface I2C Bus Slave Interface

79RC32438 User Refer

Notes

RR

Description: Read Request. When this bit is set to 1, the RR bit in the I2CSS register is masked from gener-
ating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

WR

Description: Write Request. When this bit is set to 1, the WR bit in the I2CSS register is masked from gener-
ating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

SA

Description: Slave Addressed. When this bit is set to 1, the SA bit in the I2CSS register is masked from gen-
erating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

TF

Description: Transaction Finished. When this bit is set to 1, the TF bit in the I2CSS register is masked from
generating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

GC

Description: General Call. When this bit is set to 1, the GC bit in the I2CSS register is masked from generat-
ing an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

NA

Description: No Acknowledge. When this bit is set to 1, the NA bit in the I2CSS register is masked from gen-
erating an interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value
ence Manual 15 - 16 May 11, 2005

IDT I2C Bus Interface I2C Bus Slave Interface

79RC32438 User Refer

Notes
I2C Bus Slave Address Register

Figure 15.19 I2C Bus Slave Address Register (I2CSADDR)

ERR

Description: Error. When this bit is set to 1, the ERR bit in the I2CSS register is masked from generating an
interrupt.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

ADDR

Description: Slave Address. This field contains the address of the I2C bus slave interface. When the A10 bit
is set to 1, the slave interface is configured for a 10-bit address equal to the value in this field.
When the A10 bit is cleared, the slave interface is configured for a 7-bit address equal to the
value in the bottom seven bits of this field.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

GC

Description: General Call. When this bit is set to 1, the general call address (0x00) is recognized by the
slave; otherwise it is ignored.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

A10

Description: 10-bit Slave Address. When this bit is set to 1, the slave interface is configured to use 10-bit
addressing. In this mode, the ten bit ADDR field contains the address of the slave. When this bit
is cleared, the slave interface is configured to use 7-bit addressing. In this mode, the bottom
seven bits of the ADDR field contains the address of the slave.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

I2CSADDR
031

ADDR0

20 10

GC

1

A10

1

ence Manual 15 - 17 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
 I2C Bus Slave Acknowledge Register

Figure 15.20 I2C Bus Slave Acknowledge Register (I2CSACK)

Programming Example
Disclaimer: Code examples provided by IDT are for illustrative purposes only and should not be relied

upon for developing applications. IDT does not assume liability for any loss or damage that may result from
the use of this code.

/*
** This is an example to read/write an I2C EEPROM
** using the RC32438 as a master and I2C EEPROM as
** a slave.(MICROCHIP 24AA64/24LC64)
**
** NOTE: Every single variable used is not defined
** here. The emphasis is to get the hardware bit
** setting and the program flow across, and not the
** programming language syntax. The hardware register
** address and values are defined in the following
** header files as are the used C data structures. These
** header files can be obtained from IDT.
*/
#include "s364-355.h"
#include "i2c.h"

unsigned int master_done;
unsigned int slave_done;

unsigned int num_master_data_bytes_txd;
unsigned int num_master_data_bytes_rxd;

ACK

Description: Acknowledge. When this bit is set to 1, the slave interface returns an acknowledge during the
next I2C bus acknowledge phase in which the slave interface is addressed. When this bit is
cleared, the slave interface returns a not acknowledge during the next I2C bus acknowledge
phase in which the slave interface is addressed.

Initial Value: Undefined

Read Value: Previous value written

Write Effect: Modify value

I2CSACK
031

ACK0

31 1
ence Manual 15 - 18 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
 unsigned int num_master_done_ints;
unsigned int num_master_lost_arb_ints;
unsigned int num_master_err_ints;
unsigned int num_acks;
unsigned int num_naks;

void i2c_master_isr(void);

///
//
// Handler for Master ISR
//
///

void i2c_master_isr (void)
{
 unsigned int master_status;
 volatile unsigned char temp;
 printf("\nM ISR - \n");

 // Read the Master Status Regs
 master_status = i2c.i2cms;

 if (master_status & I2CMS_ERR) {
 num_master_err_ints++;
 printf("\nI2C Master ERR Detected!\n");
 }

 if (master_status & I2CMS_D) {
 num_master_done_ints++;
 }
 if (master_status & I2CMS_LA) {
 num_master_lost_arb_ints++;
 printf ("\nI2C Master LA Detected!\n");
 }

 // Master is done with the current operation.
 switch (master.state) {
 case MASTER_IDLE:
 // No need to do anything...
 break;

 case MASTER_START:
 // DONE sending START, begin sending address
ence Manual 15 - 19 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes

 printf (" START DONE");
 i2c.i2cdo = master.dest_addr[0];
 i2c.i2cmcmd = I2CMCMD_CMD(WD);
 master.state = MASTER_ADDR;
 break;

 case MASTER_ADDR:
 printf (" ADDR DONE");
 // Count ACKs & NAKs - note, an ACK occurs when the ACK bit is cleared
 // (Because SDA is driven low)
 if (!(master_status & I2CMS_ACK))
 num_acks++;
 else
 num_naks++;

 if (master_status & I2CMS_ACK) {
 // No Slave Acknowledged the Address byte, so generate STOP if desired
 if (master.stop_when_done) {
 i2c.i2cmcmd = I2CMCMD_CMD(STOP);
 master.state = MASTER_STOP;
 }
 else {
 // No STOP desired, so go to IDLE and set global variable
 master.state = MASTER_IDLE;
 master_done = TRUE;
 // Mask ALL Master Interrupts
 i2c.i2cmsm = 0xFFFFFFFF;
 }
 break;
 }
 if (master.data_len == 0) {
 // Data Length is zero, so skip Write / Read Stage
 if (master.stop_when_done) {
 i2c.i2cmcmd = I2CMCMD_CMD(STOP);
 master.state = MASTER_STOP;
 }
 else {
 // No STOP desired, so go to IDLE and set global variable
 master.state = MASTER_IDLE;
 master_done = TRUE;
ence Manual 15 - 20 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
 // Mask ALL Master Interrupts
 i2c.i2cmsm = 0xFFFFFFFF;
 }
 break;
 }
 if (master.transfer_type == MASTER_WRITE) {
 // DONE sending address, now send data
 master.state = MASTER_WRITE_DATA;
 num_master_data_bytes_txd++;
 i2c.i2cdo = *master.data_ptr++;
 i2c.i2cmcmd = I2CMCMD_CMD(WD);
 }
 else {
 // DONE sending address, now read data
 master.state = MASTER_READ_DATA;
 if (num_master_data_bytes_rxd == (master.data_len - 1)) {
 // Almost done reading data, now send RD (not RDACK!)
 i2c.i2cmcmd = I2CMCMD_CMD(RD);
 }

 else {
 // Read Another Data Byte (And ACK)
 i2c.i2cmcmd = I2CMCMD_CMD(RDACK);
 }
 num_master_data_bytes_rxd++;
 }

 break;
 case MASTER_WRITE_DATA:
 printf(" WD DONE");
 // Count ACKs & NAKs - note, an ACK occurs when the ACK bit is cleared
 // (Because SDA is driven low)
 if (!(master_status & I2CMS_ACK))
 num_acks++;
 else
 num_naks++;
 if (num_master_data_bytes_txd >= master.data_len) {

 // done sending data, now send STOP if desired.
 if (master.stop_when_done) {
 i2c.i2cmcmd = I2CMCMD_CMD(STOP);
ence Manual 15 - 21 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
 master.state = MASTER_STOP;
 }
 else {
 // No STOP desired, so go to IDLE and set global variable
 master.state = MASTER_IDLE;
 master_done = TRUE;
 // Mask ALL Master Interrupts
 i2c.i2cmsm = 0xFFFFFFFF;
 }
 }
 else {
 // Send next data byte
 i2c.i2cdo = *master.data_ptr++;
 i2c.i2cmcmd = I2CMCMD_CMD(WD);
 num_master_data_bytes_txd++;
 }
 break;

 case MASTER_READ_DATA:
 // Write Incoming Read data to buffer
 printf(" RD DONE");

 *master.data_ptr = (unsigned char)i2c.i2cdi;

 master.data_ptr++;
 // Count ACKs & NAKs - note, an ACK occurs when the ACK bit is cleared
 // (Because SDA is driven low)
 if (!(master_status & I2CMS_ACK))
 num_acks++;
 else
 num_naks++;

 if (num_master_data_bytes_rxd >= master.data_len) {
 // done sending data, now send STOP if desired.
 if (master.stop_when_done) {
 i2c.i2cmcmd = I2CMCMD_CMD(STOP);
 master.state = MASTER_STOP;
 }
 else {
 // No STOP desired, so go to IDLE and set global variable
 master.state = MASTER_IDLE;
ence Manual 15 - 22 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
 master_done = TRUE;
 // Mask ALL Master Interrupts
 i2c.i2cmsm = 0xFFFFFFFF;
 }

 }
 else // Almost done reading data, now send RD (not RDACK!)
 if (num_master_data_bytes_rxd == (master.data_len - 1)) {
 // Almost done reading data, now send RD (not RDACK!)
 i2c.i2cmcmd = I2CMCMD_CMD(RD);
 }
 else {
 // Read Another Data Byte (And ACK)
 i2c.i2cmcmd = I2CMCMD_CMD(RDACK);
 }

 num_master_data_bytes_rxd++;
 break;
 case MASTER_STOP:
 // Done with packet, set global variable, write NOP command, and go to idle
 printf(" STOP DONE");
 // Mask ALL Master Interrupts
 i2c.i2cmsm = 0xFFFFFFFF;
 master.state = MASTER_IDLE;
 master_done = TRUE;
 i2c.i2cmcmd = I2CMCMD_CMD(NOP);
 break;

 default:
 printf ("\nErr in Default\n");
 break;
 }
}

void perform_rd_wr_eeprom (unsigned int transfer_type,
 unsigned int num_data_bytes,
 unsigned int dest_addr,
 unsigned int stop_when_done,
)
{
 master.stop_when_done = stop_when_done;
ence Manual 15 - 23 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
 num_master_data_bytes_txd = 0;
 num_master_data_bytes_rxd = 0;
 master.data_len = num_data_bytes;
 master_done = FALSE;
 master.transfer_type = transfer_type;
 master.state = MASTER_IDLE;
 master_done = FALSE;
 if (transfer_type == MASTER_WRITE)
 // Master Write
 master.dest_addr[0] = (unsigned char)((dest_addr & 0x7F) << 1);
 else
 // Master Read

 master.dest_addr[0] = (unsigned char)(((dest_addr & 0x7F) << 1) | 0x1);
 // Initialize Slave Address / Slave Control Bits
 i2c.i2csaddr = 0x30;
 // Initialize Slave Ack Register
 i2c.i2csack = I2CSACK_ACK;
 // Update Master State
 master.state = MASTER_START;

 // Kickoff Master Operation by Writing Command START to command reg.
 i2c.i2cmcmd = I2CMCMD_CMD(START);
 printf("Start read I2C ");
 while (1) {
 if (master_done)
 break;

 // using polling!

 if((i2c.i2cms &~I2CMS_ACK) != 0)

 i2c_master_isr();

 }

}

///

//

// START

//

///

main()
ence Manual 15 - 24 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
 {

 unsigned int i;

 unsigned int slave_addr;

 unsigned int dest_addr;

 unsigned int divisor;

 unsigned int num_data_bytes;

 unsigned char data[1024];

 unsigned int prescaler_value;

 // Enable Master & Slave interfaces

 i2c.i2cc = I2CC_MEN;

 // Make sure to mask all unused bits.

 // Prescalar value is programmed for 800KHz clock.

 prescaler_value = 84;

 i2c.i2ccp = prescaler_value;

 //I2C Bus Master status Mask register is masked

 //from generating an interrrupt.

 i2c.i2cmsm = 0xF;

 //slave address is set here.

 slave_addr = 0x30;

 //I2C bus slave is masked from generating interrupt.

 i2c.i2cssm = 0x7F;

 num_data_bytes = 8;

 // The 1st and 2nd data byte is set to the address

 // where data is located within the I2C NVRAM.

 data[0] = 0;

 data[1] = 0;

 for (i = 2; i<8; i++)

 {

 data[i] = 0x33;

 }

 master.data_ptr = data;

 printf("\nWrite:");

 perform_rd_wr_eeprom (MASTER_WRITE,

// Trans. Type

num_data_bytes,

// # Data Bytes

slave_addr,
ence Manual 15 - 25 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
 // Dest. Addr.

TRUE,

// Gen. STOP when done ?

);

 // This write is performed to set the address

 // within I2C NVRAM TO DO RANDOM READ.

 // The 1st and 2nd byte is the address from where you

 // want to read within the I2c EEPROM.

 data[0] = 0;

 data[1] = 0;

 master.data_ptr = data;

 num_data_bytes = 2;

 printf("\nWrite:");

 perform_rd_wr_eeprom (MASTER_WRITE,

// Trans. Type

num_data_bytes,

// # Data Bytes

slave_addr,

// Dest. Addr.

FALSE,

// Gen. STOP when done ?

);

 // Initialize Data

 for (i = 0; i<8; i++)

 {

 data[i] = 0x0;

 }

 master.data_ptr = data;

 num_data_bytes = 6;

 printf("\nRead /RDACK:");

 perform_rd_wr_eeprom (MASTER_READ,

// Trans. Type

num_data_bytes,

// # Data Bytes

slave_addr,

// Dest. Addr.

TRUE,
ence Manual 15 - 26 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
);

 for (i=0; i<6; i++){

 if (data[i] != 0x33){

 printf("\nDATA FAILED location is %d data is %x\n", i, data[i]);

 }

 }

}

ence Manual 15 - 27 May 11, 2005

IDT I2C Bus Interface Programming Example

79RC32438 User Refer

Notes
ence Manual 15 - 28 May 11, 2005

Notes

79RC32438 User Reference Manual 16 - 1 M
Chapter 16
Serial Peripheral Interface
Introduction
The Serial Peripheral Interface (SPI) included on the RC32438 device supports an SPI master interface

allowing it to interface to low-cost SPI peripherals and memory. The SPI interface connects to an external
SPI device using three signals:

SDO (Serial Data Output)
SDI (Serial Data Input)
SCK (Serial clock)

Additional SPI functions, such as chip select and write protect, must be implemented by allocating a
GPIO pin for this purpose and managing the GPIO pin’s behavior in software.

Block Diagram

Figure 16.1 SPI and PCI Serial EEPROMs Interfacing

MICROWIRE

CS

Serial EEPROM

CK
DI
DO

RC32438

SPI

CS

Serial EEPROM

SCK
DI
DO

SPI

CS

Serial EEPROM

SCK
DI
DO

PCIGNTN[1]
SCK
SDO
SDI

GPIO[x]

GPIO[y]

(PCI Serial EEPROM)
ay 11, 2005

IDT Serial Peripheral Interface SPI Register Description

79RC32438 User Refer

Notes
 SPI Register Description

Functional Overview
PCI serial EEPROM and SPI interface share common clock (SCK), data input (SDI), and data output

(SDO) pins. The behavior of these pins is different depending on the mode of operation. In addition to oper-
ating in its own mode, the SPI interface can also operate in PCI serial EEPROM mode. When the PCI block
is not in use, a PCI input clock must be provided for the SPI interface to work correctly. The PCI serial
EEPROM and SPI interface share the same pins, and the pins default to the PCI serial EEPROM mode. For
the SPI to function, the PCI block must release these pins but cannot if there is no PCI input clock. If the
PCI is not in use, it is acceptable to clock the PCI interface with the same clock being used for the CPU, the
Ethernet clock, or any other clock in the system, provided that such a clock is operating at a frequency of
66MHz or less.

PCI Serial EEPROM Mode (Microwire)
 When the PCI interface is configured to operate in PCI satellite mode with suspended CPU execution,

the PCI interface drives the SCK and the SDO pins using the National Semiconductor MICROWIRE™
serial protocol to read PCI configuration information from the PCI serial EEPROM. Data is read in on the
SDI pin.

In this mode, the interface only supports 93C46-compatible MICROWIRE™ serial EEPROMs. The PCI
Serial EEPROM done bit (EED) in the PCIS register is set when the loading of configuration information has
been completed and the Serial I/O signals have been released. Only EEPROMs which are 2048-bits in size
should be used.

The chip select signal for the PCI serial EEPROM is active high. PCIGNTN[1] behaves as the PCI serial
EEPROM chip select when the PCI interface operates in PCI satellite mode with suspended CPU execu-
tion. Initially, the PCIGNTN[1] signal is driven low following a reset. The signal is driven high when the PCI
interface begins reading configuration information.

When the PCI interface completes reading configuration information from the PCI serial EEPROM, it tri-
states the SCK and SDO pins and drives PCIGNTN[1] low (i.e., it negates the chip select). This allows the
SCK, SDO, and SDI pins to be used by the SPI Interface.

After a reset, the SPI interface is initially disabled. When the PCI interface completes reading configura-
tion information from the PCI serial EEPROM, the SPI interface may be enabled by setting the SPE bit in
the SPI control register. The SPI interface may not be enabled before the PCI serial EEPROM has
completed reading configuration information (i.e., before the PCI Serial EEPROM Done (EED) bit is set in
the PCIS register). Attempting to enable the SPI interface while the interface is in use by the PCI interface
does not damage the RC32438 (i.e., no dual sourcing), but it does produce unpredictable results. When the
PCI mode is not PCI satellite mode with suspended CPU execution, the SPI interface may be enabled at
any time since the PCI interface will not read the PCI serial EEPROM.

Register Offset Register Name Register Function Size

0x07_8000 SPCP SPI clock prescalar 32-bit

0x07_8004 SPC SPI control 32-bit

0x07_8008 SPS SPI status 32-bit

0x07_800C SPD SPI data 32-bit

0x07_8010 SIOFUNC Serial I/O function 32-bit

0x07_8014 SIOCFG Serial I/O configuration 32-bit

0x07_8018 SIOD Serial I/O data 32-bit

0x07_801C through 0x07_FFFF Reserved

Table 16.1 SPI Register Map
ence Manual 16 - 2 May 11, 2005

IDT Serial Peripheral Interface SPI Clock Prescalar

79RC32438 User Refer

Notes
SPI Interface Mode
When the SPI interface is enabled, it drives the SC and SDO pins. When an SPI transaction is initiated

by writing to the SPI Data Register (SPD), the SCK, SDO, and SDI signals are used to transfer data. A
general purpose I/O pin must be used as the SPI chip select, and this pin must be managed by software. In
systems where multiple SPI devices are required, multiple general purpose I/O pins may be used as SPI
chip selects. In these scenarios, the GPIO pins used as chip selects must be managed by software.

In cases where the SPI interface is not enabled, the serial I/O pins are not used as bit I/O ports and the
SCK, SDO, and SDI pins are tri-stated after the loading of configuration information is complete. Pull-ups or
pull-downs are necessary on the board. (Refer to the second to the last row in Table 16.2.) When the SPIE
bit is set in the SPC register, the SPI interrupts are enabled. An SPI interrupt is generated when the MODF
or SPIF bits are set in the SPS register.

SPI Clock Prescalar
The SPI contains an 8-bit clock prescalar which is used to generate an internal SPI prescalar clock. This

clock is further divided by the value in the SPI Clock Rate Divisor (SPR) field of the SPI Control Register
(SPC) before being used by the SPI interface as the time base for all transfers. The internally generated
SPI prescalar clock is equal to the IPBus clock (ICLK) frequency divided by twice the clock prescalar divisor
(DIV) field value in the SPI clock prescalar (SPCP) register plus one. The generated clock may not be
symmetric.

The clock used by the SPI interface is equal to:

P
C

I S
atellite M

ode

P
C

I S
erial E

E
P

R
O

M
Loading C

om
plete

1

1. PCI Serial EEPROM loading only occurs in PCI satellite mode with suspended execution. In PCI satellite mode with PCI
target not ready, the PCI serial EEPROM loading is effectively always completed.

S
P

I Interface
E

nabled

C
orresponding

S
P

IO
FU

N
C

 B
it

(1=bit I/O
)

C
orresponding

S
IO

C
FG

 B
it (1=O

utput)

Serial I/O Pins

S
C

K

S
D

O

S
D

I

P
C

IG
N

T
N

[1]

No X2

2. Don’t care

No 0 X Z3

3. Tri-stated

Z Z O4

4. State determined by PCI function in corresponding PCI mode

No X Yes 0 Z O5

5. Output

O I6

6. Input

O4

No X X 1 0 I I I O4

Yes Yes X 1 0 I I I I

No X X 1 1 O O O O4

Yes Yes X 1 1 O O O O

Yes No X X X O O I O

Yes Yes No 0 X Z Z Z O7

7. This signal is driven low (MICROWIRE chip select is negated).

Yes Yes Yes 0 X O O I O7

Table 16.2 Serial I/O Pin Configuration

SPI Clock ICLK
2 DIV 1+() SPR××
---=
ence Manual 16 - 3 May 11, 2005

IDT Serial Peripheral Interface SPI Clock Prescalar

79RC32438 User Refer

Notes
 Clock Prescalar Register

Figure 16.2 SPI Clock Prescalar Register (SPCP)

SPI Control Register

Figure 16.3 SPI Control Register (SPC)

DIV

Description: Clock Prescalar Divisor. The internally generated SPI prescalar clock is equal to the master
clock divided by twice the DIV field plus one.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SPR

Description: Clock Divisor. This two bit field specifies the value by which the SPI prescalar clock is divided.
The resulting clock is used as the time base for all SPI operations.
0x0 - Divide by 2
0x1 - Divide by 4
0x2 - Divide by 16
0x3 - Divide by 32

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

CPHA

Description: Clock Phase. This bit together with the CPOL bit control the clock and data relationship for serial
data clocked out on the SDO pin and clocked in on the SDI pin.
0x0 - Data is clocked out/in on the first edge of the clock
0x1 - Data is clocked out/in on the second edge of the clock

Initial Value: 0x0

SPCP
031

DIV0

24 8

SPC
031

0

24

SPR

2

CPHA

1

CPOL

1

SPE

1

SPIE

1

0

1

MSTR

1

ence Manual 16 - 4 May 11, 2005

IDT Serial Peripheral Interface SPI Clock Prescalar

79RC32438 User Refer

Notes
 Read Value: Previous value written

Write Effect: Modify value

CPOL

Description: Clock Polarity. This bit specifies the polarity of the clock. When this bit is set to zero (cleared),
the SPI clock (SPCLK) is held in a low state during SPI idle periods (i.e., between transactions
when the bus is idle). When this bit is set to one, the SPI clock is held in a high state during SPI
idle periods.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MSTR

Description: Master/Slave Mode. Since the SPI interface only supports master mode, this bit should always
be set. It is provided for software compatibility only.

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

SPE

Description: Enable. When this bit is set to one, the serial peripheral interface is enabled. When this bit is set
to zero (cleared), the serial peripheral interface is disabled and held in a low power state. Dis-
abling and then re-enabling the SPI initializes all SPI interface logic to a known state.
When the SPI is disabled, writes to the SPD register will produce undefined results.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SPIE

Description: SPI Interrupt Enable. When this bit is set to zero (cleared), SPI Transfer Complete (SPIF) and
Master Error Flag (MODF) bits in the SPS register are masked from generating an interrupt.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 16 - 5 May 11, 2005

IDT Serial Peripheral Interface SPI Clock Prescalar

79RC32438 User Refer

Notes
Figure 16.4 Serial Peripheral Interface (SPI) Clock/Data Timing

SPI Status Register

Figure 16.5 SPI Status Register (SPS)

MODF

Description: Master Error Flag. This bit is asserted if a write is performed to the SPD register while the SPI
interface is in non-master mode (i.e., slave mode). This bit is provided for software compatibility.

Initial Value: 0x0

Read Value: Status

Write Effect: No effect. This bit is automatically set to zero when the SPS register is read and then a write is
performed to the SPC register with the MSTR bit set.

WCOL

Description: Write Collision. This bit is set if a write collision occurs (i.e., the CPU writes to the SPD register
during an SPI transaction).

Initial Value: 0x0

Read Value: Status

Write Effect: No effect. This bit is automatically set to zero when the SPS register is read and then the SPD
register is written.

SPIF

Description: SPI Transfer Complete. This bit is set when an SPI transaction completes.

Initial Value: 0x1

MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB

MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB

SCK (CPOL=0)

SCK (CPOL=1)

Sample Input
Data Output
(CPHA=1)

Sample Input
Data Output
(CPHA=0)

GPIO(x) (Chip select)

SPS
031

0

24

0

4

WCOL

1

SPIF

1 1

MODF

1

0

ence Manual 16 - 6 May 11, 2005

IDT Serial Peripheral Interface SPI Setup

79RC32438 User Refer

Notes
SPI Data Register

Figure 16.6 SPI Data Register (SPD)

SPI Setup
The following describes the typical setup of the SPI interface which occurs during boot time:

1. As the SPI interface shares data and clock pins with the PCI EEPROM, the SPI module must first
poll the PCI EEPROM EED bit in the PCI Status register of the PCI Controller to determine if the
PCI module has finished loading data from the PCI EEPROM. The RC32438 device automatically
switches the functionality of the pins for use as an SPI interface when the loading of configuration
data from the PCI EEPROM is completed.

2. As the SPI signal functions are routed via the PIO Controller, the PIO Controller will generally be
initialized to the Effect Mode and establish the correct direction for each SPI pin. At reset time, the
default Effect Mode and Direction are set up for the PCI EEPROM and also for the SPI.

3. The SPI Clock Prescalar Register, SPCP, is programmed.
4. The SPI Control Register (SPC), including the SPE Enable Bit, is programmed.
5. The data being sent to the SPI Slave is written into the SPI Data Register (SPD).
6. The SPI Controller will initiate the hardware protocol on the SPI pins. The RC32438 device will

receive data from the Slave at the same time it is sending data to the Slave.
7. System either with:

– Wait for an SPI Interrupt. After receiving an SPI Interrupt via the Interrupt Controller, the SPI
Status Register SPIF and MODF Flags can be read.

– Poll the SPI Status Register SPIF and MODF Flags.

Read Value: Status

Write Effect: No effect. This bit is automatically set to zero when the SPS register is read and then the SPD
register is read.

DATA

Description: DATA. A write to this field results in an SPI transaction in which the value written to this register
is shifted out on the SDO pin while data is simultaneously shifted into this field from the SDI pin.
At the completion of the transaction, the SPIF bit in the SPS register is set to one and this field
contains the 8-bit quantity read from the SDI pin.

Initial Value: 0x0

Read Value: Value shifted in from SDI pin during the previous transaction

Write Effect: Initiate an SPI transaction. After an initial transaction, subsequent SPI transactions can only be
initiated when the SPIF bit is set in the SPS register and a read of the register is performed
before a write to the SPD register.

SPD
031

0

24

DATA

8

ence Manual 16 - 7 May 11, 2005

IDT Serial Peripheral Interface Serial Bit I/O Pins

79RC32438 User Refer

Notes
 8. If the SPIF Flag is set, indicating the transaction is complete, reading the SPI Status Register resets
the SPIF Flag.

9. Read the data from the SPI Data Register.
10. Repeat Steps 5 through 10, as needed.

Serial Bit I/O Pins
The serial I/O signals SCK, SDO, SDI, and PCIGNTN[1] may be used as bit I/O ports that operate in

basically the same way as GPIO pins. For additional information on the GPIO pins, refer to Chapter 12,
General Purpose I/O Controller.

The PCI serial EEPROM may be read to and written from when loading to the PCI Configuration regis-
ters has completed. This is achieved by disabling the SPI interface and synthesizing (via software)
MICROWIRE transactions on the serial I/O pins.

When the PCI interface operates in PCI satellite mode, the state of the PCIGNTN pin may be controlled
by writing the desired pin state value into the Serial I/O Data (SIOD) register.

Serial I/O Function Register

Figure 16.7 Serial I/O Function Register (SIOFUNC)

SDO

Description: Serial Data Output. When this bit is set to one, the SDO pin operates as a bit I/O port regardless
of the state of the SPI or PCI interfaces.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SDI

Description: Serial Data Input. When this bit is set to one, the SDI pin operates as a bit I/O port regardless of
the state of the SPI or PCI interfaces.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SCK

Description: Serial Clock. When this bit is set to one, the SCK pin operates as a bit I/O port regardless of the
state of the SPI or PCI interfaces.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SIOFUNC
031

0

28

SDO

1

SDI

1

SCK

1

PCI

1

ence Manual 16 - 8 May 11, 2005

IDT Serial Peripheral Interface Serial Bit I/O Pins

79RC32438 User Refer

Notes
Serial I/O Configuration Register

Figure 16.8 Serial I/O Configuration Register (SIOCFG)

PCI

Description: PCI Chip Select. When this bit is set to one, the PCIGNTN[1] pin operates as a bit I/O port
regardless of the state of the PCI interface if the PCI interface is in PCI satellite mode. If the PCI
interface is in host mode, the state of this bit has no effect, and the operating mode of this pin is
determined by the PCI pin function in that mode.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SDO

Description: Serial Data Output. When this bit is set to one and the corresponding pin is configured as a bit I/
O port in the SIOFUNC register, the pin is configured as an output. Otherwise, if this bit is reset
and the corresponding pin is configured as a bit I/O port in the SIOFUNC register, the pin is con-
figured as an input. If the pin is not configured as a bit I/O port, the bit in this register has no
effect.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SDI

Description: Serial Data Input. When this bit is set to one and the corresponding pin is configured as a bit
I/O port in the SIOFUNC register, the pin is configured as an output. Otherwise, if this bit is reset
and the corresponding pin is configured as a bit I/O port in the SIOFUNC register, the pin is con-
figured as an input. If the pin is not configured as a bit I/O port, the bit in this register has no
effect.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SCK

Description: Serial Clock. When this bit is set to one and the corresponding pin is configured as a bit I/O port
in the SIOFUNC register, the pin is configured as an output. Otherwise, if this bit is reset and the
corresponding pin is configured as a bit I/O port in the SIOFUNC register, the pin is configured as
an input. If the pin is not configured as a bit I/O port, the bit in this register has no effect.

Initial Value: 0x0

SIOCFG
031

0

28

SDO

1

SDI

1

SCK

1

PCI

1

ence Manual 16 - 9 May 11, 2005

IDT Serial Peripheral Interface Serial Bit I/O Pins

79RC32438 User Refer

Notes
Serial I/O Data Register

Figure 16.9 Serial I/O Data Register (SIOD)

Read Value: Previous value written

Write Effect: Modify value

PCI

Description: PCI Chip Select. When this bit is set to one and the corresponding pin is configured as a bit
I/O port in the SIOFUNC register, the pin is configured as an output. Otherwise, if this bit is reset
and the corresponding pin is configured as a bit I/O port in the SIOFUNC register, the pin is con-
figured as an input. If the pin is not configured as a bit I/O port, the bit in this register has no
effect.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SDO

Description: Serial Data Output. Reading this bit returns the state of the SDO pin. Writing a value to this bit
causes the SDO pin to take on the corresponding value if it is configured to be a bit I/O output
port in the SIOFUNC and SIOCFG registers.

Initial Value: SDO pin value

Read Value: Previous value written

Write Effect: Modify value

SDI

Description: Serial Data Input. Reading this bit returns the state of the SDI pin. Writing a value to this bit
causes the SDI pin to take on the corresponding value if it is configured to be a bit I/O output port
in the SIOFUNC and SIOCFG registers.

Initial Value: SDI pin value

Read Value: Previous value written

Write Effect: Modify value

SCK

Description: Serial Clock. Reading this bit returns the state of the SCK pin. Writing a value to this bit causes
the SCK pin to take on the corresponding value if it is configured to be a bit I/O output port in the
SIOFUNC and SIOCFG registers.

Initial Value: SCK pin value

SIOD
031

0

28

SDO

1

SDI

1

SCK

1

PCI

1

ence Manual 16 - 10 May 11, 2005

IDT Serial Peripheral Interface Master Programming Example

79RC32438 User Refer

Notes
Master Programming Example

SPI Initialization
1. If the PCI interface is configured to operate in PCI satellite mode with suspended CPU execution,

wait until PCI Serial EEPROM Done (EED) bit is set in the PCIS register.
2. Based on operating IPBus clock frequency and desired SPI clock frequency, write SPCP register

(i.e., 0x0C for 100 MHz IPBus clock, 2 MHz SPI clock and SPR = 0 in SPC).
3. Write SPIC register with 0x0000_00D0. SPIE = 1 - Interrupt enable, SPE = 1 - Enable interface,

MSTR = 1 - Master mode, SPOL = 0 - Idle clock polarity low, CPHA = 0 - Data clocked on first edge,
SPR = 0 - Clock divisor is 2.

4. Write IMASK6 register to disable GPIO Interrupt, GPIOx = 0, where "x" is used GPIO pin for SPI chip
select. If you have more than one device, disable all interrupts for used GPIO pins.

5. Write GPIOFUNC register to set GPIOx = 0 — not alternate function.
6. Write GPIOCFG register to set GPIOx = 1 — output.
7. Write GPIOD register to de-assert chip select(s) GPIOx = 1.
8. Read SPS and then SPD to clear SPIF bit.
9. Write IMASK5 register SPI = 0 — enable SPI interrupts.
10. Write GPIOD register to assert chip select GPIOx = 0 for the device to be accessed.
11. Write SPID register with data to transmit over SPI interface to start the transmission process.
12. Wait until the SPI interrupt occurs. The interrupt routine will perform the following steps:

– · Read SPS register and check for errors.
– · Mandatory read SPD register, to get input data and clear SPIF bit in SPS register.
– · If finished with (multi-)byte command sequence (i.e., a read sequence: command; address byte

1; address byte 2; 4 data bytes) de-assert chip select writing GPIOD register with GPIOx = 1.

13. Repeat steps 10 - 12 as needed.

Read Value: Previous value written

Write Effect: Modify value

PCI

Description: PCI Chip Select. Reading this bit returns the state of the PCIGNTN[1] pin. Writing a value to this
bit causes the PCIGNTN[1] pin to take on the corresponding value if it is configured to be a bit
I/O output port in the SIOFUNC and SIOCFG registers and the PCI interface is operating in PCI
satellite mode.

Initial Value: PCIGNTN[1] pin value

Read Value: Previous value written

Write Effect: Modify value
ence Manual 16 - 11 May 11, 2005

IDT Serial Peripheral Interface Master Programming Example

79RC32438 User Refer

Notes
ence Manual 16 - 12 May 11, 2005

Notes

79RC32438 User Reference Manual 17 - 1 M
Chapter 17
On-Chip Memory
Introduction
 This chapter describes the on-chip memory features and functions of the RC32438.

Theory of Operation
The RC32438 device includes 4KB of high speed SRAM organized as 1K x 32 bits of on-chip memory.

On-chip memory supports byte, halfword, triple-byte, and word memory read and write operations. On-chip
memory accesses are restricted to CPU accesses. DMA or PCI transfers to or from on-chip memory are not
supported. The contents of on-chip memory is preserved across warm and cold resets.

Address decoding for on-chip memory is controlled by the On-Chip Memory Base (OCMBASE) and On-
Chip Memory Mask (OCMMASK) registers. The mask register is used to select which bits are used for
address decoding. When a bit in this register is a one, the corresponding address bit is active in address
comparisons. If a bit in this register is a zero, the corresponding address bit does not participate in address
comparisons. All of the active address bits not masked by the mask register are compared to the value in
the base register. If they all match, then on-chip memory is selected.

On-chip Memory Base Register

Figure 17.1 On-chip Memory Base Register (OCMBASE)

On-chip Memory Mask Register

Figure 17.2 On-chip Memory Mask Register (OCMMASK)

BASEADDR

Description: Base Address. This field specifies the upper 16-bits of the on-chip memory base address.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

OCMBASE
031

16 16

BASEADDR 0

OCMMASK
031

16

MASK

16

0

ay 11, 2005

IDT On-Chip Memory Theory of Operation

79RC32438 User Refer

Notes

MASK

Description: Address Mask. This field determines which bits of the upper 16-bits of the address participate in
address comparisons. When a bit is set to one in this field, then the corresponding address bit
participates in address comparisons. When a bit is set to zero in this field, then the correspond-
ing address bit is masked and does not participate in address comparisons.
When the MASK field is zero, the on-chip memory does not appear in the memory map.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 17 - 2 May 11, 2005

Notes

79RC32438 User Reference Manual 18 - 1 M
Chapter 18
Debugging and Performance
Monitoring
Introduction
 This chapter discusses the three different debugging features available on the RC32438: IPBus

Monitor, Event Monitor, and Debug Pins. These features can be used together or independently to aid in
system optimization or system debugging.

Features
IPBus Monitor provides an on-chip “logic analyzer” for hardware and software debugging
Eight 24-bit statistics counters
External debug support pins provide external visibility to internal operation

Debug and Performance Register Description

Register Offset Register Name Register Function Size

0x09_0000 IPBMTCFG IPBus Monitor Trigger Configuration 32-bit

0x09_0004 IPBMTS IPBus Monitor Trigger Select 32-bit

0x09_0008 IPBMMT IPBus Monitor Manual Trigger 32-bit

0x09_000C IPBMTC0 IPBus Monitor Trigger Condition 0 32-bit

0x09_0010 IPBMTC1 IPBus Monitor Trigger Condition 1 32-bit

0x09_0014 IPBMTC2 IPBus Monitor Trigger Condition 2 32-bit

0x09_0018 IPBMTC3 IPBus Monitor Trigger Condition 3 32-bit

0x09_001C IPBMFS IPBus Monitor Filter Select 32-bit

0x09_0020 IPBMFC0 IPBus Monitor Filter Control 0 32-bit

0x09_0024 IPBMFC1 IPBus Monitor Filter Control 1 32-bit

0x09_0028 IPBMFC2 IPBus Monitor Filter Control 2 32-bit

0x09_002C IPBMRC IPBus Monitor Record Control 32-bit

0x09_0030 IPBMTT IPBus Monitor Trigger Time 32-bit

0x09_0034 IPBMTP IPBus Monitor Trigger Position 32-bit

0x09_0038 EMC Event Monitor Control 32-bit

0x09_003C EM0COMPARE Event Monitor 0 Compare 32-bit

0x09_0040 EM0COUNT Event Monitor 0 Count 32-bit

0x09_0044 EM1COUNT Event Monitor 1 Count 32-bit

0x09_0048 EM2COUNT Event Monitor 2 Count 32-bit

0x09_004C EM3COUNT Event Monitor 3 Count 32-bit

0x09_0050 EM4COUNT Event Monitor 4 Count 32-bit

0x09_0054 EM5COUNT Event Monitor 5 Count 32-bit

Table 18.1 Debug and Performance Register Map (Part 1 of 2)
ay 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor

79RC32438 User Refer

Notes
IPBus Monitor
The IPBus monitor provides on-chip “logic analyzer” functionality for debugging hardware and software.

It provides sophisticated support for debugging transactions on the internal IPBus that would otherwise not
be available to the user. Unlike most other blocks in the RC32438, the IPBus Monitor is not reset during a
warm reset. This allows the IPBus monitor to be used to debug across a warm reset.

The IPBus monitor allows IPBus transaction information to be recorded in on-chip memory for later anal-
ysis (for additional information, refer to Chapter 17, On-Chip Memory). The on-chip memory region used by
the IPBus monitor is determined by the IPBMBASE field of the IPBMRC register. As shown in Figure 18.1,
the IPBus monitor uses memory starting at IPBMBASE to the end of on-chip memory to record transac-
tions. Memory below IPBMBASE is available for other uses.

Figure 18.1 IPBus Monitor On-Chip Memory Usage

Transaction information is stored using two types of double word (i.e., 64-bit) records. A clock cycle
record is stored in on-chip memory during each clock cycle of a transaction. A transaction summary record
is stored in on-chip memory at the end of each transaction (refer to the IPBus Monitor Trigger Time section
later in this chapter). Records are stored in on-chip memory in a circular fashion. When the end of on-chip
memory is reached, recording continues starting at IPBMBASE.

When the IPBus monitor is enabled (i.e., the EN bit is set in the IPBMTCFG register), it begins recording
each IPBus transaction in on-chip memory. Recording stops shortly after a final trigger event occurs. Once
a final trigger event occurs the IPBus monitor continues storing transactions records in on-chip memory
until the space allocated by the Final Trigger Record Length (FTRL) field in the IPBMRC register is
exhausted. The FTRL field provides control over how many transactions are recorded before and after a
final trigger event. When a final trigger event occurs the FT bit is set in the IPBMTCFG register. This bit is
presented to the interrupt controller as an interrupt source.

When the EJTAG Debug Interrupt Enable (DIE) bit is set in the IPBMTCFG register, an EJTAG debug
interrupt request is generated to the CPU core whenever the FT bit is set in the IPBMTCFG register. This
allows synchronization between the IPBus monitor and an external EJTAG ICE. When the IPBus monitor
completes storing transaction records in on-chip memory (i.e., the space allocated by the FTRL field is
exhausted) the Recording Completed (RC) bit is set in the IPBMTCFG register. This bit is presented to the
interrupt controller as an interrupt source.

0x09_0058 EM6COUNT Event Monitor 6 Count 32-bit

0x09_005C EM7COUNT Event Monitor 7 Count 32-bit

0x09_0060 through 0x09_7FFF Reserved

Register Offset Register Name Register Function Size

Table 18.1 Debug and Performance Register Map (Part 2 of 2)

0x0000

0x0FFF

IP
Bu

s M
on

ito
r S

pa
ce

IPBMBASE
ence Manual 18 - 2 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
 The Trigger Condition (TC) bit in the IPBMTCFG allows the AND or OR of trigger conditions selected in
the IPBMTS register to result in a trigger event. Trigger conditions are defined by system events, such as a
warm reset, or by conditions specified in the IPBus Monitor Trigger Condition [0..3] registers
(IPBMTC[0..3]). Each time a trigger event occurs, the value in the TCOUNT field of IPBMTCFG is decre-
mented. When TCOUNT reaches zero, a final trigger event occurs.

The IPBus monitor uses two external pins. One of these is an alternate function input of GPIO[29]
(IPBMTRIGINP) whose level can be selected as a trigger condition. The other is an output pin (IPBMTRI-
GOUTP) that is toggled or pulsed when a trigger event occurs. The TIP and TOM fields of IPBMTCFG
control the behavior of these signals. There is a delay of 4 ICLK cycles between a transition on the
IPBMTRIGOUTP signal and a final trigger event. There is a delay of 5 ICLK cycles between assertion of the
IPBMTRIGINP input (a GPIO alternate function) and detection of this event by the IPBus monitor.

The IPBus monitor allows transactions to be filtered “in” or “out” depending on conditions specified in the
IPBus Monitor Filter Control [0..2] (IPBMFC[0..2]) registers. If a transaction has been filtered “out,” then
none of the clock cycle records or the transaction summary record for that transaction are recorded in on-
chip memory. If a transaction is filtered “in,” then all clock cycle and transaction summary records for that
transaction are recorded in on-chip memory. When the EN bit in IPBus Monitor Filter Select (IPBMFS)
register is set, filtering is enabled. The Filter Condition (FC) field controls which transactions are recorded.
The remaining bits in this register allow one to select which filter conditions are enabled.

The IPBus monitor contains a free running counter that is incremented on each rising edge of ICLK. The
time stamp (TS) field in each transaction summary record contains the value of this counter. If the number
of ICLK clock cycles between the previous and current transaction summary records is greater than or
equal to 223, the overflow (OVR) bit is set in the transaction summary record and the value of the TS field
should be disregarded.

The IPBus Monitor Trigger Time (IPBMTT) register contains the value of the free running counter when
a final trigger condition occurs.

After a final trigger condition is recorded, the address of the first transaction summary record that was
recorded in on-chip memory is saved in the ADDR field of the IPBus Monitor Trigger Position (IPBMTP)
register. For example, if the final trigger condition occurs due to a data transfer on the IPBus and a clock
cycle record format transaction is recorded in on-chip memory for this data transfer, then IPBMTP points to
the transactions summary record for that transaction. IPBMTP may not actually point to the transaction
summary record that generated the final trigger condition since the clock cycle record and even the transac-
tion summary record may have been filtered “out.” In these cases, IPBMTP points to the first transaction
summary record stored in on-chip memory after a final trigger condition.

The bus master index referred to in this section corresponds to the IPBus master indices listed in Table
5.1 of Chapter 5, Bus Arbitration.

Note: A warm reset does not modify the state of IPBus monitor registers or on-chip memory. A
cold reset does not modify the state of on-chip memory but does modify the state of IPBus
monitor registers.

IPBus Monitor Registers

IPBus Monitor Trigger Configuration Register

Figure 18.2 IPBus Monitor Trigger Configuration Register (IPBMTCFG)

IPBMTCFG
031

TIP

1

TCOUNT

8

TOM

2

EN

1

TC

1

FT

1

RA

1

RC

1

RTCOUNT

8

0

7

DIE

1

ence Manual 18 - 3 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes

EN

Description: Enable. When this bit is set to one, the IPBus monitor is armed. Each time the trigger condition
specified by the TC field and the IPBus Monitor Trigger Select (IPBMTS) register are satisfied
the Trigger Count (TCOUNT) field is decremented. When the TCOUNT field reaches zero, the
enable bit is set to zero (cleared) and a final trigger event occurs.
Note: When this bit is set, the IPBus records transactions until a final trigger event occurs or until
this bit is cleared by software.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RC

Description: Recording Completed. When the IPBus monitor completes storing transaction records in on-
chip memory (i.e., the space allocated by the FTRL field is exhausted) this bit is set.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

RA

Description: Rearm. When this bit is set to one, the IPBus monitor is automatically rearmed (i.e., the enable
bit is set) after a final trigger event occurs. When the IPBus monitor is rearmed, the value in the
RTCOUNT field is loaded into the TCOUNT field.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

FT

Description: Final Trigger. This bit is set to one when a final trigger event occurs.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

TC

Description: Trigger Condition. When this bit is set to one, the IPBus monitor triggers when all of the
selected trigger conditions selected in the IPBMTS register are satisfied (i.e., AND of all enabled
trigger conditions). When this bit is cleared, the IPBus monitor triggers when any of the selected
trigger conditions are satisfied (i.e., OR of all enabled trigger conditions).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 18 - 4 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
 TIP

Description: IPBus Monitor Trigger Input Polarity. This bit selects the active polarity of the IPBus Monitor
Trigger Input (IPBMTRIGINP). IPBMTRIGINP is a GPIO alternate function and is sampled by
EXTCLK.
0 - IPBMTRIGINP is active low (trigger when signal transitions from 1 to 0)
1 - IPBMTRIGINP is active high (trigger when signal transitions from 0 to 1)

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

TOM

Description: IPBus Monitor Trigger Output Mode. This bit selects the operating mode of the IPBus Monitor
Trigger Output (IPBMTRIGOUT).
0 - IPBMTRIGOUT is driven low for one EXTCLK clock cycle when final trigger occurs
1 - IPBMTRIGOUT is driven high for one EXTCLK clock cycle when final trigger occurs
2 - IPBMTRIGOUT is inverted (i.e., toggled) when final trigger event occurs
3 - reserved

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

TCOUNT

Description: Trigger Count. This field contains a trigger count which is decremented each time a trigger
event occurs.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RTCOUNT

Description: Rearm Trigger Count. This field contains the rearm trigger count value which is loaded into the
TCOUNT field whenever the IPBus monitor is automatically rearmed (i.e., when the RA bit is set
and the final trigger event occurs).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DIE

Description: Debug Interrupt Enable. When this bit is set in the IPBMTCFG register, an EJTAG debug inter-
rupt request is generated to the CPU core whenever the FT bit is set. This allows synchroniza-
tion between the IPBus monitor and an external EJTAG ICE.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value
ence Manual 18 - 5 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
 IPBus Monitor Trigger Select Register

Figure 18.3 IPBus Monitor Trigger Select Register (IPBMTS)

A

Description: Address. This bit selects the address trigger condition in the IPBMTC0 register. A trigger condi-
tion occurs when a transaction address matches the address bits in the address (A) field of the
IPBMTC0 register which are not masked by the address mask (AM) field in the IPBMTC1 regis-
ter.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

OP

Description: Operation. This bit selects the read or write operation select trigger (RW) condition in the
IPBMTC3 register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

D

Description: Data. This bit selects the data trigger condition in the IPBMTC2 register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MG

Description: IPBus Master Grant. This bit selects the IPBus master grant trigger condition in the IPBMTC3
register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MR

Description: IPBus Master Bus Requests. This bit selects the IPBus master bus requests trigger condition in
the IPBMTC3 register. The trigger condition is determined by the masters selected in the MR
field and the state of the MRM field.

Initial Value: 0x0

IPBMTS
031

OP

1

A

1

D

1

MG

1

MR

1

IR

1

WTO

1

WR

1

ET

1

BTO

1

TRW

1

UAE

1

EM0

1

0

17

MT

1

SAE

1

ence Manual 18 - 6 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
 Read Value: Previous value written

Write Effect: Modify value

IR

Description: Interrupt Request. This bit selects the interrupt request trigger condition in the IPBMTC3 regis-
ter.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

WTO

Description: Watchdog Timer Time-out. This bit selects the watchdog timer time-out trigger condition (see
the Functional Overview section in Chapter 4, System Integrity Functions).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

UAE

Description: Undecoded Address Error. This bit selects the undecoded address error trigger condition
which is reported by the address space monitor (see the Functional Overview section in Chapter
4, System Integrity Functions).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

SAE

Description: IPBus Slave Acknowledge Error. This bit selects the IPBus slave acknowledge error trigger
condition (see the Functional Overview section in Chapter 4, System Integrity Functions).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

BTO

Description: Bus Transaction Timer Time-out. This bit selects the transaction timer time-out trigger condi-
tion which is reported by the memory and peripheral bus transaction timer (see the Theory of
Operation section in Chapter 6, Device Controller).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

WR

Description: Warm Reset. This bit selects the warm reset trigger condition.

Initial Value: 0x0
ence Manual 18 - 7 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
IPBus Monitor Manual Trigger Register

Figure 18.4 IPBus Monitor Manual Trigger Register (IPBMMT)

Read Value: Previous value written

Write Effect: Modify value

ET

Description: External Trigger. This bit selects the IPBMTRIGINP input trigger condition. A trigger event
occurs when the state of the IPBMTRIGINP input is asserted (as specified by the TIP field in IPB-
MTCFG). The IPBMTRIGINP input is a GPIO alternate function.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

TRW

Description: Trigger Register Write. This bit selects writes to the IPBus monitor manual trigger register as a
trigger condition.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

EM0

Description: Event Monitor 0 Trigger Event. This bit selects an event monitor 0 trigger condition (i.e, when T
bit is set in the EM0COMPARE register).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MT

Description: Merged Transaction Trigger Event. This bit selects IPBus merged transactions as a trigger
condition. This event occurs with the DMA controller merges two transactions on the IPBus.
Merged transactions eliminate the bus overhead associated with consecutive IPBus transactions
to the same peripheral.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPBMMT
031

TRIG

32
ence Manual 18 - 8 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
IPBus Monitor Trigger Condition 0 Register

Figure 18.5 IPBus Monitor Trigger Condition 0 Register (IPBMTC0)

IPBus Monitor Trigger Condition 1 Register

Figure 18.6 IPBus Monitor Trigger Condition 1 Register (IPBMTC1)

TRIG

Description: Trigger. A write to this field results in a “trigger register write” event which may be selected as an
IPBus monitor trigger condition by the TRW bit in the IPBMTS register.

Initial Value: 0x0

Read Value: 0x0

Write Effect: Cause a trigger register write event

A

Description: Address. This field contains the trigger address.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

AM

Description: Address Mask. Each bit in this field corresponds to an address bit in the Address (A) field of the
IPBMTC0 register. When a bit in this field is set, the state of the corresponding address bit in the
A field is ignored (i.e., masked) in making trigger decisions.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPBMTC0
031

A

32

IPBMTC1
031

AM

32
ence Manual 18 - 9 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
 IPBus Monitor Trigger Condition 2 Register

Figure 18.7 IPBus Monitor Trigger Condition 2 Register (IPBMTC2)

IPBus Monitor Trigger Condition 3 Register

Figure 18.8 IPBus Monitor Trigger Condition 3 Register (IPBMTC3)

D

Description: D. This field contains the 32-bit trigger data value. During each data transfer on the IPBus only
the data value(s) of active byte lanes are compared to the corresponding byte value(s) in this
field. For example, if only byte zero is active in an IPBus data transfer, then only the least signifi-
cant byte of this register would be compared.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MG

Description: IPBus Master Grant. This field contains the IPBus master trigger index (i.e., the index of the bus
master granted the bus).

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

MR

Description: IPBus Master Requests. Each bit in this field corresponds to an IPBus master index. A trigger
condition occurs when the MRM bit is set and all of the masters whose corresponding bit is set in
this field are requesting service or when the MRM bit is cleared and any of the masters whose
corresponding bit is set in this field are requesting service.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPBMTC2
031

D

32

IPBMTC3
031

MG

5

MR

17

IR

5

0

3

MRM

1

RW

1

ence Manual 18 - 10 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
IPBus Monitor Filter Select Register

Figure 18.9 IPBus Monitor Filter Select Register (IPBMFS)

MRM

Description: IPBus Master Request Mode. This field controls the interpretation of the IPBus Master Request
(MR) field in generating a trigger condition.
0 - Trigger when all of the masters selected in the MR field are requesting service (i.e. AND)
1 - Trigger when any of the masters selected in the MR field are requesting service (i.e., OR)

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IR

Description: Interrupt Request. This field encodes the index of IPEND interrupt request presented to the
CPU (bit 0 corresponds to IPEND2, bit one to IPEND3, and so on). A trigger condition occurs
when an interrupt request is presented to the CPU and the corresponding bit in the IR field is set.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

RW

Description: Read or Write Operation Select. This field specifies the trigger transaction operation.
0 - read transaction
1 - write transaction

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

EN

Description: Enable. When this bit is set to one, filtering is enabled. When filtering is disabled, all data is
recorded.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPBMFS
031

FC

2

EN

1

A

1

BMS

1

OP

1

0

26
ence Manual 18 - 11 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
IPBus Monitor Filter Control 0 Register

Figure 18.10 IPBus Monitor Filter Control 0 Register (IPBMFC0)

FC

Description: Filter Condition. This field controls which transactions are recorded using filtering.
0 - Record transactions that match all of the conditions selected in the IPBMFS register (i.e filter
in AND of conditions)
1 - Record transactions that match any of the conditions selected in the IPBMFS register (i.e., fil-
ter in OR of conditions)
2 - Record transactions that do not match all of the conditions selected in the IPBMFS register
(i.e., filter out AND of conditions)
3 - Record transactions that do not match any of the conditions selected in the IPBMFS register
(i.e., filter out OR of conditions)

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

A

Description: Address. This bit selects the address filter condition in the IPBMFC0 register.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

BMS

Description: Bus Master Select. This bit selects the bus master select filter condition in the IPBMFC2 regis-
ter.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

OP

Description: Operation. When this bit is set to one, transactions of the type selected by the RW field in the
IPBMFC2 register are selected as a filter condition.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPBMFC0
031

A

32
ence Manual 18 - 12 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
IPBus Monitor Filter Control 1 Register

Figure 18.11 IPBus Monitor Filter Control 1 Register (IPBMFC1

IPBus Monitor Filter Control 2 Register
r

Figure 18.12 IPBus Monitor Filter Control 2 Register (IPBMFC2)

A

Description: Address. This field contains the filter address. A transaction is considered to match the filter
condition if its starting address matches unmasked bits (i.e., bits not masked by the AM field in
the IPBMFC1 register) in this field.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

AM

Description: Address Mask. Each bit in this field corresponds to an address bit in the address (A) field of the
IPBMFC0 register. When a bit in this field is set to one, the state of the corresponding address bit
in the A field is ignored in making filtering decisions.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

BMS

Description: Bus Master Select. Each bit in this field corresponds to a bus master index. When a transaction
is generated (i.e., the bus has been granted) from a bus master whose corresponding bit is set in
this field, then the transaction is considered to match the filter.

Initial Value: 0x0

IPBMFC1
031

AM

32

IPBMFC2
031

BMS

17

0

14

RW

1

ence Manual 18 - 13 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
IPBus Monitor Record Control

Figure 18.13 IPBus Monitor Record Control Register (IPBMRC)

Read Value: Previous value written

Write Effect: Modify value

RW

Description: Read or Write Operation Select. This field selects the type of transactions that are recorded.
0 - write transactions
1 - read transactions

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPBMBASE

Description: IPBus Monitor Base Recording Address. This field contains the on-chip memory double word
(i.e., 64-bit) base address used to record transactions. This address corresponds to an offset into
on-chip memory and is not a complete local address space address.
Unused address bits are stored in this field but are ignored by hardware.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

FTRL

Description: Final Trigger Record Limit. This field contains the number of double words written to on-chip
memory after a final trigger event.
Unused address bits are stored in this field but are ignored by hardware.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

DW

Description: Discard Wait Records. Do not write clock cycle records into memory that have the wait (W) bit
set.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPBMRC
031

IPBMBASE

11

FTRL

11

0

9

DW

1

ence Manual 18 - 14 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
 IPBus Monitor Trigger Position

Figure 18.14 IPBus Monitor Trigger Position Register (IPBMTP)

IPBus Monitor Trigger Time

Figure 18.15 IPBus Monitor Trigger Time Register (IPBMTT)

ADDR

Description: Trigger Address. This field contains the on-chip memory double word address of the first IPBus
monitor transaction summary record stored in on-chip memory after a final trigger.
Unused address bits are stored in this field but are ignored by hardware.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

TAE

Description: Trigger Address Error. This bit is set if the ADDR field is invalid following a final trigger. This
occurs when the IPBus monitor is unable to write a transaction summary record following a final
trigger due to miscommunication of the FRTL field in the IPBMRC register..

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

TS

Description: Time Stamp. This field contains the value of the free running counter that is incremented at the
ICLK clock frequency when the final trigger event occurred.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

IPBMTP
031

ADDR

11

0

20

TAE

1

IPBMTT
031

TS

23

0

9

ence Manual 18 - 15 May 11, 2005

IDT Debugging and Performance Monitoring IPBus Monitor Registers

79RC32438 User Refer

Notes
 IPBus Monitor Record Formats
The IPBus Monitor stores data in the On-chip RAM using two record formats. Both formats consist of

double words (i.e., 64-bits or two 32-bit words).

Figure 18.16 IPBus Monitor Transaction Summary Record Format

RF Record Format. This bit indicates the format of the record. If this bit is set, then the record has a
transaction summary format. If the bit is cleared, then the record has a clock cycle format.

F Filtered. This bit is set if any transactions were filtered between the previously recorded transac-
tion and this one.

SBE Starting Byte Enables. This field represents the state of the byte enables in the first data transfer
of the transaction. Bit 0 corresponds to data bits 0 through 7, bit 1 corresponds to data bits 8
through 15, and so on. A bit is set if the byte lane is enabled.

EBE Ending Byte Enables. This field represents the state of the byte enables during last first data
transfer of the transaction. Bit 0 corresponds to data bits 0 through 7, bit 1 corresponds to data
bits 8 through 15, and so on. A bit is set if the byte lane is enabled.

MG IPBus Master Grant. This field contains the IPBus master index corresponding to the bus master
that generated the transaction.

MR IPBus Master Bus Requests. Each bit in this field corresponds to an IPBus master index. A bit is
set if the corresponding bus master requested ownership of the IPBus at any point after the previ-
ously recorded IPBus transaction and this one.
In general, the bus master that has been granted the bus for the current transaction will not have
its MR bit set (because in order to have been granted the bus, the current master has to have pre-
viously requested the bus). However, there are two exceptions to this condition. First, if the bus
master generates a request after it has already been granted the bus for the current transaction
(this action is called a pre-request) and the current transaction is not yet completed, its MR bit will
be set. Second, if the bus master requested and performed a transaction that was filtered out after
the previously recorded transaction, its MR bit will be set.

IPEND[2..6] Interrupt Requests. Each bit in this field corresponds to an interrupt request to the CPU. If an
interrupt request was generated at any time during the current transaction or since the last trans-
action, then the corresponding bit in this field is set.

R Read. This bit is set if the transaction was an IPBus read transaction (i.e., either an IPBus master
read or an IPBus fly-by read). This bit is cleared if the transaction was an IPBus write transaction.

BA Byte Address. This two bit field contains the bottom two bits of the IPBus transaction starting
address. The complete address of each transfer in a transaction may be determined by concate-
nating this field with the ADDR field in the IPBus monitor clock cycle record (i.e., 32-bit address
equals ((ADDR << 2) | BA)).

OVR Overflow. This bit is set if the number of clock cycles between the previously recorded IPBus
monitor transaction summary record and this one is greater than or equal to 223.

TS Time Stamp. This field contains the value of the free running counter incremented at the ICLK
clock frequency when the transaction summary record was recorded. This value is equivalent to
that of the last clock cycle in the transaction (i.e., the last clock cycle of the transaction before the
IPBus goes idle or starts a new transaction).

031

RF

1

F

1

SBE

4

EBE

4

MG

5

MR

17

IPEND[2..6]

5

TS

23

031

Addr + 4

Addr

R

1

BA

2

OVR

1

ence Manual 18 - 16 May 11, 2005

IDT Debugging and Performance Monitoring Event Monitor

79RC32438 User Refer

Notes
Figure 18.17 IPBus Monitor Clock Cycle Record Format

Event Monitor
The event monitor provides a means of gathering performance statistics. Unlike most other blocks in the

RC32438, the Event Monitor is not reset during a warm reset. The statistics monitor consists of eight 24-bit
counters. The COUNT value for each counter may be read or written at any time. A counter’s COUNT value
is incremented each time a selected event occurs if the Freeze (FRZ) bit is not set in the Event Monitor
Control (EMC) register. Setting the FRZ bit freezes the value of all event monitor counters. The COUNT
field may be read or written but is never incremented when the FRZ bit is set to 1.

Writing a one to the CLR bit in the EMC register clears the value of all event monitor counters to zero.
This occurs regardless of the state of the FRZ bit. Each event monitor counter contains a 6-bit Select (SEL)
field that maps one of 64 events to the event counter.

RF Record Format. This bit indicates the format of the record. If this bit is set to 1, then the record
has a transaction summary format. If the bit is cleared, then the record has a clock cycle format.

W Wait. This bit is set if a wait state was generated in the clock cycle represented by the current data
transfer record or a data transfer occurred in which all the byte lanes were disabled.

ADDR Address. This field contains the value of the upper 30 bits of the IPBus address in the clock cycle
represented by the current data transfer record.

DATA Data. This field contains the 32-bit IPBus data value in the clock cycle represented by the current
data transfer record. When the wait (W) bit is set, this field may be used to distinguish between a
true wait state and a data transfer in which all byte lanes were disabled.
0x0000_0000 - wait state
0x1111_1111 - data transfer with all byte lanes disabled
0x2222_2222 - null data associated with transactions that generate an undecoded address error.

Event Index Event Description

0 CPU instruction executed

1 CPU instruction cache miss

2 CPU data cache hit

3 CPU data cache miss

4 CPU joint TLB miss

5 CPU instruction TLB miss

6 CPU data TLB miss

7 Maximum number of wait states in a single IPBus transaction1

8 Rising edge of IPBus clock (ICLK)

Table 18.2 Event Monitor Sources (Part 1 of 3)

031

RF

1

W

1

ADDR

30

DATA

32

031

Addr + 4

Addr
ence Manual 18 - 17 May 11, 2005

IDT Debugging and Performance Monitoring Event Monitor

79RC32438 User Refer

Notes

9 Event monitor trigger event (i.e., T bit in EM0COMPARE register tran-

sition from 0 to 1)

10 IPBus monitor final trigger event

11 PMBus transaction

12 PMBus CPU transaction

13 PMBus IPBus transaction

14 PMBus sneak transaction

15 PMBus delay (each ICLK cycle in which an IPBus transaction is
delayed due to a sneak transaction)

16 DDR read transaction

17 DDR write transaction

18 IPBus arbiter grants bus to a bus master with a CMTC equal to zero
(uses round robin arbitration)

19 Number of double words written to on-chip memory by IPBus monitor

20 IPBus transaction (an event is generated for each transaction even if
the transaction is merged with another transaction)

21 IPBus idle cycle

22 IPBus master index 0 bytes transferred

23 IPBus master index 1 bytes transferred

24 IPBus master index 2 bytes transferred

25 IPBus master index 3 bytes transferred

26 IPBus master index 4 bytes transferred

27 IPBus master index 5 bytes transferred

28 IPBus master index 6 bytes transferred

29 IPBus master index 7 bytes transferred

30 IPBus master index 8 bytes transferred

31 IPBus master index 9 bytes transferred

32 IPBus master index 10 bytes transferred

33 IPBus master index 11 bytes transferred

34 IPBus master index 12 bytes transferred

35 IPBus master index 14 bytes transferred

36 IPBus master index 15 bytes transferred

37 IPBus master index 16 bytes transferred

38 Maximum number of idle cycles between IPBus transactions1

39 IPBus read transaction

40 IPBus write transaction

41 IPBus transaction that transferred between 1 and 16 bytes

42 IPBus transaction that transferred between 17 and 32 bytes

Event Index Event Description

Table 18.2 Event Monitor Sources (Part 2 of 3)
ence Manual 18 - 18 May 11, 2005

IDT Debugging and Performance Monitoring Event Monitor

79RC32438 User Refer

Notes
The event monitor 0 count register has a corresponding compare register. When the value of the
COUNT field in EM0COUNT equals or is greater than the value in the COMPARE field of EM0COMPARE,
then the Triggered (T) bit in the EM0COMPARE register is set. The T bit in the EM0COMPARE register is
presented to the interrupt controller as an interrupt source.

When the EJTAG Debug Interrupt Enable (DIE) bit is set in the EM0COMPARE register, an EJTAG
debug interrupt request is generated to the CPU core whenever the T bit is set in the EM0COMPARE
register. This allows synchronization between the event monitor and an external EJTAG ICE.

Note: The state of event monitor registers is not modified due to a warm reset (i.e., they are not
reset).
Note: When an event that occurs at the PCLK clock frequency is selected as an event monitor
event source (e.g., CPU instruction executed), the event counter value may be overstated by up
to 12 cycles due to synchronization delays (the counter is updated every 12 CPU cycles).

43 IPBus transaction that transferred between 33 and 48 bytes

44 IPBus transaction that transferred between 49 and 64 bytes

45 IPBus unaligned transfer transaction (i.e., a transaction starting on a
non-word boundary)

46 Number of IPBus transaction merges (each merge is countered within
a transaction)

47 IPBus master index 0 transaction

48 IPBus master index 1 transaction

49 IPBus master index 2 transaction

50 IPBus master index 3 transaction

51 IPBus master index 4 transaction

52 IPBus master index 5 transaction

53 IPBus master index 6 transaction

54 IPBus master index 7 transaction

55 IPBus master index 8 transaction

56 IPBus master index 9 transaction

57 IPBus master index 10 transaction

58 IPBus master index 11 transaction

59 IPBus master index 12 transaction

60 External memory and peripheral bus master granted bus

61 IPBus master index 14 transaction

62 IPBus master index 15 transaction

63 IPBus master index 16 transaction

1. This field records a maximum count. A shadow counter is maintained that records the actual count, and
this counter is incremented only when a shadow count exceeds the value in an actual counter that selects
this event.

Event Index Event Description

Table 18.2 Event Monitor Sources (Part 3 of 3)
ence Manual 18 - 19 May 11, 2005

IDT Debugging and Performance Monitoring Event Monitor

79RC32438 User Refer

Notes
 Event Monitor Control Register

Figure 18.18 Event Monitor Control Register (EMC)

Event Monitor [0..7] Count Register

Figure 18.19 Event Monitor [0..7] Count Register (EM[0..7]COUNT)

FRZ

Description: Freeze. When this bit is set to zero (cleared), event monitor count registers are incremented
when the selected event occurs. When this bit is set to one, events are ignored and the event
monitor count registers remain “frozen.”

Initial Value: 0x1

Read Value: Previous value written

Write Effect: Modify value

CLR

Description: Clear Counters. Writing a one to this bit causes the COUNT field in all Event Monitor [0..7]
Count (EM[0..7]COUNT) registers to be set to zero (cleared).

Initial Value: 0x0

Read Value: 0x0

Write Effect: Writing a one clears all event monitor counters, writing a zero has no effect

ZOR

Description: Zero On Read. When this bit is set to one, reading an event monitor count (EMxCOUNT) regis-
ter causes it to be automatically cleared as a side effect of the read. Note: zero on read works
only when the FRZ bit is not set to 1.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

EMC
031

0

29

FRZ

1

CLR

1

ZOR

1

EM[0..7]COUNT
031

6

SEL

24

COUNT

1

0

1

OVR
ence Manual 18 - 20 May 11, 2005

IDT Debugging and Performance Monitoring Event Monitor

79RC32438 User Refer

Notes
Event Monitor 0 Compare Register

Figure 18.20 Event Monitor 0 Compare Register (EM0COMPARE)

COUNT

Description: Count. This field contains the current event monitor count.

Initial Value: 0x0

Read Value: Current event count

Write Effect: Modify value

OVR

Description: Overflow. This bit is set when the event monitor count register overflows (i.e., when COUNT
rolls over from 0xFFFFFF to 0x000000).

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

SEL

Description: Event Select. This field selects the event monitor counter event source.

Initial Value: 0x0

Read Value: Previous value written

Write Effect: Modify value

COMPARE

Description: Event Compare. When the COUNT field in the Event Monitor 0 Count (EM0COUNT) register is
equal to or greater than the value in this field, an event monitor 0 trigger event occurs and the T
bit in this register is set.

Initial Value: 0xFF_FFFF

Read Value: Current event count

Write Effect: Modify value

DIE

Description: Debug Interrupt Enable. When this bit is set to 1, an EJTAG debug interrupt request is gener-
ated to the CPU core whenever the T bit is set. This allows synchronization between the event
monitor and an external EJTAG ICE.

Initial Value: 0x0

EM0COMPARE
031

24

COMPARE

6

0T

1

DIE

1

ence Manual 18 - 21 May 11, 2005

IDT Debugging and Performance Monitoring Debug Pins

79RC32438 User Refer

Notes
Debug Pins
The RC32438 provides external debug pins to aid in system debugging. The CPU pin is asserted during

all DDR and memory and peripheral bus transactions caused by the CPU. During CPU transactions, the
INST pin is asserted if the transaction is due to an instruction fetch. The INST and CPU pins are valid when-
ever a memory and peripheral bus chip select is asserted or when a DDR chip select is asserted during a
read or write transaction.

Table 18.3 describes the operation of these pins.

Read Value: Previous value written

Write Effect: Modify value

T

Description: Triggered. This bit is set when the COUNT value in the EM0COUNT register equals or is greater
than the COMPARE value in this register. A subsequent trigger can occur only when the COUNT
value becomes less than the COMPARE value (i.e., the counter rolls over or software resets the
counter).
Note: The T bit is not set under the following conditions:
(a) when any of the following event indices are selected by event monitor zero: 20 IPBus trans-
action, 40 IPBus write transaction, 45 IPBus unaligned transfer transaction, or 46 IPBus merged
transaction
AND
(b) an IPBus master accesses the on-chip memory when the COUNT value in the EM0COUNT
register is equal to or greater than the COMPARE value in that same register.

Initial Value: 0x0

Read Value: Status

Write Effect: Sticky bit (a sticky bit is set by the hardware and can only be cleared by the CPU)

CSNx DDR-
CSNx CPU INST Description

0 11

1. Don’t care.

0 X DMA read or write from memory and peripheral bus.

0 1 1 0 CPU data read or write from memory and peripheral
bus.

0 1 1 1 CPU instruction fetch from memory and peripheral
bus.

1 0 0 X DMA read or write from DDR.

1 0 1 0 CPU data read or write from DDR.

1 0 1 1 CPU instruction fetch from DDR.

0 0 X 0 CPU data read or write from DDR with an external
DMA operation to the memory and peripheral bus.

0 0 X 1 CPU instruction fetch from DDR with an external
DMA operation to the memory and peripheral bus.

Table 18.3 Debug Pin Operation
ence Manual 18 - 22 May 11, 2005

Notes

79RC32438 User Reference Manual 19 - 1 M
Chapter 19
JTAG Boundary Scan
Introduction
The RC32438 is a general-purpose integrated processor that incorporates a high performance CPU

core and a number of on-chip peripherals. There are 2 TAP controllers on the RC32438, one for the CPU
core (referred to as the MIPS32 CPU Core TAP Controller), described in the next chapter (Chapter 20), and
one for System Logic controller, described in this chapter.

The System Logic TAP Controller is used to provide conventional standard JTAG Boundary Scan
access to the RC32438 pin interface. The MIPS32 CPU Core TAP Controller is used to provide access to
the EJTAG interface on the CPU Core.

The two TAP Controllers are connected in parallel as shown in Figure 19.1 and share the JTAG control
pins, except for separate JTAG_TMS and EJTAG_TMS pins. Thus, at least one of the two TAP Controllers
must be in Test-Logic-Reset at any given time, so that the JTAG_TDO pin is only actively being driven from
no more than one of the TAP Controllers. For example, if neither TAP Controller is in use, they both can be
reset by asserting JTAG_TRST_N or by asserting both JTAG_TMS and EJTAG_TMS high for 5 consecu-
tive JTAG_TCK clocks. If the MIPS32 CPU Core TAP Controller is to be used, then the System Controller
TAP Controller must be reset by asserting JTAG_TMS high for 5 consecutive JTAG_TCK clocks. If the
System Controller TAP Controller is to be used, then the MIPS32 CPU Core TAP Controller must be reset
by asserting EJTAG_TMS high for 5 consecutive JTAG_TCK clocks.

The MIPS32 CPU Core TAP Controller is used primarily for EJTAG support, since many EJTAG func-
tions are accessed via the MIPS32 CPU Core TAP Controller JTAG port. Note that the Boundary Scan
Register for the internal CPU Core is not used, as it would access internally connected CPU Core
ports/pins. Instead, the System Controller TAP Controller Boundary Scan Register is provided for
RC32438 conventional JTAG pin access, control, and boundary scan.

Figure 19.1 Dual TAP Controller Block Diagram

Boundary Scan Cells

System Controller

TAP

CPU Core

TAP

EJTAG

JTAG_TCK, JTAG_TDI,

JTAG_TMS

EJTAG_TMS

JTAG_TDO

Boundary Scan Cells

Bo
un

da
ry

 S
ca

n
Ce

lls

Bo
un

da
ry

 S
ca

n
Ce

lls

JTAG_TRST_N
ay 11, 2005

IDT JTAG Boundary Scan System Logic TAP Controller Overview

79RC32438 User Refer

Notes
 System Logic TAP Controller Overview
The system logic utilizes a 16-state, six-bit TAP controller, a four-bit instruction register, and five dedi-

cated pins to perform a variety of functions. The primary use of the JTAG TAP Controller state machine is to
allow the five external JTAG control pins to control and access the RC32438's many external signal pins.
The JTAG TAP Controller can also be used for identifying the device part number. The JTAG logic of the
RC32438 is depicted in Figure 19.2.

Figure 19.2 Diagram of the JTAG Logic

Signal Definitions
JTAG operations such as Reset, State-transition control and Clock sampling are handled through the

signals listed in Table 19.1. A functional overview of the TAP Controller and Boundary Scan registers is
provided in the sections following the table.

The system logic TAP controller transitions from state to state, according to the value present on
JTAG_TMS, as sampled on the rising edge of JTAG_TCK. The Test-Logic Reset state can be reached
either by asserting JTAG_TRST_N or by applying a 1 to JTAG_TMS for five consecutive cycles of

Pin Name Type Description

JTAG_TRST_N Input JTAG RESET
 Asynchronous reset for JTAG TAP controller (internal pull-up)

JTAG_TCK Input JTAG Clock
Test logic clock. JTAG_TMS and JTAG_TDI are sampled on the rising edge.
JTAG_TDO is output on the falling edge.

JTAG_TMS Input JTAG Mode Select Requires an external pull-up.
Controls the state transitions for the TAP controller state machine (internal pull-up)

JTAG_TDI Input JTAG Input
Serial data input for BSC chain, Instruction Register, IDCODE register, and BYPASS
register (internal pull-up)

JTAG_TDO Output JTAG Output
Serial data out. Tri-stated except when shifting while in Shift-DR and SHIFT-IR TAP con-
troller states.

Table 19.1 JTAG Pin Descriptions

Bypass Register

Instruction Register Decoder

4-Bit Instruction Register

Tap Controller

m
u
x

m
u
x

Device ID Register

Boundary Scan Register

JTAG_TDI

JTAG_TMS

JTAG_TCK

JTAG_TRST_N

JTAG_TDO
ence Manual 19 - 2 May 11, 2005

IDT JTAG Boundary Scan Test Data Register (DR)

79RC32438 User Refer

Notes
 JTAG_TCK. A state diagram for the TAP controller appears in Figure 19.3. The value next to state repre-
sent the value that must be applied to JTAG_TMS on the next rising edge of JTAG_TCK, to transition in the
direction of the associated arrow.

Figure 19.3 State Diagram of RC32438’s TAP Controller

Test Data Register (DR)
The Test Data register contains the following:

The Bypass register
The Boundary Scan registers
The Device ID register

 These registers are connected in parallel between a common serial input and a common serial data
output, and are described in the following sections. For more detailed descriptions, refer to IEEE Standard
Test Access port (IEEE Std. 1149.1-1990).

Boundary Scan Registers
The RC32438 scan chain is 489 bits long and comprises 259 logical elements — where each logical

element represents a signal pin. The five JTAG pins do not have scan elements associated with them, nor
does the EJTAG EJTAG_TMS pin. In addition, DDRVREF does not have scan elements associated with it.
Of the 259 logical elements, 141 are two-bit bidirectional cells, 89 are two-bit tri-statable outputs, and 29 are
one-bit dedicated inputs.

This boundary scan chain is connected between JTAG_TDI and JTAG_TDO when the EXTEST or
SAMPLE/PRELOAD instructions are selected. Once EXTEST is selected and the TAP controller passes
through the UPDATE-IR state, whatever value is currently held in the boundary scan register’s output
latches is immediately transferred to the corresponding outputs or output enables.

Test- Logic
Reset

Run-Test/
Idle

Select-
DR-Scan

Capture-DR

Shift-DR

Exit1 -DR

Pause-DR

Exit2-DR

Select-
IR-Scan

Capture-IR

Shift-IR

Exit1-IR

Pause-IR

Exit2-IR

Update-DR Update-IR

1 10 00

11

0

0

1

1

0
1

0

1

0

0

1

1

1

0
0

1 1

0

1

0

1

1

0

0 0

0

ence Manual 19 - 3 May 11, 2005

IDT JTAG Boundary Scan Test Data Register (DR)

79RC32438 User Refer

Notes
 Therefore, the SAMPLE/PRELOAD instruction must first be used to load suitable values into the
boundary scan cells, so that inappropriate values are not driven out onto the system pins. All of the
boundary scan cells feature a negative edge latch, which guarantees that clock skew cannot cause incor-
rect data to be latched into a cell. The input cells are sample-only cells. The simplified logic configuration is
shown in Figure 19.4.

Figure 19.4 Diagram of Observe-only Input Cell

The simplified logic configuration of the output cells is shown in Figure 19.5.

Figure 19.5 Diagram of Output Cell

The output enable cells are also basically output cells. The simplified logic appears in Figure 19.6.

Input
Pin

shift_dr

From previous cell

clock_dr

D Q To next cell

To core logic

MU
X

Data from Core

Data from Previous Cell

shift_dr

To Next Cell

To Output Pad

clock_dr update_dr

MU
X

D Q D Q

EXTEST

MU
X

ence Manual 19 - 4 May 11, 2005

IDT JTAG Boundary Scan Instruction Register (IR)

79RC32438 User Refer

Notes

Figure 19.6 Diagram of Output Enable Cell

The bidirectional cells are composed of only two boundary scan cells. They contain one output enable
cell and one capture cell, which contains only one register. The input to this single register is selected via a
mux that is driven selected by the output enable cell when EXTEST is disabled. When the output enable
cell is driving a high out to the pad (which enables the pad for output) and EXTEST is disabled, the single
capture register will be configured to capture from the output signal from the core to the pad.

However, in the case where the Output Enable is low (signifying a tri-state condition at the pad) or
EXTEST is enabled, then the Capture Register will capture from the input from the pad. The configuration is
shown graphically in Figure 19.7.

Figure 19.7 Diagram of Bidirectional Cell

Instruction Register (IR)
The Instruction register allows an instruction to be shifted serially into the processor at the rising edge of

JTAG_TCK. The instruction is then used to select the test to be performed or the test register to be
accessed, or both. The instruction shifted into the register is latched at the completion of the shifting
process, when the TAP controller is at the Update-IR state.

D Q D Q

From Core

Data from previous cell

EXTEST

To output enable

clock_dr

shift_dr

update_dr

Output Enable

To next cell

MU
X

MU
X

From previous cell

Output Enable Cell
Output enable from core

EXTEST

Output from core

Input to core
Capture Cell

To next cell

I/O
PinMU

X

ence Manual 19 - 5 May 11, 2005

IDT JTAG Boundary Scan Instruction Register (IR)

79RC32438 User Refer

Notes
 The Instruction register contains six shift-register-based cells that can hold instruction data. This register
is decoded to perform the following functions:

– To select test data registers that may operate while the instruction is current. The other test data
registers should not interfere with chip operation and selected data registers.

– To define the serial test data register path used to shift data between JTAG_TDI and JTAG_TDO
during data register scanning.

The Instruction Register is comprised of 6 bits to decode instructions, as shown in Table 19.2.

EXTEST
The external test (EXTEST) instruction is used to control the boundary scan register, once it has been

initialized using the SAMPLE/PRELOAD instruction. Using EXTEST, the user can then sample inputs from
or load values onto the external pins of the RC32438. Once this instruction is selected, the user then uses
the SHIFT-DR TAP controller state to shift values into the boundary scan chain. When the TAP controller
passes through the UPDATE-DR state, these values will be latched onto the output pins or into the output
enables.

Instruction Definition Opcode

EXTEST Mandatory instruction allowing the testing of board level interconnections. Data is typ-
ically loaded onto the latched parallel outputs of the boundary scan shift register using
the SAMPLE/PRELOAD instruction prior to use of the EXTEST instruction. EXTEST
will then hold these values on the outputs while being executed. Also see the CLAMP
instruction for similar capability.

000000

SAMPLE/
PRELOAD

Mandatory instruction that allows data values to be loaded onto the latched parallel
output of the boundary-scan shift register prior to selection of the other boundary-
scan test instruction. The Sample instruction allows a snapshot of data flowing from
the system pins to the on-chip logic or vice versa.

000001

DEVICE_ID Provided to select Device Identification to read out manufacturer’s identity, part, and
version number.

000010

HIGHZ Tri-states all output and bidirectional boundary scan cells. 000011

RESERVED Behaviorally equivalent to the BYPASS instruction as per the IEEE std. 1149.1 speci-
fication. However, the user is advised to use the explicit BYPASS instruction.

000100 —
100011

UNUSED The unused instructions are behaviorally equivalent to the BYPASS instruction as per
the IEEE Std. 1149.1 specification. However, the user is advised to use the explicit
BYPASS instruction, as the internal usage of these currently unused instructions
could possibly vary in future implementations of the device.

100100 —
101100

VALIDATE Automatically loaded into the instruction register whenever the TAP controller passes
through the CAPTURE-IR state. The lower two bits ’01’ are mandated by the IEEE
std. 1149.1 specification.

101101

UNUSED Same as other UNUSED instructions above. 101110 —
111100

RESERVED Behaviorally equivalent to the BYPASS instruction as per the IEEE std. 1149.1 speci-
fication. However, the user is advised to use the explicit BYPASS instruction.

111101

CLAMP Provides JTAG user the option to bypass the part’s JTAG controller while keeping the
part outputs controlled similar to EXTEST.

111110

BYPASS The BYPASS instruction is used to truncate the boundary scan register as a single bit
in length.

111111

Table 19.2 Instructions Supported By RC32438’s JTAG Boundary Scan
ence Manual 19 - 6 May 11, 2005

IDT JTAG Boundary Scan Instruction Register (IR)

79RC32438 User Refer

Notes
 SAMPLE/PRELOAD
The sample/preload instruction has a dual use. The primary use of this instruction is for preloading the

boundary scan register prior to enabling the EXTEST instruction. Failure to preload will result in unknown
random data being driven onto the output pins when EXTEST is selected. The secondary function of
SAMPLE/PRELOAD is for sampling the system state at a particular moment. Using the SAMPLE function,
the user can halt the device at a certain state and shift out the status of all of the pins and output enables at
that time.

BYPASS
The BYPASS instruction is used to truncate the boundary scan register to a single bit in length. During

system level use of the JTAG, the boundary scan chains of all the devices on the board are connected in
series. In order to facilitate rapid testing of a given device, all other devices are put into BYPASS mode.
Therefore, instead of having to shift 499 times to get a value through the RC32438, the user only needs to
shift one time to get the value from JTAG_TDI to JTAG_TDO. When the TAP controller passes through the
CAPTURE-DR state, the value in the BYPASS register is updated to be 0.

If the device being used does not have a DEVICE_ID register, then the BYPASS instruction will automat-
ically be selected into the instruction register whenever the TAP controller is reset. Therefore, the first value
that will be shifted out of a device without a DEVICE_ID register is always 0. Devices such as the RC32438
that include a DEVICE_ID register will automatically load the DEVICE_ID instruction when the TAP
controller is reset, and they will shift out an initial value of 1. This is done to allow the user to easily distin-
guish between devices having DEVICE_ID registers and those that do not.

CLAMP
This instruction, listed as optional in the IEEE 1149.1 JTAG Specifications, allows the boundary scan

chain outputs to be clamped to fixed values. When the clamp instruction is issued, the scan chain will
bypass the RC32438 and pass through to devices further down the scan chain.

DEVICEID
The DEVICEID instruction is automatically loaded when the TAP controller state machine is reset either

by the use of the JTAG_TRST_N signal or by the application of a ‘1’ on JTAG_TMS for five or more cycles
of JTAG_TCK as per the IEEE Std 1149.1 specification. The least significant bit of this value must always
be 1. Therefore, if a device has a DEVICE_ID register, it will shift out a 1 on the first shift if it is brought
directly to the SHIFT-DR TAP controller state after the TAP controller is reset. The board- level tester can
then examine this bit and determine if the device contains a DEVICE_ID register (the first bit is a 1), or if the
device only contains a BYPASS register (the first bit is 0).

However, even if the device contains a DEVICE_ID register, it must also contain a BYPASS register. The
only difference is that the BYPASS register will not be the default register selected during the TAP controller
reset. When the DEVICE_ID instruction is active and the TAP controller is in the Shift-DR state, the thirty-
two bit value that will be shifted out of the device-ID register is 0x00022067.

Bit(s) Mnemonic Description R/W Reset

0 reserved reserved 0x1 R 1

11:1 Manuf_ID Manufacturer Identity (11 bits)
IDT 0x33

 R 0x33

27:12 Part_number Part Number (16 bits)
This field identifies the part number of the processor derivative.
For the RC32438 this value is: 0x0022

 R impl.
dep.

31:28 Version Version (4 bits)
This field identifies the version number of the processor derivative.
For the RC32438, this value is 0x0

 R impl.
dep.

Table 19.3 System Controller Device Identification Register
ence Manual 19 - 7 May 11, 2005

IDT JTAG Boundary Scan Usage Considerations

79RC32438 User Refer

Notes

VALIDATE
The VALIDATE instruction is automatically loaded into the instruction register whenever the TAP

controller passes through the CAPTURE-IR state. The lower two bits ‘01’ are mandated by the IEEE Std.
1149.1 specification.

RESERVED
Reserved instructions implement various test modes used in the device manufacturing process. The

user should not enable these instructions.

UNUSED1

The unused instructions are behaviorally equivalent to the BYPASS instruction as per the IEEE Std.
1149.1 specification. However, the user is advised to use the explicit BYPASS instruction as the internal
usage of these currently unused instructions could possibly vary in future implementations of the device.

Usage Considerations
As previously stated, there are internal pull-ups on JTAG_TRST_N, JTAG_TMS, and JTAG_TDI.

However, JTAG_TCK also needs to be driven to a known value. It is best to either drive a zero on the
JTAG_TCK pin when it is not being used or to use an external pull-down resistor. In order to guarantee that
the JTAG does not interfere with normal system operation, the TAP controller should be forced into the Test-
Logic-Reset controller state by continuously holding JTAG_TRST_N low and/or JTAG_TMS high when the
chip is in normal operation. If JTAG will not be used, externally pull-down JTAG_TRST_N low to disable it.

Version Part Number Vendor ID LSB

0000 0000|0000|0010|0010 0000|0110|011 1

Figure 19.8 System Controller Device ID Instruction Format

1. Any unused instruction is defaulted to the BYPASS instruction
ence Manual 19 - 8 May 11, 2005

Notes

79RC32438 User Reference Manual 20 - 1 M
Chapter 20
EJTAG System
Introduction
This chapter describes the behavior and organization of on-chip EJTAG hardware resources on the

RC32438 device. EJTAG is a hardware/software subsystem that provides comprehensive debugging and
performance tuning capabilities to system-on-a-chip components that include a MIPS CPU core. It exploits
the infrastructure provided by the IEEE 1149.1 JTAG Test Access Port (TAP) standard to provide an
external interface, and it extends the MIPS instruction set and privileged resource architectures to provide a
standard software architecture for integrated system debugging.

The EJTAG probe consists of third party hardware and software that connects to the standard JTAG
port. The probe will provide software drivers to handle breakpoints, single step, register inquiries, etc.

Functional Description
EJTAG provides a standard debug I/O interface, enabling the use of traditional MIPS debug facilities on

system-on-a-chip components. In addition, EJTAG provides the following new capabilities for software and
system debug:

Off-board EJTAG Memory
EJTAG allows the RC32438 device, when in Debug Mode, to reference instructions or data that are
not resident on the system. This EJTAG memory is mapped to the processor as if it were physical
memory, and references to it are converted into transactions on the TAP interface. Both instructions
and data can be accessed in EJTAG memory, which allows debugging of systems without requiring
the presence of a ROM monitor or debugger scratchpad RAM. It also provides a communications
channel between debug software executing on the processor and an external debugging agent.
Hardware Breakpoints
EJTAG introduces two types of hardware breakpoints, which can be configured to cause a debug
exception on:

– an instruction fetch from a specific virtual address
– a memory reference from a specific virtual address, which additionally can be qualified by a data

value.
These breakpoints can be used to implement watchpoints and breakpoints in programs executing
out of ROM or RAM.
Single-Step Execution
EJTAG provides support for single-step execution of programs and operating systems, without
requiring that the code reside in RAM.
System Access via the EJTAG TAP
EJTAG allows an external debugging agent connected to the EJTAG TAP to obtain information
about the configuration and state of the processor under test and to force processor entry into
Debug Mode. Debug software can then provide further system access via EJTAG memory.
Debug Breakpoint Instruction
EJTAG introduces a new breakpoint instruction, SDBBP, which differs from the MIPS32 and
MIPS64 BREAK instruction in that the resulting exception, like the single-step and hardware break-
point debug exceptions described above, places the processor in Debug Mode and can fetch its
associated handler code from EJTAG memory.
ay 11, 2005

IDT EJTAG System Functional Description

79RC32438 User Refer

Notes
 EJTAG Components
EJTAG hardware support consists of several distinct components: extensions to the MIPS processor

core, the EJTAG Test Access Port, the Debug Control Register, and the Hardware Breakpoint Unit. Figure
20.1 shows the relationship between these components on the RC32438 device.

Figure 20.1 Simplified EJTAG Block Diagram

Debug Control Register
The Debug Control Register (DCR) is a memory-mapped register that is implemented as part of the

processor core and indicates the availability and status of EJTAG features. The memory-mapped region
containing the DCR is available to software only in Debug Mode.

Hardware Breakpoint Unit
The Hardware Breakpoint Unit implements memory-mapped registers that control the instruction and

data hardware breakpoints. The memory-mapped region containing the hardware breakpoint registers is
accessible to software only in Debug Mode.

EJTAG hardware breakpoint support is implemented with the following functionality:
Supports 4 instructions
Supports 2 data hardware breakpoints
Breakpoint address comparisons for instruction and data hardware breakpoints optionally qualified
with a comparison of the MMU ASID
Data hardware breakpoints optionally qualified with a data value comparison

The presence or absence of hardware breakpoint capability is indicated to debug software in the DCR.
The number of breakpoints and the availability of optional qualifiers is indicated to debug software in the
instruction and data breakpoint status registers.

Processor

Coprocessor 0

MMU
(TLB) Cache

Controller

Bus Interface
Unit (BIU)

Memory
System
Interfaceand

Hardware
Breakpoint

Unit

PC
ADDR
ASID
TYPE
BYTELANE
DATA

Debug Control
Register (DCR)

Debug
Exception

Interrupt and
NMI Control, etc.

drseg
access
bus

EJTAG
TAP

Debug exception control, debug interrupt request, etc.

dmseg
access
bus

TAP

EJTAG features Non-EJTAG features
ence Manual 20 - 2 May 11, 2005

IDT EJTAG System Functional Description

79RC32438 User Refer

Notes
 Register and Memory Map Overview
This section summarizes the registers and special memory that are used for the EJTAG debug solution.

Coprocessor 0 Register
Table Table 20.1 summarizes the Coprocessor 0 (CP0) registers. These registers are accessible by the

debug software executed on the processor; they provide debug control and status information. General
information about the debug CP0 registers is found in section “EJTAG Coprocessor 0 Registers” on page
20-24.

Memory Mapped EJTAG Register
The memory-mapped EJTAG registers are located in the debug register segment (drseg), which is a

subsegment of the debug segment (dseg). They are accessible by the debug software when the processor
is executing in Debug Mode. These registers provide both miscellaneous debug control and control of hard-
ware breakpoints. General information about the debug segment and registers is found in section “Debug
Mode Address Space” on page 20-7.

Debug Control Register
Table 20.2 summarizes the Debug Control Register (DCR) which provides miscellaneous debug control.

Instruction Hardware Breakpoint Register
Table 20.3 summarizes the instruction hardware breakpoint registers, which are controlled through a

number of memory-mapped registers. Certain registers are provided for each implemented instruction hard-
ware breakpoint, as indicated with an “n”. General information about the instruction hardware breakpoint
registers is found in section “Instruction Breakpoint Registers” on page 20-43.

Register
Name

Register
Mnemonic Functional Description Reference

Debug Debug Debug indications and controls for the
processor, including information about
recent debug exception.

Refer to section “Debug
Register (CP0 Register 23,
Select 0)” on page 20-25.

Debug Exception
Program Counter

DEPC Program counter at last debug excep-
tion or exception in Debug Mode.

Refer to section “Debug
Exception Program Counter
Register (CP0 Register 24,
Select 0)” on page 20-29.

Debug Excep-
tion Save

DESAVE Scratchpad register available for the
debug handler.

Refer to section “Debug
Exception Save Register
(CP0 Register 31, Select 0)”
on page 20-30.

Table 20.1 Overview of Coprocessor 0 Registers for EJTAG

Register
Name

Register
Mnemonic Functional Description Reference

Debug Control
Register

DCR Indicates available EJTAG memory,
and controls enable of interrupts and
NMI in Non-Debug Mode.

Refer to section “Debug
Control Register” on page
20-30.

Table 20.2 Overview of Debug Control Register as Memory-mapped Register for EJTAG
ence Manual 20 - 3 May 11, 2005

IDT EJTAG System Functional Description

79RC32438 User Refer

Notes
Data Hardware Breakpoint Register
Table 20.4 summarizes the data hardware breakpoints, which are controlled through a number of

memory-mapped registers. Certain registers are provided for each implemented data hardware breakpoint,
as indicated with an “n”. General information about the data hardware breakpoint registers is found in
section “Data Breakpoint Registers” on page 20-47.

Register
Name

Register
Mnemonic Functional Description Reference

Instruction
Breakpoint
Status

IBS Indicates number of instruction hard-
ware breakpoints and status on a previ-
ous match.

See section “Instruction
Breakpoint Status (IBS)
Register” on page 20-43.

Instruction
Breakpoint
Address n

IBAn Address to compare for breakpoint n. See section “Instruction
Breakpoint Address n (IBAn)
Register” on page 20-44.

Instruction
Breakpoint
Address Mask n

IBMn Mask for address comparison for
breakpoint n.

See section “Instruction
Breakpoint Address Mask n
(IBMn) Register” on page
20-45.

Instruction
Breakpoint ASID
n

IBASIDn ASID value to compare for breakpoint
n.

See section “Instruction
Breakpoint ASID n
(IBASIDn) Register” on
page 20-45.

Instruction
Breakpoint Con-
trol n

IBCn Control of breakpoint n comparison of
ASID and generated event on match.

See section “Instruction
Breakpoint Control n (IBCn)
Register” on page 20-46.

Table 20.3 Overview of Instruction Hardware Breakpoint Registers

Register
Name

Register
Mnemonic Functional Description Reference

Data Breakpoint
Status

DBS Indicates number of data hardware
breakpoints and status on a previous
match.

See section “Data Break-
point Status (DBS) Register”
on page 20-47.

Data Breakpoint
Address n

DBAn Address to compare for breakpoint n. See section “Data Break-
point Address n (DBAn)
Register” on page 20-48.

Data Breakpoint
Address Mask n

DBMn Mask for address comparison for
breakpoint n.

See section “Data Break-
point Address Mask n
(DBMn) Register” on page
20-49.

Table 20.4 Overview of Data Hardware Breakpoint Registers (Part 1 of 2)
ence Manual 20 - 4 May 11, 2005

IDT EJTAG System Functional Description

79RC32438 User Refer

Notes
Memory-mapped EJTAG Memory
The memory-mapped EJTAG memory is located in the debug memory segment (dmseg), which is a

subsegment of the debug segment (dseg). It is accessible by the debug software when the processor is
executing in Debug Mode. The EJTAG probe handles all accesses to this segment through the Test Access
Port (TAP), whereby the processor has access to dedicated debug memory even if no debug memory was
originally located in the system. General information about the debug segment and memory is found in
section “Debug Mode Address Space” on page 20-7.

EJTAG Test Access Port Registers
The probe accesses EJTAG TAP registers (shown in Table 20.5) through the TAP, so the processor can

not access these registers. These registers allow specific control of the target processor through the TAP.
General information about the TAP registers is found in section “TAP Data Registers” on page 20-59.

Data Breakpoint
ASID n

DBASIDn ASID value to compare for breakpoint
n.

See section “Data Break-
point ASID n (DBASIDn)
Register” on page 20-49.

Data Breakpoint
Control n

DBCn Control of breakpoint n match on load/
store, data bytes, access to data bytes,
comparison of ASID, and generated
event on match.

See section “Data Break-
point Control n (DBCn) Reg-
ister” on page 20-49.

Data Breakpoint
Value n

DBVn Data value to match for breakpoint n. See section “Data Break-
point Value n (DBVn) Regis-
ter” on page 20-51.

Register
Name

Register
Mnemonic Functional Description Reference

Device ID none Identifies device and accessed processor in
the device.

See section “Device Identifi-
cation (ID) Register (TAP
Instruction IDCODE)” on
page 20-61.

Implementation none Identifies main debug features implemented
and accessible through the TAP.

See section “Implementa-
tion Register (TAP Instruc-
tion IMPCODE)” on page
20-61.

Data none Data register for processor accesses used
to support the EJTAG memory.

See section “Data Register
(TAP Instruction DATA,
ALL, or FASTDATA)” on
page 20-62.

Table 20.5 Overview of Test Access Port Registers (Part 1 of 2)

Register
Name

Register
Mnemonic Functional Description Reference

Table 20.4 Overview of Data Hardware Breakpoint Registers (Part 2 of 2)
ence Manual 20 - 5 May 11, 2005

IDT EJTAG System Pin Description

79RC32438 User Refer

Notes
Pin Description

EJTAG Processor Core Extensions

Overview
The extensions for EJTAG provide the following major features:

Address none Address register for processor access used
to support the EJTAG memory.

See section “Address Regis-
ter (TAP Instruction
ADDRESS or ALL)” on page
20-63.

EJTAG Control ECR Control register for most EJTAG features
used through the TAP.

See section “EJTAG Control
Register (ECR) (TAP
Instruction CONTROL or
ALL)” on page 20-64.

Bypass none Provides a one-bit shift path through the
TAP.

See section “Bypass Regis-
ter (TAP Instruction
BYPASS, (EJTAG/NOR-
MAL) BOOT, or Unused)”
on page 20-68.

Signal Type Name/Description

EJTAG_TMS I EJTAG Mode. The value on this signal controls the test mode select of the
EJTAG Controller. When using the JTAG boundary scan, this pin should be left
disconnected (since there is an internal pull-up) or driven high.

JTAG_TCK I JTAG Clock. This is an input test clock, used to clock the shifting of data into or
out of the boundary scan logic, JTAG Controller or the EJTAG Controller.
JTAG_TCK is independent of the system and the processor clock with nominal
50% duty cycle.

JTAG_TDI I JTAG Data Input. This is the serial data input to the boundary scan logic, JTAG
Controller, or the EJTAG Controller.

JTAG_TDO O JTAG Data Output. This is the serial data shifted out from the boundary scan
logic, JTAG Controller, or the EJTAG Controller. When no data is being shifted
out, this signal is tri-stated.

JTAG_TMS I JTAG Mode. The value on this signal controls the test mode select of the
boundary scan logic or JTAG Controller. When using the EJTAG debug inter-
face, this pin should be left disconnected (since there is an internal pull-up) or
driven high.

JTAG_TRST_N I JTAG Reset. This active low signal asynchronously resets the boundary scan
logic, JTAG TAP Controller, and the EJTAG Debug TAP Controller. An external
pull-up on the board is recommended to meet the JTAG specification in cases
where the tester can access this signal, however, specific systems when run-
ning in functional mode ordinarily should either:
1) actively drive this signal low with control logic
2) statically drive this signal low with an external pull-down on the board
3) clock JTAG_TCK while holding EJTAG_TMS and/or JTAG_TMS high.

Table 20.6 JTAG / EJTAG Pin Description

Register
Name

Register
Mnemonic Functional Description Reference

Table 20.5 Overview of Test Access Port Registers (Part 2 of 2)
ence Manual 20 - 6 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 Debug Mode, associated exceptions and dedicated debug vector
Instruction set extensions: SDBBP (Software Debug Breakpoint) and DERET (Debug Exception
Return)
CP0 registers: Debug, DEPC and DESAVE
Memory-mapped debug segment (dseg)
Interrupt and NMI control
Single step
Debug interrupt request signal

Debug Mode Execution
Debug Mode is entered only through a debug exception. It is exited as a result of either execution of a

DERET instruction or application of a reset or soft reset.
When the processor is operating in Debug Mode it has access to the same resources, instructions, and

CP0 registers as in Kernel Mode. Restrictions on Kernel Mode access (non-zero coprocessor references,
access to extended addressing controlled by UX, SX, KX, etc.) apply equally to Debug Mode, but Debug
Mode provides some additional capabilities as described in this chapter.

Other processor modes (Kernel Mode, Supervisor Mode, User Mode) are collectively considered as
Non-Debug Mode. Debug software can determine if the processor is in Non-Debug Mode or Debug Mode
through the DM bit in the Debug register.

Debug Mode Instruction Set
The full native ISA of the processor is accessible in Debug Mode. Coprocessor loads and stores to the

dseg segment are not supported. The operation of the processor is UNDEFINED if a coprocessor load or
store to dseg is executed in Debug Mode. Refer to section “Debug Mode Address Space” on page 20-7 for
more information on the dseg address space.

Debug Mode Address Space
Debug Mode access to unmapped address space is identical to that of Kernel Mode. Mapped areas are

accessible as in Kernel Mode, but only if a valid translation is possible immediately by the MMU. The
reason is that a memory accesses that would cause an TLB-type exception if tried from Kernel Mode will
cause re-entry into Debug Mode (see section “Debug Mode Exceptions” on page 20-19) through an excep-
tion if the memory access is tried while in Debug Mode. Memory accesses usually causing TLB-type excep-
tion are therefore not handled by the usual memory management routines if these memory accesses are
made while in Debug Mode. Updating and handling of cached areas is the same as that in Kernel Mode.

In addition, an uncached and unmapped debug segment dseg (EJTAG area) appears in the address
range 0xFF20 0000 to 0xFF3F FFFF. The dseg thereby appears in the kseg part of the compatibility
segment, and access to kseg is possible with dseg provided as described in section “Debug Mode Address
Space” on page 20-7. Coprocessor loads and stores to dseg are not allowed.

The dseg area is implemented only if the Debug Control Register (DCR) is included in the implementa-
tion. Refer to “Debug Control Register” on page 20-30 for additional information on the DCR. The imple-
mentation-dependent value of the NoDCR bit in the Debug register (see section “Debug Register (CP0
Register 23, Select 0)” on page 20-25) indicates the presence of the dseg segment as shown in Table 20.7.
If dseg is not present, then all transactions from the processor in Debug Mode go to the Kernel Mode
address space. Debug software must check the DebugNoDCR bit before trying to access the dseg
segment.
ence Manual 20 - 7 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
Conditions for access to dseg are described in section “Access to dmseg (EJTAG memory) Address
Range” on page 20-9 and section “Access to drseg (EJTAG Registers) Address Range” on page 20-10.
Figure 2-1 shows the layout of the virtual address space.

Figure 20.2 Virtual Address Spaces with Debug Mode Segments

NoDCR bit in Debug Register dseg
Presence

0 dseg present

1 no dseg

Table 20.7 Overview of Test Access Port Registers

0x4000 0000

0x8000 0000

Virtual Memory Address Space 32-bit Compatibility Address Space
0xFFFF FFFF

0xE000 0000

0xC000 0000

0xA000 0000

0x8000 0000

0x7FFF FFFF

0x0000 00000

0xC000 0000
xkseg

xkphys

xsseg

xuseg

useg

kseg0

kseg1

sseg

kseg3

Kernel
Unmapped

Kernel
Mapped

Supervisor
Mapped

Kernel
Unmapped
Uncached

User
Mapped

Kernel
Mapped

Supervisor
Mapped

Kernel
Unmapped

User
Mapped 231-byte Compatibility Segment

231-byte Compatibility Segment

User
Mapped

Debug
Unmapped
Uncached

0xFF3F FFFF

dseg

0xFF20 0000

Debug Mode Segment

The dseg appears at an address
range also used for access to
kseg. However, kseg is still
available when in Debug Mode.
ence Manual 20 - 8 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 The dseg segment is subdivided into dmseg (EJTAG memory) segment and the drseg (EJTAG regis-
ters) segment. The dmseg segment is used when the probe services the memory segment. The drseg
segment is used when the memory-mapped debug registers are accessed. Table 20.8 shows the subdivi-
sion and attributes for the segments.

The SYNC instruction, followed by appropriate spacing (as described in section “SYNC Instruction
Behavior” on page 20-11 and section “CP0 and dseg Hazards” on page 20-12) must be executed to ensure
that an access to dseg is committed (for example, after writing to dseg and before leaving Debug Mode).
This procedure ensures that locations in dseg are fully updated for Non-Debug Mode, otherwise behavior of
the processor is UNDEFINED.

Access to dmseg (EJTAG memory) Address Range
Table 20.9 shows the behavior of processor accesses in Debug Mode to the dmseg address range from

0xFF20 0000 to 0xFF2F FFFF.

Segment
Name

Subseg-
ment
Name

Virtual
Address Reference Address Cache

Attribute

dseg dmsg 0xFF20 0000
to

0xFF2F FFFF

Because the dseg address range is serviced
exclusively by the EJTAG features, there are
no physical address per se. Instead the lower
21 bits of the virtual address select the
appropriate reference in either EJTAG mem-
ory or registers.
References are not mapped through the TLB,
nor do the accesses appear on the external
system memory interface.

Uncached

dreg 0xFF30 0000
to

0xFF3F FFFF

Table 20.8 Physical Address and Cache Attribute for dseg’s dmsg and drseg

NoDCR
bit in

Debug
Register

Trans-
action

ProbEn bit
in DCR

Register

LSNM bit in
Debug

Register
Access

1 x1

1. x = don’t care

(Not present) 0 (read only) Kernel Mode address space

0 Fetch 1 x dmseg

0 x See note below table on
ProbEn behavior

Load/Store 1 0 dmseg

1 Kernel Mode address space

0 1 Kernel Mode address space

0 See note below table on
ProbEn behavior

Table 20.9 Access to dmseg Address Range
ence Manual 20 - 9 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 Note: When ProbEn equals 0 for dmseg accesses, debug software accessed dmseg when the
ProbEn bit was 0, indicating that there is no probe available to service the request. Debug
software must read the state of the ProbEn bit in the DCR register before attempting to reference
dmseg. However, accessing dmseg while ProbEn is 0 can occur because there is an inherent
race between the debug software sampling the ProbEn bit as 1 and the probe clearing it to 0. The
probe can therefore not assume that a reference to dmseg never occurs if the ProbEn bit is
dynamically cleared to 0. If debug software references dmseg when ProbEn is 0, the reference
hangs until it is satisfied by the probe.

There are no timing requirements with respect to transactions to dmseg, which the probe services.
Therefore, a system watchdog must be disabled during dseg transactions, so accesses can take any
amount of time without being terminated. The protocol for accesses to dmseg does not allow a transaction
to be aborted once started, except by a reset or soft reset. Transactions of all sizes are allowed to dmseg.

Merging is allowed for accesses to dmseg, whereby for example two byte accesses can be merged to
one halfword access, and debug software is thus required to allow merging. However, merging must only
occur for accesses which can be combined into legal processors accesses, since processor access can
only indicate accesses which can occur due to a single load/store, thus not for example accesses to only
first and last bytes of a word. The SYNC instruction, followed by appropriate spacing, can be executed to
ensure that earlier accesses to dmseg are committed thus will not be merged with later accesses.

The processor can do speculative fetching from dmseg whereby it can fetch doublewords even if an
instruction that is not required in the execution flow is thereby fetched. For example, if the DERET instruc-
tion is fetched as the first word of a doubleword, the instruction in the second word is not executed. For
details, refer to architecture description covering speculative fetching from uncached area in general.

If the TAP is not present in the implementation, the operation of the processor is UNDEFINED if the
dmseg is accessed.

Access to drseg (EJTAG Registers) Address Range

Note: Instruction fetches from drseg are not allowed. The operation of the processor is
UNDEFINED if the processor tries to fetch from drseg.

When the NoDCR bit is 0 in the Debug register, it indicates that the processor is allowed to access the
entire drseg segment and can therefore respond to all transactions to drseg.

The DCR register, at offset 0x0000 in drseg, is always available if dseg is present. Debug software is
expected to read the DCR register to determine what other memory-mapped registers exist in drseg. The
value returned in response to a read of any un-implemented memory-mapped register is UNPREDICT-
ABLE, and writes are ignored to any un-implemented register in drseg. The allowed transaction size is
limited for drseg. Only word size transactions are allowed for 32-bit processors, and only doubleword size
transactions are allowed for 64-bit processors. Operation of the processor is UNDEFINED for other transac-
tion sizes.

NoDCR
bit in

Debug
Register

Trans-
action

LSNM bit in
Debug

Register
Access

1 x1

1. x = don’t care

0 (read only) Kernel Mode address space

Fetch x Operation of the processor is UNDE-
FINED at fetch.

Load/Store 0 drseg

1 Kernel Mode address space

Table 20.10 Access to drseg Address Range
ence Manual 20 - 10 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 Debug Mode Handling of Processor Resources
Unless otherwise specified, the processor resources in Debug Mode are handled identically to those in

Kernel Mode. Some identical cases are described in the following sections for emphasis. In addition, see
the following related sections for more information:

“Debug Mode Exceptions” on page 20-19 covering exception handling in Debug Mode.
“Interrupts and NMIs” on page 20-21 for handling in both Debug and Non-Debug Modes.
“Reset and Soft Reset of Processor” on page 20-22 for handling in both Debug and Non-Debug Modes.
Coprocessors
A Debug Mode Coprocessor Unusable exception is raised under the same conditions as for a Copro-

cessor Unusable exception in Kernel Mode (see section “Exceptions Taken in Debug Mode” on page 20-
19). Therefore, Debug Mode software cannot reference Coprocessors 1 through 2 without first setting the
respective enable in the Status register.

Random Register
The Random register (CP0 register 1, select 0) can be frozen in Debug Mode, whereby execution with

and without debug exceptions are identical with respect to TLB exception handling. If the values that the
Random register provides cannot be identical in behavior to the case where debug exceptions do not occur,
then freezing the Random register has no effect, because execution with and without debug exceptions will
not be identical. Stalls when entering Debug Mode (for example, due to pending scheduled loads resolved
at context save in the debug handler) can make it impossible in some implementations to ensure that the
Random register will provide the same set of values when running with and without debug exceptions.

There is no bit to indicate or control if the Random register is frozen in Debug Mode, so the user must
consult system documentation.

Counter Register
The Count register (CP0 register 9) operation in Debug Mode depends on the state of the CountDM bit

in the Debug register (see section “Debug Register (CP0 Register 23, Select 0)” on page 20-25). The Count
Register has three possible configurations, depending on the implementation:

– Count register runs in Debug Mode the same as in Non-Debug Mode
– Count register is stopped in Debug Mode but is running in Non-Debug Mode
– The CountDM bit controls the Count register behavior in Debug Mode whereby it can be either

running or stopped.
Stopping of the Count register in Debug Mode is allowed in order to prevent generation of an interrupt at

every return to Non-Debug Mode, if the debug handler takes so long to execute that the Count/Compare
registers request an interrupt. In this case, system timing behavior might not be the same as if no debug
exception occurred.

WatchLo/WatchHi Registers
The WatchLo/WatchHi registers (CP0 Registers 18 and 19) are inhibited from matching any instruction

executed in Debug Mode.
Load Linked (LL/LLD) and Store Conditional (SC/SCD) Instruction Pair
A DERET instruction does not clear the LLbit (see section “DERET Instruction” on page 20-24), neither

does the occurrence of a debug exception. Loads and stores to uncacheable locations that do not match
the physical address of the previous LL instruction do not affect the result of SC instruction. The value of the
LLbit is not directly visible by software.

SYNC Instruction Behavior
The SYNC instruction is used to request the hardware to commit certain operations before proceeding.

For example, a SYNC is required to remove memory hazards on reference to dseg. Also, the SYNC instruc-
tion ensures that status bits in the Debug register and the hardware breakpoint registers are fully updated
ence Manual 20 - 11 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 before the debug handler accesses them and before Debug Mode is exited. Similarly, a SYNC combined
with appropriate spacing is used to remove Coprocessor 0 (CP0) hazards (see the next section, CP0 and
dseg Hazards). The SYNC instruction must provide specific behavior as described in Table 20.11.

The SYNC instruction must be executed before leaving Debug Mode in order to commit all accesses to
dseg, such as accesses to set up hardware breakpoints. It may be necessary to remove hazards in relation
to the SYNC instruction. Other requirements of the SYNC instruction is described in the MIPS32 and
MIPS64 specifications.

CP0 and dseg Hazards
Because resources controlled via Coprocessor 0 and EJTAG memory and registers in dseg affect the

operation of various pipeline stages of the processor, manipulation of these resources may produce results
that are not detectable by subsequent instructions for some number of execution cycles. When no hard-
ware interlock exists between one instruction that causes an effect that is visible to a second instruction, a
CP0 or dseg hazard exists.

Implementations can place the entire burden on the debug software to pad the instruction stream in
such a way that the second instruction is spaced far enough from the first that the effects of the first are
seen by the second. Otherwise, the implementations can add full hardware interlocks such that the debug
software need not pad. The trade-off is between debug software changes for each new processor vs. more
complex hardware interlocks required in the processor. The EJTAG Architecture does not dictate the solu-
tion that is required for a compatible implementation. The choice of implementation ranges from full hard-
ware interlocks to full dependence on debug software padding, to some combination of the two. For an
implementation choice that relies on debug software padding, see Table 20.12 which lists the “typical”
spacing required to allow the consumer to eliminate the hazard. The “required” values shown in this table
represent spacing that is required to be used by debug software. An implementation which requires less
spacing to clear the hazard (including one which has full hardware interlocking) should operate correctly
with the debug software that uses this hazard table. An implementation which requires more spacing to
clear the hazard incurs the burden of validating debug software against the new hazard requirements.

Behavior References

Commit accesses to dseg See section “Debug Mode Address
Space” on page 20-7.

Update the DDBLImpr and DDBSImpr bits in the
Debug register

See section “Debug Data Break
Load/Store Imprecise Exception”
on page 20-17 and section “Debug
Register (CP0 Register 23, Select
0)” on page 20-25.

Update the BS bits in the IBS and DBS registers
in drseg

See section “Debug Exception by
Data Breakpoint” on page 20-40.

Update the IBusEP, DBusEP, CacheEP, and
MCheckP bits in the Debug register

See section “Exceptions on Impre-
cise Errors” on page 20-20 and
section “Debug Register (CP0
Register 23, Select 0)” on page 20-
25.

Table 20.11 SYNC Instruction References
ence Manual 20 - 12 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
Dependencies from the SYNC instruction as producer takes effect since specific updates of dseg
memory and resolving of pending imprecise exception indications are triggered by the SYNC instruction.
This is described in the SYNC Instruction Behavior section. Note that, for superscalar MIPS implementa-
tions, the number of instructions issued per cycle may be greater than one, and thus that the duration of the
hazard in instructions may be greater than the duration in cycles. For this reason, the SSNOP instruction is
defined to convert instruction issues to cycles in a superscalar design.

SSNOP Instruction Behavior
The SSNOP instruction ensures that instructions are executed and not eliminated by processors during

optimization. The SSNOP instruction can be used, for example, with execution of the SYNC and MTC0/
DMTC0 instruction to remove CP0 and dseg hazards.

Debug Exceptions
Debug exceptions bring the processor from Non-Debug Mode into Debug Mode. Implementations need

only support those debug exceptions that are applicable to that implementation. Exceptions can occur in
Debug Mode, and these are denoted as debug mode exceptions. These exceptions are handled differently
from exceptions that occur in Non-Debug Mode, as described in section “Debug Mode Exceptions” on page
20-19.

Debug Exception Priorities
Table 20.13 lists the exceptions that can occur in Non-Debug Mode in order of priority, from highest to

lowest. The table also categorizes each exception with respect to type (debug or non-debug). Each debug
exception has an associated status bit in the Debug register (indicated in the table in parentheses). For
additional information, refer to section “Debug Register (CP0 Register 23, Select 0)” on page 20-25.

Producer → Consumer Hazard On
“Required”

spacing
(cycles)

SYNC → DERET dseg memory locations 2

SYNC → Load/Store BS bits in the IBS and
DBS registers in drseg

2

SYNC → MFCO Debug DebugDDBSImpr
DebugDDBLImpr
DebugIBusEP
DebugDBusEP
DebugCacheEP
DebugMCheckP

2

MTCO DEPC → DEPC 2

MTCO Debug → DERET Debug 2

MTCO Debug[LSNM] → lOAD/sTORE IN
DSEG

Debug[LSNM] 3

MTCO Debug[IEXI] → Instructions that can
cause an imprecise
exception

Debug[IEXI] 3

Table 20.12 “Required” CP0 and dseg Hazard Spacing
ence Manual 20 - 13 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
The specific implementation determines which exceptions can occur and the priority of asynchronous
exceptions, such as interrupts.

Debug Exception Vector Location
The same debug exception vector location is used for all debug exceptions. The ProbTrap bit in the

EJTAG Control Register (ECR) in the optional Test Access Port (TAP) determines the vector location.

Priority Exception Exception
Type

Highest Reset Non-Debug

Soft Reset

Debug Single Step Debug

Debug Interrupt; by external signal (DINT), from
EjtagBrk in TAP, or through use of EJTAG Boot.

Debug Data Break Load/Store Imprecise
(DDBLImpr/DDBSImpr).

Nonmaskable Interrupt (NMI) Non-Debug

Machine Check

Interrupt

Deferred Watch

Debug Instruction Break Debug

Watch on instruction fetch Non-Debug

Address error on instruction fetch

TLB refill on instruction Ifetch

TLB Invalid on instruction Ifetch

Cache error on instruction Ifetch

Bus error on instruction Ifetch

Debug Breakpoint; execution of SDBBP instruc-
tion

Debug

Other execution-based exceptions Non-Debug

Debug Data Break on Load/Store address
match only or Debug Data Break on Store
address+data value match

Debug

Watch on data access Non-Debug

Address error on data access

TLB Refill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Lowest Debug Data Break on Load address+data match Debug

Table 20.13 Priority of Non-Debug and Debug Exceptions
ence Manual 20 - 14 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
General Debug Exception Processing
All debug exceptions have the same basic processing flow:

The DEPC register is loaded with the PC at which execution can be restarted, and the DBD bit is
set to indicate whether the last debug exception occurred in a branch delay slot. The value loaded
into the DEPC register is either the current PC (if the instruction is not in the delay slot of a branch)
or the PC of the branch or jump (if the instruction is in the delay slot of a branch or jump).
The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register are
updated appropriately depending on the debug exception.
DExcCode field in the Debug register is undefined.
Halt and Doze bits in the Debug register are updated appropriately.
IEXI bit is set to inhibit imprecise exceptions in the start of the debug handler.
DM bit in the Debug register is set to 1.
The processor begins fetching instructions from the debug exception vector.

The value loaded into the DEPC register represents the restart address from the debug exception and
does not need to be modified by the debug exception handler software. Debug software need only look at
the DBD bit in the Debug register if it wishes to identify the address of the instruction that actually caused a
precise debug exception.

The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register indicate
the occurrence of distinct debug exceptions, except when a Debug Data Break Load/Store Imprecise
exception occurs (see section “Debug Data Break Load/Store Imprecise Exception” on page 20-17). Note
that occurrence of an exception while in Debug mode will clear these bits. The handler can thereby deter-
mine whether an debug exception or an exception in Debug Mode occurred. No other CP0 registers or
fields are changed due to the debug exception, thus no additional state is saved. The overall exception
processing flow is shown below:

Operation:
if (InstructionInBranchDelaySlot) then

DEPC ¨ BranchInstructionPC
DebugDBD ¨ 1

else
DEPC ¨ PC
DebugDBD ¨ 0

endif
DebugDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ¨ DebugExceptionType

DebugDExcCode ¨ UNPREDICTABLE
DebugHalt ¨ HaltStatusAtDebugException
DebugDoze ¨ DozeStatusAtDebugException
DebugIEXI ¨ 1

ProbTrap bit in ECR
Register

Debug Exception
Vector Address

0 0xBFC0 0480

1 0xFF20 0200 in dmseg

Table 20.14 Debug Exception Vector Location
ence Manual 20 - 15 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 DebugDM ¨ 1
if ECRProbTrap = 1 then

PC ¨ 0xFF20 0200
else

PC ¨ 0xBFC0 0480
endif

Debug Breakpoint Exception
A Debug Breakpoint exception occurs when an SDBBP instruction is executed. The contents of the

DEPC register and the DBD bit in the Debug register indicate that the SDBBP instruction caused the debug
exception.

Debug Register Debug Status Bit Set
DBp
Additional State Saved
None
Entry Vector Used
Debug exception vector

Debug Instruction Break Exception
A Debug Instruction Break exception occurs when an instruction hardware breakpoint matches an

executed instruction. The DEPC register and DBD bit in the Debug register indicate the instruction that
caused the instruction hardware breakpoint match.

Debug Register Debug Status Bit Set
DIB
Additional State Saved
None
Entry Vector Used
Debug exception vector

Debug Data Break Load/Store Exception
A Debug Data Break Load/Store exception occurs when a data hardware breakpoint matches the load/

store address of an executed load/store instruction. The DEPC register and DBD bit in the Debug register
indicate the load/store instruction that caused the data hardware breakpoint to match, as this is a precise
debug exception. The load/store instruction that caused the debug exception has not completed (it has not
updated the destination register or memory location), and the instruction therefore is executed on return
from the debug handler.

Debug Register Debug Status Bit Set
DDBL for a load instruction or DDBS for a store instruction
Additional State Saved
None
Entry Vector Used
Debug exception vector
ence Manual 20 - 16 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 Debug Data Break Load/Store Imprecise Exception
A Debug Data Break Load/Store Imprecise exception occurs when a data hardware breakpoint matches

a load/store access of an executed load/store instruction, if it is not possible to take a precise debug excep-
tion on the instruction. This case occurs when a data hardware breakpoint was set up with a value
compare, and a load access did not return data until after the load instruction had left the pipeline as for
non-blocking loads. The DEPC register and the DBD bit in the Debug register indicate an instruction later in
the execution flow instead of the load/store instruction that caused the data hardware breakpoint to match.
The DDBLImpr/DDBSImpr bits in the Debug register indicate that a Debug Data Break Load/Store Impre-
cise exception occurred. The instruction that caused the Debug Data Break Load/Store Imprecise excep-
tion will have completed. It updates its destination register, and is not executed on return from the debug
handler.

Imprecise debug exceptions from data hardware breakpoints are indicated together with another debug
exception if the load/store transaction that made the data hardware breakpoint match did not complete until
after another debug exception occurred. In this case, the other debug exception was the cause of entering
Debug Mode, so the DEPC register and the DBD bit in Debug register point to this instruction. DDBLImpr/
DDBSImpr are set concurrently with the status bit for that debug exception.

The SYNC instruction, followed by appropriate spacing (as described in section “SYNC Instruction
Behavior” on page 20-11 and section “CP0 and dseg Hazards” on page 20-12), must be executed in Debug
Mode before the DDBLImpr and DDBSImpr bits in the Debug register and the BS bits for the data hardware
breakpoint are read in order to ensure that all imprecise breaks are resolved and the bits are fully updated.
A match of the data hardware breakpoint is indicated in DDBLImpr/DDBSImpr so the debug handler can
handle this together with the debug exception.

This scheme ensures that all breakpoints matching due to code executed before the debug exception
are indicated by the DDBLImpr, DDBSImpr, and BS bits for the following debug handler. Matches are
neither queued nor do they cause debug exceptions at a later point. A debug exception occurring later than
the debug exception handler is therefor caused by code executed in Non-Debug Mode after the debug
exception handler.

Debug Register Debug Status Bit Set
DDBLImpr for a load instruction or DDBSImpr for a store instruction
Additional State Saved
None
Entry Vector Used
Debug exception vector

Debug Single Step Exception
When single-step mode is enabled, a Debug Single Step exception occurs each time the processor has

taken a single execution step in Non-Debug Mode. An execution step is a single instruction, or an instruc-
tion pair consisting of a jump/branch instruction and the instruction in the associated delay slot. The SSt bit
in the Debug register enables Debug Single Step exceptions. They are disabled on the first execution step
after a DERET.

The DEPC register points to the instruction on which the Debug Single Step exception occurred, which
is also the next instruction to execute when returning from Debug Mode. The debug software can examine
the system state before this instruction is executed. Thus, the DEPC will not point to the instruction(s) that
have just executed in the execution step, but rather the instruction following the execution step. The Debug
Single Step exception never occurs on an instruction in a jump/branch delay slot, because the jump/branch
and the instruction in the delay slot are always executed in one execution step; thus the DBD bit in the
Debug register is never set for a Debug Single Step exception.
ence Manual 20 - 17 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 Exceptions occurring on the instruction(s) in the execution step are taken regardless, so if a non-debug
exception occurs (other than reset or soft reset), a Debug Single Step exception is taken on the first instruc-
tion in the non-debug exception handler. The non-debug exception occurs during the execution step, and
the instruction(s) that received a non-debug exception counts as the execution step.

Debug exceptions are unaffected by single-step mode; returning to an SDBBP instruction with single
step enabled causes a Debug Breakpoint exception with the DEPC register pointing to the SDBBP instruc-
tion. Also, returning to an instruction (not jump/branch) just before the SDBBP instruction causes a Debug
Single Step exception with the DEPC register pointing to the SDBBP instruction.

To ensure proper functionality of single-step execution, the Debug Single Step exception has priority
over all exceptions, except resets and soft resets.

Debug Single Step exception is only possible when the NoSSt bit in the Debug register is 0 (see section
“Debug Register (CP0 Register 23, Select 0)” on page 20-25).

Debug Register Debug Status Bit Set
DSS
Additional State Saved
None
Entry Vector Used
Debug exception vector

Debug Interrupt Exception
The Debug Interrupt exception is an asynchronous debug exception that is taken as soon as possible,

but with no specific relation to the executed instructions. The DEPC register and the DBD bit in the Debug
register reference the instruction at which execution can be resumed after Debug Interrupt exception
service.

Debug interrupt requests are ignored when the processor is in Debug Mode, and pending requests are
cleared when the processor takes any debug exception, including debug exceptions other than Debug
Interrupt exceptions.

A debug interrupt restarts the pipeline if stopped by a WAIT instruction and the processor clock is
restarted if it was stopped due to a low-power mode.

Debug Register Debug Status Bit Set
DINT
Additional State Saved
None
Entry Vector Used
Debug exception vector
The possible sources for debug interrupts depend on the implementation. The following sources can

cause Debug Interrupt exceptions:
The DINT signal from the probe

Note: This signal is not connected on the RC32438.
The EjtagBrk Bit in the EJTAG Control Register
The EjtagBrk bit in the EJTAG Control register requests a Debug Interrupt exception when set (see
section “EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)” on page 20-64).
A debug boot by EJTAGBOOT
The EJTAGBOOT feature allows a debug interrupt to be requested immediately after a reset or soft
reset has occurred (see section “EJTAGBOOT Feature” on page 20-22 and section “EJTAGBOOT
and NORMALBOOT Instructions” on page 20-59).
ence Manual 20 - 18 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 An implementation-specific debug interrupt signal to the processor
Through the availability of an optional debug interrupt request signal to the processor system, an
external device can request a Debug Interrupt exception, for example, when a signal goes from
deasserted to asserted.

Debug Mode Exceptions
The handling of exceptions generated in Debug Mode, other than through resets and soft resets, differs

from those exceptions generated in Non-Debug Mode in that only the Debug and DEPC registers are
updated. All other CP0 registers are unchanged by an exception taken in Debug Mode. The exception
vector is equal to the debug exception vector (see section “Debug Exception Vector Location” on page 20-
14), and the processor stays in Debug Mode.

Reset and soft reset are handled as when occurring in Non-Debug Mode (see section “Reset and Soft
Reset of Processor” on page 20-22).

Exceptions Taken in Debug Mode
Only some Non-Debug Mode exception events cause exceptions while in Debug Mode. Remaining

events are blocked. Exceptions occurring in Debug Mode have the same relative priorities as the Non-
Debug Mode exceptions for the same exception event. These exceptions are called Debug Mode <Non-
Debug Mode exception name>. For example, a Debug Mode Breakpoint exception is caused by execution
of a BREAK instruction in Debug Mode, and a Debug Mode Address Error exception is caused by an
address error due to an instruction executed in Debug Mode.

Table 20.15 lists all the Debug Mode exceptions with their corresponding non-debug exception event
names, priorities, and handling.

Priority Event in Debug Mode Debug Mode Handling

Highest Reset Reset and soft reset handled as
for Non-Debug Mode, see sec-
tion “Reset and Soft Reset of
Processor” on page 20-22.

Soft Reset

Debug Single Step Blocked

Debug Interrupt

Debug Data Break Load/Store Imprecise

NMI

Machine Check Re-enter Debug Mode

Interrupt Blocked

Deferred Watch

Debug Instruction Break, DIB

Watch on instruction fetch

Address error on instruction Ifetch Re-enter Debug Mode

TLB refill on instruction Ifetch

TLB Invalid on instruction Ifetch

Cache error on instruction Ifetch

Bus error on instruction Ifetch

Table 20.15 Priority of Non-Debug and Debug Exceptions (Part 1 of 2)
ence Manual 20 - 19 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
The specific implementation determines which exceptions can occur. Exceptions that are blocked in
Debug Mode are simply ignored, not causing updates in any state.

Handling of the exceptions causing Debug Mode re-enter are described below.

Exceptions on Imprecise Errors
Exceptions on imprecise errors are possible in Debug Mode due to a bus error on an instruction fetch or

data access, cache error, or machine check.
The IEXI bit in the Debug register blocks imprecise error exceptions on entry or re-entry into Debug

Mode. They can be re-enabled by the debug exception handler once sufficient context has been saved to
allow a safe re-entry into Debug Mode and the debug handler.

Pending exceptions due to instruction fetch bus errors, data access bus errors, cache errors, and
machine checks are indicated and controlled by the IBusEP, DBusEP, CacheEP and MCheckP bit in the
Debug register.

The SYNC instruction, followed by appropriate spacing, must be executed in Debug Mode before the
IBusEP, DBusEP, CacheEP, and MCheckP bits are read in order to ensure that all pending causes for
imprecise errors are resolved and all bits are fully updated.

Those bits required to handle the possible imprecise errors in an implementation are implemented as R/
W, otherwise they are read only.

Debug Mode Exception Processing
All exceptions that are allowed in Debug Mode (except for reset and soft reset) have the same basic

processing flow:
The DEPC register is loaded with the PC at which execution will be restarted and the DBD bit is set
appropriately in the Debug register. The value loaded into the DEPC register is either the current
PC (if the instruction is not in the delay slot of a branch or jump) or the PC of the branch or jump if
the instruction is in the delay slot of a branch or jump).
The DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr bits in the Debug register are
all cleared to differentiate from debug exceptions where at least one of the bits are set.
The DExcCode field in the Debug register is updated to indicate the type of exception that occurred.

Debug Breakpoint; execution of SDBBP instruc-
tion

Re-enter Debug Mode as for
execution of the BREAK instruc-
tion

Other execution-based exceptions Re-enter Debug Mode

Debug Data Break Load/Store address match
only or Debug Data Break Store address+data
value match

Blocked

Watch on data access

Address error on data access Re-enter Debug Mode

TLB Refill on data access

TLB Invalid on data access

TLB Modified on data access

Cache error on data access

Bus error on data access

Lowest Debug Data Break on Load address+data match Blocked

Priority Event in Debug Mode Debug Mode Handling

Table 20.15 Priority of Non-Debug and Debug Exceptions (Part 2 of 2)
ence Manual 20 - 20 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 The Halt and Doze bits in the Debug register are UNPREDICTABLE.
The IEXI bit is set to inhibit imprecise exceptions at the start of the debug handler.
The DM bit in the Debug register is unchanged, leaving the processor in Debug Mode.
The processor is started at the debug exception vector, specified in section “Debug Exception Vec-
tor Location” on page 20-14.

The value loaded into the DEPC register represents the restart address for the exception. Typically,
debug software does not need to modify this value at the location of the debug exception. Debug software
need not look at the DBD bit in the Debug register unless it wishes to identify the address of the instruction
that actually caused the exception in Debug Mode.

It is the responsibility of the debug handler to save the contents of the Debug, DEPC, and DESAVE
registers before nested entries into the handler at the debug exception vector can occur. The handler
returns to the debug exception handler by a jump instruction, not a DERET, in order to kept the processor in
Debug Mode.

The cause of the exception in Debug Mode is indicated through the DExcCode field in the Debug
register, and the same codes are used for the exceptions as those for the ExcCode field in the Cause
register when the exceptions with the same names occur in Non-Debug Mode, with addition of the code 30
(decimal) with the mnemonic CacheErr for cache errors.

No other CP0 registers or fields are changed due to the exception in Debug Mode. The overall
processing flow for exceptions in Debug Mode is shown below:

Operation:
if (InstructionInBranchDelaySlot) then

DEPC ¨ BranchInstructionPC
DebugDBD ¨ 1

else
DEPC ¨ PC
DebugDBD ¨ 0

endif
DebugDSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr and DDBSImpr ¨ 0

DebugDExcCode ¨ DebugExceptionType
DebugHalt ¨ UNPREDICTABLE
DebugDoze ¨ UNPREDICTABLE
DebugIEXI ¨ 1
if ECRProbTrap = 1 then

PC ¨ 0xFF20 0200
else

PC ¨ 0xBFC0 0480
endif

Interrupts and NMIs

Interrupts
Interrupts are requested through either asserted external hardware signals or internal software-control-

lable bits. Interrupt exceptions are disabled when any of the following conditions are true:
The processor is operating in Debug Mode
The Interrupt Enable (IntE) bit in the Debug Control Register (DCR) is cleared (see section “Debug
ence Manual 20 - 21 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 Control Register” on page 20-30)
A non-EJTAG related mechanism disables the interrupt exception.

A pending interrupt is indicated through the Cause register, even if Interrupt exceptions are disabled.

NMIs
An NMI is requested on the asserting edge of the NMI signal to the processor, and an internal indicator

holds the NMI request until the NMI exception is actually taken. NMI exceptions are disabled when either of
the following is true:

The Processor is operating in Debug Mode
The NMI Enable (NMIE) bit in the Debug Control Register (DCR) is cleared (see section “Debug
Control Register” on page 20-30).

If an asserting edge on the NMI signal to the processor is detected while NMI exception is disabled, then
the NMI request is held pending and is deferred until NMI exceptions are no longer disabled. A pending NMI
is indicated in the NMIpend bit in the DCR even if NMI exceptions are disabled.

Reset and Soft Reset of Processor
For EJTAG features, there are no differences between a reset and a soft reset occurring to the CPU

core; they behave identically in both Debug Mode and Non-Debug Mode. In this section, references to reset
include both reset (hard reset) and soft reset,

EJTAGBOOT Feature
The EJTAGBOOT feature allows a debug interrupt to be requested as a result of a reset, whereby a

Debug Interrupt exception is taken right after reset, and before any of the instructions from the Reset
exception handler are executed. The debug exception handler is, in this case, provided by the probe
through dmseg, even if no instructions can be fetched from the Reset exception handler. Control and details
of EJTAGBOOT are described in section “EJTAGBOOT and NORMALBOOT Instructions” on page 20-59.

Reset from Probe
While asserted, the RST* signal from the probe is required to generate a cold (hard) reset or soft (warm)

reset to the system. The SRstE bit in the Debug Control Register does not mask this source. For more infor-
mation on connecting RST*, see section “Using the EJTAG Probe” on page 20-74.

Processor Reset by Probe through Test Access Port
The PrRst bit in the EJTAG Control register causes a soft (warm) reset to the entire RC32438 device.

Reset Occurred Indication through Test Access Port
The Rocc bit in the EJTAG Control register is set at both reset and soft reset in order to indicate the

event to the probe. Refer to section “EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)”
on page 20-64 for more information on the EJTAG Control Register.

Soft Reset Enable
The optional Soft Reset Enable (SRstE) bit in the Debug Control Register (DCR) can mask the soft reset

signal outside the processor. Because SRstE masks the soft reset signal before it arrives at the processor,
there is no masking of soft reset within the processor itself.

Reset of Other Debug Features
The operation of processor resets and soft resets also apply to resets of the following:

Debug Control Register (DCR)
Hardware Breakpoint
Test Access Port (TAP) EJTAG Control Register, (see “EJTAG Test Access Port” on page 20-54.)
ence Manual 20 - 22 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 EJTAG Instructions
The SDBBP and DERET instructions are added to the CPU core’s instruction set as part of the required

EJTAG features.

SDBBP Instruction

Format:
SDBBP code MIPS16 / MIPS32 / MIPS64
Purpose:
To cause a Debug Breakpoint exception
Description:
If the processor is operating in Non-Debug Mode, then a Debug Breakpoint exception occurs, immedi-

ately and unconditionally transferring control to the debug exception handler. If the processor is operating in
Debug Mode, then a Debug Mode exception occurs, resulting in an immediate and unconditional re-entry
into the debug exception handler with the DebugDExcCode field indicating Bp. The code field is available
as a software parameter. The debug exception handler retrieves it only by loading the contents of the
memory containing the instruction.

Restrictions:
None.
Operation:
if (DebugDM = 0) then

InitiateDebugBreakpointException()
else

InitiateDebugModeBreakpointException()
endif
Exceptions:
Debug Breakpoint exception
Debug Mode Breakpoint exception

Software Debug Breakpoint SDBBP

31 0

6 20

SPEC2

26 25

SDBBP

6

6 5

MIPS32™
MIPS64™

15 0

5

RR

11 10

SDBBP

5

5 4

MIPS16™

6

code

0 1 1 1 0 0 1 1 1 1 1 1code

0 0 0 0 11 1 1 0 1
ence Manual 20 - 23 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 DERET Instruction

Format:
DERET MIPS32 / MIPS64
Purpose:
Return from debug exception
Description:
The DERET instruction returns from Debug Mode and resumes non-debug execution at the instruction

pointed to by the DEPC register. DERET does not execute the next instruction (it has no delay slot).
Restrictions:
This instruction is legal only if the processor is executing in Debug Mode, and the DERET instruction is

not placed in a delay slot of a branch or a jump instruction. If the DERET instruction is executed in User
Mode when the StatusCU0 bit is cleared, then a Coprocessor Unusable exception occurs. If the DERET
instruction is executed in other circumstances including if placed in the delay slot of a branch or a jump
instruction when the processor is executing in Debug Mode, then operation of the processor is UNDE-
FINED.

If the DEPC register with the return address for DERET was modified by an MTC0/DMTC0 instruction,
then it must be followed by an appropriate spacing (refer to section “CP0 and dseg Hazards” on page 20-
12) before a DERET instruction in order to remove CP0 hazards. DERET implements a software barrier for
all changes in the CP0 state that could affect the fetch and decode of the instruction at the PC to which the
DERET returns, such as changes to the effective ASID, user-mode state, and addressing mode.

Operation:
if (DebugDM = 1) then

DebugDM ¨ 0
DebugIEXI ¨ 0
PC ¨ DEPC

elseif (in User Mode) and (SRCU0 = 0) then
InitiateCoprocessorUnusableException(0)

else
UNDEFINED

endif
Exceptions:
Coprocessor Unusable exception.

EJTAG Coprocessor 0 Registers
The Coprocessor 0 registers for EJTAG are shown in Table 20.16. Each register is described in more

detail in the following subsections.

Debug Exception Return DERET

31 0

6 1 19

COP0 CO

2426 25

DERET0

6

6 5

0 1 1 1 1 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 010 1 0 0 0 0
ence Manual 20 - 24 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
The CP0 instructions MTC0, MFC0, DMTC0, and DMFC0 work with the three EJTAG CP0 registers.
Operation of the processor is UNDEFINED if the Debug, DEPC, or DESAVE registers are written from Non-
Debug Mode. The value of the Debug, DEPC, or DESAVE registers is UNPREDICTABLE when read from
Non-Debug Mode, unless otherwise explicitly stated in the individual register description. However, for test
purposes, the implementations can allow writes to and reads from the registers from Non-Debug Mode.

To avoid pipeline hazards, there must be an appropriate spacing (refer to section “CP0 and dseg
Hazards” on page 20-12) between the update of the Debug and DEPC registers by MTC0/DMTC0 and use
of the new value. This applies for example to modification of the LSNM bit of the Debug register and a load/
store affected by that bit.

Debug Register (CP0 Register 23, Select 0)
Compliance Level: Required for EJTAG debug support.
The Debug register contains the cause of the most recent debug exception and exception in Debug

Mode. It also controls single stepping. This register indicates low-power and clock states on debug excep-
tions, debug resources, and other internal states. Only the DM bit and the EJTAGver field are valid when
read from the Debug register in Non-Debug Mode; the value of all other bits and fields is UNPREDICT-
ABLE. The following bits and fields are only updated on debug exceptions and/or exceptions in Debug
Mode:

DSS, DBp, DDBL, DDBS, DIB, DINT, DDBLImpr, and DDBSImpr are updated on both debug
exceptions and on exceptions in Debug Modes
DExcCode is updated on exceptions in Debug Mode, and is undefined after a debug exception
Halt and Doze are updated on a debug exception, and are undefined after an exception in Debug
Mode
DBD is updated on both debug and on exceptions in Debug Modes

The SYNC instruction, followed by appropriate spacing, (as described in section “SYNC Instruction
Behavior” on page 20-11 and section “CP0 and dseg Hazards” on page 20-12) must be executed to ensure
that the DDBLImpr, DDBSImpr, IBusEP, DBusEP, CacheEP, and MCheckP bits are fully updated. This

Register
Number SEL Register

Name Function Reference

23 0 Debug Debug indications and controls for the
processor.

See section
“Debug Register
(CP0 Register
23, Select 0)” on
page 20-25.

24 0 DEPC Program counter at last debug exception
or exception in Debug Mode.

See section
“Debug Excep-
tion Program
Counter Regis-
ter (CP0 Register
24, Select 0)” on
page 20-29.

31 0 DESAVE Debug exception save register. See section
“Debug Excep-
tion Save Regis-
ter (CP0 Register
31, Select 0)” on
page 20-30.

Table 20.16 Coprocessor 0 Registers for EJTAG
ence Manual 20 - 25 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
 instruction sequence must be used both in the beginning of the debug handler before pending imprecise
errors are detected from Non-Debug Mode, and at the end of the debug handler before pending imprecise
errors are detected from Debug Mode. The IEXI bit controls enable/disable of imprecise error exceptions.

Figure 20.3 shows the format of the Debug register and Table 20.17 describes the Debug register fields.

Figure 20.3 Debug Register Format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
DBD DM No

DCR
LSNM Doze Halt Count

DM
IBus
EP

M
Check

P

Cache
EP

DBus
EP

IEXI DDBS
Impr

DDBL
Impr

EJTAGver
[2:1]

15 14 10 9 8 7 6 5 4 3 2 1 0
EJTAG
ver [0]

DExcCode NoSSt SSt 0 DINT DIB DDBS DDBL DBp DSS

Fields
 Name Bits Description Read/

Write
Reset
State

DBD 31 Indicates whether the last debug exception or exception in
Debug Mode occurred in a branch or jump delay slot:
0: Not in delay slot
1: In delay slot

R Undefined

DM 30 Indicates that the processor is operating in Debug Mode:
0: Processor is operating in Non-Debug Mode
1: Processor is operating in Debug Mode

R 0

NoDCR 29 Indicates whether the dseg memory segment is present:
0: dseg is present
1: No dseg present

R Preset

LSNM 28 Controls access of loads/stores between dseg and remaining
memory when dseg is present:
0: Loads/stores in dseg address range go to dseg
1: Loads/stores in dseg address range go to system memory
See section Debug Mode Address Space.
This bit is read-only (R) and reads as zero if not implemented.

R/W 0

Doze 27 Indicates that the processor was in a low-power mode when a
debug exception occurred:
0: Processor not in low-power mode when debug exception
occurred
1: Processor in low-power mode when debug exception
occurred
The Doze bit indicates Reduced Power (RP) and WAIT, and
other implementation-dependent low-power modes.

R Undefined

Halt 26 Indicates that the internal processor system bus clock was
stopped when the debug exception occurred:
0: Internal system bus clock running
1: Internal system bus clock stopped
Halt indicates WAIT, and other implementation-dependent
events that stop the system bus clock.

R Undefined

Table 20.17 Debug Register Field Descriptions (Part 1 of 4)
ence Manual 20 - 26 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
CountDM 25 Controls or indicates the Count register behavior in Debug
Mode. Implementations can have fixed behavior, in which case
this bit is read-only (R), or the implementation can allow this bit
to control the behavior, in which case this bit is read/write (R/
W).
The reset value of this bit indicates the behavior after reset,
and depends on the implementation.

R 1

Note: This
value is
always 1.

IBusEP 24 Indicates if a Bus Error exception is pending from an instruction
fetch. Set when an instruction fetch bus error event occurs or a
1 is written to the bit by software. Cleared when a Bus Error
exception on an instruction fetch is taken by the processor. If
IBusEP is set when IEXI is cleared, a Bus Error exception on
an instruction fetch is taken by the processor, and IBusEP is
cleared.
In Debug Mode, a Bus Error exception applies to a Debug
Mode Bus Error exception.

R/W1 0

MCheckP 23 Indicates if a Machine Check exception is pending. Set when a
machine check event occurs or a 1 is written to the bit by soft-
ware. Cleared when a Machine Check exception is taken by
the processor. If MCheckP is set when IEXI is cleared, a
Machine Check exception is taken by the processor, and
MCheckP is cleared.
In Debug Mode, a Machine Check exception applies to a
Debug Mode Machine Check exception.

R/W 0

Note: This
value is
always 0.

CacheEP 22 Indicates if a Cache Error is pending. Set when a cache error
event occurs or a 1 is written to the bit by software. Cleared
when a Cache Error exception is taken by the processor. If
CacheEP is set when IEXI is cleared, a Cache Error exception
is taken by the processor, and CacheEP is cleared.
In Debug Mode, a Cache Error exception applies to a Debug
Mode Cache Error exception.

R/W1 0

Note: This
value is
always 0.

DBusEP 21 Indicates if a Data Access Bus Error exception is pending. Set
when a data access bus error event occurs or a 1 is written to
the bit by software. Cleared when a Bus Error exception on
data access is taken by the processor. If DBusEP is set when
IEXI is cleared, a Bus Error exception on data access is taken
by the processor, and DBusEP is cleared.
In Debug Mode, a Bus Error exception applies to a Debug
Mode Bus Error exception.

R/W1 0

IEXI 20 An Imprecise Error eXception Inhibit (IEXI) controls exceptions
taken due to imprecise error indications. Set when the proces-
sor takes a debug exception or an exception in Debug Mode
occurs. Cleared by execution of the DERET instruction. Other-
wise modifiable by Debug Mode software.
When IEXI is set, then the imprecise error exceptions from bus
errors on instruction fetches or data accesses, cache errors, or
machine checks are inhibited and deferred until the bit is
cleared.

R/W 0

Fields
 Name Bits Description Read/

Write
Reset
State

Table 20.17 Debug Register Field Descriptions (Part 2 of 4)
ence Manual 20 - 27 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
DDBSImpr 19 Indicates that a Debug Data Break Store Imprecise exception
due to a store was the cause of the debug exception, or that an
imprecise data hardware break due to a store was indicated
after another debug exception occurred. Cleared on exception
in Debug Mode.
0: No match of an imprecise data hardware breakpoint on
store
1: Match of imprecise data hardware breakpoint on store

R 0

Note: This
value is
always 0.

DDBLImpr 18 Indicates that a Debug Data Break Load Imprecise exception
due to a load was the cause of the debug exception, or that an
imprecise data hardware break due to a load was indicated
after another debug exception occurred. Cleared on exception
in Debug Mode.
0: No match of an imprecise data hardware breakpoint on
load
1: Match of imprecise data hardware breakpoint on load

R 0

Note: This
value is
always 0.

EJTAGver 17:15 Provides the EJTAG version.
0: Version 1 and 2.0
1: Version 2.5
2-7: Reserved

R 1

Note: This
value is
always 1.

DExcCode 14:10 Indicates the cause of the latest exception in Debug Mode.
The field is encoded as the ExcCode field in the Cause register
for those exceptions that can occur in Debug Mode (the encod-
ing is shown in MIPS32 and MIPS64 specifications), with addi-
tion of code 30 with the mnemonic CacheErr for cache errors.

R Undefined

NoSSt 9 Indicates whether the single-step feature controllable by the
SSt bit is available in this implementation:
0: Single-step feature available
1: No single-step feature available
A minimum number of hardware instruction breakpoints must
be available if no single-step feature is implemented in hard-
ware. Refer to section “Number of Instruction Breakpoints
Without Single Stepping” on page 20-52 for more information.

R 0

Note: This
value is

always 0.

SSt 8 Controls whether single-step feature is enabled:
0: No enable of single-step feature
1: Single-step feature enabled

R/W 0

0 7:6 Must be written as zeros; return zeros on reads. 0 0

DINT 5 Indicates that a Debug Interrupt exception occurred. Cleared
on exception in Debug Mode.
0: No Debug Interrupt exception
1: Debug Interrupt exception

R Undefined

DIB 4 Indicates that a Debug Instruction Break exception occurred.
Cleared on exception in Debug Mode.
0: No Debug Instruction Break exception
1: Debug Instruction Break exception

R Undefined

Fields
 Name Bits Description Read/

Write
Reset
State

Table 20.17 Debug Register Field Descriptions (Part 3 of 4)
ence Manual 20 - 28 May 11, 2005

IDT EJTAG System EJTAG Processor Core Extensions

79RC32438 User Refer

Notes
Debug Exception Program Counter Register (CP0 Register 24, Select 0)
The Debug Exception Program Counter (DEPC) register is a read/write register that contains the

address at which processing resumes after the exception has been serviced. The size of this register is 32
bits for 32-bit processors and 64 bits for 64-bit processors, even with only 32-bit virtual addressing enabled.
All bits of the DEPC register are significant and writable. A DMFC0 from the DEPC register returns the full
64-bit DEPC on 64-bit processors. Hardware updates this register on debug exceptions and exceptions in
Debug Mode.

For precise debug exceptions and precise exceptions in Debug Mode, the DEPC register contains
either:

The virtual address of the instruction that was the direct cause of the exception, or
The virtual address of the immediately preceding branch or jump instruction, when the exception-
causing instruction is in a branch delay slot, and the Debug Branch Delay (BDB) bit in the Debug
register is set.

For imprecise debug exceptions and imprecise exceptions in Debug Mode, the DEPC register contains
the address at which execution is resumed when returning to Non-Debug Mode. Figure 20.4 shows the
format of the DEPC register and Table 20.18 describes the DEPC register field.

Figure 20.4 DEPC Register Forma

DDBS 3 Indicates that a Debug Data Break Store exception occurred
on a store due to a precise data hardware break. Cleared on
exception in Debug Mode.
0: No Debug Data Break Store Exception
1: Debug Data Break Store Exception

R Undefined

DDBL 2 Indicates that a Debug Data Break Load exception occurred on
a load due to a precise data hardware break. Cleared on
exception in Debug Mode.
0: No Debug Data Break Store Exception
1: Debug Data Break Store Exception

R Undefined

DBp 1 Indicates that a Debug Breakpoint exception occurred. Cleared
on exception in Debug Mode.
0: No Debug Breakpoint exception
1: Debug Breakpoint exception

R Undefined

DSS 0 Indicates that a Debug Single Step exception occurred.
Cleared on exception in Debug Mode.
0: No debug single-step exception
1: Debug single-step exception

R Undefined

31 0
DEPC

Fields
 Name Bits Description Read/

Write
Reset
State

Table 20.17 Debug Register Field Descriptions (Part 4 of 4)
ence Manual 20 - 29 May 11, 2005

IDT EJTAG System Debug Control Register

79RC32438 User Refer

Notes
Table 20.18 DEPC Register Field Description

Debug Exception Save Register (CP0 Register 31, Select 0)
The Debug Exception Save (DESAVE) register is a read/write register that functions as a simple

scratchpad register. The size of this register is 32 bits for 32-bit processors and 64 bits for 64-bit processor.
The debug exception handler uses this to save one of the GPRs, which is then used to save the rest of

the context to a pre-determined memory area, for example, in the dmseg. This register allows the safe
debugging of exception handlers and other types of code where the existence of a valid stack for context
saving cannot be assumed.

Figure 2-4 shows the format of the DESAVE register; Table 2-13 describes the DESAVE register field.

Figure 20.5 DESAVE Register Format

Debug Control Register
The Debug Control Register (DCR) controls and provides information about debug issues. The width of

the register is 32 bits for 32-bit processors, and 64 bits for 64-bit processors. The DCR is located in the
drseg at offset 0x0000. The Debug Control Register (DCR) provides the following key features:

Interrupt and NMI control when in Non-Debug Mode
NMI pending indication
Availability indicator of instruction and data hardware breakpoints.

For EJTAG features, there are no difference between a reset and a soft reset occurring to the processor;
they behave identically in both Debug Mode and Non-Debug Mode. References to reset in the following
therefore refers to both reset (hard reset) and soft reset. The DataBrk and InstBrk bits within the DCR indi-
cate the types of hardware breakpoints implemented. Debug software is expected to read hardware break-
point registers for additional information on the number of implemented breakpoints. Refer to section
“Hardware Breakpoints” on page 20-32 for a description of the hardware breakpoint registers.

Hardware and software interrupts can be disabled in Non-Debug Mode using the DCR’s IntE bit. This bit
is a global interrupt enable used along with several other interrupt enables that enable specific mecha-
nisms. The NMI interrupt can be disabled in Non-Debug Mode using the DCR’s NMIE bit; a pending NMI is
indicated through the NMIpend bit. Pending interrupts are indicated in the Cause register, and pending

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bits

DEPC MSB:0 Debug Exception Program Counter R/W Undefined Required

31 0
DESAVE

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bits

DESAVE MSB:0 Debug Exception Save contents R/W Undefined Required

Table 20.19 DESAVE Register Field Description
ence Manual 20 - 30 May 11, 2005

IDT EJTAG System Debug Control Register

79RC32438 User Refer

Notes
 NMIs are indicated in the DCR register NMIpend bit, even when disabled. Hardware and software interrupts
and NMIs are always disabled in Debug Mode (refer to section “Interrupts and NMIs” on page 20-21 for
more information).

The ProbEn bit reflects the state of the ProbEn bit from the EJTAG Control register (ECR). Through this
bit, the probe can indicate to the debug software running on the CPU if it expects to service dmseg
accesses. For more information, see section “EJTAG Control Register (ECR) (TAP Instruction CONTROL
or ALL)” on page 20-64.

Figure 20.6 shows the format of the DCR register; Table 20.20 describes the DCR register fields. The
reset values in Table 20.20 take effect on both hard resets and soft resets.

Figure 20.6 DCR Register Format

31 30 29 28 18 17 16 15 5 4 3 2 1 0
0 ENM 0 Data

Brk
Inst
Brk

0 IntE NMI
E

NMI
pend

SRst
E

Prob
En

Fields
Name Bits Description Read/

Write
Reset
State

Compli
ance

ENM 29 Endianess in which the processor is running in kernel
and Debug Mode:
0: Little endian
1: Big endian

R Preset Required

DataBrk 17 Indicates if data hardware breakpoint is implemented:
0: No data hardware breakpoint implemented
1: Data hardware breakpoint implemented

R Preset Required

InstBrk 16 Indicates if instruction hardware breakpoint is imple-
mented:
0: No instruction hardware breakpoint implemented
1: Instruction hardware breakpoint implemented

R Preset Required

IntE 4 Hardware and software interrupt enable for Non-
Debug Mode, in conjunction with other disable mecha-
nisms:
0: Interrupt disabled
1: Interrupt enabled depending on other enabling
mechanisms

R/W 1 Required

NMIE 3 Non-Maskable Interrupt (NMI) enable for Non-Debug
Mode:
0: NMI disabled
1: NMI enabled

R/W 1 Required

NMIpend 2 Indication for pending NMI:
0: No NMI pending
1: NMI pending

R 0 Required

Table 20.20 DCR Register Field Descriptions (Part 1 of 2)
ence Manual 20 - 31 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Hardware Breakpoints
Hardware breakpoints compare addresses and data of executed instructions, including data load/store

accesses. Instruction breakpoints can be set even on addresses in ROM areas, and data breakpoints can
cause debug exceptions on specific data accesses. Instruction and data hardware breakpoints are alike in
many aspects, and are described in parallel in the following sections. When the term “breakpoint” is used in
this chapter, then the reference is to a “hardware breakpoint”, unless otherwise explicitly noted.

The breakpoints provide the following key features:
From zero to 15 instruction breakpoints can be implemented to cause debug exceptions on exe-
cuted instructions, both in ROM and RAM. Bit masking is provided for virtual address compares,
and masking of compares with ASID (optional) is also provided.
From zero to 15 data breakpoints can be implemented to cause debug exceptions on data
accesses. Bit masking is provided for virtual address compares, masking of compares with ASID
(optional) is provided, optional data value compares allows masking at byte level, and qualification
on byte access and access type is possible.
Registers for setup and control are memory mapped in drseg, accessible in Debug Mode only.
Breakpoints have several implementation options to ease integration with various microarchitec-
tures.

Hardware breakpoints require the implementation of the Debug Control Register (DCR). Several addi-
tional options are possible for breakpoints, as described in the following subsections. For EJTAG features,
there are no difference between a reset and a soft reset occurring to the processor; they behave identically
in both Debug Mode and Non-Debug Mode. References to reset in the following therefore refers to both
reset (hard reset) and soft reset.

Instruction Breakpoint Features
Figure 20.7 shows an overview of the instruction breakpoint feature. The feature compares the virtual

address (PC) and the ASID of the executed instructions with each instruction breakpoint, applying masking
on address and ASID. When an enabled instruction breakpoint matches the PC and ASID, a debug excep-
tion and/or a trigger is generated, and an internal bit in an instruction breakpoint register is set to indicate
that a match occurred.

SRstE 1 Controls soft reset enable:
Not used. All soft (warm) resets are always enabled.

R/W 1 Optional

ProbEn 0 Indicates value of the ProbEn value in the ECR regis-
ter:
0: No access should occur to dmseg
1: Probe services accesses to dmseg

R Same value
as ProbEn
in ECR

Required of
EJTAG
TAP is
present,
otherwise
not imple-
mented

0 MSB:30,
28:18,
15:5

Must be written as zeros; return zeros on reads. 0 0 Reserved

Fields
Name Bits Description Read/

Write
Reset
State

Compli
ance

Table 20.20 DCR Register Field Descriptions (Part 2 of 2)
ence Manual 20 - 32 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Figure 20.7 Instruction Breakpoint Overview

Data Breakpoint Features
Figure 20.8 shows an overview of the data breakpoint feature. The feature compares the load or store

access type (TYPE), the virtual address of the access (ADDR), the ASID, the accessed bytes (BYTE-
LANE), and data value (DATA) with each data breakpoint, applying masks and/or qualifications on the
access properties.

Figure 20.8 Data Breakpoint Overview

When an enabled data breakpoint matches, a debug exception and/or a trigger is generated, and an
internal bit in a data breakpoint register is set to indicate that a match occurred. The match is either precise
(the debug exception or trigger occurs on the instruction that caused the breakpoint to match) or imprecise
(the debug exception or trigger occurs later in the program flow).

Overview of Instruction and Data Breakpoint Registers
From zero to 15 instruction and data breakpoints can be implemented independently. Implementation of

any breakpoint implies that the Debug Control Register (DCR) is implemented. The InstBrk and DataBrk
bits in the DCR register indicate whether there are zero or 1 to 15 implementations of a breakpoint type. If
no breakpoints of a specific type are implemented, then none of the registers associated with this break-
point type are implemented. If any (1 to 15) breakpoints of a specific type are implemented, then the break-
point status register associated with that breakpoint type is implemented. The instruction and data break
status registers indicate the number of breakpoints for each corresponding type. The number of additional
registers depends on the number of implemented breakpoints for the respective breakpoint type. Registers
for ASID compares are only implemented if indicated in the corresponding breakpoint status register.

The next two sections, Overview of Instruction Breakpoint Registers and Overview of Data Breakpoint
Registers, provide overviews of the instruction and data breakpoint registers, respectively. All registers are
memory mapped in the drseg segment. All registers are 32 bits wide for 32-bit processors.

Overview of Instruction Breakpoint Registers
Table 20.21 lists the Instruction Breakpoint registers. The Instruction Breakpoint Status register provides

implementation indication and status for instruction breakpoints in general. The 1 to 15 implemented break-
points are numbered 0 to 14, respectively, for registers and breakpoints. The specific breakpoint number is
indicated by “n”.

Instruction
Hardware
Breakpoint

Debug Exception

Trigger IndicationASID

PC

Data
Hardware
Breakpoint

TYPE

ASID
Debug Exception

Trigger Indication

ADDR

DATA

BYTELANE
ence Manual 20 - 33 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Register addresses are shown in section “Instruction Breakpoint Registers” on page 20-43.

Overview of Data Breakpoint Registers
Table 4-2 lists the Data Breakpoint Registers. The Data Breakpoint Status register provides implementa-

tion indication and status for data breakpoints in general. The 1 to 15 implemented breakpoints are
numbered 0 to 14, respectively, for registers and breakpoints. The specific breakpoint number is indicated
by “n”. The registers for data value compares are only implemented if the value compares for the data
breakpoints are implemented, which occurs when either the NoLVmatch bit or the NoSVmatch bit in the
DBS is 0.

Register
Mnemonic

Register Name
and Description Reference Compliance

Level

IBS Instruction Breakpoint
Status

See section “Instruction
Breakpoint Status (IBS)
Register” on page 20-43.

Required if any instruc-
tion breakpoints are
implemented, optional
otherwise.

IBAn Instruction Breakpoint
Address n

See section “Instruction
Breakpoint Address n
(IBAn) Register” on page
20-44.

Required with instruc-
tion breakpoint n,
optional otherwise.

IBMn Instruction Breakpoint
Address Mask n

See section “Instruction
Breakpoint Address
Mask n (IBMn) Register”
on page 20-45.

IBASIDn Instruction Breakpoint
ASID n

See section “Instruction
Breakpoint ASID n
(IBASIDn) Register” on
page 20-45.

Required with instruc-
tion breakpoint n,
optional otherwise. Not
implemented if ASIDsup
bit in IBS is 0 (zero).

IBCn Instruction Breakpoint
Control n

See section “Instruction
Breakpoint Control n
(IBCn) Register” on page
20-46.

Required with instruc-
tion breakpoint n,
optional otherwise.

Table 20.21 Instruction Breakpoint Register Summary

Register
Mnemonic

Register Name and
Description Reference Compliance

DBS Data Breakpoint Status See section “Data Break-
point Status (DBS) Regis-
ter” on page 20-47.

Required if any
data breakpoints
are implemented,
optional other-
wise.

DBAn Data Breakpoint Address n See section “Data Break-
point Address n (DBAn)
Register” on page 20-48.

Required with
data breakpoint n,
optional other-
wise.

Table 20.22 Data Breakpoint Register Description (Part 1 of 2)
ence Manual 20 - 34 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Conditions for Matching Breakpoints
A number of conditions must be fulfilled in order for a breakpoint to match on an executed instruction or

a data access. These conditions are described in the following subsections. A breakpoint only matches for
instructions executed in Non-Debug Mode, never due to instructions executed in Debug Mode.

The match of an enabled breakpoint generates a debug exception as described in section “Debug
Exceptions from Breakpoints” on page 20-40 and/or a trigger indication as described in section “Break-
points Used as Triggerpoints” on page 20-42. The BE and/or TE bits in the IBCn or DBCn registers enable
the breakpoints for breaks and triggers, respectively.

It is implementation dependent whether or not a breakpoint stalls the processor in order to evaluate the
match expression; for example, if required for timing reasons or in order to wait on a scheduled load to
return for evaluation of a data breakpoint with a data value compare. In some cases, stalling is avoided with
imprecise data breakpoints, as described in section “Debug Exception by Data Breakpoint” on page 20-40.

Conditions for Matching Instruction Breakpoints
When an instruction breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with the

instruction boundary address (the lowest address of a byte in the instruction) of every executed instruction.
The instruction breakpoint is also evaluated on addresses usually causing an Address Error exception, a
TLB exception, or other exceptions. It is thereby possible to cause a Debug Instruction Break exception on
the destination address of a jump, even if a jump to that address would cause an Address Error exception.
The breakpoint is not evaluated on instructions from speculative fetches or execution.

A match of an instruction breakpoint depends on a number of parameters, shown in Table 20.23. The
fields in the instruction breakpoint registers are in the form REGFIELD.

DBMn Data Breakpoint Address Mask n See section “Data Break-
point Address Mask n
(DBMn) Register” on page
20-49.

DBASIDn Data Breakpoint ASID n See section “Data Break-
point ASID n (DBASIDn)
Register” on page 20-49.

Required with
data breakpoint n,
optional other-
wise. Not imple-
mented if
ASIDsup bit in
DBS is 0 (zero).

DBCn Data Breakpoint Control n See section “Data Break-
point Control n (DBCn)
Register” on page 20-49.

Required with
data breakpoint n,
optional other-
wise.

DBVn Data Breakpoint Value n See section “Data Break-
point Value n (DBVn) Reg-
ister” on page 20-51.

Required with
data breakpoint n,
optional other-
wise. Only imple-
mented with value
compares, shown
in DBS.

Register
Mnemonic

Register Name and
Description Reference Compliance

Table 20.22 Data Breakpoint Register Description (Part 2 of 2)
ence Manual 20 - 35 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
The PC, IBAnIBA, and IBMnIBM fields are 32 bits wide for 32-bit processors and 64 bits wide for 64-bit
processors.

The equation that determines the match is shown below with “C”-like operators. In the equation, 0
means all bits are 0’s, and ~0 means all bits are 1’s. The widths are similar to the widths of the parameters.
The match equation is IB_match, and is dependent on whether MIPS16 is supported or not.

If there is no support for MIPS16 then the IB_match equation is:
IB_match =

(! IBCnASIDuse || (ASID = = IBASIDnASID)) &&

((IBMnIBM | ~ (PC ^ IBAnIBA)) = = ~0)

If MIPS16 is supported then the IB_match equation is shown below, in which case the ISAmode bit is
compared with bit 0 of IBAnIBA instead of compare with bit 0 in PC:

IB_match =
(! IBCnASIDuse || (ASID = = IBASIDnASID)) &&

((IBMnIBM | ~ (((PC[MSB:1] << 1) + ISAmode) ^ IBAnIBA)) = = ~0)

The IB_match equation also applies to 64-bit processors running in 32-bit addressing mode, in which
case all 64 bits are compared between the PC and the IBAnIBA register. The match indication for instruction
breakpoints is always precise; that is, it is indicated on the instruction causing the IB_match to be true. It is
implementation dependent for an instruction breakpoint to match when the memory system does not ever
respond to the fetch or generates a bus error from a system watchdog. If no match occurs, then the
processor hangs without the instruction breakpoint generating either a debug exception or a trigger.

Parameter Description Width

ASID ASID field in EntryHi CP0 register. 8 bits

IBCnASIDuse Use ASID value in compare for instruction breakpoint
n:
0: Do not use ASID value in compare
1: Use ASID value in compare

1 bit

IBASIDnASID Conditional Instruction breakpoint n ASID value for
comparing.

8 bits

PC Virtual address of instruction boundary or target for
jump/branch.

32 / 64 bits

ISAmode Used only when MIPS16 ISA support is imple-
mented. It indicates the ISA mode for the executed
instruction or the mode at the target of a jump/
branch:
0: 32-bit MIPS instruction
1: MIPS16 instruction

1 bit

IBAnIBA Instruction breakpoint n address for compare with
conditions.

32 / 64 bits

IBMnIBM Instruction breakpoint n address mask condition:
0: Corresponding address bit compared
1: Corresponding address bit masked

32 / 64 bits

Table 20.23 Instruction Breakpoint Condition Parameters
ence Manual 20 - 36 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 Conditions for Matching Data Breakpoints
When a data breakpoint is enabled, that breakpoint is evaluated in Non-Debug Mode with both the

access address of every data access due to load/store instructions (including loads/stores of coprocessor
registers) and the address causing address errors upon data access. Data breakpoints are not evaluated
with addresses from PREF (prefetch) or CACHE instructions.

The concept “data bus” is used in the following to denote the bytes accessed and the data value trans-
ferred in a load/store operation. In this notation data bus referees to the naturally-aligned memory word (for
32-bit processors) or doubleword (for 64-bit processors) containing the accessed address referred to as
ADDR. This notation is independent of the actual width of the processor bus, e.g., the “data bus” width of a
64-bit processor is 64, even if that processor has a 32-bit processor bus. A match of the data breakpoint
depends on a number of parameters, shown in Table 20.24. The fields in the data breakpoint registers are
in the form REGFIELD.

Reference Description Width

TYPE Data access type is either load or store. No width

DBCnNoSB Controls whether condition for data breakpoint is ful-
filled on a store access:
0: Condition can be fulfilled on store access
1: Condition is never fulfilled on store access

1 bit

DBCnNoLB Controls whether condition for data breakpoint is ful-
filled on a load access:
0: Condition can be fulfilled on load access
1: Condition is never fulfilled on load access

1 bit

ASID ASID field in EntryHi CP0 register. 8 bits

DBCnASIDuse ASID value used in compare for data breakpoint n:
0: Do not use ASID value in compare
1: Use ASID value in compare

1 bit

DBASIDnASID Conditional Data breakpoint n ASID value for com-
parison.

8 bits

ADDR Virtual address of data access, effective address. 32 / 64 bits

DBAnDBA Data breakpoint n address for compare with condi-
tions.

32 / 64 bits

DBMnDBM Conditional Data breakpoint n address mask:
0: Corresponding address bit compared
1: Corresponding address bit masked

32 / 64 bits

BYTELANE Byte lane access indication, where BYTELANE[0] is
1 only if the byte at bits [7:0] of the data bus is
accessed, BYTELANE[1] is 1 only if the byte at bits
[15:8] of the data bus is accessed, etc.

4 / 8 bits

DBCnBAI Determines whether access is ignored to specific
bytes. BAI[0] controls ignore of access to the byte at
bits [7:0] of the data bus, BAI[1] ignores access to
byte at bits [15:8] of the data bus, etc.:
0: Condition depends on access to corresponding
byte
1: Access for corresponding byte is ignored

4 / 8 bits

Table 20.24 Data Breakpoint Condition Parameters (Part 1 of 2)
ence Manual 20 - 37 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
The ADDR, DBAnDBA, DBMnDBM, DATA, and DBVnDBV fields are 32 bits wide for 32-bit processors
and 64 bits wide for 64-bit processors. The BYTELANE, DBCnBLM, and DBCnBAI fields are four bits wide
for 32-bit processors and eight bits wide for 64-bit processors. The width is indicated as “N” in the equations
below. The match equations are shown below with “C”-like operators. In the equation, 0 means all bits are
0’s, and ~0 means all bits are 1’s. The bit widths are similar to the widths of the parameters. DB_match is
the overall match equation (the DB_addr_match, DB_no_value_compare, and DB_value_match equations
in the DB_match equation are defined below):

DB_match =
(((TYPE = = load) && ! DBCnNoLB) || ((TYPE = = store) && ! DBCnNoSB)) &&

DB_addr_match && (DB_no_value_compare || DB_value_match)
DB_addr_match is defined as:
DB_addr_match =

(! DBCnASIDuse || (ASID = = DBASIDnASID)) &&

((DBMnDBM | ~ (ADDR ^ DBAnDBA)) = = ~0) &&

((~ DBCnBAI & BYTELANE) != 0)

The DB_addr_match equation also applies to 64-bit processors running in 32-bit addressing mode, in
which case all 64 bits are compared between the ADDR and the DBAnDBA field.

DB_no_value_compare is defined as:
DB_no_value_compare =

((DBCnBLM | DBCnBAI | ~ BYTELANE) = = ~0)

If a data value compare is indicated on a breakpoint, then DB_no_value_compare is false, and if there is
no data value compare then DB_no_value_compare is true. Note that a data value compare is a run-time
property of the breakpoint if (DBCnBLM | DBCnBAI) is not ~0, because DB_no_value_compare then
depends on BYTELANE provided by the load/store instructions.

If a data value compare is required, then the data value from the data bus is compared and masked with
the registers for the data breakpoint, as shown in the DB_value_match equation:

DB_value_match =
((DATA[7:0] = = DBVnDBV[7:0]) || ! BYTELANE[0] || DBCnBLM[0] || DBCnBAI[0]) &&

((DATA[15:8] = = DBVnDBV[15:8]) || ! BYTELANE[1] || DBCnBLM[1] || DBCnBAI[1]) &&

......
((DATA[8*N-1:8*N-8] = = DBVnDBV[8*N-1:8*N-8]) ||

! BYTELANE[N-1] || DBCnBLM[N-1] || DBCnBAI[N-1])

DATA Data value from the data bus. 32 / 64 bits

DBVnDBV Conditional Data breakpoint n data value for com-
pare.

32 / 64 bits

DBCnBLM Conditional Byte lane mask for value compare on
data breakpoint. BLM[0] masks byte at bits [7:0] of
the data bus, BLM[1] masks byte at bits [15:8], etc.:
0: Compare corresponding byte lane
1: Mask corresponding byte lane

4 / 8 bits

Reference Description Width

Table 20.24 Data Breakpoint Condition Parameters (Part 2 of 2)
ence Manual 20 - 38 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 Data breakpoints depend on endianess, because values on the byte lanes are used in the equations.
Thus it is required that the debug software programs the breakpoints accordingly to endianess. It is imple-
mentation dependent for a data breakpoint to match when the memory system does not ever respond to the
data access or generates a bus error from a system watchdog. If no match occurs, then the processor
hangs without the data breakpoint generating a debug exception or trigger.

Data Breakpoints in case of Unaligned Address
Unaligned addresses can result from explicit halfword, word, and doubleword accesses (for example, if

an effective address of 0x01 is used as source of a Load Halfword (LH) instruction). The ADDR used in the
comparison is the effective address. The BYTELANE value is defined according to Table 20.25 for a 32-bit
processor.

With the above well-defined values of BYTELANE, the behavior is well-defined for data breakpoints
without value compares on operations with unaligned addresses. The BLM field in the DBCn register can
be used to avoid value compares if all BLM bits are set to 1. If the data breakpoint depends on a value
compare, then loads will cause an Address Error exception, and for stores the data value (DATA) is
UNPREDICTABLE. This UNPREDICTABLE data can cause match of a data breakpoint on a store, but an
implementation can choose never to indicate a match on data breakpoints depending on value compare if
having unaligned address.

If a debug exception is taken on the store then the debug handler can investigate the processor state
and thereby determine if the address was unaligned and UNPREDICTABLE store data for the memory
access thereby caused the debug exception. If a debug exception is not taken for the store, then an
Address Error exception is taken. So, in both cases it is possible for debug software to detect the bug. The
BLM field in the DBCn register can be used to avoid compare on UNPREDICTABLE data, in case all of the
BLM bits are set to 1.

If the data breakpoint is used as a triggerpoint, a BS bit might be set after a compare with UNPREDICT-
ABLE data; however, an Address Error exception occurs in this case thereby making it possible to detect
the bug.

Match for Data Breakpoint with Value Compare on Bus or Cache Error
If a data value compare is required to evaluate a data breakpoint, the DB_no_value_compare equation

is false (see section “Conditions for Matching Data Breakpoints” on page 20-37). However, if a bus or cache
error occurs on the load, then there is no valid data to use in the compare. This case has two possibilities:

The match will fail.
The match will compare on invalid data, and then indicate a pending bus or cache error through the
DBusEP or CacheEP bits in the Debug register, if a debug exception is taken. This occurrence
might cause a trigger indication to be set on the compare with invalid data.

A bus or cache error on a store does not affect the data breakpoint compare.
Refer to section “Data Breakpoint Compare on Invalid Data” on page 20-52for recommendations on

implementing data breakpoint compares on invalid data.

Size
ADDR BYTELANE[3:0]

[2] [1] [0] Little Endian Big Endian

Halfword x1

1. x = Don’t care

0 x 00112 1100v

x 1 x 11002 00112

Word x x x 11112

Table 20.25 BYTELANE at Unaligned Address for 32-bit Processors
ence Manual 20 - 39 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 Precise Match for Data Breakpoints
A precise match for a data breakpoint occurs when the match equation can be fully evaluated at the time

the load/store instruction is executed. A true DB_match can thereby be indicated on the very same instruc-
tion causing the DB_match equation to be true. Matches on data breakpoints without data value compares
are always precise. Accesses using data value compares are either imprecise or precise depending on the
implementation and specific access.

Imprecise Match for Data Breakpoints
An imprecise match for a data breakpoint occurs when the match equation cannot be fully evaluated at

the time the load/store instruction is executed. This case occurs when the processor is not stalled on a
scheduled load and a data breakpoint must compare on the data value returned by the load. If the break-
point matches, then the DB_match equation is true later in the execution flow rather than at the same time
as load/store instruction that caused the load/store access to match. Only data breakpoints with value
compares can be imprecise, in which case the breakpoints can be imprecise for all or some of those
accesses depending on the implementation.

Debug Exceptions from Breakpoints
This section describes how to set up instruction and data breakpoints to generate debug exceptions

when the match conditions are true.

Debug Exception Caused by Instruction Breakpoint
The BE bit in the IBCn register must be set for an instruction breakpoint to be enabled. A Debug Instruc-

tion Break exception occurs when the IB_match equation is true (see section“Conditions for Matching
Instruction Breakpoints” on page 20-35). The corresponding BS bit in the IBS register is set when the
breakpoint generates the debug exception. The Debug Instruction Break exception is precise, so the DEPC
register and DBD bit in the Debug register point to the instruction that caused the IB_match equation to be
true. The instruction receiving the debug exception only updates the debug related registers. That instruc-
tion will not cause any loads/stores to occur. Thus a debug exception from a data breakpoint cannot occur
at the same time an instruction receives a Debug Instruction Break exception.

The debug handler usually returns to the instruction causing the Debug Instruction Break exception,
whereby the instruction is executed. Debug software must disable the breakpoint when returning to the
instruction, otherwise the Debug Instruction Break exception will reoccur. An alternative is for debug soft-
ware to emulate the instruction(s) in software and change the DEPC accordingly.

Debug Exception by Data Breakpoint
The BE bit in the DBCn register must be set for a data breakpoint to be enabled. A debug exception

occurs when the DB_match condition is true. A matching data breakpoint generates either a precise or an
imprecise debug exception (see section “Precise / Imprecise Debug Exceptions on Data Breakpoints with
Data Value Compares” on page 20-52).

Debug Data Break Load/Store Exception as a Precise Debug Exception
A Debug Data Break Load/Store exception occurs when a data breakpoint indicates a precise match. In

this case, the DEPC register and DBD bit in the Debug register point to the load/store instruction that
caused the DB_match equation to be true, and the corresponding BS bit in the DBS register is set. Details
about behavior of the instruction causing the debug exception is shown in Table 20.26.
ence Manual 20 - 40 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Thus, in the case a data breakpoint with data value compare is set up on a load instruction, the load
does occur from the external memory, since the data value is required to evaluate the match condition, but
the destination register is not updated, so the loaded value is simply discarded. The rules shown in Table
20.27 describe update of the BS bits when several data breakpoints match the same access and generate
a debug exception

Any BS bit set prior to the match and debug exception is kept set, since only debug software can clear
the BS bits.

The debug handler usually returns to the instruction that caused the Debug Data Break Load/Store
exception, whereby the instruction is re-executed. This re-execution results in a repeated load from system
memory after a data breakpoint with a data value compare on a load, because the load occurred previously
in order to allow evaluation of the breakpoint as described above. Memory-mapped devices with side

Instruction and
Data

Breakpoint

Load/Store
Instruction
Execution

Destination
Register

External
Memory
System
Access

Store with/without
value match

Not completed Not updated1

1. This applies to the Store Conditional Word/Doubleword (SC/SCD instructions.

Store to memory is
not committed

Load without value
match

Not updated2

2. This includes side effects like Load Linked Word/Doubleword (LL/LLD) instructions.

Load from memory
does not occur

Loan with value match Load from memory
does occur

Table 20.26 Behavior on Precise Exceptions from Data Breakpoints

Instruction

Breakpoints that Match Update of BS Bits Matching
Data Breakpoints

Without
Value

Compare

With Value
Compare

Without Value
Compare

With Value
Compare

Load / Store One or more None BS bits set for all No matching break-
points

Load One or more One or more BS bits set for all Unchanged BS bits
since load of data
value does not
occur, so match of
the breakpoint cant
be determined

Load None One or more No matching break-
points

BS bits set for all

Store One or more One or more BS bits set for all Optional to either set
BS bits for all, or
change none of the
BS bits

Store None One or more No matching break-
points

BS bits set for all

Table 20.27 Behavior on Precise Exceptions from Data Breakpoints
ence Manual 20 - 41 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 effects on loads must allow such reloads, or debug software should alternatively avoid setting data break-
points with data value compares on the address of such devices. Debug software must disable breakpoints
when returning to the instruction, otherwise the Debug Data Break Load/Store exception will reoccur. An
alternative is for debug software to emulate the instruction in software and change the DEPC accordingly.

Debug Data Break Load/Store Exception as an Imprecise Debug Exception
A Debug Data Break Load/Store Imprecise exception occurs when a data breakpoint indicates an

imprecise match. In this case, the DEPC register and DBD bit in the Debug register point to an instruction
later in the execution flow rather than at the load/store instruction that caused the DB_match equation to be
true. The load/store instruction causing the Debug Data Break Load/Store Imprecise exception always
updates the destination register and completes the access to the external memory system. Therefore this
load/store instruction is not re-executed on return from the debug handler, because the DEPC register and
DBD bit do not point to that instruction.

Several imprecise data breakpoints can be pending at a given time, if the bus system supports multiple
outstanding data accesses. The breakpoints are evaluated as the accesses finalize, and a Debug Data
Break Load/Store Imprecise exception is generated only for the first one matching. Both the first and
succeeding matches cause corresponding BS bits and DDBLImpr/DDBSImpr to be set, but no debug
exception is generated for succeeding matches because the processor is already in Debug Mode. Similarly,
if a debug exception had already occurred at the time of the first match (for example, due to a precise
debug exception), then all matches cause the corresponding BS bits and DDBLImpr/DDBSImpr to be set,
but no debug exception is generated because the processor is already in Debug Mode.

The SYNC instruction, followed by appropriate spacing must be executed before the BS bits and
DDBLImpr/DDBSImpr bits are accessed for read or write. This delay ensures that these bits are fully
updated. Any BS bit set prior to the match and debug exception are kept set, because only debug software
can clear the BS bits.

Breakpoints Used as Triggerpoints
Software can set up both instruction and data breakpoints such that a matching breakpoint does not

generate a debug exception, but sends an indication through the BS bit only. The TE bit in the IBCn or
DBCn register controls whether an instruction or data breakpoint, respectively, is used as a triggerpoint.
Triggerpoints are evaluated for matches under the same criteria as breakpoints. The BS bit in the IBS or
DBS register is set for a triggerpoint when the respective IB_match condition (see section “Conditions for
Matching Instruction Breakpoints” on page 20-35) or DB_match condition (see section “Conditions for
Matching Data Breakpoints” on page 20-37) is true. For the BS bit to be set for an instruction triggerpoint,
either the instruction must be fully executed or an exception must occur on the instruction.

The BS bit for a data triggerpoint can only be set if no exception with higher priority than the Debug Data
Break Load/Store exception with address match only occurred on the load/store instruction. For exceptions
with equal or lower priority than the Debug Data Break Load/Store exception with address match only, the
BS bits are still set for a matching triggerpoint. For example, the BS bit is set even if a TLB or Bus Error
exception occurred on the load/store instruction. Data triggerpoints with value compares require the data
value to be valid for the BS bit to be set, which is not the case if, for example, a TLB or Bus Error exception
occurs on a load instruction. However, for stores, the trigger may compare on UNPREDICTABLE data as
described in section “Data Breakpoints in case of Unaligned Address” on page 20-39. The rules for update
of the BS bits are shown in Table 20.28.
ence Manual 20 - 42 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Data breakpoints with imprecise matches generate imprecise triggers when enabled by the TE bit. Note
that trigger indications by BS may be set based on compare with UNPREDICTABLE data. A triggerpoint
match can be indicated on an optional internal signal or chip pin.

Instruction Breakpoint Registers
This section describes the instruction breakpoint registers for MIPS32 and MIPS64 processors, and

other R4k privileged environment implementations of 32-bit and 64-bit processors. These registers provide
status and control for the instruction breakpoints. All registers are in drseg. The 1 to 15 implemented break-
points are numbered 0 to 14, respectively, for registers and breakpoints. The specific breakpoint number is
indicated by “n”. The registers and their respective addresses offsets are shown in Table 20.29.

Instruction Breakpoint Status (IBS) Register
Compliance Level: Required if any instruction breakpoints are implemented, optional otherwise.
The Instruction Breakpoint Status (IBS) register holds implementation and status information about the

instruction breakpoints. It is located at drseg offset 0x1000. The ASIDsup bit applies to all instruction break-
points. Figure 20.9 shows the format of the IBS register and Table 20.30 describes the IBS register fields.

Instruction With/Without
Value Compare BS Bits Update for Triggerpoint

Load / Store Without value compare BS bit set if no exception with higher priority than
the Debug Data Break Load/Store exception, with
address match only, occurred on the instruction.

Load With value compare BS bit set if no exception with higher priority than
the Debug Data Break Load exception, with
address and data value match, occurred on the
instruction.

Store With value compare BS bit is set if no exception occurred on the instruc-
tion, and is optional to be if an exception with equal
or lower priority than the Debug Data Break Store
exception, with address match only, occurred on
the instruction, with the requirement that either all
the relevant BS bits are set, or none are changed.

Table 20.28 Rules for Update of BS Bits on Data Triggerpoints

Offset in drseg Register
Mnemonic Register Name and Description

0x1000 IBS Instruction Breakpoint Status

0x1100 + 0x100*n IBAn Instruction Breakpoint Address n

0x1108 + 0x100*n IBMn Instruction Breakpoint Address Mask n

0x1110 + 0x100*n IBASIDn Instruction Breakpoint ASID n

0x1118 + 0x100*n IBCn Instruction Breakpoint Control n

Table 20.29 Instruction Breakpoint Register Mapping
ence Manual 20 - 43 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Figure 20.9 IBS Register Format

Instruction Breakpoint Address n (IBAn) Register
Compliance Level: Required with instruction breakpoint n, optional otherwise. The Instruction Break-

point Address n (IBAn) register has the address used in the condition for instruction breakpoint n. It is
located at drseg offset 0x1100 + 0x100 * n. Figure 20.10 shows the format of the IBAn register and Table
20.31 describes the IBAn register field.

Figure 20.10 IBAn Register Format

31 30 29 28 27 24 23 15 14 0
0 ASI

Ds
up

0 BCN 0 BS[14:0]

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

ASIDsup 30 Indicates if ASID compare is supported in
instruction breakpoints:
0: No ASID compare
1: ASID compare (IBASIDn register
implemented)
ASID support indication does not guaran-
tee a TLB-type MMU, because the same
breakpoint implementation can be used
with processors having all different types of
MMUs.

R Preset Required

BCN 27:24 Number of instruction breakpoints imple-
mented:
0: Reserved
1-15: Number of instructions breakpoints

R Preset Required

BS[14:0] 14:0 Break Status (BS) bit for breakpoint n is at
BS[n], where n is 0 to 14. A bit is set to 1
when the condition for its corresponding
breakpoint has matched.
The number of BS bits implemented corre-
sponds to the number of breakpoints indi-
cated by the BCN field.
Debug software is expected to clear the
bits before use, because reset does not
clear these bits.
Bits not implemented are read-only (R) and
read as zeros.

R/W0 Undefined Required for
bits at imple-
mented
breakpoints,
other bits not
implemented

0 MSB:31,
29:28,
23:15

Must be written as zeros on read. 0 0 Reserved

Table 20.30 IBS Register Field Description

31 0
IBAn
ence Manual 20 - 44 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Instruction Breakpoint Address Mask n (IBMn) Register
Compliance Level: Required with instruction breakpoint n, optional otherwise.
The Instruction Breakpoint Address Mask n (IBMn) register has the address compare mask used in the

condition for instruction breakpoint n. The address that is masked is in the IBAn register. The IBMn register
is located at drseg offset 0x1108 + 0x100 * n. Figure 20.11 shows the format of the IBMn register and Table
20.32 describes the IBMn register field.

Figure 20.11 IBMn Register Format

Instruction Breakpoint ASID n (IBASIDn) Register
Compliance Level: Required with instruction breakpoint n if the ASIDsup bit in the IBS register is 1,

optional otherwise.
The Instruction Breakpoint ASID n (IBASIDn) register has the ASID value used in the compare for

instruction breakpoint n. It is located at drseg offset 0x1110 + 0x100 * n. Figure 20.12 shows the format of
the IBASIDn register and Table 20.33 describes the IBASIDn register fields. The width of the ASID field for
the compare is 8 bits. It is identical to the width of the ASID field in the EntryHi register used with the TLB-
type MMU.

Figure 20.12 IBASIDn Register Format

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

IBA MSB:0 Instruction breakpoint address for condi-
tion.

R/W Undefined Required

Table 20.31 IBAn Register Field Description

31 0
IBMn

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

IBM MSB:0 Instruction breakpoint address mask for
condition:
0: Corresponding address bit compared
1: Corresponding address bit masked.

R/W Undefined Required

Table 20.32 IBMn Register Field Description

31 8 7 0
0 ASID
ence Manual 20 - 45 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Instruction Breakpoint Control n (IBCn) Register
Compliance Level: Required with instruction breakpoint n, optional otherwise.
The Instruction Breakpoint Control n (IBCn) register determines what constitutes instruction breakpoint

n: triggerpoint, breakpoint, ASID value inclusion. This register is located at drseg offset 0x1118 + 0x100 * n.
Figure 20.13 shows the format of the IBCn register and Table 20.34 describes the IBCn register fields.

Figure 20.13 IBCn Register Format

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

ASID 7:0 Instruction breakpoint ASID value for com-
pare.

R/W Undefined Required

0 MSB:8 Must be written as zeros; return zeros on
read.

0 0 Reserved

Table 20.33 IBASIDn Register Field Description

31 24 23 22 3 2 1 0
0 ASID

use
0 TE 0 BE

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

ASIDuse 23 Use ASID value in compare for instruction
breakpoint n:
0: Do not use ASID value in compare
1: Use ASID value in compare
Debug software should only set the ASI-
Duse if a TLB in the implementation is
used by the application software.
This bit is read-only and reads as zero, if
not implemented.

R/W Undefined Required if
ASIDsup in
IBS register is
1, otherwise
not imple-
mented

TE 2 Use instruction breakpoint n as trigger-
point:
0: Do not use it as triggerpoint
1: Use it as triggerpoint

R/W 0 Required

BE 0 Use instruction breakpoint n as breakpoint:
0: Do not use it as breakpoint
1: Use it as breakpoint

R/W 0 Required

0 MSB:24,
22:3, 1

Must be written as zeros; return zeros on
read

0 0 Required

Table 20.34 IBCn Register Field Description
ence Manual 20 - 46 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 Data Breakpoint Registers
This section describes the data breakpoint registers for MIPS32 and MIPS64 processors, and other R4k

privileged environment implementations of 32-bit and 64-bit processors. These registers provide status and
control for the data breakpoints. All registers are in drseg. The 1 to 15 implemented breakpoints are
numbered 0 to 14, respectively, for registers and breakpoints. The specific breakpoint number is indicated
by “n”. The registers and their respective addresses offsets are shown in Table 20.35.

Data Breakpoint Status (DBS) Register
Compliance Level: Required if any data breakpoints are implemented, optional otherwise.
The Data Breakpoint Status (DBS) register holds implementation and status information about the data

breakpoints. It is located at drseg offset 0x2000. The ASIDsup, NoSVmatch, and NoLVmatch fields apply to
all data breakpoints. Figure 20.14 shows the format of the DBS register and Table 20.36 describes the DBS
register fields

Figure 20.14 DBS Register Format

Offset in
drseg

Register
Mnemonic Register Name and Description

0x2000 DBS Data Breakpoint Status

0x2100 + 0x100*n DBAn Data Breakpoint Address n

0x2108 + 0x100*n DBMn Data Breakpoint Address Mask n

0x2110 + 0x100*n DBASIDn Data Breakpoint ASID n

0x2118 + 0x100*n DBCn Data Breakpoint Control n

0x2120 + 0x100*n DBVn Data Breakpoint Value n

Table 20.35 Data Breakpoint Register Mapping

31 30 29 28 27 24 23 15 14 0
0 ASID

sup
NoSV
match

NoLV-
match

BCN 0 BS[14:0]

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

ASIDsup 30 Indicates if ASID compare is supported in
data breakpoints:
0: No ASID compare
1: ASID compare (DBASIDn register
implemented)
ASID support indication does not guaran-
tee a TLB-type MMU, because the same
breakpoint implementation can be used
with processors having all different types of
MMUs.

R Preset Required

Table 20.36 DBS Register Field Description (Part 1 of 2)
ence Manual 20 - 47 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Data Breakpoint Address n (DBAn) Register
Compliance Level: Required with data breakpoint n, optional otherwise.
The Data Breakpoint Address n (DBAn) register has the address used in the condition for data break-

point n. This register is located at drseg offset 0x2100 + 0x100 * n. Figure 20.15 shows the format of the
DBAn register and Table 20.37 describes the DBAn register field.

Figure 20.15 DBAn Register Format

NoSV-
match

29 Indicates if a value compare on a store is
supported in data breakpoints:
0: Data value and address in condition
on store
1: Address compare only in condition on
store

R Preset Required

NoLVmatch 28 Indicates if a value compare on a load is
supported in data breakpoints:
0: Data value and address in condition
on load
1: Address compare only in condition on
load

R Preset Required

BCN 27:24 Number of data breakpoints implemented:
0: Reserved
1-15:Number of data breakpoints

R Preset Required

BS[14:0] 14:0 Break Status (BS) bit for breakpoint n is at
BS[n], where n is 0 to 14. The bit is set to 1
when the condition for its corresponding
breakpoint has matched.
The number of BS bits implemented corre-
sponds to the number of breakpoints indi-
cated by the BCN bit.
Debug software is expected to clear the
bits before use, since these are not cleared
by reset.
Bits not implemented are read-only (R) and
read as zeros.

R/W0 Undefined Required for
bits at imple-
mented
breakpoints,
other bits not
implemented

0 MSB:31,
23:15

Must be written as zeros; return zeros on
read.

0 0 Reserved

31 0
DBAn

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

DBA MSB:0 Data breakpoint address for condition. R/W Undefined Required

Table 20.37 DBAn Register Field Description

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

Table 20.36 DBS Register Field Description (Part 2 of 2)
ence Manual 20 - 48 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 Data Breakpoint Address Mask n (DBMn) Register
Compliance Level: Required with data breakpoint n, optional otherwise.
The Data Breakpoint Address Mask n (IBMn) register has the address compare mask used in the condi-

tion for data breakpoint n. The address that is masked is in the DBAn register. The DBMn register is located
at drseg offset 0x2108 + 0x100 * n. Figure 20.16 shows the format of the DBMn register and Table 20.38
describes the DBMn register field.

Figure 20.16 DBMn Register Format

Data Breakpoint ASID n (DBASIDn) Register
Compliance Level: Required with data breakpoint n if the ASIDsup bit in the DBS register is 1, optional

otherwise.
The Data Breakpoint ASID n (DBASIDn) register has the ASID value used in the compare for data

breakpoint n. It is located at drseg offset 0x2110 + 0x100 * n. Figure 20.17 shows the format of the
DBASIDn register and Table 20.39 describes the DBASIDn register fields. The width of the ASID field for
the compare is 8 bits. It is identical to the width of the ASID field in the EntryHi register used with the TLB-
type MMU.

Figure 20.17 DBASIDn Register Format

Data Breakpoint Control n (DBCn) Register
Compliance Level: Required with data breakpoint n, optional otherwise.

31 0
DBMn

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

DBMn MSB:0 Data breakpoint address mask for condi-
tion:
0: Corresponding address bit compared
1: Corresponding address bit masked

R/W Undefined Required

Table 20.38 DBMn Register Field Description

31 8 7 0
0 ASID

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

ASID 7:0 Data breakpoint ASID value for compare. R/W Undefined Required

0 MSB:0 Must be written as zeros; return zeros on
read.

0 0 Reserved

Table 20.39 DBASIDn Register Field Description
ence Manual 20 - 49 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 The Data Breakpoint Control n (DBCn) register what constitutes data breakpoint n: triggerpoint, break-
point, ASID value inclusion, load/store access fulfillment, ignore byte access, byte lane mask. This register
is located at drseg offset 0x2118 + 0x100 * n. The “data bus” is described in section “Conditions for
Matching Data Breakpoints” on page 20-37. Figure 20.18 shows the format of the DBCn register and Table
20.40 describes the DBCn register fields.

Figure 20.18 DBCn Register Format

31 24 23 22 18 17 14 13 12 11 8 7 4 3 2 1 0
0 ASID

use
0 BAI[7:0] No

SB
No
LB

0 BLM[7:0] 0 TE 0 BE

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

ASIDuse 23 Use ASID value in compare for data break-
point n:
0: Do not use ASID value in compare
1: Use ASID value in compare
Debug software should only set the ASI-
Duse if a TLB in the implementation is
used by the application software.
This bit is read-only and reads as zero, if
not implemented.

R/W Undefined Required if
ASIDsup in
DBS reg. is 1,
otherwise not
implemented

BAI[7:0] 21:14 Byte access ignore. Controls ignore of
access to specific bytes. BAI[0] ignores
access to byte at bits [7:0] of the data bus,
BAI[1] ignores access to byte at bits [15:8],
etc.:
0: Condition depends on access to cor-
responding byte
1: Access for corresponding byte is
ignored.
Debug software must adjust for endianess
when programming this field.
BAI[7:4] are read-only (R) and read as
zeros for 32-bit processors.

R/W Undefined Required for
byte lanes in
implementa-
tion, other-
wise not
implemented.

NoSB 13 Controls whether condition for data break-
point is ever fulfilled on a store access:
0: Condition can be fulfilled on store
access
1: Condition is never fulfilled on store
access

R/W Undefined Required

NoLB 12 Controls whether condition for data break-
point is ever fulfilled on a load access:
0: Condition can be fulfilled on load
access
1: Condition is never fulfilled on load
access

R/W Undefined Required

Table 20.40 DBCn Register Field Description (Part 1 of 2)
ence Manual 20 - 50 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
Data Breakpoint Value n (DBVn) Register
Compliance Level: Required with data breakpoint n if data value compare is supported (indicated by

either NoSVmatch or NoLVmatch bits in DBS being 0), optional otherwise.
The Data Breakpoint Value n (DBVn) register has the value used in the condition for data breakpoint n.

It is located at drseg offset 0x2120 + 0x100 * n. Figure 20.19 shows the format of the DBVn register and
Table 20.41 describes the DBVn register field.

Figure 20.19 DBVn Register Format

Recommendations for Implementing Hardware Breakpoints
This section provides useful information for implementing instruction and data breakpoints.

BLM[7:0] 11:4 Byte lane mask for value compare on data
breakpoint. BLM[0] masks byte at bits [7:0]
of the data bus, BLM[1] masks byte at bits
[15:8], etc.:
0: Compare corresponding byte lane
1: Mask corresponding byte lane
Debug software must adjust for endianess
when programming this field.
BLM[7:4] are un-implemented for 32-bit
processors. BLM[7:0] are un-implemented
if value compare is not implemented, which
is the case when NoSVmatch and NoLV-
match bits in DBS are both 1. Bits are
read-only (R) and read as zeros if not
implemented.

R/W Undefined Required for
byte lanes in
implementa-
tion and if
value com-
pare, other-
wise not
implemented

TE 2 Use data breakpoint n as triggerpoint:
0: Do not use it as triggerpoint
1: Use it as triggerpoint

R/W 0 Required

BE 0 Use data breakpoint n as breakpoint:
0: Do not use it as breakpoint
1: Use it as breakpoint

R/W 0 Required

0 MSB:24,
22, 3, 1

Must be written as zeros; return zeros on
read.

0 0 Reserved

31 0
DBVn

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

DBV MSB:0 Data breakpoint data value for condition.
Debug software must adjust for endianess
when programming this field.

R/W Undefined Required

Table 20.41 DBVn Register Field Description

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

Table 20.40 DBCn Register Field Description (Part 2 of 2)
ence Manual 20 - 51 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 Number of Instruction Breakpoints Without Single Stepping
If hardware single stepping is not implemented, then at least two instruction breakpoints are required.

Four instruction hardware breakpoints are recommended.

Data Breakpoints with Data Value Compares
Data breakpoints should be implemented with data value compares. Also, data value compares should

be implemented even if it is not possible to break on loads with precise data value compares. For more
information on precise exceptions, refer to section “Precise / Imprecise Debug Exceptions on Data Break-
points with Data Value Compares” on page 20-52.

Data Breakpoint Compare on Invalid Data
Data breakpoints should only compare on valid data, meaning they only generate debug exceptions

based on valid data in the compare. This does also apply to compare on store data for a store to an
unaligned address. For example, no debug exception should be generated for a bus error on a load that
has a pending data breakpoint to compare on the data returned by the load. However, in some cases, the
indication of invalid data is late relative to the data, for example, for a cache error as a result of a complex
error detection. In this case, data breakpoints can indicate a debug exception because the data was
believed to be valid at the time of the compare, and the pending error is then indicated to the debug handler
through the DBusEP or CacheEP bit in the Debug register, because the error occurred after the debug
exception. Note that for bus errors due to external events, the bus error indication usually is available when
the compare in the data breakpoint would take place. Thus, it is possible to avoid a debug exception.

Precise / Imprecise Debug Exceptions on Data Breakpoints with Data Value Compares
Data breakpoints are recommended to generate precise debug exceptions, if possible in the implemen-

tation. Thus the DEPC register and DBD bit in the Debug register point to the load/store that caused the
debug exception to occur. This instruction can then be re-executed when execution resumes after the
debug handler. However, data breakpoints are allowed to cause imprecise debug exceptions when the
breakpoint is set up with data value compares; for example, if data breakpoints with compares on loaded
data values cannot be made precise due to a non-blocking load. In this case, the DEPC register and DBD
bit in the Debug register point to an instruction in the execution flow after the load/store that caused the
imprecise debug exception. The BS bit can be updated when the match is detected, even though a debug
exception is not taken until later due to internal stalls (for example, a nulled instruction in the pipeline at the
time the match is detected). It is implementation specific as to which cases a data breakpoint can cause an
imprecise debug exception. It is recommended that the data breakpoints cause imprecise matches in as
few cases as possible.

Implementations can require imprecise debug exceptions from data breakpoints on loads with value
compares in a specific address range, if re-execution of a load in this range is not acceptable. This case is
possible if the load has side effects such as removing an entry on a queue. Imprecise debug exceptions for
value compares ensure that the destination register is properly updated with the loaded value, whereby re-
execution of the load is avoided.

Breakpoint Examples

Instruction Breakpoint Examples
This section provides examples that illustrate using an instruction break.
Instruction Break in Small Range of Instructions with ASID
This example shows how to set up an instruction breakpoint to break on the fetch of any one of the four

instructions in the virtual address range shown below:
0x0000 0010 J L1 // ASID = 0x5
0x0000 0014 NOP
0x0000 0018 J L2
0x0000 001C NOP
ence Manual 20 - 52 May 11, 2005

IDT EJTAG System Hardware Breakpoints

79RC32438 User Refer

Notes
 The break registers must be set up as follows:
– IBA0 = 0x0000 0010
– IBM0 = 0x0000 000C
– IBC0: BE=1, ASIDuse=1, ASID = 0x5, other bits zero.

Note that IBA0 has the starting address, and IBM0 has the address mask.
Instruction Break on 32-bit MIPS16™ Instruction
In this example, instruction breakpoint 0 needs to be set up to break on the range 0x0000 0030 to

0x0000 0036, which starts with the second part of an extended MIPS16 instruction:
0x0000 002e EXT // (1st part of MIPS16 inst.)
0x0000 0030 ADD // (2nd part)
0x0000 0032 SUB
0x0000 0034 SUB
0x0000 0036 SUB

The break registers must be set up as follows:
– IBA0 = 0x0000 0031
– IBM0 = 0x0000 0006
– IBC0: BE = 1, ASIDuse = 0, other bits zero

The CPU does not take a debug exception when fetching the second part of the ADD instruction,
because it does not constitute a whole instruction. The first break is on the SUB instruction at 0x0000 0032.

Data Breakpoint
This section provides three examples of data breakpoints.
Data Break on Load Access with ASID
This example shows how to perform a break on data breakpoint 0 when the CPU loads data 0xAAAA

0000 from memory location 0x0000 0100 in ASID=0x7:
LW $2, 0x100($0) // ASID = 0x7

The break registers must be set up as follows:
– DBA0 = 0x0000 0100
– DBM0 = 0x0
– DBV0 = 0xAAAA 0000
– DBC0: BE = 1, NoLB = 0, NoSB = 1, BLM = 0, BAI = 0, ASIDuse = 1, ASID = 0x7, other bits zero

In this example, DBA0 contains the breakpoint address; DBM0 has the address mask; DBV0 has the
data value; and DBC0 indicates a breakpoint condition might be fulfilled on a load but not on a store, there
is a value compare for a corresponding byte, and an ASID is used.

Data Break on Store(s) to Halfword in Memory
This example shows a break on data breakpoint 0 when the CPU stores data in a specific halfword in

memory. Stores to the other halfword at the same address can be ignored. The data word is illustrated in
Figure 20.20; the halfword for bits 31:16 is shaded. The store instructions shown in Figure 20.20 alter the
shaded halfword and cause a break if the breakpoint registers are set up as shown below.
ence Manual 20 - 53 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
Figure 20.20 Data Break on Store with Value Compare

In this example, the data breakpoint registers are set up as follows:
– DBA0 = 0x0000 0200
– DBM0 = 0
– DBC0: BE = 1, NoLB = 1, NoSB = 0, BLM = 11112, BAI = 00112, ASIDuse = 0, other bits zero

Data Break on Store(s) to Halfword Range in Memory with Certain Value
In this example, the most significant halfword in a given memory range is altered, and the most signifi-

cant part of the halfword is written a certain value. The data word is illustrated below; the halfword for bits
31:16 is shaded. The store instructions shown in Figure 20.21 alter the shaded halfword and cause a break
if the breakpoint registers are set up as shown below.

Figure 20.21 Data Break on Store with Value Compare

In this example, the data breakpoint registers are set up as follows:
– DBA0 = 0x0000 0200
– DBM0 = 0x0000 00FC
– DBV0 = 0xAA00 0000

DBC0: BE = 1, NoLB = 1, NoSB = 0, BLM = 01112, BAI = 00112, ASIDuse = 0, other bits zero

EJTAG Test Access Port
The overall features of the EJTAG Test Access Port (TAP) are:

Identification of device and EJTAG debug features accessed through the TAP
dmseg memory "emulation" (mapping dmseg processor accesses into probe transactions).
Reset handling allows debug exception immediately after reset
Low-power mode indications
Implementation-dependent processor and peripheral reset.

3 2

Break on Memory Address 0x0000 0200 bit 31:16, Little Endian

31 0

SW $2, 0x0000 0200 bytes_valid = 11112
SH $2, 0x0000 0202 bytes_valid = 11002
SB $2, 0x0000 0202 bytes_valid = 01002
SB $2, 0x0000 0203 bytes_valid = 10002

Break on Memory Address range 0x0000 0200 - 0x0000 02FC
 Write to bits 31:16, bits 31:24 with value 0xAA, Little Endian

SW $2, 0x0000 0220 $2=0xAAXX XXXX bytes_valid = 11112
SH $2, 0x0000 0242 $2=0xXXXX AAXX bytes_valid = 11002
SB $2, 0x0000 0282 $2=0xXXXX XXXX bytes_valid = 01002
SB $2, 0x0000 02F3 $2=0xXXXX XXAA bytes_valid = 10002
‘X’ denotes undefined value.

3 2
31 0
ence Manual 20 - 54 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
 If the TAP is not implemented then other features depending on register values and indications from the
TAP should behave as if these register values and indications have the power-up and reset value. Figure
Figure 20.22 shows an overview of the elements in the TAP.

Figure 20.22 Test Access Port (TAP) Overview

The TAP consists of the following signals: Test Clock (JTAG_TCK), Test Mode (EJTAG_TMS), Test Data
In (JTAG_TDI), Test Data Out (JTAG_TDO), and Test Reset (JTAG_TRST_N). JTAG_TCK and
EJTAG_TMS control the state of the TAP controller, which controls access to the Instruction or selected
data register(s). The Instruction register controls selection of data registers. Access to the Instruction and
data register(s) occurs serially through JTAG_TDI and JTAG_TDO. JTAG_TRST_N is an asynchronous
reset signal to the TAP. Access through the TAP does not interfere with the operation of the processor,
unless features specifically described to do so are used.

The description of the EJTAG TAP in this chapter is intended only to cover EJTAG issues related to use
of a TAP. Consult the “IEEE Std 1149.1-1990, IEEE Standard Test Access Port and Boundary-Scan Archi-
tecture” and also Chapter 19 of this manual for detailed information about the use of the JTAG boundary
scan. For EJTAG features, there is no difference between a reset and a soft reset occurring to the
processor; they behave identically in both Debug Mode and Non-Debug Mode. References to reset in the
following sections refer to both reset (hard reset) and soft (warm) reset.

TAP Signals
The signals JTAG_TCK, EJTAG_TMS, JTAG_TDI, JTAG_TDO, and JTAG_TRST_N make up the inter-

face for the EJTAG TAP. These signals are described in detail below. Figure 20.40 shows the connection of
the signals to chip pins.

Test Clock Input (JTAG_TCK)
JTAG_TCK is the clock that controls the updating of the TAP controller and the shifting of data through

the Instruction or selected data register(s). JTAG_TCK is independent of the processor clock, with respect
to both frequency and phase.

Test Mode Select Input (EJTAG_TMS)
EJTAG_TMS is the control signal for the EJTAG TAP controller. This signal is sampled on the rising

edge of JTAG_TCK. When EJTAG is in use, JTAG_TMS should be left disconnected (since there is an
internal pull-up) or driven high.

Test Data Input (JTAG_TDI)
JTAG_TDI is the test data input to the Instruction or selected data register(s). This signal is sampled on

the rising edge of JTAG_TCK for some EJTAG TAP controller states.

Instruction Register

Selected Data Register(s)

JTAG_TDI

JTAG_TDO

EJ
TA

G
TA

P
int

er
fac

e

JTAG_TCK

EJTAG_TMS

JTAG_TRST_N

TAP controller
ence Manual 20 - 55 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
 Test Data Output (JTAG_TDO)
JTAG_TDO is the test data output from the Instruction or data register(s). This signal changes on the

falling edge of JTAG_TCK, or becomes tri-stated asynchronously when JTAG_TRST_N is driven low. The
off-chip JTAG_TDO is only driven when data is shifted out, otherwise the off-chip JTAG_TDO is tri-stated.
The tri-state notation indicates that the JTAG_TDO off-chip signal is undriven.

Test Reset Input (JTAG_TRST_N)
JTAG_TRST_N is the test reset input that asynchronously resets the EJTAG TAP, with the following

immediate effects:
– The TAP controller is put into the Test-Logic-Reset state
– The Instruction register is loaded with the IDCODE instruction
– Any EJTAGBOOT indication is cleared
– The JTAG_TDO output is tri-stated.

JTAG_TRST_N does not reset any other part of the EJTAG TAP or processor. Thus this type of reset
does not affect the processor, and the processor reset is not allowed to have any effect on the above parts
of the EJTAG TAP.

TAP Controller
The TAP controller is a state machine whose active state controls TAP reset and access to Instruction

and data registers. The state transitions in the EJTAG TAP controller occur on the rising edge of JTAG_TCK
or when JTAG_TRST_N goes low. The JTAG_TMS signal determines the transition at the rising edge of
JTAG_TCK. Figure 20.23 shows the state diagram for the TAP controller.

Figure 20.23 EJTAG TAP Controller State Diagram

The behavior of the functional states shown in the figure is described below. The non-functional states
are intermediate states in which no registers in the TAP change, and are not described here. Events in the
following subsections are described with relation to the rising and falling edge of JTAG_TCK. The described
events take place when the TAP controller is in the corresponding state when the clock changes. The
EJTAG TAP controller is forced into the Test-Logic-Reset state at power-up either by an active (power-up
reset circuit) low value or static low value on JTAG_TRST_N. The Test-Logic-Reset state is also reached
after five rising edges on JTAG_TCK while EJTAG_TMS is set to one.

Test-Logic-Reset
JTAG_TMS=1

Run-Test / Idle

0

Select-DR-Scan10

Capture-DR

0

0

Shift-DR

1

Exit1-DR

0

Pause-DR

1

Exit2-DR

1

Update-DR

0

0

01

1

0

1

Select-IR-Scan

Capture-IR

0

0

Shift-IR

1

Exit1-IR

0

Pause-IR

1

Exit2-IR

1

Update-IR

0

0

01

1

0

1

1 1
ence Manual 20 - 56 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
 Test-Logic-Reset State
When the Test-Logic-Reset state is entered, the Instruction register is loaded with the IDCODE instruc-

tion, and any EJTAGBOOT indication is cleared. This state ensures that the TAP does not interfere with the
normal operation of the CPU core. The TAP controller always reaches this state after five rising edges on
JTAG_TCK when EJTAG_TMS is set to 1. A low value on JTAG_TRST_N immediately places the TAP
controller in this state asynchronous to JTAG_TCK.

Capture-IR State
In the Capture-IR state, the two LSBs of the Instruction register are loaded with the value 012, and the

upper MSBs are loaded with implementation-dependent values. Both values are loaded on the rising edge
of JTAG_TCK.

Shift-IR State
In the Shift-IR state, the LSB of the Instruction register is output on JTAG_TDO on the falling edge of

JTAG_TCK. The Instruction register is shifted one position from MSB to LSB on the rising edge of
JTAG_TCK, with the MSB shifted in from JTAG_TDI. The value in the Instruction register does not take
effect until the Update-IR state. Figure 20.24 shows the shifting direction for the Instruction register.

Figure 20.24 JTAG_TDI to JTAG_TDO Path in Shift Mode State

The length of the Instruction register is specified in section “Instruction Register and Special Instruc-
tions” on page 20-58. The value loaded in the Capture-IR state is used as the initial value for the Instruction
register when shifting starts. Thus, it is not possible to read out the previous value of the Instruction register.

Update-IR State
In the Update-IR state, the value in the Instruction register takes effect on the rising or falling edge of

JTAG_TCK.

Capture-DR State
In the Capture-DR state, the value of the selected data register(s) is captured on the rising edge of

JTAG_TCK for shifting out in the Shift-DR state. The Capture-DR state reads the data, in order to output
this read value in the Shift-DR state. The Instruction register controls the selection of the following data
register(s): Bypass, Device ID, Implementation, EJTAG Control, Address, and Data register(s).

Shift-DR State
In the Shift-DR state, the LSB of the selected data register(s) is output on JTAG_TDO on the falling edge

of JTAG_TCK. The selected data register(s) is shifted one position from MSB to LSB on the rising edge of
JTAG_TCK, with JTAG_TDI shifted in at the MSB. The value(s) shifted into the register(s) does not take
effect until the Update-DR state. Figure 20.25 shows the shifting direction for the selected data register.

Figure 20.25 JTAG_TDI to JTAG_TDO Path for Selected Data Register(s) in Shift-DR State

The length of the shift path depends on the selected data register(s).

Update-DR State
In the Update-DR state, the update of the selected data register(s) with the value from the Shift-DR state

occurs on the falling or rising edge of JTAG_TCK. This update writes the selected register(s).

JTAG_TDI Instruction Register
MSB 0 / LSB

JTAG_TDO

MSB 0 / LSB

JTAG_TDI JTAG_TDO
Selected Data Register(s)
ence Manual 20 - 57 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
 Instruction Register and Special Instructions
The Instruction register controls selection of accessed data register(s), and controls the setting and

clearing of the EJTAGBOOT indication. The Instruction register is five or more bits wide when used with
EJTAG. Table 20.42 shows the allocation of the TAP instruction.

The instructions IDCODE, IMPCODE, ADDRESS, DATA, CONTROL, and BYPASS select a single data
register, as indicated in the table. The unused instructions reserved for EJTAG select the Bypass register.
The ALL, EJTAGBOOT, NORMALBOOT, and FASTDATA instructions are described in the following
subsections. The instructions that are related to trace registers in the trace control block (TCB) are
described in the Trace Control Block Specification document. Any EJTAGBOOT indication is cleared at
power-up either by a low value on the JTAG_TRST_N or by a power-up reset circuit, and the Instruction
register is loaded with the IDCODE instruction.

ALL Instruction
The Address, Data, and EJTAG Control data registers are selected at once with the ALL instruction, as

shown in Figure 20.26.

Code Instruction Function

All 0’s (Free for other use) Free for other use, such as JTAG boundary scan

0x01 IDCODE Selects Device Identification (ID) register

0x02 (Free for other use) Free for other use, such as JTAG boundary scan

0x03 IMPCODE Selects Implementation register

0x04 — 0x07 (Free for other use) Free for other use, such as JTAG boundary scan

0x08 ADDRESS Selects Address register

0x09 DATA Selects Data register

0x0A CONTROL Selects EJTAG Control register

0x0B ALL Selects the Address, Data and EJTAG Control registers

0x0C EJTAGBOOT Makes the processor take a debug exception after reset

0x0D NORMALBOOT Makes the processor execute the reset handler after
reset

0x0E FASTDATA Selects the Data and Fastdata registers

0x0F (EJTAG reserved) Reserved for future EJTAG use

0x010 TCBCONTROLA Selects the control register TCBTraceControl in the Trace
Control Block

0x011 TCBCONTROLB Selects another trace control block register

0x012 TCBADDRESS Selects the address register used in the trace control
block

0x013 — 0x1B (EJTAG reserved) Reserved for future EJTAG use

0x01C — All 1’s (Free for other use) Free for other use, such as JTAG boundary scan

All 1’s BYPASS Select Bypass register

Table 20.42 EJTAG TAP Instruction Overview
ence Manual 20 - 58 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
Figure 20.26 JTAG_TDI to JTAG_TDO Path in Shft-DR State and ALL Instruction is Selected

EJTAGBOOT and NORMALBOOT Instructions
The EJTAGBOOT and NORMALBOOT instructions control whether a debug interrupt is requested as a

result of a reset. If EJTAGBOOT is indicated then a debug interrupt is requested at reset, and a Debug
Interrupt exception is taken right after the Reset exception. The debug exception handler is in this case
fetched from the probe through dmseg. It is possible to take the debug exception and execute the debug
handler from the probe even if no instructions can be fetched from the reset handler. This condition guaran-
tees that the system will not hang at reset when the EJTAGBOOT feature is used, not even if the normal
memory system does not work properly.

An internal EJTAGBOOT indication holds information on the action to take at a processor reset, and this
is set when the EJTAGBOOT instruction takes effect in the Update-IR state. The indication is cleared when
the NORMALBOOT instruction takes effect in the Update-IR state, or when the Test-Logic-Reset state is
entered, for example, when JTAG_TRST_N is asserted low. The requirement of clearing the internal
EJTAGBOOT indication when the Test-Logic-Reset state is entered, and not on a JTAG_TCK clock when in
the state, ensures that the indication can be cleared with five clocks on JTAG_TCK when EJTAG_TMS is
high.

The internal EJTAGBOOT indication is cleared at power-up either by a low value on the JTAG_TRST_N
or by a power-up reset circuit. Thus, the processor executes the reset handler after power-up unless the
EJTAGBOOT instruction is given through the EJTAG TAP. The Bypass register is selected when the
EJTAGBOOT or NORMALBOOT instruction is given. The EjtagBrk, ProbEn, and ProbTrap bits in the
EJTAG Control register follow the internal EJTAGBOOT indication. They are all set at processor reset if a
Debug Interrupt exception is to be generated, with execution of the debug handler from the probe.

FASTDATA Instruction
This selects the Data and the Fastdata registers at once, as shown in Figure 20.27.

Figure 20.27 JTAG_TDI to JTAG_TDO Path in Shift-DR State and FASTDATA Instruction is Selected

TAP Data Registers
Table 20.43 summarizes the data registers in the EJTAG TAP. Complete descriptions of these registers

are given in the following sections.

Instruction
Used to
Access
Register

Register
Name Function Reference Compli-

ance

IDCODE Device ID Identifies device and accessed
processor in the device.

“Device Identification (ID)
Register (TAP Instruction
IDCODE)” on page 20-
61

Required

Table 20.43 EJTAG TAP Data Registers (Part 1 of 2)

JTAG_TDI
Address register EJTAG Control registerData register

JTAG_TDO

MSB 0 / LSBMSB 0 / LSB MSB 0 / LSB

JTAG_TDI Fastdata registerData register
JTAG_TDO

MSB 0 / LSB 0
ence Manual 20 - 59 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
A read of a data register corresponds only to the Capture-DR state of the TAP controller, and a write of
the data register corresponds to the Update-DR state only. The initial states of these registers are specified
with either a reset state or a power-up state. If a reset state is specified, then the indicated value is applied

IMPCODE Implementation Identifies main debug features
implemented and accessible
through the TAP.

“Implementation Register
(TAP Instruction
IMPCODE)” on page 20-
61

Required

DATA, ALL, or
FASTDATA

Data Data register for processor
access.

“Data Register (TAP
Instruction DATA, ALL,
or FASTDATA)” on page
20-62.

Required

ADDRESS or ALL Address Address register for processor
access.

“Address Register (TAP
Instruction ADDRESS or
ALL)” on page 20-63

Required

CONTROL or ALL EJTAG Control Control register for most EJTAG
features used through the TAP.

“EJTAG Control Regis-
ter (ECR) (TAP Instruc-
tion CONTROL or ALL)”
on page 20-64

Required

BYPASS, EJTAG-
BOOT, NORMAL-
BOOT, or unused
EJTAG instructions

Bypass Provides a one bit shift path
through the TAP.

“Bypass Register (TAP
Instruction BYPASS,
(EJTAG/NORMAL)
BOOT, or Unused)” on
page 20-68

Required

FASTDATA Fastdata Provides a one bit register whose
value is tagged to the front of the
Data register to capture the value
of the processor access pending
(PrAcc) bit in the EJTAG Control
register.

“FASTDATA Instruction”
on page 20-59

Required with
EJTAG ver-
sion 02.60
and higher.

TCBCONTROLA TCBControlA Implemented and used in the
Trace Control Block (TCB). Used
by external probe (debugger) soft-
ware to control tracing output from
the core.

See TCB documentation Required with
EJTAG ver-
sion 02.60
and higher if
trace logic is
implemented.

TCBCONTROLB TCBControlB Implemented and used in the
Trace Control Block (TCB). Con-
trols tracing configuration options

See TCB documentation Required with
EJTAG ver-
sion 02.60
and higher if
trace logic is
implemented.

TCBADDRESS TCBAddress Implemented and used in the
TCB. Used to address the on-chip
trace memory, if present.

See TCB documentation Required with
EJTAG ver-
sion 02.60
and higher if
trace logic is
implemented.

Instruction
Used to
Access
Register

Register
Name Function Reference Compli-

ance

Table 20.43 EJTAG TAP Data Registers (Part 2 of 2)
ence Manual 20 - 60 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
 to the register when a processor reset is applied. If a power-up state is specified, then the indicated value is
applied at power-up reset. JTAG_TCK does not have to be running in order for a processor reset to reset
the registers.

Device Identification (ID) Register (TAP Instruction IDCODE)
Compliance Level: Required with EJTAG TAP feature.
The Device ID register is a 32-bit read-only register that identifies the specific device implementing

EJTAG. This register is also defined in IEEE 1149.1. The Device ID register holds a unique number among
different devices with EJTAG compliant processors implemented. It is recommended that the register is
also unique amongst different EJTAG compliant processors in the same device. Figure 20.28 shows the
format of the Device ID register and Table 20.44 describes the Device ID register fields

Implementation Register (TAP Instruction IMPCODE)
Compliance Level: Required with EJTAG TAP feature.
The Implementation register is a 32-bit read-only register that identifies features implemented in this

EJTAG compliant processor, mainly those accessible from the TAP.
Figure 20.29 shows the format of the Implementation register and Table 20.45 describes the Implemen-

tation register fields.

31 28 27 12 11 1 0
Version PartNumber ManufID 1

0000 0022 033

Figure 20.28 Device ID Register Format

Fields
Description Read/

Write
Power-up

State
Compli-

ance
Name Bits

Version 31_28 Identifies the version of a specific device. R 0x0 Required

Part
Number

27:12 Identifies the part number of a specific
device.

R 0x0022 Required

ManufID 11:1 Identifies the manufacturer identity code. R 0x33 Required

1 0 Ignored on write; returns one on read. R 0x1 Required

Table 20.44 Device ID Register Field Description

31 29 28 27 25 24 23 22 21 20 17 16 15 14 13 1 0
EJTAGver R4k/

R3k
0 DI

NT
sup

0 ASID
size

0 MI
PS
16

0 No
DM
A

0 MIPS
32

010 0 000 0 0 0 0 0 0 1 0 0

Figure 20.29 Implementation Register Format
ence Manual 20 - 61 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
Data Register (TAP Instruction DATA, ALL, or FASTDATA)
Compliance Level: Required with EJTAG TAP feature.
The read/write Data register is used for opcode and data transfers during processor accesses. The

width of the Data register is 32 bits for 32-bit processors and 64 bits for 64-bit processor. The value read in
the Data register is valid only if a processor access for a write is pending, in which case the data register
holds the store value. The value written to the Data register is only used if a processor access for a pending
read is finished afterwards, in which case the data value written is the value for the fetch or load. This
behavior implies that the Data register is not a memory location where a previously written value can be
read afterwards. Figure 20.30 shows the format of the Data register and Table 20.46 describes the Data
register field.

Fields
Description Read/

Write
Power-up

State
Compli-

ance
Name Bits

EJTAGver 31:29 Version 2.6 R 0x2 Required

R4k/Rk3 28 Indicated Rk4 or Rk3 privileged environ-
ment:
0: R4k privileged environment

R 0x0 Required

DINTsup 24 Indicates support for DINT signal from
probe:
0: DINT signal from the probe is not sup-
ported by this processor.

R 0x0 Required

ASIDsize 22:21 Indicates size of the ASID field:
0: No ASID in implementation

R 0x0 Required

MIPS16 16 Indicates MIPS16™ ASE support in the
processor:
0: No MIPS16 support

R 0x0 Required

NoDMA 14 Indicates no EJTAG DMA support:
1: No EJTAG DMA support

R 0x1 Required

MIPS32/64 0 Indicates 32-bit or 64-bit processor:
0: 32-bit processor
See the R4k/R3k bit for indication of privi-
leged environment.

R 0x0 Required

0 27:25, 23,
20:17, 15,

13:1

Ignored on writes; return zeros on reads. R 0x0 Required

Table 20.45 Implementation Register Field Description

31 0
Data

Figure 20.30 Data Register Format
ence Manual 20 - 62 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
The contents of the Data register are not aligned but hold data as it is seen on a data bus for an external
memory system. Thus the bytes are positioned in the Data register based on access size, address, and
endianess. The bytes not accessed for a processor access write are undefined, and the bytes not accessed
for a processor access read can be written with any value by the probe shifting the value into the Data
register.

Table 20.47 shows the byte positioning for a 32-bit processor (MIPS32/64 = 0), in which case the two
LSBs of the Address register are used. Byte 0 refers to bits 7:0, byte 1 refers to bits 15:8, byte 2 refers to
bits 23:16, and byte 3 refers to bits 31:24, independent of endianess.

Address Register (TAP Instruction ADDRESS or ALL)
Compliance Level: Required with EJTAG TAP feature.
The read-only Address register provides the address for a processor access. The width of the register

corresponds to the size of the physical address in the processor implementation (from 32 to 64 bits). The
specific length is determined by shifting through the Address register, because the length is not indicated
elsewhere. The value read in the register is valid if a processor access is pending, otherwise the value is
undefined. The two or three LSBs of the register are used with the Psz field from the EJTAG Control
register to indicate the size and data position of the pending processor access transfer. These bits are not
taken directly from the address referenced by the load/store.

Figure 20.31 shows the format of the Address register and Table 20.48 describes the Address register
field.

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

Data 31:0 Data used by processor access. R/W Undefined Required

Table 20.46 Data Register Field Description

Psz
from
ECR

Size Address
[1:0]

Little
Endian Big Endian

3 2 1 0 3 2 1 0

0 Byte 002

012

102

112

1 Halfword 002

102

2 Word 002

3 Triple 002

012

Reserved n.a. n.a.

Table 20.47 Data Register Contents for 32-bit Processors
ence Manual 20 - 63 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
EJTAG Control Register (ECR) (TAP Instruction CONTROL or ALL)
Compliance Level: Required with EJTAG TAP feature.
The 32-bit EJTAG Control Register (ECR) handles processor reset and soft reset indication, Debug

Mode indication, access start, finish, and size and read/write indication. The ECR also:
– controls debug vector location and indication of serviced processor accesses,
– allows a debug interrupt request,
– indicates processor low-power mode, and
– allows implementation-dependent processor and peripheral resets.

The EJTAG Control register is not updated/written in the Update-DR state unless the Reset occurred;
that is Rocc (bit 31) is either already 0 or is written to 0 at the same time. This condition ensures proper
handling of processor accesses after a reset. Reset of the processor can be indicated through the Rocc bit
in the JTAG_TCK domain a number of JTAG_TCK cycles after it is removed in the processor clock domain
in order to allow for proper synchronization between the two clock domains. Bits that are R/W in the register
return their written value on a subsequent read, unless other behavior is defined. Internal synchronization
ensures that a written value is updated for reading immediately afterwards, even when the TAP controller
takes the shortest path from the Update-DR to Capture-DR state. Figure 20.32 shows the format of the
EJTAG Control register and Table 20.49 describes the EJTAG Control register fields.

MSB 0
Address

Figure 20.31 Address Register Format

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

Address MSB:0 Address used by processor access. R Undefined Required

Table 20.48 Address Register Field Description

31 30 29 28 23 22 21 20 19 18 17 16 15 14 13 12 11 4 3 2 0
Rocc Psz 0 Doze Halt Per

Rst
PRn
W

Pr
Acc

0 Pr
Rst

Prob
En

Prob
Trap

0 Ejta
g

Brk

0 DM 0

Figure 20.32 EJTAG Control Register Format
ence Manual 20 - 64 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes

Fields

Description Read/
Write

Reset
State

Compli-
ance

Name Bit

Rocc 31 Indicates if a processor reset or soft reset
has occurred since the bit was cleared:
0: No reset occurred
1: Reset occurred
The Rocc bit stays set as long as reset is
applied.
This bit must be cleared to acknowledge
that the reset was detected. The EJTAG
Control register is not updated in the
Update-DR state unless Rocc is 0 or writ-
ten to 0 at the same time. This is in order to
ensure correct handling of the processor
access after reset.

R/W0 1 Required

Psz 30:29 Indicates the size of a pending processor
access, in combination with the Address
register:

32-bit processor
MIPS32=0 MIPS32=1

0: Byte Byte
1: Halfword Halfword
2: Word Word, 5-7 bytes
3: Triple Triple, Doubleword
A full description is located in section “Data
Register (TAP Instruction DATA, ALL, or
FASTDATA)” on page 20-62, including
reserved combinations with Address regis-
ter bits. This field is valid only when a pro-
cessor access is pending, otherwise the
read value is undefined.

R Undefined Required

Doze 22 Indicates if the processor is in low-power
mode:
0: Processor is not in low-power mode
1: Processor is in low-power mode
Doze indicates Reduced Power (RP) and
WAIT, and other implementation-depen-
dent low-power modes.
If the implementation does not support low-
power modes, then this bit always reads as
0.

R 0 Required

Halt 21 Indicates if the internal system bus clock is
running:
0: Internal system bus clock is running
1: Internal system bus clock is stopped
Halt indicates WAIT, and other implemen-
tation-dependent events that stop the sys-
tem bus clock.
If the implementation does not support a
halt state, then the bit always reads as 0.

R 0 Required

Table 20.49 EJTAG Control Register Field Description (Part 1 of 3)
ence Manual 20 - 65 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
PerRst 20 Not used on RC32438. (Controls the
peripheral reset with implementation-
dependent behavior.)

R/W 0 Optional

PRnW 19 Indicates read or write of a pending pro-
cessor access:
0: Read processor access, for a fetch/
load access
1: Write processor access, for a store
access
This value is defined only when a proces-
sor access is pending.

R Undefined Required

PrAcc 18 Indicates a pending processor access and
controls finishing of a pending processor
access. When read:
0: No pending processor access
1: Pending processor access
A write of 0 finishes a processor access if
pending; otherwise operation of the pro-
cessor is UNDEFINED if the bit is written to
0 when no processor access is pending. A
write of 1 is ignored.
The FASTDATA access can clear this bit.

R/W0 0 Required

PrRst 16 Controls the RC32438 reset:
0: No reset applied
1: Soft (warm) reset applied to entire
RC32438 device.

R/W 0 Optional

ProbEn 15 Controls whether the probe handles
accesses to dmseg through servicing of
processors accesses:
0: Probe does not service processors
accesses
1: Probe will service processor accesses
The ProbEn bit is reflected as a read-only
bit in the Debug Control Register (DCR) bit
0.
When this bit is changed, then it is guaran-
teed that the new value has taken effect in
the DCR when it can be read back here.
This handshake mechanism ensures that
the setting from the JTAG_TCK clock
domain takes effect in the processor clock
domain.
However, a change of the ProbEn prior to
setting the EjtagBrk bit will be effective for
the debug handler.
Not all combinations of ProbEn and Prob-
Trap are allowed, see section “Combina-
tions of ProbTrap and ProbEn” on page 20-
68.

R/W See section
“EJTAG-
BOOT Indica-
tion
Determines
Reset Value
of EjtagBrk,
ProbTrap and
ProbEn” on
page 20-68

Required

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

Table 20.49 EJTAG Control Register Field Description (Part 2 of 3)
ence Manual 20 - 66 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
ProbTrap 14 Controls location of the debug exception
vector:
0: Normal memory 0xBFC0 0480
1: in dmseg at 0xFF20 0200
When this bit is changed, then it is guaran-
teed that the new value is indicated to the
processor when it can be read back here.
This handshake mechanism ensures that
the setting from the JTAG_TCK clock
domain takes effect in the processor clock
domain.
However, a change of the ProbTrap prior
to setting the EjtagBrk bit will be effective
at the debug exception.
Not all combinations of ProbEn and Prob-
Trap are allowed, see section“Combina-
tions of ProbTrap and ProbEn” on page 20-
68.

R/W See section
“EJTAG-
BOOT Indica-
tion
Determines
Reset Value
of EjtagBrk,
ProbTrap and
ProbEn” on
page 20-68

Required

EjtagBrk 12 Requests a Debug Interrupt exception to
the processor when this bit is written as 1.
The debug exception request is ignored if
the processor is already in debug at the
time of the request. A write of 0 is ignored.
The debug request restarts the processor
clock if the processor was in a low-power
mode.
The read value indicates a pending Debug
Interrupt exception requested through this
bit:
0: No pending Debug Interrupt exception
requested through this bit
1: Pending Debug Interrupt exception
The read value can, but is not required to,
indicate other pending DINT debug
requests (for example, through the DINT
signal).
This bit is cleared by hardware when the
processor enters Debug Mode.

R/W1 See section
“EJTAG-
BOOT Indica-
tion
Determines
Reset Value
of EjtagBrk,
ProbTrap and
ProbEn” on
page 20-68

Required

DM 3 Indicates if the processor is in Debug
Mode:
0: Processor is in Non-Debug Mode
1: Processor is in Debug Mode

R 0 Required

0 28:23, 17,
13, 11:4,

2:0

Must be written as zeros; return zeros on
reads.

0 0 Required

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

Table 20.49 EJTAG Control Register Field Description (Part 3 of 3)
ence Manual 20 - 67 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
 EJTAGBOOT Indication Determines Reset Value of EjtagBrk, ProbTrap and ProbEn
The reset value of the EjtagBrk, ProbTrap, and ProbEn bits follows the setting of the internal EJTAG-

BOOT indication. If the EJTAGBOOT instruction has been given, and the internal EJTAGBOOT indication is
active, then the reset value of the three bits is set (1), otherwise the reset value is clear (0). The results of
setting these bits are:

– A Debug Interrupt exception is requested right after reset because EjtagBrk is set
– The debug handler is executed from the EJTAG memory because ProbTrap is set to indicate

debug vector in EJTAG memory at 0xFF20 0200
– Service of the processor access is indicated because ProbEn is set.

Thus, it is possible to execute the debug handler right after reset, without executing any instructions
from the normal reset handler.

Combinations of ProbTrap and ProbEn
Use of ProbTrap and ProbEn allows independent specification of the debug exception vector location

and availability of EJTAG memory. Behavior for the different combinations is shown in Table 20.50. Note
that not all combinations are allowed.

Bypass Register (TAP Instruction BYPASS, (EJTAG/NORMAL) BOOT, or Unused)
Compliance Level: Required with EJTAG TAP.
The Bypass register is a one-bit read-only register, which provides a minimum shift path through the

TAP. This register is also defined in IEEE 1149.1. Figure 20.33 shows the format of the Bypass register and
Table 20.51 describes the Bypass register field.

Examples of Use
An example of the TAP operation is shown in Figure 20.34.

ProbTrap ProbEn Debug Exception Vector Processor
Accesses

0 0 Normal memory at 0xBFC0 0480 Not serviced by probe

0 1 Not serviced by probe

1 0 If these two bits are changed to this state, the operation of the processor is
UNDEFINED, indicating that the debug exception vector is in EJTAG memory,
but the probe will not service processor accesses.

1 1 EJTAG memory at 0xFF20 0200 Serviced by Probe

Table 20.50 Combinations of ProbTrap and ProbEn

0
32-bit

Processor
0

Figure 20.33 Bypass Register Format

Fields
Description Read/

Write
Reset
State

Compli-
ance

Name Bit

0 0 Ignored on writes; returns zero on reads. R 0 Required

Table 20.51 Bypass Register Field Description
ence Manual 20 - 68 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
Figure 20.34 TAP Operation Example

The five-bit Instruction register is initially loaded with 000012. The first bit shifted out of the Instruction
register is a 1 followed by four 0’s. IR0 to IR4 indicate the new value for the Instruction register. IR0, the
new LSB, is shifted in first, because it will be at the LSB position once all five bits are shifted in. This
example is similar for the selected data register.

Rocc Bit Usage
The R/W0 Rocc bit in the EJTAG Control register acknowledges that the probe has seen a processor

reset, and further accesses take this reset into account. This bit is set at reset. The probe must clear it as an
acknowledge of the reset. All other writes to the EJTAG Control register, except for the reset acknowledge,
should write 1 to this bit in order to not acknowledge any resets occurring between reads and writes of the
EJTAG Control register. Correct use of the Rocc bit ensures safe handling of processor access even across
reset. An example is the following scenario:

1. A processor access is pending and the PrAcc is read with value 1 (Rocc has been cleared previ-
ously).

2. The Address and Data registers are accessed and set up to handle the processor access.
3. The EJTAG Control register is accessed to finish the processor access. The register is read in the

Capture-DR state. Shifting in of the value to write begins.
4. A reset of the processor occurs, the Rocc bit is set, and the PrAcc bit is cleared.
5. A new processor access occurs, because EJTAGBOOT was indicated.
6. A write of the EJTAG Control register is attempted with PrAcc equal to 0 and Rocc equal to 1, but

the write does not occur because the Rocc bit is set. The new processor access that was not seen
is not finished.

7. Polling of the EJTAG Control register continues. The probe detects that the Rocc bit is set.
8. The probe writes the EJTAG Control register with Rocc equal to 0 to acknowledge that the probe has

seen the reset.
9. The new processor access is serviced as usual.
Inhibiting writes to the EJTAG Control register because of the Rocc bit ensures that the new processor

access is not finished by mistake due to detection of a pending processor access before the reset occurred.

Ru
n-

Te
st/

Idl
e

JTAG_TCK

Se
lec

t-D
R-

Sc
an

Ca
ptu

re
-IR

Sh
ift-

IR

Ex
it1

-IR

Up
da

te-
IR

Se
lec

t-D
R-

Sc
an

Ca
ptu

re
-D

R

Sh
ift-

DR

Se
lec

t-I
R-

Sc
an

EJTAG_TMS

JTAG_TDI

JTAG_TDO

TAP
controller

IR0 IR1 IR2 IR3 IR4 DR0 DR1 DR2
ence Manual 20 - 69 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
 EJTAG Memory Access Through Processor Access
The processor access feature makes it possible for the probe to handle accesses from the processor to

the specific EJTAG memory area (dmseg). The processor can execute a debug handler from EJTAG
memory, whereby applications that are not prepared with EJTAG code in the system memory can still be
debugged. The probe can get information about the access through the TAP, as shown in Table 20.52.

The servicing of processor accesses works with a polling scheme, where the PrAcc bit is polled until a
pending processor access is indicated by PrAcc equal to 1. Then the Address register is read to get the
address of the transaction, and the Data register is accessed to get the write data or provide the read data.
Finally the PrAcc bit is cleared, in order to finish the access from the processor.

In addition, the ProbTrap and ProbEn bits control the debug exception vector location and the indication
to the processor that the probe will service accesses to the EJTAG memory through processor accesses.
Handling of processor access in relation to reset requires specific handling. A pending processor access is
cleared at reset. At the same time, the Rocc bit is set, thereby inhibiting any processor accesses to be
finished until Rocc is cleared. Thus, the probe will have to acknowledge that a reset occurred, preventing it
from accidentally finishing a processor access that occurred before the reset. A pending processor access
can only finish if the probe clears PrAcc or a processor reset occurs.

The width of the Address register is 32 to 64 bits. The specific length is determined by shifting a known
bit pattern through the register. The following sections show examples of servicing read and write processor
accesses.

Write Processor Access
Figure 20.35 shows a possible flow for servicing a write processor access. The example implements a

32-bit processor with 32-bit Address register, running in little-endian mode. A halfword store is performed to
address 0xFF20 1232 of value 0x5678.

Information Field and Register

Pending processor access PrAcc field in the EJTAG Control register

Read or write access PRnW field in the EJTAG Control register

Size and data location Psz field in EJTAG Control register, and two or three LSBs in
the Address register

Address Address register

Data Data register

Table 20.52 Information Provided to Probe at Processor Access
ence Manual 20 - 70 May 11, 2005

IDT EJTAG System EJTAG Test Access Port

79RC32438 User Refer

Notes
Figure 20.35 Write Processor Access Example

The different probe actions shown on the figure are described below:

1. The EJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is
written to 1 when polling, in order to prevent a processor access from finishing before being
serviced. The values of PRnW and Psz are saved when PrAcc indicates a pending processor
access.

2. The Address register is read. It contains the address of the store resulting in the write processor
access.

3. The Data register is read, which contains the data from the store resulting in the write processor
access.

4. The PrAcc bit is written to 0, in order to finish the processor access.
The probe must update the appropriate bytes in its internal memory used for EJTAG memory with the

value of the write. Note that the two lower bytes of the Data register are undefined, and that the two lower
bytes of the saved register are shifted up on the two high bytes in the Data register as on a data bus for an
external memory system. The Address register in this case contains the address from the store; however,
for some accesses, this is not the case because the two LSBs (32-bit processor) are modified for some
accesses depending on size and address.

Read Processor Access
Figure 20.36 shows a possible flow for servicing a read processor access. The example implements a

64-bit processor with 36-bit Address register. A doubleword load/fetch from address 0xFF20 3450 is shown
in the figure.

PrAcc

Probe
action

PRnW

Psz

Address

Data

1 1

Data = = 0x5678 XXXX

Address = = 0xFF20 1232

Size = 1

2 3 41 1
ence Manual 20 - 71 May 11, 2005

IDT EJTAG System Probe Interfaces

79RC32438 User Refer

Notes
Figure 20.36 Read Processor Access Example

The different probe actions shown in the above figure are described below:

1. The EJTAG Control register is polled to get the indication for a pending PrAcc bit. The PrAcc bit is
written to 1 when polling, in order to prevent a processor access from finishing before being
serviced. The values of PRnW and Psz are saved when PrAcc indicates a pending processor
access.

2. The Address register is read. It contains the address of the load/fetch resulting in the write processor
access, with the three LSBs (64-bit processor) modified to allow size indication together with the
Psz.

3. The Data register is written with the data to return for the load/fetch, resulting in the read processor
access.

4. The PrAcc bit is cleared in order to finish the processor access.
The probe must provide data for the read processor access from the internal EJTAG memory. Note that

the Address register does not contain the direct address from the access, because the three LSBs (64-bit
processor) are modified to indicate the size in conjunction with Psz. Also notice that in this case, there is no
shifting of the data returned for the processor access by writing to the Data register, because a doubleword
is provided. For other accesses, the Data register must be written with a shifted value depending on the
specific access.

Probe Interfaces
The off-chip interface forms the connection from the chip over the target system PCB and to the probe

connector, thereby allowing the probe to connect to the target processor. The probe connection is optional
in the target system.

Mechanical Connector
Figure 20.37 shows the recommended EJTAG connector on a target system. The connector is a

common pin strip with dimensions 0.100” x 0.100”, for example, SAMTEC part number TSW-107-23-L-D or
compatible. The socket on the probe side must allow for a straight pin connector on the target system.

PrAcc

Probe
action

PRnW

Psz

Address

Data

1 1

Data =

Address = = 0xF FF20 3457

Size = 3

2 3 41 1

0x0..0 0..0 0..0 BEEF
ence Manual 20 - 72 May 11, 2005

IDT EJTAG System Probe Interfaces

79RC32438 User Refer

Notes
Figure 20.37 EJTAG Connector Mechanical Dimensions

Table 20.53 shows the pin assignments for the connector.

Note: Pin 12 on the target system connector should be removed to provide keying, thus ensuring
the probe is correctly connected to the target system.

Target System PCB Design
This section provides guidelines for using the EJTAG connector on a target system.

Electrical Connection
The IEEE 1149.1 specification requires that the JTAG and EJTAG TAP controllers be reset at power-up

whether or not the interfaces are used for a boundary scan or a probe. Reset can occur through a pull-down
resistor on JTAG_TRST_N if the probe is not connected. However, on-chip pull-up resistors are imple-
mented on the RC32438 due to an IEEE 1149.1 requirement. Having on-chip pull-up and external pull-
down resistors for the JTAG_TRST_N signal requires special care in the design to ensure that a valid
logical level is provided to JTAG_TRST_N, such as using a small external pull-down resistor to ensure this
level overrides the on-chip pull-up. An alternative is to use an active power-up reset circuit for
JTAG_TRST_N, which drives JTAG_TRST_N low only at power-up and then holds JTAG_TRST_N high
afterwards with a pull-up resistor. Figure 20.38 shows the electrical connection of the target system
connector.

Pin Signal Direction Pin Signal Direction

1 JTAG_TRST_N
Test reset input

Input 2 Ground Gnd

3 JTAG_TDI
Test data input

Input 4 Ground Gnd

5 JTAG_TDO
Test data output

Output 6 Ground Gnd

7 EJTAG_TMS
Test mode select input

Input 8 Ground Gnd

9 JTAG_TCK
Test clock input

Input 10 Ground Gnd

11 RST*
System reset

Input 12 key - pin removed on
connector

NA

13 DINT (no connect)
Debug interrupt

Input 14 VSENSE
Voltage Sense for I/O

Output

Table 20.53 EJTAG Connector Pinout

2.54 mm

Top view on PCB

2.54 mm

1 2

13 14
Pin 12 removed
to allow for key

0.64 mm

5.84 mm

Side view on PCB

GND

Signal Positions

1

GND
GND
GND
GND
key
VSENSE

JTAG_TRST_N
JTAG_TDI

JTAG_TDO
EJTAG_TMS

JTAG_TCK
RST*

(no connect) DINT
ence Manual 20 - 73 May 11, 2005

IDT EJTAG System Probe Interfaces

79RC32438 User Refer

Notes
Figure 20.38 Target System Electrical EJTAG Connection

Using the EJTAG Probe
In Figure 20.38, the pull-up resistors for JTAG_TDO and RST*, the pull-down resistor for

JTAG_TRST_N, and the series resistor for JTAG_TDO must be adjusted to the specific design. However,
the recommended pull-up/down resistor is 1.0 kΩ because a low value reduces crosstalk on the cable to
the connector, allowing higher JTAG_TCK frequencies. A typical value for the series resistor is 33 Ω.
Recommended resistor values have ± 5% tolerance.

If a probe is used, the pull-up resistor on JTAG_TDO must ensure that the JTAG_TDO level is high
when no probe is connected and the JTAG_TDO output is tri-stated. This requirement allows reliable
connection of the probe if it is hooked-up when the power is already on (hot plug). The pull-up resistor value
of around 47 kΩ should be sufficient. Optional diodes to protect against overshoot and undershoot voltage
can be added on the signals of the chip with EJTAG.

If a probe is used, the RST* signal must have a pull-up resistor because it is controlled by an open-
collector (OC) driver in the probe, and thus is actively pulled low only. The pull-up resistor is responsible for
the high value when not driven by the probe of 25pF. The input on the target system reset circuit must be
able to accept the rise time when the pull-up resistor charges the capacitance to a high logical level.
Vcc I/O must connect to a voltage reference that drops rapidly to below 0.5V when the target system loses
power, even with a capacitive load of 25pF. The probe can thus detect the lost power condition.

System Reset Signal
The System Reset (RST*) signal from the probe is required to generate a reset of the target board. It is

recommended that assertion of RST* results in a hard (cold) reset of the RC32438, but it is allowed to
generate a soft (warm) reset.

The probe controls the RST* via an open-collector (OC) output. Thus, RST* is actively driven low when
asserted (low) but is tri-stated when deasserted (high).

Voltage Sense for I/O Signal
The Voltage sense for I/O (VSENSE) indicates target power is applied and voltage levels are present at

the probe I/O connections. With VSENSE, the probe can auto adjust the voltage level for the signals and
can detect if power is lost at the target system.

Layout Considerations
Layout around the pin connector on the target system must provide for sufficient clearance for the probe

to connect. Figure 20.39 shows the recommended clearance. Place the connector at the edge of the PCB.
Avoid tall components around the connector to allow for easy access.

GND
1

GND
GND
GND
GND

TRST*
TDI

TDO
TMS
TCK

RST*
DINT

JTAG_TRST_N
JTAG_TDI

JTAG_TDO
EJTAG_TMS

JTAG_TCK

GND

VDD

GND

VccIO voltage
reference

Pu
ll-u

p

Pu
ll-d

ow
n

Series-res.

COLDRSTN

Target System
Reset Circuit

Pu
ll-u

p

Other reset
sources

RC32438

no connect

or RSTN

VSENSE
ence Manual 20 - 74 May 11, 2005

IDT EJTAG System Probe Interfaces

79RC32438 User Refer

Notes
Figure 20.39 Target System Layout for EJTAG Connection

Probe Requirements and Recommendations
A probe connected to the target system at power-up is not allowed to drive the inputs before VSENSE

indicates a stable voltage. JTAG_TRST_N is then asserted by the target system pull-down resistor at
power-up, whereby a TAP reset is applied through JTAG_TRST_N. This step implies that inputs are not
driven until the target system is powered up; otherwise the communication on the TAP might be undefined
or damage could occur. At power-down, the probe is not allowed to drive the inputs after VSENSE has
dropped under a certain level (see the section on Voltage Sense Timing in the RC32438 Data Sheet). The
RST* signal is an exception to the above description because it can be driven low by the probe during
power-up.

Hot Plug in of Probe
The probe must not drive any inputs to the target system if it is connected while the system is running

(hot plug). Detection of a stable Vcc I/O from the target system (VSENSE) is required before any input is
allowed. To avoid spikes or changes in the input voltage to the target system when the probe is connected,
the level of the signal on the probe must be adjusted to the same level as the signals on the target system.
This adjustment can be done with large pull-up/down resistors (in the range of 150 kΩ) on the probe
signals, so the level of these signals matches the level on the target system shown in Figure 20.39. The
specific implementation of this feature is dependent on the probe, the driver type, etc. used in the probe.

JTAG_TDO Level when Tri-Stated
The probe must apply a pull-up resistor on JTAG_TDO to have a well-defined logical level when

JTAG_TDO on the TAP is tri-stated. The pull-up on the target system ensures the level at hot plug. The size
of the pull-up on the probe is expected to be 1.0 kΩ or more. The resistor value must be chosen so that the
current on JTAG_TDO is ± 50 µA with 0 < VTDO ≤ VSENSE.

RST* Drive by Open Collector
The probe should drive the RST* signal with an open-collector (OC) output driver to allow for easy

connection of the RST* signal in the target system.

Target System PCB

4.0 mm

4.0 mm

3.0 mm

3.0 mm
No components taller than the
base of the pin header should
be placed in the marked area

1

ence Manual 20 - 75 May 11, 2005

http://www.idttools.com/hal5/getDoc.taf?PartID=79RC32438&DocTypes=DS

IDT EJTAG System Probe Interfaces

79RC32438 User Refer

Notes
 Changing EJTAG_TMS and JTAG_TDI
It is recommended that the EJTAG_TMS and JTAG_TDI signals driven by the probe change in relation

to the falling edge generated on the JTAG_TCK, since this ensures a high setup and hold time for the
EJTAG_TMS and JTAG_TDI in relation to the rising edge of JTAG_TCK, on which these signals are
sampled by the target processor. If the JTAG_TCK clock speed can be adjusted by extending the high and
low period time of the JTAG_TCK clock, then the behavior described above will also make the probe work
even with a target processor not respecting setup and hold time, simply by lowering the JTAG_TCK
frequency.

Connecting Multiple EJTAG Controllers
This section is concerned with building a multi-core system where each core has its own EJTAG TAP

controller, but share one set of external EJTAG TAP controller pins. Note that this section does not attempt
to address the full issue of multi-core debug, which involves resolving debugger issues and other hardware
issues such as debug signalling among multiple cores, and handling breakpoints across multiple cores, etc.
Figure 20.40 shows the recommended daisy-chain connection for a multi-core configuration, where the
JTAG_TCK, JTAG_TMS and JTAG_TRST_N signals of all the TAP controllers are connected together. The
JTAG_TDI and JTAG_TDO signals are daisy chained together so that the information flow between the
selected register of all the TAP controllers is a continuous sequence.

Figure 20.40 Daisy Chaining of Multi-core EJTAG TAP Controllers

The simplest usage model for this multi-core connection, under most circumstance, uses only one
“active” device. This is accomplished by including BYPASS TAP instruction for “non-active” devices in every
TAP command chain sent by the debugger. “Non-active” devices only get attention when made “active”.
Note that it is not necessary that only one device be “active” at a time; rather, it depends entirely on how the
debugger and the end-user want to control the multiple on-chip TAP controllers.

It is recommended that the EJTAG TAPs are connected in a single daisy-chain without any non-EJTAG
TAPs in that chain, since this provides the fastest access to the EJTAG TAPs and allows most debug soft-
ware packages to operate the EJTAG TAPs.

Connecting EJTAG and JTAG Controllers
Special care must be taken by the system designer if both the EJTAG TAP and JTAG TAP are

connected in the same chain. There are several ways to make the connection.

Probe

JTAG_TCK
JTAG_TMS

JTAG_TDO
JTAG_TDI

JTAG_TRST_N

Connector
JTAG_TCK

EJTAG_TMS

JTAG_TDO
JTAG_TDI

JTAG_TRST_N

RC32438

JTAG_TCK
JTAG_TMS

JTAG_TDO
JTAG_TDI

JTAG_TRST_N

Other EJTAG TAP IC

Several EJTAG TAPs possible

JTAG_TMS
No connection or “high”
ence Manual 20 - 76 May 11, 2005

IDT EJTAG System Probe Interfaces

79RC32438 User Refer

Notes
 The first alternative is to combine the EJTAG and JTAG devices in the same data chain. The
EJTAG_TMS and JTAG_TMS can be tied together. In this case, the system designer must ensure that both
the EJTAG debug hardware and software and the external device using the TAPs can apply the BYPASS
TAP instruction when the TAPs unrelated to the current operation are to be made “non-active”.

Another alternative is to use two connectors, one for an EJTAG chain and one for a JTAG chain.
A third alternative is to use jumpers on the circuit board to steer two scan chains to either EJTAG for

debug or JTAG for boundary scan (refer to Figure 20.41). Jumper block X1 isolates the two scan chains.
Jumper X2 allows the unused TMS pins to be held high while not in use. For example, if Jumper X2 was in
the EJTAG position, the JTAG_TMS signal is pulled up by the resistor. The RC32438 JTAG_TMS pin
contains an internal pull-up, so this pin could be left disconnected without the external pull-up if there are no
other connections to it. The jumpers can be made to default to the JTAG position for ease of boundary scan
testing.

Note that in all cases, when using JTAG only, the cable can be connected to pins 1-10 on the connector,
since the remaining pins are not used for JTAG.

Figure 20.41 Connecting EJTAG and JTAG Controllers

GND
1

GND
GND
GND
GND

TRST*
TDI

TDO
TMS
TCK

RST*
DINT

JTAG_TRST_N
JTAG_TDI

JTAG_TDO
EJTAG_TMS

JTAG_TCK

GND

VDD

VccIO voltage
reference

Pu
ll-u

p

Target System
Reset Circuit

Pu
ll-u

p

Other reset
sources

RC32438

no connect

VSENSE

Pu
ll-d

ow
n

GND

Trst
TDI

TDO
TMS
TCK

Trst
TDI

TDO
TMS
TCK

Other JTAG IC

Other JTAG IC

JTAG_TMS

X2

X1

VDD

Jumper Settings

JTAG Boundary Scan

X1 X2

EJTAG Debug

Pu
ll-u

p

VDD

Pu
ll-u

p

VDD

Pull-ups are needed only if there are
no internal pull-ups on the JTAG ICs.

Note:
ence Manual 20 - 77 May 11, 2005

IDT EJTAG System Probe Interfaces

79RC32438 User Refer

Notes
ence Manual 20 - 78 May 11, 2005

Notes

79RC32438 User Reference Manual A - 1 M
Appendix A
4Kc Processor Core
Instructions
Introduction
This Appendix contains additional information about the 4Kc processor core instruction set. Chapter 2 of

this manual contains a description of the processor core and its operation.

Understanding the Instruction Set
Figure A.1 shows an example instruction.
ay 11, 2005

IDT Understanding the Instruction Set

79RC32438 User Refer

Notes
Figure A.1 Example of Instruction Description

Instruction Fields
Fields encoding the instruction word are shown in register form at the top of the instruction description.

The following rules are followed:
The values of constant fields and the opcode names for opcode fields are listed in uppercase (SPE-
CIAL and ADD in Figure A.2).
All variable fields are listed with the lowercase names used in the instruction description (rs, rt and
rd in Figure A.2).
Fields that contain zeros but are not named are unused fields that are required to be zero (bits 10:6

Instruction mnemonic and
descriptive name
Instruction encoding
constant and variable field
names and values

Architecture level at which
instruction was defined/
redefined and assembler
format(s) for each definition

Short description

Symbolic description

Full description of instruction
operation

Restrictions on instruction
and operands

High-level language
description of instruction
operation

Exceptions that instruction
can cause

Notes for programmers

Notes for implementors

Example Instruction Name Example

31 2526 2021 1516

SPECIAL rs rt

6 5 5

rd 0 EXAMPLE

5 5 6

11 10 6 5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Format: EXAMPLE rd, rs,rt MIPS32

Purpose: to execute an EXAMPE op

Description: rd rs exampleop rt.
This section describes the operation of the instruction in text, tables, and illustra-
tions. It includes information that would be difficult to encode in the Operation
section.

Restrictions:
This section lists any restrictions for the instruction. This can include values of
the instruction encoding fields such as register specifiers, operand values, oper-
and formats, address alignment, instruction scheduling hazards, and type of
memory access for addressed locations.

Operation:
/* This section describes the operation of an instruction in a */
/* high-level pseudo-language. It is precise in ways that the */
/* Description section is not, but is also missing information */
/* that is hard to express in pseudocode.*/
 temp GPR[rs] exampleop GPR[rt]
 GPR[rd] temp

Exceptions:
A list of exceptions taken by the instruction

Programming Notes:
Information useful to programmers, but not necessary to describe the operation
of the instruction

Implementation Notes:
Like Programming Notes, except for processor implementors
ence Manual A - 2 May 11, 2005

IDT Understanding the Instruction Set

79RC32438 User Refer

Notes
 in Figure A.2) If such fields are set to non-zero values, the operation of the processor is UNPRE-
DICTABLE.

Figure A.2 Example of Instruction Fields

Instruction Descriptive Name and Mnemonic
The instruction descriptive name and mnemonic are printed as page headings for each instruction, as

shown in Figure A.3.

Figure A.3 Example of Instruction Descriptive and Mnemonic Name

Format Field
The assembler formats for the instruction and the architecture level at which the instruction was origi-

nally defined are given in the Format field. If the instruction definition was later extended, the architecture
levels at which it was extended and the assembler formats for the extended definition are shown in their
order of extension (for an example, see C.cond.fmt). The MIPS architecture levels are inclusive; higher
architecture levels include all instructions in previous levels. Extensions to instructions are backwards
compatible. The original assembler formats are valid for the extended architecture.

Figure A.4 Example of Instruction Format

The assembler format is shown with literal parts of the assembler instruction printed in uppercase char-
acters. The variable parts, the operands, are shown as the lowercase names of the appropriate fields. The
architectural level at which the instruction was first defined, for example “MIPS32” is shown at the right side
of the page.

Purpose Field
The Purpose field gives a short description of the use of the instruction.

Figure A.5 Example of Instruction Purpose

Description Field
If a one-line symbolic description of the instruction is feasible, it appears immediately to the right of the

Description heading. The main purpose is to show how fields in the instruction are used in the arithmetic or
logical operation.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL
000000

rs rt rd 0
00000

ADD
100000

6 5 5 5 5 6

Add Word Add

Format: ADD rd, rs rt MIPS32

Purpose:
To add 32-bit integers. If an overflow occurs, then trap.
ence Manual A - 3 May 11, 2005

IDT Understanding the Instruction Set

79RC32438 User Refer

Notes
Figure A.6 Example of Instruction Description

The body of the section is a description of the operation of the instruction in text, tables, and figures.
This description complements the high-level language description in the Operation section.

This section uses acronyms for register descriptions. “GPR rt” is CPU general-purpose register specified
by the instruction field rt.

Restrictions Field
The Restrictions field documents any possible restrictions that may affect the instruction. Most restric-

tions fall into one of the following six categories:
Valid values for instruction fields (for example, see floating-point ADD.fmt)
Alignment requirements for memory addresses (for example, see LW)
Valid values of operands (for example, see DADD)
Valid operand formats (for example, see floating-point ADD.fmt)
Order of instructions necessary to guarantee correct execution. These ordering constraints avoid
pipeline hazards for which some processors do not have hardware interlocks (for example, see
MUL).
Valid memory access types (for example, see LL/SC).

Figure A.7 Example of Instruction Restrictions

Operation Field
The Operation field describes the operation of the instruction as pseudocode in a high-level language

notation resembling Pascal (see Figure A.8). This formal description complements the Description section;
it is not complete in itself because many of the restrictions are either difficult to include in the pseudocode or
are omitted for legibility.

Description: rd rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in DPR rs to produce a 32-bit result.

If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is not
modified and an Integer Overflow exception occurs.

If the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:

Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT
instruction is placed in the delay slot of a branch or jump.
ence Manual A - 4 May 11, 2005

IDT Operation Section Notation and Functions

79RC32438 User Refer

Notes
Figure A.8 Sample Instruction Operation

Exceptions Field
The Exceptions field lists the exceptions that can be caused by Operation of the instruction. It omits

exceptions that can be caused by the instruction fetch, for instance, TLB Refill, and also omits exceptions
that can be caused by asynchronous external events such as an Interrupt. Although a Bus Error exception
may be caused by the operation of a load or store instruction, this section does not list Bus Error for load
and store instructions because the relationship between load and store instructions and external error indi-
cations, like Bus Error, are dependent upon the implementation.

Figure A.9 Sample Instruction Exception

An instruction may cause implementation-dependent exceptions that are not present in the Exceptions
section.

Programming Notes and Implementation Notes Fields
The Notes sections contain material that is useful for programmers and implementors, respectively, but

that is not necessary to describe the instruction and does not belong in the description sections.

Figure A.10 Sample Instruction Programming Notes

Operation Section Notation and Functions
In an instruction description, the Operation section uses a high-level language notation to describe the

operation performed by each instruction. The contents of the Operation section are described here,
including the special symbols and functions that are used.

Instruction Execution Ordering
Each of the high-level language statements in the Operations section are executed sequentially (except

as constrained by conditional and loop constructs).

Operation:

temp (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)

if temp32 ≠ temp31 then
SignalException(IntergerOverflow)
else
GPR[rd] temp
endif

Exceptions:

Integer Overflow

Programming Notes:

ADDU performs the same arithmetic operation but does not trap on overflow.
ence Manual A - 5 May 11, 2005

IDT Operation Section Notation and Functions

79RC32438 User Refer

Notes
 Special Symbols in Pseudocode Notation
Special symbols used in the pseudocode notation are listed in Table A.1.

Symbol Meaning

← Assignment

=, ≠ Tests for equality and Inequality

|| Bit string concatenation

xy A y-bit string formed by y copies of the single-bit value x

b#n A constant value n in base b. For instance 10#100 represents the decimal value
100, 2#100 represents the binary value 100 (decimal 4), and 16#100 represents the
hexadecimal value 100 (decimal 256). If the "b#" prefix is omitted, the default base is
10.

xy..z Selection of bits y through z of bit string x. Little-endian bit notation (rightmost bit is
0) is used. If y is less than z, this expression is an empty (zero length) bit string.

+, − 2’s complement or floating-point arithmetic: addition, subtraction

∗, × 2’s complement or floating point multiplication (both used for either)

div 2’s complement integer division

mod 2’s complement modulo

/ Floating-point division

< 2’s complement less-than comparison

> 2’s complement greater-than comparison

≤ 2’s complement less-than or equal comparison

≥ 2’s complement greater-than or equal comparison

nor Bitwise logical NOR

xor Bitwise logical XOR

and Bitwise logical AND

or Bitwise logical OR

GPRLEN The length in bits (32 or 64) of the CPU general-purpose registers

GPR[x] CPU general-purpose register x. The content of GPR[0] is always zero.

CPR[z,x,s] Coprocessor unit z, general register x, select s

CCR[z,x] Coprocessor unit z, control register x

Xlat[x] Translation of the MIPS16 GPR number x into the corresponding 32-bit GPR num-
ber

BigEndianMem Endian mode as configured at chip reset (0 →Little-Endian, 1 → Big-Endian).
Specifies the endianness of the memory interface (see LoadMemory and Store-
Memory sections in this chapter), and the endianness of Kernel and Supervisor
mode execution.

BigEndianCPU The endianness for load and store instructions (0 → Little-Endian, 1 → Big-
Endian). In User mode, this endianness may be switched by setting the RE bit in the
Status register. Thus, BigEndianCPU may be computed as (BigEndianMem XOR
ReverseEndian).

Table A.1 Symbols Used in Instruction Operation Statements (Part 1 of 2)
ence Manual A - 6 May 11, 2005

IDT Operation Section Notation and Functions

79RC32438 User Refer

Notes
Pseudocode Functions
There are several functions used in the pseudocode descriptions. These are used either to make the

pseudocode more readable, to abstract implementation-specific behavior, or both. These functions include
the following: Load Memory and Store Memory Functions, and Miscellaneous Functions.

Load Memory and Store Memory Functions
Regardless of byte ordering (big- or little-endian), the address of a halfword, word, or doubleword is the

smallest byte address of the bytes that form the object. For big-endian ordering this is the most-significant
byte; for a little-endian ordering this is the least-significant byte.

In the Operation pseudocode for load and store operations, the following functions summarize the
handling of virtual addresses and the access of physical memory. The size of the data item to be loaded or
stored is passed in the AccessLength field. The valid constant names and values are shown in Table 11-2.
The bytes within the addressed unit of memory (word for 32-bit processors or doubleword for 64-bit proces-
sors) that are used can be determined directly from the AccessLength and the two or three low-order bits of
the address.

ReverseEndian Signal to reverse the endianness of load and store instructions. This feature is avail-
able in User mode only, and is implemented by setting the RE bit of the Status regis-
ter. Thus, ReverseEndian may be computed as (SRRE and User mode).

LLbit Bit of virtual state used to specify operation for instructions that provide atomic
read-modify-write. LLbit is set when a linked load occurs; it is tested and cleared by
the conditional store. It is cleared, during other CPU operation, when a store to the
location would no longer be atomic. In particular, it is cleared by exception return
instructions.

I:,
I+n:,
I-n:

This occurs as a prefix to Operation description lines and functions as a label. It indi-
cates the instruction time during which the pseudocode appears to “execute.”
Unless otherwise indicated, all effects of the current instruction appear to occur dur-
ing the instruction time of the current instruction. No label is equivalent to a time
label of I. Sometimes effects of an instruction appear to occur either earlier or later
— that is, during the instruction time of another instruction. When this happens, the
instruction operation is written in sections labeled with the instruction time, relative
to the current instruction I, in which the effect of that pseudocode appears to occur.
For example, an instruction may have a result that is not available until after the next
instruction. Such an instruction has the portion of the instruction operation descrip-
tion that writes the result register in a section labeled I+1.
The effect of pseudocode statements for the current instruction labelled I+1 appears
to occur “at the same time” as the effect of pseudocode statements labeled I for the
following instruction. Within one pseudocode sequence, the effects of the state-
ments take place in order. However, between sequences of statements for different
instructions that occur “at the same time,” there is no defined order. Programs must
not depend on a particular order of evaluation between such sections.

PC The Program Counter value. During the instruction time of an instruction, this is the
address of the instruction word. The address of the instruction that occurs during the
next instruction time is determined by assigning a value to PC during an instruction
time. If no value is assigned to PC during an instruction time by any pseudocode
statement, it is automatically incremented by either 2 (in the case of a 16-bit MIPS16
instruction) or 4 before the next instruction time. A taken branch assigns the target
address to the PC during the instruction time of the instruction in the branch delay
slot.

PABITS The number of physical address bits implemented is represented by the symbol
PABITS. As such, if 36 physical address bits were implemented, the size of the
physical address space would be 2PABITS = 236 bytes.

Symbol Meaning

Table A.1 Symbols Used in Instruction Operation Statements (Part 2 of 2)
ence Manual A - 7 May 11, 2005

IDT Operation Section Notation and Functions

79RC32438 User Refer

Notes
 AddressTranslation

The AddressTranslation function translates a virtual address to a physical address and its cache coher-
ence algorithm, describing the mechanism used to resolve the memory reference.

Given the virtual address vAddr, and whether the reference is to Instructions or Data (IorD), find the
corresponding physical address (pAddr) and the cache coherence algorithm (CCA) used to resolve the
reference. If the virtual address is in one of the unmapped address spaces, the physical address and CCA
are determined directly by the virtual address. If the virtual address is in one of the mapped address spaces
then the TLB determines the physical address and access type; if the required translation is not present in
the TLB or the desired access is not permitted, the function fails and an exception is taken.

(pAddr, CCA) ← AddressTranslation (vAddr, IorD, LorS)

/* pAddr: physical address */
/* CCA: Cache Coherence Algorithm, the method used to access caches*/
/* and memory and resolve the reference */

/* vAddr: virtual address */
/* IorD: Indicates whether access is for INSTRUCTION or DATA */
/* LorS: Indicates whether access is for LOAD or STORE */

/* See the address translation description for the appropriate MMU */
/* type in Volume III of this book for the exact translation mechanism */

endfunction AddressTranslation

LoadMemory

The LoadMemory function loads a value from memory.
This action uses cache and main memory as specified in both the Cache Coherence Algorithm (CCA)

and the access (IorD) to find the contents of AccessLength memory bytes, starting at physical location
pAddr. The data is returned in a fixed-width naturally aligned memory element (MemElem). The low-order
two (or three) bits of the address and the AccessLength indicate which of the bytes within MemElem need
to be passed to the processor. If the memory access type of the reference is uncached, only the referenced
bytes are read from memory and marked as valid within the memory element. If the access type is cached
but the data is not present in cache, an implementation-specific size and alignment block of memory is read
and loaded into the cache to satisfy a load reference. At a minimum, this block is the entire memory
element.

MemElem ← LoadMemory (CCA, AccessLength, pAddr, vAddr, IorD)

/* MemElem: Data is returned in a fixed width with a */
/* natural alignment. The width is the same size */
/* as the CPU general-purpose register, */
/* 32 or 64 bits, aligned on a 32- or 64-bit */
/* boundary, respectively. */
/* CCA: Cache Coherence Algorithm, the method used to */
/* access caches and memory and resolve the reference */

/* AccessLength: Length, in bytes, of access */
/* pAddr: physical address */
/* vAddr: virtual address */
/* IorD: Indicates whether access is for Instructions or Data */

endfunction LoadMemory

StoreMemory

The StoreMemory function stores a value to memory.
ence Manual A - 8 May 11, 2005

IDT Operation Section Notation and Functions

79RC32438 User Refer

Notes
 The specified data is stored into the physical location pAddr using the memory hierarchy (data caches
and main memory) as specified by the Cache Coherence Algorithm (CCA). The MemElem contains the
data for an aligned, fixed-width memory element (a word for 32-bit processors, a doubleword for 64-bit
processors), though only the bytes that are actually stored to memory need be valid. The low-order two (or
three) bits of pAddr and the AccessLength field indicate which of the bytes within the MemElem data should
be stored; only these bytes in memory will actually be changed.

StoreMemory (CCA, AccessLength, MemElem, pAddr, vAddr)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* AccessLength: Length, in bytes, of access */
/* MemElem: Data in the width and alignment of a memory element. */
/* The width is the same size as the CPU general */
/* purpose register, either 4 or 8 bytes, aligned on */
/* a 4- or 8-byte boundary. For a partial-memory-element */
/* store, only the bytes that will be*/
/* stored must be valid.*/
/* pAddr: physical address */
/* vAddr: virtual address */

Prefetch

The Prefetch function prefetches data from memory.
Prefetch is an advisory instruction for which an implementation-specific action is taken. The action taken

may increase performance but must not change the meaning of the program or alter architecturally visible
state.

Prefetch (CCA, pAddr, vAddr, DATA, hint)

/* CCA: Cache Coherence Algorithm, the method used to access */
/* caches and memory and resolve the reference. */
/* pAddr: physical address */
/* vAddr: virtual address */
/* DATA: Indicates that access is for DATA */
/* hint: hint that indicates the possible use of the data */

endfunction Prefetch

Table A.2 lists the data access lengths and their labels for loads and stores.

Miscellaneous Functions
This section lists miscellaneous functions not covered in previous sections.
SyncOperation

The SyncOperation function orders loads and stores to synchronize shared memory.

AccessLength Name Value Meaning

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

Table A.2 AccessLength Specifications for Loads/Stores
ence Manual A - 9 May 11, 2005

IDT Operation Section Notation and Functions

79RC32438 User Refer

Notes
 This action makes the effects of the synchronizable loads and stores indicated by type occur in the
same order for all processors.

SyncOperation(stype)

/* stype: Type of load/store ordering to perform. */

/* Perform implementation-dependent operation to complete the */
/* required synchronization operation */

endfunction SyncOperation

SignalException

The SignalException function signals an exception condition.
This action results in an exception that aborts the instruction. The instruction operation pseudocode

never sees a return from this function call.

SignalException(Exception, argument)

/* Exception: The exception condition that exists. */
/* argument: An exception-dependent argument, if any */

endfunction SignalException

NullifyCurrentInstruction

The NullifyCurrentInstruction function nullifies the current instruction.
The instruction is aborted. For branch-likely instructions, nullification kills the instruction in the delay slot

during its execution.

NullifyCurrentInstruction()

endfunction NullifyCurrentInstruction

CoprocessorOperation

The CoprocessorOperation function performs the specified Coprocessor operation.

CoprocessorOperation (z, cop_fun)

/* z: Coprocessor unit number */
/* cop_fun: Coprocessor function from function field of instruction */

/* Transmit the cop_fun value to coprocessor z */

endfunction CoprocessorOperation

JumpDelaySlot

The JumpDelaySlot function is used in the pseudocode for the four PC-relative instructions. The func-
tion returns TRUE if the instruction at vAddr is executed in a jump delay slot. A jump delay slot always
immediately follows a JR, JAL, JALR, or JALX instruction.

JumpDelaySlot(vAddr)

/* vAddr: Virtual address */

endfunction JumpDelaySlot
ence Manual A - 10 May 11, 2005

IDT CPU Opcode Map

79RC32438 User Refer

Notes
 Op and Function Subfield Notation
In some instructions, the instruction subfields op and function can have constant 5- or 6-bit values.

When reference is made to these instructions, uppercase mnemonics are used. For instance, in the
floating-point ADD instruction, op=COP1 and function=ADD. In other cases, a single field has both fixed
and variable subfields, so the name contains both uppercase and lowercase characters.

CPU Opcode Map
CAPITALIZED text indicates an opcode mnemonic
Italicized text indicates to look at the specified opcode submap for further instruction bit decode
Entries containing the a symbol indicate that a reserved instruction fault occurs if the core executes
this instruction.
Entries containing the b symbol indicate that a coprocessor unusable exception occurs if the core
executes this instruction.

opcode bits 28...26

0 1 2 3 4 5 6 7

bits 31...29 000 001 010 011 100 101 110 111

0 000 Special RegImm J JAL BEQ BNE BLEZ BGTZ

1 001 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI

2 010 COP0 β β β BEQL BNEL BLEZL BGTZL

3 011 α α α α Special2 α α α

4 100 LB LH LWL LW LBU LHU LWR α

5 101 SB SH SWL SW α α SWR CACHE

6 110 LL β β PREF α β β α

7 111 SC β β α α β β α

Table A.3 Encoding of the Opcode Field

function bits 2...0

0 1 2 3 4 5 6 7

bits 5...3 000 001 010 011 100 101 110 111

0 000 SLL β SRL SRA SLLV α SRLV SRAV

1 001 JR JALR MOVZ MOVN SYSCALL BREAK α SYNC

2 010 MFHI MTHI MFLO MTLO α α α α

3 011 MULT MULTU DIV DIVU α α α α

4 100 ADD ADDU SUB SUBU AND OR XOR NOR

5 101 α α SLT SLTU α α α α

6 110 TGE TGEU TLT TLTU TEQ α TNE α

7 111 α α α α α α α α

Table A.4 Special Opcode Encoding of Function Field
ence Manual A - 11 May 11, 2005

IDT CPU Opcode Map

79RC32438 User Refer

Notes

function bits 2...0

0 1 2 3 4 5 6 7

bits 5...3 000 001 010 011 100 101 110 111

0 000 MADD MADDU MUL α MSUB MSUBU α α

1 001 α α α α α α α α

2 010 α α α α α α α α

3 011 α α α α α α α α

4 100 CLZ CLO α α α α α α

5 101 α α α α α α α α

6 110 α α α α α α α α

7 111 α α α α α α α SDBBP

Table A.5 Special2 Opcode Encoding of Function Field

rt bits 18...16

0 1 2 3 4 5 6 7

bits 20...19 000 001 010 011 100 101 110 111

0 BLTZ BGEZ BLTZL BGEZL α α α α α

1 TGEI TGEIU TLTI TLTIU TEQI α TNEI α α

2 BLTZAL BGEZAL BLTZALL BGEZALL α α α α α

3 α α α α α α α α α

Table A.6 RegImm Encoding of rt Field

rs bits 23...21

0 1 2 3 4 5 6 7

bits 25...24 000 001 010 011 100 101 110 111

0 00 MFCO α α α MTCO α α α

1 01 α α α α α α α α

2 10 CO

3 11

Table A.7 COP0 Encoding of rs Field
ence Manual A - 12 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
Instruction Set
This section describes the core instructions. Table A.9 lists the instructions in alphabetical order,

followed by a detailed description of each instruction.

function bits 2...0

0 1 2 3 4 5 6 7

bits 5...3 000 001 010 011 100 101 110 111

0 000 α TLBR TLBWI α α α TLBWR α

1 001 TLBP α α α α α α α

2 010 α α α α α α α α

3 011 ERET α α α α α α DERET

4 100 WAIT α α α α α α α

5 101 α α α α α α α α

6 110 α α α α α α α α

7 111 α α α α α α α α

Table A.8 CP0 Encoding of Function Field when rs=CO

Instruction Description Function

ADD Integer Add Rd = Rs + Rt

ADDI Integer Add Immediate Rt = Rs + Immed

ADDIU Unsigned Integer Add Immediate Rt = Rs +U Immed

ADDU Unsigned Integer Add Rd = Rs +U Rt

AND Logical AND Rd = Rs & Rt

ANDI Logical AND Immediate Rt = Rs & (016 || Immed)

B Unconditional Branch
(Assembler idiom for: BEQ r0, r0, offset)

PC += (int)offset

BAL Branch and Link
(Assembler idiom for: BGEZAL r0, offset)

GPR[31] = PC + 8
PC += (int)offset

BEQ Branch On Equal if Rs == Rt
 PC += (int)offset

BEQL Branch On Equal Likely if Rs == Rt
 PC += (int)offset
else
 Ignore Next Instruction

Table A.9 Instruction Set (Part 1 of 6)
ence Manual A - 13 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

BGEZ Branch on Greater Than or Equal To Zero if !Rs[31]

 PC += (int)offset

BGEZAL Branch on Greater Than or Equal To Zero And Link GPR[31] = PC + 8
if !Rs[31]
 PC += (int)offset

BGEZALL Branch on Greater Than or Equal To Zero And Link
Likely

GPR[31] = PC + 8
if !Rs[31]
 PC += (int)offset
else
 Ignore Next Instruction

BGEZL Branch on Greater Than or Equal To Zero Likely if !Rs[31]
 PC += (int)offset
else
 Ignore Next Instruction

BGTZ Branch on Greater Than Zero if !Rs[31] && Rs != 0
 PC += (int)offset

BGTZL Branch on Greater Than Zero Likely if !Rs[31] && Rs != 0
 PC += (int)offset
else
 Ignore Next Instruction

BLEZ Branch on Less Than or Equal to Zero if Rs[31] || Rs == 0
 PC += (int)offset

BLEZL Branch on Less Than or Equal to Zero Likely if Rs[31] || Rs == 0
 PC += (int)offset
else
 Ignore Next Instruction

BLTZ Branch on Less Than Zero if Rs[31]
 PC += (int)offset

BLTZAL Branch on Less Than Zero And Link GPR[31] = PC + 8
if Rs[31]
 PC += (int)offset

BLTZALL Branch on Less Than Zero And Link Likely GPR[31] = PC + 8
if Rs[31]
 PC += (int)offset
else
 Ignore Next Instruction

BLTZL Branch on Less Than Zero Likely if Rs[31]
 PC += (int)offset
else
 Ignore Next Instruction

Instruction Description Function

Table A.9 Instruction Set (Part 2 of 6)
ence Manual A - 14 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

BNE Branch on Not Equal if Rs != Rt

 PC += (int)offset

BNEL Branch on Not Equal Likely if Rs != Rt
 PC += (int)offset
else
 Ignore Next Instruction

BREAK Breakpoint Break Exception

CACHE Cache Operation See Cache Description

COP0 Coprocessor 0 Operation See Coprocessor Description

CLO Count Leading Ones Rd = NumLeadingOnes(Rs)

CLZ Count Leading Zeroes Rd = NumLeadingZeroes(Rs)

DERET Return from Debug Exception PC = DEPC
Exit Debug Mode

DIV Divide LO = (int)Rs / (int)Rt
HI = (int)Rs % (int)Rt

DIVU Unsigned Divide LO = (uns)Rs / (uns)Rt
HI = (uns)Rs % (uns)Rt

ERET Return from Exception if SR[2]
 PC = ErrorEPC
else
 PC = EPC
SR[1] = 0
SR[2] = 0
LL = 0

J Unconditional Jump PC = PC[31:28] || offset<<2

JAL Jump and Link GPR[31] = PC + 8
PC = PC[31:28] || offset<<2

JALR Jump and Link Register Rd = PC + 8
PC = Rs

JR Jump Register PC = Rs

LB Load Byte Rt = (byte)Mem[Rs+offset]

LBU Unsigned Load Byte Rt = (ubyte))Mem[Rs+offset]

LH Load Halfword Rt = (half)Mem[Rs+offset]

LHU Unsigned Load Halfword Rt = (uhalf)Mem[Rs+offset]

LL Load Linked Word Rt = Mem[Rs+offset]
LL = 1
LLAdr = Rs + offset

Instruction Description Function

Table A.9 Instruction Set (Part 3 of 6)
ence Manual A - 15 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

LUI Load Upper Immediate Rt = immediate << 16

LW Load Word Rt = Mem[Rs+offset]

LWL Load Word Left See LWL instruction on page
A-53.

LWR Load Word Right See LWR instruction on page
A-55.

MADD Multiply - Add HI, LO += (int)Rs * (int)Rt

MADDU Multiply - Add Unsigned HI, LO += (uns)Rs * (uns)Rt

MFC0 Move From Coprocessor 0 Rt = CPR[0, n, sel] = Rt

MFHI Move From HI Rd = HI

MFLO Move From LO Rd = LO

MOVN Move Conditional on Not Zero if GPR[rt] ≠ 0 then
 GPR[rd] ← GPR[rs]

MOVZ Move Conditional on Zero if GPR[rt] = 0 then
 GPR[rd] ← GPR[rs]

MSUB Multiply-Subtract HI, LO −= (int)Rs * (int)Rt

MSUBU Multiply-Subtract Unsigned HI, LO −= (uns)Rs * (uns)Rt

MTC0 Move To Coprocessor 0 CPR[0, n] = Rt SEL

MTHI Move To HI HI = Rs

MTLO Move To LO LO = Rs

MUL Multiply with register write HI | LO =Unpredictable
Rd = LO

MULT Integer Multiply HI | LO = (int)Rs * (int)Rd

MULTU Unsigned Multiply HI | LO = (uns)Rs * (uns)Rd

NOP No Operation
(Assembler idiom for: SLL r0, r0, r0)

NOR Logical NOR Rd = ∼(Rs | Rt)

OR Logical OR Rd = Rs | Rt

ORI Logical OR Immediate Rt = Rs | Immed

PREF Prefetch Load Specified Line into
Cache

SB Store Byte (byte)Mem[Rs+offset] = Rt

Instruction Description Function

Table A.9 Instruction Set (Part 4 of 6)
ence Manual A - 16 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

SC Store Conditional Word if LL =1

 mem[Rxoffs] = Rt
Rt = LL

SDBBP Software Debug Break Point Trap to SW Debug Handler

SH Store Half (half)Mem[Rs+offset] = Rt

SLL Shift Left Logical Rd = Rt << sa

SLLV Shift Left Logical Variable Rd = Rt << Rs[4:0]

SLT Set on Less Than if (int)Rs < (int)Rt
 Rd = 1
else
 Rd = 0

SLTI Set on Less Than Immediate if (int)Rs < (int)Immed
 Rt = 1
else
 Rt = 0

SLTIU Set on Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
 Rt = 1
else
 Rt = 0

SLTU Set on Less Than Unsigned if (uns)Rs < (uns)Immed
 Rd = 1
else
 Rd = 0

SRA Shift Right Arithmetic Rd = (int)Rt >> sa

SRAV Shift Right Arithmetic Variable Rd = (int)Rt >> Rs[4:0]

SRL Shift Right Logical Rd = (uns)Rt >> sa

SRLV Shift Right Logical Variable Rd = (uns)Rt >> Rs[4:0]

SSNOP Superscalar Inhibit No Operation

SUB Integer Subtract Rt = (int)Rs - (int)Rd

SUBU Unsigned Subtract Rt = (uns)Rs - (uns)Rd

SW Store Word Mem[Rs+offset] = Rt

SWL Store Word Left See Store Word Left instruc-
tion on

SWR Store Word Right SeeStore Word Right instruc-
tion on

SYNC Synchronize See SYNC instruction on page
A-88

Instruction Description Function

Table A.9 Instruction Set (Part 5 of 6)
ence Manual A - 17 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

SYSCALL System Call SystemCallException

TEQ Trap if Equal if Rs == Rt
 TrapException

TEQI Trap if Equal Immediate if Rs == (int)Immed
 TrapException

TGE Trap if Greater Than or Equal if (int)Rs >= (int)Rt
 TrapException

TGEI Trap if Greater Than or Equal Immediate if (int)Rs >= (int)Immed
 TrapException

TGEIU Trap if Greater Than or Equal Immediate Unsigned if (uns)Rs >= (uns)Immed
 TrapException

TGEU Trap if Greater Than or Equal Unsigned if (uns)Rs >= (uns)Rt
 TrapException

TLBWI Write Indexed TLB Entry See TLBWI instruction on
page A-95

TLBWR Write Random TLB Entry See TLBWR instruction on
page A-96

TLBP Probe TLB for Matching Entry See TLBP instruction on page
A-93

TLBR Read Index for TLB Entry See TLBR instruction on page
A-94

TLT Trap if Less Than if (int)Rs < (int)Rt
 TrapException

TLTI Trap if Less Than Immediate if (int)Rs < (int)Immed
 TrapException

TLTIU Trap if Less Than Immediate Unsigned if (uns)Rs < (uns)Immed
 TrapException

TLTU Trap if Less Than Unsigned if (uns)Rs < (uns)Rt
 TrapException

TNE Trap if Not Equal if Rs != Rt
 TrapException

TNEI Trap if Not Equal Immediate if Rs != (int)Immed
 TrapException

WAIT Wait for Interrupts Stall until interrupt occurs

XOR Exclusive OR Rd = Rs ^ Rt

XORI Exclusive OR Immediate Rt = Rs ^ (uns)Immed

Instruction Description Function

Table A.9 Instruction Set (Part 6 of 6)
ence Manual A - 18 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

DD

Format: ADD rd, rs, rt MIPS32

Purpose:
To add 32-bit integers. If an overflow occurs, then trap.

Description: rd ← rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is
not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rd.

Restrictions:
None

Operation:
temp ← (GPR[rs]31||GPR[rs]31..0) + (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp
endif

Exceptions:
Integer Overflow

Programming Notes:
ADDU performs the same arithmetic operation but does not trap on overflow.

ADDI

Format: ADDI rt, rs, immediate MIPS32

Purpose:
To add a constant to a 32-bit integer. If overflow occurs, then trap.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

ADD

100000
6 5 5 5 5 6

31 26 25 21 20 16 15 0
ADDI

001000
rs rt immediate

6 5 5 16

Add Word ADD

Add Immediate Word ADDI
ence Manual A - 19 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs to produce a 32-bit result.

• If the addition results in 32-bit 2’s complement arithmetic overflow, the destination register is
not modified and an Integer Overflow exception occurs.

• If the addition does not overflow, the 32-bit result is placed into GPR rt.

Restrictions:
None

Operation:
temp ← (GPR[rs]31||GPR[rs]31..0) + sign_extend(immediate)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rt] ← temp
endif

Exceptions:
Integer Overflow

Programming Notes:
ADDIU performs the same arithmetic operation but does not trap on overflow.

ADDIU

Format: ADDIU rt, rs, immediate MIPS32

Purpose:
To add a constant to a 32-bit integer.

Description: rt ← rs + immediate

The 16-bit signed immediate is added to the 32-bit value in GPR rs and the 32-bit arithmetic result
is placed into GPR rt.
No Integer Overflow exception occurs under any circumstances.

Restrictions:
None

Operation:
temp ← GPR[rs] + sign_extend(immediate)
GPR[rt] ← temp

Exceptions:
None

31 26 25 21 20 16 15 0
ADDIU

001001
rs rt immediate

6 5 5 16

Add Immediate Unsigned Word ADDIU
ence Manual A - 20 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Programming Notes:
The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arith-
metic that does not trap on overflow. This instruction is appropriate for unsigned arithmetic, such
as address arithmetic, or integer arithmetic environments that ignore overflow, such as C lan-
guage arithmetic.

ADDU

Format: ADDU rd, rs, rt MIPS32

Purpose:
To add 32-bit integers.

Description: rd ← rs + rt

The 32-bit word value in GPR rt is added to the 32-bit value in GPR rs and the 32-bit arithmetic
result is placed into GPR rd.
No Integer Overflow exception occurs under any circumstances.

Restrictions:
None

Operation:
temp ← GPR[rs] + GPR[rt]
GPR[rd] ← temp

Exceptions:
None

Programming Notes:
The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arith-
metic that does not trap on overflow. This instruction is appropriate for unsigned arithmetic, such
as address arithmetic, or integer arithmetic environments that ignore overflow, such as C lan-
guage arithmetic.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

ADDU

100001
6 5 5 5 5 6

Add Unsigned Word ADDU
ence Manual A - 21 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

AND

Format: AND rd, rs, rt MIPS32

Purpose:
To do a bitwise logical AND.

Description: rd ← rs AND rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical AND opera-
tion. The result is placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:
None

ANDI

Format: ANDI rt, rs, immediate MIPS32

Purpose:
To do a bitwise logical AND with a constant.

Description: rt ← rs AND immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a
bitwise logical AND operation. The result is placed into GPR rt.

Restrictions:
None

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

AND

100100
6 5 5 5 5 6

31 26 25 21 20 16 15 0
ANDI

001100
rs rt immediate

6 5 5 16

And AND

And Immediate ANDI
ence Manual A - 22 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
GPR[rt] ← GPR[rs] and zero_extend(immediate)

Exceptions:
None

B

Format: B offset Assembly Idiom

Purpose:
To do an unconditional branch.

Description: branch

B offset is the assembly idiom used to denote an unconditional branch. The actual instruction is
interpreted by the hardware as BEQ r0, r0, offset.
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)
I+1: PC ← PC + target_offset

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 Kbytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.

31 26 25 21 20 16 15 0
BEQ

000100

0

00000

0

00000
offset

6 5 5 16

Unconditional Branch B
ence Manual A - 23 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

BAL

Format: BAL rs, offset Assembly Idiom

Purpose:
To do an unconditional PC-relative procedure call.

Description: procedure_call

BAL offset is the assembly idiom used to denote an unconditional branch. The actual instruction
is interpreted by the hardware as BGEZAL r0, offset.
Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, where execution continues after a procedure call.
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.
GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is UNPREDICT-
ABLE. This restriction permits an exception handler to resume execution by re-executing the
branch when an exception occurs in the branch delay slot.

Operation:
I: target_offset ← sign_extend(offset || 02)

GPR[31] ← PC + 8
I+1: PC ← PC + target_offset

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
and link (JAL) or jump and link register (JALR) instructions for procedure calls to addresses out-
side this range.

31 26 25 21 20 16 15 0
REGIMM

000001

0

00000

BGEZAL

10001
offset

6 5 5 16

Branch and Link BAL
ence Manual A - 24 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

BEQ

Format: BEQ rs, rt, offset MIPS32

Purpose:
To compare GPRs, then do a PC-relative conditional branch.

Description: if rs = rt then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs and GPR rt are equal, branch to the effective target address after the
instruction in the delay slot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← (GPR[rs] = GPR[rt])
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 Kbytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.
BEQ r0, r0 offset, expressed as B offset, is the assembly idiom used to denote an unconditional
branch.

31 26 25 21 20 16 15 0
BEQ

000100
rs rt offset

6 5 5 16

Branch on Equal BEQ
ence Manual A - 25 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

BEQL

Format: BEQL rs, rt, offset MIPS32

Purpose:
To compare GPRs, then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if rs = rt then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs and GPR rt are equal, branch to the target address after the instruction
in the delay slot is executed. If the branch is not taken, the instruction in the delay slot is not exe-
cuted.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← (GPR[rs] = GPR[rt])
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.
Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be
removed from a future revision of the MIPS Architecture.

31 26 25 21 20 16 15 0
BEQL

010100
rs rt offset

6 5 5 16

Branch on Equal Likely BEQL
ence Manual A - 26 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

BGEZ

Format: BGEZ rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional branch.

Description: if rs ≥ 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective
target address after the instruction in the delay slot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.

BGEZAL

Format: BGEZAL rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional procedure call.

31 26 25 21 20 16 15 0
REGIMM

000001
rs

BGEZ

00001
offset

6 5 5 16

31 26 25 21 20 16 15 0
REGIMM

000001
rs

BGEZAL

10001
offset

6 5 5 16

Branch on Greater Than or Equal to Zero BGEZ

Branch on Greater Than or Equal to Zero and Link BGEZAL
ence Manual A - 27 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: if rs ≥ 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, where execution continues after a procedure call.
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective
target address after the instruction in the delay slot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.
GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is UNPREDICT-
ABLE. This restriction permits an exception handler to resume execution by re-executing the
branch when an exception occurs in the branch delay slot.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] ≥ 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
and link (JAL) or jump and link register (JALR) instructions for procedure calls to addresses out-
side this range.
BGEZAL r0, offset, expressed as BAL offset, is the assembly idiom used to denote a PC-relative
branch and link. BAL is used in a manner similar to JAL, but provides PC-relative addressing and
a more limited target PC range.

BGEZALL

Format: BGEZALL rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional procedure call; execute the delay slot only if the
branch is taken.

31 26 25 21 20 16 15 0
REGIMM

000001
rs

BGEZALL

10011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero and Link Likely BGEZALL
ence Manual A - 28 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: if rs ≥ 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, where execution continues after a procedure call.
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective
target address after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:
GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is UNPREDICT-
ABLE. This restriction permits an exception handler to resume execution by re-executing the
branch when an exception occurs in the branch delay slot.
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] ≥ 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
and link (JAL) or jump and link register (JALR) instructions for procedure calls to addresses out-
side this range.
Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be
removed from a future revision of the MIPS Architecture.

BGEZL

Format: BGEZL rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional branch; execute the delay slot only if the branch
is taken.

31 26 25 21 20 16 15 0
REGIMM

000001
rs

BGEZL

00011
offset

6 5 5 16

Branch on Greater Than or Equal to Zero Likely BGEZL
ence Manual A - 29 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: if rs ≥ 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are greater than or equal to zero (sign bit is 0), branch to the effective
target address after the instruction in the delay slot is executed. If the branch is not taken, the
instruction in the delay slot is not executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] ≥ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.
Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be
removed from a future revision of the MIPS Architecture.

BGTZ

Format: BGTZ rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional branch.

Description: if rs > 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the
effective target address after the instruction in the delay slot is executed.

31 26 25 21 20 16 15 0
BGTZ

000111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero BGTZ
ence Manual A - 30 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.

BGTZL

Format: BGTZL rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional branch; execute the delay slot only if the branch
is taken.

Description: if rs > 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are greater than zero (sign bit is 0 but value not zero), branch to the
effective target address after the instruction in the delay slot is executed. If the branch is not
taken, the instruction in the delay slot is not executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

31 26 25 21 20 16 15 0
BGTZL

010111
rs

0

00000
offset

6 5 5 16

Branch on Greater Than Zero Likely BGTZL
ence Manual A - 31 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] > 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:

None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.
Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be
removed from a future revision of the MIPS Architecture.

BLEZ

Format: BLEZ rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional branch.

Description: if rs ≤ 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to
the effective target address after the instruction in the delay slot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:
None

31 26 25 21 20 16 15 0
BLEZ

000110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero BLEZ
ence Manual A - 32 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.

BLEZL

Format: BLEZL rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional branch; execute the delay slot only if the branch
is taken.

Description: if rs ≤ 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are less than or equal to zero (sign bit is 1 or value is zero), branch to
the effective target address after the instruction in the delay slot is executed. If the branch is not
taken, the instruction in the delay slot is not executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] ≤ 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.
Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be
removed from a future revision of the MIPS Architecture.

31 26 25 21 20 16 15 0
BLEZL

010110
rs

0

00000
offset

6 5 5 16

Branch on Less Than or Equal to Zero Likely BLEZL
ence Manual A - 33 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

BLTZ

Format: BLTZ rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional branch.

Description: if rs < 0 then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
and link (JAL) or jump and link register (JALR) instructions for procedure calls to addresses out-
side this range.

BLTZAL

Format: BLTZAL rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional procedure call.

31 26 25 21 20 16 15 0
REGIMM

000001
rs

BLTZ

00000
offset

6 5 5 16

31 26 25 21 20 16 15 0
REGIMM

000001
rs

BLTZAL

10000
offset

6 5 5 16

Branch on Less Than Zero BLTZ

Branch on Less Than Zero and Link BLTZAL
ence Manual A - 34 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: if rs < 0 then procedure_call

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, where execution continues after a procedure call.
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address
after the instruction in the delay slot is executed.

Restrictions:
GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is UNPREDICT-
ABLE. This restriction permits an exception handler to resume execution by re-executing the
branch when an exception occurs in the branch delay slot.
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
and link (JAL) or jump and link register (JALR) instructions for procedure calls to addresses out-
side this range.

BLTZALL

Format: BLTZALL rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional procedure call; execute the delay slot only if the
branch is taken.

Description: if rs < 0 then procedure_call_likely

Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, where execution continues after a procedure call.
An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the

31 26 25 21 20 16 15 0
REGIMM

000001
rs

BLTZALL

10010
offset

6 5 5 16

Branch on Less Than Zero and Link Likely BLTZALL
ence Manual A - 35 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the
delay slot is not executed.

Restrictions:
GPR 31 must not be used for the source register rs, because such an instruction does not have
the same effect when re-executed. The result of executing such an instruction is UNPREDICT-
ABLE. This restriction permits an exception handler to resume execution by re-executing the
branch when an exception occurs in the branch delay slot.
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] < 0GPRLEN

GPR[31] ← PC + 8
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
and link (JAL) or jump and link register (JALR) instructions for procedure calls to addresses out-
side this range.
Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be
removed from a future revision of the MIPS Architecture.

BLTZL

Format: BLTZL rs, offset MIPS32

Purpose:
To test a GPR, then do a PC-relative conditional branch; execute the delay slot only if the branch
is taken.

Description: if rs < 0 then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-

31 26 25 21 20 16 15 0
REGIMM

000001
rs

BLTZL

00010
offset

6 5 5 16

Branch on Less Than Zero Likely BLTZL
ence Manual A - 36 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 tive effective target address.
If the contents of GPR rs are less than zero (sign bit is 1), branch to the effective target address
after the instruction in the delay slot is executed. If the branch is not taken, the instruction in the
delay slot is not executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← GPR[rs] < 0GPRLEN

I+1: if condition then
PC ← PC + target_offset

else
NullifyCurrentInstruction()

endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.
Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be
removed from a future revision of the MIPS Architecture.

BNE

Format: BNE rs, rt, offset MIPS32

Purpose:
To compare GPRs, then do a PC-relative conditional branch.

Description: if rs ≠ rt then branch

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after
the instruction in the delay slot is executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

31 26 25 21 20 16 15 0
BNE

000101
rs rt offset

6 5 5 16

Branch on Not Equal BNE
ence Manual A - 37 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← (GPR[rs] ¼ GPR[rt])
I+1: if condition then

PC ← PC + target_offset
endif

Exceptions:
None

Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.

BNEL

Format: BNEL rs, rt, offset MIPS32

Purpose:
To compare GPRs, then do a PC-relative conditional branch; execute the delay slot only if the
branch is taken.

Description: if rs ≠ rt then branch_likely

An 18-bit signed offset (the 16-bit offset field shifted left 2 bits) is added to the address of the
instruction following the branch (not the branch itself), in the branch delay slot, to form a PC-rela-
tive effective target address.
If the contents of GPR rs and GPR rt are not equal, branch to the effective target address after
the instruction in the delay slot is executed. If the branch is not taken, the instruction in the delay
slot is not executed.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: target_offset ← sign_extend(offset || 02)

condition ← (GPR[rs] ¼ GPR[rt])
I+1: if condition then

PC ← PC + target_offset
else

NullifyCurrentInstruction()
endif

Exceptions:
None

31 26 25 21 20 16 15 0
BNEL

010101
rs rt offset

6 5 5 16

Branch on Not Equal Likely BNEL
ence Manual A - 38 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Programming Notes:
With the 18-bit signed instruction offset, the conditional branch range is ± 128 KBytes. Use jump
(J) or jump register (JR) instructions to branch to addresses outside this range.
Software is strongly encouraged to avoid the use of the Branch Likely instructions, as they will be
removed from a future revision of the MIPS Architecture.

BREAK

Format: BREAK MIPS32

Purpose:
To cause a Breakpoint exception.

Description:
A breakpoint exception occurs, immediately and unconditionally transferring control to the excep-
tion handler. The code field is available for use as software parameters, but is retrieved by the
exception handler only by loading the contents of the memory word containing the instruction.

Restrictions:
None

Operation:
SignalException(Breakpoint)

Exceptions:
Breakpoint

CLO

Format: CLO rd, rs MIPS32

Purpose:
To Count the number of leading ones in a word.

Description: rd ← count_leading_ones rs

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of lead-
ing ones is counted and the result is written to GPR rd. If all of bits 31..0 were set in GPR rs, the

31 26 25 6 5 0
SPECIAL

000000
code

BREAK

001101
6 20 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2

011100
rs rt rd

0

00000

CLO

100001
6 5 5 5 5 6

Breakpoint BREAK

Count Leading Ones in Word CLO
ence Manual A - 39 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 result written to GPR rd is 32.

Restrictions:
To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR
number in both the rt and rd fields of the instruction. The operation of the instruction is UNPRE-
DICTABLE if the rt and rd fields of the instruction contain different values.

Operation:
temp ← 32
for i in 31 .. 0

if GPR[rs]i = 0 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:
None

CLZ

Format: CLZ rd, rs MIPS32

Purpose
 Count the number of leading zeros in a word.

Description: rd ← count_leading_zeros rs

Bits 31..0 of GPR rs are scanned from most significant to least significant bit. The number of lead-
ing zeros is counted and the result is written to GPR rd. If no bits were set in GPR rs, the result
written to GPR rt is 32.

Restrictions:
To be compliant with the MIPS32 and MIPS64 Architecture, software must place the same GPR
number in both the rt and rd fields of the instruction. The operation of the instruction is UNPRE-
DICTABLE if the rt and rd fields of the instruction contain different values.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2

011100
rs rt rd

0

00000

CLZ

100000
6 5 5 5 5 6

Count Leading Zeros in Word CLZ
ence Manual A - 40 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
temp ← 32
for i in 31 .. 0

if GPR[rs]i = 1 then
temp ← 31 - i
break

endif
endfor
GPR[rd] ← temp

Exceptions:
None

DERET

Format: DERET EJTAG

Purpose:
To Return from a debug exception.

Description:
DERET returns from Debug Mode and resumes non-debug execution at the instruction whose
address is contained in the DEPC register. DERET does not execute the next instruction (i.e. it
has no delay slot).

Restrictions:
A DERET placed between an LL and SC instruction does not cause the SC to fail.
If the DEPC register with the return address for the DERET was modified by an MTC0 or a
DMTC0 instruction, a CP0 hazard exists that must be removed via software insertion of the
appropriate number of SSNOP instructions.
The DERET instruction implements a software barrier for all changes in the CP0 state that could
affect the fetch and decode of the instruction at the PC to which the DERET returns, such as
changes to the effective ASID, user-mode state, and addressing mode.
This instruction is legal only if the processor is executing in Debug Mode.The operation of the pro-
cessor is UNDEFINED if a DERET is executed in the delay slot of a branch or jump instruction.

31 26 25 24 6 5 0

COP0

010000

C
O

1

0

000 0000 0000 0000 0000

DERET

011111

6 1 19 6

Debug Exception Return DERET
ence Manual A - 41 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
DebugDM ← 0
DebugIEXI ← 0
if IsMIPS16Implemented() then

PC ← DEPC31..1 || 0
ISAMode ← 0 || DEPC0

else
PC ← DEPC

endif

Exceptions:
Coprocessor Unusable Exception
Reserved Instruction Exception

DIV

Format: DIV rs, rt MIPS32

Purpose:
To divide a 32-bit signed integers.

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands
as signed values. The 32-bit quotient is placed into special register LO and the 32-bit remainder is
placed into special register HI.
No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR rt is zero, the arithmetic result value is UNPREDICTABLE.

Operation:
q ← GPR[rs]31..0 div GPR[rt]31..0
LO ← q
r ← GPR[rs]31..0 mod GPR[rt]31..0
HI ← r

Exceptions:
None

Programming Notes:
No arithmetic exception occurs under any circumstances. If divide-by-zero or overflow conditions
are detected and some action taken, then the divide instruction is typically followed by additional
instructions to check for a zero divisor and/or for overflow. If the divide is asynchronous then the
zero-divisor check can execute in parallel with the divide. The action taken on either divide-by-
zero or overflow is either a convention within the program itself, or more typically within the sys-
tem software; one possibility is to take a BREAK exception with a code field value to signal the

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt

0

00 0000 0000

DIV

011010
6 5 5 10 6

Divide Word DIV
ence Manual A - 42 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 problem to the system software.

As an example, the C programming language in a UNIX® environment expects division by zero to
either terminate the program or execute a program-specified signal handler. C does not expect
overflow to cause any exceptional condition. If the C compiler uses a divide instruction, it also
emits code to test for a zero divisor and execute a BREAK instruction to inform the operating sys-
tem if a zero is detected.
Where the size of the operands are known, software should place the shorter operand in GPR rt.
This may reduce the latency of the instruction on those processors which implement data-depen-
dent instruction latencies.

DIVU

Format: DIVU rs, rt MIPS32

Purpose:
To divide a 32-bit unsigned integers.

Description: (LO, HI) ← rs / rt

The 32-bit word value in GPR rs is divided by the 32-bit value in GPR rt, treating both operands
as unsigned values. The 32-bit quotient is placed into special register LO and the 32-bit remain-
der is placed into special register HI.
No arithmetic exception occurs under any circumstances.

Restrictions:
If the divisor in GPR rt is zero, the arithmetic result value is undefined.

Operation:
q ← (0 || GPR[rs]31..0) div (0 || GPR[rt]31..0)
r ← (0 || GPR[rs]31..0) mod (0 || GPR[rt]31..0)
LO ← sign_extend(q31..0)
HI ← sign_extend(r31..0)

Exceptions:
None

Programming Notes:
See “Programming Notes” for the DIV instruction.

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt

0

00 0000 0000

DIVU

011011
6 5 5 10 6

Divide Unsigned Word DIVU
ence Manual A - 43 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

ERET

Format: ERET MIPS32

Purpose:
To return from interrupt, exception, or error trap.

Description:
ERET returns to the interrupted instruction at the completion of interrupt, exception, or error trap
processing. ERET does not execute the next instruction (i.e., it has no delay slot).

Restrictions:
The operation of the processor is UNDEFINED if an ERET is executed in the delay slot of a
branch or jump instruction.
An ERET placed between an LL and SC instruction will always cause the SC to fail.
ERET implements a software barrier for all changes in the CP0 state that could affect the fetch
and decode of the instruction at the PC to which the ERET returns, such as changes to the effec-
tive ASID, user-mode state, and addressing mode.

Operation:
if StatusERL = 1 then

temp ← ErrorEPC
StatusERL ← 0

else
temp ← EPC
StatusEXL ← 0

endif
if IsMIPS16Implemented() then

PC ← temp31..1 || 0
ISAMode ← temp0

else
PC ← temp

endif
LLbit ← 0

Exceptions:
Coprocessor Unusable Exception

31 26 25 24 6 5 0

COP0

010000

C
O

1

0

000 0000 0000 0000 0000

ERET

011000

6 1 19 6

Exception Return ERET
ence Manual A - 44 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

J

Format: J target MIPS32

Purpose:
To branch within the current 256 MB-aligned region.

Description:
This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256
MB-aligned region. The low 28 bits of the target address is the instr_index field shifted left 2 bits.
The remaining upper bits are the corresponding bits of the address of the instruction in the delay
slot (not the branch itself).
Jump to the effective target address. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I:
I+1: PC ← PCGPRLEN..28 || instr_index || 02

Exceptions:
None

Programming Notes:
Forming the branch target address by catenating PC and index bits rather than adding a signed
offset to the PC is an advantage if all program code addresses fit into a 256 MB region aligned on
a 256 MB boundary. It allows a branch from anywhere in the region to anywhere in the region, an
action not allowed by a signed relative offset.
This definition creates the following boundary case: When the jump instruction is in the last word
of a 256 MB region, it can branch only to the following 256 MB region containing the branch delay
slot.

JAL

Format: JAL target MIPS32

31 26 25 0
J

000010
instr_index

6 26

31 26 25 0
JAL

000011
instr_index

6 26

Jump J

Jump and Link JAL
ence Manual A - 45 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Purpose:
To execute a procedure call within the current 256 MB-aligned region.

Description:
Place the return address link in GPR 31. The return link is the address of the second instruction
following the branch, at which location execution continues after a procedure call.
This is a PC-region branch (not PC-relative); the effective target address is in the “current” 256
MB-aligned region. The low 28 bits of the target address is the instr_index field shifted left 2 bits.
The remaining upper bits are the corresponding bits of the address of the instruction in the delay
slot (not the branch itself).
Jump to the effective target address. Execute the instruction that follows the jump, in the branch
delay slot, before executing the jump itself.

Restrictions:
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: GPR[31] ← PC + 8
I+1: PC ← PCGPRLEN..28 || instr_index || 02

Exceptions:
None

Programming Notes:
Forming the branch target address by catenating PC and index bits rather than adding a signed
offset to the PC is an advantage if all program code addresses fit into a 256 MB region aligned on
a 256 MB boundary. It allows a branch from anywhere in the region to anywhere in the region, an
action not allowed by a signed relative offset.
This definition creates the following boundary case: When the branch instruction is in the last
word of a 256 MB region, it can branch only to the following 256 MB region containing the branch
delay slot.

JALR

Format: JALR rs (rd = 31 implied) MIPS32
JALR rd, rs MIPS32

Purpose:
To execute a procedure call to an instruction address in a register

Description: rd ← return_addr, PC ← rs

Place the return address link in GPR rd. The return link is the address of the second instruction
following the branch, where execution continues after a procedure call.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs

0

00000
rd hint

JALR

001001
6 5 5 5 5 6

Jump and Link Register JALR
ence Manual A - 46 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 For processors that do not implement the MIPS16 ASE:

• Jump to the effective target address in GPR rs. Execute the instruction that follows the
jump, in the branch delay slot, before executing the jump itself.

For processors that do implement the MIPS16 ASE:

• Jump to the effective target address in GPR rs. Set the ISA Mode bit to the value in GPR rs
bit 0. Bit 0 of the target address is always zero so that no Address Exceptions occur when
bit 0 of the source register is one

At this time the only defined hint field value is 0, which sets default handling of JALR. Future ver-
sions of the architecture may define additional hint values.

Restrictions:
Register specifiers rs and rd must not be equal, because such an instruction does not have the
same effect when re-executed. The result of executing such an instruction is undefined. This
restriction permits an exception handler to resume execution by re-executing the branch when an
exception occurs in the branch delay slot.
The effective target address in GPR rs must be naturally-aligned. For processors that do not
implement the MIPS16 ASE, if either of the two least-significant bits are not zero, an Address
Error exception occurs when the branch target is subsequently fetched as an instruction. For pro-
cessors that do implement the MIPS16 ASE, if bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: temp ← GPR[rs]

GPR[rd] ← PC + 8
I+1:if Config1CA = 0 then

PC ← temp
else

PC ← tempGPRLEN-1..1 || 0
ISAMode ¨ temp0

endif

Exceptions:
None

Programming Notes:
This is the only branch-and-link instruction that can select a register for the return link; all other
link instructions use GPR 31. The default register for GPR rd, if omitted in the assembly language
instruction, is GPR 31.

JR

Format: JR rs MIPS32

31 26 25 21 20 11 10 6 5 0
SPECIAL

000000
rs

0

00 0000 0000
hint

JR

001000
6 5 10 5 6

Jump Register JR
ence Manual A - 47 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Purpose:
To execute a branch to an instruction address in a register.

Description: PC ← rs

Jump to the effective target address in GPR rs. Execute the instruction following the jump, in the
branch delay slot, before jumping.
For processors that implement the MIPS16 ASE, set the ISA Mode bit to the value in GPR rs bit
0. Bit 0 of the target address is always zero so that no Address Exceptions occur when bit 0 of the
source register is one.

Restrictions:
The effective target address in GPR rs must be naturally-aligned. For processors that do not
implement the MIPS16 ASE, if either of the two least-significant bits are not zero, an Address
Error exception occurs when the branch target is subsequently fetched as an instruction. For pro-
cessors that do implement the MIPS16 ASE, if bit 0 is zero and bit 1 is one, an Address Error
exception occurs when the jump target is subsequently fetched as an instruction.
At this time the only defined hint field value is 0, which sets default handling of JR. Future ver-
sions of the architecture may define additional hint values.
Processor operation is UNPREDICTABLE if a branch, jump, ERET, DERET, or WAIT instruction
is placed in the delay slot of a branch or jump.

Operation:
I: temp ← GPR[rs]
I+1: if Config1CA = 0 then

PC ← temp
else

PC ← tempGPRLEN-1..1 || 0
ISAMode ← temp0

endif

Exceptions:
None

Programming Notes:
Software should use the value 31 for the rs field of the instruction word on return from a JAL,
JALR, or BGEZAL, and should use a value other than 31 for remaining uses of JR.

LB

Format: LB rt, offset(base) MIPS32

Purpose:
To load a byte from memory as a signed value.

31 26 25 21 20 16 15 0
LB

100000
base rt offset

6 5 5 16

Load Byte LB
ence Manual A - 48 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are
fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

Restrictions:
None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← sign_extend(memword7+8*byte..8*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error

LBU

Format: LBU rt, offset(base) MIPS32

Purpose:
To load a byte from memory as an unsigned value.

Description: rt ← memory[base+offset]

The contents of the 8-bit byte at the memory location specified by the effective address are
fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to the contents of
GPR base to form the effective address.

Restrictions:
None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
memword ← LoadMemory (CCA, BYTE, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor BigEndianCPU2

GPR[rt] ← zero_extend(memword7+8*byte..8*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error

31 26 25 21 20 16 15 0
LBU

100100
base rt offset

6 5 5 16

Load Byte Unsigned LBU
ence Manual A - 49 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

LH

Format: LH rt, offset(base) MIPS32

Purpose:
To load a halfword from memory as a signed value.

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective
address are fetched, sign-extended, and placed in GPR rt. The 16-bit signed offset is added to
the contents of GPR base to form the effective address.

Restrictions:
The effective address must be naturally-aligned. If the least-significant bit of the address is non-
zero, an Address Error exception occurs.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← sign_extend(memword15+8*byte..8*byte)

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

LHU

Format: LHU rt, offset(base) MIPS32

Purpose:
To load a halfword from memory as an unsigned value.

Description: rt ← memory[base+offset]

The contents of the 16-bit halfword at the memory location specified by the aligned effective
address are fetched, zero-extended, and placed in GPR rt. The 16-bit signed offset is added to

31 26 25 21 20 16 15 0
LH

100001
base rt offset

6 5 5 16

31 26 25 21 20 16 15 0
LHU

100101
base rt offset

6 5 5 16

Load Halfword LH

Load Halfword Unsigned LHU
ence Manual A - 50 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 the contents of GPR base to form the effective address.

Restrictions:
The effective address must be naturally-aligned. If the least-significant bit of the address is non-
zero, an Address Error exception occurs.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE–1..2 || (pAddr1..0 xor (ReverseEndian || 0))
memword ← LoadMemory (CCA, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr1..0 xor (BigEndianCPU || 0)
GPR[rt] ← zero_extend(memword15+8*byte..8*byte)

Exceptions:
TLB Refill, TLB Invalid, Address Error

LL

Format: LL rt, offset(base) MIPS32

Purpose:
To load a word from memory for an atomic read-modify-write.

Description: rt ← memory[base+offset]

The LL and SC instructions provide the primitives to implement atomic read-modify-write (RMW)
operations for cached memory locations.
The 16-bit signed offset is added to the contents of GPR base to form an effective address. The
contents of the 32-bit word at the memory location specified by the aligned effective address are
fetched, sign-extended to the GPR register length if necessary, and written into GPR rt.
This begins a RMW sequence on the current processor. There can be only one active RMW
sequence per processor. When an LL is executed it starts an active RMW sequence replacing
any other sequence that was active.
The RMW sequence is completed by a subsequent SC instruction that either completes the RMW
sequence atomically and succeeds, or does not and fails.
Executing LL on one processor does not cause an action that, by itself, causes an SC for the
same block to fail on another processor. An execution of LL does not have to be followed by exe-
cution of SC; a program is free to abandon the RMW sequence without attempting a write.

Restrictions:
The addressed location must be cached; if it is not, the result is undefined. The effective address
must be naturally-aligned. If either of the 2 least-significant bits of the effective address is non-

31 26 25 21 20 16 15 0
LL

110000
base rt offset

6 5 5 16

Load Linked Word LL
ence Manual A - 51 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 zero, an Address Error exception occurs.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword
LLbit ← 1

Exceptions:
TLB Refill, TLB Invalid, Address Error, Reserved Instruction

Programming Notes:
There is no Load Linked Word Unsigned operation corresponding to Load Word Unsigned.

LUI

Format: LUI rt, immediate MIPS32

Purpose:
To load a constant into the upper half of a word.

Description: rt ← immediate || 016

The 16-bit immediate is shifted left 16 bits and concatenated with 16 bits of low-order zeros. The
32-bit result is placed into GPR rt.

Restrictions:
None

Operation:
GPR[rt] ← immediate || 016

Exceptions:
None

31 26 25 21 20 16 15 0
LUI

001111

0

00000
rt immediate

6 5 5 16

Load Upper Immediate LUI
ence Manual A - 52 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

LW

Format: LW rt, offset(base) MIPS32

Purpose:
To load a word from memory as a signed value.

Description: rt ← memory[base+offset]

The contents of the 32-bit word at the memory location specified by the aligned effective address
are fetched, sign-extended to the GPR register length if necessary, and placed in GPR rt. The
16-bit signed offset is added to the contents of GPR base to form the effective address.

Restrictions:
The effective address must be naturally-aligned. If either of the 2 least-significant bits of the
address is non-zero, an Address Error exception occurs.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
memword ← LoadMemory (CCA, WORD, pAddr, vAddr, DATA)
GPR[rt] ← memword

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

LWL

Format: LWL rt, offset(base) MIPS32

Purpose:
To load the most-significant part of a word as a signed value from an unaligned memory address.

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr is the address of the most-significant of 4 consecutive bytes forming a word
(W) in memory starting at an arbitrary byte boundary.

31 26 25 21 20 16 15 0
LW

100011
base rt offset

6 5 5 16

31 26 25 21 20 16 15 0
LWL

100010
base rt offset

6 5 5 16

Load Word LW

Load Word Left LWL
ence Manual A - 53 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 The most-significant 1 to 4 bytes of W is in the aligned word containing the EffAddr. This part of W
is loaded into the most-significant (left) part of the word in GPR rt. The remaining least-significant
part of the word in GPR rt is unchanged.
Figure A.11 illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers.
The 4 consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes,
is in the aligned word containing the most-significant byte at 2. First, LWL loads these 2 bytes into
the left part of the destination register word and leaves the right part of the destination word
unchanged. Next, the complementary LWR loads the remainder of the unaligned word.

Figure A.11 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effec-
tive address within an aligned word, that is, the low 2 bits of the address (vAddr1..0), and the cur-
rent byte-ordering mode of the processor (big- or little-endian). Figure A.12 shows the bytes
loaded for every combination of offset and byte ordering.

Figure A.12 Bytes Loaded by LWL Instruction

Restrictions:
None

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ¨big-endian

I J K L offset (vAddr1..0) e f g h
3 2 1 0 ¨little-endian most least

most least — significance —
— significance —

Destination register contents after instruction (shaded is unchanged)

 Big-endian vAddr
1..0

Little-endian

I J K L 0 L f g h
J K L h 1 K L g h
K L g h 2 J K L h
L f g h 3 I J K L

Word at byte 2 in big-endian memory; each memory byte contains its own address
 most - significance - least
0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

2 3 g h After executing LWL $24,2($0)

2 3 4 5 Then after LWR $24,5($0)
ence Manual A - 54 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

memword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword7+8*byte..0 || GPR[rt]23-8*byte..0
GPR[rt] ← temp

Exceptions:
None
TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:
The architecture provides no direct support for treating unaligned words as unsigned values, that
is, zeroing bits 63..32 of the destination register when bit 31 is loaded.

Format: LWR rt, offset(base) MIPS32

Purpose:
To load the least-significant part of a word from an unaligned memory address as a signed value.

Description: rt ← rt MERGE memory[base+offset]

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr is the address of the least-significant of 4 consecutive bytes forming a word
(W) in memory starting at an arbitrary byte boundary.
A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing EffAddr. This part
of W is loaded into the least-significant (right) part of the word in GPR rt. The remaining most-sig-
nificant part of the word in GPR rt is unchanged.
Executing both LWR and LWL, in either order, delivers a sign-extended word value in the destina-
tion register. Figure A.13 illustrates this operation using big-endian byte ordering for 32-bit and
64-bit registers. The 4 consecutive bytes in 2..5 form an unaligned word starting at location 2. A
part of W, 2 bytes, is in the aligned word containing the least-significant byte at 5. First, LWR
loads these 2 bytes into the right part of the destination register. Next, the complementary LWL
loads the remainder of the unaligned word.

31 26 25 21 20 16 15 0
LWR

100110
base rt offset

6 5 5 16

Load Word Right LWR
ence Manual A - 55 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
Figure A.13 Unaligned Word Load Using LWL and LWR

The bytes loaded from memory to the destination register depend on both the offset of the effec-
tive address within an aligned word, that is, the low 2 bits of the address (vAddr1..0), and the cur-
rent byte-ordering mode of the processor (big- or little-endian). Figure A.14 shows the bytes
loaded for every combination of offset and byte ordering.

Figure A.14 Bytes Loaded by LWL Instruction

Restrictions:
None

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ¨big-endian

I J K L offset (vAddr1..0) e f g h
3 2 1 0 ¨little-endian most least

most least — significance—
— significance —

Destination register contents after instruction (shaded is unchanged)

 Big-endian vAdd
r1..0

Little-endian Little-endian

e f g I 0 I J K L
e f I J 1 e I J K
e I J K 2 e f I J
I J K L 3 e f g I

Word at byte 2 in big-endian memory; each memory byte contains its own address
 most - significance - least

0 1 2 3 4 5 6 7 8 9 Memory initial contents

e f g h GPR 24 Initial contents

e f 4 5 After executing LWR $24,5($0)

2 3 4 5 Then after LWL $24,2($0)
ence Manual A - 56 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, LOAD)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

memword ← LoadMemory (CCA, byte, pAddr, vAddr, DATA)
temp ← memword31..32-8*byte || GPR[rt]31–8*byte..0
GPR[rt] ← temp

Exceptions:
TLB Refill, TLB Invalid, Bus Error, Address Error

Programming Notes:
The architecture provides no direct support for treating unaligned words as unsigned values, that
is, zeroing bits 63..32 of the destination register when bit 31 is loaded.

MADD

Format: MADD rs, rt MIPS32

Purpose:
To multiply two words and add the result to Hi, Lo.

Description: (LO,HI) ← (rs × rt) + (LO,HI)

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both
operands as signed values, to produce a 64-bit result. The product is added to the 64-bit concat-
enated values of HI and LO. The most significant 32 bits of the result are written into HI and the
least significant 32 bits are written into LO. No arithmetic exception occurs under any circum-
stances.

Restrictions:
None

Operation:
temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:
None

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2

011100
rs rt

0

0000

0

00000

MADD

000000
6 5 5 5 5 6

Multiply and Add Word to Hi,Lo MADD
ence Manual A - 57 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Programming Notes:
Where the size of the operands are known, software should place the shorter operand in GPR rt.
This may reduce the latency of the instruction on those processors which implement data-depen-
dent instruction latencies.

Format: MADDU rs, rt MIPS32

Purpose:
To multiply two unsigned words and add the result to Hi, Lo.

Description: (LO,HI) ← (rs × rt) + (LO,HI)

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both
operands as unsigned values, to produce a 64-bit result. The product is added to the 64-bit con-
catenated values of HI and LO. The most significant 32 bits of the result are written into HI and
the least significant 32 bits are written into LO. No arithmetic exception occurs under any circum-
stances.

Restrictions:
None

Operation:
temp ← (HI || LO) + (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:
None

Programming Notes:
Where the size of the operands are known, software should place the shorter operand in GPR rt.
This may reduce the latency of the instruction on those processors which implement data-depen-
dent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2

011100
rs rt

0

00000

0

00000

MADDU

000001
6 5 5 5 5 6

Multiply and Add Unsigned Word to Hi,Lo MADDU
ence Manual A - 58 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

MFC0

Format: MFC0 rt, rd MIPS32
MFC0 rt, rd, sel MIPS32

Purpose:
To move the contents of a coprocessor 0 register to a general register.

Description: rt ← CPR[0,rd,sel]

The contents of the coprocessor 0 register specified by the combination of rd and sel are loaded
into general register rt. Note that not all coprocessor 0 registers support the sel field. In those
instances, the sel field must be zero.

Restrictions:
The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rd and
sel.

Operation:
data ← CPR[0,rd,sel]
GPR[rt] ← data

Exceptions:
Coprocessor Unusable
Reserved Instruction

I

Format: MFHI rd MIPS32

Purpose:
To copy the special purpose HI register to a GPR.

Description: rd ← HI

The contents of special register HI are loaded into GPR rd.

Restrictions:
None

31 26 25 21 20 16 15 11 10 3 2 0
COP0

010000

MF

00000
rt rd

0

00000000
sel

6 5 5 5 8 3

31 26 25 16 15 11 10 6 5 0
SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFHI

010000
6 10 5 5 6

Move from Coprocessor 0 MFC0

Move From HI Register MFHI
ence Manual A - 59 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
GPR[rd] ← HI

Exceptions:
None

Format: MFLO rd MIPS32

Purpose:
To copy the special purpose LO register to a GPR.

Description: rd ← LO

The contents of special register LO are loaded into GPR rd.

Restrictions: None

Operation:
GPR[rd] ← LO

Exceptions:
None

Format: MOVN rd, rs, rt MIPS32

Purpose:
To conditionally move a GPR after testing a GPR value

Description: if rt ≠ 0 then rd ← rs

If the value in GPR rt is not equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:
None

31 26 25 16 15 11 10 6 5 0
SPECIAL

000000

0

00 0000 0000
rd

0

00000

MFLO

010010
6 10 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

MOVN

001011
6 5 5 5 5 6

Move From LO Register MFLO

Move Conditional on Not Zero MOVN
ence Manual A - 60 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
if GPR[rt] ≠ 0 then

GPR[rd] ← GPR[rs]
endif

Exceptions:
None

Programming Notes:
The non-zero value tested here is the condition true result from the SLT, SLTI, SLTU, and SLTIU
comparison instructions.

Format: MOVZ rd, rs, rt MIPS32

Purpose:
To conditionally move a GPR after testing a GPR value.

Description: if rt = 0 then rd ← rs

If the value in GPR rt is equal to zero, then the contents of GPR rs are placed into GPR rd.

Restrictions:
None

Operation:
if GPR[rt] = 0 then

GPR[rd] ← GPR[rs]
endif

Exceptions:
None

Programming Notes:
The zero value tested here is the condition false result from the SLT, SLTI, SLTU, and SLTIU com-
parison instructions.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

MOVZ

001010
6 5 5 5 5 6

Move Conditional on Zero MOVZ
ence Manual A - 61 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

MSUB

Format: MSUB rs, rt MIPS32

Purpose:
To multiply two words and subtract the result from Hi, Lo.

Description: (LO,HI) ← (rs × rt) - (LO,HI)

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands
as signed values, to produce a 64-bit result. The product is subtracted from the 64-bit concate-
nated values of HI and LO. The most significant 32 bits of the result are written into HI and the
least significant 32 bits are written into LO. No arithmetic exception occurs under any circum-
stances.

Restrictions:
None

Operation:
temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:
None

Programming Notes:
Where the size of the operands are known, software should place the shorter operand in GPR rt.
This may reduce the latency of the instruction on those processors which implement data-depen-
dent instruction latencies.

Format: MSUBU rs, rt MIPS32

Purpose:
To multiply two words and subtract the result from Hi, Lo.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2

011100
rs rt

0

00000

0

00000

MSUB

000100
6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2

011100
rs rt

0

00000

0

00000

MSUBU

000101
6 5 5 5 5 6

Multiply and Subtract Word to Hi,Lo MSUB

Multiply and Subtract Word to Hi,Lo MSUBU
ence Manual A - 62 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: (LO,HI) ← (rs × rt) - (LO,HI)

The 32-bit word value in GPR rs is multiplied by the 32-bit word value in GPR rt, treating both
operands as unsigned values, to produce a 64-bit result. The product is subtracted from the 64-bit
concatenated values of HI and LO. The most significant 32 bits of the result are written into HI
and the least significant 32 bits are written into LO. No arithmetic exception occurs under any cir-
cumstances.

Restrictions:
None

Operation:
temp ← (HI || LO) - (GPR[rs] × GPR[rt])
HI ← temp63..32
LO ← temp31..0

Exceptions:
None

Programming Notes:
Where the size of the operands are known, software should place the shorter operand in GPR rt.
This may reduce the latency of the instruction on those processors which implement data-depen-
dent instruction latencies.

Format: MTC0 rt, rd MIPS32
MTC0 rt, rd, sel MIPS32

Purpose:
To move the contents of a general register to a coprocessor 0 register.

Description: CPR[r0, rd, sel] ← rt

The contents of general register rt are loaded into the coprocessor 0 register specified by the
combination of rd and sel. Not all coprocessor 0 registers support the sel field. In those instances,
the sel field must be set to zero.

Restrictions:
The results are UNDEFINED if coprocessor 0 does not contain a register as specified by rd and
sel.

31 26 25 21 20 16 15 11 10 3 2 0
COP0

010000

MT

00100
rt rd

0

0000 000
sel

6 5 5 5 8 3

Move to Coprocessor 0 MTC0
ence Manual A - 63 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
CPR[0,rd,sel] ← data

Exceptions:
Coprocessor Unusable
Reserved Instruction

Format: MTHI rs MIPS32

Purpose:
To copy a GPR to the special purpose HI register.

Description: HI ← rs

The contents of GPR rs are loaded into special register HI.

Restrictions:
A computed result written to the HI/LO pair by DIV, DIVU,MULT, or MULTU must be read by MFHI
or MFLO before a new result can be written into either HI or LO.

Operation:
HI ← GPR[rs]

Exceptions:
None

Format: MTLO rs MIPS32

Purpose:
To copy a GPR to the special purpose LO register.

Description: LO ← rs

The contents of GPR rs are loaded into special register LO.

31 26 25 21 20 6 5 0
SPECIAL

000000
rs

0

000 0000 0000 0000

MTHI

010001
6 5 15 6

31 26 25 21 20 6 5 0
SPECIAL

000000
rs

0

000 0000 0000 0000

MTLO

010011
6 5 15 6

Move to HI Register MTHI

Move to LO Register MTLO
ence Manual A - 64 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Restrictions:
A computed result written to the HI/LO pair by DIV, DIVU, MULT, or MULTU must be read by
MFHI or MFLO before a new result can be written into either HI or LO.

Operation:
LO ← GPR[rs]

Exceptions:
None

Format: MUL rd, rs, rt MIPS32

Purpose:
To multiply two words and write the result to a GPR.

Description: rd ← rs × rt

The 32-bit word value in GPR rs is multiplied by the 32-bit value in GPR rt, treating both operands
as signed values, to produce a 64-bit result. The least significant 32 bits of the product are written
to GPR rd. The contents of HI and LO are UNPREDICTABLE after the operation. No arithmetic
exception occurs under any circumstances.

Restrictions:
Note that this instruction does not provide the capability of writing the result to the HI and LO reg-
isters.

Operation:
temp ← GPR[rs] × GPR[rt]
GPR[RD] ← GPR31..0
HI ← UPPREDICTABLE
LO ← UNPREDICTABLE

Exceptions:
None

Programming Notes:
Programs that require overflow detection must check for it explicitly.
Where the size of the operands are known, software should place the shorter operand in GPR rt.
This may reduce the latency of the instruction on those processors which implement data-depen-
dent instruction latencies.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL2

011100
rs rt rd

0

00000

MUL

000010
6 5 5 5 5 6

Multiply Word to GPR MUL
ence Manual A - 65 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

MULT

Format: MULT rs, rt MIPS32

Purpose:
To multiply 32-bit signed integers.

Description: (LO, HI) ← rs × rt
The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands
as signed values, to produce a 64-bit result. The low-order 32-bit word of the result is placed into
special register LO, and the high-order 32-bit word is placed into special register HI.
No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:
prod ← GPR[rs]31..0 × GPR[rt]31..0
LO ← prod31..0
HI ← prod63..32

Exceptions:
None

Programming Notes:
Programs that require overflow detection must check for it explicitly.
Where the size of the operands are known, software should place the shorter operand in GPR rt.
This may reduce the latency of the instruction on those processors which implement data-depen-
dent instruction latencies.

MULTU

Format: MULTU rs, rt MIPS32

Purpose:
To multiply 32-bit unsigned integers.

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt

0

00 0000 0000

MULT

011000
6 5 5 10 6

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt

0

00 0000 0000

MULTU

011001
6 5 5 10 6

Multiply Word MULT

Multiply Unsigned Word MULTU
ence Manual A - 66 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: (LO, HI) ← rs × rt

The 32-bit word value in GPR rt is multiplied by the 32-bit value in GPR rs, treating both operands
as unsigned values, to produce a 64-bit result. The low-order 32-bit word of the result is placed
into special register LO, and the high-order 32-bit word is placed into special register HI.
No arithmetic exception occurs under any circumstances.

Restrictions:
None

Operation:
prod ← (0 || GPR[rs]31..0) × (0 || GPR[rt]31..0)
LO ← prod31..0
HI ← prod63..32

Exceptions:
None

Programming Notes:
Programs that require overflow detection must check for it explicitly.
Where the size of the operands are known, software should place the shorter operand in GPR rt.
This may reduce the latency of the instruction on those processors which implement data-depen-
dent instruction latencies.

Format: NOP Assembly Idiom

Purpose:
To perform no operation.

Description:
NOP is the assembly idiom used to denote no operation. The actual instruction is interpreted by
the hardware as SLL r0, r0, 0.

Restrictions:
None

Operation:
None

Exceptions:
None

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000

0

00000

0

00000

0

00000

0

00000

SLL

000000
6 5 5 5 5 6

No Operation NOP
ence Manual A - 67 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Programming Notes:
The zero instruction word, which represents SLL, r0, r0, 0, is the preferred NOP for software to
use to fill branch and jump delay slots and to pad out alignment sequences.

Format: NOR rd, rs, rt MIPS32

Purpose:
To do a bitwise logical NOT OR.

Description: rd ← rs NOR rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical NOR opera-
tion. The result is placed into GPR rd.

Restrictions:
None

Operation:
GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:
None

OR

Format: OR rd, rs, rt MIPS32

Purpose:
To do a bitwise logical OR.

Description: rd ← rs or rt

The contents of GPR rs are combined with the contents of GPR rt in a bitwise logical OR opera-
tion. The result is placed into GPR rd.

Restrictions:
None

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

NOR

100111
6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

OR

100101
6 5 5 5 5 6

Not Or NOR

Or OR
ence Manual A - 68 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:
None

I

Format: ORI rt, rs, immediate MIPS32

Purpose:
To do a bitwise logical OR with a constant.

Description: rt ← rs or immediate

The 16-bit immediate is zero-extended to the left and combined with the contents of GPR rs in a
bitwise logical OR operation. The result is placed into GPR rt.

Restrictions:
None

Operation:
GPR[rt] ← GPR[rs] or zero_extend(immediate)

Exceptions:
None

Format: PREF hint,offset(base) MIPS32

Purpose:
To move data between memory and cache.

Description: prefetch_memory(base+offset)

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte
address. The hint field supplies information about the way that the data is expected to be used.
PREF is an advisory instruction that may change the performance of the program. However, for
all hint values and all effective addresses, it neither changes the architecturally visible state nor

31 26 25 21 20 16 15 0
ORI

001101
rs rt immediate

6 5 5 16

31 26 25 21 20 16 15 0
PREF

110011
base hint offset

6 5 5 16

Or Immediate ORI

Prefetch PREF
ence Manual A - 69 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 does it alter the meaning of the program.
PREF does not cause addressing-related exceptions. If the address specified would cause an
addressing exception, the exception condition is ignored and no data movement occurs. However
even if no data is prefetched, some action that is not architecturally visible, such as writeback of a
dirty cache line, can take place.
PREF never generates a memory operation for a location with an uncached memory access type.
If PREF results in a memory operation, the memory access type used for the operation is deter-
mined by the memory access type of the effective address, just as it would be if the memory oper-
ation had been caused by a load or store to the effective address.
The hint field supplies information about the way the data is expected to be used. A hint value
cannot cause an action to modify architecturally visible state.

Any of the following conditions causes the 4Kc core to treat a PREF instruction as a NOP.
– A reserved hint value is used
– Writeback-invalidate (25) hint value is used
– The address has a translation error
– The address maps to an uncacheable page
– The data is already in the cache
– There is already another load/prefetch outstanding

In all other cases, except when hint equals 25, execution of the PREF instruction initiates an external
bus read transaction. PREF is a non-blocking operation and does not cause the pipeline to stall while
waiting for the data to be returned.

Value Name Data Use and Desired Prefetch Action

0 load Use: Prefetched data is expected to be read (not modified).
Action: Fetch data as if for a load.

1 store Use: Prefetched data is expected to be stored or modified.
Action: Fetch data as if for a store.

2-3 Reserved Reserved - treated as a NOP

4 load_streamed Use: Prefetched data is expected to be read (not modified)
but not reused extensively; it “streams” through cache.
Action: Fetch data as if for a load and place it in the cache
so that it does not displace data prefetched as “retained.”

5 store_streamed Use: Prefetched data is expected to be stored or modified
but not reused extensively; it “streams” through cache.
Action: Fetch data as if for a store and place it in the cache
so that it does not displace data prefetched as “retained.”

6 load_retained Use: Prefetched data is expected to be read (not modified)
and reused extensively; it should be “retained” in the cache.
Action: Fetch data as if for a load and place it in the cache
so that it is not displaced by data prefetched as “streamed.”

7 store_retained Use: Prefetched data is expected to be stored or modified
and reused extensively; it should be “retained” in the cache.
Action: Fetch data as if for a store and place it in the cache
so that it is not displaced by data prefetched as “streamed.”

8-24 Reserved Reserved - treated as a NOP.

Table A.10 Values of the hint Field for the PREF Instruction (Part 1 of 2)
ence Manual A - 70 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
Restrictions:
None

Operation:
vAddr ← GPR[base] + sign_extend(offset)
(pAddr, CCA) ← AddressTranslation(vAddr, DATA, LOAD)
Prefetch(CCA, pAddr, vAddr, DATA, hint)

Exceptions:
Prefetch does not take any TLB-related or address-related exceptions under any circumstances.

Programming Notes:
Prefetch cannot prefetch data from a mapped location unless the translation for that location is
present in the TLB. Locations in memory pages that have not been accessed recently may not
have translations in the TLB, so prefetch may not be effective for such locations.
Prefetch does not cause addressing exceptions. It does not cause an exception to prefetch using
an address pointer value before the validity of a pointer is determined.

SB

Format: SB rt, offset(base) MIPS32

Purpose:
To store a byte to memory.

Description: memory[base+offset] ← rt

The least-significant 8-bit byte of GPR rt is stored in memory at the location specified by the effec-
tive address. The 16-bit signed offset is added to the contents of GPR base to form the effective
address.

25 writeback_invalidate
(also known as “nudge”)

Use: Data is no longer expected to be used.
Treated as a NOP.

26-29 Implementation Depen-
dent

Reserved - treated as a NOP.

30 PrepareForStore Use: Prepare the cache for writing an entire line, without the
overhead involved in filling the line from memory.
Reserved - treated as a NOP.

31 Implementation Depen-
dent

Reserved - treated as a NOP.

31 26 25 21 20 16 15 0
SB

101000
base rt offset

6 5 5 16

Value Name Data Use and Desired Prefetch Action

Table A.10 Values of the hint Field for the PREF Instruction (Part 2 of 2)

Store Byte SB
ence Manual A - 71 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Restrictions:
None

Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
bytesel ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*bytesel..0 || 08*bytesel

StoreMemory (CCA, BYTE, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

SC

Format: SC rt, offset(base) MIPS32

Purpose:
To store a word to memory to complete an atomic read-modify-write.

Description: if atomic_update then memory[base+offset] ← rt, rt ← 1 else rt ← 0
The LL and SC instructions provide primitives to implement atomic read-modify-write (RMW)
operations for cached memory locations.
The 16-bit signed offset is added to the contents of GPR base to form an effective address.
The SC completes the RMW sequence begun by the preceding LL instruction executed on the
processor. To complete the RMW sequence atomically, the following occur:

• The least-significant 32-bit word of GPR rt is stored into memory at the location specified by the
aligned effective address.

• A 1, indicating success, is written into GPR rt.

Otherwise, memory is not modified and a 0, indicating failure, is written into GPR rt.
If the following event occurs between the execution of LL and SC, the SC fails:

• An exception occurs on the processor executing the LL/SC.
If either of the following events occurs between the execution of LL and SC, the SC may succeed
or it may fail; the success or failure is not predictable. Portable programs should not cause one of
these events.

• A load, store, or prefetch is executed on the processor executing the LL/SC.

• The instructions executed starting with the LL and ending with the SC do not lie in a 2048-byte
contiguous region of virtual memory. The region does not have to be aligned, other than the
alignment required for instruction words.
The following conditions must be true or the result of the SC is undefined:

• Execution of SC must have been preceded by execution of an LL instruction.

31 26 25 21 20 16 15 0
SC

111000
base rt offset

6 5 5 16

Store Conditional Word SC
ence Manual A - 72 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 • A RMW sequence executed without intervening exceptions must use the same address in the LL
and SC. The address is the same if the virtual address, physical address, and cache-coherence
algorithm are identical.
Atomic RMW is provided only for cached memory locations. The extent to which the detection of
atomicity operates correctly depends on the system implementation and the memory access type
used for the location:

• MP atomicity: To provide atomic RMW among multiple processors, all accesses to the location
must be made with a memory access type of cached coherent.

• Uniprocessor atomicity: To provide atomic RMW on a single processor, all accesses to the
location must be made with memory access type of either cached noncoherent or cached
coherent. All accesses must be to one or the other access type, and they may not be mixed.
I/O System: To provide atomic RMW with a coherent I/O system, all accesses to the location
must be made with a memory access type of cached coherent. If the I/O system does not use
coherent memory operations, then atomic RMW cannot be provided with respect to the I/O reads
and writes.

Restrictions:
The addressed location must have a memory access type of cached noncoherent or cached
coherent; if it does not, the result is undefined.
The effective address must be naturally-aligned. If either of the 2 least-significant bits of the
address is non-zero, an Address Error exception occurs.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
if LLbit then

StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 || LLbit

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error, Reserved Instruction

Programming Notes:
LL and SC are used to atomically update memory locations, as shown below.

L1:
LL T1, (T0) # load counter
ADDI T2, T1, 1 # increment
SC T2, (T0) # try to store, checking for atomicity
BEQ T2, 0, L1 # if not atomic (0), try again
NOP # branch-delay slot

Exceptions between the LL and SC cause SC to fail, so persistent exceptions must be avoided.
Some examples of these are arithmetic operations that trap, system calls, and floating point oper-
ations that trap or require software emulation assistance.
LL and SC function on a single processor for cached noncoherent memory so that parallel pro-
grams can be run on uniprocessor systems that do not support cached coherent memory access
types.
ence Manual A - 73 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

SDBBP

Format: SDBBP code EJTAG

Purpose:
To cause a debug breakpoint exception.

Description:
This instruction causes a debug exception, passing control to the debug exception handler. The
code field can be used for passing information to the debug exception handler, and is retrieved by
the debug exception handler only by loading the contents of the memory word containing the
instruction, using the DEPC register. The CODE field is not used in any way by the hardware.

Restrictions:
None

Operation:
If DebugDM = 0 then

SignalDebugBreakpointException()
else

SignalDebugModeBreakpointException()
endif

Exceptions:
Debug Breakpoint Exception

SH

Format: SH rt, offset(base) MIPS32

Purpose:
To store a halfword to memory.

Description: memory[base+offset] ← rt

The least-significant 16-bit halfword of register rt is stored in memory at the location specified by
the aligned effective address. The 16-bit signed offset is added to the contents of GPR base to
form the effective address.

31 26 25 6 5 0
SPECIAL2

011100
code

SDBBP

111111
6 20 6

31 26 25 21 20 16 15 0
SH

101001 base rt offset

6 5 5 16

Software Debug Breakpoint SDBBP

Store Halfword SH
ence Manual A - 74 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Restrictions:
The effective address must be naturally-aligned. If the least-significant bit of the address is non-
zero, an Address Error exception occurs.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr0 ≠ 0 then

SignalException(AddressError)
endif
(pAddr, CCA) ← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr11..0 xor (ReverseEndian || 0))
bytesel ← vAddr11..0 xor (BigEndianCPU || 0)
dataword ← GPR[rt]31–8*bytesel..0 || 08*bytesel

StoreMemory (CCA, HALFWORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error

SLL

Format: SLL rd, rt, sa MIPS32

Purpose:
To left-shift a word by a fixed number of bits.

Description: rd ← rt << sa

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emp-
tied bits; the word result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:
None

Operation:
s ← sa
temp ← GPR[rt](31-s)..0 || 0s

GPR[rd] ← temp

Exceptions:
None

Programming Notes:
SLL r0, r0, 0, expressed as NOP, is the assembly idiom used to denote no operation.
SLL r0, r0, 1, expressed as SSNOP, is the assembly idiom used to denote no operation that
causes an issue break on superscalar processors.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000

0

00000
rt rd sa

SLL

000000
6 5 5 5 5 6

Shift Word Left Logical SLL
ence Manual A - 75 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

SLLV

Format: SLLV rd, rt, rs MIPS32

Purpose: To left-shift a word by a variable number of bits.

Description: rd ← rt << rs

The contents of the low-order 32-bit word of GPR rt are shifted left, inserting zeros into the emp-
tied bits; the result word is placed in GPR rd. The bit-shift amount is specified by the low-order 5
bits of GPR rs.

Restrictions: None

Operation:
s ← GPR[rs]4..0
temp ← GPR[rt](31-s)..0 || 0s

GPR[rd] ← temp

Exceptions: None

Programming Notes:
None

SLT

Format: SLT rd, rs, rt MIPS32

Purpose:
To record the result of a less-than comparison.

Description: rd ← (rs < rt)

Compare the contents of GPR rs and GPR rt as signed integers and record the Boolean result of
the comparison in GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0
(false).
The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

SLLV

000100
6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

SLT

101010
6 5 5 5 5 6

Shift Word Left Logical Variable SLLV

Set on Less Than SLT
ence Manual A - 76 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
if GPR[rs] < GPR[rt] then

GPR[rd] ← 0GPRLEN-1 || 1
else

GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

SLTI

Format: SLTI rt, rs, immediate MIPS32

Purpose:
To record the result of a less-than comparison with a constant

Description: rt ← (rs < immediate)

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers and record
the Boolean result of the comparison in GPR rt. If GPR rs is less than immediate, the result is 1
(true); otherwise, it is 0 (false).
The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:
if GPR[rs] < sign_extend(immediate) then

GPR[rd] ← 0GPRLEN-1|| 1
else

GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

SLTIU

Format: SLTIU rt, rs, immediate MIPS32

31 26 25 21 20 16 15 0
SLTI

001010
rs rt immediate

6 5 5 16

31 26 25 21 20 16 15 0
SLTIU

001011
rs rt immediate

6 5 5 16

Set on Less Than Immediate SLTI

Set on Less Than Immediate Unsigned SLTIU
ence Manual A - 77 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Purpose:
To record the result of an unsigned less-than comparison with a constant.

Description: rt ← (rs < immediate)

Compare the contents of GPR rs and the sign-extended 16-bit immediate as unsigned integers
and record the Boolean result of the comparison in GPR rt. If GPR rs is less than immediate, the
result is 1 (true); otherwise, it is 0 (false).
Because the 16-bit immediate is sign-extended before comparison, the instruction can represent
the smallest or largest unsigned numbers. The representable values are at the minimum [0,
32767] or maximum [max_unsigned-32767, max_unsigned] end of the unsigned range.
The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

Operation:
if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then

GPR[rd] ← 0GPRLEN-1 || 1
else

GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

SLTU

Format: SLTU rd, rs, rt MIPS32

Purpose:
To record the result of an unsigned less-than comparison.

Description: rd ← (rs < rt)

Compare the contents of GPR rs and GPR rt as unsigned integers and record the Boolean result
of the comparison in GPR rd. If GPR rs is less than GPR rt, the result is 1 (true); otherwise, it is 0
(false).
The arithmetic comparison does not cause an Integer Overflow exception.

Restrictions:
None

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

SLTU

101011
6 5 5 5 5 6

Set on Less Than Unsigned SLTU
ence Manual A - 78 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
if (0 || GPR[rs]) < (0 || GPR[rt]) then

GPR[rd] ← 0GPRLEN-1 || 1
else

GPR[rd] ← 0GPRLEN

endif

Exceptions:
None

SRA

Format: SRA rd, rt, sa MIPS32

Purpose:
To execute an arithmetic right-shift of a word by a fixed number of bits.

Description: rd ← rt >> sa (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit
31) in the emptied bits; the word result is placed in GPR rd. The bit-shift amount is specified by
sa.

Restrictions:
None

Operation:
s ← sa
temp ← (GPR[rt]31)s || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:
None

SRAV

Format: SRAV rd, rt, rs MIPS32

Purpose:
To execute an arithmetic right-shift of a word by a variable number of bits.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000

0

00000
rt rd sa

SRA

000011
6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

SRAV

000111
6 5 5 5 5 6

Shift Word Right Arithmetic SRA

Shift Word Right Arithmetic Variable SRAV
ence Manual A - 79 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: rd ← rt >> rs (arithmetic)

The contents of the low-order 32-bit word of GPR rt are shifted right, duplicating the sign-bit (bit
31) in the emptied bits; the word result is placed in GPR rd. The bit-shift amount is specified by
the low-order 5 bits of GPR rs.

Restrictions:
None

Operation:
s ← GPR[rs]4..0
temp ← (GPR[rt]31)s || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:
None

SRL

Format: SRL rd, rt, sa MIPS32

Purpose:
To execute a logical right-shift of a word by a fixed number of bits

Description: rd ← rt >> sa (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emp-
tied bits; the word result is placed in GPR rd. The bit-shift amount is specified by sa.

Restrictions:
None

Operation:
s ← sa
temp ← 0s || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:
None

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000

0

00000
rt rd sa

SRL

000010
6 5 5 5 5 6

Shift Word Right Logical SRL
ence Manual A - 80 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

SRLV

Format: SRLV rd, rt, rs MIPS32

Purpose:
To execute a logical right-shift of a word by a variable number of bits.

Description: rd ← rt >> rs (logical)

The contents of the low-order 32-bit word of GPR rt are shifted right, inserting zeros into the emp-
tied bits; the word result is placed in GPR rd. The bit-shift amount is specified by the low-order 5
bits of GPR rs.

Restrictions:
None

Operation:
s ← GPR[rs]4..0
temp ← 0s || GPR[rt]31..s
GPR[rd] ← temp

Exceptions:
None

SSNOP

Format: SSNOP MIPS32

Purpose:
Break superscalar issue on a superscalar processor.

Description:
SSNOP is the assembly idiom used to denote superscalar no operation. The actual instruction is
interpreted by the hardware as SLL r0, r0, 1.
This instruction alters the instruction issue behavior on a superscalar processor by forcing the
SSNOP instruction to single-issue. The processor must then end the current instruction issue
between the instruction previous to the SSNOP and the SSNOP. The SSNOP then issues alone
in the next issue slot.
On a single-issue processor, this instruction is a NOP that takes an issue slot.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

SRLV

000110
6 5 5 5 5 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000

0

00000

0

00000

0

00000

1

00001

SLL

000000
6 5 5 5 5 6

Shift Word Right Logical Variable SRLV

Superscalar No Operation SSNOP
ence Manual A - 81 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Restrictions:
None

Operation:
None

Exceptions:
None

Programming Notes:
SSNOP is intended for use primarily to allow the programmer control over CP0 hazards by con-
verting instructions into cycles in a superscalar processor. For example, to insert at least two
cycles between an MTC0 and an ERET, one would use the following sequence:

mtc0 x,y
ssnop
ssnop
eret

SUB

Format: SUB rd, rs, rt MIPS32

Purpose:
To subtract 32-bit integers. If overflow occurs, then trap.

Description: rd ← rs - rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs to produce a 32-bit
result. If the subtraction results in 32-bit 2’s complement arithmetic overflow, then the destination
register is not modified and an Integer Overflow exception occurs. If it does not overflow, the
32-bit result is placed into GPR rd.

Restrictions:

None

Operation:
temp ← (GPR[rs]31||GPR[rs]31..0) - (GPR[rt]31||GPR[rt]31..0)
if temp32 ≠ temp31 then

SignalException(IntegerOverflow)
else

GPR[rd] ← temp31..0
endif

Exceptions:
Integer Overflow

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

SUB

100010
6 5 5 5 5 6

Subtract Word SUB
ence Manual A - 82 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Programming Notes:
SUBU performs the same arithmetic operation but does not trap on overflow.

SUBU

Format: SUBU rd, rs, rt MIPS32

Purpose:
To subtract 32-bit integers.

Description: rd ← rs - rt

The 32-bit word value in GPR rt is subtracted from the 32-bit value in GPR rs and the 32-bit arith-
metic result is and placed into GPR rd.
No integer overflow exception occurs under any circumstances.

Restrictions:

None

Operation:
temp ← GPR[rs] - GPR[rt]
GPR[rd] ← temp

Exceptions:
None

Programming Notes:
The term “unsigned” in the instruction name is a misnomer; this operation is 32-bit modulo arith-
metic that does not trap on overflow. It is appropriate for unsigned arithmetic, such as address
arithmetic, or integer arithmetic environments that ignore overflow, such as C language arith-
metic.

SW

Format: SW rt, offset(base) MIPS32

Purpose:
To store a word to memory.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

SUBU

100011
6 5 5 5 5 6

31 26 25 21 20 16 15 0
SW

101011
base rt offset

6 5 5 16

Subtract Unsigned Word SUBU

Store Word SW
ence Manual A - 83 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Description: memory[base+offset] ← rt

The least-significant 32-bit word of register rt is stored in memory at the location specified by the
aligned effective address. The 16-bit signed offset is added to the contents of GPR base to form
the effective address.

Restrictions:
The effective address must be naturally-aligned. If either of the 2 least-significant bits of the
address is non-zero, an Address Error exception occurs.

Operation:
vAddr ← sign_extend(offset) + GPR[base]
if vAddr1..0 ≠ 02 then

SignalException(AddressError)
endif
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
dataword ← GPR[rt]
StoreMemory (CCA, WORD, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Address Error

SWL

Format: SWL rt, offset(base) MIPS32

Purpose:
To store the most-significant part of a word to an unaligned memory address.

Description: memory[base+offset] ← rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr is the address of the most-significant of 4 consecutive bytes forming a word
(W) in memory starting at an arbitrary byte boundary.
A part of W, the most-significant 1 to 4 bytes, is in the aligned word containing EffAddr. The same
number of the most-significant (left) bytes from the word in GPR rt are stored into these bytes of
W.
Figure A.15 illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers.
The 4 consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes,
is located in the aligned word containing the most-significant byte at 2. First, SWL stores the
most-significant 2 bytes of the low word from the source register into these 2 bytes in memory.
Next, the complementary SWR stores the remainder of the unaligned word.

31 26 25 21 20 16 15 0
SWL

101010
base rt offset

6 5 5 16

Store Word Left SWL
ence Manual A - 84 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
Figure A.15 Unaligned Word Store Using SWL and SWR

The bytes stored from the source register to memory depend on both the offset of the effective address
within an aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering
mode of the processor (big- or little-endian). Figure A.16 shows the bytes stored for every combination of
offset and byte ordering.

Figure A.16 Bytes Stored by an SWL Instruction

Restrictions:
None

Word at byte 2 in memory, big-endian byte order; each memory byte contains its own address
most — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 E F G H

0 1 E F 4 5 6 ... After executing SWL $24,2($0)

0 1 E F G H 6 ... Then after SWR $24,5($0)

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ¨big-endian 64-bit register
i j k l offset (vAddr1..0) A B C D E F G H
3 2 1 0 ¨little-endian most — significance — least

most least 32-bit register E F G H
— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian

byte ordering vAddr1..0
Little-endian
byte ordering

E F G H 0 i j k E
i E F G 1 i j E F
i j E F 2 i E F G
i j k E 3 E F G H
ence Manual A - 85 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← 024–8*byte || GPR[rt]31..24–8*byte
StoreMemory(CCA, byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

SWR

Format: SWR rt, offset(base) MIPS32

Purpose:
To store the least-significant part of a word to an unaligned memory address.

Description: memory[base+offset] ← rt

The 16-bit signed offset is added to the contents of GPR base to form an effective address
(EffAddr). EffAddr is the address of the least-significant of 4 consecutive bytes forming a word
(W) in memory starting at an arbitrary byte boundary.
A part of W, the least-significant 1 to 4 bytes, is in the aligned word containing EffAddr. The same
number of the least-significant (right) bytes from the word in GPR rt are stored into these bytes of
W.
Figure A.17 illustrates this operation using big-endian byte ordering for 32-bit and 64-bit registers.
The 4 consecutive bytes in 2..5 form an unaligned word starting at location 2. A part of W, 2 bytes,
is contained in the aligned word containing the least-significant byte at 5. First, SWR stores the
least-significant 2 bytes of the low word from the source register into these 2 bytes in memory.
Next, the complementary SWL stores the remainder of the unaligned word.

31 26 25 21 20 16 15 0
SWR

101110
base rt offset

6 5 5 16

Store Word Right SWR
ence Manual A - 86 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
Figure A.17 Unaligned Word Store Using SWR and SW

The bytes stored from the source register to memory depend on both the offset of the effective address
within an aligned word—that is, the low 2 bits of the address (vAddr1..0)—and the current byte-ordering
mode of the processor (big- or little-endian). Figure A.18 shows the bytes stored for every combination of
offset and byte-ordering.

Figure A.18 Bytes Stored by SWR Instruction

Restrictions:
None

Word at byte 2 in memory, big-endian byte order, each mem byte contains its address
least — significance — least

0 1 2 3 4 5 6 7 8 ... Memory: Initial contents

GPR 24 E F G H

0 1 2 3 G H 6 ... After executing SWR $24,5($0)

0 1 E F G H 6 ... Then after SWL $24,2($0)

Memory contents and byte offsets Initial contents of Dest Register
0 1 2 3 ¨ big-endian 64-bit register
i j k l offset (vAddr1..0) A B C D E F G H
3 2 1 0 ¨ little-endian most — significance — least

most least 32-bit register E F G H
— significance —

Memory contents after instruction (shaded is unchanged)
Big-endian

byte ordering vAddr1..0
Little-endian byte

ordering
H j k l 0 E F G H
G H k l 1 F G H l
F G H l 2 G H k l
E F G H 3 H j k l
ence Manual A - 87 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
vAddr ← sign_extend(offset) + GPR[base]
(pAddr, CCA)← AddressTranslation (vAddr, DATA, STORE)
pAddr ← pAddrPSIZE-1..2 || (pAddr1..0 xor ReverseEndian2)
If BigEndianMem = 0 then

pAddr ← pAddrPSIZE-1..2 || 02

endif
byte ← vAddr1..0 xor BigEndianCPU2

dataword ← GPR[rt]31–8*byte || 08*byte

StoreMemory(CCA, WORD-byte, dataword, pAddr, vAddr, DATA)

Exceptions:
TLB Refill, TLB Invalid, TLB Modified, Bus Error, Address Error

SYNC

Format: SYNC (stype = 0 implied) MIPS32

Purpose:
To order loads and stores.

Description:
Simple Description:

• SYNC affects only uncached and cached coherent loads and stores. The loads and stores that
occur before the SYNC must be completed before the loads and stores after the SYNC are
allowed to start.

• Loads are completed when the destination register is written. Stores are completed when the
stored value is visible to every other processor in the system.

• SYNC is required, potentially in conjunction with SSNOP, to guarantee that memory reference
results are visible across operating mode changes. For example, a SYNC is required on some
implementations on entry to and exit from Debug Mode to guarantee that memory affects are
handled correctly.
Detailed Description:

• SYNC does not guarantee the order in which instruction fetches are performed. The stype values
1-31 are reserved; they produce the same result as the value zero.

• Executing the SYNC instruction causes the write-through buffer to be flushed. The SYNC
instruction stalls until all loads and stores are completed.

• The information presented here refers to the MIPS 4Kc core implementation of the SYNC
instruction. For a more detailed description of the programming effects of SYNC on a generic
MIPS32 processor, refer to the MIPS32 Architecture Reference Manual.
Restrictions:
The effect of SYNC on the global order of loads and stores for memory access types other than
uncached and cached coherent is UNPREDICTABLE.

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000

0

00 0000 0000 0000 0
stype

SYNC

001111
6 15 5 6

Synchronize Shared Memory SYNC
ence Manual A - 88 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
SyncOperation(stype)

Exceptions:
None

SYSCALL

Format: SYSCALL MIPS32

Purpose:
To cause a System Call exception.

Description:
A system call exception occurs, immediately and unconditionally transferring control to the excep-
tion handler.
The code field is available for use as software parameters, but is retrieved by the exception han-
dler only by loading the contents of the memory word containing the instruction.

Restrictions:
None

Operation:
SignalException(SystemCall)

Exceptions:
System Call

TEQ

Format: TEQ rs, rt MIPS32

Purpose:
To compare GPRs and do a conditional trap.

Description: if rs = rt then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is equal to GPR rt,

31 26 25 6 5 0
SPECIAL

000000
code

SYSCALL

001100
6 20 6

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt code

TEQ

110100
6 5 5 10 6

System Call SYSCALL

Trap if Equal TEQ
ence Manual A - 89 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 then take a Trap exception.
The contents of the code field are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction word
from memory.

Restrictions:
None

Operation:
if GPR[rs] = GPR[rt] then

SignalException(Trap)
endif

Exceptions:
Trap

TEQI

Format: TEQI rs, immediate MIPS32

Purpose:
To compare a GPR to a constant and do a conditional trap.

Description: if rs = immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is
equal to immediate, then take a Trap exception.

Restrictions:
None

Operation:
if GPR[rs] = sign_extend(immediate) then

SignalException(Trap)
endif

Exceptions:
Trap

31 26 25 21 20 16 15 0
REGIMM

000001
rs

TEQI

01100
immediate

6 5 5 16

Trap if Equal Immediate TEQI
ence Manual A - 90 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

TGE

Format: TGE rs, rt MIPS32

Purpose:
To compare GPRs and do a conditional trap.

Description: if rs ≥ rt then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is greater than or
equal to GPR rt, then take a Trap exception.
The contents of the code field are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction word
from memory.

Restrictions:
None

Operation:
if GPR[rs] ≥ GPR[rt] then

SignalException(Trap)
endif

Exceptions:
Trap

TGEI

Format: TGEI rs, immediate MIPS32

Purpose:
To compare a GPR to a constant and do a conditional trap.

Description: if rs ≥ immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is
greater than or equal to immediate, then take a Trap exception.

Restrictions:
None

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt code

TGE

110000
6 5 5 10 6

31 26 25 21 20 16 15 0
REGIMM

000001
rs

TGEI

01000
immediate

6 5 5 16

Trap if Greater or Equal TGE

Trap if Greater or Equal Immediate TGEI
ence Manual A - 91 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
if GPR[rs] ≥ sign_extend(immediate) then

SignalException(Trap)
endif

Exceptions:
Trap

TGEIU

Format: TGEIU rs, immediate MIPS32

Purpose:
To compare a GPR to a constant and do a conditional trap.

Description: if rs ≥ immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if
GPR rs is greater than or equal to immediate, then take a Trap exception.
Because the 16-bit immediate is sign-extended before comparison, the instruction can represent
the smallest or largest unsigned numbers. The representable values are at the minimum [0,
32767] or maximum [max_unsigned-32767, max_unsigned] end of the unsigned range.

Restrictions:
None

Operation:
if (0 || GPR[rs]) ≥ (0 || sign_extend(immediate)) then

SignalException(Trap)
endif

Exceptions:
Trap

TGEU

Format: TGEU rs, rt MIPS32

31 26 25 21 20 16 15 0
REGIMM

000001
rs

TGEIU

01001
immediate

6 5 5 16

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt code

TGEU

110001
6 5 5 10 6

Trap if Greater or Equal Immediate Unsigned TGEIU

Trap if Greater or Equal Unsigned TGEU
ence Manual A - 92 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Purpose:
To compare GPRs and do a conditional trap.

Description: if rs ≥ rt then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is greater than or
equal to GPR rt, then take a Trap exception.
The contents of the code field are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction word
from memory.

Restrictions:
None

Operation:
if (0 || GPR[rs]) ≥ (0 || GPR[rt]) then

SignalException(Trap)
endif

Exceptions:
Trap

TLBP

Format: TLBP MIPS32

Purpose:
To find a matching entry in the TLB.

Description:
The Index register is loaded with the address of the TLB entry whose contents match the contents
of the EntryHi register. If no TLB entry matches, the high-order bit of the Index register is set.

Restrictions:
None

31 26 25 24 6 5 0

COP0

010000

C
O

1

0

000 0000 0000 0000 0000

TLBP

001000

6 1 19 6

Probe TLB for Matching Entry TLBP
ence Manual A - 93 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
Index ← 1 || UNPREDICTABLE31

for i in 0...TLBEntries-1
if ((TLB[i]VPN2 and not (TLB[i]Mask)) =

(EntryHiVPN2 and not (TLB[i]Mask))) and
((TLB[i]G = 1) or (TLB[i]ASID = EntryHiASID))then
Index ← i

endif
endfor

Exceptions:
Coprocessor Unusable

TLBR

Format: TLBR MIPS32

Purpose:
To read an entry from the TLB.

Description:
The EntryHi, EntryLo0, EntryLo1, and PageMask registers are loaded with the contents of the
TLB entry pointed to by the Index register. Note that the value written to the EntryHi, EntryLo0,
and EntryLo1 registers may be different from that originally written to the TLB via these registers
in that:

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the
single G bit in the TLB entry. Recall that this bit was set from the logical AND of the two G
bits in EntryLo0 and EntryLo1 when the TLB was written.

• The value returned in the ASID field of the EntryHi register is zero for those chips that
implement a BAT-based MMU organization.

Restrictions:
The operation is UNDEFINED if the contents of the Index register are greater than or equal to the
number of TLB entries in the processor.

31 26 25 24 6 5 0

COP0

010000

C
O

1

0

000 0000 0000 0000 0000

TLBR

000001

6 1 19 6

Read Indexed TLB Entry TLBR
ence Manual A - 94 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
i ← Index
if i > (TLBEntries - 1) then

UNDEFINED
endif
PageMaskMask ← TLB[i]Mask
EntryHi ←

TLB[i]VPN2 ||
05 || TLB[i]ASID

EntryLo1 ← 02 ||
TLB[i]PFN1 ||
TLB[i]C1 || TLB[i]D1 || TLB[i]V1 || TLB[i]G

EntryLo0 ← 02 ||
TLB[i]PFN0 ||
TLB[i]C0 || TLB[i]D0 || TLB[i]V0 || TLB[i]G

Exceptions:
Coprocessor Unusable

TLBWI

Format: TLBWI MIPS32

Purpose:
To write a TLB entry indexed by the Index register.

Description:
The TLB entry pointed to by the Index register is written from the contents of the EntryHi,
EntryLo0, EntryLo1, and PageMask registers. The information written to the TLB entry may be
different from that in the EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The single G bit in the TLB entry is set from the logical AND of the G bits in the EntryLo0
and EntryLo1 registers.

Restrictions:
The operation is UNDEFINED if the contents of the Index register are greater than or equal to the
number of TLB entries in the processor.

31 26 25 24 6 5 0

COP0

010000

C
O

1

0

000 0000 0000 0000 0000

TLBWI

000010

6 1 19 6

Write Indexed TLB Entry TLBWI
ence Manual A - 95 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
i ← Index
TLB[i]Mask ←PageMaskMask
TLB[i]VPN2 ←EntryHiVPN2
TLB[i]ASID ←EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:
Coprocessor Unusable

TLBWR

Format: TLBWR MIPS32

Purpose:
To write a TLB entry indexed by the Random register.

Description:
The TLB entry pointed to by the Random register is written from the contents of the EntryHi,
EntryLo0, EntryLo1, and PageMask registers. The information written to the TLB entry may be
different from that in the EntryHi, EntryLo0, and EntryLo1 registers, in that:

• The value returned in the G bit in both the EntryLo0 and EntryLo1 registers comes from the
single G bit in the TLB entry. Recall that this bit was set from the logical AND of the two G
bits in EntryLo0 and EntryLo1 when the TLB was written.

Restrictions:
The operation is UNDEFINED if the contents of the Index register are greater than or equal to the
number of TLB entries in the processor.

31 26 25 24 6 5 0

COP0

010000

C
O

1

0

000 0000 0000 0000 0000

TLBWR

000110

6 1 19 6

Write Random TLB Entry TLBWR
ence Manual A - 96 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
i ← Random
TLB[i]Mask ← PageMaskMask
TLB[i]VPN2 ← EntryHiVPN2
TLB[i]ASID ← EntryHiASID
TLB[i]G ← EntryLo1G and EntryLo0G
TLB[i]PFN1 ← EntryLo1PFN
TLB[i]C1 ← EntryLo1C
TLB[i]D1 ← EntryLo1D
TLB[i]V1 ← EntryLo1V
TLB[i]PFN0 ← EntryLo0PFN
TLB[i]C0 ← EntryLo0C
TLB[i]D0 ← EntryLo0D
TLB[i]V0 ← EntryLo0V

Exceptions:
Coprocessor Unusable

TLT

Format: TLT rs, rt MIPS32

Purpose:
To compare GPRs and do a conditional trap.

Description: if rs < rt then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is less than GPR rt,
then take a Trap exception.
The contents of the code field are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction word
from memory.

Restrictions:
None

Operation:
if GPR[rs] < GPR[rt] then

SignalException(Trap)
endif

Exceptions:
Trap

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt code

TLT

110010
6 5 5 10 6

Trap if Less Than TLT
ence Manual A - 97 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

TLTI

Format: TLTI rs, immediate MIPS32

Purpose:
To compare a GPR to a constant and do a conditional trap.

Description: if rs < immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is
less than immediate, then take a Trap exception.

Restrictions:
None

Operation:
if GPR[rs] < sign_extend(immediate) then

SignalException(Trap)
endif

Exceptions:
Trap

TLTIU

Format: TLTIU rs, immediate MIPS32

Purpose:
To compare a GPR to a constant and do a conditional trap.

Description: if rs < immediate then Trap

Compare the contents of GPR rs and the 16-bit sign-extended immediate as unsigned integers; if
GPR rs is less than immediate, then take a Trap exception.
Because the 16-bit immediate is sign-extended before comparison, the instruction can represent
the smallest or largest unsigned numbers. The representable values are at the minimum [0,
32767] or maximum [max_unsigned-32767, max_unsigned] end of the unsigned range.

Restrictions:
None

31 26 25 21 20 16 15 0
REGIMM

000001
rs

TLTI

01010
immediate

6 5 5 16

31 26 25 21 20 16 15 0
REGIMM

000001
rs

TLTIU

01011
immediate

6 5 5 16

Trap if Less Than Immediate TLTI

Trap if Less Than Immediate Unsigned TLTIU
ence Manual A - 98 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
if (0 || GPR[rs]) < (0 || sign_extend(immediate)) then

SignalException(Trap)
endif

Exceptions:
Trap

TLTU

Format: TLTU rs, rt MIPS32

Purpose:
To compare GPRs and do a conditional trap.

Description: if rs < rt then Trap

Compare the contents of GPR rs and GPR rt as unsigned integers; if GPR rs is less than GPR rt,
then take a Trap exception.
The contents of the code field are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction word
from memory.

Restrictions:
None

Operation:
if (0 || GPR[rs]) < (0 || GPR[rt]) then

SignalException(Trap)
endif

Exceptions:
Trap

TNE

Format: TNE rs, rt MIPS32

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt code

TLTU

110011
6 5 5 10 6

31 26 25 21 20 16 15 6 5 0
SPECIAL

000000
rs rt code

TNE

110110
6 5 5 10 6

Trap if Less Than Unsigned TLTU

Trap if Not Equal TNE
ence Manual A - 99 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Purpose:
To compare GPRs and do a conditional trap.

Description: if rs ≠ rt then Trap

Compare the contents of GPR rs and GPR rt as signed integers; if GPR rs is not equal to GPR rt,
then take a Trap exception.
The contents of the code field are ignored by hardware and may be used to encode information
for system software. To retrieve the information, system software must load the instruction word
from memory.

Restrictions:
None

Operation:
if GPR[rs] ≠ GPR[rt] then

SignalException(Trap)
endif

Exceptions:
Trap

TNEI

Format: TNEI rs, immediate MIPS32

Purpose:
To compare a GPR to a constant and do a conditional trap.

Description: if rs ≠ immediate then Trap

Compare the contents of GPR rs and the 16-bit signed immediate as signed integers; if GPR rs is
not equal to immediate, then take a Trap exception.

Restrictions:
None

Operation:
if GPR[rs] ≠ sign_extend(immediate) then

SignalException(Trap)
endif

Exceptions:
Trap

31 26 25 21 20 16 15 0
REGIMM

000001
rs

TNEI

01110
immediate

6 5 5 16

Trap if Not Equal TNEI
ence Manual A - 100 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes

WAIT

Format: WAIT MIPS32

Purpose:
Wait for Event.

Description:
The WAIT instruction forces the core into low power mode. The pipeline is stalled and when all
external requests are completed, the processor’s main clock is stopped. The processor will
restart when reset (SI_Reset or SI_ColdReset) is signaled, or a non-masked interrupt is taken
(SI_NMI, SI_Int, or EJ_DINT). Note that the 4Kc core does not use the code field in this instruc-
tion.

Restrictions:
The operation of the processor is UNDEFINED if a WAIT instruction is placed in the delay slot of
a branch or a jump.

Operation:
Enter lower power mode

Exceptions:
Coprocessor Unusable Exception

XOR

Format: XOR rd, rs, rt MIPS32

Purpose:
To do a bitwise logical Exclusive OR.

Description: rd ← rs XOR rt

Combine the contents of GPR rs and GPR rt in a bitwise logical Exclusive OR operation and
place the result into GPR rd.

Restrictions:
None

31 26 25 24 6 5 0

COP0

010000

C
O

1
Implementation-Dependent Code

WAIT

100000

6 1 19 6

31 26 25 21 20 16 15 11 10 6 5 0
SPECIAL

000000
rs rt rd

0

00000

XOR

100110
6 5 5 5 5 6

Enter Standby Mode WAIT

Exclusive OR XOR
ence Manual A - 101 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 Operation:
GPR[rd] ← GPR[rs] xor GPR[rt]

Exceptions:
None

XORI

Format: XORI rt, rs, immediate MIPS32
Purpose:
To do a bitwise logical Exclusive OR with a constant.

Description: rt ← rs XOR immediate

Combine the contents of GPR rs and the 16-bit zero-extended immediate in a bitwise logical
Exclusive OR operation and place the result into GPR rt.

Restrictions:
None

Operation:
GPR[rt] ← GPR[rs] xor zero_extend(immediate)

Exceptions:
None

CACHE

Format: CACHE op, offset(base) MIPS32

Purpose:
To perform the cache operation specified by op.

Description:
The 16-bit offset is sign-extended and added to the contents of the base register to form an effec-
tive address. The effective address is used in one of the following ways based on the operation to

31 26 25 21 20 16 15 0
XORI

001110
rs rt immediate

6 5 5 16

31 26 25 21 20 16 15 0
CACHE

101111
base op offset

6 5 5 16

Exclusive OR Immediate XORI

Perform Cache Operation CACHE
ence Manual A - 102 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
 be performed and the type of cache as described in the following table.

Figure A.19 Use of Address Fields to Select Index and Way

A TLB Refill and TLB Invalid (both with cause code equal TLBL) exception can occur on any operation.
For index operations (where the address is used to index the cache but need not match the cache tag) soft-
ware should use unmapped addresses to avoid TLB exceptions. This instruction never causes TLB Modi-
fied exceptions nor TLB Refill exceptions with a cause code of TLBS, nor data Watch exceptions.

A Cache Error exception may occur as a by-product of some operations performed by this instruction.
For example, if a Writeback operation detects a cache or bus error during the processing of the operation,
that error is reported via a Cache Error exception. Similarly, a Bus Error Exception may occur if a bus oper-
ation invoked by this instruction is terminated in an error.

An address Error Exception (with cause code equal AdEL) occurs if the effective address references a
portion of the kernel address space which would normally result in such an exception.Data watch is not trig-
gered by a cache instruction whose address matches the Watch register address match conditions.

Bits [17:16] of the instruction specify the cache on which to perform the operation, as follows:

Operation
Requires

Type of
Cache Use of Effective Address

Address Physical The effective address is translated by the MMU to a physical
address. The physical address is then used to address the
cache.

Index N/A The effective address is translated by the MMU to a physical
address. It is implementation dependent whether the effective
address or the translated physical address is used to index the
cache.
Assuming that the total cache size in bytes is CS, the associativ-
ity is A, and the number of bytes per tag is BPT, the following
calculations give the fields of the address which specify the way
and the index:

OffsetBit ← Log2(BPT)
IndexBit ← Log2(CS / A)
WayBit ← IndexBit +
Ceiling(Log2(A))
Way ← AddrWayBit-1..IndexBit
Index ← AddrIndexBit-
1..OffsetBit

For a direct-mapped cache, the Way calculation is ignored and
the Index value fully specifies the cache tag. This is shown sym-
bolically in the figure below

Table A.11 Use of Effective Address

Way

0

Index

OffsetBitIndexBitWayBit

Unused byte index
ence Manual A - 103 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
Bits [20:18] of the instruction specify the operation to perform. On Index Load Tag and Index Store Data
operations, the specific word that is addressed is loaded into / read from the DataLo. All other cache
instructions are line-based and the word and byte indexes will not affect their operation.

Code Name Cache

2#00 I Primary Instruction

2#01 D Primary Data

2#10 T Not supported

2#11 S Not supported

Table A.12 Encoding of Bits [17:16] of CACHE Instruction

Code Cache Name

Effective
Address
Operand

Type

Operation
Imple-

mented
?

2#000 I Index
Invalidate

Index Set the state of the cache block at the
specified index to invalid.
This encoding may be used by software
to invalidate the entire instruction cache
by stepping through all valid indices.

Yes

D Index
Invalidate

Index Set the state of the cache block at the
specified index to invalid.
This encoding may be used by software
to invalidate the entire data cache by
stepping through all valid indices. Note
that Index Store Tag should be used to
initialize the cache at power-up.

Yes

S, T Reserved Index No

2#001 I, D Index
Load Tag

Index Read the tag for the cache block at the
specified index into the TagLo Coproces-
sor 0 register. Also read the data corre-
sponding to the byte index into the
DataLo register.

Yes

2#010 I, D Index
Store
Tag

Index Write the tag for the cache block at the
specified index from the TagLo Coproces-
sor 0 register.
This encoding may be used by software
to initialize the entire instruction or data
caches by stepping through all valid indi-
ces. Doing so requires that the TagLo and
TagHi registers associated with the cache
be initialized first.

Yes

2#011 All Reserved Unspecified Executed as a no-op. No

Table A.13 Encoding of Bits [20:18] of CACHE Instruction ErrCtl[WST,SPR] Cleared (Part 1 of 2)
ence Manual A - 104 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
2#100 I, D Hit Invali-
date

Address If the cache block contains the specified
address, set the state of the cache block
to invalid.
This encoding may be used by software
to invalidate a range of addresses from
the instruction cache by stepping through
the address range by the line size of the
cache.

Yes

S, T Reserved Address No

2#101 I Fill Address Fill the cache from the specified address.
The cache line is refetched even if it is
already in the cache.

Yes

D Hit Invali-
date

Address If the cache block contains the specified
address, set the state of the cache block
to invalid.
This encoding may be used by software
to invalidate a range of addresses from
the data cache by stepping through the
address range by the line size of the
cache.

Yes

S, T Reserved Address No

2#110 D Reserved Address Executed as a no-op. No

S, T Reserved Address No

2#111 I, D Fetch
and Lock

Address If the cache does not contain the entire
line at the specified address, it is fetched
from memory, and the state is set to
locked. If the cache already contains the
line, set the state to locked.
The lock state may be cleared by execut-
ing an Index Invalidate or Hit Invalidate
operation to the locked line, or via an
Index Store Tag operation to the line that
clears the lock bit.

Yes

Code Cache Name

Effective
Address
Operand

Type

Operation
Imple-

mented
?

2#011 I, D Index
Store
Data

Index Write the DataLo Coprocessor 0 register
contents at the way and byte index speci-
fied.

Yes

All others All All of the other codes behave the same
as when ErrCtl[WST] is cleared.

Table A.14 Encoding of Bits [20:18] of CACHE Instruction ErrCtl[WST] Set, ErrCtl[SPR] Cleared

Code Cache Name

Effective
Address
Operand

Type

Operation
Imple-

mented
?

Table A.13 Encoding of Bits [20:18] of CACHE Instruction ErrCtl[WST,SPR] Cleared (Part 2 of 2)
ence Manual A - 105 May 11, 2005

IDT Instruction Set

79RC32438 User Refer

Notes
Restrictions:
The operation of this instruction is UNDEFINED for any operation/cache combination that is not
implemented.
The operation of this instruction is UNDEFINED if the operation requires an address, and that
address is uncacheable.

Operation:
vAddr ← GPR[base] + sign_extend(offset)
(pAddr, uncached) ← AddressTranslation(vAddr, DataReadReference)
CacheOp(op, vAddr, pAddr)

Exceptions:
TLB Refill Exception.
TLB Invalid Exception
Coprocessor Unusable Exception
Address Error Exception
Bus Error Exception

Code Cache Name

Effective
Address
Operand

Type

Operation
Imple-

mented
?

2#001 I, D Index
Load Tag

Index Read the SPRAM tag at the specified
index into the TagLo Coprocessor 0 regis-
ter.

Yes

2#010 I, D Index
Store
Tag

Index Update the SPRAM tag at the specified
index from the TagLo Coprocessor 0 reg-
ister.

Yes

2#011 I, D Index
Store
Data

Index Write the DataLo Coprocessor 0 register
contents into the SPRAM at the word
index specified.

Yes

All others All All of the other codes behave the same
as when ErrCtl[SPR] is cleared

Table A.15 Encoding of Bits [20:18] of CACHE Instruction ErrCtl[SPR] Set
ence Manual A - 106 May 11, 2005

Index
A
active-high .. ii
active-low.. ii
address

recognition logic ...11-7
space monitor ... 4-4

B
boot configuration vector .. 3-4
bus arbitration algorithm ... 5-3
BYPASS instruction .. 19-8
byte ordering..1-ii
C
clock prescalar...11-30
cold reset .. 3-3
control frames ..11-18
conventions

big endian, little endian ... ii
bytes ... ii
compressed notation... ii
defining buses... ii
most and least significant bits ... ii

Counter Timer
Compare Register... 14-2
Control Register .. 14-1
Count Register .. 14-2

counter timers, general purpose ... 14-1
CPU pipeline clock.. 3-2
D
data flow within RC32438 ... 9-3
DDR

address mapping ...7-11
address multiplexing scheme.. 7-3
clocks .. 7-3
data bus multiplexing .. 7-14
initialization ... 7-16
refresh timer.. 7-18

DMA Controller
Control Register5-10, 5-11, 5-12, 10-4, 10-7, 10-10, 10-22, 10-

23, 10-24, 10-26, 10-27, 10-28, 10-29, 10-39, 10-41,
10-42, 10-43, 10-44, 10-45, 10-47, 10-49, 10-51, 10-
52, 10-53, 10-54, 10-55, 10-56, 10-57, 10-58, 10-60,
........... 10-61, 16-4, 16-6, 16-8, 16-9, 16-10, 18-14

DMA interface ..11-12
DMA operations

external ... 9-16
internal .. 9-7
memory to memory ... 9-19
79RC32438 User Reference Manual I - 1
E
Ethernet

padding operation.. 11-26
register description .. 11-2

Ethernet interface.. 11-1
address recognition logic... 11-7
clock prescalar .. 11-30
DMA Controller... 11-2, 11-7
DMA interface.. 11-12
input and output FIFOs.. 11-2
input DMA operations.. 11-12
MAC (Medium Access Controller) 11-2, 11-18, 11-22
management clock .. 11-34
MII management interface and registers....................... 11-30
PAUSE control frames... 11-18
PHY.. 11-1, 11-30

ethernet management clock.. 11-34
EXTCLK - external clock ... 6-11
G
GPIO Controller...12-1
GPIO pins... 12-1, 13-1–13-2
H
halfword... i
I
I2C bus interface

clock prescalar ...15-1, 15-4
clock prescalar (I2CCP) register15-4
commands..15-3, 15-11
control (I2CC) register ...15-2
loop-back operations ...15-2
master command (I2CMCMD) register15-5
master interface...15-5
master status (I2CMS) register15-5
master status mask (I2CMSM) register................15-5, 15-11
prescalar clock ...15-2, 15-4
SCLP and SDAP signals ...15-6
slave acknowledge (I2CSACK) register15-18
slave status (I2CSS) register...15-14
speed of the master...15-6

IEEE 1149.1 (JTAG) ..19-2
IEEE 802 11-1, 11-14, 11-18, 11-24, 11-28
internal buses..5-1
Internal Register Map..1-21
Interrupt Controller

interrupt sources to the IPEND registers....................8-4–8-5
IPBus arbiter ...5-3
IPBus arbitration

fair ...5-6
priority..5-6
May 11, 2005

IDT Index
IPBus clock ... 3-2
J
JTAG Instruction Register ... 19-6
L
Logic Diagram... 1-7
M
MAC (Medium Access Controller)11-2, 11-18, 11-22
master clock See CLKP.
Memory Map... 1-20
MII management interface and registers11-30
most significant bit .. ii
P
PAUSE control frames ...11-18
PCI

configuration registers... 10-46
endianness.. 10-18
master error handling.. 10-21
reset .. 10-13
swapping... 10-18
target error handling.. 10-38

PHY ...11-30
Pin Characteristics.. 1-8
Pin Description...1-11
pin descriptions... 1-7
PMBus arbitration ... 5-12
prescalar clock... 15-2, 15-4
pseudocode

SignalException ..A-10
SyncOperation ..A-10

R
Register Map .. 1-21
registers

Boundary-Scan Register... 19-3
Bypass Register.. 19-3
Counter Timer Compare Register................................... 14-2
Counter Timer Control Register 14-1
Counter Timer Count Register .. 14-2
Device Identification Register ... 19-3
DMA Control Register5-10, 5-11, 5-12, 10-4, 10-7, 10-10, 10-

22, 10-23, 10-24, 10-26, 10-27, 10-28, 10-29, 10-39,
10-41, 10-42, 10-43, 10-44, 10-45, 10-47, 10-49, 10-
51, 10-52, 10-53, 10-54, 10-55, 10-56, 10-57, 10-58,
10-60, 10-61, 16-4, 16-6, 16-8, 16-9, 16-10, 18-14

Instruction Register ... 19-6
MII management registers ...11-30
Test Data Register .. 19-3
UART Reset Register ... 13-4
Watchdog Timer Compare Register (WTCOMPARE)....... 4-5
Watchdog Timer Control Register (WTC) 4-5
Watchdog Timer Count Register (WTCOUNT) 4-5

ReverseEndian symbol...A-7
S
signal assertion... ii
signal negation.. ii
79RC32438 User Reference Manual I - 2
signal terminology ..iii
SignalException pseudocode... A-10
symbol

ReverseEndian... A-7
SyncOperation pseudocode... A-10
SYSID register ..1-5
system clock...3-6, 3-8
system identification..1-5
T
Test.............................. 1-1, 2-1, 3-1, 4-1, 5-1, 7-1, 9-1, 12-1, 19-1
triple-byte ... ii
U
UART...13-1

baud rate generator..13-1–13-2
configuring...13-2
interrupts ...13-4
pins..13-1
registers...13-2
status...13-1
switching between 16550 and 16450 modes13-4

undecoded address error ..4-4
W
warm reset ..3-6
Watchdog Timer

Compare Register (WTCOMPARE)4-5
Control Register (WTC)...4-5
Count Register (WTCOUNT)...4-5
May 11, 2005

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	IDT™ Interprise™ 79RC32438 Integrated Communications Processor
	User Reference Manual
	About This Manual
	Introduction
	Content Summary
	Documentation Conventions and Definitions
	Signal Terminology
	Revision History
	About This Manual

	1 RC32438 Device Overview
	2 MIPS32 4Kc Processor Core
	3 Clocking and Initialization
	4 System Integrity Functions
	5 Bus Arbitration
	6 Device Controller
	7 DDR Controller
	8 Interrupt Controller
	9 DMA Controller
	10 PCI Bus Interface
	11 Ethernet Interfaces
	12 General Purpose I/O Controller
	13 UART Controller
	14 Counter/Timers
	15 I2C Bus Interface
	16 Serial Peripheral Interface
	17 On-Chip Memory
	18 Debugging and Performance Monitoring
	19 JTAG Boundary Scan
	20 EJTAG System
	Appendix A 4Kc Processor Core Instructions

	RC32438 Device Overview
	Introduction
	Key Features
	System Block Diagram
	Additional Resources
	Feature List Summary
	System Identification
	Logic Diagram — RC32438
	Pin Characteristics
	Pin Description
	Default Memory Map
	RC32438 Internal Register Map

	MIPS32 4Kc Processor Core
	Introduction
	Functional Overview
	Features
	Functional Overview
	Blocks

	Pipeline Description
	Instruction Cache Miss
	Multiply/Divide Operations
	MDU Pipeline
	Branch Delay
	Data Bypassing
	Interlock Handling
	Slip Conditions
	Instruction Interlocks
	Instruction Hazards

	Memory Management
	Modes of Operation
	Translation Lookaside Buffer
	Virtual to Physical Address Translation
	System Control Coprocessor

	Exceptions
	Exception Conditions
	Exception Priority
	Exception Vector Locations
	General Exception Processing
	Debug Exception Processing
	Exceptions
	Exception Handling and Servicing Flowcharts

	CP0 Registers
	CP0 Register Summary
	CP0 Registers

	Hardware and Software Initialization
	Hardware Initialized Processor State
	Software Initialized Processor State

	Caches
	Cache Protocols
	Instruction Cache
	Data Cache
	Memory Coherence Issues

	Power Management
	Instruction-Controlled Power Management

	Instruction Set
	Load and Store Instructions
	Computational Instructions
	Control Instructions
	Coprocessor Instructions
	Enhancements to the MIPS Architecture

	Processor Core Instructions

	Clocking and Initialization
	Introduction
	Block Diagram
	Clocking Overview
	Reset Register Description
	Reset and Initialization
	Cold Reset
	Boot Configuration Vector

	Reset/Initialization Registers
	Boot Configuration Vector Register
	Warm Reset
	Reset Register

	Pin State During Reset

	System Integrity Functions
	Introduction
	Features
	Functional Overview
	System Integrity Register Description
	System Integrity Registers
	Error Control and Status Register
	CPU Error Address Register

	Address Space Monitor
	Watchdog Timer
	Watchdog Timer Count Register
	Watchdog Timer Compare Register
	Watchdog Timer Control Register

	IPBus Slave Acknowledge Errors

	Bus Arbitration
	Introduction
	Functional Overview
	IPBus Register Description
	PMBus Arbitration Register Description
	Theory of Operation
	Example IPBus Arbiter Configurations

	IPBus Registers
	IPBus Arbiter Control Register
	IPBus Arbiter Priority Configuration Register
	IPBus Arbiter Bus Master Configuration Register
	IPBus Idle Transaction Cycle Count Register

	PMBus Arbitration
	IPBus Idle
	IPBus Active
	Sneak Transactions
	Bus Parking

	PMBus Registers
	PMBus Arbiter Processor Priority Register
	PMBus Arbiter Sneak Access Control Register

	Memory and Peripheral Bus Arbitration

	Device Controller
	Introduction
	Features
	Device Controller Register Description
	Theory of Operation
	Device Control Registers
	Device [0..5] Base Register
	Device [0..5] Mask Register
	Device [0..5] Control Register
	Device [0..5] Timing Control Register

	Memory And Peripheral Bus Transaction Timer
	Bus Transaction Timer Control and Status Register
	Bus Transaction Timer Compare Register
	Bus Transaction Timer Address Register

	Device Read Transaction
	Burst Device Read Transaction
	Device Write Transaction
	Burst Device Write Transaction
	Decoupled CPU Device Transactions
	Device Decoupled Access Control and Status Register
	Device Decoupled Access Address Register
	Device Decoupled Access Data Register

	DDR Controller
	Introduction
	Features
	Additional Resources
	DDR Controller Register Description
	Theory of Operation
	DDR Address Multiplexing Scheme
	DDR Command Encoding

	DDR Registers
	DDR Control Register
	DDR Read Data Capture Register
	DDR Address Mapping
	DDR [0|1] Base Register
	DDR [0|1] Mask Register
	DDR 0 Alternate Base Register
	DDR 0 Alternate Mask Register
	DDR 0 Alternate Mapping Register
	DDR Data Bus Multiplexing

	DDR Initialization
	DDR Custom Transaction Register

	DDR Refresh Timer
	Refresh Timer Count Register
	Refresh Timer Compare Register
	Refresh Timer Control Register

	DDR Read Transaction
	DDR Write Transaction
	DDR Refresh Transaction
	DDR Custom Transaction
	Example of DDR SDRAM Initialization

	Interrupt Controller
	Introduction
	Features
	Block Diagram
	Interrupt Controller Register Description
	Interrupt Pending [2..6] Register
	Interrupt Test [2..6] Register
	Interrupt Mask [2..6] Register

	Interrupt Status Description
	Non-Maskable Interrupts
	Non-Maskable Interrupt Pin Status Register

	DMA Controller
	Introduction
	Features
	DMA Registers
	Data Flow within the RC32438
	The IPBus™
	4Kc Core as Bus Master
	DMA Controller
	No Alignment Restrictions
	Data Flow Using the DMA Controller
	Memory-to-Memory Transfer

	DMA Channels
	Internal DMA Operation
	DMA Descriptor Register
	DMA Registers
	DMA Stopping Conditions
	DMA Request Event
	DMA Descriptor List and Chaining
	DMA [0..9] Control Register
	DMA [0..9] Status Register
	DMA [0..9] Status Mask Register
	DMA [0..9] Descriptor Pointer Register
	DMA [0..9] Next Descriptor Pointer Register

	External DMA Operations
	Device Control and Status Field for External DMA
	Device Command Field for External DMA

	Memory to Memory DMA Operations
	Examples

	PCI Bus Interface
	Introduction
	Features
	Use of Decoupled PCI Transactions
	IPBus Access
	PCI Register Description
	PCI Control Register
	PCI Status Register
	PCI Status Mask Register

	Reset
	Disabled Mode
	PCI Host Mode
	Reset and Initialization
	Bus Arbitration
	Interrupts

	PCI Satellite Mode
	Reset and Initialization
	Bus Arbitration
	Interrupts
	PCI Serial EEPROM Interface

	PCI Transactions
	Endianness and PCI Swapping
	PCI Master
	Master I/O Read
	Master I/O Write
	Master Memory Read
	Master Memory Write
	Master Configuration Read
	Master Configuration Write
	Master Memory Read Line
	Master Error Handling
	PCI Configuration Address Register
	PCI Configuration Data Register
	PCI Local Base Address [0|1|2|3] Register
	PCI Local Base Address [0|1|2|3] Control
	PCI Local Base Address [0|1|2|3] Mapping Register

	Decoupled PCI Master Transactions
	PCI Decoupled Access Control Register
	PCI Decoupled Access Status Register
	PCI Decoupled Access Status Mask Register
	PCI Decoupled Access Data Register

	PCI Master—PCI to Memory DMA (DMA Channel 8)
	Channel 8 Memory Read
	Channel 8 Memory Read Multiple
	Channel 8 Memory Read Line
	Channel 8 I/O Read
	Channel 8 Error Handling
	PCI DMA Channel 8 Configuration Register

	PCI Master — Memory to PCI DMA (DMA Channel 9)
	Channel 9 Memory Write
	Channel 9 Memory Write and Invalidate
	Channel 9 I/O Write
	Channel 9 Error Handling
	PCI DMA Channel 9 Configuration Register

	PCI Target
	Target I/O Read
	Target I/O Write
	Target Memory Read
	Target Memory Write
	Target Configuration Read
	Target Configuration Write
	Target Memory Read Multiple
	Target Memory Read Line
	Target Memory Write and Invalidate
	Target Error Handling
	PCI Target Control Register

	Transaction Ordering
	PCI Messaging Unit
	PCI Inbound Message [0|1] Register
	PCI Outbound Message [0|1] Register
	PCI Inbound Doorbell Register
	PCI Inbound Interrupt Cause Register
	PCI Inbound Interrupt Mask Register
	PCI Outbound Doorbell Register
	PCI Outbound Interrupt Cause Register
	PCI Outbound Interrupt Mask Register

	PCI Configuration Registers
	Vendor ID Register
	Device ID Register
	Command Register
	Status Register
	Device Revision ID Register
	Class Code Register
	Cache Line Size Register
	Master Latency Register
	Header Type Register
	BIST Register
	PCI Base Address [0|1|2|3] Register
	Subsystem Vendor ID
	Subsystem ID Register
	Interrupt Line Register
	Interrupt Pin Register
	Minimum Grant Register
	Maximum Latency Register
	Target Ready Time-out Register
	Retry Limit Register
	PCI Base Address [0|1|2|3] Control
	PCI Base Address [0|1|2|3] Mapping Register
	PCI Management Register

	Ethernet Interfaces
	Introduction
	Features
	Block Diagram
	Functional Overview
	Input and Output FIFOs
	Ethernet Register Description
	Ethernet Interface Control Register
	Ethernet FIFO Transmit Threshold Register

	Address Recognition Logic
	Ethernet Address Recognition Control Register
	Ethernet Hash Table [0|1] Register
	Ethernet Station Address [0|1|2|3] Low Register
	Ethernet Station Address [0|1|2|3] High Register

	DMA Interface
	Ethernet Input DMA Operations
	Ethernet Output DMA Operations

	Ethernet Statistics
	Ethernet Receive Byte Count Register
	Ethernet Receive Packet Count Register
	Ethernet Receive Undersized Packet Count Register
	Ethernet Receive Fragment Count Register
	Ethernet Transmit Byte Count Register

	PAUSE Control Frames
	Ethernet Generate Pause Frame Register
	Ethernet Pause Frame Status Register
	Ethernet Control Frame Station Address 0 Register
	Ethernet Control Frame Station Address 1 Register
	Ethernet Control Frame Station Address 2 Register

	Ethernet Medium Access Controller (MAC)
	Ethernet MAC Configuration Register #1
	Ethernet MAC Configuration Register #2
	Ethernet Back-to-Back Inter-Packet Gap Register
	Ethernet Non Back-to-Back Inter-Packet Gap Register
	Ethernet Collision Window and Retry Register
	Ethernet Maximum Frame Length Register
	Ethernet MAC Test Register

	Ethernet MII Management Interface
	MII Management Configuration Register
	MII Management Command Register
	MII Management Address Register
	MII Management Write Data Register
	MII Management Read Data Register
	MII Management Indicators Register

	Ethernet Clock Prescalar
	Programming Example

	General Purpose I/O Controller
	Introduction
	Functional Overview
	Theory of Operation
	GPIO Pin Configured As Input
	GPIO Pin Configured As Output
	GPIO Pin Configured As an Alternate Function
	GPIO Pins As Interrupt Sources
	GPIO Pins As Non-maskable Interrupt Sources

	General Purpose I/O Register Description
	GPIO Function Register
	GPIO Configuration Register
	GPIO Data Register
	GPIO Interrupt Level Register
	GPIO Interrupt Status Register
	GPIO Non-maskable Interrupt Enable Register

	UART Controller
	Introduction
	Features
	Functional Overview
	UART Register Description
	Baud Rate Selection
	UART Interrupts
	UART Channel Reset
	UART Registers
	Reset Register
	Receive Buffer Register
	Transmit Holding Register
	Interrupt Enable Register
	Interrupt Identification Register
	FIFO Control Register
	Line Control Register
	Modem Control Register
	Line Status Register
	Modem Status Register
	Scratch Register
	Divisor Latch Low Register
	Divisor Latch High Register

	Counter/Timers
	Functional Overview
	Counter/Timers Register Description
	Theory of Operation
	Counter Timer [0|1|2] Count Register
	Counter Timer [0|1|2] Compare Register
	Counter Timer [0|1|2] Control Register

	I2C Bus Interface
	Introduction
	Features
	Block Diagram
	Functional Overview and Theory of Operation
	I2C Register Description
	I2C Bus Control Register
	I2C Bus Data Input Register
	I2C Bus Data Output Register

	I2C Bus Clock Prescalar
	I2C Bus Master Interface
	Example I2C Bus Transactions
	I2C Bus Master Command Register
	I2C Bus Master Status Register
	I2C Bus Master Status Mask Register

	I2C Bus Slave Interface
	Example of I2C Bus Transaction
	I2C Bus Slave Status Register
	I2C Bus Slave Status Mask Register
	I2C Bus Slave Address Register
	I2C Bus Slave Acknowledge Register

	Programming Example

	Serial Peripheral Interface
	Introduction
	Block Diagram
	SPI Register Description
	Functional Overview
	PCI Serial EEPROM Mode (Microwire)
	SPI Interface Mode

	SPI Clock Prescalar
	Clock Prescalar Register
	SPI Control Register
	SPI Status Register
	SPI Data Register

	SPI Setup
	Serial Bit I/O Pins
	Serial I/O Function Register
	Serial I/O Configuration Register
	Serial I/O Data Register

	Master Programming Example
	SPI Initialization

	On-Chip Memory
	Introduction
	Theory of Operation
	On-chip Memory Base Register
	On-chip Memory Mask Register

	Debugging and Performance Monitoring
	Introduction
	Features
	Debug and Performance Register Description
	IPBus Monitor
	IPBus Monitor Registers
	IPBus Monitor Trigger Configuration Register
	IPBus Monitor Trigger Select Register
	IPBus Monitor Manual Trigger Register
	IPBus Monitor Trigger Condition 0 Register
	IPBus Monitor Trigger Condition 1 Register
	IPBus Monitor Trigger Condition 2 Register
	IPBus Monitor Trigger Condition 3 Register
	IPBus Monitor Filter Select Register
	IPBus Monitor Filter Control 0 Register
	IPBus Monitor Filter Control 1 Register
	IPBus Monitor Filter Control 2 Register
	IPBus Monitor Record Control
	IPBus Monitor Trigger Position
	IPBus Monitor Trigger Time
	IPBus Monitor Record Formats

	Event Monitor
	Event Monitor Control Register
	Event Monitor [0..7] Count Register
	Event Monitor 0 Compare Register

	Debug Pins

	JTAG Boundary Scan
	Introduction
	System Logic TAP Controller Overview
	Signal Definitions
	Test Data Register (DR)
	Boundary Scan Registers

	Instruction Register (IR)
	EXTEST
	SAMPLE/PRELOAD
	BYPASS
	CLAMP
	DEVICEID
	VALIDATE
	RESERVED
	UNUSED

	Usage Considerations

	EJTAG System
	Introduction
	Functional Description
	EJTAG Components
	Register and Memory Map Overview

	Pin Description
	EJTAG Processor Core Extensions
	Overview
	Debug Mode Execution
	Debug Exceptions
	Debug Mode Exceptions
	Interrupts and NMIs
	Reset and Soft Reset of Processor
	EJTAG Instructions
	EJTAG Coprocessor 0 Registers

	Debug Control Register
	Hardware Breakpoints
	Instruction Breakpoint Features
	Data Breakpoint Features
	Overview of Instruction and Data Breakpoint Registers
	Conditions for Matching Breakpoints
	Debug Exceptions from Breakpoints
	Breakpoints Used as Triggerpoints
	Instruction Breakpoint Registers
	Data Breakpoint Registers
	Recommendations for Implementing Hardware Breakpoints
	Breakpoint Examples

	EJTAG Test Access Port
	TAP Signals
	TAP Controller
	Instruction Register and Special Instructions
	TAP Data Registers
	Examples of Use

	Probe Interfaces
	Mechanical Connector
	Target System PCB Design
	Using the EJTAG Probe
	Probe Requirements and Recommendations
	Connecting Multiple EJTAG Controllers
	Connecting EJTAG and JTAG Controllers

	4Kc Processor Core Instructions
	Introduction
	Understanding the Instruction Set
	Instruction Fields
	Instruction Descriptive Name and Mnemonic
	Format Field
	Purpose Field
	Description Field
	Restrictions Field
	Operation Field
	Exceptions Field
	Programming Notes and Implementation Notes Fields

	Operation Section Notation and Functions
	Instruction Execution Ordering
	Special Symbols in Pseudocode Notation
	Pseudocode Functions
	Op and Function Subfield Notation

	CPU Opcode Map
	Instruction Set

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

