
U
ser’s M

anual

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

RI850MP

Real-Time Operating System
User’s Manual: Coding

Rev.1.00 Apr 2011

Target Tool

RI850MP

www.renesas.com

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

How to Use This Manual

Readers This manual is intended for users who design and develop application systems using

V850 microcontroller products.

Purpose This manual is intended for users to understand the functions of real-time OS

"RI850MP " manufactured by Renesas Electronics, described the organization listed

below.

Organization This manual consists of the following major sections.

CHAPTER 1 GENERAL

CHAPTER 2 TASK MANAGEMENT FUNCTIONS

CHAPTER 3 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

CHAPTER 4 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

CHAPTER 5 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

CHAPTER 7 TIME MANAGEMENT FUNCTIONS

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

CHAPTER 11 SCHEDULER

CHAPTER 12 SYSTEM INITIALIZATION ROUTINE

CHAPTER 13 SERVICE CALLS

APPENDIX A CONFIGURATOR

APPENDIX B CONFIGURATION FILE

APPENDIX C INDEX

How to read this manual It is assumed that the readers of this manual have general knowledge in the fields of

electrical engineering, logic circuits, microcontrollers, C language, and assemblers.

 To understand the hardware functions of the V850 microcontroller

 → Refer to the User’s Manual of each product.

Conventions Data significance: Higher digits on the left and lower digits on the right

 Note: Footnote for item marked with Note in the text

 Caution: Information requiring particular attention

 Remark: Supplementary information

 Numerical representation: Binary...XXXX or XXXXB

 Decimal...XXXX

 Hexadecimal...0xXXXX

 Prefixes indicating power of 2 (address space and memory capacity):

 K (kilo) 210 = 1024

 M (mega) 220 = 10242

Related Documents Refer to the documents listed below when using this manual.

 The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Documents related to development tools (User’s Manuals)

Document Name Document No.

Start R20UT0509E RI Series

Message R20UT0510E

Coding R20UT0511E

Debug R20UT0520E

Analysis R20UT0513E

RI78V4

Internal Structure R20UT0514E

Coding R20UT0515E

Debug R20UT0516E

Analysis R20UT0517E

RI850V4

Internal Structure R20UT0518E

RI850MP Coding This document

Start R20UT0545E

78K0 Design R20UT0546E

78K0R Design R20UT0547E

RL78 Design R20UT0548E

V850 Design R20UT0549E

R8C Design R20UT0550E

78K0 Coding R20UT0551E

RL78,78K0R Coding R20UT0552E

V850 Coding R20UT0553E

Coding for CX Compiler R20UT0554E

R8C Coding R20UT0576E

78K0 Build R20UT0555E

RL78,78K0R Build R20UT0556E

V850 Build R20UT0557E

Build for CX Compiler R20UT0558E

R8C Build R20UT0575E

78K0 Debug R20UT0559E

78K0R Debug R20UT0560E

CubeSuite+

Integrated Development Environment

RL78 Debug R20UT0561E

Caution The related documents listed above are subject to change without notice. Be sure to use the

latest edition of each document when designing.

All trademarks or registered trademarks in this document are the property of their respective
owners.

[MEMO]

[MEMO]

[MEMO]

TABLE OF CONTENTS

CHAPTER 1 GENERAL ... 12

1.1 Outline ... 12

CHAPTER 2 TASK MANAGEMENT FUNCTIONS ... 13

2.1 Outline ... 13

2.2 Tasks ... 13

2.2.1 Task states ... 13

2.2.2 Task priorities ... 15

2.2.3 Basic format of tasks ... 15

2.2.4 Task creation ... 16

CHAPTER 3 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS ... 17

3.1 Outline ... 17

CHAPTER 4 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS ... 18

4.1 Outline ... 18

4.2 Semaphores ... 18

4.2.1 Semaphore creation ... 18

4.3 Eventflags ... 18

4.3.1 Eventflag creation ... 18

4.4 Data Queues ... 19

4.4.1 Data queue creation ... 19

4.5 Mailboxes ... 19

4.5.1 Mailbox creation ... 19

CHAPTER 5 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS ...

20

5.1 Outline ... 20

5.2 Mutexes ... 20

5.2.1 Mutex creation ... 20

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS ... 21

6.1 Outline ... 21

6.2 Fixed-Sized Memory Pool ... 21

6.2.1 Fixed-sized memory pool creation ... 21

CHAPTER 7 TIME MANAGEMENT FUNCTIONS ... 22

7.1 Outline ... 22

7.2 Timer Interrupts ... 22

7.2.1 Registration of timer interrupts ... 22

7.3 Cyclic Handler ... 22

7.3.1 Cyclic handler states ... 22

7.3.2 Basic format of cyclic handlers ... 23

7.3.3 Cyclic handler registration ... 23

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS ... 24

8.1 Outline ... 24

CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS ... 25

9.1 Outline ... 25

9.2 User-Own Coding Modules ... 25

9.2.1 Interrupt mask logical OR routine ... 25

9.2.2 Interrupt mask acquisition routine ... 26

9.2.3 Interrupt mask overwrite routine ... 26

9.2.4 Disable interrupt routine ... 27

9.2.5 Enable interrupt routine ... 27

9.2.6 Interrupt entry routine ... 28

9.3 Interrupt Handlers ... 28

9.3.1 Basic format of interrupt handlers ... 28

9.3.2 Interrupt handler registration ... 29

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS ... 30

10.1 Outline ... 30

10.2 User-Own Coding Modules ... 30

10.2.1 CPU exception entry routine ... 30

10.3 CPU Exception Handlers ... 31

10.3.1 Basic format of CPU exception handlers ... 31

10.3.2 CPU exception handler registration ... 31

10.4 Initialization Routine ... 32

10.4.1 Basic format of initialization routines ... 32

10.4.2 Initialization routine registration ... 32

CHAPTER 11 SCHEDULER ... 33

11.1 Outline ... 33

11.2 Drive Method ... 33

11.3 Scheduling Methods ... 33

11.4 Ready Queue ... 34

11.4.1 Ready queue creation ... 34

11.5 Scheduling Lock Function ... 34

11.6 Idle Routine ... 34

11.6.1 Basic format of idle routine ... 35

11.6.2 Idle routine registration ... 35

CHAPTER 12 SYSTEM INITIALIZATION ROUTINE ... 36

12.1 Outline ... 36

12.2 User-Own Coding Modules ... 37

12.2.1 Reset entry routines ... 37

12.2.2 Boot processing ... 38

12.3 Kernel Initialization Module ... 39

12.4 Initialization Routine ... 39

CHAPTER 13 SERVICE CALLS ... 40

13.1 Outline ... 40

13.1.1 Calling a service call ... 41

13.2 Data Macros ... 42

13.2.1 Data types ... 42

13.2.2 Return values ... 43

13.2.3 Object attributes ... 44

13.2.4 Task wait time ... 44

13.2.5 Task request conditions ... 44

13.2.6 Current task status ... 45

13.2.7 Task wait causes ... 45

13.2.8 Current state of cyclic handler ... 45

13.2.9 Other constants ... 46

13.2.10 Conditional compilation macros ... 46

13.3 Data Structures ... 47

13.3.1 Task information T_RTSK ... 47

13.3.2 Semaphore information T_RSEM ... 50

13.3.3 Eventflag information T_RFLG ... 51

13.3.4 Data queue information T_RDTQ ... 52

13.3.5 Mailbox information T_RMBX ... 53

13.3.6 Mutex information T_RMTX ... 54

13.3.7 Fixed-sized memory pool information T_RMPF ... 55

13.3.8 Cyclic handler information T_RCYC ... 56

13.3.9 Message (no priority) T_MSG ... 58

13.3.10 Message (with priority) T_MSG_PRI ... 59

13.3.11 System time SYSTIM ... 60

13.4 Service Call Reference ... 61

13.4.1 Task management functions ... 63

13.4.2 Task dependent synchronization functions ... 75

13.4.3 Synchronization and communication functions (semaphores) ... 87

13.4.4 Synchronization and communication functions (eventflags) ... 96

13.4.5 Synchronization and communication functions (data queues) ... 107

13.4.6 Synchronization and communication functions (mailboxes) ... 121

13.4.7 Extended synchronization and communication functions ... 132

13.4.8 Memory pool management functions ... 141

13.4.9 Time management functions ... 150

13.4.10 System state management functions ... 158

13.4.11 Interrupt management functions ... 171

APPENDIX A CONFIGURATOR ... 177

A.1 Outline ... 177

A.2 Activation Method ... 177

A.2.1 Activating from command line ... 177

A.2.2 Activating from CubeSuite+ ... 179

A.3 Command File ... 179

APPENDIX B CONFIGURATION FILE ... 180

B.1 Outline ... 180

B.1.1 Configuration Information ... 182

B.2 Declarative Information ... 183

B.2.1 Header file declaration ... 183

B.3 System Information ... 184

B.3.1 RI series information ... 184

B.3.2 Base clock cycle information ... 185

B.3.3 Timer interrupt information ... 186

B.3.4 System stack information ... 187

B.3.5 Maximum priority information ... 188

B.3.6 Floating-point setting/status register information ... 189

B.3.7 Section information ... 190

B.3.8 Processor element information ... 191

B.4 Domain Information ... 192

B.5 Static API Information ... 193

B.5.1 Task information ... 194

B.5.2 Semaphore information ... 196

B.5.3 Eventflag information ... 197

B.5.4 Data queue information ... 198

B.5.5 Mailbox information ... 199

B.5.6 Mutex information ... 200

B.5.7 Fixed-sized memory pool information ... 201

B.5.8 Cyclic handler information ... 203

B.5.9 Interrupt handler information ... 205

B.5.10 CPU exception handler information ... 206

B.5.11 Initialization routine information ... 207

B.5.12 Idle routine information ... 208

B.6 SCT Information ... 209

APPENDIX C INDEX ... 210

RI850MP Ver.1.00.00 CHAPTER 1 GENERAL

R20UT0519EJ0100 Rev.1.00 Page 12 of 218
Apr 01, 2011

CHAPTER 1 GENERAL

1.1 Outline

The RI850MP is a built-in real-time, multi-task OS that provides a highly efficient real-time, multi-task environment to
increases the application range of processor control units.

The RI850MP is a high-speed, compact OS capable of being stored in and run from the ROM of a target system.

RI850MP Ver.1.00.00 CHAPTER 2 TASK MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 13 of 218
Apr 01, 2011

CHAPTER 2 TASK MANAGEMENT FUNCTIONS

This chapter describes the task management functions provided by the RI850MP.

2.1 Outline

The task management functions provided by the RI850MP include functions to reference task states and functions to
manipulate task states.

Remark For details about service called provided by the RI850MP for task management functions, refer to "13.4.1
Task management functions".

2.2 Tasks

A task is processing program that is not executed unless it is explicitly manipulated via service calls provided by the
RI850MP, unlike other processing programs (such as cyclic handlers, interrupt handlers, and CPU exception handlers).

2.2.1 Task states

Tasks enter various states according to whether the OS resources required for task execution have been acquired, and
the occurrence/non-occurrence of various events.

The RI850MP classifies task states into the following six types.

Figure 2-1. Task State Transitions

- DORMANT state
State of a task that is not active, or the state entered by a task whose processing has ended.
A task in the waiting state, while being under management of the RI850MP, is not subject to RI850MP scheduling.

- READY state
State of a task for which the preparations required for processing execution have been completed, but which is cur-
rently waiting to acquire the right to use the CPU, because the processing of another task with a higher priority
level is currently being executed.

WAITING state

DORMANT state

READY state

SUSPENDED state

WAITING-SUSPENDED state

RUNNING state

RI850MP Ver.1.00.00 CHAPTER 2 TASK MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 14 of 218
Apr 01, 2011

- RUNNING state
State of a task that has acquired the right to use the CPU and is currently running.

- WAITING state
State in which processing execution has been suspended because conditions required for execution are not satis-
fied.
Resumption of processing from the WAITING state starts from the point where the processing execution was sus-
pended.
On the RI850MP, the WAITING state is classified into the following nine types according to the type of required
conditions.

Table 2-1. Waiting State Types

- SUSPENDED state
State in which processing execution has been suspended forcibly.
Resumption of processing from the SUSPENDED state starts from the point where the processing execution was
suspended.

- WAITING-SUSPENDED state
State in which the WAITING and SUSPENDED states are combined.
A task enters the SUSPENDED state when the WAITING state is cancelled, or enters the WAITING state
when the SUSPENDED state is cancelled.

State type Outline

Sleeping state A task enters this state if the counter for the task (registering the num-
ber of times the wakeup request has been issued) indicates 0x0 upon
the issuance of a slp_tsk or tslp_tsk.

Delayed state A task enters this state upon the issuance of a dly_tsk.

WAITING state for a semaphore resource A task enters this state if it cannot acquire a resource

from the relevant semaphore upon the issuance of a wai_sem or
twai_sem.

WAITING state for an eventflag A task enters this state if a relevant eventflag does not satisfy a prede-
termined condition upon the issuance of a wai_flg or twai_flg.

Sending waiting state for a data queue A task enters this state if cannot receive a data from the relevant data
queue upon the issuance of a snd_dtq or tsnd_dtq.

Receiving waiting state for a data queue A task enters this state if cannot receive data from the relevant data
queue upon the issuance of a rcv_dtq or trcv_dtq.

Receiving waiting state for a mailbox A task enters this state if cannot receive a message from the relevant
mailbox upon the issuance of a rcv_mbx or trcv_mbx.

WAITING state for a mutex A task enters this state if it cannot lock the relevant mutex upon the
issuance of a loc_mtx or tloc_mtx.

WAITING state for a fixed-sized memory
block

A task enters this state if it cannot acquire a fixed-sized

memory block from the targetr fixed-sized memory pool upon

the issuance of a get_mpf or tget_mpf.

RI850MP Ver.1.00.00 CHAPTER 2 TASK MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 15 of 218
Apr 01, 2011

2.2.2 Task priorities

A priority level that determines the order in which that task will be processed in relation to other tasks is assigned to
each task. As a result, on the RI850MP, the task that has the highest priority level of all the tasks that have entered an
executable state (RUNNING state or READY state) is selected and given the right to use the CPU.

On the RI850MP, the following two types of priorities are used for management purposes.

- Initial priority
This is a value defined by using the static API "CRE_TSK" in the system configuration file.

- Current priority
This is the priority of a task that has been activated, to which the RI850MP refers when executing various opera-
tions.

Remarks 1. On the RI850MP, a task having a smaller priority number is given a higher priority.
2. The range of priorities that can be used on the system is the range of values defined by using the static

API "MAX_PRI" in the system configuration file.
For details about the static API "MAX_PRI", refer to "B.3.5 Maximum priority information".

2.2.3 Basic format of tasks

When coding a task, code it as a void function with one VP_INT argument.
The argument exinf contains extended information specified with "Task information".
The following shows the basic format of tasks coded in C.

[CX version]

[CCV850E version]

#include <kernel.h>

#pragma rtos_task task

void

task(VP_INT exinf){

 ext_tsk();

}

#include <kernel.h>

void

task(VP_INT exinf){

 ext_tsk();

}

RI850MP Ver.1.00.00 CHAPTER 2 TASK MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 16 of 218
Apr 01, 2011

2.2.4 Task creation

The RI850MP supports only static task creation. Therefore, tasks cannot be created dynamically by issuing a service
call from a processing program.

Static task creation means defining of tasks using the static API "CRE_TSK" in the system configuration file.

Remark For details about the static API "CRE_TSK", refer to "B.5.1 Task information".

RI850MP Ver.1.00.00 CHAPTER 3 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 17 of 218
Apr 01, 2011

CHAPTER 3 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS

This chapter describes the task dependent synchronization functions provided by the RI850MP.

3.1 Outline

The task dependent synchronization functions provided by the RI850MP enable synchronization between tasks to be
performed concurrently with task state manipulations.

Remark For details about service calls provided by the RI850MP for task dependent synchronization functions, refer
to "13.4.2 Task dependent synchronization functions".

RI850MP Ver.1.00.00 CHAPTER 4 SYNCHRONIZATION AND COMMUNICATION

R20UT0519EJ0100 Rev.1.00 Page 18 of 218
Apr 01, 2011

CHAPTER 4 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

This chapter describes the synchronization and communication functions provided by the RI850MP.

4.1 Outline

The synchronization and communication functions of the RI850MP consist of Semaphores, Eventflags, Data Queues,
and Mailboxes.

Remark For details about service calls provided by the RI850MP for synchronization and communication, refer to
"13.4.3 Synchronization and communication functions (semaphores)", "13.4.4 Synchronization and com-
munication functions (eventflags)", "13.4.5 Synchronization and communication functions (data queues)",
and "13.4.6 Synchronization and communication functions (mailboxes)".

4.2 Semaphores

Semaphores are provided to enable synchronization between tasks.

Remark The RI850MP provides non-negative counter-type semaphores.

4.2.1 Semaphore creation

The RI850MP supports only static creation of semaphores. Therefore, semaphores cannot be created dynamically by
issuing a service call from a processing program.

Static semaphore creation means defining of semaphores by using the static API "CRE_SEM" in the system configura-
tion file.

Remark For details about the static API "CRE_SEM", refer to "B.5.2 Semaphore information".

4.3 Eventflags

Eventflags are provided to enable synchronization between tasks.

Remark On the RI850MP, the eventflag width is 32 bits.

4.3.1 Eventflag creation

The RI850MP supports only static creation of eventflags. Therefore, eventflags cannot be created dynamically by issu-
ing a service call from a processing program.

Static eventflag creation means defining of eventflags by using the static API "CRE_FLG" in the system configuration
file.

Remark For details about the static API "CRE_FLG", refer to "B.5.3 Eventflag information".

RI850MP Ver.1.00.00 CHAPTER 4 SYNCHRONIZATION AND COMMUNICATION

R20UT0519EJ0100 Rev.1.00 Page 19 of 218
Apr 01, 2011

4.4 Data Queues

Data queues are provided to enable synchronization and communication between tasks.

Remark The RI850MP provides data queues that enable transmission and reception of data in the specified size (4
bytes).

4.4.1 Data queue creation

The RI850MP supports only static data queue creation. Therefore, data queues cannot be created dynamically by issu-
ing a service call from a processing program.

Static data queue creation means defining of data queues by using the static API "CRE_DTQ" in the system configura-
tion file.

Remark For details about the static API "CRE_DTQ", refer to "B.5.4 Data queue information".

4.5 Mailboxes

Mailboxes are provided to enable synchronization and communication between tasks.

Remark The RI850MP provides mailboxes that enable transmission and reception of data in any size.

4.5.1 Mailbox creation

The RI850MP supports only static mailbox creation. Therefore, mailboxes cannot be created dynamically by issuing a
service call from a processing program.

Static mailbox creation means defining of mailboxes by using the static API "CRE_MBX" in the system configuration
file.

Remark For details about the static API "CRE_MBX", refer to "B.5.5 Mailbox information".

RI850MP Ver.1.00.00 CHAPTER 5 EXTENDED SYNCHRONIZATION AND

R20UT0519EJ0100 Rev.1.00 Page 20 of 218
Apr 01, 2011

CHAPTER 5 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS

This chapter describes the extended synchronization and communication functions provided by the RI850MP.

5.1 Outline

The RI850MP provides mutexes as extended synchronization and communication functions to enable synchronization
between tasks.

Remark For details about service calls provided by the RI850MP for extended synchronization and communication
functions, refer to "13.4.7 Extended synchronization and communication functions".

5.2 Mutexes

Mutexes are provided to enable synchronization between tasks.

5.2.1 Mutex creation

The RI850MP supports only static mutex creation. Therefore, mutexes cannot be created dynamically by issuing a ser-
vice call from a processing program.

Static mutex creation means defining of mutexes by using the static API "CRE_MTX" in the system configuration file.

Remark For details about the static API "CRE_MTX", refer to "B.5.6 Mutex information".

RI850MP Ver.1.00.00 CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 21 of 218
Apr 01, 2011

CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS

This chapter describes the memory pool management functions provided by the RI850MP.

6.1 Outline

The memory pool management functions of the RI850MP provide a fixed-size memory pool to enable dynamic acquisi-
tion and release of memory areas by processing programs.

Remark For details about service calls provided by the RI850MP for memory pool management, refer to "13.4.8
Memory pool management functions".

6.2 Fixed-Sized Memory Pool

The fixed-size memory pool is a memory area where processing programs can dynamically acquire and release mem-
ory blocks in fixed-size units.

6.2.1 Fixed-sized memory pool creation

The RI850MP supports only static creation of the fixed-sized memory pool. Therefore, the fixed-sized memory pool
cannot be created dynamically by issuing a service call from a processing program.

Static fixed-size memory pool creation means defining of a fixed-size memory pool by using the static API "CRE_MPF"
in the system configuration file.

Remark For details about the static API "CRE_MPF", refer to "B.5.7 Fixed-sized memory pool information".

RI850MP Ver.1.00.00 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 22 of 218
Apr 01, 2011

CHAPTER 7 TIME MANAGEMENT FUNCTIONS

This chapter describes the time management functions provided by the RI850MP.

7.1 Outline

The time management functions of the RI850MP utilize timer interrupts that occur at constant intervals. These functions
are provided to enable time-dependent processing.

Remark For details about service calls provided by the RI850MP for time management, refer to "13.4.9 Time man-
agement functions".

7.2 Timer Interrupts

The time management functions of the RI850MP utilize timer interrupts that occur at constant intervals to enable time-
dependent processing such as updating of the system time, task timeouts, and activation of cyclic handlers.

7.2.1 Registration of timer interrupts

The RI850MP supports only static registration of timer interrupts. Therefore, timer interrupts cannot be registered
dynamically by issuing a service call from a processing program.

Static timer interrupt registration means defining of timer interrupt information by using the static APIs "DEF_TIM" and
"CLK_INTNO" in the system configuration file.

Remarks 1. For details about the static API "DEF_TIM", refer to "B.3.2 Base clock cycle information".
2. For details about the static API "CLK_INTNO", refer to "B.3.3 Timer interrupt information".

7.3 Cyclic Handler

A cyclic handler is a routine dedicated to cyclic processing that is activated periodically at a constant interval (activation
cycle).

The RI850MP handles cyclic handlers as "non-tasks", separately from tasks. Therefore, even if the task with the high-
est priority in the system is currently being executed, the processing is suspended when a specified activation cycle has
come, and control is passed to the cyclic handler.

7.3.1 Cyclic handler states

The RI850MP classifies the states that cyclic handler can enter into the following two types.

- Non-operational state
A state in which the cyclic handler is not activated, even when the time specified for the cycle has passed.

- Operational state
A state in which the cyclic handler is activated when the time specified for the cycle has passed.
The interval up to activation for the first transition from the non-operational state to the operational state depends
on whether the TA-PHS property (activation phase saved: whether the activation phase is saved) is set for the tar-
get cyclic handler.

RI850MP Ver.1.00.00 CHAPTER 7 TIME MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 23 of 218
Apr 01, 2011

7.3.2 Basic format of cyclic handlers

When coding a cyclic handler, use a void function with one VP_INT argument.
The argument exinf contains extended information specified with "Cyclic handler information".
The following shows the basic format of a cyclic handler coded in C.

7.3.3 Cyclic handler registration

The RI850MP supports only static registration of cyclic handlers. Therefore, timer interrupts cannot be registered
dynamically by issuing a service call from a processing program.

Static cyclic handler registration means defining of cyclic handlers by using the static API "CRE_CYC" in the system
configuration file.

Remark For details about the static API "CRE_CYC", refer to "B.5.8 Cyclic handler information".

#include <kernel.h>

void

cychdr(VP_INT exinf){

 return;

}

RI850MP Ver.1.00.00 CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 24 of 218
Apr 01, 2011

CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS

This chapter describes the system state management functions provided by the RI850MP.

8.1 Outline

The system state management functions provided by the RI850MP include functions to reference and manipulate sys-
tem states.

Remark For details about service calls provided by the RI850MP for system state management, refer to "13.4.10
System state management functions".

RI850MP Ver.1.00.00 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 25 of 218
Apr 01, 2011

CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

This chapter describes the interrupt management functions provided by the RI850MP.

9.1 Outline

The RI850MP provides interrupt management functions related to the interrupt handlers that are activated when an
interrupt occurs.

Remark For details about service calls provided by the RI850MP for interrupt management, refer to "13.4.11 Inter-
rupt management functions".

9.2 User-Own Coding Modules

To enable the RI850MP to support various execution environments, interrupt management processing that depends on
the user execution environment is extracted as user-own coding modules and provided as sample source files.

This enhances portability for various execution environments and facilitates customization as well.

9.2.1 Interrupt mask logical OR routine

This is a routine dedicated to interrupt mask pattern processing. It is extracted in a target-dependent module, for ORing
the interrupt mask pattern specified by the parameter of this user-own function and the CPU interrupt mask pattern (the
value of interrupt control register EICn, or interrupt mask flag EIMKn of the interrupt mask register IMRm) and storing the
result to the interrupt mask flag EIMKn of the target register.

It is called when service call loc_cpu or iloc_cpu is issued from the processing program.

- Basic format
Code an interrupt mask logical OR routine as a void type function that has one VP type argument (function name:
_kernel_usr_msk_intmsk).
The argument p_intms contains a pointer to an area where the interrupt mask pattern to be set is stored.
The following shows the basic format of an interrupt mask logical OR routine coded in C.

#include <kernel.h>

void

_kernel_usr_msk_intmsk(VP p_intms){

 return;

}

RI850MP Ver.1.00.00 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 26 of 218
Apr 01, 2011

9.2.2 Interrupt mask acquisition routine

This is a routine dedicated to interrupt mask pattern acquisition. It is extracted in a target-dependent module, for storing
the CPU interrupt mask pattern (the value of interrupt control register EICn or interrupt mask flag EIMKn of the interrupt
mask register IMRm) into the area specified by the parameter of this user-own function. It is called when the service call
loc_cpu or iloc_cpu is issued from the processing program.

- Basic format
Code an interrupt mask acquisition routine as a void type function that has one VP type argument (function name:
_kernel_usr_get_intmsk).
The argument p_intms contains a pointer to an area where the acquired interrupt mask pattern is to be stored.
The following shows the basic format of an interrupt mask acquisition routine coded in C.

9.2.3 Interrupt mask overwrite routine

This is a routine dedicated to interrupt mask pattern writing. It is extracted in a target-dependent module, for storing the
interrupt mask pattern specified by the parameter of this user-own function into the CPU interrupt mask pattern (the value
of interrupt control register EICn or interrupt mask flag EIMKn of the interrupt mask register IMRm). It is called when the
service call unl_cpu or iunl_cpu is issued from the processing program.

- Basic format
Code an interrupt mask overwrite routine as a void type function that has one VP type argument (function name:
_kernel_usr_set_intmsk).
The argument p_intms contains a pointer to an area where the interrupt mask pattern to be set is stored.
The following shows the basic format of an interrupt mask overwrite routine coded in C.

#include <kernel.h>

void

_kernel_usr_get_intmsk(VP p_intms){

 return;

}

#include <kernel.h>

void

_kernel_usr_set_intmsk(VP p_intms){

 return;

}

RI850MP Ver.1.00.00 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 27 of 218
Apr 01, 2011

9.2.4 Disable interrupt routine

This is a routine dedicated to disabling maskable interrupts. It is extracted in a target-dependent module, for changing
the acknowledgment status of a specified maskable interrupt from enabled to disabled. It is called when the service call
dis_int is issued from the processing program.

- Basic format
Code a disable interrupt routine as a void type function that has one INTNO type argument (function
name:_kernel_usr_dis_int).
The argument intno contains the exception code that corresponds to the maskable interrupt for which acknowledg-
ment is to be disabled.
The following shows the basic format of a disable interrupt routine coded in C.

9.2.5 Enable interrupt routine

This is a routine dedicated to enabling maskable interrupts. It is extracted in a target-dependent module, for changing
the acknowledgment status of a specified maskable interrupt from disabled to enabled. It is called when the service call
ena_int is issued from the processing program.

- Basic format
Code an enable interrupt routine as a void type function that has one INTNO type argument (function
name:_kernel_usr_ena_int).
The argument intno contains the exception code that corresponds to the maskable interrupt for which acknowledg-
ment is to be enabled.
The following shows the basic format of an enable interrupt routine coded in C.

#include <kernel.h>

void

_kernel_usr_set_dis_int(INTNO intno){

 return;

}

#include <kernel.h>

void

_kernel_usr_set_ena_int(INTNO intno){

 return;

}

RI850MP Ver.1.00.00 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 28 of 218
Apr 01, 2011

9.2.6 Interrupt entry routine

This is a routine dedicated to entry processing. It is extracted in a target-dependent module, for assignment of instruc-
tions to branch to interrupt preprocessing, for a handler address to which the CPU forcibly passes control when an inter-
rupt occurs.

However, when an interrupt entry routine is defined with "Interrupt handler information", corresponding to an exception
code, the interrupt entry is included in the entry file created by executing the configurator.

If customization of interrupt entry processing is unnecessary, use of the relevant entry file therefore makes coding of
interrupt entry processing unnecessary.

- Basic format
When coding an interrupt entry routine, assign instructions to branch to preprocessing code, for a handler address
to which the CPU forcibly passes control when an interrupt occurs.
The following shows the basic format of an interrupt entry routine in assembly.

[CX version]

[CCV850E version]

9.3 Interrupt Handlers

An interrupt handler is a routine dedicated to interrupt servicing that is activated when an interrupt occurs.
The RI850MP handles interrupt handlers as "non-tasks", separately from tasks. Therefore, even if a task with the high-

est priority in the system is being executed, the processing is suspended when an interrupt occurs, and the control is
passed to the interrupt handler.

9.3.1 Basic format of interrupt handlers

Code an interrupt handler as a void type function that has no arguments.
The following shows the basic format of an interrupt handler coded in C.

inhno .cseg text -- inhno : Exception name

jr __kernel_int_entry -- Branch to interrupt preprocessing

.org inthdr -- inthdr : Activation address

jr __kernel_int_entry -- Branch to interrupt preprocessing

#include <kernel.h>

void

inthdr(void){

 return;

}

RI850MP Ver.1.00.00 CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS

R20UT0519EJ0100 Rev.1.00 Page 29 of 218
Apr 01, 2011

9.3.2 Interrupt handler registration

The RI850MP supports only static registration of interrupt handlers. Therefore, interrupt handlers cannot be registered
dynamically by issuing a service call from a processing program.

Static interrupt handler registration means defining of interrupt handlers by using the static API "DEF_INH" in the sys-
tem configuration file.

Remarks 1. For details about the static API "DEF_INH", refer to "B.5.9 Interrupt handler information".
2. The RI850MP provides TIME MANAGEMENT FUNCTIONS by utilizing timer interrupts that occur at

constant intervals. For this reason, it is not possible to register an interrupt handler for an exception
code defined with "Timer interrupt information".

RI850MP Ver.1.00.00 CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT

R20UT0519EJ0100 Rev.1.00 Page 30 of 218
Apr 01, 2011

CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS

This chapter describes the system configuration management functions provided by the RI850MP.

10.1 Outline

The system configuration management functions provided by the RI850MP include CPU exception handlers, which are
activated when a CPU exception occurs, and initialization routines called from SYSTEM INITIALIZATION ROUTINE.

10.2 User-Own Coding Modules

To enable the RI850MP to support various execution environments, system configuration management functions that
depend on the user execution environment are extracted in a user-own coding module and provided as sample source
files.

This enhances portability for various execution environments and facilitates customization as well.

10.2.1 CPU exception entry routine

This is a routine dedicated to entry processing. It is extracted in a target-dependent module, for assignment of instruc-
tions to branch to interrupt preprocessing, for a handler address to which the CPU forcibly passes control when a CPU
exception occurs.

However, when a CPU exception entry routine is defined with CPU exception handler information, corresponding to an
exception code, the CPU exception entry is included in the entry file created by executing the configurator.

If customization of CPU exception entry processing is unnecessary, use of the relevant entry file therefore makes cod-
ing of CPU exception entry processing unnecessary.

- Basic format
When coding a CPU exception entry routine, assign instructions to branch to preprocessing code, for a handler
address to which the CPU forcibly passes control when a CPU exception occurs.
The following shows the basic format of a CPU exception entry routine in assembly.

[CX version]

[CCV850E version]

excno .cseg text -- excno : Exception name

jr __kernel_int_entry -- Branch to interrupt preprocessing

.org exchdr -- exchdr : Activation address

jr __kernel_int_entry -- Branch to interrupt preprocessing

RI850MP Ver.1.00.00 CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT

R20UT0519EJ0100 Rev.1.00 Page 31 of 218
Apr 01, 2011

10.3 CPU Exception Handlers

A CPU exception handler is a routine dedicated to handling a CPU exception, which is called when a CPU exception
occurs.

The RI850MP handles a CPU exception handler as a "non-task", separately from tasks. Therefore, even if a task with
the highest priority in the system is being executed, the processing is suspended when a CPU exception occurs, and con-
trol is passed to the CPU exception handler.

10.3.1 Basic format of CPU exception handlers

Code a CPU exception handler as a void type function that has no arguments.
The following shows the basic format of a CPU exception handler coded in C.

10.3.2 CPU exception handler registration

The RI850MP supports only static registration of CPU exception handlers. Therefore, CPU exception handlers cannot
be registered dynamically by issuing a service call from a processing program.

Static CPU exception handler registration means defining of CPU exception handlers by using the static API
"DEF_EXC" in the system configuration file.

Remark For details about the static API "DEF_EXC", refer to "B.5.10 CPU exception handler information".

#include <kernel.h>

void

exchdr(void){

 return;

}

RI850MP Ver.1.00.00 CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT

R20UT0519EJ0100 Rev.1.00 Page 32 of 218
Apr 01, 2011

10.4 Initialization Routine

The initialization routine is a routine dedicated to initialization processing that is extracted as a user-own coding module
to initialize hardware and software that depends on the user execution environment. It is called from the SYSTEM INI-
TIALIZATION ROUTINE.

10.4.1 Basic format of initialization routines

Code an initialization routine as a void type function that has one VP_INT type argument.
The argument exinf contains extended information defined with "Initialization routine information".
The following shows the basic format of an initialization routine coded in C.

10.4.2 Initialization routine registration

The RI850MP supports only static registration of initialization routines. Therefore, CPU exception handlers cannot be
registered dynamically by issuing a service call from a processing program.

Static initialization routine registration means defining of initialization routines by using the static API "ATT_INI" in the
system configuration file.

Remark For details about the static API "ATT_INI", refer to "B.5.11 Initialization routine information".

#include <kernel.h>

void

inirtn(VP_INT exinf){

 return;

}

RI850MP Ver.1.00.00 CHAPTER 11 SCHEDULER

R20UT0519EJ0100 Rev.1.00 Page 33 of 218
Apr 01, 2011

CHAPTER 11 SCHEDULER

This chapter describes the scheduler of the RI850MP.

11.1 Outline

The scheduling functions provided by the RI850MP consist of functions to manage and decide the order in which tasks
are executed by monitoring. This is done by monitoring the transition states of dynamically changing tasks, so that the
right to use the CPU is given to the optimum task.

11.2 Drive Method

The RI850MP employs an event-driven system in which the scheduler is activated when an event (trigger) occurs.
The following lists the events that cause the RI850MP to activate the scheduler.

- Issuance of a service call that may cause a task state transition
- Issuance of an instruction for returning from a non-task (cyclic handler, interrupt handler, etc.)
- Occurrence of a timer interrupt used to implement time management functions

11.3 Scheduling Methods

As task scheduling methods, the RI850MP employs the priority level method, which uses the priority level (current pri-
ority) defined for each task, and the FCFS method, which uses the time elapsed from the point when a task becomes sub-
ject to RI850MP scheduling.

- Priority level method
The task that has the highest priority level (current priority) of all the tasks that have entered an executable state
(RUNNING state or READY state) is selected and given the right to use the CPU.

- FCFS method
On a first come first served (FCFS) basis, the task for which the longest interval of time has elapsed since it
entered an executable state is selected as the task to which the right to use the CPU is granted.
FCFS task scheduling is executed when multiple tasks with the highest priority level (current priority) according to
the selection criteria of the priority level method exist simultaneously.

RI850MP Ver.1.00.00 CHAPTER 11 SCHEDULER

R20UT0519EJ0100 Rev.1.00 Page 34 of 218
Apr 01, 2011

11.4 Ready Queue

The RI850MP uses a "ready queue" to implement task scheduling.
The RI850MP ready queue is a hash table that uses priority as the key. The management blocks of tasks that have

entered an executable state (READY state or RUNNING state) are queued in FIFO order at the respective priority posi-
tion.

Therefore, the RI850MP scheduler executes task detection processing from the highest priority level of the ready
queue. When it detects tasks in the ready queue, it gives the right to use the CPU the first task of the proper priority level.

Figure 11-1. Ready Queue

11.4.1 Ready queue creation

The RI850MP supports only static ready queue creation. Therefore, the ready queue cannot be created dynamically by
issuing a service call from a processing program.

Static ready queue creation means defining information related to priority by using the static API "MAX_PRI" in the sys-
tem configuration file.

Remark For details about the static API "MAX_PRI", refer to "B.3.5 Maximum priority information".

11.5 Scheduling Lock Function

On the RI850MP, service calls provided for SYSTEM STATE MANAGEMENT FUNCTIONS (loc_cpu, iloc_cpu,
unl_cpu, iunl_cpu, dis_dsp, ena_dsp) can be used to manipulate scheduler states explicitly from the processing program,
to disable and enable dispatch processing.

11.6 Idle Routine

The idle routine is a routine dedicated to idle processing that is extracted as a user-own coding module to utilize the
standby function provided by the CPU (to enable low power consumption systems). It is called from the scheduler when
there is no longer any task subject to scheduling by the RI850MP remaining in the system.

RUNNING state

1

tskpri

tskpri + n

maxtpri

Task A

Task C

Management block

READY state

READY state

Management block

Management block

Ready queue
Priority : High

Priority : Low

Task B

RI850MP Ver.1.00.00 CHAPTER 11 SCHEDULER

R20UT0519EJ0100 Rev.1.00 Page 35 of 218
Apr 01, 2011

11.6.1 Basic format of idle routine

Code the idle routine as a void type function that has no arguments.
The following shows the basic format of an idle routine coded in C.

11.6.2 Idle routine registration

The RI850MP supports only static registration of idle routines. Therefore, an idle routine cannot be registered dynami-
cally by issuing a service call from a processing program.

Static idle routine registration means defining of an idle routine by using the static API "VATT_IDL" in the system config-
uration file.

Remark For details about the static API "VATT_IDL", refer to "B.5.12 Idle routine information".

#include <kernel.h>

void

idlrtn(void){

 return;

}

RI850MP Ver.1.00.00 CHAPTER 12 SYSTEM INITIALIZATION ROUTINE

R20UT0519EJ0100 Rev.1.00 Page 36 of 218
Apr 01, 2011

CHAPTER 12 SYSTEM INITIALIZATION ROUTINE

This chapter describes the system initialization routine provided by the RI850MP.

12.1 Outline

The system initialization routine of the RI850MP provides initialization of the hardware and software resources required
for processing by the RI850MP from the time when a reset interrupt occurs until control is passed to a processing pro-
gram (task).

The following shows the processing flow from when a reset interrupt occurs until control is passed to the processing
program.

Figure 12-1. Flow of System Initialization Processing

Reset entry

Synchronization

PE common boot

PE specific boot

Scheduling processing

Kernel initialization

Task

Scheduling processing

Task

Initialization routine Initialization routine

Reset occurs

processing

processing
PE specific boot
processing

module

Kernel initialization
module

Kernel initialization
module

Kernel initialization
module

between PEs

Synchronization
between PEs

RI850MP Ver.1.00.00 CHAPTER 12 SYSTEM INITIALIZATION ROUTINE

R20UT0519EJ0100 Rev.1.00 Page 37 of 218
Apr 01, 2011

12.2 User-Own Coding Modules

To enable the RI850MP to support various execution environments, processing that depends on the user execution
environment is extracted as user-own coding modules and provided as sample source files.

This enhances portability for various execution environments and facilitates customization as well.

12.2.1 Reset entry routines

A reset entry routine is a routine dedicated to entry processing that is extracted for assignment of instructions to branch
to PE common boot processing, for a handler address to which the CPU forcibly passes control when a reset occurs.

- Basic format
When coding a reset entry routine, assign processing to branch to PE common boot processing, for a handler
address to which the CPU forcibly passes control when a reset occurs.
However, when PE common boot processing is defined as a CPU exception handler with "CPU exception handler
information", the reset entry is included in the entry file created by executing the configurator. Therefore, if custom-
ization of the reset entry processing is unnecessary, use of the relevant entry file makes coding of reset entry pro-
cessing unnecessary.
The following shows the basic format of reset entry processing in assembly.

[CX version]

[CCV850E version]

RESET .cseg text

jr __boot -- Branch to PE common boot processing

.org 0x00000000

jr __boot -- Branch to PE common boot processing

RI850MP Ver.1.00.00 CHAPTER 12 SYSTEM INITIALIZATION ROUTINE

R20UT0519EJ0100 Rev.1.00 Page 38 of 218
Apr 01, 2011

12.2.2 Boot processing

Boot processing is a routine dedicated to initialization processing that is extracted as a user-own coding module to ini-
tialize the minimum required hardware for the RI850MP to perform processing. It is comprised of PE common processing
and PE specific boot processing.

- PE common boot processing
PE common boot processing is a routine dedicated to initialization processing that is extracted as a user-own cod-
ing module to initialize the minimum hardware required in common by PEs. It is called from reset entry processing.
The following shows the basic format of PE common boot processing in assembly.

- PE specific boot processing
PE specific boot processing is a routine dedicated to initialization processing that is extracted as a user-own cod-
ing module to initialize the minimum hardware and software required by a specific PE. It is called from PE common
boot processing.
The following shows the basic format of PR specific boot processing in assembly.

[CX version]

 .text

 .align 0x4

 .global __boot

__boot:

 mov __boot_PE1, r10

 mov __boot_PE2, r20

 mov PEID, r1

 ld.h 0[r1], r2

 cmp 1, r2

 cmove r10, r20, r21

 jmp [r21] -- Branch to PE specific boot processing

 .text

 .align 0x4

 .global __boot_PEn

__boot_PEn:

 .extern __kernel_sit

 mov #__kernel_sit, r6

 jarl __kernel_start, lp -- Branch to kernel initialization module

RI850MP Ver.1.00.00 CHAPTER 12 SYSTEM INITIALIZATION ROUTINE

R20UT0519EJ0100 Rev.1.00 Page 39 of 218
Apr 01, 2011

[CCV850E version]

12.3 Kernel Initialization Module

The kernel initialization module is a dedicated initialization processing routine provided for initializing the minimum
required hardware for the RI850MP to perform processing. It is called from PE specific boot processing.

The following processing is executed in the kernel initialization module.

- Floating decimal point settings/Status register initialization
- System time initialization
- Task creation and activation
- Semaphore creation
- Eventflag creation
- Data queue creation
- Mailbox creation
- Mutex creation
- Fixed-sized memory pool creation
- Cyclic handler registration and activation
- Interrupt handler registration
- CPU exception handler registration
- Initialization routine registration
- Idle routine registration
- Initialization routine calling
- Scheduler activation

Remark The kernel initialization module is included in system initialization processing provided by the RI850MP. The
user is therefore not required to code the kernel initialization module.

12.4 Initialization Routine

The initialization routine is a routine dedicated to initialization processing that is extracted as a user-own coding module
to initialize hardware and software that depends on the user execution environment. It is called from the Kernel Initializa-
tion Module.

Remark For details about the initialization routine, refer to "10.4 Initialization Routine".

 .text

 .align 0x4

 .global __boot_PEn

__boot_PEn:

 .extern __kernel_sit

 mov __kernel_sit, r6

 jarl __kernel_start, lp -- Branch to kernel initialization module

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 40 of 218
Apr 01, 2011

CHAPTER 13 SERVICE CALLS

This chapter describes the service calls supported by the RI850MP.

13.1 Outline

Service calls are provided by the RI850MP to manipulate the resources (tasks, semaphores, data queues, etc.)
managed by the RI850MP from a processing program written by the user.
The service calls provided by the RI850MP are listed below by function.

- Task management functions
act_tsk, iact_tsk, can_act, ican_act, ext_tsk, ter_tsk, chg_pri, ichg_pri, get_pri, iget_pri, ref_tsk, iref_tsk

- Task dependent synchronization functions
slp_tsk, tslp_tsk, wup_tsk, iwup_tsk, can_wup, ican_wup, rel_wai, irel_wai, sus_tsk, isus_tsk, rsm_tsk, irsm_tsk,
frsm_tsk, ifrsm_tsk, dly_tsk

- Synchronization and communication functions (semaphores)
sig_sem, isig_sem, wai_sem, pol_sem, ipol_sem, twai_sem, ref_sem, iref_sem

- Synchronization and communication functions (eventflags)
set_flg, iset_flg, clr_flg, iclr_flg, wai_flg, pol_flg, ipol_flg, twai_flg, ref_flg, iref_flg

- Synchronization and communication functions (data queues)
snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq, ifsnd_dtq, rcv_dtq, prcv_dtq, iprcv_dtq, trcv_dtq, ref_dtq,
iref_dtq

- Synchronization and communication functions (mailboxes)
snd_mbx, isnd_mbx, rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx, ref_mbx, iref_mbx

- Extended synchronization and communication functions
loc_mtx, ploc_mtx, tloc_mtx, unl_mtx, ref_mtx, iref_mtx

- Memory pool management functions
get_mpf, pget_mpf, ipget_mpf, tget_mpf, rel_mpf, irel_mpf, ref_mpf, iref_mpf

- Time management functions
set_tim, iset_tim, get_tim, iget_tim, sta_cyc, ista_cyc, stp_cyc, istp_cyc, ref_cyc, iref_cyc

- System state management functions
rot_rdq, irot_rdq, get_tid, iget_tid, loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, dis_dsp, ena_dsp, sns_ctx, sns_loc,
sns_dsp, sns_dpn

- Interrupt management functions
dis_int, ena_int, chg_ipm, ichg_ipm, get_ipm, iget_ipm

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 41 of 218
Apr 01, 2011

13.1.1 Calling a service call

The method for calling service calls from processing programs coded either in C or assembly language is described
below.

- Processing programs coded in the C language
The service call's parameters are passed to the RI850MP using the same calling convention as an ordinary C
function, and the corresponding process is executed.

- Processing programs coded in assembly language
After setting the parameters and return address in accordance with the function calling convention of the C com-
piler package being used, make the call via a jarl instruction to pass the service-call parameters to the RI850MP,
and execute the corresponding process.

Remark To call the service calls provided by the RI850MP from a processing program, the header files listed below
must be coded (include processing).

kernel.h : Standard header file
kernel_id.h : System information header file

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 42 of 218
Apr 01, 2011

13.2 Data Macros

Below are shown the data macros used when processing programs issue service calls provided by the RI850MP.

13.2.1 Data types

The data types are defined in the header file "types.h" that is called from standard header file "kernel.h".

Table 13-1. Data Types

Macro Type Description

B signed char Signed 8-bit integer

H signed short Signed 16-bit integer

W signed long Signed 32-bit integer

UB unsigned char Unsigned 8-bit integer

UH unsigned short Unsigned 16-bit integer

UW unsigned long Unsigned 32-bit integer

VB signed char 8-bit value with undetermined data type

VH signed short 16-bit value with undetermined data type

VW signed long 32-bit value with undetermined data type

VP void * Pointer to value with undetermined data type

FP void (*) Startup address of processing program (pointer)

INT signed int Signed 32-bit integer

UINT unsigned int Unsigned 32-bit integer

BOOL signed int Boolean value (TRUE or FALSE)

FN signed short Function code of service call

ER signed long Return value of service call

ID signed short Object ID

ATR unsigned short Object attribute

STAT unsigned short Object status

MODE unsigned short Operation mode of service call

PRI signed short Object priority

SIZE unsigned long Size of the memory area

TMO signed long Wait time

RELTIM unsigned long Relative time

SYSTIM - See "13.3.11 System time SYSTIM" for details about SYSTIM

VP_INT signed int Pointer to undetermined type or signed 32-bit integer

ER_BOOL signed long Return value of service call or Boolean value (TRUE or FALSE)

ER_ID signed long Return value of service call or object ID

ER_UINT unsigned int Return value of service call or unsigned 32-bit integer

FLGPTN unsigned int Bit pattern

T_MSG - See "13.3.9 Message (no priority) T_MSG" for details about T_MSG

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 43 of 218
Apr 01, 2011

13.2.2 Return values

The return values are defined in the header files "errcd.h" and "options.h" that are called from standard header file "ker-
nel.h".

Table 13-2. Return Values

T_MSG_PRI - See "13.3.10 Message (with priority) T_MSG_PRI" for details about
T_MSG_PRI

INTNO unsigned short Exception cause code

INTPMR unsigned short Register value

PE_ID unsigned char PE number

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

E_PAR -17 Parameter is invalid

E_ID -18 ID is invalid

E_CTX -25 Context error

E_ILUSE -28 Invalid service call use

E_OBJ -41 Object status error

E_QOVR -43 Queuing overflow

E_RLWAI -49 Forced cancellation of WAITING state

E_TMOUT -50 Polling failure or timeout

TRUE 1 True

FALSE 0 False

NULL 0 Invalid pointer

Macro Type Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 44 of 218
Apr 01, 2011

13.2.3 Object attributes

The object attributes are defined in the header file "options.h" that is called from standard header file "kernel.h".

Table 13-3. Object Attributes

13.2.4 Task wait time

The task wait times are defined in the header file "options.h" that is called from standard header file "kernel.h".

Table 13-4. Task Wait Time

13.2.5 Task request conditions

The task request conditions are defined in the header file "options.h" that is called from standard header file "kernel.h".

Table 13-5. Task Request Conditions

Macro Num. Description

TA_HLNG 0x0 C language

TA_ASM 0x1 Assembly language

TA_TFIFO 0x0 Tasks queued in FIFO order

TA_TPRI 0x1 Tasks queued in priority order

TA_MFIFO 0x0 Messages queued in FIFO order

TA_MPRI 0x2 Messages queued in priority order

TA_ACT 0x2 READY state

TA_WSGL 0x0 1 task

TA_WMUL 0x2 Multiple tasks

TA_CLR 0x4 Bit pattern cleared if the request conditions are met

TA_STA 0x2 Operating status

TA_PHS 0x4 Stores an activation phase

TA_ENAINT 0x0 Enables interrupts

TA_DISINT 0x8000 Disables interrupts

Macro Num. Description

TMO_POL 0 Polling

TMO_FEVR -1 Wait forever

Macro Num. Description

TWF_ANDW 0x0 AND wait

TWF_ORW 0x1 OR wait

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 45 of 218
Apr 01, 2011

13.2.6 Current task status

The current task statuses are defined in the header file "options.h" that is called from standard header file "kernel.h".

Table 13-6. Current Task Status

13.2.7 Task wait causes

The task wait causes (wait state types) are defined in the header file "options.h" that is called from standard header file
"kernel.h".

Table 13-7. Task Wait Causes

13.2.8 Current state of cyclic handler

The current cyclic handler states are defined in the header file "options.h" that is called from standard header file "ker-
nel.h".

Table 13-8. Current State of Cyclic Handler

Macro Num. Description

TTS_RUN 0x1 RUNNING state

TTS_RDY 0x2 READY state

TTS_WAI 0x4 WAITING state

TTS_SUS 0x8 SUSPENDED state

TTS_WAS 0xC WAITING-SUSPENDED state

TTS_DMT 0x10 DORMANT state

Macro Num. Description

TTW_NONE 0x0 Not waiting

TTW_SLP 0x1 Sleeping state

TTW_DLY 0x2 Delayed state

TTW_SEM 0x4 WAITING state for a semaphore resource

TTW_FLG 0x8 WAITING state for an eventflag

TTW_SDTQ 0x10 Sending WAITING state for a data queue

TTW_RDTQ 0x20 Receiving WAITING state for a data queue

TTW_MBX 0x40 WAITING state for a mailbox

TTW_MTX 0x80 WAITING state for a mutex

TTW_MPF 0x2000 WAITING state for a fixed-sized memory block

Macro Num. Description

TCYC_STP 0x0 Non-operational state

TCYC_STA 0x1 Operational state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 46 of 218
Apr 01, 2011

13.2.9 Other constants

Other constants are defined in the header file "options.h" that is called from standard header file "kernel.h".

Table 13-9. Other Constants

13.2.10 Conditional compilation macros

The RI850MP provides the following macros for conditional compilation.

Table 13-10. Conditional Compilation Macros

Macro Num. Description

TSK_SELF 0 Current task

TSK_NONE 0 Task is not queued

TPRI_SELF 0 Current priority of task

TPRI_INI 0 Initial priority of task

Macro Description

__cx__ Use CX as C compiler package

__ccv850e__ Use CCV850E as C compiler package

__v850e2m__ Use V850E2M as target device

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 47 of 218
Apr 01, 2011

13.3 Data Structures

Below are shown the data structures used when processing programs issue service calls provided by the RI850MP.

13.3.1 Task information T_RTSK

Task information is defined in the header file "packet.h" that is called from standard header file "kernel.h".

Below are details about the task information.

- tskstat
This stores the task's current status.

- tskpri
This stores the task's current priority.
If the task is DORMANT state, the initial priority is stored.

- tskbpri
This area is reserved by the system.

typedef struct t_rtsk {

 STAT tskstat; /* Current state */

 PRI tskpri; /* Current priority */

 PRI tskbpri; /* Reserved for future use */

 STAT tskwait; /* Wait cause */

 ID wobjid; /* Object ID */

 TMO lefttmo; /* Remaining time until timeout */

 UINT actcnt; /* Activation request nesting count */

 UINT wupcnt; /* Wake-up request nesting count */

 UINT suscnt; /*Forced wait request nesting count */

 ATR tskatr; /* Attribute */

 PRI itskpri; /* Initial priority */

 PE_ID peid; /* PE number */

} T_RTSK;

Macro Num. Description

TTS_RUN 0x1 RUNNING state

TTS_RDY 0x2 READY state

TTS_WAI 0x4 WAITING state

TTS_SUS 0x8 SUSPENDED state

TTS_WAS 0xC WAITING-SUSPENDED state

TTS_DMT 0x10 DORMANT state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 48 of 218
Apr 01, 2011

- tskwait
This stores the tasks wait cause (wait state type).
If the task is in WAITING state or WAITING-SUSPENDED state, TTW_NONE (=0x0) is stored.

Remark When a tasks transitions to timeout wait status due to the issuance of tslp_tsk, twai_sem, twai_flg, or
the like, the logical sum of the value indicating the WAITING state (e.g. TTW_SLP, TTW_SEM, or
TTW_FLG) and TTW_DLY is stored.

- wobjid
This stores the ID of the object (e.g. semaphore, eventflag, or data queue) that caused the task to go into the wait
state.
A value of 0 will be stored if the state of the task is other than WAITING state for semaphore resource, WAITING
state for a eventflag, Sending WAITING state for a data queue, Receiving WAITING state for a data queue,
WAITING state for a mailbox, WAITING state for a mutex, or WAITING state for a fixed-size memory block.

- lefttmo
This stores the time remaining (in milliseconds) until the Delayed state (transition consequent to issuance of
tslp_tsk, dly_tsk, twai_sem, or the like) will be cleared.
A value of 0 will be stored if the state of the task is other than Delayed state.

Remark A value of TMO_FEVR (= -1) will be stored if the state of the task is wait forever.

- actcnt
This stores the activation request nesting level count (nesting level count of act_tsk/iact_tsk) maintained by the
task.
If the task is DORMANT state, a value of 0 will be stored.

- wupcnt
This stores the wake-up request nesting level count (nesting level count of wup_tsk/iwup_tsk) maintained by the
task.
If the task is DORMANT state, a value of 0 will be stored.

- suscnt
This stores the force wait request nesting level count (nesting level count of sus_tsk/isus_tsk) maintained by the
task.
If the task is DORMANT state, a value of 0 will be stored.

Macro Num. Description

TTW_NONE 0x0 Not waiting

TTW_SLP 0x1 Sleeping state

TTW_DLY 0x2 Delayed state

TTW_SEM 0x4 WAITING state for a semaphore resource

TTW_FLG 0x8 WAITING state for an eventflag

TTW_SDTQ 0x10 Sending WAITING state for a data queue

TTW_RDTQ 0x20 Receiving WAITING state for a data queue

TTW_MBX 0x40 WAITING state for a mailbox

TTW_MTX 0x80 WAITING state for a mutex

TTW_MPF 0x2000 WAITING state for a fixed-sized memory block

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 49 of 218
Apr 01, 2011

- tskatr
This stores the task attributes (language in which task is coded, initial state, and initial interrupt state).

- Language in which task is coded (bit 0)
TA_HLNG : C language
TA_ASM : Assembly language

- Initial task state (bit 1)
TA_ACT : READY state

- Initial task interrupt state (bit 15)
TA_ENAINT : Interrupts enabled
TA_DISINT : Interrupts disabled

Remark If the initial state of the task is DORMANT state, 0 will be stored in bit 1.

- itskpri
This stores the task's initial priority.

- peid
This stores the PE number of the processor element to which the task belongs.

TA_HLNG : 0

0

TA_ACT : 1
TA_ASM : 1

TA_ENAINT : 0
TA_DISINT : 1

115

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 50 of 218
Apr 01, 2011

13.3.2 Semaphore information T_RSEM

Semaphore information is defined in the header file "packet.h" that is called from standard header file "kernel.h".

Details of the semaphore information are described below.

- wtskid
This stores whether there are any tasks queued in the semaphore wait queue.

- semcnt
This stores the current number of semaphore resources.

- sematr
This stores the semaphore attribute (queuing method).

- Task queuing method (bit 0)
TA_TFIFO : Order in which resource acquisitions were requested
TA_TPRI : Order of task priority

- maxsem
This stores the maximum number of semaphore resources.

typedef struct t_rsem {

 ID wtskid; /* Existence of waiting task */

 UINT semcnt; /* Current resource count */

 ATR sematr; /* Attribute */

 UINT maxsem; /* Maximum resource count */

} T_RSEM;

Macro Num. Description

TSK_NONE 0 No tasks are queued in the wait queue

- Other
than 0

The ID of the first task queued in the wait queue

TA_TFIFO : 0

0

TA_TPRI : 1

15

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 51 of 218
Apr 01, 2011

13.3.3 Eventflag information T_RFLG

Eventflag information is defined in the header file "packet.h" that is called from standard header file "kernel.h".

Details of the eventflag information are described below.

- wtskid
This stores whether there are any tasks queued in the eventflag wait queue.

- flgptn
This stores the current bit pattern of the eventflag.

- flgatr
This stores the eventflag attributes (queuing method, maximum number of tasks, and clearing method).

- Task queuing method (bit 0)
TA_TFIFO : Order in which determination of bit pattern was requested
TA_TPRI : Order of task priority

- Maximum number of tasks that can be queued (bit 1)
TA_WSGL : 1 task
TA_WMUL : Multiple tasks

- Method of clearing bit pattern (bit 2)
TA_CLR : Bit pattern cleared if the request conditions are met

Remark If the bit-pattern clearing method is "Do not clear bit pattern when request conditions are met", then 0
will be stored in bit 2.

typedef struct t_rflg {

 ID wtskid; /* Existence of waiting task */

 FLGPTN flgptn; /* Current bit pattern */

 ATR flgatr; /* Attribute */

} T_RFLG;

Macro Num. Description

TSK_NONE 0 No tasks are queued in the wait queue

- Other
than 0

The ID of the first task queued in the wait queue

TA_TFIFO : 0

0

TA_TPRI : 1

15

TA_WSGL : 0
TA_WMUL : 1

TA_CLR : 1

12

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 52 of 218
Apr 01, 2011

13.3.4 Data queue information T_RDTQ

Data queue information is defined in the header file "packet.h" that is called from standard header file "kernel.h".

Below are details about the data queue information.

- stskid
This stores whether there are any tasks awaiting sending in the data wait queue.

- rtskid
This stores whether there are any tasks awaiting reception in the data wait queue.

- sdtqcnt
This stores the number of data entries queued in the data wait queue.

- dtqatr
This stores the data queue attribute (queuing method).

- Task queuing method (bit 0)
TA_TFIFO : Order in which data-send requests were made
TA_TPRI : Order of task priority

- dtqcnt
This stores the maximum number of data entries that can be queued in the data wait queue.

typedef struct t_rdtq {

 ID stskid; /* Existence of tasks awaiting sending */

 ID rtskid; /* Existence of tasks awaiting receiving */

 UINT sdtqcnt; /* Data count */

 ATR dtqatr; /* Attribute */

 UINT dtqcnt; /* Max data count */

} T_RDTQ;

Macro Num. Description

TSK_NONE 0 No tasks awaiting sending are queued in the wait queue

- Other
than 0

The ID of the first task awaiting sending queued in the wait queue

Macro Num. Description

TSK_NONE 0 No tasks awaiting reception are queued in the wait queue

- Other
than 0

The ID of the first task awaiting reception queued in the wait queue

TA_TFIFO : 0

0

TA_TPRI : 1

15

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 53 of 218
Apr 01, 2011

13.3.5 Mailbox information T_RMBX

Mailbox information is defined in the header file "packet.h" that is called from standard header file "kernel.h".

Below are details about the mailbox information.

- wtskid
This stores whether there are any tasks queued in the mailbox wait queue.

- pk_msg
This stores whether there are any messages queued in the mailbox wait queue.

- mbxatr
This stores the mailbox attribute (queuing method).

- Task queuing method (bit 0)
TA_TFIFO : Order in which message-receipt requests were made
TA_TPRI : Order of task priority

- Message queuing method (bit 1)
TA_MFIFO : Order in which message-send requests were made
TA_MPRI : Order of message priority

typedef struct t_rmbx {

 ID wtskid; /* Existence of waiting task */

 T_MSG *pk_msg; /* Existence of waiting message */

 ATR mbxatr; /* Attribute */

} T_RMBX;

Macro Num. Description

TSK_NONE 0 No tasks are queued in the wait queue

- Other
than 0

The ID of the first task queued in the wait queue

Macro Num. Description

NULL 0 No messages are queued in the wait queue

- Other
than 0

The start address of the first message queued in the wait queue

TA_TFIFO : 0

0

TA_TPRI : 1

15

TA_MFIFO : 0
TA_MPRI : 1

1

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 54 of 218
Apr 01, 2011

13.3.6 Mutex information T_RMTX

Mutex information is defined in the header file "packet.h" that is called from standard header file "kernel.h".

Below are details about the mutex information.

- htskid
This stores whether any tasks have acquired the mutex.

- wtskid
This stores whether there are any tasks queued in the mutex wait queue.

- mtxatr
This stores the mutex attribute (queuing method).

- Task queuing method (bit 0)
TA_TFIFO : Order in which mutex acquisition was requested
TA_TPRI : Order of task priority

- ceilpri
This area is reserved by the system.

typedef struct t_rmtx {

 ID htskid; /* Existence of tasks to acquire */

 ID wtskid; /* Existence of waiting task */

 ATR mtxatr; /* Attribute */

 PRI ceilpri; /* Reserved for future use */

} T_RMTX;

Macro Num. Description

TSK_NONE 0 No tasks have acquired it

- Other
than 0

ID of task that has acquired it

Macro Num. Description

TSK_NONE 0 No tasks are queued in the wait queue

- Other
than 0

The ID of the first task queued in the wait queue

TA_TFIFO : 0

0

TA_TPRI : 1

15

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 55 of 218
Apr 01, 2011

13.3.7 Fixed-sized memory pool information T_RMPF

Fixed-sized memory pool information is defined in the header file "packet.h" that is called from standard header file
"kernel.h".

Below are details about the fixed-sized memory pool information.

- wtskid
This stores whether there are any tasks queued in the fixed-sized memory pool wait queue.

- fblkcnt
This stores the number of remaining blocks that can be acquired.

- mpfatr
This stores the fixed-sized memory pool attribute (queuing method).

- Task queuing method (bit 0)
TA_TFIFO : Order in which fixed-size memory block acquisition was requested
TA_TPRI : Order of task priority

typedef struct t_rmpf {

 ID wtskid; /* Existence of waiting task */

 UINT fblkcnt; /* Number of available blocks remaining */

 ATR mpfatr; /* Attribute */

} T_RMPF;

Macro Num. Description

TSK_NONE 0 No tasks are queued in the wait queue

- Other
than 0

The ID of the first task queued in the wait queue

TA_TFIFO : 0

0

TA_TPRI : 1

15

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 56 of 218
Apr 01, 2011

13.3.8 Cyclic handler information T_RCYC

Cyclic handler information is defined in the header file "packet.h" that is called from standard header file "kernel.h".

The details of cyclic handler information are described below.

- cycstat
This stores the cyclic handler's current status.

- lefttim
This stores the remaining time (in milliseconds) until the cyclic handler will be activated next.

- cycatr
This stores the cyclic handler attributes (language in which task is coded, initial state, and storage flag).

- Language in which cyclic handler is coded (bit 0)
TA_HLNG : C language
TA_ASM : Assembly language

- Initial state of cyclic handler (bit 1)
TA_STA : Operational state

- Whether activation phase has been stored (bit 2)
TA_PHS : Activation phase stored

Remarks 1. If the initial state of the cyclic handler is stopped, 0 will be stored in bit 1.
2. If the activation-phase storage flag of the cyclic handler is "activation phase not stored", then 0 will

be stored in bit 2.

typedef struct t_rcyc {

 STAT cycstat; /* Current state */

 RELTIM lefttim; /* Remaining time */

 ATR cycatr; /* Attribute */

 RELTIM cyctim; /* Activation cycle */

 RELTIM cycphs; /* Starting phase */

 PE_ID peid; /* PE number */

} T_RCYC;

Macro Num. Description

TCYC_STP 0x0 Non-operational state

TCYC_STA 0x1 Operational state

TA_HLNG : 0

0

TA_ASM : 1

15

TA_STA : 1
TA_PHS : 1

12

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 57 of 218
Apr 01, 2011

- cyctim
This stores the activation cycle (in milliseconds) of the cyclic handler.

- cycphs
This stores the activation phase (in milliseconds) of the cyclic handler.

- peid
This stores the PE number of the processor element to which the cyclic handler belongs.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 58 of 218
Apr 01, 2011

13.3.9 Message (no priority) T_MSG

Messages (no priority) are defined in the header file "types.h" that is called from standard header file "kernel.h".

Details of messages (no priority) are described below.

- msgque
This area is reserved by the system.

-
The message body is stored here.
The structure, data types, and the like of the message body are specified between the sending and receiving pro-
grams.

typedef struct t_msg {

 struct t_msg *msgque; /* Reserved for future use */

 /* Message body */

} T_MSG;

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 59 of 218
Apr 01, 2011

13.3.10 Message (with priority) T_MSG_PRI

Messages (with priority) are defined in the header file "types.h" that is called from standard header file "kernel.h".

Details of messages (with priority) are described below.

- msgque
This area is reserved by the system.

- msgpri
The message priority is stored here.

Remark In the RI850MP, messages with lower priority numbers have higher priority.

-
The message body is stored here.
The structure, data types, and the like of the message body are specified between the sending and receiving pro-
grams.

typedef struct t_msg_pri {

 T_MSG msgque; /* Reserved for future use */

 PRI msgpri; /* Priority */

 /* Message body */

} T_MSG_PRI;

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 60 of 218
Apr 01, 2011

13.3.11 System time SYSTIM

System times are defined in the header file "types.h" that is called from standard header file "kernel.h".

Details about system time are described below.

- ltime
This stores the lower 32 bits of the system time (in milliseconds).

- utime
This stores the upper 16 bits of the system time (in milliseconds).

Remark System time is relative time; it is the elapsed time since the system time was initialized in the Kernel Initial-
ization Module, or it was modified via issuance of set_tim/iset_tim. When a timer interrupt specified by
Exception cause code tintno occurs, it is updated by the value specified by Base clock cycle tbase.

typedef struct t_systim {

 UW ltime; /* System time (lower 32 bits) */

 UH utime; /* System time (higher 16 bits) */

} SYSTIM;

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 61 of 218
Apr 01, 2011

13.4 Service Call Reference

This section describes the service calls provided by the RI850MP, using the following format.

Figure 13-1. Description Format of Service Calls

(1) Name

Indicates the name of the service call.

(2) [Overview]

Outlines the functions of the service call.

(3) [Syntax]

Indicates the format to be used when coding a service call to be issued in the C language.

(1)

(2)

(3)

(4)

(5)

I/O

Description

Description

Macro

...

...

...

.......................................

...

.........

[Parameters]

[Syntax]

[Return Value]

[Overview]

[Function]

Parameter

...

.......................................

.................................

(6)

.................................

Num.

...

..

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 62 of 218
Apr 01, 2011

(4) [Parameters]

Indicates the parameters of the service call, in the following format.

(a) I/O

Parameter type
I ... Input parameter
O ... Output parameter

(b) Parameter

Data type of parameter

(c) Description

Description of the parameter

(5) [Function]

Explains the function of a service call.

(6) [Return Value]

Indicates a service call's return value using the following format.

(a) Macro

Macro return value

(b) Num.

Macro definition value

(c) Description

Description of return value

I/O Parameter Description

(a) (b) (c)

Macro Num. Description

(a) (b) (c)

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 63 of 218
Apr 01, 2011

13.4.1 Task management functions

The following shows the service calls provided by the RI850MP as task management functions.

Table 13-11. Task Management Functions

Service Call Function Overview

act_tsk/iact_tsk Activate task

can_act/ican_act Cancel activation request

ext_tsk End this task

ter_tsk Forcibly terminate task

chg_pri/ichg_pri Change the current priority

get_pri/iget_pri Get the current priority

ref_tsk/iref_tsk Get task information

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 64 of 218
Apr 01, 2011

[Overview]

Activate task.

[Syntax]

[Parameters]

[Function]

This issues an activation request to the task specified by tskid, and moves the task from DORMANT state to READY
state.

If the target task is in a state other than the DORMANT state when this service call is issued, this service call does not
change the task's state, and instead increments the activation request counter (by adding 1 to the activation request
counter).

Remarks 1. Tasks moved to READY state are placed on the end of the ready queue corresponding to Initial priority
itskpri.

2. If issuing this service call would cause the activation-request nesting count to exceed 127, then the
activation request is not performed, and "E_QOVR (= -43)" is returned.

[Return Value]

act_tsk

iact_tsk

ER act_tsk(ID tskid);

ER iact_tsk(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

TSK_SELF : Current task

Numerical value : ID of task

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 65 of 218
Apr 01, 2011

E_QOVR -43 Queuing overflow

- The activation request nesting count exceeds the maximum activation request
nesting level of 127

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 66 of 218
Apr 01, 2011

[Overview]

Cancel activation request.

[Syntax]

[Parameters]

[Function]

This cancels the activation requests stored in the task specified by tskid (sets the activation request nest counter to 0)
and returns the cancelled activation request nesting count (nesting count of act_tsk/iact_tsk) as the return value.

Remarks 1. If the target task is in DORMANT state, then a value of "0" is returned.
2. This service call does not manipulate the state of the task (e.g. moving it from READY to DORMANT

state).

[Return Value]

can_act

ican_act

ER_UINT can_act(ID tskid);

ER_UINT ican_act(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

TSK_SELF : Current task

Numerical value :I D of task

Macro Num. Description

- - Normal termination

- Number of activation request nesting levels cancelled

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 67 of 218
Apr 01, 2011

[Overview]

End this task.

[Syntax]

[Parameters]

None.

[Function]

Moves this task from RUNNING to DORMANT state.
If this task retains activation requests (its count value is other than 0) when this service call is issued, then after the task

state is changed, processing equivalent to act_tsk/iact_tsk is performed.

Remarks 1. If this service call changes the task to DORMANT state, it also performs the following operations.
- Releases the acquired mutex
- Changes the current priority to the same value as Initial priority itskpri
- Sets the wake-up request nesting counter to 0
- Sets the forced wait request nesting counter to 0
- Changes the interrupt state to the same state as the initial interrupt state of Attribute tskatr

2. When the return instruction is called in a task, the RI850MP performs the same processing this service
call.

3. If this service call is not defined for use in SCT Information, then subsequent behavior is not guaran-
teed.

4. If this service call is issued from a non-task, or from CPU locked state or dispatching disabled state,
subsequent behavior is not guaranteed.

[Return Value]

None.

ext_tsk

void ext_tsk(void);

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 68 of 218
Apr 01, 2011

[Overview]

Forcibly terminate task.

[Syntax]

[Parameters]

[Function]

This shifts the task specified in parameter tskid to DORMANT state.
If the target task retains activation requests (its count value is other than 0) when this service call is issued, then after

the task state is changed, processing equivalent to act_tsk/iact_tsk is performed.

Remark If this service call changes the target task to DORMANT state, it also performs the following operations.
- Releases the acquired mutex
- Changes the current priority to the same value as Initial priority itskpri
- Sets the wake-up request nesting counter to 0
- Sets the forced wait request nesting counter to 0
- Changes the interrupt state to the same state as the initial interrupt state of Attribute tskatr

[Return Value]

ter_tsk

ER ter_tsk(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskid is invalid

- ID is not defined in Task information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

E_ILUSE -28 Invalid service call use

- The target task belongs to a different PE

- The invoking task was specified in tskid

E_OBJ -41 Object status error

- The target task is in DORMANT state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 69 of 218
Apr 01, 2011

[Overview]

Change the current priority

[Syntax]

[Parameters]

[Function]

These service calls change the current priority of the task specified by tskid to the value specified by tskpri.
If the target task is in RUNNING or READY state when this service call is issued, then after the current priority is

changed, the tasks will be relinked to the end of the ready queue corresponding to the priority specified by tskpri.
If the target task is not queued in a task-priority wait queue when this service call is issued, then after the priority is

changed, the task will be relinked to an appropriate location on the wait queue.

Remarks 1. In the RI850MP, tasks with lower priority numbers have higher priority.

chg_pri

ichg_pri

ER chg_pri(ID tskid, PRI tskpri);

ER ichg_pri(ID tskid, PRI tskpri);

I/O Parameter Description

I ID tskid; ID of task

TSK_SELF : Current task

Numerical value : ID of task

I PRI tskpri; Current priority after change

TPRI_INI : Initial priority

Numerical value : Current priority after change

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 70 of 218
Apr 01, 2011

2. Below are described the changes that issuing this service call causes to the state of the ready queue.

3. Below are described the changes that issuing this service call causes to the state of the wait queue.

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 tskpri is invalid

- tskpri < 0

- tskpri > Maximum priority maxtpri

tskpri_low ID : Task_C ID : Task_D

Ready queue

chg_pri (Task_B, tskpri_high) ;

tskpri_high ID : Task_A

tskpri_low ID : Task_B ID : Task_C ID : Task_D

tskpri_high ID : Task_A

Ready queue

ID : Task_B

Priority : tskpri_low

Priority : tskpri_high

Priority : tskpri_low Priority : tskpri_low

Priority : tskpri_high Priority : tskpri_high

Priority : tskpri_low Priority : tskpri_low

maxtpri

maxtpri

1

1

Wait queue

chg_pri (Task_A, 2) ;

ID : Task_B ID : Task_C

ID : Task_B ID : Task_CID : Task_A

Wait queue

ID : Task_A

Priority : 3

Priority : 1 Priority : 2 Priority : 3

Priority : 2 Priority : 2

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 71 of 218
Apr 01, 2011

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

E_ILUSE -28 Invalid service call use

- The target task belongs to a different PE

E_OBJ -41 Object status error

- The target task is in DORMANT state

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 72 of 218
Apr 01, 2011

[Overview]

Get the current priority.

[Syntax]

[Parameters]

[Function]

This acquires the current priority of the task specified by tskid, and stores it in the area specified by p_tskpri.

[Return Value]

get_pri

iget_pri

ER get_pri(ID tskid, PRI *p_tskpri);

ER iget_pri(ID tskid, PRI *p_tskpri);

I/O Parameter Description

I ID tskid; ID of task

TSK_SELF : Current task

Numerical value : ID of task

O PRI *p_tskpri; Pointer to area in which current priority is stored

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_tskpri is invalid

- p_tskpri = 0

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

E_OBJ -41 Object status error

- The target task is in DORMANT state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 73 of 218
Apr 01, 2011

[Overview]

Get task information.

[Syntax]

[Parameters]

[Task Information T_RTSK]

[Function]

Stores task information (current state, etc.) of the task specified by tskid in the area specified by pk_rtsk.

Remark See "13.3.1 Task information T_RTSK" for details about task information.

ref_tsk

iref_tsk

ER ref_tsk(ID tskid, T_RTSK *pk_rtsk);

ER iref_tsk(ID tskid, T_RTSK *pk_rtsk);

I/O Parameter Description

I ID tskid; ID of task

TSK_SELF : Current task

Numerical value :I D of task

O T_RTSK *pk_rtsk; Pointer to the area storing the task information

typedef struct t_rtsk {

 STAT tskstat; /* Current state */

 PRI tskpri; /* Current priority */

 PRI tskbpri; /* Reserved for future use */

 STAT tskwait; /* Wait cause */

 ID wobjid; /* Object ID */

 TMO lefttmo; /* Remaining time until timeout */

 UINT actcnt; /* Activation request nesting count */

 UINT wupcnt; /* Wake-up request nesting count */

 UINT sus_cnt; /* Forced wait request nesting count */

 ATR tskatr; /* Attribute */

 PRI itskpri; /* Initial priority */

 PE_ID peid; /* PE number */

} T_RTSK;

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 74 of 218
Apr 01, 2011

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_rtsk is invalid

- pk_rtsk = 0

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 75 of 218
Apr 01, 2011

13.4.2 Task dependent synchronization functions

The following shows the service calls provided by the RI850MP as task dependent synchronization functions.

Table 13-12. Task Dependent Synchronization Functions

Service Call Function Overview

slp_tsk Put task in Sleeping state.

tslp_tsk Put task in Sleeping state (with timeout).

wup_tsk/iwup_tsk Resume task after sleep.

can_wup/ican_wup Cancel wake-up request.

rel_wai/irel_wai Forced cancellation of WAITING state.

sus_tsk/isus_tsk Put task in SUSPENDED state.

rsm_tsk/irsm_tsk Resume task from SUSPENDED state.

frsm_tsk/ifrsm_tsk Forcibly resume task from SUSPENDED state.

dly_tsk Put task in Delayed state.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 76 of 218
Apr 01, 2011

[Overview]

Put task in Sleeping state.

[Syntax]

[Parameters]

None.

[Function]

Moves this task from RUNNING to Sleeping state.
In the following cases, the Sleeping state is cancelled, and then the task is moved to the READY state.

Remark If the task holds a wake-up request (counter value other than 0) when this service call is issued, then no
changes are made to the task's state, and 1 is subtracted from the wake-up request nesting counter.

[Return Value]

slp_tsk

ER slp_tsk(void);

Cancellation of Sleeping State Return Value

A wakeup request was issued as a result of issuing wup_tsk/iwup_tsk. E_OK

Forced release from Sleeping state as a result of issuing rel_wai/irel_wai. E_RLWAI

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of Sleeping state

- Issuance of rel_wai/irel_wai

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 77 of 218
Apr 01, 2011

[Overview]

Put task in Sleeping state (with timeout).

[Syntax]

[Parameters]

[Function]

Moves this task from RUNNING to Sleeping state.
In the following cases, the Sleeping state is cancelled, and then the task is moved to the READY state.

Remarks 1. If the task holds a wake-up request (counter value other than 0) when this service call is issued, then
no changes are made to the task's state, and 1 is subtracted from the wake-up request nesting counter.

2. If TMO_FEVR is specified in tmout, then processing equivalent to slp_tsk will be performed.

[Return Value]

tslp_tsk

ER tslp_tsk(TMO tmout);

I/O Parameter Description

I TMO tmout; Specified timeout (in millisecond)

TMO_FEVR : Wait forever

TMO_POL : Polling

Numerical value : Wait tim

Cancellation of Sleeping State Return Value

A wakeup request was issued as a result of issuing wup_tsk/iwup_tsk. E_OK

Forced release from Sleeping state as a result of issuing rel_wai/irel_wai. E_RLWAI

Time specified by tmout has elapsed (timeout). E_TMOUT

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 tmout is invalid

- tmout < TMO_FEVR

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 78 of 218
Apr 01, 2011

E_RLWAI -49 Forced cancellation of Sleeping state

- Issuance of rel_wai/irel_waii

E_TMOUT -50 Timeout

- Time specified by tmout has elapsed (timeout)

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 79 of 218
Apr 01, 2011

[Overview]

Resume task after sleep.

[Syntax]

[Parameters]

[Function]

This issues a wake-up request to the task specified by tskid, and moves the task from Sleeping state to READY state.
If the target task is in a state other than the Sleeping state when this service call is issued, this service call does not

change the task's state, and instead increments the activation request counter (by adding 1 to it).

Remark If issuing this service call would cause the wake-up request nesting count to exceed 127, then the wake-up
request is not performed, and "E_QOVR (= -43)" is returned.

[Return Value]

wup_tsk

iwup_tsk

ER wup_tsk(ID tskid);

ER iwup_tsk(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

TSK_SELF : Current task

Numerical value : ID of task

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

E_OBJ -41 Object status error

- The target task is in DORMANT state

E_QOVR -43 Queuing overflow

- The wake-up request nesting count exceeds the maximum wake-up request nest-
ing level of 127

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 80 of 218
Apr 01, 2011

[Overview]

Cancel wake-up request.

[Syntax]

[Parameters]

[Function]

This cancels the wake-up requests stored in the task specified by tskid (sets the wake-up request nest counter to 0)
and returns the cancelled wake-up request nesting count (nesting count of wup_tsk/iwup_tsk) as the return value.

Remark This service call does not manipulate the state of the task (e.g. moving it from WAITING state to READY
state).

[Return Value]

can_wup

ican_wup

ER_UINT can_wup(ID tskid);

ER_UINT ican_wup(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

TSK_SELF : Current task

Numerical value : ID of task

Macro Num. Description

- - Normal termination

- Number of wake-up request nesting levels cancelled

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

E_OBJ -41 Object status error

- The target task is in DORMANT state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 81 of 218
Apr 01, 2011

[Overview]

Forced cancellation of WAITING state.

[Syntax]

[Parameters]

[Function]

This forcibly cancels the WAITING state of the task specified by tskid. This removes the target task from the wait
queue, and changes its status from WAITING state to READY, or from WAITING-SUSPENDED state to SUSPENDED
state.

Remarks 1. This service call does not cancel SUSPENDED state.
2. "E_RLWAI (= -49)" is returned from the service call that triggered the move to the WAITING state

(slp_tsk, dly_tsk, wai_sem, or the like) to the task whose WAITING state is forcibly cancelled by this
service call.

[Return Value]

rel_wai

irel_wai

ER rel_wai(ID tskid);

ER irel_wai(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

E_OBJ -41 Object status error

- Target task state is other than WAITING state or WAITING-SUSPENDED state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 82 of 218
Apr 01, 2011

[Overview]

Put task in SUSPENDED state

[Syntax]

[Parameters]

[Function]

This issues a forced wait request to the task specified by tskid, and moves the task to SUSPENDED state or WAITING-
SUSPENDED state.

If the target task is SUSPENDED state or WAITING-SUSPENDED state when this service call is issued, this service
call does not change the task's state, and instead increments the forced wait request counter (by adding 1 to it).

Remark If issuing this service call would cause the FORCED WAIT request nesting count to exceed 127, then the
forced wait request is not performed, and "E_QOVR (= -43)" is returned.

[Return Value]

sus_tsk

isus_tsk

ER sus_tsk(ID tskid);

ER isus_tsk(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

TSK_SELF : Current task

Numerical value : ID of task

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

- Invoking task specified when issued from dispatching disabled status

E_OBJ -41 Object status error

- The target task is in DORMANT state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 83 of 218
Apr 01, 2011

E_QOVR -43 Queuing overflow

- The forced wait request nesting count exceeds the maximum forced wait request
nesting level of 127

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 84 of 218
Apr 01, 2011

[Overview]

Resume task from SUSPENDED state.

[Syntax]

[Parameters]

[Function]

This issues a cancel forced wait request to the task specified by tskid, and moves the task to READY or WAITING
state.

If the task holds a forced wait request (counter value other than 0) when this service call is issued, then no changes are
made to the task's state, and 1 is subtracted from the forced wait request nesting counter.

Remark This service call does not perform queuing of forced wait cancellation requests. For this reason, if the target
task is in other than SUSPENDED state or WAITING-SUSPENDED state, the value "E_OBJ (= -41)" will be
returned.

[Return Value]

rsm_tsk

irsm_tsk

ER rsm_tsk(ID tskid);

ER irsm_tsk(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskid is invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

E_OBJ -41 Object status error

- Target task state is other than SUSPENDED state or WAITING-SUSPENDED state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 85 of 218
Apr 01, 2011

[Overview]

Forcibly resume task from SUSPENDED state.

[Syntax]

[Parameters]

[Function]

This forcibly cancels the SUSPENDED state of the task specified by tskid (sets forced wait request nesting counter to
0). This changes the state of the target task from SUSPENDED state to READY state, or from WAITING-SUSPENDED
state to WAITING state.

Remarks 1. This service call does not cancel WAITING state.
2. This service call does not perform queuing of forced wait cancellation requests. For this reason, if the

target task is in other than SUSPENDED state or WAITING-SUSPENDED state, the value "E_OBJ (= -
41)" will be returned.

[Return Value]

frsm_tsk

ifrsm_tsk

ER frsm_tsk(ID tskid);

ER ifrsm_tsk(ID tskid);

I/O Parameter Description

I ID tskid; ID of task

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 tskidis invalid

- ID is not defined in Task information

- TSK_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

E_OBJ -41 Object status error

- Target task state is other than SUSPENDED state or WAITING-SUSPENDED state

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 86 of 218
Apr 01, 2011

[Overview]

Put task in Delayed state.

[Syntax]

[Parameters]

[Function]

This moves the task from RUNNING to Delayed state.
In the following cases, the Delayed state is cancelled and the task is moved to the READY state.

Remark Even if dlytim is specified as 0, the task state will be changed.

[Return Value]

dly_tsk

ER dly_tsk(RELTIM dlytim);

I/O Parameter Description

I RELTIM dlytim; Specified timeout (in millisecond)

Cancellation of Delayed State Return Value

Wait time specified by dlytim has elapsed. E_OK

Forced release from Delayed state as a result of issuing rel_wai/irel_wai. E_RLWAI

Macro Num. Description

E_OK 0 Normal termination

- Wait time specified by dlytim has elapsed

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of Delayed state

- Issuance of rel_wai/irel_wai

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 87 of 218
Apr 01, 2011

13.4.3 Synchronization and communication functions (semaphores)

Below is a list of the service calls provided by the RI850MP as synchronization and communication functions (sema-
phores).

Table 13-13. Synchronization and Communication Functions (Semaphores)

Service Call Function Overview

sig_sem/isig_sem Release semaphore resource.

wai_sem Acquire semaphore resource.

pol_sem/ipol_sem Acquire semaphore resource (polling).

twai_sem Acquire semaphore resource (with timeout).

ref_sem/iref_sem Reference semaphore information.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 88 of 218
Apr 01, 2011

[Overview]

Release semaphore resource.

[Syntax]

[Parameters]

[Function]

These service calls return the resource to the semaphore specified by semid (adds 1 to the semaphore counter).
If a task is queued in the wait queue of the target semaphore when this service call is issued, resource is not released,

and instead it is passed to the relevant task (first task of wait queue). This removes the target task from the wait queue,
and changes its status from WAITING state for a semaphore resource to READY, or from WAITING-SUSPENDED state
to SUSPENDED state.

Remark If the number of resources issued by this service call exceeds Maximum resource count maxsem, then the
resource will not be released, and "E_QOVR (= -43)" will be returned.

[Return Value]

sig_sem

isig_sem

ER sig_sem(ID semid);

ER isig_sem(ID semid);

I/O Parameter Description

I ID semid; ID of semaphore

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 semid is invalid

- ID is not identified in Semaphore information

E_CTX -25 Context error

- Issued from CPU lock status

E_QOVR -43 Queuing overflow

- Number of resources exceeds Maximum resource count maxsem

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 89 of 218
Apr 01, 2011

[Overview]

Acquire semaphore resource.

[Syntax]

[Parameters]

[Function]

This service call acquires a resource from the semaphore specified by semid (subtracts 1 from the semaphore
counter).

If the target semaphore resource cannot be acquired (the count is already 0) when this service call is issued, this ser-
vice call queues the invoking task in the semaphore wait queue and moves it from the RUNNING state to WAITING state
for a semaphore resource.

The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY state.

Remark The queuing order of tasks in the semaphore wait queue is determined by the queuing method specified by
Attribute sematr (order in which resource requests were made, or order of task priority).

[Return Value]

wai_sem

ER wai_sem(ID semid);

I/O Parameter Description

I ID semid; ID of semaphore

Cancellation of WAITING State for a Semaphore Resource Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem/isig_sem. E_OK

Forced release from WAITING state for a semaphore resource as a result of issuing rel_wai/
irel_wai.

E_RLWAI

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 semid is invalid

- ID is not identified in Semaphore information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 90 of 218
Apr 01, 2011

E_RLWAI -49 Forced cancellation of WAITING state for a semaphore resource

- Issuance of rel_wai/irel_wai

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 91 of 218
Apr 01, 2011

[Overview]

Acquire semaphore resource (polling).

[Syntax]

[Parameters]

[Function]

This service call acquires a resource from the semaphore specified by semid (subtracts 1 from the semaphore
counter).

If the target semaphore resource cannot be acquired (the count is already 0) when this service call is issued,
"E_TMOUT (= -50)" is returned.

[Return Value]

pol_sem

ipol_sem

ER pol_sem(ID semid);

ER ipol_sem(ID semid);

I/O Parameter Description

I ID semid; ID of semaphore

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 semid is invalid

- ID is not identified in Semaphore information

E_CTX -25 Context error

- Issued from CPU lock status

E_TMOUT -50 Polling failure

- Number of target semaphore resources is 0

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 92 of 218
Apr 01, 2011

[Overview]

Acquire semaphore resource (with timeout).

[Syntax]

[Parameters]

[Function]

This service call acquires a resource from the semaphore specified by semid (subtracts 1 from the semaphore
counter).

If the target semaphore resource cannot be acquired (the count is already 0) when this service call is issued, this ser-
vice call queues the invoking task in the semaphore wait queue and moves it from the RUNNING state to WAITING state
for a semaphore resource.

The WAITING state for a semaphore resource is cancelled in the following cases, and then moved to the READY state.

Remarks 1. The queuing order of tasks in the semaphore wait queue is determined by the queuing method speci-
fied by Attribute sematr (order in which resource requests were made, or order of task priority).

2. If tmout is specified as TMO_FEVR, then the processing is equivalent to wai_sem. If it is specified as
TMO_POL, then the processing is equivalent to pol_sem /ipol_sem.

[Return Value]

twai_sem

ER twai_sem(ID semid, TMO tmout);

I/O Parameter Description

I ID semid; ID of semaphore

I TMO tmout; Specified timeout (in millisecond)

TMO_FEVR : Wait forever

TMO_POL : Polling

Numerical value : Wait tim

Cancellation of WAITING State for a Semaphore Resource Return Value

The resource was returned to the target semaphore as a result of issuing sig_sem/isig_sem. E_OK

Forced release from WAITING state for a semaphore resource as a result of issuing rel_wai/
irel_wai.

E_RLWAI

Time specified by tmout has elapsed (timeout). E_TMOUT

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 93 of 218
Apr 01, 2011

E_PAR -17 tmout is invalid

- tmout < TMO_FEVR

E_ID -18 semid is invalid

- ID is not identified in Semaphore information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of WAITING state for a semaphore resource

- Issuance of rel_wai/irel_wai

E_TMOUT -50 Timeout

- Time specified by tmout has elapsed (timeout)

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 94 of 218
Apr 01, 2011

[Overview]

Reference semaphore information.

[Syntax]

[Parameters]

[Semaphore Information T_RSEM]

[Function]

This stores the information (e.g. existence of waiting tasks) for the semaphore specified by semid in the area specified
by pk_rsem.

Remark See "13.3.2 Semaphore information T_RSEM" for details about semaphore information.

[Return Value]

ref_sem

iref_sem

ER ref_sem(ID semid, T_RSEM *pk_rsem);

ER iref_sem(ID semid, T_RSEM *pk_rsem);

I/O Parameter Description

I ID semid; ID of semaphore

O T_RSEM *pk_rsem; Pointer to area storing semaphore information

typedef struct t_rsem {

 ID wtskid; /* Existence of waiting task */

 UINT semcnt; /* Current resource count */

 ATR sematr; /* Attribute */

 UINT maxsem; /* Maximum resource count */

} T_RSEM;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_rsem is invalid

- pk_rsem = 0

E_ID -18 semid is invalid

- ID is not identified in Semaphore information

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 95 of 218
Apr 01, 2011

E_CTX -25 Context error

- Issued from CPU lock status

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 96 of 218
Apr 01, 2011

13.4.4 Synchronization and communication functions (eventflags)

Below is a list of the service calls provided by the RI850MP as synchronization and communication functions (event-
flags).

Table 13-14. Synchronization and Communication Functions (Eventflags)

Service Call Function Overview

set_flg/iset_flg Bit pattern changed.

clr_flg/iclr_flg Bit pattern cleared.

wai_flg Bit pattern determined.

pol_flg/ipol_flg Bit pattern determined (polling).

twai_flg Bit pattern determined (with timeout).

ref_flg/iref_flg Eventflag information referenced.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 97 of 218
Apr 01, 2011

[Overview]

Bit pattern changed.

[Syntax]

[Parameters]

[Function]

This performs a logical OR on the current bit pattern specified by flgid, and the bit pattern specified by setptn, and sets
the results as the current bit pattern of the target eventflag.

If the required condition of the task queued to the target eventflag wait queue is satisfied when this service call is
issued, then after the bit pattern is set, the target task will be removed from the wait queue. This changes the state of the
target task from WAITING state for an eventflag to READY state, or from WAITING-SUSPENDED state to SUSPENDED
state.

Remarks 1. If the current bit pattern of the target eventflag is B1100, and the bit pattern specified by setptn is
B1010, then B1110 will be set as the current bit pattern.

2. If the TA_WMUL attribute is set in the target eventflag (maximum number of tasks that can be queued:
multiple tasks), then whether the tasks is subject to the determination of whether the issuance of this
service call met the request conditions depends on whether the "2. TA_CLR attribute" (clear method:
when request conditions are met, clear bit pattern).

- If the TA_CLR attribute has been assigned
All tasks queued in the wait queue from the first task until the task satisfying the request conditions
are subject to determination.

set_flg

iset_flg

ER set_flg(ID flgid, FLGPTN setptn);

ER iset_flg(ID flgid, FLGPTN setptn);

I/O Parameter Description

I ID flgid; ID of eventflag

I FLGPTN setptn; Bit pattern to set

set_flg (Flag_A, B1010) ;

ID : Flag_A

1 001

1 011

ID : Flag_A

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 98 of 218
Apr 01, 2011

- If the TA_CLR attribute has not been assigned
All tasks queued in the wait queue are subject to determination.

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 flgid is invalid

- ID is not defined in Eventflag information

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 99 of 218
Apr 01, 2011

[Overview]

Bit pattern cleared.

[Syntax]

[Parameters]

[Function]

This performs a logical AND on the current bit pattern specified by flgid, and the clear pattern specified by clrptn, and
sets the results as the current bit pattern of the target eventflag.

Remark If the current bit pattern of the target eventflag is B1100, and the bit pattern specified by clrptn is B1010,
then B1000 will be set as the current bit pattern.

[Return Value]

clr_flg

iclr_flg

ER clr_flg(ID flgid, FLGPTN clrptn);

ER iclr_flg(ID flgid, FLGPTN clrptn);

I/O Parameter Description

I ID flgid; ID of eventflag

I FLGPTN clrptn; Bit pattern to clear

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 flgid is invalid

- ID is not defined in Eventflag information

E_CTX -25 Context error

- Issued from CPU lock status

clr_flg (Flag_A, B1010) ;

0 001

ID : Flag_A

1 001

0 001

ID: Flag_A

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 100 of 218
Apr 01, 2011

[Overview]

Bit pattern determined.

[Syntax]

[Parameters]

[Function]

This determines whether the current bit pattern of the eventflag specified by flgid meets the conditions of the request bit
pattern specified by waiptn and the request conditions specified by wfmode. If the bit pattern satisfied the requirements,
the current bit pattern in question is stored in the area specified by p_flgptn.

If the current bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
the invoking task is queued to the target eventflag wait queue, after which the task transitions from the RUNNING state to
the WAITING state (WAITING state for an eventflag).

The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

Below are shown the wfmode request conditions, which are the criteria for judging bit patterns.

- TWF_ANDW
Determine if all bits set to "1" in waiptn are set in the target eventflag.

- TWF_ORW
Determine if any bits set to "1" in waiptn are set in the target eventflag.

Remarks 1. On the RI850MP, if this service call is issued for the eventflag of the TA_WSGL attribute (maximum
number of tasks that can be queued: 1) for tasks already queued in the wait queue, a return value of
"E_ILUSE (= -28) will be returned, regardless of whether the condition can be immediately met or not.

wai_flg

ER wai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

I/O Parameter Description

I ID flgid; ID of eventflag

I FLGPTN waiptn; Request bit pattern

I MODE wfmode; Request conditions

TWF_ANDW : AND wait

TWF_ORW : OR wait

O FLGPTN *p_flgptn; Pointer to the area in which bit pattern is stored

Cancelation of WAITING State for an Eventflag Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of issu-
ing set_flg/iset_flg.

E_OK

Forced release from WAITING state for an eventflag as a result of issuing rel_wai/irel_wai. E_RLWAI

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 101 of 218
Apr 01, 2011

2. The wait queue for the eventflag for tasks with the TA_WMUL attribute (maximum number of tasks that
can be queued: multiple) is ordered using the queuing method specified by the Attribute flgatr (order of
bit-pattern determination requests or order of task priority).

3. If the WAITING state for an eventflag is forcibly released by issuing rel_wai/irel_wai, the contents of the
area specified by p_flgptn will be undefined.

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 waiptn, wfmode, or p_flgptn is invalid

- waiptn = 0

- wfmode is invalid

- p_flgptn = 0

E_ID -18 flgid is invalid

- ID is not defined in Eventflag information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_ILUSE -28 Invalid service call use

- Issued for an eventflag with a TA_WSGL attribute, and a task is already queued

E_RLWAI -49 Forced cancelation of WAITING state for an eventflag

- Issuance of rel_wai/irel_wai

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 102 of 218
Apr 01, 2011

[Overview]

Bit pattern determined (polling).

[Syntax]

[Parameters]

[Function]

This determines whether the current bit pattern of the eventflag specified by flgid meets the conditions of the request bit
pattern specified by waiptn and the request conditions specified by wfmode. If the bit pattern satisfied the requirements,
the current bit pattern in question is stored in the area specified by p_flgptn.

If the current bit pattern of the target eventflag does not satisfy the condition when this service call is issued,
"E_TMOUT (= -50)" is returned.

Below are shown the wfmode request conditions, which are the criteria for judging bit patterns.

- TWF_ANDW
Determine if all bits set to "1" in waiptn are set in the target eventflag.

- TWF_ORW
Determine if any bits set to "1" in waiptn are set in the target eventflag.

Remark On the RI850MP, if this service call is issued for the eventflag of the TA_WSGL attribute (maximum number
of tasks that can be queued: 1) for tasks already queued in the wait queue, a return value of "E_ILUSE (= -
28) will be returned, regardless of whether the condition can be immediately met or not.

[Return Value]

pol_flg

ipol_flg

ER pol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

ER ipol_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn);

I/O Parameter Description

I ID flgid; ID of eventflag

I FLGPTN waiptn; Request bit pattern

I MODE wfmode; Request conditions

TWF_ANDW : AND wait

TWF_ORW : OR wait

O FLGPTN *p_flgptn; Pointer to the area in which bit pattern is stored

Macro Num. Description

E_OK 0 Normal termination

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 103 of 218
Apr 01, 2011

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 waiptn, wfmode, or p_flgptn is invalid

- waiptn = 0

- wfmode is invalid

- p_flgptn = 0

E_ID -18 flgid is invalid

- ID is not defined in Eventflag information

E_CTX -25 Context error

- Issued from CPU lock status

E_ILUSE -28 Invalid service call use

- Issued for an eventflag with a TA_WSGL attribute, and a task is already queued

E_TMOUT -50 Polling failure

- The bit pattern of the target eventflag does not satisfy the wait condition

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 104 of 218
Apr 01, 2011

[Overview]

Bit pattern determined (with timeout).

[Syntax]

[Parameters]

[Function]

This determines whether the current bit pattern of the eventflag specified by flgid meets the conditions of the request bit
pattern specified by waiptn and the request conditions specified by wfmode. If the bit pattern satisfied the requirements,
the current bit pattern in question is stored in the area specified by p_flgptn.

If the current bit pattern of the target eventflag does not satisfy the required condition when this service call is issued,
the invoking task is queued to the target eventflag wait queue, after which the task transitions from the RUNNING state to
the WAITING state (WAITING state for an eventflag).

The WAITING state for an eventflag is cancelled in the following cases, and then moved to the READY state.

Below are shown the wfmode request conditions, which are the criteria for judging bit patterns.

- TWF_ANDW
Determine if all bits set to "1" in waiptn are set in the target eventflag.

twai_flg

ER twai_flg(ID flgid, FLGPTN waiptn, MODE wfmode, FLGPTN *p_flgptn, TMO tmout);

I/O Parameter Description

I ID flgid; ID of eventflag

I FLGPTN waiptn; Request bit pattern

I MODE wfmode; Request conditions

TWF_ANDW : AND wait

TWF_ORW : OR wait

O FLGPTN *p_flgptn; Pointer to the area in which bit pattern is stored

I TMO tmout; Specified timeout (in millisecond)

TMO_FEVR : Wait forever

TMO_POL : Polling

Numerical value : Wait time

Cancelation of WAITING State for an Eventflag Return Value

A bit pattern that satisfies the required condition was set to the target eventflag as a result of issu-
ing set_flg/iset_flg.

E_OK

Forced release from WAITING state for an eventflag as a result of issuing rel_wai/irel_wai. E_RLWAI

Time specified by tmout has elapsed (timeout). E_TMOUT

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 105 of 218
Apr 01, 2011

- TWF_ORW
Determine if any bits set to "1" in waiptn are set in the target eventflag.

Remarks 1. On the RI850MP, if this service call is issued for the eventflag of the TA_WSGL attribute (maximum
number of tasks that can be queued: 1) for tasks already queued in the wait queue, a return value of
"E_ILUSE (= -28) will be returned, regardless of whether the condition can be immediately met or not.

2. The wait queue for the eventflag for tasks with the TA_WMUL attribute (maximum number of tasks that
can be queued: multiple) is ordered using the queuing method specified by the Attribute flgatr (order of
bit-pattern determination requests or order of task priority).

3. If the WAITING state for an eventflag is forcibly released by issuing rel_wai/irel_wai, the contents of the
area specified by p_flgptn will be undefined.

4. If tmout is specified as TMO_FEVR, then the processing is equivalent to wai_flg. If it is specified as
TMO_POL, then the processing is equivalent to pol_flg/ipol_flg.

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 waiptn, wfmode, p_flgptn, or tmout is invalid

- waiptn = 0

- wfmode is invalid

- p_flgptn = 0

- tmout < TMO_FEVR

E_ID -18 flgid is invalid

- ID is not defined in Eventflag information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_ILUSE -28 Invalid service call use

- Issued for an eventflag with a TA_WSGL attribute, and a task is already

E_RLWAI -49 Forced cancelation of WAITING state for an eventflag

- Issuance of rel_wai/irel_wai

E_TMOUT -50 Timeout

- Time specified by tmout has elapsed (timeout)

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 106 of 218
Apr 01, 2011

[Overview]

Eventflag information referenced.

[Syntax]

[Parameters]

[Eventflag Information T_RFLG]

[Function]

Stores eventflag information (e.g. waiting task flag) of the eventflag specified by flgid in the area specified by pk_rtsk.

Remark See "13.3.3 Eventflag information T_RFLG" for details about eventflag information.

[Return Value]

ref_flg

iref_flg

ER ref_flg(ID flgid, T_RFLG *pk_rflg);

ER iref_flg(ID flgid, T_RFLG *pk_rflg);

I/O Parameter Description

I ID flgid; ID of eventflag

O T_RFLG *pk_rflg; Pointer to the area storing the eventflag information

typedef struct t_rflg {

 ID wtskid; /* Existence of waiting task */

 FLGPTN flgptn; /* Current bit pattern */

 ATR flgatr; /* Attribute */

} T_RFLG;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_rflg is invalid

- pk_rflg = 0

E_ID -18 flgid is invalid

- ID is not defined in Eventflag information

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 107 of 218
Apr 01, 2011

13.4.5 Synchronization and communication functions (data queues)

Below is a list of the service calls provided by the RI850MP as synchronization and communication functions (data
queues).

Table 13-15. Synchronization and Communication Functions (Data Queues)

Service Call Function Overview

snd_dtq Send to data queue.

psnd_dtq/ipsnd_dtq Send to data queue (polling).

tsnd_dtq Send to data queue (with timeout).

fsnd_dtq/ifsnd_dtq Force send to data queue.

rcv_dtq Receive from data queue.

prcv_dtq/iprcv_dtq Receive from data queue (polling).

trcv_dtq Receive from data queue (with timeout).

ref_dtq/iref_dtq Reference data queue information.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 108 of 218
Apr 01, 2011

[Overview]

Send to data queue.

[Syntax]

[Parameters]

[Function]

This sends the data specified by data to the data queue specified by dtqid.
Note that when this service call is issued, if the amount of data written to the target data queue's buffer area is the same

as the value specified by Maximum data count dtqcnt, then the data-send operation is not performed.
Instead, the data is queued to the data wait queue for the current task, and the state changes from RUNNING state to

Sending WAITING state for a data queue.
The Sending WAITING state for a queue is cancelled in the following cases, and then the state transitions from the

Sending WAITING state for a data queue to the READY state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this ser-
vice call does not send data but transfers the data to the task (first task in wait queue). This removes the target task from
the wait queue, and changes its status from Receiving WAITING state for a data queue to READY state, or from
WAITING-SUSPENDED state to SUSPENDED state.

Remarks 1. On the RI850MP, the synchronization and communication functions (data queues) write data to the
buffer area of the data queue as data send processes, and read data from these areas as data recep-
tion processes.

2. The queuing order of tasks in the data waiting queue is determined by the queuing method specified by
Attribute dtqatr (order in which data send requests were made, or order of task priority).

snd_dtq

ER snd_dtq(ID dtqid, VP_INT data);

I/O Parameter Description

I ID dtqid; ID of data queue

I VP_INT data; Data element to be sent

Cancellation of Sending WAITING State for a data queue Return Value

Available space was secured in the buffer area of the target data queue as a result of issuing
rcv_dtq.

E_OK

Available space was secured in the buffer area of the target data queue as a result of issuing
prcv_dtq/iprcv_dtq.

E_OK

Available space was secured in the buffer area of the target data queue as a result of issuing
trcv_dtq.

E_OK

Forced release from Sending WAITING state for a data queue as a result of issuing rel_wai/
irel_wai.

E_RLWAI

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 109 of 218
Apr 01, 2011

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 dtqidis invalid

- ID is not defined in Data queue information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of Sending WAITING state for a data queue

- Issuance of rel_wai/irel_wai

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 110 of 218
Apr 01, 2011

[Overview]

Send to data queue (polling).

[Syntax]

[Parameters]

[Function]

This sends the data specified by data to the data queue specified by dtqid.
Note that when this service call is issued, if the amount of data written to the target data queue's buffer area is the same

as the value specified by Maximum data count dtqcnt, a return value of "E_TMOUT (= -50)" is returned.
If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this ser-

vice call does not send data but transfers the data to the task (first task in wait queue). This removes the target task from
the wait queue, and changes its status from Receiving WAITING state for a data queue to READY, or from WAITING-
SUSPENDED state to SUSPENDED state.

[Return Value]

psnd_dtq

ipsnd_dtq

ER psnd_dtq(ID dtqid, VP_INT data);

ER ipsnd_dtq(ID dtqid, VP_INT data);

I/O Parameter Description

I ID dtqid; ID of data queue

I VP_INT data; Data element to be sent

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 dtqid is invalid

- ID is not defined in Data queue information

E_CTX -25 Context error

- Issued from CPU lock status

E_TMOUT -50 Polling failure

- Number of data elements exceeds Maximum data count dtqcnt

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 111 of 218
Apr 01, 2011

[Overview]

Send to data queue (with timeout).

[Syntax]

[Parameters]

[Function]

This sends the data specified by data to the data queue specified by dtqid.
Note that when this service call is issued, if the amount of data written to the target data queue's buffer area is the same

as the value specified by Maximum data count dtqcnt, then the data-send operation is not performed.
Instead, the data is queued to the data wait queue for the current task, and the state changes from execution state to

wait to sending WAITING state.
The Sending WAITING state for a data queue is cancelled in the following cases, and then the state transitions to the

READY state.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this ser-
vice call does not send data but transfers the data to the task (first task in wait queue). This removes the target task from
the wait queue, and changes its status from Receiving WAITING state for a data queue to READY state, or from
WAITING-SUSPENDED state to SUSPENDED state.

tsnd_dtq

ER tsnd_dtq(ID dtqid, VP_INT data, TMO tmout);

I/O Parameter Description

I ID dtqid; ID of data queue

I VP_INT data; Data element to be sent

I TMO tmout; Specified timeout (in milliseconds)

TMO_FEVR : Wait forever

TMO_POL : Polling

Numerical value : Wait time

Cancellation of Sending WAITING State for a data queue Return Value

Available space was secured in the buffer area of the target data queue as a result of issuing
rcv_dtq.

E_OK

Available space was secured in the buffer area of the target data queue as a result of issuing
prcv_dtq/iprcv_dtq.

E_OK

Available space was secured in the buffer area of the target data queue as a result of issuing
trcv_dtq.

E_OK

Forced release from Sending WAITING state for a data queue as a result of issuing rel_wai/
irel_wai.

E_RLWAI

Time specified by tmout has elapsed (timeout) E_TMOUT

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 112 of 218
Apr 01, 2011

Remarks 1. The queuing order of tasks in the data waiting queue is determined by the queuing method specified by
Attribute dtqatr (order in which data send requests were made, or order of task priority).

2. If tmout is specified as TMO_FEVR, then the processing is equivalent to snd_dtq. If it is specified as
TMO_POL, then the processing is equivalent to psnd_dtq/ipsnd_dtq.

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 tmout is invalid

- tmout < TMO_FEVR

E_ID -18 dtqid is invalid

- ID is not defined in Data queue information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of Sending WAITING state for a data queue

- Issuance of rel_wai/irel_wai

E_TMOUT -50 Timeout

- Time specified by tmout has elapsed (timeout)

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 113 of 218
Apr 01, 2011

[Overview]

Force send to data queue.

[Syntax]

[Parameters]

[Function]

This sends the data specified by data to the data queue specified by dtqid.
Note that when this service call is issued, if the amount of data written to the target data queue's buffer area is the same

as the value specified by Maximum data count dtqcnt, then after the data is written to the buffer area, the oldest data is
deleted, and then the data specified by data is sent.

If a task has been queued to the reception wait queue of the target data queue when this service call is issued, this ser-
vice call does not send data but transfers the data to the task (first task in wait queue). This removes the target task from
the wait queue, and changes its status from Receiving WAITING state for a data queue to READY state, or from
WAITING-SUSPENDED state to SUSPENDED state.

[Return Value]

fsnd_dtq

ifsnd_dtq

ER fsnd_dtq(ID dtqid, VP_INT data);

ER ifsnd_dtq(ID dtqid, VP_INT data);

I/O Parameter Description

I ID dtqid; ID of data queue

I VP_INT data; Data element to be sent

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 dtqid is invalid

- ID is not defined in Data queue information

E_CTX -25 Context error

- Issued from CPU lock status

E_ILUSE -28 Invalid service call use

- Maximum data count dtqcnt of target data queue is 0

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 114 of 218
Apr 01, 2011

[Overview]

Receive from data queue.

[Syntax]

[Parameters]

[Function]

This stores the data received from the data queue specified by dtqid into the area specified by p_data.
If no data could be received from the target data queue (no data has been written to the buffer area) when this service

call is issued, the task is queued onto the data wait queue, and then transitions from RUNNING state to Receiving
WAITING state for a data queue.

The Receiving WAITING state for a data queue is cancelled in the following cases, and then the state transitions from
Receiving WAITING state for a data queue to the READY state.

Remarks 1. Tasks are queued in the data wait queue in the order in which data reception requests were made.
2. If the receiving WAITING state for a data queue is forcibly released by issuing rel_wai/irel_wai, the con-

tents of the area specified by p_data will be undefined.

[Return Value]

rcv_dtq

ER rcv_dtq(ID dtqid, VP_INT *p_data);

I/O Parameter Description

I ID dtqid; ID of data queue

O VP_INT *p_data; Pointer to area in which data is stored

Cancellation of Receiving WAITING State for a data queue Return Value

Data was sent to the target data queue as a result of issuing snd_dtq. E_OK

Data was sent to the target data queue as a result of issuing prcv_dtq/iprcv_dtq. E_OK

Data was sent to the target data queue as a result of issuing tsnd_dtq. E_OK

Data was sent to the target data queue as a result of issuing fsnd_dtq/ifsnd_dtq. E_OK

Forced release from Receiving WAITING state for a data queue as a result of issuing rel_wai/
irel_wai.

E_RLWAI

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_datais invalid

- p_data = 0

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 115 of 218
Apr 01, 2011

E_ID -18 dtqidis invalid

- ID is not defined in Data queue information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of Receiving WAITING state for a data queue

- Issuance of rel_wai/irel_wai

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 116 of 218
Apr 01, 2011

[Overview]

Receive from data queue (polling)

[Syntax]

[Parameters]

[Function]

This stores the data received from the data queue specified by dtqid into the area specified by p_data.
Note that when this service call is issued, if data could not be received from the target data queue (no data has been

written to the buffer area), a return value of "E_TMOUT (= -50)" will be returned.

[Return Value]

prcv_dtq

iprcv_dtq

ER prcv_dtq(ID dtqid, VP_INT *p_data);

ER iprcv_dtq(ID dtqid, VP_INT *p_data);

I/O Parameter Description

I ID dtqid; ID of data queue

O VP_INT *p_data; Pointer to area in which data is stored

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_data is invalid

- p_data = 0

E_ID -18 dtqid is invalid

- ID is not defined in Data queue information

E_CTX -25 Context error

- Issued from CPU lock status

E_TMOUT -50 Polling failure

- No data has been written to the buffer area of the target data queue

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 117 of 218
Apr 01, 2011

[Overview]

Receive from data queue (with timeout).

[Syntax]

[Parameters]

[Function]

This stores the data received from the data queue specified by dtqid into the area specified by p_data.
If no data could be received from the target data queue (no data has been written to the buffer area) when this service

call is issued, the task is queued onto the data wait queue, and then transitions from execution state to "waiting to receive
data" state.

The Receiving WAITING state for a data queue is cancelled in the following cases, and then the state transitions from
Receiving WAITING state for a data queue to the READY state.

Remarks 1. Tasks are queued in the data wait queue in the order in which data reception requests were made.
2. If the receiving WAITING state for a data queue is forcibly released by issuing rel_wai/irel_wai, or the

time specified by tmout has elapsed (timeout), the contents of the area specified by p_data will be
undefined.

3. If tmout is specified as TMO_FEVR, then the processing is equivalent to rcv_dtq. If it is specified as
TMO_POL, then the processing is equivalent to prcv_dtq/iprcv_dtq.

trcv_dtq

ER trcv_dtq(ID dtqid, VP_INT *p_data, TMO tmout);

I/O Parameter Description

I ID dtqid; ID of data queue

O VP_INT *p_data; Pointer to area in which data is stored

I TMO tmout; Specified timeout (in millisecond)

TMO_FEVR : Wait forever

TMO_POL : Polling

Numerical value : Wait time

Cancellation of Receiving WAITING State for a data queue Return Value

Data was sent to the target data queue as a result of issuing snd_dtq. E_OK

Data was sent to the target data queue as a result of issuing prcv_dtq/iprcv_dtq. E_OK

Data was sent to the target data queue as a result of issuing tsnd_dtq. E_OK

Data was sent to the target data queue as a result of issuing fsnd_dtq/ifsnd_dtq. E_OK

Forced release from Receiving WAITING state for a data queue as a result of issuing rel_wai/
irel_wai.

E_RLWAI

Time specified by tmout has elapsed (timeout) E_TMOUT

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 118 of 218
Apr 01, 2011

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_data or tmout is invalid

- p_data = 0

- tmout < TMO_FEVR

E_ID -18 dtqid is invalid

- ID is not defined in Data queue information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of Receiving WAITING state for a data queue

- Issuance of rel_wai/irel_wai

E_TMOUT -50 Timeout

- Time specified by tmout has elapsed (timeout)

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 119 of 218
Apr 01, 2011

[Overview]

Reference data queue information.

[Syntax]

[Parameters]

[Data Queue Information T_RDTQ]

[Function]

These service calls store the information about the data queue (e.g. existence of tasks awaiting sending) specified by
dtqid into the area specified by pk_rdtq.

Remark See "13.3.4 Data queue information T_RDTQ" for details about data queue information.

[Return Value]

ref_dtq

iref_dtq

ER ref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

ER iref_dtq(ID dtqid, T_RDTQ *pk_rdtq);

I/O Parameter Description

I ID dtqid; ID of data queue

O T_RDTQ *pk_rdtq; Pointer to the area storing detailed information about the data queue

typedef struct t_rdtq {

 ID stskid; /* Existence of tasks awaiting sending */

 ID rtskid; /* Existence of tasks awaiting receiving */

 UINT sdtqcnt; /* Data count */

 ATR dtqatr; /* Attribute */

 UINT dtqcnt; /* Max data count */

} T_RDTQ;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_rdtq is invalid

- pk_rdtq = 0

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 120 of 218
Apr 01, 2011

E_ID -18 dtqid is invalid

- ID is not defined in Data queue information

E_CTX -25 Context error

- Issued from CPU lock status

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 121 of 218
Apr 01, 2011

13.4.6 Synchronization and communication functions (mailboxes)

Below is a list of the service calls provided by the RI850MP as synchronization and communication functions (mail-
boxes).

Table 13-16. Synchronization and Communication Functions (Mailboxes)

Service Call Function Overview

snd_mbx/isnd_mbx Send to a mailbox.

rcv_mbx Receive from a mailbox.

prcv_mbx/iprcv_mbx Receive from a mailbox (polling).

trcv_mbx Receive from a mailbox (with timeout).

ref_mbx/iref_mbx Reference mailbox information.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 122 of 218
Apr 01, 2011

[Overview]

Send to a mailbox.

[Syntax]

[Parameters]

[Message (No Priority) T_MSG]

[Message (with Priority) T_MSG_PRI]

[Function]

This service call transmits the message specified by pk_msg to the mailbox specified by mbxid (queues the message in
the wait queue).

If a task has been queued to the reception wait queue of the target mailbox when this service call is issued, this service
call does not send the message, and instead transfers the message to the task (first task in wait queue). This removes
the target task from the wait queue, and changes its status from WAITING state for a mailbox to READY state, or from
WAITING-SUSPENDED state to SUSPENDED state.

snd_mbx

isnd_mbx

ER snd_mbx(ID mbxid, T_MSG *pk_msg);

ER isnd_mbx(ID mbxid, T_MSG *pk_msg);

I/O Parameter Description

I ID mbxid; ID of mailbox

I T_MSG *pk_msg; Pointer to area in which message is stored

typedef struct t_msg {

 struct t_msg *msgque; /* Reserved for future use */

 /* Message body */

} T_MSG;

typedef struct t_msg_pri {

 T_MSG msgque; /* Reserved for future use */

 PRI msgpri; /* Priority */

 /* Message body */

} T_MSG_PRI;

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 123 of 218
Apr 01, 2011

Remarks 1. The RI850MP's synchronization and communication functions (mailboxes) only receive and pass the
start address of the message as their message send and receive processing. They do not copy the
contents of the message in question into a separate area.

2. Messages are queued in the mailbox wait queue according to the queuing method specified by
Attribute mbxatr (order in which message-send requests were made or order of message priority).

3. See "13.3.9 Message (no priority) T_MSG" and "13.3.10 Message (with priority) T_MSG_PRI" for
details about messages (no priority) and messages (with priority).

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_msg or msgpri is invalid

- pk_msg = 0

- msgpri < 0

- msgpri > Maximum priority maxmpri

E_ID -18 mbxid is invalid

- ID is not identified in Mailbox information

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 124 of 218
Apr 01, 2011

[Overview]

Receive from a mailbox.

[Syntax]

[Parameters]

[Message (No Priority) T_MSG]

[Message (with Priority) T_MSG_PRI]

[Function]

Receive a message from the mailbox specified by mbxid, and store the start address of the message to the area spec-
ified by ppk_msg.

If no message could be received from the target mailbox (no messages were queued to the wait queue) when this ser-
vice call is issued, this service queues the invoking task to the target mailbox wait queue and moves it from the RUNNING
state to the WAITING state for a mailbox.

The WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

rcv_mbx

ER rcv_mbx(ID mbxid, T_MSG **ppk_msg);

I/O Parameter Description

I ID mbxid; ID of mailbox

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox

typedef struct t_msg {

 struct t_msg *msgque; /* Reserved for future use */

 /* Message body */

} T_MSG;

typedef struct t_msg_pri {

 T_MSG msgque; /* Reserved for future use */

 PRI msgpri; /* Priority */

 /* Message body */

} T_MSG_PRI;

Cancellation of WAITING State for a Mailbox Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx/isnd_mbx. E_OK

Forced release from WAITING state for a mailbox as a result of issuing rel_wai/irel_wai. E_RLWAI

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 125 of 218
Apr 01, 2011

Remarks 1. Tasks are queued in the mailbox wait queue according to the queuing method specified by Attribute
mbxatr (order in which message-receipt requests were made or order of task priority).

2. If the WAITING state for a mailbox is forcibly released by issuing rel_wai/irel_wai, the contents of the
area specified by ppk_msg will be undefined.

3. See "13.3.9 Message (no priority) T_MSG" and "13.3.10 Message (with priority) T_MSG_PRI" for
details about messages (no priority) and messages (with priority).

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 ppk_msg is invalid

- ppk_msg = 0

E_ID -18 mbxid is invalid

- ID is not identified in Mailbox information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of WAITING state for a mailbox

- Issuance of rel_wai/irel_wai

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 126 of 218
Apr 01, 2011

[Overview]

Receive from a mailbox (polling).

[Syntax]

[Parameters]

[Message (No Priority) T_MSG]

[Message (with Priority) T_MSG_PRI]

[Function]

Receive a message from the mailbox specified by mbxid, and store the start address of the message to the area spec-
ified by ppk_msg.

If the message could not be received from the target mailbox (no messages were queued in the wait queue) when this
service call is issued, "E_TMOUT (= -50)" is returned.

Remark See "13.3.9 Message (no priority) T_MSG" and "13.3.10 Message (with priority) T_MSG_PRI" for details
about messages (no priority) and messages (with priority).

prcv_mbx

iprcv_mbx

ER prcv_mbx(ID mbxid, T_MSG **ppk_msg);

ER iprcv_mbx(ID mbxid, T_MSG **ppk_msg);

I/O Parameter Description

I ID mbxid; ID of mailbox

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox

typedef struct t_msg {

 struct t_msg *msgque; /* Reserved for future use */

 /* Message body */

} T_MSG;

typedef struct t_msg_pri {

 T_MSG msgque; /* Reserved for future use */

 PRI msgpri; /* Priority */

 /* Message body */

} T_MSG_PRI;

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 127 of 218
Apr 01, 2011

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 ppk_msg is invalid

- ppk_msg = 0

E_ID -18 mbxid is invalid

- ID is not identified in Mailbox information

E_CTX -25 Context error

- Issued from CPU lock status

E_TMOUT -50 Polling failure

- No messages are in the wait queue of the target mailbox

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 128 of 218
Apr 01, 2011

[Overview]

Receive from a mailbox (with timeout).

[Syntax]

[Parameters]

[Message (No Priority) T_MSG]

[Message (with Priority) T_MSG_PRI]

[Function]

Receive a message from the mailbox specified by mbxid, and store the start address of the message to the area spec-
ified by ppk_msg.

If no message could be received from the target mailbox (no messages were queued to the wait queue) when this ser-
vice call is issued, this service queues the invoking task to the target mailbox wait queue and moves it from RUNNING
state to WAITING state for a mailbox.

The WAITING state for a mailbox is cancelled in the following cases, and then moved to the READY state.

trcv_mbx

ER trcv_mbx(ID mbxid, T_MSG **ppk_msg, TMO tmout);

I/O Parameter Description

I ID mbxid; ID of mailbox

O T_MSG **ppk_msg; Start address of the message packet received from the mailbox

I TMO tmout; Specified timeout (in millisecond)

TMO_FEVR : Wait forever

TMO_POL : Polling

Numerical value : Wait time

typedef struct t_msg {

 struct t_msg *msgque; /* Reserved for future use */

 /* Message body */

} T_MSG;

typedef struct t_msg_pri {

 T_MSG msgque; /* Reserved for future use */

 PRI msgpri; /* Priority */

 /* Message body */

} T_MSG_PRI;

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 129 of 218
Apr 01, 2011

Remarks 1. Tasks are queued in the mailbox wait queue according to the queuing method specified by Attribute
mbxatr (order in which message-receipt requests were made or order of task priority).

2. If the WAITING state for a mailbox is forcibly released by issuing rel_wai/irel_wai, or the time specified
by tmout has elapsed (timeout), the contents of the area specified by parameter ppk_msg will be unde-
fined.

3. If tmout is specified as TMO_FEVR, then the processing is equivalent to rcv_mbx. If it is specified as
TMO_POL, then the processing is equivalent to prcv_mbx/iprcv_mbx.

4. See "13.3.9 Message (no priority) T_MSG" and "13.3.10 Message (with priority) T_MSG_PRI" for
details about messages (no priority) and messages (with priority).

[Return Value]

Cancellation of WAITING State for a Mailbox Return Value

A message was transmitted to the target mailbox as a result of issuing snd_mbx/isnd_mbx. E_OK

Forced release from WAITING state for a mailbox as a result of issuing rel_wai/irel_wai. E_RLWAI

Time specified by tmout has elapsed (timeout). E_TMOUT

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 ppk_msg or tmout is invalid

- ppk_msg = 0

- tmout < TMO_FEVR

E_ID -18 mbxid is invalid

- ID is not identified in Mailbox information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of WAITING state for a mailbox

- Issuance of rel_wai/irel_wai

E_TMOUT -50 Timeout

- Time specified by tmout has elapsed (timeout)

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 130 of 218
Apr 01, 2011

[Overview]

Reference mailbox information.

[Syntax]

[Parameters]

[Mailbox Information T_RMBX]

[Function]

The service calls store the information for the mailbox specified by mbxid (e.g. existence of waiting tasks) into the area
specified by pk_rmbx.

Remark See "13.3.5 Mailbox information T_RMBX" for details about mailbox information.

[Return Value]

ref_mbx

iref_mbx

ER ref_mbx(ID mbxid, T_RMBX *pk_rmbx);

ER iref_mbx(ID mbxid, T_RMBX *pk_rmbx);

I/O Parameter Description

I ID mbxid; ID of mailbox

O T_RMBX *pk_rmbx; Pointer to area storing mailbox information

typedef struct t_rmbx {

 ID wtskid; /* Existence of waiting task */

 T_MSG *pk_msg; /* Existence of waiting message */

 ATR mbxatr; /* Attribute */

} T_RMBX;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_rmbx is invalid

- pk_rmbx = 0

E_ID -18 mbxid is invalid

- ID is not identified in Mailbox information

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 131 of 218
Apr 01, 2011

E_CTX -25 Context error

- Issued from CPU lock status

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 132 of 218
Apr 01, 2011

13.4.7 Extended synchronization and communication functions

Below is a list of the service calls provided by the RI850MP as extended synchronization and communication functions.

Table 13-17. Extended Synchronization and Communication Functions

Service Call Function Overview

loc_mtx Acquire mutex.

ploc_mtx Acquire mutex (polling).

tloc_mtx Acquire mutex (with timeout).

unl_mtx Release mutex.

ref_mtx/iref_mtx Reference mutex state.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 133 of 218
Apr 01, 2011

[Overview]

Acquire mutex.

[Syntax]

[Parameters]

[Function]

This service call acquires the mutex specified by mtxid.
If the target mutex cannot be acquired (another task has already acquired it) when this service call is issued, this ser-

vice call queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to WAITING state
for a mutex.

The WAITING state for a mutex is cancelled in the following cases, and then the state is moved to the READY state.

Remark The queuing order of tasks in the mutex wait queue is determined by the queuing method specified by
Attribute mtxatr (order in which acquire mutex requests were made, or order of task priority).

[Return Value]

loc_mtx

ER loc_mtx(ID mtxid);

I/O Parameter Description

I ID mtxid; ID of mutex

Cancellation of WAITING State for a Mutex Return Value

The target mutex was released as a result of issuing unl_mtx. E_OK

The target mutex was released as a result of issuing ext_tsk. E_OK

The target mutex was released as a result of issuing ter_tsk. E_OK

The WAITING state for a mutex was forcibly released as a result of issuing rel_wai/irel_wai. E_RLWAI

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 mtxid is invalid

- ID is not defined in Mutex information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 134 of 218
Apr 01, 2011

E_ILUSE -28 Invalid service call use

- Issued for a mutex that this task has already acquired

E_RLWAI -49 Forced cancellation of WAITING state for a mutex

- Issuance of rel_wai/irel_wai

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 135 of 218
Apr 01, 2011

[Overview]

Acquire mutex (polling).

[Syntax]

[Parameters]

[Function]

This service call acquires the mutex specified by mtxid.
If the target mutex cannot be acquired (another task already acquired it) when this service call is issued, "E_TMOUT (=

-50)" is returned.

[Return Value]

ploc_mtx

ER ploc_mtx(ID mtxid);

I/O Parameter Description

I ID mtxid; ID of mutex

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 mtxid is invalid

- ID is not defined in Mutex information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

E_ILUSE -28 Invalid service call use

- Issued for a mutex that this task has already acquired

E_TMOUT -50 Polling failure

- Another task has acquired the target mutex

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 136 of 218
Apr 01, 2011

[Overview]

Acquire mutex (with timeout).

[Syntax]

[Parameters]

[Function]

This service call acquires the mutex specified by mtxid.

If the target mutex cannot be acquired (another task has already acquired it) when this service call is issued, this ser-
vice call queues the invoking task to the target mutex wait queue and moves it from the RUNNING state to WAITING state
for a mutex.

The WAITING state for a mutex is cancelled in the following cases, and then the state is moved to the READY state.

Remarks 1. The queuing order of tasks in the mutex wait queue is determined by the queuing method specified by
Attribute mtxatr (order in which acquire mutex requests were made, or order of task priority).

2. If tmout is specified as TMO_FEVR, then the processing is equivalent to lloc_mtx. If it is specified as
TMO_POL, then the processing is equivalent to ploc_mtx.

[Return Value]

tloc_mtx

ER tloc_mtx(ID mtxid, TMO tmout);

I/O Parameter Description

I ID mtxid; ID of mutex

I TMO tmout; Specified timeout (in millisecond)

TMO_FEVR : Wait forever

TMO_POL : Polling

Numerical value : Wait time

Cancellation of WAITING State for a Mutex Return value

The target mutex was released as a result of issuing unl_mtx. E_OK

The target mutex was released as a result of issuing ext_tsk. E_OK

The target mutex was released as a result of issuing ter_tsk. E_OK

The WAITING state for a mutex was forcibly released as a result of issuing rel_wai/irel_wai. E_RLWAI

Time specified by tmout has elapsed (timeout). E_TMOUT

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 137 of 218
Apr 01, 2011

E_PAR -17 tmout is invalid

- tmout < TMO_FEVR

E_ID -18 mtxid is invalid

- ID is not defined in Mutex information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_ILUSE -28 Invalid service call use

- Issued for a mutex that this task has already acquired

E_RLWAI -49 Forced cancellation of WAITING state for a mutex

- Issuance of rel_wai/irel_wai

E_TMOUT -50 Timeout

- Time specified by tmout has elapsed (timeout)

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 138 of 218
Apr 01, 2011

[Overview]

Release mutex.

[Syntax]

[Parameters]

[Function]

This service call releases the mutex specified by mtxid.
If a task has been queued to the target mutex wait queue when this service call is issued, the mutex release operation

is not performed, and the mutex is passed to the task (first task in wait queue). This removes the target task from the wait
queue, and changes its status from WAITING state for a mutex to READY state, or from WAITING-SUSPENDED state to
SUSPENDED state.

[Return Value]

unl_mtx

ER unl_mtx(ID mtxid);

I/O Parameter Description

I ID mtxid; ID of mutex

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 mtxid is invalid

- ID is not defined in Mutex information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

E_ILUSE -28 Invalid service call use

- Issued for a mutex that this task has already released

- Issued for a mutex that another task has acquired

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 139 of 218
Apr 01, 2011

[Overview]

Reference mutex state.

[Syntax]

[Parameters]

[Mutex Information T_RMTX]

[Function]

The service calls store the information for the mutex specified by mtxid (e.g. existence of acquired tasks) into the area
specified by pk_rmtx.

Remark See "13.3.6 Mutex information T_RMTX" for details about mutex information.

[Return Value]

ref_mtx

iref_mtx

ER ref_mtx(ID mtxid, T_RMTX *pk_rmtx);

ER iref_mtx(ID mtxid, T_RMTX *pk_rmtx);

I/O Parameter Description

I ID mtxid; ID of mutex

O T_RMTX *pk_rmtx; Pointer to the area storing the mutex information

typedef struct t_rmtx {

 ID htskid; /* Existence of tasks to acquire */

 ID wtskid; /* Existence of waiting task */

 ATR mtxatr; /* Attribute */

 PRI ceilpri; /* Reserved for future use */

} T_RMTX;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_rmtx is invalid

- pk_rmtx = 0

E_ID -18 mtxid is invalid

- ID is not defined in Mutex information

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 140 of 218
Apr 01, 2011

E_CTX -25 Context error

- Issued from CPU lock status

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 141 of 218
Apr 01, 2011

13.4.8 Memory pool management functions

The following shows the service calls provided by the RI850MP as memory pool management functions.

Table 13-18. Memory Pool Management Functions

Service Call Function Overview

get_mpf Acquire fixed-sized memory block.

pget_mpf/ipget_mpf Acquire fixed-sized memory block (polling).

tget_mpf Acquire fixed-sized memory block (with timeout).

rel_mpf/irel_mpf Release fixed-sized memory block.

ref_mpf/iref_mpf Reference fixed-sized memory pool information.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 142 of 218
Apr 01, 2011

[Overview]

Acquire fixed-sized memory block.

[Syntax]

[Parameters]

[Function]

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by mpfid and stores
the start address of the block in the area specified by p_blk.

If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (the number of remaining
blocks was already 0) when this service call is issued, this service queues the invoking task to the fixed-size memory pool
wait queue and moves it from the RUNNING state to the WAITING state for a fixed-size memory block.

The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

Remarks 1. The queuing order of tasks in the fixed-sized memory pool wait queue is determined by the queuing
method specified by Attribute mpfatr (order in which acquire fixed-size memory block requests were
made, or order of task priority).

2. If the receiving WAITING state for fixed-size memory block acquisition is forcibly released by issuing
rel_wai/irel_wai, the contents of the area specified by p_blk will be undefined.

[Return Value]

get_mpf

ER get_mpf(ID mpfid, VP *p_blk);

I/O Parameter Description

I ID mpfid; ID of fixed-sized memory pool

O VP *p_blk; Pointer to area storing start address of fixed-size memory block

Cancellation of WAITING State for a Fixed-sized Memory Block Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of issu-
ing rel_mpf/irel_mpf.

E_OK

The WAITING state for fixed-size memory block acquisition was forcibly released as a result of
issuing rel_wai/irel_mpf.

E_RLWAI

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_blk is invalid

- p_blk = 0

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 143 of 218
Apr 01, 2011

E_ID -18 mpfid is invalid

- ID is not identified in Fixed-sized memory pool information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of WAITING state for a fixed-size memory block

- Issuance of rel_wai/irel_wai

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 144 of 218
Apr 01, 2011

[Overview]

Acquire fixed-sized memory block (polling).

[Syntax]

[Parameters]

[Function]

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by mpfid and stores
the start address of the block in the area specified by p_blk.

If a fixed-size memory block cannot be acquired from the fixed-sized memory pool (the number of remaining blocks is
already 0) when this service call is issued, "E_TMOUT (= -50)" is returned.

[Return Value]

pget_mpf

ipget_mpf

ER pget_mpf(ID mpfid, VP *p_blk);

ER ipget_mpf(ID mpfid, VP *p_blk);

I/O Parameter Description

I ID mpfid; ID of fixed-sized memory pool

O VP *p_blk; Pointer to area storing start address of fixed-size memory block

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_blk is invalid

- p_blk = 0

E_ID -18 mpfid is invalid

- ID is not identified in Fixed-sized memory pool information

E_CTX -25 Context error

- Issued from CPU lock status

E_TMOUT -50 Polling failure

- The number of blocks that can be acquired from the fixed-sized memory pool is 0

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 145 of 218
Apr 01, 2011

[Overview]

Acquire fixed-sized memory block (with timeout).

[Syntax]

[Parameters]

[Function]

This service call acquires the fixed-sized memory block from the fixed-sized memory pool specified by mpfid and stores
the start address of the block in the area specified by p_blk.

If no fixed-size memory blocks could be acquired from the target fixed-size memory pool (the number of remaining
blocks was already 0) when this service call is issued, this service queues the invoking task to the fixed-size memory pool
wait queue and moves it from the RUNNING state to the WAITING state for a fixed-size memory block.

The WAITING state for a fixed-sized memory block is cancelled in the following cases, and then moved to the READY
state.

Remarks 1. The queuing order of tasks in the fixed-sized memory pool wait queue is determined by the queuing
method specified by Attribute mpfatr (order in which acquire fixed-size memory block requests were
made, or order of task priority).

2. If the WAITING state for a fixed-size memory block is forcibly released by issuing rel_wai/irel_wai, or
the time specified by tmout has elapsed (timeout), the contents of the area specified by p_blk will be
undefined.

3. If tmout is specified as TMO_FEVR, then the processing is equivalent to get_mpf. If it is specified as
TMO_POL, then the processing is equivalent to pget_mpf/ipget_mpf.

tget_mpf

ER tget_mpf(ID mpfid, VP *p_blk, TMO tmout);

I/O Parameter Description

I ID mpfid; ID of fixed-sized memory pool

O VP *p_blk; Pointer to area storing start address of fixed-size memory block

I TMO tmout; Specified timeout (in millisecond)

TMO_FEVR : Wait forever

TMO_POL : Polling

Numerical value : Wait time

Cancellation of WAITING State for a Fixed-sized Memory Block Return Value

A fixed-sized memory block was returned to the target fixed-sized memory pool as a result of issu-
ing rel_mpf/irel_mpf.

E_OK

The WAITING state for fixed-size memory block acquisition was forcibly released as a result of
issuing rel_wai/irel_mpf.

E_RLWAI

Time specified by tmout has elapsed (timeout) E_TMOUT

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 146 of 218
Apr 01, 2011

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_blk or tmout is invalid

- p_blk = 0

- tmout < TMO_FEVR

E_ID -18 mpfid is invalid

- ID is not identified in Fixed-sized memory pool information

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

- Issued from dispatching disabled status

E_RLWAI -49 Forced cancellation of WAITING state for a fixed-size memory block

- Issuance of rel_wai/irel_wai

E_TMOUT -50 Timeout

- Time specified by tmout has elapsed (timeout)

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 147 of 218
Apr 01, 2011

[Overview]

Release fixed-sized memory block.

[Syntax]

[Parameters]

[Function]

This service call returns the fixed-sized memory block specified by blk to the fixed-sized memory pool specified by
mpfid.

If a task is queued to the target fixed-sized memory pool wait queue when this service call is issued, block return pro-
cessing is not performed, and instead the fixed-sized memory block is returned to the relevant task (first task of wait
queue). This removes the target task from the wait queue, and changes its status from WAITING state for a fixed-size
memory block to READY state, or from WAITING-SUSPENDED state to SUSPENDED state.

Remarks 1. When this service call returns a fixed-size memory block, it does not perform a clear. The contents of
the returned fixed-size memory block are therefore undefined.

2. If a fixed-size memory block is returned to a fixed-sized memory pool that is different from the one it
was acquired from, subsequent behavior is not guaranteed.

[Return Value]

rel_mpf

irel_mpf

ER rel_mpf(ID mpfid, VP blk);

ER irel_mpf(ID mpfid, VP blk);

I/O Parameter Description

I ID mpfid; ID of fixed-sized memory pool

I VP blk; Start address of the memory block to be released

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 blk is invalid

- blk = 0

E_ID -18 mpfid is invalid

- ID is not identified in Fixed-sized memory pool information

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 148 of 218
Apr 01, 2011

[Overview]

Reference fixed-sized memory pool information.

[Syntax]

[Parameters]

[Fixed-Sized Memory Pool Information T_RMPF]

[Function]

Stores fixed-sized memory pool state packet (ID number of the task at the head of the wait queue, number of free mem-
ory blocks, etc.) of the fixed-sized memory pool specified by mpfid in the area specified by pk_rmpf.

Remark See "13.3.7 Fixed-sized memory pool information T_RMPF" for details about fixed-sized memory pool
information.

[Return Value]

ref_mpf

iref_mpf

ER ref_mpf(ID mpfid, T_RMFP *pk_rmpf);

ER iref_mpf(ID mpfid, T_RMPF *pk_rmpf);

I/O Parameter Description

I ID mpfid; ID of fixed-sized memory pool

O T_RMPF *pk_rmpf; Pointer to area storing fixed-sized memory pool information

typedef struct t_rmpf {

 ID wtskid; /* Existence of waiting task */

 UINT fblkcnt; /* Number of available blocks remaining */

 ATR mpfatr; /* Attribute */

} T_RMPF;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_rmpf is invalid

- pk_rmpf = 0

E_ID -18 mpfid is invalid

- ID is not identified in Fixed-sized memory pool information

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 149 of 218
Apr 01, 2011

E_CTX -25 Context error

- Issued from CPU lock status

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 150 of 218
Apr 01, 2011

13.4.9 Time management functions

The following shows the service calls provided by the RI850MP as time management functions.

Table 13-19. Time Management Functions

Service Call Function Overview

set_tim/iset_tim Change system time.

get_tim/iget_tim Reference system time.

sta_cyc/ista_cyc Start cyclic handler.

stp_cyc/istp_cyc End cyclic handler.

ref_cyc/iref_cyc Reference cyclic handler information.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 151 of 218
Apr 01, 2011

[Overview]

Change system time.

[Syntax]

[Parameters]

[System Time SYSTIM]

[Function]

These service calls change the system time (in milliseconds) to the time specified by p_systim.

Remarks 1. Issuing this service call will not affect the wait times of tslp_tsk, dly_tsk, twai_sem, or the like, or the
cyclic handler activation phase or activation frequency.

2. See "13.3.11 System time SYSTIM" for details about system time.

[Return Value]

set_tim

iset_tim

ER set_tim(SYSTEM *p_systim);

ER iset_tim(SYSTEM *p_systim);

I/O Parameter Description

I SYSTIM *p_systim; Pointer to area storing system time (in milliseconds)

typedef struct t_systim {

 UW ltime; /* System time (lower 32 bits) */

 UH utime; /* System time (higher 16 bits) */

} SYSTIM;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_systim is invalid

- p_systim = 0

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 152 of 218
Apr 01, 2011

[Overview]

Reference system time.

[Syntax]

[Parameters]

[System Time SYSTIM]

[Function]

This acquires the system time, and stores it in the area specified by p_systim.

Remark See "13.3.11 System time SYSTIM" for details about system time.

[Return Value]

get_tim

iget_tim

ER get_tim(SYSTIM *p_systim);

ER iget_tim(SYSTIM *p_systim);

I/O Parameter Description

O SYSTIM *p_systim; Pointer to area storing the system time

typedef struct t_systim {

 UW ltime; /* System time (lower 32 bits) */

 UH utime; /* System time (higher 16 bits) */

} SYSTIM;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_systim is invalid

- p_systim = 0

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 153 of 218
Apr 01, 2011

[Overview]

Start cyclic handler.

[Syntax]

[Parameters]

[Function]

This issues an activation request to the cyclic handler specified by cycid, and moves the task from non-operational
state to operating state.

The behavior from the issuance of this service call until the first time that the target cyclic handler performs processing
will depend on whether the TA_PHS attribute (save flag: save activation phase) is assigned to the target cyclic handler.

- If the TA_PHS attribute has been assigned
The target cyclic handler performs processing with timing adhering to the Activation phase cycphs and Cycle start
cyctim, using the completion of registration of the target cyclic handler in the Kernel Initialization Module as a refer-
ence point.
The timing of processing when the TA_STA attribute (initial state: operating state) is assigned to the target cyclic
handler is shown below.

- If the TA_PHS attribute has not been assigned
The target cyclic handler performs processing with the timing of Cycle start cyctim, using the issuance of
this service call as the reference point.
The timing of processing when the TA_STA attribute (initial state: operating state) is assigned to the
target cyclic handler is shown below.

sta_cyc

ista_cyc

ER sta_cyc(ID cycid);

ER ista_cyc(ID cycid);

I/O Parameter Description

I ID cycid; ID of cyclic handler

stp_cyc issued

cyctim

Registraion complete

Execute processing

cyctimcycphs

sta_cyc issued

cyctimcyctim cyctimcyctim

Execute processing
Execute processing Execute processing

Execute processing

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 154 of 218
Apr 01, 2011

Remark This service call does not perform queuing of activation requests. If the target cyclic handler is in other than
non-operational state, then no actions will be performed, and it will also not be treated as an error.

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 cycid is invalid

- ID is not defined in Cyclic handler information

E_CTX -25 Context error

- Issued from CPU lock status

stp_cyc issued

cyctim

Registraion complete

Execute processing

cyctimcycphs

sta_cyc issued

cyctimcyctim cyctimcyctim

Execute processing

Execute processing

Execute processing

cyctim cyctim

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 155 of 218
Apr 01, 2011

[Overview]

End cyclic handler.

[Syntax]

[Parameters]

[Function]

This issues a termination request to the cyclic handler specified by cycid, and moves the task from operating state to
non-operational state.

Remark This service call does not perform queuing of termination requests. If the target cyclic handler is in other
than operational state, then no actions will be performed, and it will also not be treated as an error.

[Return Value]

stp_cyc

istp_cyc

ER stp_cyc(ID cycid);

ER istp_cyc(ID cycid);

I/O Parameter Description

I ID cycid; ID of cyclic handler

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_ID -18 cycid is invalid

- ID is not defined in Cyclic handler information

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 156 of 218
Apr 01, 2011

[Overview]

Reference cyclic handler information.

[Syntax]

[Parameters]

[Cyclic handler information T_RCYC]

[Function]

This stores the cyclic handler information (e.g. current state) of the cyclic handler specified by cycid in the area speci-
fied by pk_rcyc.

Remark See "13.3.8 Cyclic handler information T_RCYC" for details about cyclic handler information.

[Return Value]

ref_cyc

iref_cyc

ER ref_cyc(ID cycid, T_RCYC *pk_rcyc);

ER iref_cyc(ID cycid, T_RCYC *pk_rcyc);

I/O Parameter Description

I ID cycid; ID of cyclic handler

O T_RCYC *pk_rcyc; Pointer to the area storing the cyclic handler information

typedef struct t_rcyc {

 STAT cycstat; /* Current state */

 RELTIM lefttim; /* Remaining time */

 ATR cycatr; /* Attribute */

 RELTIM cyctim; /* Activation cycle */

 RELTIM cycphs; /* Starting phase */

 PE_ID peid; /* PE number */

} T_RCYC;

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 pk_rcyc is invalid

- pk_rcyc = 0

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 157 of 218
Apr 01, 2011

E_ID -18 cycid is invalid

- ID is not defined in Cyclic handler information

E_CTX -25 Context error

- Issued from CPU lock status

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 158 of 218
Apr 01, 2011

13.4.10 System state management functions

The following shows the service calls provided by the RI850MP as system state management functions.

Table 13-20. System State Management Functions

Service Call Function Overview

rot_rdq/irot_rdq Rotate priority.

get_tid/iget_tid Get ID.

loc_cpu/iloc_cpu Transition to locked CPU state.

unl_cpu/iunl_cpu Transition to unlocked CPU state.

dis_dsp Transition to dispatching disabled state.

ena_dsp Transition to dispatching enabled state.

sns_ctx Get context type (non-task context or task context).

sns_loc Get system state type (CPU locked state or CPU unlocked state).

sns_dsp Get system state type (dispatching disabled state or dispatching enabled state).

sns_dpn Get system state type (dispatching hold state or non-dispatching hold state).

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 159 of 218
Apr 01, 2011

[Overview]

Rotate priority.

[Syntax]

[Parameters]

[Function]

This issues a rotate request to the ready queue, and explicity changes the task execution order. This reverses the order
of the task in the ready queue, with tasks having higher priority specified by tskpri (at the front of the queue) last, and the
tasks with lowest priority first.

Remarks 1. Below are described the changes that issuing this service call causes to the state of the ready queue.

2. This service call does not perform queuing of rotation requests. If no tasks in the ready queue have the
target priority, then no action will be performed, and it will not be handled as an error either.

rot_rdq

irot_rdq

ER rot_rdq(PRI tskpri);

ER irot_rdq(PRI tskpri);

I/O Parameter Description

I PRI tskpri; Task priority

TPRI_SELF : Current priority of invoking task

Numerical value : Task priority

tskpri

ID : Task_A

ID : Task_B ID : Task_C

tskpri

ID : Task_A

ID : Task_B ID : Task_C

Ready queue

Ready queue

rot_rdq (tskpri) ;

Priority : tskpriPriority : tskpriPriority : tskpri

Priority : tskpriPriority : tskpriPriority : tskpri

maxtpri

maxtpri

1

1

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 160 of 218
Apr 01, 2011

[Return Value]

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 tskpri is invalid

- tskpri < 0

- tskpri > Maximum priority maxtpri

- TPRI_SELF specified when issued from non-task

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 161 of 218
Apr 01, 2011

[Overview]

Get ID.

[Syntax]

[Parameters]

[Function]

This acquires the ID of the task that has transitioned to RUNNING state, and stores it in the area specified by p_tskid.

Remark If no task has gone to the RUNNING state, TSK_NONE (= 0) will be stored in the area specified by p_tskid.

[Return Value]

get_tid

iget_tid

ER get_tid(ID *p_tskid);

ER iget_tid(ID *p_tskid);

I/O Parameter Description

O ID *p_tskid; Pionter to area storing ID

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_tskid is invalid

- p_tskid = 0

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 162 of 218
Apr 01, 2011

[Overview]

Transition to locked CPU state.

[Syntax]

[Parameters]

None.

[Function]

These service calls change the system status type from the CPU unlocked state to the CPU locked state.
This will prevent dispatcher task switching, and disable the acknowledgement of all maskable interrupts, from the time

this service call is issued, until unl_cpu/iunl_cpu is issued.

Remarks 1. CPU locked state (transition via this service call) is defined as follows.
- Dispatcher execution is prevented
- Acceptance of maskable interrupts is disabled

2. This service call does not perform queuing of lock requests. As a result, if the system status type can-
not be changed when this service call is issued (the system status type was already CPU locked state),
then no actions will be performed, and it will also not be treated as an error.

3. If a maskable interrupt is raised when in CPU locked state, transition to the corresponding interrupt
handler will be delayed until unl_cpu/iunl_cpu is issued.

4. The RI850MP uses a timer interrupt, which is a type of maskable interrupt, as its time management
function (e.g. updating the system time, task timeouts, and activation of cyclic handlers). As a result, if
the CPU is continuously in locked state for longer than the interval specified by Base clock cycle tbase,
the time management function may not operate correctly.

5. The RI850MP only allows the following 8 service calls to be issued while in CPU locked state.
loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, sns_ctx, sns_loc, sns_dsp, sns_dpn

6. The internal processing of this service call (Interrupt mask logical OR routine :
_kernel_usr_msk_intmsk; Interrupt mask acquisition routine : _kernel_usr_get_intmsk) is dependent on
the user's execution environment. For this reason, the RI850MP separates this processing from the
"User-own" coding module, and provides it as a sample source file. See "9.2.1 Interrupt mask logical
OR routine" and "9.2.2 Interrupt mask acquisition routine" for details about _kernel_usr_msk_intmsk
and _kernel_usr_get_intmsk.

[Return Value]

loc_cpu

iloc_cpu

ER loc_cpu(void);

ER iloc_cpu(void);

Macro Num. Description

E_OK 0 Normal termination

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 163 of 218
Apr 01, 2011

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 164 of 218
Apr 01, 2011

[Overview]

Transition to unlocked CPU state.

[Syntax]

[Parameters]

None.

[Function]

These service calls change the system status type from the CPU locked state to the CPU unlocked state.
This performs dispatcher task-switching processing; this processing was disabled by the issuance of loc_cpu/iloc_cpu,

and enables the acknowledgment of maskable interrupts, which had been disabled.

Remarks 1. This service call does not enable dispatching if it was disabled.
2. This service call does not perform queuing of cancellation requests. As a result, if the system status

type cannot be changed when this service call is issued (the system status type was already CPU
unlocked state), then no actions will be performed, and it will also not be treated as an error.

3. The internal processing of this service call (Interrupt mask overwrite routine : _kernel_usr_set_intmsk)
is dependent on the user's execution environment. For this reason, the RI850MP separates this pro-
cessing from the "User-own" coding module, and provides it as a sample source file. See "9.2.3 Inter-
rupt mask overwrite routine" for details about "_kernel_usr_set_intmsk".

[Return Value]

unl_cpu

iunl_cpu

ER unl_cpu(void);

ER iunl_cpu(void);

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 165 of 218
Apr 01, 2011

[Overview]

Transition to dispatching disabled state.

[Syntax]

[Parameters]

None.

[Function]

This service call moves the system status type to the dispatch disabled state.
As a result, task switching by the dispatcher is disabled from the time this service call is issued, until ena_dsp is issued.

Remarks 1. Dispatch disabled state (transition via this service call) is defined as follows.
- Dispatcher execution is prevented

2. This service call does not perform queuing of disable requests. As a result, if the system status type
cannot be changed when this service call is issued (the system status type was already dispatch dis-
abled state), then no actions will be performed, and it will also not be treated as an error.

3. Service calls issued when dispatching is disabled (e.g. act_tsk, chg_pri, and wup_tsk) only perform
queue operations, counter operations, and other processing. Actual task switching is delayed until
ena_dsp is issued.

4. If a service call that could cause the invoking task's state to change (e.g. slp_tsk, wai_sem, and
wai_flg) while dispatching is disabled, the RI850MP will return "E_CTX (= -25)", regardless of the
request conditions are instantly met.

[Return Value]

dis_dsp

ER dis_dsp(void);

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 166 of 218
Apr 01, 2011

[Overview]

Transition to dispatching enabled state.

[Syntax]

[Parameters]

None.

[Function]

This service call moves the system status to the dispatch enabled state.
This enables task switching by the dispatcher, which had been disabled by issuing dis_dsp.

Remark This service call does not perform queuing of enable requests. As a result, if the system status type cannot
be changed when this service call is issued (the system status type was already dispatch enabled state),
then no actions will be performed, and it will also not be treated as an error.

[Return Value]

ena_dsp

ER ena_dsp(void);

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_CTX -25 Context error

- Issued from non-task

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 167 of 218
Apr 01, 2011

[Overview]

Get context type (non-task context or task context).

[Syntax]

[Parameters]

None.

[Function]

This service call acquires the context type of the processing program that issued this service call (non-task context or
task context), and returns it as the return value.

Remark For the purposes of this service call, a non-task context processing program is defined as one of the follow-
ing:
- Cyclic handlers
- Interrupt handlers
- CPU exception handlers
- Initialization routine

[Return Value]

sns_ctx

BOOL sns_ctx(void);

Macro Num. Description

TRUE 1 Normal termination

- Non-task context

FALSE 0 Normal termination

- Task context

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 168 of 218
Apr 01, 2011

[Overview]

Get system state type (CPU locked state or CPU unlocked state).

[Syntax]

[Parameters]

None.

[Function]

This service call acquires the system status type as of the time it is issued (CPU locked state or non-CPU locked state),
and returns it as the return value.

Remark CPU locked state (transition via issuance of loc_cpu/iloc_cpu) is defined as follows.
- Dispatcher execution is prevented
- Acceptance of maskable interrupts is disabled

[Return Value]

sns_loc

BOOL sns_loc(void);

Macro Num. Description

TRUE 1 Normal termination

- CPU locked state

FALSE 0 Normal termination

- CPU unlocked state

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 169 of 218
Apr 01, 2011

[Overview]

Get system state type (dispatching disabled state or dispatching enabled state).

[Syntax]

[Parameters]

None.

[Function]

This service call acquires the system status type as of the time it is issued (dispatching disabled or enabled), and
returns it as the return value.

Remark Dispatch disabled state (transition via issuance of dis_dsp) is defined as follows.
- Dispatcher execution is prevented

[Return Value]

sns_dsp

BOOL sns_dsp(void);

Macro Num. Description

TRUE 1 Normal termination

- Dispatching disabled state

FALSE 0 Normal termination

- Dispatching enabled state

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 170 of 218
Apr 01, 2011

[Overview]

Get system state type (dispatching hold state or non-dispatching hold state).

[Syntax]

[Parameters]

None.

[Function]

This service call acquires the system status type as of the time it is issued (dispatching hold state or non-dispatching
hold state), and returns it as the return value.

Remark Dispatch hold state is defined as follows.
- A process with higher priority than the dispatcher is running
- Dispatcher execution is prevented
- Acceptance of maskable interrupts is disabled

[Return Value]

sns_dpn

BOOL sns_dpn(void);

Macro Num. Description

TRUE 1 Normal termination

- Dispatch hold state

FALSE 0 Normal termination

- Non-dispatch hold state

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 171 of 218
Apr 01, 2011

13.4.11 Interrupt management functions

The following shows the service calls provided by the RI850MP as interrupt management functions.

Table 13-21. Interrupt Management Functions

Service Call Function Overview

dis_int Disable maskable interrupt acknowledgement.

ena_int Enable maskable interrupt acknowledgement.

chg_ipm/ichg_ipm Change priority mask register.

get_ipm/iget_ipm Reference priority mask register.

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 172 of 218
Apr 01, 2011

[Overview]

Disable maskable interrupt acknowledgement.

[Syntax]

[Parameters]

[Function]

This service call disables acknowledgment of maskable interrupts corresponding to the exception cause code specified
by intno.

This will disable acknowledgement of the specified maskable interrupt from the time this service call is issued until
ena_int is issued.

Remarks 1. This service call does not perform queuing of disable requests. As a result, if the acceptance state of
maskable interrupts could not be changed when this service call was issued (acceptance of the
maskable interrupt had already been disabled), then no operation will be performed, and it will not be
treated as an error.

2. If a maskable interrupt is raised when the acceptance of maskable interrupts is disabled, the transition
to the corresponding interrupt handler is delayed until ena_int is issued.

3. The RI850MP uses a timer interrupt, which is a type of maskable interrupt, as its time management
function (e.g. updating the system time, task timeouts, and activation of cyclic handlers). As a result, if
the acceptance of timer interrupts is disabled continuously for longer than the interval specified by Base
clock cycle tbase , the time management function may not operate correctly.

4. The internal processing of this service call (Disable interrupt routine : _kernel_usr_dis_int) is dependent
on the user's execution environment. For this reason, the RI850MP separates this processing from the
"User-own" coding module, and provides it as a sample source file. See "9.2.4 Disable interrupt rou-
tine" for details about "_kernel_usr_dis_int".

[Return Value]

dis_int

ER dis_int(INTNO intno);

I/O Parameter Description

I INTNO intno; Exception cause code

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 intno is invalid

- 0x0 < intno < 0x70

- Not supported on target device exception cause code

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 173 of 218
Apr 01, 2011

E_CTX -25 Context error

- Issued from CPU lock status

Macro Num. Description

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 174 of 218
Apr 01, 2011

[Overview]

Enable maskable interrupt acknowledgement.

[Syntax]

[Parameters]

[Function]

This service call enables acknowledgment of maskable interrupts corresponding to the exception cause code specified
by intno.

Remarks 1. This service call does not perform queuing of enable requests. As a result, if the acceptance state of
maskable interrupts could not be changed when this service call was issued (acceptance of the
maskable interrupt had already been enabled), then no operation will be performed, and it will not be
treated as an error.

2. The internal processing of this service call (Enable interrupt routine : _kernel_usr_ena_int) is depen-
dent on the user's execution environment. For this reason, the RI850MP separates this processing
from the "User-own" coding module, and provides it as a sample source file. See "9.2.5 Enable inter-
rupt routine" for details about "_kernel_usr_ena_int".

[Return Value]

ena_int

ER ena_int(INTNO intno);

I/O Parameter Description

I INTNO intno; Exception cause code

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 intno is invalid

- 0x0 < intno < 0x70

- Not supported on target device exception cause code

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 175 of 218
Apr 01, 2011

[Overview]

Change priority mask register.

[Syntax]

[Parameters]

[Function]

This changes the value of the Priority Mask Register (PMR) to the value specified by ipmptn.

[Return Value]

chg_ipm

ichg_ipm

ER chg_ipm(INTPMR ipmptn);

ER ichg_ipm(INTPMR ipmptn);

I/O Parameter Description

I INTPMT ipmptn; Register value after change

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 CHAPTER 13 SERVICE CALLS

R20UT0519EJ0100 Rev.1.00 Page 176 of 218
Apr 01, 2011

[Overview]

Reference priority mask register.

[Syntax]

[Parameters]

[Function]

This acquires the value of the Priority Mask Register (PMR), and stores it in the area specified by p_ipmptn.

[Return Value]

get_ipm

iget_ipm

ER get_ipm(INTPMR *p_ipmptn);

ER iget_ipm(INTPMR *p_ipmptn);

I/O Parameter Description

O INTPMR *p_ipmptn; Pointer to the area in which register value is stored

Macro Num. Description

E_OK 0 Normal termination

E_NOSPT -9 Unsupported function

- In the SCT Information, there is no definition for the use of this service call

E_PAR -17 p_ipmptn is invalid

- p_ipmptn = 0

E_CTX -25 Context error

- Issued from CPU lock status

RI850MP Ver.1.00.00 APPENDIX A CONFIGURATOR

R20UT0519EJ0100 Rev.1.00 Page 177 of 218
Apr 01, 2011

APPENDIX A CONFIGURATOR

This appendix describes the configurator.

A.1 Outline

The configurator is a utility tool that accepts configuration files as input and outputs files containing configuration data to
be provided to the RI850MP (system information table file, entry file, system information header file, service call table file).

The information files output from the configurator are explained below.

- System information table file
An information file that contains data required by the RI850MP to operate.

- Entry file
An information file that contains assignments to branch processing (to time management functions, interrupt han-
dlers, and CPU exception handlers) for handler addresses to which the CPU forcibly passes control when a timer
interrupt, other interrupt, or CPU exception occurs.

- System information header file
An information file that contains the correspondence between object names (task names, semaphore names,
or the like) described in the system configuration file and IDs.

- Service call table file
An information file that contains information about use of the service calls provided by the RI850MP.

Remark ".NET Framework 2.0" is required to activate the configurator.

A.2 Activation Method

A.2.1 Activating from command line

The following describes how to activate the configurator from the command line.
In the description of activation options, "C:\>" indicates the command line prompt, "" indicates input with the Space

key, and "<Enter>" indicates input with the Enter key. Options enclosed in "[]" can be abbreviated.

The details of each activation option are explained below:

C:\> cf850mp.exe [@<cmd_file>] -cpu<name> [-devpath=<path>] [-i<sitfile>] [-
e<entryfile>] [-d<includefile>] [-c<sctfile>] [-ni] [-ne] [-nd] [-nc] [-t<tool>]
[-T<compiler_path>] [-I<include_path>] [-np] [-cnv<cnvfile>] [-V] [-help]
[<cffile>] <Enter>

Activation Options Meaning

@<cmd_file> Specifies the name of a file input to the configurator (command file name).

- If this activation option is not specified, the configurator does not load the command file.

- For details about the command file, refer to "A.3 Command File".

-cpu<name> Specifies the type specification name of the target device.

The keyword that can be specified as <name> is the device file name, minus the initial character
"D" and the extension ".800".

- When the device file name is "DF3507.800", the keyword specified in <name> is "F3507".

RI850MP Ver.1.00.00 APPENDIX A CONFIGURATOR

R20UT0519EJ0100 Rev.1.00 Page 178 of 218
Apr 01, 2011

-i<sitfile> Specifies the name of a file output from the configurator (system information table file name).

- If this activation option is not specified, processing is carried out as if "-isit.c" had been speci-
fied.

-e<entryfile> Specify the name of a file output from the configurator (entry file name).

- If this activation option is not specified, processing is carried out as if "-eentry.s" had been spec-
ified (CX version) or as if "-eentry.850" had been specified (CCV850E version).

-d<includefile> Specifies the name of a file output from the configurator (system information header file name).

- If this activation option is not specified, processing is carried out as if "-dkernel_id.h" had been
specified.

-c<sctfile> Specifies the name of a file output from the configurator (service call table file name).

- If this activation option is not specified, processing is carried out as if "-csct.c" had been speci-
fied.

-ni Disables output of the system information table file.

- If this activation option is specified together with the "-i<sitfile>" option, the configurator handles
this activation option as the valid option.

-ne Disables output of the entry file.

- If this activation option is specified together with the "-e<entryfile>" option, the configurator han-
dles this activation option as the valid option.

-nd Disables output of the system information header file.

- If this activation option is specified together with the "-d<includefile>" option, the configurator
handles this activation option as the valid option.

-nc Disables output of the service call table file.

- If this activation option is specified together with the "-c<sctfile>" option, the configurator han-
dles this activation option as the valid option.

-t<tool> Specifies the type of the C compiler package used.

The only keywords that can be specified as <tool> are "CX" and "CCV850E".

- If this activation option is not specified, processing is carried out as if "-tCX" had been specified.

-T<compiler_path> Searches for the C preprocessor of the C compiler package specified with the "-t<tool>" option
from the <compiler_path> folder.

- If this activation option is not specified, the search is carried out only in the current folder and fold-
ers specifed with Windows environmental variables (PATH and so on).

-I<include_path> Seaches the <include_path> folder for header files defined in the Header file declaration.

- If this activation option is not specified, the search is carried out only in the default search folder
of the C compiler package specified with the he "-t<tool>" option.

-np Suppresses activation of the C preprocessor.

- When this activation option is specified, lines in the configuration file that start with # are treated
as comment lines.

-cnv<cnvfile> Ouputs the configuration specified with <cffile> as a configuration file for the RI850MP.

-V Outputs version information for the configurator to the standard output.

-help Outputs information about the activation options of the configurator (types, usage, and so on) to the
standard output.

<cffile> Specifies the name of a file input to the configurator (configuration file name).

- If this activation option is not specified, the configurator does not load the configuration file.
This activation option can be omitted only when the "-V" or "-help" option is specified.

- For details about the configuration file, refer to "APPENDIX B CONFIGURATION FILE".

Activation Options Meaning

RI850MP Ver.1.00.00 APPENDIX A CONFIGURATOR

R20UT0519EJ0100 Rev.1.00 Page 179 of 218
Apr 01, 2011

A.2.2 Activating from CubeSuite+

The configurator is activated when CubeSuite+ performs a build, in accordance with the setting on the Property panel,
on the [System Configuration File Related Information] tab.

A.3 Command File

The configurator supports a command file in order to avoid the limitation on the number of characters that can be spec-
ified for activation options on the command line.

The specification formats of the command file are described below.

- Character code
Characters must be in the ASCII character code.
Japanese can be written in comments only, using Shift-JIS, EUC-JP, or UTF-8 character codes.

- Comments
Lines that start with # are treated as comment lines, up to the end of the line.

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 180 of 218
Apr 01, 2011

APPENDIX B CONFIGURATION FILE

This appendix explains the coding method for the configuration files.

B.1 Outline

Configuration files are required for creating files (system information table file, entry file, system information header file,
service call table file) that contain configuration information to be provided to the RI850MP. These files are to be coded by
the user with a text editor.

The following shows the notation method for configuration files.

- Character code
Create the file using ASCII code.
For Japanese language coding, Shift-JIS codes, EUC-JP codes, and UTF-8 codes can be used only for com-
ments.

- Comments
Parts between the start-of-comment "/*" and the end-of-comment "*/", and parts from the start-of-comment "//" to
the line end are regarded as comments.

Remark When "-np" is specified as the configurator activation option, parts from the line head "#" to the line end
are also regarded as comments.

- Numeric values
Words starting with a numeric value "0 to 9" are regarded as numeric values.
The RI850MP distinguishes numeric values as follows.
Decimal : Words starting with "1 to 9"
Hexadecimal : Words starting with 0x or 0X

- Names
Words starting with an alphabetic character, "a to z, A to Z", or underscore "_" are regarded as names.
Up to 255 characters can be specified for names.

Remarks 1. The RI850MP distinguishes between symbol names and other names based on the context in the
configuration file.

2. The RI850MP distinguishes between lower case "a to z" and upper case "A to Z" in the configura-
tion file.

- Symbol names
Words starting with an alphabetic character, "a to z, A to Z", or underscore "_" are regarded as symbol names.
Up to 4095 characters can be specified for symbol names.

Remarks 1. The RI850MP distinguishes between symbol names and other names based on the context in the
configuration file.

2. The RI850MP distinguishes between lower case "a to z" and upper case "A to Z" in the configura-
tion file.

3. Symbol names can also be written in the format "symbol name + offset", but the offset values that
can be specified must be a "constant expression".

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 181 of 218
Apr 01, 2011

- Keywords
The words shown below are reserved as keywords for configuration files. Using these words for any other purpose
specified is therefore prohibited.

ATT_INI, CLK_INTNO, CRE_CYC, CRE_DTQ, CRE_FLG, CRE_MBX, CRE_MPF, CRE_MTX, CRE_SEM,
CRE_TSK, DEF_EXC, DEF_FPSR, DEF_INH, DEF_SCT, DEF_TIM, DOMAIN, DOMAIN_ALLOCATION,
INCLUDE, MAX_PRI, MEM_AREA, NULL, RI850MP, RI_SERIES, SIZE_AUTO, SYS_STK, TA_ACT, TA_ASM,
TA_CLR, TA_DISINT, TA_ENAINT, TA_HLNG, TA_MFIFO, TA_MPRI, TA_PHS, TA_STA, TA_TFIFO, TA_TPRI,
TA_WMUL, TA_WSGL, V100 to V199, VATT_IDL, and service call names

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 182 of 218
Apr 01, 2011

B.1.1 Configuration Information

The configuration information that is coded in the RI850MP is divided into the following five main types.

- Declarative Information
- System Information
- Domain Information
- Static API Information
- SCT Information

The following illustrates how the configuration file is written.

Figure B-1. Configuration File Writing Format

// Declarative Information

INCLUDE("h_file"); // Header file declaration

// System Information

RI_SERIES(osnam, osver); // RI series information

DEF_TIM(tbase); // Base clock interval information

CLK_INTNO(tintno); // Timer interrupt information

SYS_STK(sysstksz, peno); // System stack information

MAX_PRI(maxtpri); // Maximum priority information

DEF_FPSR(fpsr); // Floating-point setting/status register information

MEM_AREA(secnam, secsz); //Section information

DOMAIN_ALLOCATION(domnam, peno); // Processor element information

// Domain Information

DOMAIN (domnam) {

 // Static API Information

 CRE_TSK(tskid, {tskatr, exinf, task, itskpri, stksz[:secnam], stk}); // Task information

 CRE_SEM(semid, {sematr, isemcnt, maxsem}); // Semaphore information

 CRE_FLG(flgid, {flgatr, iflgptn}); // Eventflag information

 CRE_DTQ(dtqid, {dtqatr, dtqcnt[:secnam], dtq}); // Data queue information

 CRE_MBX(mbxid, {mbxatr, maxmpri, mprihd}); // Mailbox information

 CRE_MTX(mtxid, {mtxatr, ceilpri}); // Mutex information

 CRE_MPF(mpfid, {mpfatr, blkcnt, blksz[:secnam], mpf}); // Fixed-sized memory pool
information

 CRE_CYC(cycid, {cycatr, exinf, cychdr, cyctim, cycphs}); // Cyclic handler information

 DEF_INH(inhno, {inhatr, inthdr}); // Interrupt handler information

 DEF_EXC(excno, {excatr, exchdr}); // CPU exception handler information

 ATT_INI({iniatr, exinf, inirtn}); // Initialization routine information

 VATT_IDL({idlatr, idlrtn}); // Idle routine information

}

// SCT Information

DEF_SCT(svc_nam);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 183 of 218
Apr 01, 2011

B.2 Declarative Information

Defines the following information as the declarative information.
- Header file declaration

The following illustrates how the declarative information is written.

B.2.1 Header file declaration

Defines the following item as the header file declaration.
- Header file name h_file

The number of definitions for header file declaration is not restricted.
The following shows the header file declaration format.

(1) Header file name h_file

Specify the header file name output to the system information header file.
Values that can be specified for h_file are limited to names.

Remarks 1. If "INCLUDE (" <itron.h> ");" is specified, the following header file definition (include processing) is
output to the system information header file.

2. If "INCLUDE (" <itron.h> ");" is specified, the following header file definition (include processing) is
output to the system information header file.

3. Search folder for h_file is the folder specified in the configurator activation option "-
I<include_path>".

INCLUDE("h_file"); // Header file declaration

INCLUDE("h_file");

#include <itron.h>

#include "itron.h"

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 184 of 218
Apr 01, 2011

B.3 System Information

Defines the following information as the system information.
- RI series information
- Base clock cycle information
- Timer interrupt information
- System stack information
- Maximum priority information
- Floating-point setting/status register information
- Section information
- Processor element information

The following illustrates how the system information is written.

B.3.1 RI series information

Defines the following item as the information about real-time OS.
- Real-time OS name osnam
- Version information osver

Only one information item can be defined as RI series information.
The following shows the RI series information format.

(1) Real-time OS name osnam

Specifies the real-time OS name.
RI850MP is the only name that can be specified for osnam.

(2) Version information osver

Specifies the version number of real-time OS.
Values that can be specified for osver are limited to V100 to V199.

RI_SERIES(osnam, osver); // RI series information

DEF_TIM(tbase); // Base clock interval information

CLK_INTNO(tintno); // Timer interrupt information

SYS_STK(sysstksz, peno); // System stack information

MAX_PRI(maxtpri); // Maximum priority information

DEF_FPSR(fpsr); // Floating-point setting/status register information

MEM_AREA(secnam, secsz); // Section information

DOMAIN_ALLOCATION(domnam, peno); // Processor element information

RI_SERIES(osnam, osver);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 185 of 218
Apr 01, 2011

B.3.2 Base clock cycle information

This defines the following item as the information related to timer interrupts required for realizing the time management
functions (system time update, task timeout, cyclic handler activation, etc.) provided by the RI850MP.

- Base clock cycle tbase

The number of items that can be defined as base clock cycle information is defined as being within the range of 0 to 1.
The following shows the basic clock cycle information format.

(1) Base clock cycle tbase

Specifies the occurrence interval of base clock timer interrupts (in millisecond).
Values that can be specified for tbase are limited to 1 to 65535.

Remark If the definition of this item is omitted, the RI850MP handles the occurrence interval of base clock timer
interrupts as follows.

DEF_TIM(tbase);

DEF_TIM(1);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 186 of 218
Apr 01, 2011

B.3.3 Timer interrupt information

Defines the following item as the information related to timer interrupts required for realizing the time management
functions (system time update, task timeout, cyclic handler activation, etc.) provided by the RI850MP.

- Exception cause code tintno

Only one information item can be defined as timer interrupt information.
The following shows the timer interrupt information format.

(1) Exception cause code tintno

Specifies the exception cause code for a timer interrupt.
Values that can be specified for tintno are limited to 16-byte boundary value past 0x90 corresponding to timer inter-
rupt, or exception cause code name.

Remarks 1. It is not possible to assign an exception cause code specified by Exception cause code inhno or
Exception cause code excno.

2. Only exception cause code names prescribed in the device file can be specified in this item.

CLK_INTNO(tintno);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 187 of 218
Apr 01, 2011

B.3.4 System stack information

Defines the following item as the system stack information to be allocated to each processor element by the RI850MP.
- Stack size sysstksz
- PE number peno

Only two information items can be defined as system stack information.
The following shows the system stack information format.

(1) Stack size sysstksz

Specifies the system stack size (in bytes).
A value from 0x0 to 0x10000000 (aligned to a 4-byte boundary) can be specified for sysstksz.

(2) PE number peno

This specifies the PE number of the processor element that allocates the system stack.
Values that can be specified for peno are limited to 1 to 2.

Remark The system stack is allocated to the .kernel_stack_pepeno section.

SYS_STK(sysstksz, peno);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 188 of 218
Apr 01, 2011

B.3.5 Maximum priority information

This defines the following item as task-priority information.
- Maximum priority maxtpri

Only 0 - 1 items can be defined as maximum priority information.
The following shows the maximum priority information format.

(1) Maximum priority maxtpri

Specifies the range of task priority specified with Initial priority itskpri, and chg_pri/ichg_pri.
Values that can be specified for maxtpri are limited to 1 to 32.

Remark If the definition of this item is omitted, the RI850MP handles the maximum priority as follows.

MAX_PRI(maxtpri);

MAX_PRI(32);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 189 of 218
Apr 01, 2011

B.3.6 Floating-point setting/status register information

The following item is defined as floating-point setting/status register (FPSR) information.
- Floating-point setting/status register informationfpsr

The number of items that can be defined as floating-point setting/status register information is defined as being within
the range of 0 to 1.

The format for coding the floating-point setting/status register information is as follows:

(1) Floating-point setting/status register informationfpsr

This specifies the initial value of the floating-point setting/status register.
Note that the allowable range of the fpsr setting is limited to 0x0 to 0xffffffff.

Remark If the definition of this item is omitted, the RI850MP handles the initial value of the floating-point setting/sta-
tus register as follows.

DEF_FPSR(fpsr);

DEF_FPSR(0x20000);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 190 of 218
Apr 01, 2011

B.3.7 Section information

The following items are defined as information relating to sections allocating buffer areas for the system stack, task
stack, and data queue, and for the fixed-size memory pool.

- Section namesecnam
- Section size secsz

0 to 255 items can be specified as section information.
The description format of section information is as follows:

(1) Section namesecnam

This specifies the section name allocating buffer areas for the system stack, task stack, and data queue, and for
the fixed-size memory pool.
Only section names specified in the link directive file can be specified as secnam.

(2) Section size secsz

This specifies the maximum section size (in bytes).
A value from 0x0 to 0x10000000 (aligned to a 4-byte boundary) or SIZE_AUTO can be specified for secsz.

Remark If SIZE_AUTO is specified in this item, the appropriate value will be calculated from the sizes specified
in System stack information, Task information, Data queue information, and Fixed-sized memory pool
information, and this value will be assumed to have been specified.

Remark If the definition of this item is omitted, the RI850MP handles the section size as follows.

MEM_AREA(secnam, secsz);

MEM_AREA(.kernel_work_pe1, SIZE_AUTO);

MEM_AREA(.kernel_work_pe2, SIZE_AUTO);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 191 of 218
Apr 01, 2011

B.3.8 Processor element information

The following items are defined as processor element (PE) information.
- Domain name domnam
- PE number peno

1 to 31 items can be specified as processor element information.
The description format of processor element information is as follows:

(1) Domain name domnam

This specifies the domain name.
Only domain names specified in Domain name domnam can be specified in Domain name domnam.

(2) PE number peno

This specifies the PE number of the processor element that assigns the domain.
Values that can be specified for peno are limited to 1 to 2.

DOMAIN_ALLOCATION(domnam, peno);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 192 of 218
Apr 01, 2011

B.4 Domain Information

The following item is defined as domain information.
- Domain name domnam

1 to 31 items can be specified as domain information.
The description format of domain information is as follows:

(1) Domain name domnam

This specifies the domain name.
Only names can be specified as domnam.

Remark See "B.5 Static API Information" for details about static API information.

DOMAIN (domnam) {

 // Static API Information

}

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 193 of 218
Apr 01, 2011

B.5 Static API Information

The following are defined as static API information.
- Task information
- Semaphore information
- Eventflag information
- Data queue information
- Mailbox information
- Mutex information
- Fixed-sized memory pool information
- Cyclic handler information
- Interrupt handler information
- CPU exception handler information
- Initialization routine information
- Idle routine information

The following illustrates how static API information is written.

CRE_TSK(tskid, {tskatr, exinf, task, itskpri, stksz[:secnam], stk}); // Task information

CRE_SEM(semid, {sematr, isemcnt, maxsem}); // Semaphore information

CRE_FLG(flgid, {flgatr, iflgptn}); // Eventflag information

CRE_DTQ(dtqid, {dtqatr, dtqcnt[:secnam], dtq}); // Data queue information

CRE_MBX(mbxid, {mbxatr, maxmpri, mprihd}); // Mailbox information

CRE_MTX(mtxid, {mtxatr, ceilpri}); // Mutex information

CRE_MPF(mpfid, {mpfatr, blkcnt, blksz[:secnam], mpf}); // Fixed-sized memory pool
information

CRE_CYC(cycid, {cycatr, exinf, cychdr, cyctim, cycphs}); // Cyclic handler information

DEF_INH(inhno, {inhatr, inthdr}); // Interrupt handler information

DEF_EXC(excno, {excatr, exchdr}); // CPU exception handler information

ATT_INI({iniatr, exinf, inirtn}); // Initialization routine information

VATT_IDL({idlatr, idlrtn}); // Idle routine information

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 194 of 218
Apr 01, 2011

B.5.1 Task information

The following items are defined as task information.
- ID tskid
- Attribute tskatr
- Extended information exinf
- Startup address task
- Initial priority itskpri
- Stack size stksz
- Section name secnam
- System reserved area stk

1 to 1,023 tasks can be specified as task information.
The description format of task information is as follows:

(1) ID tskid

This specifies the task ID.
Only names can be specified as tskid.

Remark The correspondence between tskid and numerical values is output to the system information header file
in the following format.

(2) Attribute tskatr

This specifies the task attributes (language in which task is coded, initial state, and initial interrupt state).
Only the following keywords can be specified as tskatr.

- Language in which task is coded
TA_HLNG : C language
TA_ASM : Assembly language

- Initial task state (optional)
TA_ACT : READY state

- Initial task interrupt state (optional)
TA_ENAINT : Interrupts enabled
TA_DISINT : Interrupts disabled

Remarks 1. If the specification of TA_ACT is omitted, then the initial task state will be DORMANT state.
2. If the specification of TA_ENAINT and TA_DISINT are omitted, then the initial task interrupt state

will be interrupts enabled.

(3) Extended information exinf

Specifies the extended information for the task.
The value of exinf must be between 0x0 and 0xffffffff, or a symbol name.

Remark Extended information is set as a parameter in the task when it transitions from DORMANT state to
READY state.

CRE_TSK(tskid, {tskatr, exinf, task, itskpri, stksz[:secnam], stk});

#define tskid number

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 195 of 218
Apr 01, 2011

(4) Startup address task

Specifies the startup address of the task.
The value of task must be between 0x0 and 0xFFFFFFFE (aligned to a 2-byte boundary), or a symbol name.

(5) Initial priority itskpri

Specifies the initial priority level of the task.
The only values that can be specified as itskpri are 1 to Maximum priority maxtpri.

Remark In the RI850MP, tasks with lower priority numbers have higher priority.

(6) Stack size stksz

This specifies the task stack size (in bytes).
A value from 0x0 to 0x10000000 (aligned to a 4-byte boundary) can be specified for stksz.

(7) Section name secnam

This specifies the section name assigned to the task stack.
The only values that can be specified in secnam are section names specified in Section information.

Remark If the definition of this item is omitted, the RI850MP assumes that ".kernel_work_pepeno" has been
specified.
The value of peno in ".kernel_stack_pepeno" is the PE number of the processor element assigned to
the domain of the task information (PE number specified in Processor element information).

(8) System reserved area stk

This area is reserved by the system.
Only 0 or NULL can be specified as stk.

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 196 of 218
Apr 01, 2011

B.5.2 Semaphore information

The following items are defined as semaphore information.
- ID semid
- Attribute sematr
- Initial resource count isemcnt
- Maximum resource count maxsem

0 to 1,023 items can be specified as semaphore information.
The description format of semaphore information is as follows:

(1) ID semid

Specifies the semaphore ID.
Only names can be specified as semid.

Remark The correspondence between semid and numerical values is output to the system information header
file in the following format.

(2) Attribute sematr

This specifies the semaphore attribute (queuing method).
Only the following keywords can be specified as sematr.

- Task queuing method
TA_TFIFO : Order in which resource acquisitions were requested
TA_TPRI : Order of task priority

(3) Initial resource count isemcnt

Specifies the initial number of semaphore resources.
The only values that can be specifies as isemcnt are 0 to Maximum resource count maxsem.

(4) Maximum resource count maxsem

Specifies the maximum number of semaphore resources.
The only values that can be specified for maxsem are from 1 to 65535.

CRE_SEM(semid, {sematr, isemcnt, maxsem});

#define semid number

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 197 of 218
Apr 01, 2011

B.5.3 Eventflag information

The following items are defined as eventflag information.
- ID flgid
- Attribute flgatr
- Initial bit pattern iflgptn

0 to 1,023 items can be specified as eventflag information.
The description format of eventflag information is as follows:

(1) ID flgid

Specifies the ID of the eventflag.
Only names can be specified as flgid.

Remark The correspondence between flgid and numerical values is output to the system information header file
in the following format.

(2) Attribute flgatr

This specifies the eventflag attributes (queuing method, maximum number of tasks, and clear flag).
Only the following keywords can be specified as flgatr.

- Task queuing method
TA_TFIFO : Order in which determination of bit pattern was requested
TA_TPRI : Order of task priority

- Maximum number of tasks that can be queued
TA_WSGL : 1 task
TA_WMUL : Multiple tasks

- Clear bit pattern flag (optional)
TA_CLR : Bit pattern cleared if the request conditions are met

Remark If the specification of TA_CLR is omitted, then the bit pattern will not be cleared when the request con-
ditions are met.

(3) Initial bit pattern iflgptn

This specifies the initial bit pattern of the eventflag.
Note that the allowable range of the iflgptn setting is limited to 0x0 to 0xffffffff.

CRE_FLG(flgid, {flgatr, iflgptn});

#define flgid number

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 198 of 218
Apr 01, 2011

B.5.4 Data queue information

The following items are defined as data queue information.
- ID dtqid
- Attribute dtqatr
- Maximum data count dtqcnt
- Section name secnam
- System reserved area dtq

0 to 1,023 items can be specified as data queue information.
Below is the format for coding data queue information.

(1) ID dtqid

This specifies the data queue ID.
Only names can be specified as dtqid.

Remark The correspondence between dtqid and numerical values is output to the system information header
file in the following format.

(2) Attribute dtqatr

This specifies the data queue attribute (queuing method).
Only the following keywords can be specified as dtqatr.

- Task queuing method
TA_TFIFO : Order in which data-send requests were made
TA_TPRI : Order of task priority

Remark If the data cannot be received immediately when the task makes a data reception request, the task is
added to the data queue's wait queue, in the order that the data reception request was made.

(3) Maximum data count dtqcnt

This specifies the maximum number of data elements that can be written to the buffer area of the data queue.
Values that can be specified for dtqcnt are limited to 0 to 1023.

(4) Section name secnam

This specifies the section name assigned to the buffer area of the data queue.
The only values that can be specified in secnam are section names specified in Section information.

Remark If the definition of this item is omitted, the RI850MP assumes that ".kernel_work_pepeno" has been
specified.
The value of peno in ".kernel_work_pepeno" is the PE number of the processor element assigned to
the domain of the data queue information (PE number specified in Processor element information).

(5) System reserved area dtq

This area is reserved by the system.
Only 0 or NULL can be specified as dtq.

CRE_DTQ(dtqid, {dtqatr, dtqcnt[:secnam], dtq});

#define dtqid number

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 199 of 218
Apr 01, 2011

B.5.5 Mailbox information

The following items are defined as mailbox information.
- ID mbxid
- Attribute mbxatr
- Maximum priority maxmpri
- System reserved area mprihd

0 to 1,023 items can be specified as mailbox information.
Below is the format for coding the mailbox information.

(1) ID mbxid

This specifies the ID of the mailbox.
Only names can be specified as mbxid.

Remark The correspondence between mbxid and numerical values is output to the system information header
file in the following format.

(2) Attribute mbxatr

This specifies the mailbox attribute (queuing method).
Only the following keywords can be specified as mbxatr.

- Task queuing method
TA_TFIFO : Order in which message-receipt requests were made
TA_TPRI : Order of task priority

- Message queuing method
TA_MFIFO : Order in which message-send requests were made
TA_MPRI : Order of message priority

(3) Maximum priority maxmpri

This specifies the maximum priority of messages that can be sent to the mailbox.
Values that can be specified for maxmpri are limited to 1 to 32,767.

Remark In the RI850MP, messages with lower priority numbers have higher priority.

(4) System reserved area mprihd

This area is reserved by the system.
Only 0 or NULL can be specified as mprihd.

CRE_MBX(mbxid, {mbxatr, maxmpri, mprihd});

#define mbxid number

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 200 of 218
Apr 01, 2011

B.5.6 Mutex information

The following items are defined as mutex information.
- ID mtxid
- Attribute mtxatr
- System reserved area ceilpri

0 to 1,023 items can be specified as mutex information.
Below is the format for coding the mutex information.

(1) ID mtxid

This specifies the ID of the mutex.
Only names can be specified as mtxid.

Remark The correspondence between mtxid and numerical values is output to the system information header
file in the following format.

(2) Attribute mtxatr

This specifies the mutex attribute (queuing method).
Only the following keywords can be specified as mtxatr.

- Task queuing method
TA_TFIFO : Order in which mutex acquisition was requested
TA_TPRI : Order of task priority

(3) System reserved area ceilpri

This area is reserved by the system.
Only 0 or NULL can be specified as ceilpri.

CRE_MTX(mtxid, {mtxatr, ceilpri});

#define mtxid number

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 201 of 218
Apr 01, 2011

B.5.7 Fixed-sized memory pool information

The following items are defined as fixed-size memory pool information.
- ID mpfid
- Attribute mpfatr
- Block count blkcnt
- Block size blksz
- Section name secnam
- System reserved area mpf

0 to 1023 resources can be specified as fixed-size memory pool information.
Below is the format for coding fixed-sized memory pool information.

(1) ID mpfid

This specifies the ID of the fixed-size memory pool.
Only names can be specified as mpfid.

Remark The correspondence between mpfid and numerical values is output to the system information header
file in the following format.

(2) Attribute mpfatr

This specifies the fixed-sized memory pool attribute (queuing method).
Only the following keywords can be specified as mpfatr.

- Task queuing method
TA_TFIFO : Order in which fixed-size memory block acquisition was requested
TA_TPRI : Order of task priority

(3) Block count blkcnt

This specifies the total count of the fixed-size memory blocks.
Values that can be specified for blkcnt are limited to 1 to 32,767.

(4) Block size blksz

This specifies the size per block (in bytes).
A value from 0x1 to 0x100000000 (aligned to a 4-byte boundary) can be specified for blksz.

(5) Section name secnam

This specifies the section name assigned to the fixed-size memory pool.
The only values that can be specified in secnam are section names specified in Section information.

Remark If the definition of this item is omitted, the RI850MP assumes that ".kernel_work_pepeno" has been
specified.
The value of peno in ".kernel_work_pepeno" is the PE number of the processor element assigned to
the domain of the fixed-size memory pool information (PE number specified in Processor element infor-
mation).

CRE_MPF(mpfid, {mpfatr, blkcnt, blksz[:secnam], mpf});

#define mpfid number

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 202 of 218
Apr 01, 2011

(6) System reserved area mpf

This area is reserved by the system.
Only 0 or NULL can be specified as mpf.

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 203 of 218
Apr 01, 2011

B.5.8 Cyclic handler information

The following items are defined as cyclic handler information.
- ID cycid
- Attribute cycatr
- Extended information exinf
- Startup address cychdr
- Cycle start cyctim
- Activation phase cycphs

0 to 1,023 items can be defined as cyclic handler information.
The format for coding cyclic handler information is shown below.

(1) ID cycid

This specifies the ID of the cyclic handler.
Only names can be specified as cycid.

Remark The correspondence between cycid and numerical values is output to the system information header
file in the following format.

(2) Attribute cycatr

This specifies the cyclic handler attributes (language used, initial state, and storage flag).
Only the following keywords can be specified as cycatr.

- Language in which cyclic handler is coded
TA_HLNG : C language
TA_ASM : Assembly language

- Initial state of cyclic handler (optional)
TA_STA : Operating state

- Whether activation phase has been stored (optional)
TA_PHS : Activation phase stored

Remarks 1. If the specification of TA_STA is omitted, then the initial cyclic handler state will be non-operational
state.

2. If the specification of TA_PHS is omitted, then the activation phase storage flag will be "Do not
store activation phase".

(3) Extended information exinf

This specifies extended information for the cyclic handler.
The value of exinf must be between 0x0 and 0xffffffff, or a symbol name.

Remark When a cyclic handler transitions from non-operational state to operating state, the extended informa-
tion is set in the cyclic handler as a parameter.

(4) Startup address cychdr

This specifies the start address of the cyclic handler.
The value of cychdr must be between 0x0 and 0xFFFFFFFE (aligned to a 2-byte boundary), or a symbol name.

CRE_CYC(cycid, {cycatr, exinf, cychdr, cyctim, cycphs});

#define cycid number

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 204 of 218
Apr 01, 2011

(5) Cycle start cyctim

This specifies the startup interval of the cyclic handler (in milliseconds).
Only 0x1 to 0x7FFFFFFF can be specified as cyctim.

(6) Activation phase cycphs

This specifies the initial startup phase of the cyclic handler (in milliseconds).
Only 0x1 to 0x7FFFFFFF can be specified as cycphs.

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 205 of 218
Apr 01, 2011

B.5.9 Interrupt handler information

The following items are defined as interrupt handler information.
- Exception cause code inhno
- Attribute inhatr
- Startup address inthdr

0 to 1 items per PE can be defined as interrupt handler information for each exception cause.
The format for coding interrupt handler information is shown below.

(1) Exception cause code inhno

This specifies the exception cause code corresponding to the interrupt that triggers the activation of the interrupt
handler.
Values that can be specified for inhno are limited to 16-byte boundary value past 0x90 corresponding to the inter-
rupt, or exception cause name.

Remarks 1. It is not possible to assign an exception cause code specified by Exception cause code tintno or
Exception cause code excno.

2. Only exception cause code names prescribed in the device file can be specified in this item.

(2) Attribute inhatr

This specifies the interrupt handler's attribute (language it is coded in).
Only the following keywords can be specified as inhatr.

- Interrupt handler language
TA_HLNG : C language
TA_ASM : Assembly language

(3) Startup address inthdr

Specifies the start address for an interrupt handler.
The value of inthdr must be between 0x0 and 0xFFFFFFFE (aligned to a 2-byte boundary), or a symbol name.

DEF_INH(inhno, {inhatr, inthdr});

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 206 of 218
Apr 01, 2011

B.5.10 CPU exception handler information

The following items are defined as CPU exception handler information.
- Exception cause code excno
- Attribute excatr
- Startup address exchdr

0 to 1 items per PE can be defined as CPU exception handler information for each exception cause.
The format for coding CPU exception handler information is shown below.

(1) Exception cause code excno

This specifies the exception cause code corresponding to the CPU exception (EI level software exception or float-
ing-point operation) that triggered the activation of the CPU exception handler.
Values that can be specified for excno are limited to a value aligned on a 16-byte boundary corresponding to the
CPU exception, or exception cause name.

Remarks 1. It is not possible to assign an exception cause code specified by Exception cause code tintno or
Exception cause code inhno.

2. Only exception cause code names prescribed in the device file can be specified in this item.

(2) Attribute excatr

This specifies the CPU exception handler's attribute (language it is coded in).
Only the following keywords can be specified as excatr.

- Language in which CPU exception handler is coded
TA_HLNG : C language
TA_ASM : Assembly language

(3) Startup address exchdr

Specifies the start address of the CPU exception handler.
The value of exchdr must be between 0x0 and 0xFFFFFFFE (aligned to a 2-byte boundary), or a symbol name.

DEF_EXC(excno, {excatr, exchdr});

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 207 of 218
Apr 01, 2011

B.5.11 Initialization routine information

The following items are defined as initialization routine information.
- Attribute iniatr
- Extended information exinf
- Startup address inirtn

0 to 1,023 items can be defined as initialization routine information.
The format for coding initialization routine information is as follows:

(1) Attribute iniatr

This specifies the attribute of the initialization routine (language it is coded in).
Only the following keywords can be specified as iniatr.

- Language in which initialization routine is coded
TA_HLNG : C language
TA_ASM : Assembly language

(2) Extended information exinf

This specifies extended information for the initialization routine.
The value of exinf must be between 0x0 and 0xffffffff, or a symbol name.

Remark When the initialization routine is called from Kernel Initialization Module, the extended information is set
in the initialization routine as a parameter.

(3) Startup address inirtn

Specifies the start address for an initialization routine.
The value of inirtn must be between 0x0 and 0xFFFFFFFE (aligned to a 2-byte boundary), or a symbol name.

ATT_INI({iniatr, exinf, inirtn});

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 208 of 218
Apr 01, 2011

B.5.12 Idle routine information

The following items are defined as idle routine information.
- Attribute idlatr
- Startup address idlrtn

0 to 1 items per PE can be defined as idle routine information.
The format for coding idle routine information is as follows:

(1) Attribute idlatr

This specifies the attribute of the idle routine (language it is coded in).
Only the following keywords can be specified as idlatr.

- Language in which idle routine is coded
TA_HLNG : C language
TA_ASM : Assembly language

(2) Startup address idlrtn

This specifies the start address of the idle routine.
The value of idlrtn must be between 0x0 and 0xFFFFFFFE (aligned to a 2-byte boundary), or a symbol name.

Remark If the definition of this item is omitted, the RI850MP handles the start address of the idle routine as follows.

VATT_IDL({idlatr, idlrtn});

VATT_IDL(TA_HLNG, _default_idlrtn);

RI850MP Ver.1.00.00 APPENDIX B CONFIGURATION FILE

R20UT0519EJ0100 Rev.1.00 Page 209 of 218
Apr 01, 2011

B.6 SCT Information

The following item is defined as information relating to flags for using service calls provided by the RI850MP.
- Service call name svc_nam

0 to 69 items can be defined as SCT information.
The format for coding SCT information is as follows:

(1) Service call name svc_nam

This specifies the name of the service call to use in the processing program.
Only the following keywords can be specified as svc_nam.

- Task management functions
act_tsk, iact_tsk, can_act, ican_act, ext_tsk, ter_tsk, chg_pri, ichg_pri, get_pri, iget_pri, ref_tsk, iref_tsk

- Task dependent synchronization functions
slp_tsk, tslp_tsk, wup_tsk, iwup_tsk, can_wup, ican_wup, rel_wai, irel_wai, sus_tsk, isus_tsk, rsm_tsk,
irsm_tsk, frsm_tsk, ifrsm_tsk, dly_tsk

- Synchronization and communication functions (semaphores)
sig_sem, isig_sem, wai_sem, pol_sem, ipol_sem, twai_sem, ref_sem, iref_sem

- Synchronization and communication functions (eventflags)
set_flg, iset_flg, clr_flg, iclr_flg, wai_flg, pol_flg, ipol_flg, twai_flg, ref_flg, iref_flg

- Synchronization and communication functions (data queues)
snd_dtq, psnd_dtq, ipsnd_dtq, tsnd_dtq, fsnd_dtq, ifsnd_dtq, rcv_dtq, prcv_dtq, iprcv_dtq, trcv_dtq, ref_dtq,
iref_dtq

- Synchronization and communication functions (mailboxes)
snd_mbx, isnd_mbx, rcv_mbx, prcv_mbx, iprcv_mbx, trcv_mbx, ref_mbx, iref_mbx

- Extended synchronization and communication functions
loc_mtx, ploc_mtx, tloc_mtx, unl_mtx, ref_mtx, iref_mtx

- Memory pool management functions
get_mpf, pget_mpf, ipget_mpf, tget_mpf, rel_mpf, irel_mpf, ref_mpf, iref_mpf

- Time management functions
set_tim, iset_tim, get_tim, iget_tim, sta_cyc, ista_cyc, stp_cyc, istp_cyc, ref_cyc, iref_cyc

- System state management functions
rot_rdq, irot_rdq, get_tid, iget_tid, loc_cpu, iloc_cpu, unl_cpu, iunl_cpu, dis_dsp, ena_dsp, sns_ctx, sns_loc,
sns_dsp, sns_dpn

- Interrupt management functions
dis_int, ena_int, chg_ipm, ichg_ipm, get_ipm, iget_ipm

DEF_SCT(svc_nam);

RI850MP Ver.1.00.00 APPENDIX C INDEX

R20UT0519EJ0100 Rev.1.00 Page 210 of 218
Apr 01, 2011

APPENDIX C INDEX

A

act_tsk ... 64

B

Base clock cycle information ... 185

Boot processing ... 38

PE common boot processing ... 38

PE specific boot processing ... 38

C

can_act ... 66

can_wup ... 80

chg_ipm ... 175

chg_pri ... 69

clr_flg ... 99

CPU exception handler information ... 206

Current state of cyclic handler ... 45

Current task status ... 45

Cyclic handler information ... 56, 203

D

Data macros ... 42

Current state of cyclic handler ... 45

Current task status ... 45

Data types ... 42

Object attributes ... 44

Other constants ... 46

Return values ... 43

Task request conditions ... 44

Task wait causes ... 45

Task wait time ... 44

Data queue information ... 52, 198

Data structures ... 47

Cyclic handler information ... 56

Data queue information ... 52

Eventflaginformation ... 51

Fixed-sized memory pool information ... 55

Mailbox information ... 53

Message (no priority) ... 58

Message (with priority) ... 59

Mutex information ... 54

Semaphore information ... 50

System time ... 60

Task information ... 47

Data types ... 42

Declarative information ... 183

Header file declaration ... 183

Disable interrupt routine ... 27

dis_dsp ... 165

dis_int ... 172

dly_tsk ... 86

Domain information ... 192

Static API information ... 193

E

Enable interrupt routine ... 27

ena_dsp ... 166

ena_int ... 174

Eventflag information ... 51, 197

Extended synchronization and communication functions

 ... 132

iref_mtx ... 139

loc_mtx ... 133

ploc_mtx ... 135

ref_mtx ... 139

tloc_mtx ... 136

unl_mtx ... 138

ext_tsk ... 67

F

Fixed-sized memory pool information ... 55, 201

Floating-point setting/status register information ... 189

frsm_tsk ... 85

fsnd_dtq ... 113

RI850MP Ver.1.00.00 APPENDIX C INDEX

R20UT0519EJ0100 Rev.1.00 Page 211 of 218
Apr 01, 2011

G

get_ipm ... 176

get_mpf ... 142

get_pri ... 72

get_tid ... 161

get_tim ... 152

H

Header file declaration ... 183

I

iact_tsk ... 64

ican_act ... 66

ican_wup ... 80

ichg_ipm ... 175

ichg_pri ... 69

iclr_flg ... 99

Idle routine information ... 208

ifrsm_tsk ... 85

ifsnd_dtq ... 113

iget_pri ... 72

iget_tid ... 161

iget_tim ... 152

iloc_cpu ... 162

Initialization routine ... 39

Initialization routine information ... 207

Interrupt handler information ... 205

Interrupt management functions ... 25, 171

chg_ipm ... 175

dis_int ... 172

ena_int ... 174

get_ipm ... 176

ichg_ipm ... 175

User-own coding modules ... 25

Interrupt mask acquisition routine ... 26

Interrupt mask logical OR routine ... 25

Interrupt mask overwrite routine ... 26

ipget_mpf ... 144

ipol_flg ... 102

ipol_sem ... 91

iprcv_dtq ... 116

iprcv_mbx ... 126

ipsnd_dtq ... 110

iref_cyc ... 156

iref_dtq ... 119

iref_flg ... 106

iref_mbx ... 130

iref_mpf ... 148

iref_mtx ... 139

iref_sem ... 94

iref_tsk ... 73

irel_mpf ... 147

irel_wai ... 81

irot_rdq ... 159

irsm_tsk ... 84

iset_flg ... 97

iset_tim ... 151

isig_sem ... 88

isnd_mbx ... 122

ista_cyc ... 153

istp_cyc ... 155

isus_tsk ... 82

iunl_cpu ... 164

iwup_tsk ... 79

K

Kernel initialization module ... 39

L

loc_cpu ... 162

loc_mtx ... 133

M

Mailbox information ... 53, 199

Maximum priority information ... 188

Memory pool management functions ... 141

get_mpf ... 142

ipget_mpf ... 144

iref_mpf ... 148

irel_mpf ... 147

pget_mpf ... 144

ref_mpf ... 148

rel_mpf ... 147

RI850MP Ver.1.00.00 APPENDIX C INDEX

R20UT0519EJ0100 Rev.1.00 Page 212 of 218
Apr 01, 2011

tget_mpf ... 145

Message (no priority) ... 58

Message (with priority) ... 59

Mutex information ... 54, 200

O

Object attributes ... 44

Other constants ... 46

P

PE common boot processing ... 38

PE specific boot processing ... 38

pget_mpf ... 144

ploc_mtx ... 135

pol_flg ... 102

pol_sem ... 91

prcv_dtq ... 116

prcv_mbx ... 126

Processor element information ... 191

psnd_dtq ... 110

R

rcv_dtq ... 114

rcv_mbx ... 124

ref_cyc ... 156

ref_dtq ... 119

ref_flg ... 106

ref_mbx ... 130

ref_mpf ... 148

ref_mtx ... 139

ref_sem ... 94

ref_tsk ... 73

rel_mpf ... 147

rel_wai ... 81

Reset entry routines ... 37

Return values ... 43

RI850MP ... 12

RI series information ... 184

rot_rdq ... 159

rsm_tsk ... 84

S

SCT information ... 209

Section information ... 190

Semaphore information ... 50, 196

Service call reference ... 61

Service calls ... 40

Data macros ... 42

Data structures ... 47

Extended synchronization and communication

functions ... 132

Interrupt management functions ... 171

Memory pool management functions ... 141

Service call reference ... 61

Synchronization and communication functions (data

queues) ... 107

Synchronization and communication functions

(eventflags) ... 96

Synchronization and communication functions

(mailboxes) ... 121

Synchronization and communication functions

(semaphores) ... 87

System state management functions ... 158

Task dependent synchronization functions ... 75

Task management functions ... 63

Time management functions ... 150

set_flg ... 97

set_tim ... 151

sig_sem ... 88

slp_tsk ... 76

snd_dtq ... 108

snd_mbx ... 122

sns_ctx ... 167

sns_dpn ... 170

sns_dsp ... 169

sns_loc ... 168

sta_cyc ... 153

Static API information ... 193

CPU exception handler information ... 206

Cyclic handler information ... 203

Data queue information ... 198

Eventflag information ... 197

RI850MP Ver.1.00.00 APPENDIX C INDEX

R20UT0519EJ0100 Rev.1.00 Page 213 of 218
Apr 01, 2011

Fixed-sized memory pool information ... 201

Idle routine information ... 208

Initialization routine information ... 207

Interrupt handler information ... 205

Mailbox information ... 199

Mutex information ... 200

Semaphore information ... 196

Task information ... 194

stp_cyc ... 155

sus_tsk ... 82

Synchronization and communication functions (data

queues) ... 107

fsnd_dtq ... 113

ifsnd_dtq ... 113

iprcv_dtq ... 116

ipsnd_dtq ... 110

iref_dtq ... 119

prcv_dtq ... 116

psnd_dtq ... 110

rcv_dtq ... 114

ref_dtq ... 119

snd_dtq ... 108

trcv_dtq ... 117

tsnd_dtq ... 111

Synchronization and communication functions

(eventflags) ... 96

clr_flg ... 99

iclr_flg ... 99

ipol_flg ... 102

iref_flg ... 106

iset_flg ... 97

pol_flg ... 102

ref_flg ... 106

set_flg ... 97

twai_flg ... 104

wai_flg ... 100

Synchronization and communication functions

(mailboxes) ... 121

iprcv_mbx ... 126

iref_mbx ... 130

isnd_mbx ... 122

prcv_mbx ... 126

rcv_mbx ... 124

ref_mbx ... 130

snd_mbx ... 122

trcv_mbx ... 128

Synchronization and communication functions

(semaphores) ... 87

ipol_sem ... 91

iref_sem ... 94

isig_sem ... 88

pol_sem ... 91

ref_sem ... 94

sig_sem ... 88

twai_sem ... 92

wai_sem ... 89

System configuration management functions ... 30

User-own coding modules ... 30

System information ... 184

Base clock cycle information ... 185

Floating-point setting/status register information

 ... 189

Maximum priority information ... 188

Processor element information ... 191

RI series information ... 184

Section information ... 190

System stack information ... 187

Timer interrupt information ... 186

System initialization routine ... 36

Boot processing ... 38

Initialization routine ... 39

Kernel initialization module ... 39

Reset entry routines ... 37

System stack information ... 187

System state management functions ... 158

dis_dsp ... 165

ena_dsp ... 166

get_tid ... 161

iget_tid ... 161

iloc_cpu ... 162

irot_rdq ... 159

iunl_cpu ... 164

RI850MP Ver.1.00.00 APPENDIX C INDEX

R20UT0519EJ0100 Rev.1.00 Page 214 of 218
Apr 01, 2011

loc_cpu ... 162

rot_rdq ... 159

sns_ctx ... 167

sns_dpn ... 170

sns_dsp ... 169

sns_loc ... 168

unl_cpu ... 164

System time ... 60

T

Task dependent synchronization functions ... 75

can_wup ... 80

dly_tsk ... 86

frsm_tsk ... 85

ican_wup ... 80

ifrsm_tsk ... 85

irel_wai ... 81

irsm_tsk ... 84

isus_tsk ... 82

iwup_tsk ... 79

rel_wai ... 81

rsm_tsk ... 84

slp_tsk ... 76

sus_tsk ... 82

tslp_tsk ... 77

wup_tsk ... 79

Task information ... 47, 194

Task management functions ... 63

act_tsk ... 64

can_act ... 66

chg_pri ... 69

ext_tsk ... 67

get_pri ... 72

iact_tsk ... 64

ican_act ... 66

ichg_pri ... 69

iget_pri ... 72

iref_tsk ... 73

ref_tsk ... 73

ter_tsk ... 68

Task request conditions ... 44

Task wait causes ... 45

Task wait time ... 44

ter_tsk ... 68

tget_mpf ... 145

Time management functions ... 150

get_tim ... 152

iget_tim ... 152

iref_cyc ... 156

iset_tim ... 151

ista_cyc ... 153

istp_cyc ... 155

ref_cyc ... 156

set_tim ... 151

sta_cyc ... 153

stp_cyc ... 155

Timer interrupt information ... 186

tloc_mtx ... 136

trcv_dtq ... 117

trcv_mbx ... 128

tslp_tsk ... 77

tsnd_dtq ... 111

twai_flg ... 104

twai_sem ... 92

U

unl_cpu ... 164

unl_mtx ... 138

User-own coding modules ... 25, 30

Disable interrupt routine ... 27

Enable interrupt routine ... 27

Interrupt mask acquisition routine ... 26

Interrupt mask logical OR routine ... 25

Interrupt mask overwrite routine ... 26

W

wai_flg ... 100

wai_sem ... 89

wup_tsk ... 79

Revision Record

Rev. Date
Description

Page Summary

1.00 Apr 01, 2011 - First Edition issued

RI850MP
User’s Manual: Coding

Publication Date: Rev.1.00 Apr 01, 2011

Published by: Renesas Electronics Corporation

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2011 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

RI850MP

R20UT0519EJ0100

	COVER
	How to Use This Manual
	CHAPTER 1 GENERAL
	1.1 Outline

	CHAPTER 2 TASK MANAGEMENT FUNCTIONS
	2.1 Outline
	2.2 Tasks
	2.2.1 Task states
	2.2.2 Task priorities
	2.2.3 Basic format of tasks
	2.2.4 Task creation

	CHAPTER 3 TASK DEPENDENT SYNCHRONIZATION FUNCTIONS
	3.1 Outline

	CHAPTER 4 SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	4.1 Outline
	4.2 Semaphores
	4.2.1 Semaphore creation

	4.3 Eventflags
	4.3.1 Eventflag creation

	4.4 Data Queues
	4.4.1 Data queue creation

	4.5 Mailboxes
	4.5.1 Mailbox creation

	CHAPTER 5 EXTENDED SYNCHRONIZATION AND COMMUNICATION FUNCTIONS
	5.1 Outline
	5.2 Mutexes
	5.2.1 Mutex creation

	CHAPTER 6 MEMORY POOL MANAGEMENT FUNCTIONS
	6.1 Outline
	6.2 Fixed-Sized Memory Pool
	6.2.1 Fixed-sized memory pool creation

	CHAPTER 7 TIME MANAGEMENT FUNCTIONS
	7.1 Outline
	7.2 Timer Interrupts
	7.2.1 Registration of timer interrupts

	7.3 Cyclic Handler
	7.3.1 Cyclic handler states
	7.3.2 Basic format of cyclic handlers
	7.3.3 Cyclic handler registration

	CHAPTER 8 SYSTEM STATE MANAGEMENT FUNCTIONS
	8.1 Outline

	CHAPTER 9 INTERRUPT MANAGEMENT FUNCTIONS
	9.1 Outline
	9.2 User-Own Coding Modules
	9.2.1 Interrupt mask logical OR routine
	9.2.2 Interrupt mask acquisition routine
	9.2.3 Interrupt mask overwrite routine
	9.2.4 Disable interrupt routine
	9.2.5 Enable interrupt routine
	9.2.6 Interrupt entry routine

	9.3 Interrupt Handlers
	9.3.1 Basic format of interrupt handlers
	9.3.2 Interrupt handler registration

	CHAPTER 10 SYSTEM CONFIGURATION MANAGEMENT FUNCTIONS
	10.1 Outline
	10.2 User-Own Coding Modules
	10.2.1 CPU exception entry routine

	10.3 CPU Exception Handlers
	10.3.1 Basic format of CPU exception handlers
	10.3.2 CPU exception handler registration

	10.4 Initialization Routine
	10.4.1 Basic format of initialization routines
	10.4.2 Initialization routine registration

	CHAPTER 11 SCHEDULER
	11.1 Outline
	11.2 Drive Method
	11.3 Scheduling Methods
	11.4 Ready Queue
	11.4.1 Ready queue creation

	11.5 Scheduling Lock Function
	11.6 Idle Routine
	11.6.1 Basic format of idle routine
	11.6.2 Idle routine registration

	CHAPTER 12 SYSTEM INITIALIZATION ROUTINE
	12.1 Outline
	12.2 User-Own Coding Modules
	12.2.1 Reset entry routines
	12.2.2 Boot processing

	12.3 Kernel Initialization Module
	12.4 Initialization Routine

	CHAPTER 13 SERVICE CALLS
	13.1 Outline
	13.1.1 Calling a service call

	13.2 Data Macros
	13.2.1 Data types
	13.2.2 Return values
	13.2.3 Object attributes
	13.2.4 Task wait time
	13.2.5 Task request conditions
	13.2.6 Current task status
	13.2.7 Task wait causes
	13.2.8 Current state of cyclic handler
	13.2.9 Other constants
	13.2.10 Conditional compilation macros

	13.3 Data Structures
	13.3.1 Task information T_RTSK
	13.3.2 Semaphore information T_RSEM
	13.3.3 Eventflag information T_RFLG
	13.3.4 Data queue information T_RDTQ
	13.3.5 Mailbox information T_RMBX
	13.3.6 Mutex information T_RMTX
	13.3.7 Fixed-sized memory pool information T_RMPF
	13.3.8 Cyclic handler information T_RCYC
	13.3.9 Message (no priority) T_MSG
	13.3.10 Message (with priority) T_MSG_PRI
	13.3.11 System time SYSTIM

	13.4 Service Call Reference
	13.4.1 Task management functions
	act_tsk
	iact_tsk
	can_act
	ican_act
	ext_tsk
	ter_tsk
	chg_pri
	ichg_pri
	get_pri
	iget_pri
	ref_tsk
	iref_tsk

	13.4.2 Task dependent synchronization functions
	slp_tsk
	tslp_tsk
	wup_tsk
	iwup_tsk
	can_wup
	ican_wup
	rel_wai
	irel_wai
	sus_tsk
	isus_tsk
	rsm_tsk
	irsm_tsk
	frsm_tsk
	ifrsm_tsk
	dly_tsk

	13.4.3 Synchronization and communication functions (semaphores)
	sig_sem
	isig_sem
	wai_sem
	pol_sem
	ipol_sem
	twai_sem
	ref_sem
	iref_sem

	13.4.4 Synchronization and communication functions (eventflags)
	set_flg
	iset_flg
	clr_flg
	iclr_flg
	wai_flg
	pol_flg
	ipol_flg
	twai_flg
	ref_flg
	iref_flg

	13.4.5 Synchronization and communication functions (data queues)
	snd_dtq
	psnd_dtq
	ipsnd_dtq
	tsnd_dtq
	fsnd_dtq
	ifsnd_dtq
	rcv_dtq
	prcv_dtq
	iprcv_dtq
	trcv_dtq
	ref_dtq
	iref_dtq

	13.4.6 Synchronization and communication functions (mailboxes)
	snd_mbx
	isnd_mbx
	rcv_mbx
	prcv_mbx
	iprcv_mbx
	trcv_mbx
	ref_mbx
	iref_mbx

	13.4.7 Extended synchronization and communication functions
	loc_mtx
	ploc_mtx
	tloc_mtx
	unl_mtx
	ref_mtx
	iref_mtx

	13.4.8 Memory pool management functions
	get_mpf
	pget_mpf
	ipget_mpf
	tget_mpf
	rel_mpf
	irel_mpf
	ref_mpf
	iref_mpf

	13.4.9 Time management functions
	set_tim
	iset_tim
	get_tim
	iget_tim
	sta_cyc
	ista_cyc
	stp_cyc
	istp_cyc
	ref_cyc
	iref_cyc

	13.4.10 System state management functions
	rot_rdq
	irot_rdq
	get_tid
	iget_tid
	loc_cpu
	iloc_cpu
	unl_cpu
	iunl_cpu
	dis_dsp
	ena_dsp
	sns_ctx
	sns_loc
	sns_dsp
	sns_dpn

	13.4.11 Interrupt management functions
	dis_int
	ena_int
	chg_ipm
	ichg_ipm
	get_ipm
	iget_ipm

	APPENDIX A CONFIGURATOR
	A.1 Outline
	A.2 Activation Method
	A.2.1 Activating from command line
	A.2.2 Activating from CubeSuite+

	A.3 Command File

	APPENDIX B CONFIGURATION FILE
	B.1 Outline
	B.1.1 Configuration Information

	B.2 Declarative Information
	B.2.1 Header file declaration

	B.3 System Information
	B.3.1 RI series information
	B.3.2 Base clock cycle information
	B.3.3 Timer interrupt information
	B.3.4 System stack information
	B.3.5 Maximum priority information
	B.3.6 Floating-point setting/status register information
	B.3.7 Section information
	B.3.8 Processor element information

	B.4 Domain Information
	B.5 Static API Information
	B.5.1 Task information
	B.5.2 Semaphore information
	B.5.3 Eventflag information
	B.5.4 Data queue information
	B.5.5 Mailbox information
	B.5.6 Mutex information
	B.5.7 Fixed-sized memory pool information
	B.5.8 Cyclic handler information
	B.5.9 Interrupt handler information
	B.5.10 CPU exception handler information
	B.5.11 Initialization routine information
	B.5.12 Idle routine information

	B.6 SCT Information

	APPENDIX C INDEX

