RH850 Evaluation Platform # RH850/F1H 272-pin PiggyBack board V1 Y-RH850-F1X-272PIN-PB-T1-V1 All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Technology Corp. website (http://www.renesas.com). The newest version of this document can be obtained from the following web location http://www.renesas.eu/updates?oc=Y-RH850-F1X-272PIN-PB-T1-V1 ## **Table of Contents** | Chapter 1 | Introduction | 3 | |-----------|---------------------------------|----| | Chapter 2 | Overview | 4 | | 2.1 | Overview | | | 2.2 | Mounting of the device | | | Chapter 3 | Power supply | 6 | | 3.1 | Board power connection | | | 3.1 | Voltage distribution | | | Chapter 4 | Clock sources | 8 | | 4.1.1 | MainOsc | | | 4.1.2 | SubOSC | | | Chapter 5 | Debug and Programming interface | 9 | | Chapter 6 | Connectors for ports of device | 10 | | 6.1 | Push button for RESET | | | 6.2 | Connectors to MainBoard | 11 | | 6.2.1 | Connector CN1 | 11 | | 6.2.2 | Connector CN2 | 13 | | 6.2.3 | Connector CN3 | 14 | | Chapter 7 | Mechanical dimensions | 16 | | Chapter 8 | Schematic | 17 | | Chapter 9 | Revision History | 20 | | | | | ## **Chapter 1 Introduction** The RH850/F1x Application Board is part of the RH850 Evaluation Platform and serves as a simple and easy to use platform for evaluating the features and performance of Renesas Electronics 32-bit RH850/F1x microcontrollers. The piggyback board (Y-RH850-F1X-272PIN-PB-T1-V1) can be used as a standalone board, or can be mated with a mainboard (e.g. Y-RH850-X1X-MB-T1-V1) for extended functionality. #### Main features: - Socket for mounting of device - Standalone operation of the board - Direct supply of device voltage (typ. 3.3V-5.0V) - Device programming capability - Device debugging capability - Pin headers for direct access to each device pin - Reset switch - MainOSC and SubOSC circuitry - · Connectors to MainBoard This document describes the functionality provided by the piggyback board and guides the user through its operation. For details regarding the operation of the microcontroller, refer to the RH850/F1H User Manual. ## **Chapter 2 Overview** #### 2.1 Overview Figures 1 and 2 provide the views of the Piggyback Board. Device pin #A1 Figure 1 – PiggyBoard top view Figure 2 – PiggyBoard bottom view ## 2.2 Mounting of the device The board is designed for use with the following devices: • RH850/F1H-272 The device must be placed inside the socket IC1. To insert the device, press down the lid, align the #A1 pin of the device to the #A1pin of the socket, insert the device inside the socket and release the lid. ### **Chapter 3 Power supply** #### 3.1 Board power connection For operation of the device, a supply voltage must be connected to the board. Though a single supply voltage is sufficient for the operation of the device, two (different) voltages can be supplied to the board. Within this document the following voltages are considered as 'typical' connections: Voltage1 = 5.0V Voltage2 = 3.3V The following connectors are available to supply those voltages: - Three 4mm 'banana-type' connectors: - Two red connectors for voltages Voltage1 (CN54) and Voltage2 (CN17). - A black connector for VSS connection (CN10). **Note:** The three connectors are supplied with the board but not assembled. - The E1 emulator that is used for debug purposes and flash programming can also supply a single operating voltage ('Dbg_Voltage'). The voltage is programmable via the E1 GUI as 3.3 or 5.0V (typ). See the documentation of the E1 and chapter 5 'Debug and Programming interface' for details. - In case the PiggyBoard is mounted on a MainBoard, the voltages Voltage1 and Voltage2 are supplied by the on-board regulators of the MainBoard. **NOTE:** Do not supply any voltage directly to the PiggyBoard in case it is mounted on the MainBoard. For each of the two voltages, 'Voltage 1 ' and 'Voltage 2', a green LED (LED1 and LED2) is available to signal that the related voltage is available on the PiggyBoard. ## 3.2 Voltage distribution The table shows the required device power supply pins and their function: | Device supply pin | Function | |-------------------|---| | REGVDD | Supply for the device <u>internal regulators</u> for the digital logic. | | EVDD | Supply for ports. | | BVDD | Supply for ports. | | A0VREF | Supply for ports and analog functions of ADC0. | | A1VREF | Supply for ports and analog functions of ADC1. | | VDDIOF | IO supply voltage for the Mainboard. | For each of the above voltages, the voltage source can be selected from Voltage1 (typ. 5.0V) or Voltage2 (typ. 3.3V) by the jumpers JP1-JP6, JP7, respectively the jumpers JP0, JP9. ## **Chapter 4 Clock sources** Three external crystal oscillators for the device clock supply are provided with the board. #### 4.1.1 MainOsc A crystal or ceramic resonator in the range of 8MHz to 24MHz can be mounted on socket X1. A 8MHz and a 16Mhz oscillator is supplied with the board. #### 4.1.2 SubOSC An oscillator with a frequency of 32.768kHz is supplied with the board and can be soldered into the connector X2. ## **Chapter 5 Debug and Programming interface** For connection of the microcontroller debug and flash programming tools, the connector CN19 is provided. The signal connection of the connector CN19 is shown in the picture below: | CN19 pin | Device Port | Device signal | |----------|---------------|-----------------------| | 1 | JP0_2 | DCUTCK / LPDCLK | | 2 | GND | GND | | 3 | JP0_4 | DCUTRST | | 4 | FLMD0 | FLMD0 | | 5 | JP0_1 | DCUTDO / LPDO | | 6 | P10_8* | FLMD1 | | 7 | JP0_0 | DCUTDI / LPDI | | 8 | 'Dbg_Voltage' | - | | 9 | JP0_3 | DCUTMS | | 10 | - | - | | 11 | JP0_5 | DCURDY /
LPDCLKOUT | | 12 | GND | - | | 13 | RESET | - | | 14 | GND | - | ^{*} In case the FLMD1 signal must be controlled by the debug/programming tool, the pin header JP11 must be closed. The 'Dbg_Voltage' (on CN19 pin 8) is monitored or supplied by the debug and flash programming tools. Therefore, it is necessary to select either Voltage1 (5V) or the Voltage2 (3.3V) by pin header JP10: | JP10 pin | Selection for Dbg_Voltage | | |----------|---------------------------|--| | 1-2 | 5V is selected | | | 2-3 | 3.3V is selected | | # **Chapter 6 Trace interface** For connection of a trace tool the connector CN15 is provided. The signal connection of the connector CN15 is shown in the picture below: | CN15
Pin | Function | Device pin | CN15
Pin | Function | Device pin | |-------------|-----------|------------|-------------|-----------|------------| | 1 | MDO12 | P22_12 | 2 | MDO13 | P22_13 | | 3 | MDO14 | P22_14 | 4 | MDO15 | P22_15 | | 5 | MDO09 | P22_9 | 6 | - | - | | 7 | | - | 8 | MDO08 | P22_8 | | 9 | DBG-RESET | _RESET | 10 | EVTI- | - | | 11 | DBG-TDO | JP0_1 | 12 | VTREF | - | | 13 | MDO10 | P22_10 | 14 | (DBG-RDY) | JP0_5 | | 15 | DBG-TCK | JP0_2 | 16 | MDO07 | P22_7 | | 17 | DBG-TMS | JP0_3 | 18 | MDO06 | P22_6 | | 19 | DBG-TDI | JP0_0 | 20 | MDO05 | P22_5 | | 21 | DBG_TRST | JP0_4 | 22 | MDO04 | P22_4 | | 23 | MDO11 | P22_11 | 24 | MDO03 | P22_3 | | 25 | - | - | 26 | MDO02 | P22_2 | | 27 | | - | 28 | MDO01 | P22_1 | | 29 | FLMD2 | - | 30 | MDO00 | P22_0 | | 31 | - | - | 32 | EVTO- | JP0_6 | | 33 | FLMD1 | P10_8 | 34 | MCKO | P21_4 | | 35 | - | - | 36 | MSEO1- | P21_3 | | 37 | FLMD0 | FLMD0 | 38 | MSEO0- | P21_2 | ## **Chapter 7 Connectors for ports of device** Connection to each pin of the device is possible via the connectors CN5 to CN8. Note: The pin headers are directly connected to the pins, therefore special care must be taken to avoid any electrostatic or other damage to the device. #### 7.1 Push button for RESET In order to issue a RESET to the device, the push-button SW1 is available. #### 7.2 Connectors to MainBoard Three connectors (CN1 to CN3) are available to connect the PiggyBoard to a MainBoard. The signal connection of each connector is described in the following tables: #### 7.2.1 Connector CN1 | Pin | Function | Device Port | Pin | Function | Device Port | |-----|-----------|-------------|-----|-----------|-------------| | 1 | VOLTAGE1 | - | 2 | VOLTAGE1 | - | | 3 | VOLTAGE1 | - | 4 | VOLTAGE1 | - | | 5 | RESET | _RESET | 6 | NMI | P9_0 | | 7 | WAKE | - | 8 | - | - | | 9 | INT0 | P9_1 | 10 | INT1 | P0_6 | | 11 | INT2 | P9_2 | 12 | INT3 | P9_3 | | 13 | - | - | 14 | - | - | | 15 | UART0TX | P10_10 | 16 | UART1TX | P0_5 | | 17 | UART0RX | P10_9 | 18 | UART1RX | P0_4 | | 19 | LIN0TX | P10_10 | 20 | LIN1TX | P0_8 | | 21 | LIN0RX | P10_9 | 22 | LIN1RX | P0_7 | | 23 | IIC0SDL | P10_3 | 24 | IIC1SDL | - | | 25 | IIC0SDA | P10_2 | 26 | IIC1SDA | - | | 27 | CAN0TX | P10_1 | 28 | CAN1TX | P0_3 | | 29 | CAN0RX | P10_0 | 30 | CAN1RX | P0_2 | | 31 | SENTIN0 | - | 32 | SENTIN1 | - | | 33 | SENTOUT0 | - | 34 | SENTOUT1 | - | | 35 | PSI50Rx | • | 36 | PSI51Rx | 1 | | 37 | PSI50Tx | - | 38 | PSI51Tx | - | | 39 | PSI50Snyc | - | 40 | PSI51Sync | - | | 41 | FLX0TX | P11_1 | 42 | FLX0EN | P10_11 | | 43 | FLX0RX | P10_14 | 44 | FLXSTPWT | P10_12 | | 45 | FLX1TX | P10_8 | 46 | FX1EN | P10_13 | | 49 - - 50 - - 51 ETHOMDIO P12_4 52 ETHOMDC P12_5 53 ETHORXD0 P10_1 54 EHOTXD0 P18_1 55 ETHORXD1 P10_2 56 EHOTXD1 P18_2 57 ETHORXD2 P10_4 58 EHOTXD2 P18_3 59 ETHORXD3 P10_5 60 EHOTXD3 P18_4 61 ETHORXDCLK P10_0 62 ETHOTXCLK P18_7 61 ETHORXER P11_14 64 ETHOTXER P18_6 65 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORSET P2_6 70 ETHOLINK P18_0 67 ETHORSET P2_6 70 ETHOLINK P18_0 61 ETHORSET P2_6 70 ETHOLINK P18_0 67 ETHORSET P2_6 70 ETHOLINK P18_0 70 | 47 | FLVADV | D40 0 | 40 | EVACUE | D40 40 | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------|--------|-----|-----------|--------| | 51 ETHOMDIO P12_4 52 ETHOMDC P12_5 53 ETHORXDO P10_1 54 EHOTXDO P18_1 55 ETHORXD1 P10_2 56 EHOTXD1 P18_2 57 ETHORXD2 P10_4 58 EHOTXD2 P18_3 59 ETHORXD3 P10_5 60 EHOTXD3 P18_4 61 ETHORXDCLK P10_0 62 ETHOTXCLK P18_7 63 ETHORXER P11_14 64 ETHOTXER P18_6 65 ETHORXDV P11_13 66 ETHOTXEN P18_5 67 ETHORSET P2_6 70 ETHOLINK P18_0 67 ETHORSET P2_6 70 ETHOLINK P18_0 71 - - 74 USBOUDMF - 76 USBOUDMH - 75 USBOUDMF - 76 USBOUDMH - - 79 - - 76 USBOUDMH | 47 | FLX1RX | P10_9 | 48 | FX1CLK | P10_10 | | 53 ETHORXDO P10_1 54 EHOTXDO P18_1 55 ETHORXD1 P10_2 56 EHOTXD1 P18_2 57 ETHORXD2 P10_4 58 EHOTXD2 P18_3 59 ETHORXD3 P10_5 60 EHOTXD3 P18_4 61 ETHORXDCLK P10_0 62 ETHOTXCLK P18_7 63 ETHORXER P11_14 64 ETHOTXER P18_6 65 ETHOCRSDV P11_13 66 ETHOTXEN P18_5 67 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 76 USBOUDMH - 75 USBOUDMF - 76 USBOUDMH - 77 - - 78 - - 79 - | | - | - | | - | - | | 55 ETHORXD1 P10_2 56 EHOTXD1 P18_2 57 ETHORXD2 P10_4 58 EHOTXD2 P18_3 59 ETHORXD3 P10_5 60 EHOTXD3 P18_4 61 ETHORXDCLK P10_0 62 ETHOTXCLK P18_7 63 ETHORXER P11_11 64 ETHOTXER P18_5 65 ETHOCRSDV P11_11 68 ETHOCOL P11_10 69 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 74 USBOUDPH - 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 81 - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<> | | | | | | | | 57 ETHORXD2 P10_4 58 EHOTXD2 P18_3 59 ETHORXD3 P10_5 60 EHOTXD3 P18_4 61 ETHORXDCLK P10_0 62 ETHOTXCLK P18_7 63 ETHORXER P11_14 64 ETHOTXER P18_6 65 ETHORXDV P11_13 66 ETHOTXEN P18_5 67 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 74 USBOUDHH - 75 USBOUDPF - 76 USBOUDHH - 77 - - 78 - - 81 - - 80 - - 81 - - 84 - - 85 DIGIO_0 P8_0 86 | | | P10_1 | 54 | | P18_1 | | 59 ETHORXD3 P10_5 60 EHOTXD3 P18_4 61 ETHORXDCLK P10_0 62 ETHOTXCLK P18_7 63 ETHORXER P11_14 64 ETHOTXER P18_6 65 ETHORXDV P11_13 66 ETHOTXEN P18_5 67 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 74 USBOUDPH - 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 81 - - 78 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 <t< td=""><td>55</td><td>ETH0RXD1</td><td>P10_2</td><td>56</td><td>EH0TXD1</td><td>P18_2</td></t<> | 55 | ETH0RXD1 | P10_2 | 56 | EH0TXD1 | P18_2 | | 61 ETHORXDCLK P10_0 62 ETHOTXCLK P18_7 63 ETHORXER P11_14 64 ETHOTXER P18_6 65 ETHOCRSDV P11_13 66 ETHOTXEN P18_5 67 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 74 USBOUDPH - 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 79 - - 80 - - 81 - - 82 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 | 57 | ETH0RXD2 | P10_4 | 58 | EH0TXD2 | P18_3 | | 63 ETHORXER P11_14 64 ETHOTXER P18_6 65 ETHOCRSDV P11_13 66 ETHOTXEN P18_5 67 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 74 USBOUDPH - 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 79 - - 80 - - 79 - - 80 - - 81 - - 84 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_5 <td>59</td> <td>ETH0RXD3</td> <td>P10_5</td> <td>60</td> <td>EH0TXD3</td> <td>P18_4</td> | 59 | ETH0RXD3 | P10_5 | 60 | EH0TXD3 | P18_4 | | 65 ETHOCRSDV P11_13 66 ETHOTXEN P18_5 67 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 74 USBOUDHH - 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 79 - - 80 - - - 79 - - 80 - - - - 81 - - 82 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | 61 | ETH0RXDCLK | P10_0 | 62 | ETH0TXCLK | P18_7 | | 67 ETHORXDV P11_11 68 ETHOCOL P11_10 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 74 USBOUDPH - 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 79 - - 80 - - 81 - - 82 - - 81 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_1 | 63 | ETH0RXER | P11_14 | 64 | ETH0TXER | P18_6 | | 69 ETHORESET P2_6 70 ETHOLINK P18_0 71 - - 72 - - 73 USBOUDMF - 74 USBOUDPH - 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 79 - - 80 - - 81 - - 82 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_5 91 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 </td <td>65</td> <td>ETH0CRSDV</td> <td>P11_13</td> <td>66</td> <td>ETH0TXEN</td> <td>P18_5</td> | 65 | ETH0CRSDV | P11_13 | 66 | ETH0TXEN | P18_5 | | 71 - - 72 - - 73 USBOUDMF - 76 USBOUDPH - - 75 USBOUDPF - 76 USBOUDPH - - 77 - - 80 - - - 81 - - 82 - - - 81 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - | 67 | ETH0RXDV | P11_11 | 68 | ETH0COL | P11_10 | | 73 USBOUDMF - 74 USBOUDPH - 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 79 - - 80 - - 81 - - 82 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_3 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 | 69 | ETH0RESET | P2_6 | 70 | ETH0LINK | P18_0 | | 75 USBOUDPF - 76 USBOUDPH - 77 - - 78 - - 79 - - 80 - - 81 - - 82 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_3 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10 | 71 | - | - | 72 | - | - | | 77 - - 78 - - 79 - - 80 - - 81 - - 82 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_3 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 < | 73 | USB0UDMF | - | 74 | USB0UDMH | - | | 79 - 80 - - 81 - - 82 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_3 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - </td <td>75</td> <td>USB0UDPF</td> <td>-</td> <td>76</td> <td>USB0UDPH</td> <td>-</td> | 75 | USB0UDPF | - | 76 | USB0UDPH | - | | 81 - - 82 - - 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_3 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 | 77 | - | - | 78 | - | - | | 83 - - 84 - - 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_3 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 <td< td=""><td>79</td><td>-</td><td>-</td><td>80</td><td>-</td><td>-</td></td<> | 79 | - | - | 80 | - | - | | 85 DIGIO_0 P8_0 86 DIGIO_1 P8_1 87 DIGIO_2 P8_2 88 DIGIO_3 P8_3 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4< | 81 | - | - | 82 | - | - | | 87 DIGIO_2 P8_2 88 DIGIO_3 P8_3 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 <td>83</td> <td>-</td> <td>-</td> <td>84</td> <td>-</td> <td>-</td> | 83 | - | - | 84 | - | - | | 89 DIGIO_4 P8_4 90 DIGIO_5 P8_5 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - | 85 | DIGIO_0 | P8_0 | 86 | DIGIO_1 | P8_1 | | 91 DIGIO_6 P8_6 92 DIGIO_7 P11_0 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - | 87 | DIGIO_2 | P8_2 | 88 | DIGIO_3 | P8_3 | | 93 DIGIO_8 P10_0 94 DIGIO_9 P10_7 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 89 | DIGIO_4 | P8_4 | 90 | DIGIO_5 | P8_5 | | 95 DIGIO_10 P10_8 96 DIGIO_11 P10_15 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 91 | DIGIO_6 | P8_6 | 92 | DIGIO_7 | P11_0 | | 97 DIGIO_12 P0_9 98 DIGIO_13 P0_10 99 DIGIO_14 P0_11 100 DIGIO_15 P0_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 93 | DIGIO_8 | P10_0 | 94 | DIGIO_9 | P10_7 | | 99 DIGIO_14 PO_11 100 DIGIO_15 PO_12 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 95 | DIGIO_10 | P10_8 | 96 | DIGIO_11 | P10_15 | | 101 - - 102 - - 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 97 | DIGIO_12 | P0_9 | 98 | DIGIO_13 | P0_10 | | 103 MUX0 P10_4 104 MUX1 P10_5 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 99 | DIGIO_14 | P0_11 | 100 | DIGIO_15 | P0_12 | | 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 101 | - | - | 102 | - | - | | 105 MUX2 P10_6 106 - - 107 ADC0 AP0_0 108 ADC1 AP0_1 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 103 | MUX0 | P10_4 | 104 | MUX1 | P10_5 | | 109 ADC2 APO_2 110 ADC3 APO_3 111 ADC4 APO_4 112 ADC5 APO_5 113 ADC6 APO_6 114 ADC7 APO_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 105 | | | 106 | - | - | | 109 ADC2 AP0_2 110 ADC3 AP0_3 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 107 | ADC0 | AP0_0 | 108 | ADC1 | AP0_1 | | 111 ADC4 AP0_4 112 ADC5 AP0_5 113 ADC6 AP0_6 114 ADC7 AP0_7 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 109 | | | 110 | ADC3 | | | 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 111 | ADC4 | AP0_4 | 112 | ADC5 | AP0_5 | | 115 VDDIOF - 116 VDDIOF - 117 VOLTAGE2 - 118 VOLTAGE2 - | 113 | ADC6 | AP0_6 | 114 | ADC7 | AP0_7 | | 117 VOLTAGE2 - 118 VOLTAGE2 - | - | | _ | | | | | | | | - | | | - | | | 119 | VOLTAGE2 | - | 120 | VOLTAGE2 | - | #### 7.2.2 Connector CN2 | Pin | Function | Device Port | Pin | Function | Device Port | |-----|----------|-------------|-----|----------|-------------| | 1 | CAN2Tx | P12_0 | 2 | CAN3Tx | P1_3 | | 3 | CAN2Rx | P11_15 | 4 | CAN3Rx | P1_2 | | 5 | CAN4Tx | P1_13 | 6 | CAN5Tx | P11_6 | | 7 | CAN4Rx | P1_12 | 8 | CAN5Rx | P11_5 | | 9 | LIN2Tx | P0_10 | 10 | LIN3Tx | P1_15 | | 11 | LIN2Rx | P0_9 | 12 | LIN3Rx | P1_14 | | 13 | LIN4Tx | P1_11 | 14 | LIN5Tx | P1_7 | | 15 | LIN4Rx | P1_10 | 16 | LIN5Rx | P1_6 | | 17 | LIN6Tx | P0_12 | 18 | LIN7Tx | P12_4 | | Q | LIN6Rx | P0_11 | 20 | LIN7Rx | P12_3 | | 21 | LIN8Tx | P2_3 | 22 | LIN9Tx | P2_5 | | 23 | LIN8Rx | P2_2 | 24 | LIN9Rx | P2_4 | | 25 | LIN10Tx | P10_10 | 26 | LIN11Tx | P0_5 | | 27 | LIN10Rx | P10_9 | 28 | LIN11Rx | P0_4 | | 29 | LIN12Tx | P0_14 | 30 | LIN13Tx | P1_1 | | 31 | LIN12Rx | P0_13 | 32 | LIN13Rx | P1_0 | | 33 | LIN14Tx | P1_9 | 34 | LIN15Tx | P1_5 | | 35 | LIN14Rx | P1_8 | 36 | LIN15Rx | P1_4 | | 37 | - | - | 38 | - | - | | 39 | - | - | 40 | - | - | | 41 | MLBCLK | - | 42 | MLBRESET | - | | 43 | MLBSIG | - | 44 | MLBDAT | - | | 45 | - | - | 46 | - | - | | 47 | - | - | 48 | - | - | | 49 | - | - | 50 | - | - | | 51 | - | - | 52 | - | - | | 53 | - | - | 54 | - | - | | 55 | - | - | 56 | - | - | | 57 | - | - | 58 | - | - | | 59 | - | - | 60 | - | - | | 61 | - | - | 62 | - | - | | 63 | - | - | 64 | - | - | | 65 | - | - | 66 | - | - | | 67 | - | - | 68 | - | - | | 69 | - | - | 70 | - | - | | 71 | - | - | 72 | - | - | | 73 | - | - | 74 | - | - | | 75 | - | - | 76 | - | - | | 77 | - | - | 78 | - | - | | 79 | - | - | 80 | - | - | | 81 | | | |-----|---|---| | 83 | - | - | | 85 | - | - | | 87 | - | - | | 89 | - | - | | 91 | - | - | | 93 | - | - | | 95 | - | - | | 97 | - | - | | 99 | - | - | | 101 | - | - | | 103 | - | - | | 105 | - | - | | 107 | - | - | | 109 | - | _ | | 111 | - | - | | 113 | | _ | | 115 | - | - | | 117 | • | - | | 119 | - | - | | | T | T | |-----|---|---| | 82 | - | - | | 84 | - | - | | 86 | - | - | | 88 | - | - | | 90 | - | - | | 92 | - | - | | 94 | - | - | | 96 | - | - | | 98 | - | - | | 100 | - | - | | 102 | - | - | | 104 | - | - | | 106 | - | - | | 108 | - | - | | 110 | - | - | | 112 | - | - | | 114 | - | - | | 116 | - | - | | 118 | - | - | | 120 | - | - | ## 7.2.3 Connector CN3 | Pin | Function | Device Port | |-----|----------|-------------| | 1 | PWM00 | P10_0 | | 3 | PWM02 | P10_2 | | 5 | PWM04 | P10_7 | | 7 | PWM06 | P10_9 | | 9 | PWM08 | P9_0 | | 11 | PWM10 | P0_4 | | 13 | PWM12 | P0_2 | | 15 | PWM14 | P8_0 | | 17 | PWM16 | P10_11 | | Q | PWM18 | P10_13 | | 21 | PWM20 | P9_2 | | 23 | PWM22 | P8_2 | | 25 | PWM24 | P10_15 | | 27 | PWM26 | P11_1 | | 29 | PWM28 | P11_3 | | 31 | PWM30 | P11_5 | | 33 | PWM32 | P11_7 | | 35 | PWM34 | - | | Pin | Function | Device Port | |-----|----------|-------------| | 2 | PWM01 | P10_1 | | 4 | PWM03 | P10_3 | | 6 | PWM05 | P10_8 | | 8 | PWM07 | P10_10 | | 10 | PWM09 | P9_1 | | 12 | PWM11 | P0_1 | | 14 | PWM13 | P0_3 | | 16 | PWM15 | P8_1 | | 18 | PWM17 | P10_12 | | 20 | PWM19 | P10_14 | | 22 | PWM21 | P9_3 | | 24 | PWM23 | P8_3 | | 26 | PWM25 | P11_0 | | 28 | PWM27 | P11_2 | | 30 | PWM29 | P11_4 | | 32 | PWM31 | P11_6 | | 34 | PWM33 | P9_4 | | 36 | PWM35 | - | | | | <u> </u> | | |-----|----------|----------|--| | 37 | PWM36 | P8_4 | | | 39 | PWM38 | P8_6 | | | 41 | PWM40 | P8_8 | | | 43 | PWM42 | P8_10 | | | 45 | PWM44 | P8_12 | | | 47 | PWM46 | P0_13 | | | 49 | PWM48 | P11_8 | | | 51 | PWM50 | P11_10 | | | 53 | PWM52 | P11_12 | | | 55 | PWM54 | P11_14 | | | 57 | PWM56 | P12_0 | | | 59 | PWM58 | P12_2 | | | 61 | PWM60 | P20_5 | | | 63 | PWM62 | P18_1 | | | 65 | PWM64 | P20_0 | | | 67 | PWM66 | P20_2 | | | 69 | PWM68 | P12_3 | | | 71 | PWM70 | P12_5 | | | 73 | PWM72 | P13 6 | | | 75 | PWM74 | P2_14 | | | 77 | PWM76 | P3_0 | | | 79 | PWM78 | P2 10 | | | 81 | PWMADC00 | AP0_8 | | | 83 | PWMADC02 | AP0_10 | | | 85 | PWMADC04 | AP0_12 | | | 87 | PWMADC06 | AP0_14 | | | 89 | PWMADC08 | AP1_0 | | | 91 | PWMADC10 | AP1_2 | | | 93 | PWMADC12 | AP1_4 | | | 95 | PWMADC14 | AP1_6 | | | 97 | - | - | | | 99 | - | - | | | 101 | - | - | | | 103 | - | - | | | 105 | - | - | | | 107 | - | - | | | 109 | - | - | | | 111 | - | - | | | 113 | - | - | | | 115 | - | - | | | 117 | - | - | | | 119 | - | - | | | | | l | | | 38 PWM37 P8_5 40 PWM39 P8_7 42 PWM41 P8_9 44 PWM43 P8_11 46 PWM45 P0_12 48 PWM47 P0_14 50 PWM49 P11_9 52 PWM51 P11_11 54 PWM53 P11_13 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 74 PWM73 P13_7 | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--| | 42 PWM41 P8_9 44 PWM43 P8_11 46 PWM45 P0_12 48 PWM47 P0_14 50 PWM49 P11_9 52 PWM51 P11_11 54 PWM53 P11_13 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 44 PWM43 P8_11 46 PWM45 P0_12 48 PWM47 P0_14 50 PWM49 P11_9 52 PWM51 P11_11 54 PWM53 P11_13 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 46 PWM45 P0_12 48 PWM47 P0_14 50 PWM49 P11_9 52 PWM51 P11_11 54 PWM53 P11_13 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 48 PWM47 P0_14 50 PWM49 P11_9 52 PWM51 P11_11 54 PWM53 P11_13 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 50 PWM49 P11_9 52 PWM51 P11_11 54 PWM53 P11_13 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 52 PWM51 P11_11 54 PWM53 P11_13 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 54 PWM53 P11_13 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 56 PWM55 P11_15 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 58 PWM57 P12_1 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 60 PWM59 P20_4 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 62 PWM61 P18_0 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 64 PWM63 P18_2 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 66 PWM65 P20_1 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 68 PWM67 P20_3 70 PWM69 P12_4 72 PWM71 P18_3 | | | 70 PWM69 P12_4 72 PWM71 P18_3 | | | 72 PWM71 P18_3 | | | | | | 7/ D\\/\M73 D13 7 | | | 74 1 VV IVI7 3 1 13_1 | | | 76 PWM75 P2_15 | | | 78 PWM77 P2_9 | | | 80 PWM79 P2_11 | | | 82 PWMADC01 AP0_9 | | | 84 PWMADC03 AP0_11 | | | 86 PWMADC05 AP0_13 | | | 88 PWMADC07 AP0_15 | | | 90 PWMADC09 AP1_1 | | | 92 PWMADC11 AP1_3 | | | 94 PWMADC13 AP1_5 | | | 96 PWMADC15 AP1_7 | | | 98 | | | 100 | | | 102 | | | 104 | | | 106 | | | 108 | | | 110 | | | 112 | | | 114 | | | 116 | | | 110 | | | 118 | | # **Chapter 8 Mechanical dimensions** # **Chapter 9 Schematic** # **Chapter 10 Revision History** The table provides information about the major changes of the document versions. | Date | Version | Description | |------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 2014-08-01 | 1.0 | Initial release | | 2015-10-21 | 1.1 | Updated description of chapter '3.2 Voltage distribution'. Updated schematic for improved readability (content unchanged). Updated description of CN1, pin115, pin 116, chapter 6.2.1. Updated description of CN19, pin6, chapter 5. | #### **Notice** - All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website. - 2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others. - 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. - 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information. - 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. - 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein. - 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc. - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots. - "High Quality":Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support. - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life. - 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges. - 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you. - 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. - 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics. - 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. - (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries. - (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.