

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

User’s Manual

Target Devices
 78K0R Microcontrollers

RA78K0R Ver. 1.20
Assembler Package

Language

Document No. U18546EJ1V0UM00 (1st edition)
Date Published October 2007

Printed in Japan
© NEC Electronics Corporation 2007

User’s Manual U18546EJ1V0UM 2

[MEMO]

User’s Manual U18546EJ1V0UM 3

Windows is either registered trademarks or trademarks of Microsoft Corporation in the United States

and/or other countries.

The information in this document is current as of October, 2007. The information is subject to
change without notice. For actual design-in, refer to the latest publications of NEC Electronics data
sheets or data books, etc., for the most up-to-date specifications of NEC Electronics products. Not
all products and/or types are available in every country. Please check with an NEC Electronics sales
representative for availability and additional information.
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may
appear in this document.
NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document
or any other liability arising from the use of such products. No license, express, implied or otherwise, is
granted under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these
circuits, software and information in the design of a customer's equipment shall be done under the full
responsibility of the customer. NEC Electronics assumes no responsibility for any losses incurred by
customers or third parties arising from the use of these circuits, software and information.
While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific".
The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-
designated "quality assurance program" for a specific application. The recommended applications of an NEC
Electronics product depend on its quality grade, as indicated below. Customers must check the quality grade of
each NEC Electronics product before using it in a particular application.

The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.

(Note)

•

•

•

•

•

•

M8E 02. 11-1

(1)

(2)

"NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
"NEC Electronics products" means any product developed or manufactured by or for NEC Electronics (as
defined above).

Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support).
Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems and medical equipment for life support, etc.

"Standard":

"Special":

"Specific":

User’s Manual U18546EJ1V0UM 4

[MEMO]

User’s Manual U18546EJ1V0UM 5

INTRODUCTION

This manual is designed to facilitate correct understanding of the basic functions of each program in the

RA78K0R Assembler Package (hereafter called RA78K0R) and the methods of describing source programs.

This manual does not cover how to operate the respective programs of the RA78K0R. Therefore, after you

have comprehended the contents of this manual, read the RA78K0R Ver. 1.20 Assembler Package Operation

User’s Manual (U18547E) (hereafter called Operation) to operate each program in the assembler package.

Descriptions related to the RA78K0R in this manual apply to Ver. 1.20 or later.

[Target Readers]

This manual is intended for user engineers who understand the functions and instructions of the microcontroller

(78K0R Microcontroller) subject to development.

[Organization]

This manual consists of the following six chapters and appendices:

CHAPTER 1 GENERAL

 Outlines all of the basic functions of the RA78K0R.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

 Outlines how to describe source programs, and explains the operators of the assembler.

CHAPTER 3 DIRECTIVES

 Explains how to write and use directives, including application examples.

CHAPTER 4 CONTROL INSTRUCTIONS

 Explains how to write and use control instructions, including application examples.

CHAPTER 5 MACROS

 Explains all macro functions, including macro definition, macro reference, and macro

expansion.

 Macro directives are explained in CHAPTER 3 DIRECTIVES.

CHAPTER 6 PRODUCT UTILIZATION

 Introduces some measures recommended for describing a source program.

APPENDIXES

 These contain a list of reserved words, a list of directives, and an index.

The instruction sets are not detailed in this manual. For these instructions, refer to the user’s manual of the

microcontroller for which software is being developed.

Also, for instructions on architecture, refer to the user's manual (hardware version) of each microcontroller for

which software is being developed.

User’s Manual U18546EJ1V0UM 6

[Macros]

Those using an assembler for the first time are encouraged to read from CHAPTER 1 GENERAL of this

manual. Those who have a general knowledge of assembler programs may skip CHAPTER 1 GENERAL of this

manual. However, be sure to read 1.2 Reminders Before Program Development and CHAPTER 2 HOW TO

DESCRIBE SOURCE PROGRAMS.

Those who wish to know the directives and control instructions of the assembler are encouraged to read

CHAPTERS 3 DIRECTIVES and 4 CONTROL INSTRUCTIONS, respectively. The format, function, use, and

application examples of each directive or control instruction are detailed in these chapters.

[Conventions]

The following symbols and abbreviations are used throughout this manual:

 : Same format is repeated.

[]: Characters enclosed in these brackets can be omitted.

{ }: One of the items in { } is selected.

“ ”: Characters enclosed in “ ”(quotation marks) are a character string.

‘ ’: Characters enclosed in ‘ ’ (single quotation marks) are a character string.

(): Characters between parentheses are a character string.

< >: Characters (mainly title) enclosed in these brackets are a character string.

__: An underline is used to indicate an important point or input character strings.

Δ: Indicates one or more blanks characters or tabs.

/: Character delimiter

∼: Continuity

Boldface: Characters in boldface are used to indicate an important point or reference point.

…

User’s Manual U18546EJ1V0UM 7

[Related Documents]

The documents (user’s manuals) related to this manual are listed below.

The related documents indicated in this publication may include preliminary versions.

However, preliminary versions are not marked as such.

Document Name Document No.

Operation U18547E RA78K0R Ver. 1.20 Assembler Package

Language This manual

Operation U18549E CC78K0R Ver. 2.00 C Compiler

Language U18548E

SM+ System Simulator Operation U18010E

PM+ Ver. 6.30 Project Manager U18416E

ID78K0R-QB Ver .3.20 Integrated Debugger Operation U17839E

Caution The related documents listed above are subject to change without notice. Be sure to use the

latest version of each document for designing.

User’s Manual U18546EJ1V0UM 8

[MEMO]

User’s Manual U18546EJ1V0UM 9

 CONTENTS

CHAPTER 1 GENERAL ... 14
1.1 Assembler Overview ... 14

1.1.1 What is an assembler? ... 15
1.1.2 Development of microcontroller-applied products and the role of RA78K0R ... 16
1.1.3 Relocatable assembler ... 17

1.2 Reminders Before Program Development ... 19
1.2.1 Quantitative limits for RA78K0R ... 19

1.3 Features of RA78K0R ... 21

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS ... 22
2.1 Basic Configuration ... 22

2.1.1 Module header ... 23
2.1.2 Module body ... 24
2.1.3 Module tail ... 24
2.1.4 Overall configuration of source program ... 25
2.1.5 Description example ... 26

2.2 Description Method ... 29
2.2.1 Configuration ... 29
2.2.2 Character set ... 30
2.2.3 Symbol field ... 32
2.2.4 Mnemonic field ... 36
2.2.5 Operand field ... 36
2.2.6 Comment field ... 40

2.3 Expressions and Operators ... 41
2.4 Arithmetic Operators ... 44

+ ... 45
- ... 46
* ... 47
/ ... 48
MOD ... 49
+ sign ... 50
- sign ... 51

2.5 Logical Operators ... 52
NOT ... 53
AND ... 54
OR ... 55
XOR ... 56

2.6 Relational Operators ... 57
EQ (=) ... 58
NE (< >) ... 59
GT (>) ... 60
GE (>=) ... 61
LT (<) ... 62
LE (<=) ... 63

2.7 Shift Operators ... 64
SHR ... 65
SHL ... 66

2.8 Byte-Separating Operators ... 67
HIGH ... 68
LOW ... 69

2.9 Word-Separating Operators ... 70
HIGHW ... 71
LOWW ... 72

2.10 Special Operators ... 73
DATAPOS ... 74

10 User’s Manual U18546EJ1V0UM

BITPOS ... 75
MASK ... 76

2.11 Other Operator ... 77
() ... 78

2.12 Restrictions on Operations ... 79
2.12.1 Operators and relocation attributes ... 79
2.12.2 Operators and symbol attributes ... 82
2.12.3 How to check restrictions on the operation ... 84

2.13 Definition of Absolute Expression ... 85
2.14 Bit Position Specifier ... 86

. ... 87
2.15 Characteristics of Operands ... 89

2.15.1 Size and address range of operand value ... 89
2.15.2 Size of operands required for instructions ... 95
2.15.3 Symbol attributes and relocation attributes of operands ... 95

CHAPTER 3 DIRECTIVES ... 99
3.1 Overview ... 99
3.2 Segment Definition Directives ... 100

CSEG ... 102
DSEG ... 106
BSEG ... 111
ORG ... 115

3.3 Symbol Definition Directives ... 118
EQU ... 119
SET ... 123

3.4 Memory Initialization and Area Reservation Directives ... 125
DB ... 126
DW ... 128
DG ... 130
DS ... 132
DBIT ... 134

3.5 Linkage Directives ... 135
EXTRN ... 136
EXTBIT ... 138
PUBLIC ... 140

3.6 Object Module Name Declaration Directive ... 142
NAME ... 143

3.7 Automatic Branch Instruction Selection Directives ... 144
BR ... 145
CALL ... 147

3.8 Macro Directives ... 149
MACRO ... 150
LOCAL ... 152
REPT ... 155
IRP ... 157
EXITM ... 159
ENDM ... 162

3.9 Assembly Termination Directive ... 164
END ... 165

CHAPTER 4 CONTROL INSTRUCTIONS ... 166
4.1 Overview ... 166
4.2 Processor Type Specification Control Instruction ... 168

PROCESSOR ... 169
4.3 Debug Information Output Control Instructions ... 170

DEBUG/NODEBUG ... 171
DEBUGA/NODEBUGA ... 172

4.4 Cross-Reference List Output Specification Control Instructions ... 173
XREF/NOXREF ... 174
SYMLIST/NOSYMLIST ... 175

4.5 Inclusion Control Instruction ... 176
lNCLUDE ... 177

User’s Manual U18546EJ1V0UM 11

4.6 Assembly List Control Instructions ... 179
EJECT ... 180
LIST/NOLIST ... 182
GEN/NOGEN ... 184
COND/NOCOND ... 186
TITLE ... 187
SUBTITLE ... 189
FORMFEED/NOFORMFEED ... 192
WIDTH ... 193
LENGTH ... 194
TAB ... 195

4.7 Conditional Assembly Control Instructions ... 196
IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF ... 197
SET/RESET ... 201

4.8 Kanji Code (2-byte code) Control Instruction ... 203
KANJICODE ... 204

4.9 Other Control Instructions ... 205

CHAPTER 5 MACROS ... 206
5.1 Overview ... 206
5.2 Utilization of Macros ... 207

5.2.1 Macro definition ... 207
5.2.2 Macro reference ... 208
5.2.3 Macro expansion ... 209
5.2.4 Application example ... 209

5.3 Symbols within Macros ... 210
5.4 Macro Operators ... 212

CHAPTER 6 PRODUCT UTILIZATION ... 214
6.1 Saving Time and Trouble in Starting Up the Assembler ... 214
6.2 How to Develop Programs with High Memory Utilization Efficiency ... 215

APPENDIX A LIST OF RESERVED WORDS ... 216

APPENDIX B LIST OF DIRECTIVES ... 218

INDEX ... 220

12 User’s Manual U18546EJ1V0UM

 LIST OF FIGURES

Figure No. Title , Page

1-1 RA78K0R Assembler Package ... 14
1-2 Flow of Assembler ... 15
1-3 Development Process of Microcontroller-Applied Products ... 16
2-1 Configuration of Source Module ... 22
2-2 Overall Configuration of Source Module ... 25
2-3 Examples of Source Module Configurations ... 25
2-4 Configuration of Sample Program ... 26
2-5 Fields That Make Up a Statement ... 29
3-1 Memory Location of Segments ... 101
3-2 Relationship of Symbols Between Two Modules ... 135

User’s Manual U18546EJ1V0UM 13

 LIST OF TABLES

Table No. Title , Page

2-1 Instructions That Can Be Described in Module Header ... 23
2-2 Alphanumeric Characters ... 30
2-3 Special Characters ... 30
2-4 Types of Operators ... 41
2-5 Order of Precedence of Operators ... 42
2-6 Types of Relocation Attributes ... 79
2-7 Combinations of Terms and Operators by Relocation Attribute (Relocatable Terms) ... 80
2-8 Combinations of Terms and Operators by Relocation Attribute (External Reference Terms) ... 81
2-9 Types of Symbol Attributes in Operations ... 82
2-10 Combinations of Terms and Operators by Symbol Attribute ... 83
2-11 Ranges of Operand Values of Instructions ... 89
2-12 Ranges of Operand Values of Directives ... 94
2-13 Properties of Described Symbols as Operands ... 96
2-14 Properties of Described Symbols as Operands of Directives ... 97
3-1 List of Directives ... 99
3-2 Segment Definition Methods and Memory Address Location ... 100
3-3 Relocation Attributes of CSEG ... 103
3-4 Relocation Attributes of DSEG ... 107
3-5 Relocation Attributes of BSEG ... 112
4-1 List of Control Instructions ... 166
4-2 Control Instructions and Assembler Options ... 167
A-1 Types of Reserved Words ... 216
A-2 List of Reserved Words ... 216
B-1 List of Directives ... 218

14 User’s Manual U18546EJ1V0UM

CHAPTER 1 GENERAL

CHAPTER 1 GENERAL

This chapter describes the role of the RA78K0R in microcontroller software development and the features of the

RA78K0R.

1.1 Assembler Overview

The RA78K0R Assembler Package (hereafter referred to as RA78K0R) is a generic term for a series of

programs designed to translate source programs coded in the assembly language for 78K0R Series

microcontrollers into machine language coding.

The RA78K0R contains 5 programs: Assembler, Linker, Object Converter, Librarian, and List Converter.

In addition, a PM+ that helps you perform a series of operations including editing, compiling/assembling, linking,

and debugging your program on Windows® is also supplied with the RA78K0R.

Figure 1-1 RA78K0R Assembler Package

Assembler

Linker

Object Converter

Librarian

List Converter

PM+

RA78K0R Assembler Package

CHAPTER 1 GENERAL

User’s Manual U18546EJ1V0UM 15

1.1.1 What is an assembler?

(1) Assembly language and machine language

An assembly language is the most fundamental programming language for a microcontroller.

Programs and data are required for the microprocessor in a microcontroller to do its job. These programs

and data must be written by users to the memory of the microcontroller.

The programs and data handled by the microcontroller are collections of binary numbers called machine

language.

For users, however, machine language code is difficult to remember, causing errors to occur frequently.

Fortunately, methods exist whereby English abbreviations or mnemonics are used to represent the

meanings of the original machine language codes in a way that is easy for user to comprehend. The basic

programming language system that uses this symbolic coding is called an assembly language.

Since machine language is the only programming language in which a microcontroller can handle programs,

however, another program is required that translates programs created in assembly language into machine

language. This program is called an assembler.

Figure 1-2 Flow of Assembler

Program written in
assembly language

Program written in machine
language (collections of
binary numbers)

 (Source module file) (Object module file)(Assembler)

16 User’s Manual U18546EJ1V0UM

CHAPTER 1 GENERAL

1.1.2 Development of microcontroller-applied products and the role of
RA78K0R

The following figure illustrates the position of "assemble in the product development process".

Figure 1-3 Development Process of Microcontroller-Applied Products

Product planning

Hardware System design Software

Logic design Software design

Manufacturing

OK?

Program coding in
assembly language

Inspection Assemble

Debugging

OK?

System evaluation

Product marketing

development development

YESYES

YES

NO NO

NO

Position of
RA78K0R

OK?

CHAPTER 1 GENERAL

User’s Manual U18546EJ1V0UM 17

1.1.3 Relocatable assembler

The machine language translated from a source language by the assembler is written to the memory of the

microcontroller before use. To do this, the location in memory where each machine language instruction is to be

written must already be determined.

Therefore, information is added to the machine language assembled by the assembler, stating where in memory

each machine language instruction is to be located.

Depending on the method of locating addresses to machine language instructions, assemblers can be broadly

divided into "absolute assemblers" and "relocatable assemblers".

- Absolute assembler

An absolute assembler locates machine language instructions assembled from the assembly language to

absolute addresses.

- Relocatable assembler

In a relocatable assembler, the addresses determined for the machine language instructions assembled from

the assembly language are tentative.

Absolute addresses are determined subsequently by the linker.

In the past, when a program was created with an absolute assembler, programmers had to, as a rule, complete

programming at the same time. However, if all the components of a large program are created as a single entity,

the program becomes complicated, making analysis and maintenance of the program difficult. To avoid this, such

large programs are developed by dividing them into several subprograms, called modules, for each functional unit.

This programming technique is called modular programming.

A relocatable assembler is an assembler suitable for modular programming, which has the following advantages:

(1) Increase in development efficiency

It is difficult to write a large program all at the same time. In such cases, dividing the program into modules

for individual functions enables two or more programmers to develop subprograms in parallel to increase

development efficiency.

Furthermore, if any bugs are found in the program, it is not necessary to assemble the entire program just to

correct one part of the program; just the module that must be corrected can be reassembled. This shortens

the debugging time.

18 User’s Manual U18546EJ1V0UM

CHAPTER 1 GENERAL

(2) Utilization of resources

Highly reliable, highly versatile modules that have been previously created can be reused for the creation of

another program. If you accumulate such high-versatility modules as software resources, you can save time

and labor in developing a new program.

Bugs are
found!

Module

Module

Module

Module

Module

xxx xxx

Program consisting of a single
module

Program consisting of two or
more modules

Entire program
must be
assembled
again.

Only this module
needs to be
assembled
again.

Bugs are
found!

Module A Module B Module C Module D

New module

Module A

New module

Module D

New program

CHAPTER 1 GENERAL

User’s Manual U18546EJ1V0UM 19

1.2 Reminders Before Program Development

Refer to the following before beginning program development.

1.2.1 Quantitative limits for RA78K0R

(1) Quantitative limits for assembler

Item Maximum Performance
Characteristics

Number of symbols (local + public) 65,535 symbols

Number of symbols for which cross-reference list can be output 65,534 symbolsNote 1

Maximum size of macro body for one macro reference 1 M bytes

Total size of all macro bodies 10 M bytes

Number of segments in one file 256 segments

Macro and include specifications in one file 10,000

Macro and include specifications in one include file 10,000

Relocation dataNote 2 65,535 items

Line number data 65,535 items

Number of BR/CALL directives in one file 32,767 directives

Number of characters per line 2,048 charactersNote 3

Symbol length 256 characters

Number of definitions of switch nameNote 4 1,000

Character length of switch nameNote 4 31 characters

Character length of segment name 8 characters

Character length of module name (NAME quasi directive) 256 characters

Number of virtual parameters in MACRO quasi directive 16 parameters

Number of actual parameters in macro reference 16 parameters

Number of actual parameters in IRP quasi directive 16 parameters

Number of local symbols in macro body 64 symbols

Total number of local symbols in expanded macro 65,535 symbols

Nesting levels in macro (macro reference, REPT quasi directive, IRP
quasi directive) 8 levels

Number of characters specifiable by TITLE control instruction, the -lh
option 60 charactersNote 5

Number of characters specifiable by SUBTITLE control instruction 72 characters

Include file nesting levels in 1 file 8 levels

Conditional assembly nesting levels 8 levels

Number of include file paths specifiable by the -i option 64 paths

20 User’s Manual U18546EJ1V0UM

CHAPTER 1 GENERAL

Note 1 Excluding the number of module names and section names.

Memory is used. If there is no memory, a file is used.

Note 2 Information to be passed to the linker if the symbol value cannot be resolved by the assembler.

For example, if an externally referenced symbol is to be referenced by the MOV instruction, two

pieces of relocation information are generated in a .rel file.

Note 3 Including CR and LF codes. If more than 2048 characters are written on one line, a warning

message is output and the 2049th character and those that follow are ignored.

Note 4 The switch name is set as true/false by the SET/RESET quasi directive and is used by $IF, etc.

Note 5 If the maximum number of characters that can be specified in one line of the assemble list file

("X") is 119, this figure will be "X - 60" or less.

(2) Quantitative limits for linker

Note Including those defined by default.

Number of symbols definable by the -d option 30 symbols

Item Maximum Performance
Characteristics

Number of symbols (local + public) 65,535 symbols

Line number data of same segment 65,535 items

Number of segments 65,535 segmentsNote

Number of input modules 1,024 modules

Character length of memory area name 256 characters

Number of memory areas 100 areasNote

Number of library files specifiable by the -b option 64 files

Number of include file paths specifiable by the -i option 64 paths

Item Maximum Performance
Characteristics

CHAPTER 1 GENERAL

User’s Manual U18546EJ1V0UM 21

1.3 Features of RA78K0R

The RA78K0R has the following features:

(1) Macro function

When the same group of instructions must be described in a source program over and over again, a macro

can be defined by giving a single macro name to the group of instructions.

By using this macro function, coding efficiency and readability of the program can be increased.

(2) Optimize function of branch instructions

"BR" and "CALL" are available as Automatic Branch Instruction Selection Directives.

To create a program with high memory efficiency, a byte branch instruction must be described according to

the branch destination range of the branch instruction. However, it is troublesome for the programmer to

describe a branch instruction by paying attention to the branch destination range for each branching. By

describing the BR directive or the CALL directive, the assembler generates the appropriate branch

instruction according to the branch destination range. This is called the optimize function of branch

instructions.

(3) Conditional assembly function

With this function, a part of a source program can be specified for assembly or non-assembly according to a

predetermined condition.

If a debug statement is described in a source program, whether or not the debug statement should be

translated into machine language can be selected by setting a switch for conditional assembly. When the

debug statement is no longer required, the source program can be assembled without major modifications

to the program.

(4) 78K0 compatible macro function

With this function, assembler source files generated by the 78K0 assembler can be assembled.

Specify the -compati option to assemble assembler sources without changing the following 78K0

instructions that cannot be used for the 78K0R.

78K0 instructions that cannot be used for 78K0R:

DIVUW, ROR4, ROL4, ADJBA, ADJBS, CALLF, DBNZ

22 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

CHAPTER 2 HOW TO DESCRIBE SOURCE
PROGRAMS

This chapter describes the description methods, expressions and operators of the source program.

2.1 Basic Configuration

When a source program is described by dividing it into several modules, each module that becomes the unit of

input to the assembler is called a source module (if a source program consists of a single module, "source

program" means the same as "source module").

Each source module that becomes the unit of input to the assembler consists mainly of the following three parts:

- Module header

- Module body

- Module tail

Figure 2-1 Configuration of Source Module

Module header

Module body

Module tail

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 23

2.1.1 Module header

In the module header, the control instructions shown below can be described. Note that these control instructions

can only be described in the module header.

Also, the module header can be omitted.

Table 2-1 Instructions That Can Be Described in Module Header

Item That Can Be Described Explanation Chapter/Section
in This Manual

Control instructions that have the same
functions as assembler options

- PROCESSOR
- XREF/NOXREF
- DEBUG/NODEBUG,

DEBUGA/NODEBUGA
- TITLE
- SYMLIST/NOSYMLIST
- FORMFEED/NOFORMFEED
- WIDTH
- LENGTH
- TAB
- KANJICODE

CHAPTER 4 CONTROL
INSTRUCTIONS

Special control instructions output by
high-level programs such as C compiler

- TOL_INF
- DGS
- DGL

24 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.2 Module body

In the module body, the following instructions cannot be described:

- Control instructions that have the same functions as assembler options

All other directives, control instructions, and instructions can be described in the module body.

The module body must be described by dividing it into units, called "segments".

The user may define the following four segments with a directive corresponding to each segment:

- Code segment

Must be defined with the CSEG directive.

- Data segment

Must be defined with the DSEG directive.

- Bit segment

Must be defined with the BSEG directive.

- Absolute segment

Must be defined by specifying a location address for the relocation attribute (AT location address) with the

CSEG, DSEG, or BSEG directive. This segment may also be defined with the ORG directive.

The module body may be configured with any combination of segments.

However, a data segment and a bit segment should be defined before a code segment.

2.1.3 Module tail

The module tail indicates the end of the source module. The END directive must be described in this part.

If anything other than a comment, a blank, a tab, or a line feed code is described following the END directive, the

assembler will output a warning message and ignore the characters described after the END directive.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 25

2.1.4 Overall configuration of source program

The overall configuration of a source module (source program) is as shown below.

Figure 2-2 Overall Configuration of Source Module

Examples of simple source module configurations are shown below.

Figure 2-3 Examples of Source Module Configurations

Module header

Module body

Module tail

Directive(s)

Control instruction(s)

Instruction(s)

END directive

Special control instruction(s)
output by high-level programs such
as C compiler

Control instruction(s) that have the
same function(s) as assembler op-
tion(s)

Module header

Module body

Module tail

$ PROCESSOR (f1166a0)

VECT CSEG AT 0H

 :
 :
 :

MAIN CSEG

 :
 :
 :

 END

$ PROCESSOR (f1166a0)

FLAG BSEG

 :
 :
 :

WORK DSEG

 :
 :
 :

SUB CSEG

 :
 :
 :

 END

26 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.1.5 Description example

In this subsection, a description example of a source module (source program) is shown as a sample program.

The configuration of the sample program can be illustrated simply as follows.

Figure 2-4 Configuration of Sample Program

 NAME SAMPS NAME SAMPM

DATA DSEG saddr
Variable definition

CODE CSEG AT 0H
MAIN : DW START

 CSEG
START :

 :

 CALL !CONVAH

 :
 :
 :

 END

<Main routine> <Subroutine>

 CSEG
CONVAH :

 :
 :
 :

 CALL !SASC

 :
 :
 :

 RET

 END

 CSEG
SASC :

 :
 :
 :

 RET

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 27

<Main routine>

(1) Declaration of module name

(2) Declaration of symbol referenced from another module as an external reference symbol

(3) Declaration of symbol defined in another module as an external reference symbol

(4) Declaration of stack solution symbol generated from the -s option of linker as an external reference symbol

(an error occurs if the -s option is not specified when linking)

(5) Declaration of the start of a data segment (to be located in saddr)

(6) Declaration of the start of a code segment (to be located as an absolute segment starting from address 0H)

(7) Declaration of the start of a code segment (meaning the end of the absolute segment)

(8) Declaration of the end of the module

 NAME SAMPM ; (1)
; ***
; HEX -> ASCII Conversion Program
; main-routine
; ***

PUBLIC MAIN , START ; (2)
EXTRN CONVAH ; (3)
EXTRN _@STBEG ; (4) <-- Error

DATA DSEG AT 0FFE20H ; (5)
HDTSA : DS 1
STASC : DS 2

CODE CSEG AT 0H ; (6)
MAIN : DW START

 CSEG ; (7)
START :
 ; chip initialize
 MOVW SP , #_@STBEG

 MOV HDTSA , #1AH
 MOVW HL , #LOWW (HDTSA) ; set hex 2-code data in HL registor

 CALL !CONVAH ; convert ASCII <- HEX
 ; output BC-register <- ASCII code
 MOVW DE , #LOWW (STASC) ; set DE <- store ASCII code table
 MOV A , B
 MOV [DE] , A
 INCW DE
 MOV A , C
 MOV [DE] , A
 BR $$

 END ; (8)

28 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

<Subroutine>

(1) Declaration of module name

(2) Declaration of symbol referenced from another module as an external definition symbol

(3) Declaration of the start of the code segment

(4) Since the ROL4 instruction is an instruction for the 78K0 Series, but not supported by the 78K0R Series,

specification of an assembler option (-compati) is required.

For the assembler option (-compati), refer to the RA78K0R Series Assembler Package Operation User's

Manual.

(5) Declaration of the end of the module

 NAME SAMPS ; (1)
; ***
; HEX -> ASCII Conversion Program
; sub-routine
;
; input condition : (HL) <- hex 2 code
; output condition : BC-register <- ASCII 2 code
; ***

PUBLIC CONVAH ; (2)

 CSEG ; (3)
CONVAH :
 XOR A , A
 ROL4 [HL] ; hex upper code load (4)
 CALL !SASC
 MOV B , A ; store result

 XOR A , A
 ROL4 [HL] ; hex lower code load
 CALL !SASC
 MOV C , A ; store result
 RET

; ***
; subroutine convert ASCII code
;
; input Acc (lower 4bits) <- hex code
; output Acc <- ASCII code
; ***

SASC :
 CMP A , #0AH ; check hex code > 9
 BC $SASC1
 ADD A , #07H ; bias (+7H)
SASC1 :
 ADD A , #30H ; bias (+30H)
 RET

 END ; (5)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 29

2.2 Description Method

2.2.1 Configuration

A source program consists of statements.

Each statement consists of the four fields shown below.

Figure 2-5 Fields That Make Up a Statement

(1) The symbol field and the mnemonic field must be separated from each other with a colon (:) or one or more

blanks or tabs (Whether colons or blanks are used depends on an instruction described in the mnemonic

field).

(2) The mnemonic field and the operand field must be separated from each other with one or more blanks or

tabs. Depending on the instruction described in the mnemonic field, the operand field may not be required.

(3) The comment field if used must be preceded with a semicolon (;).

(4) Each line must be delimited with an LF code (one CR code may exist immediately before the LF code).

- A statement must be described within a line. A maximum of 2,048 characters (including CR and LF) can be

described per line.

Each TAB or independent CR is counted as a single character. If 2,049 or more characters are described, a

warning message is output and any characters at or over 2,049 are ignored. However, 2,049 or more

characters will be output to the assembly list.

- An independent CR will not be output to the assembly list.

- The following lines may also be described:

(1) Dummy line (line without statement description)

(2) Line consisting of the symbol field alone

(3) Line consisting of the comment field alone

Symbol field Mnemonic field Operand field Comment field

(1) (2) (3) (4)

Statement [CR] LF

30 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.2 Character set

Characters that can be described in a source file are classified into the following three types:

- Language characters

- Character data

- Comment characters

(1) Language characters

Language characters are characters used to describe instructions in a source program.

The language character set includes alphabetic, numeric, and special characters.

Table 2-2 Alphanumeric Characters

Name Characters

Numeric characters 0 1 2 3 4 5 6 7 8 9

Alphabetic
characters

Uppercase letters A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Lowercase letters a b c d e f g h i j k l m n o p q r s t u v w x y z

Table 2-3 Special Characters

Character Name Main Use

? Question mark Symbol equivalent to alphabetic characters

@ Circa Symbol equivalent to alphabetic characters

_ Underscore Symbol equivalent to alphabetic characters

Blank Delimiter of each field

Delimiter
symbols

HT (09H) Tab code Character equivalent to blank

, Comma Delimiter of operands

: Colon Delimiter of labels

; Semicolon Symbol indicating the start of the Comment
field

CR (0DH) Carriage return code Symbol indicating the end of a line (ignored
in the assembler)

LF (0AH) Line-feed code Symbol indicating the end of a line

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 31

(2) Character data

"Character data" refers to characters used to describe string constants, character strings, and control

instructions (TITLE, SUBTITLE, INCLUDE).

Caution 1 All characters except "00H" can be used (including kanji (2-byte characters); codes may be

different depending on the operating system). If "00H" has been described, an error occurs

and subsequent characters before the closing single quotation mark (') will be ignored.

Caution 2 If any illegal character has been described, the assembler will replace the illegal character with

"!" for output to the assembly list (an independent CR (0DH) code will not be output to the

assembly list).

Caution 3 With Windows, the assembler interprets code "1AH" as the end of the file (EOF) and thus the

code cannot be a part of the input data.

(3) Comment characters

"Comment characters" refers to characters used to describe a comment statement.

Caution Characters that can be used in a comment statement are the same as those in the character set for

character data. However, no error occurs even if code "00H" has been described. Instead, the

assembler will output the illegal character to the assembly list by replacing it with "!".

+ Plus sign ADD operator or positive sign

Assembler
operators

- Minus sign SUBTRACT operator or negative sign

* Asterisk MULTIPLY operator

/ Slash DIVIDE operator

. Period Bit position specifier

(,) Left and right
parentheses

Symbols specifying the order of arithmetic
operations to be performed

<, > Not Equal sign Relational operators

= Equal sign Relational operator

' Single quotation mark
- Symbol indicating the start or end of a character

constant
- Symbol indicating a complete macro parameter

$ Dollar sign

- Symbol indicating the location counter
- Symbol indicating the start of a control instruction

equivalent to an assembler option
- Symbol specifying relative addressing

& Ampersand Concatenating symbol (used in macro body)

Sharp sign Symbol specifying immediate addressing

! Exclamation point Symbol specifying absolute addressing

[] Brackets Symbol specifying indirect addressing

Table 2-3 Special Characters

Character Name Main Use

32 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.3 Symbol field

A symbol is described in the symbol field. The term "symbol" refers to a name given to numerical data or an

address.

By using symbols, the contents of a source program can be understood more easily.

(1) Symbol types

Symbols are classified into the types shown below, depending on their use and method of definition.

Caution The four types of symbol, name, label, segment name, and macro name, can be described in the

symbol field.

Symbol Type Use Method of Definition

Name Used as numerical data or an
address in a source program.

This type is described in the symbol
field of the EQU, SET, or DBIT directive.

Label Used as address data in a source
program.

This type is defined by suffixing a colon
(:) to a symbol.

External
reference name

Used to reference symbol defined by
a module by another module.

This type is described in the operand
field of the EXTRN or EXTBIT directive.

Segment name Symbol used during linker operation
This type is defined in the symbol field
of the CSEG, DSEG, BSEG or ORG
directive.

Module name Used during symbolic debugging This type is described in the operand
field of the NAME directive.

Macro name Used for macro reference in a source
program.

This type is described in the symbol
field of the MACRO directive.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 33

(2) Conventions of symbol description

All symbols must be described according to the following rules:

- A symbol must be made up of alphanumeric characters and special characters (?, @, and _) that can be

used as characters equivalent to alphabetic characters.

None of the numeric characters 0 to 9 can be used as the first character of a symbol.

- A symbol must be made up of not more than 256 characters. Characters in excess of the maximum

symbol length will be ignored.

- No reserved word can be used as a symbol.

Reserved words are indicated in Table A-2.

- The same symbol cannot be defined more than once.

However, a name defined with the SET directive can be redefined with the SET directive.

- The assembler distinguishes between lowercase and uppercase characters.

- When describing a label in the Symbol field, ":" (colon) must be described immediately after the label.

<Examples of correct symbol descriptions>

 <Examples of incorrect symbol descriptions>

 <Example of a statement composed of a symbol only>

CODE01 CSEG ; "CODE01" is a segment name.
VAR01 EQU 10H ; "VAR01" is a name.
LAB01 : DW 0 ; "LAB01" is a label.
 NAME SAMPLE ; "SAMPLE" is a module name.
MAC1 MACRO ; "MAC1" is a macro name.

1ABC EQU 3 ; No numeric character can be used as the 1st
 ; character of a symbol.
LAB MOV A , R0 ; "LAB" is a label and must be separated from
 ; the Mnemonic field with a colon (:).
FLAG : EQU 10H ; A colon (:) is not necessary in a name.

ABCD : ; "ABCD" will be defined as a label.

A123456789B12 to Y123456789Z123456 EQU 70H
 ; Character "6" in excess of the maximum symbol
 ; length (256 characters) are ignored.
 ; The symbol will be defined as
 ; "A123456789B12 to Y123456789Z12345".

 <Example of a symbol that is too long>

 257

34 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(3) Some cautions about symbols

The symbol "??RAnnnn (n = 0000 to FFFF)" is a symbol that is automatically replaced by the assembler

every time a local symbol is developed inside a macro body. Be careful not to define this symbol twice.

When a segment name is not specified by a segment definition directive, the assembler generates a

segment name automatically. These segments are shown below.

Duplicate segment name definition causes an error.

Segment Name Directive Relocation Attribute

?A0nnnnn（nnnnn = 00000 - FFFFF） ORG directive (none)

?CSEG

CSEG directive

UNIT

?CSEGUP UNITP

?CSEGT0 CALLT0

?CSEGFX FIXED

?CSEGSI SECUR_ID

?CSEGB BASE

?CSEGP64 PAGE64KP

?CSEGU64 UNIT64KP

?CSEGMIP MIRRORP

?CSEGOB0 OPT_BYTE

?DSEG

DSEG directive

UNIT

?DSEGUP UNITP

?DSEGS SADDR

?DSEGSP SADDRP

?DSEGBP BASEP

?DSEGP64 PAGE64KP

?DSEGU64 UNIT64KP

?BSEG BSEG directive UNIT

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 35

(4) Symbol attributes

All names and labels have both a value and an attribute.

A value refers to the value of defined numerical data or address data itself.

Segment names, module names, and macro names do not have a value.

The attribute of a symbol is called a symbol attribute and must be one of the eight types indicated in the fol-

lowing table.

<Examples>

Attribute
Type Classification Value

NUMBER

- Names to which numeric constants are
assigned

- Symbols defined with the EXTRN directive
- Numeric constants

Decimal representation: 0 to
1,048,575
Hexadecimal representation:
00000H to FFFFFH (unsigned)

ADDRESS

- Symbols defined as labels
- Names defined as labels with EQU and SET

directives

Decimal representation: 0 to
1,048,575
Hexadecimal representation:
00000H to FFFFFH

BIT
- Names defined as bit values
- Names within BSEG
- Symbols defined with the EXTBIT directive

0H to FFFFFH

SFR Names defined as SFRs with the EQU directive
SFR area

SFRP Names defined as SFRs with the EQU directive

CSEG Segment names defined with the CSEG directive

These attribute types have no
value.

DSEG Segment names defined with the DSEG directive

BSEG Segment names defined with the BSEG directive

MODULE
Module names defined with the NAME directive
(A module name if not defined is created from the
primary name of the input source filename)

MACRO Macro names defined with the MACRO directive

TEN EQU 10H ; Name "TEN" has attribute "NUMBER"
 ; and value "10H".
 ORG 80H
START : MOV A , #10H ; Label "START" has attribute "ADDRESS"
 ; and value "80H".
BIT1 EQU 0FFE20H.0 ; Name "BIT1" has attribute "BIT"
 ; and value "0FFE20H.0".

36 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.4 Mnemonic field

In the mnemonic field, a mnemonic instruction, a directive, or a macro reference is described.

With an instruction or directive requiring an operand or operands, the mnemonic field must be separated from

the operand field with one or more blanks or tabs.

However, with the first operand of an instruction that begins with "#", "$","!", or "[", the assembly will be executed

properly even if nothing exists between the mnemonic field and the first operand field.

<Examples of correct descriptions>

<Examples of incorrect descriptions>

2.2.5 Operand field

In the operand field, the data (operands) required for executing the instruction, directive, or macro reference is

described.

Depending on the instruction or directive, no operand is required in the operand field or two or more operands

must be described in the operand field.

When describing two or more operands, delimit each operand with a comma (,).

The following types of data can be described in the operand field:

- Constants (numeric constants and string constants)

- Character strings

- Register names

- Special characters ($, #, !, and [])

- Relocation attributes of segment definition directives

- Symbols

- Expressions

- Bit terms

The size and attribute of the required operand may be different depending on the instruction or directive. Refer to

"2.15 Characteristics of Operands" for the sizes and attributes of operands.

For the operand representation formats and description methods in the instruction set, see the user's manual of

the microcontroller for which software is being developed.

Each of the data types that can be described in the operand field is detailed below.

MOV A , #0H
CALL !CONVAH
RET

MOVA #0H ; No blank exists between the mnemonic and operand fields.
CALL !CONVAH ; A blank exists within the mnemonic field.
ZZZ ; The 78K0R Series has no such instruction as "ZZZ".

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 37

(1) Constants

A constant is a fixed value or data item and is also referred to as immediate data.

Constants are divided into numeric constants and character-string constants.

(a) Numeric constants

A binary, octal, decimal, or hexadecimal number can be described as a numeric constant.

The method of representing each numeric constant type is shown below.

A numeric constant will be processed as unsigned 32-bit data.

Value range: 0 < n < 0FFFFFFFFH

When describing a negative value, use the minus sign of the operator.

(b) Character-string constants

A character-string constant is expressed by enclosing a string of characters from those shown in "2.2.2

Character set", in a pair of single quotation marks (').

As a result of an assembly process, the character-string constant is converted into 7-bit ASCII code with

the parity bit (MSB) set as "0".

The length of a string constant is 0 to 2 characters.

To use the single quotation mark itself as a string constant, the single quotation mark must be input

twice in succession.

<Examples of character-string constant descriptions>

(2) Character strings

A character string is expressed by enclosing a string of characters from those shown in "2.2.2 Character

set", in a pair of single quotation marks ('). Character strings are mainly used for operands in the DB, CALL

directive and TITLE or SUBTITLE control instruction.

<Application examples of character strings>

Constant Method of Representation Example

Binary constant Character "B" or "Y" is suffixed to a numerical value. 1101B
1101Y

Octal constant Character "O" or "Q" is suffixed to a numerical value. 74O
74Q

Decimal constant A numerical value is described as is, or character "D" or
"T" is suffixed to a numerical value.

128
128D
128T

Hexadecimal constant
- Character "H" is suffixed to a numerical value.
- If the first character begins with "A", "B", "C", "D", "E",

or "F", "0" must be prefixed to the constant.

8CH
0A6H

'ab' ; Represents "6162H"
'A' ; Represents "0041H"
'A''' ; Represents "4127H"
' ' ; Represents "0020H" (one blank)

 CSEG
MAS1 : DB 'YES' ; Initializes with character string "YES".
MAS2 : DB 'NO' ; Initializes with character string "NO".

38 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

(3) Register names

The following registers can be described in the Operand field:

- General registers

- General register pairs

- Special function registers

General registers and general register pairs can be described with their absolute names (R0 to R7 and RP0

to RP3), as well as with their function names (X, A, B, C, D, E, H, L, AX, BC, DE, HL).

The register names that can be described in the operand field may differ depending on the type of

instruction. For details of the method of describing each register name, see the user's manual of each

device for which software is being developed.

(4) Special characters

Special characters that can be described in the operand field are shown below.

<Application examples of special characters>

(1) The second $ in the operand indicates address 103H. Describing "BR $ - 1" results in the same

operation.

(2) The second $ in the operand indicates address 105H. Describing "BR $ + 100H" results in the same

operation.

(5) Relocation attributes of segment definition directives

Relocation attributes can be described in the operand field.

For details of relocation attributes, refer to "3.2 Segment Definition Directives".

Special Character Function

$

- Indicates the location address of the instruction having this operand (or the
1st byte of this address, in the case of addresses with a multiple-byte
instruction).

- Indicates a relative addressing mode for a branch instruction.

!
- Indicates an absolute addressing mode for a branch instruction.
- Indicates the specification of addr16 that allows all memory space to be

specified with an MOV instruction.

- Indicates immediate data.

[] - Indicates indirect addressing mode.

Address Source program
100 ADD A , #10H
102 LOOP : INC A
103 BR $$ - 1 ; (1)
105 BR !$ + 100H ; (2)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 39

(6) Symbols

If a symbol is described in the operand field, an address (or value) allocated to that symbol becomes the

operand value.

<Application examples of symbols>

(7) Expressions

An expression is constants, $ (which indicates a location address), names, or labels connected with

operators.

The expression can be described where numeric values can be expressed as instruction operands.

For the expressions and operators, refer to "2.3 Expressions and Operators".

<Examples of expressions>

In this example, "TEN - 5H" is an expression.

In this expression, the name and numeric constant are connected with a - (minus) operator. The value of the

expression is "BH".

Therefore, this description can be rewritten as "MOV A , #0BH".

(8) Bit terms

A bit term can be obtained by the bit position specifier.

For details of bit terms, refer to 2.14 Bit Position Specifier.

<Examples of bit terms>

VALUE EQU 1234H
 MOV A , #VALUE ; This description can be written as
 ; "MOV A , #1234H".

TEN EQU 10H
 MOV A , #TEN - 5H

CLR1 A.5
SET1 1 + 0FFE30H.3 ; The operand value is 0FFE31H.3.
CLR1 0FFE40H.4 + 2 ; The operand value is 0FFE40H.6.

40 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.2.6 Comment field

In the comment field, comments or remarks may be described following the input of a semicolon (;).

The comment field is from a semicolon to the line-feed code of that line or EOF.

By describing a comment statement in the comment field, an easy-to-understand source program can be

created.

The comment statement in the comment field is not subject to assembler operation (i.e., conversion into machine

language) but will be output without change on an assembly list.

Characters that can be described in the comment field are those shown in "2.2.2 Character set".

 NAME SAMPM
; ***
; HEX -> ASCII Conversion Program
; main-routine
; ***

 PUBLIC MAIN , START
 EXTRN CONVAH
 EXTRN @STBEG

DATA DSEG saddr
HDTSA: DS 1
STASC: DS 2

CODE CSEG AT 0H
MAIN : DW START

 CSEG
START :
 ; chip initialize
 MOVW SP , #_@STBEG

 MOV HDTSA , #1AH
 MOVW HL , #HDTSA ; set hex 2-code data in HL register

 CALL !CONVAH ; convert ASCII <- HEX
 ; output BC-register <- ASCII code

 MOVW DE , #STASC ; set DE <- store ASCII code table
 MOV A , B
 MOV [DE] , A
 INCW DE
 MOV A , C
 MOV [DE] , A
 BR $$

 END

Lines consisting of comment field only

Lines in
which
comments
are
described
in com-
ment field

Lines consisting of comment field
only

<Examples of comments>

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 41

2.3 Expressions and Operators

An expression is a symbol, constant, location address (indicated by $) or bit term, an operator combined with one

of the above, or a combination of operators.

Elements of an expression other than the operators are called terms, and are referred to as the 1st term, 2nd

term, and so forth from left to right, in the order of their description.

Operators are available in the types shown in Table 2-4, and the order of their precedence in calculation has

been predetermined as shown in Table 2-5.

Parentheses "()" are used to change the order in which calculations are performed.

<Example>

In (1) above, "5 * (SYM + 1)" is an expression. "5" is the 1st term of the expression and "SYM" and "1" are the

2nd and 3rd terms respectively. "*", "+", and "()" are operators.

The above operators can also be divided into unary operators, special unary operators, binary operators, N-ary

operators, and other operators.

MOV A , #5 * (SYM + 1) ; (1)

Table 2-4 Types of Operators

Type of Operator Operators

Arithmetic Operators +, -, *, /, MOD, + sign, - sign

Logical Operators NOT, AND, OR, XOR

Relational Operators EQ (=), NE (< >), GT (>), GE (>=), LT (<), LE (<=)

Shift Operators SHR, SHL

Byte-Separating Operators HIGH, LOW

Word-Separating Operators HIGHW, LOWW

Special Operators DATAPOS, BITPOS, MASK

Other Operator ()

Unary operators + sign, - sign, NOT, HIGH, LOW, HIGHW, LOWW

Special unary operators DATAPOS, BITPOS

Binary operators +, -, *, /, MOD, AND, OR, XOR, EQ (or =), NE (or < >), GT (or >), GE (or
>=), LT (or <), LE (or <=), SHR, SHL

N-ary operators MASK

Other operators ()

42 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Operations on expressions are performed according to the following rules:

- Operations are performed according to the order of precedence given to each operator.

If two or more operators of the same order of precedence exist in an expression, the operation designated

by the leftmost operator will be carried out. In the case of unary operators, the operation will be performed

from right to left.

- An expression in parentheses is carried out before expressions outside the parentheses.

- Operations between two or more unary operators are allowed.

Examples: 1 = - - 1 == 1

-1 = - + 1 = -1

- Expressions are calculated within 32 bits, without signs.

If an overflow occurs in operation due to an expression exceeding 32 bits, the overflowed value is ignored.

- If a constant exceeds 32 bits, an error occurs and the value of the result will be regarded as 0 for calculation.

- In division, the decimal fraction part of the result will be truncated.

If the divisor is 0, an error occurs, and the result will be 0.

- Two's compliments are used to represent negative values.

- The evaluated values for external reference symbols are zero during assemby (the evaluation value is

determined during linking).

- The result obtained from the expression described in the operand field must satisfy the instruction's

requirement.

If a relocatable expression or expression that uses an external reference is described for an instruction that

requests 8-bit operands, the object is generated from the lower 8-bit values, and required relocation

information is output in 16-bit units. The linker then checks whether the determined value is within the 8-bit

range. If overflows, an error occurs at linking.

If an absolute expression is described, the assembler determines the value and checks whether the value is

within the requested range is checked.

For example, the MOV instruction requests 8-bit operands, so it must fit within the range of 0H to 0FFH.

Table 2-5 Order of Precedence of Operators

Priority Priority Level Operators

Higher

Lower

1 + sign, - sign, NOT, HIGH, LOW, HIGHW, LOWW, DATAPOS, BITPOS, MASK

2 *, /, MOD, SHR, SHL

3 +, -

4 AND

5 OR, XOR

6 EQ (or =), NE (or < >), GT (or >), GE (or >=), LT (or <), LE (or <=)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 43

<Examples of correct descriptions>

<Examples of incorrect descriptions>

<Examples of evaluation>

Note EXT : External reference symbols

MOV A , #'2*' AND 0FH
MOV A , #4 * 8 * 8 - 1

MOV A , #'2*.
MOV A , #4 * 8 * 8

Expression Evaluation Value

2 + 4 * 5 22

(2 + 3) * 4 20

10 / 4 2

0 - 1 0FFFFFFFFH

-1 > 1 00H (False)

EXTNote + 1 1

44 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.4 Arithmetic Operators

The following arithmetic operators are available.

- +

- -

- *

- /

- MOD

- + sign

- - sign

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 45

+

[Function]

- Returns the sum of the values of the 1st and 2nd terms of an expression.

[Application Example]

- The BR instruction causes a jump to "current location address plus 6", namely, to address "100H + 6H =

106H".

Therefore, (a) in the above example can also be described as: START : BR !106H

 ORG 100H
START : BR !$ + 6 ; (a)

46 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

-

[Function]

- Returns the result of subtraction of the 2nd-term value from the 1st-term value.

[Application Example]

- The BR instruction causes a jump to "address assigned to BACK minus 6", namely, to address "100H - 6H =

0FAH".

Therefore, (a) in the above example can also be described as: BACK : BR !0FAH

 ORG 100H
BACK : BR BACK - 6H ; (a)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 47

*

[Function]

- Returns the result of multiplication (product) between the values of the 1st and 2nd terms of an expression.

[Application Example]

- With the EQU directive, the value "10H" is defined in the name "TEN".

"#" indicates immediate data. The expression "TEN * 3" is the same as "10H * 3" and returns the value

"30H".

Therefore, (a) in the above expression can also be described as: MOV A , #30H

TEN EQU 10H
 MOV A , #TEN * 3 ; (a)

48 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

/

[Function]

- Divides the value of the 1st term of an expression by the value of its 2nd term and returns the integer part of

the result.

The decimal fraction part of the result will be truncated. If the divisor (2nd term) of a division operation is 0,

an error occurs.

[Application Example]

- The result of the division "256 / 50" is 5 with remainder 6.

The operator returns the value "5" that is the integer part of the result of the division.

Therefore, (a) in the above expression can also be described as: MOV A , #5

MOV A , #256 / 50 ; (a)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 49

MOD

[Function]

- Obtains the remainder in the result of dividing the value of the 1st term of an expression by the value of its

2nd term.

An error occurs if the divisor (2nd term) is 0.

A blank is required before and after the MOD operator.

[Application Example]

- The result of the division "256 / 50" is 5 with remainder 6.

The MOD operator returns the remainder 6.

Therefore, (a) in the above expression can also be described as: MOV A , #6.

MOV A , #256 MOD 50 ; (a)

50 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

+ sign

[Function]

- Returns the value of the term of an expression without change.

[Application Example]

- The value "5" of the term is returned without change.

The value "5" is defined in name "FIVE" with the EQU directive.

FIVE EQU +5

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 51

- sign

[Function]

- Returns the value of the term of an expression by the two's complement.

[Application Example]

- -1 becomes the two's complement of 1.

The two's complement of binary 0000 0000 0000 0000 0000 0000 0000 0001 becomes:

1111 1111 1111 1111 1111 1111 1111 1111

Therefore, with the EQU directive, the value "0FFFFFFFFH" is defined in the name "NO".

NO EQU -1

52 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.5 Logical Operators

The following logical operators are available.

- NOT

- AND

- OR

- XOR

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 53

NOT

[Function]

- Negates the value of the term of an expression on a bit-by-bit basis and returns the result.

A blank is required between the NOT operator and the term.

[Application Example]

- Logical negation is performed on "3H" as follows:

0FFFFFFFCH is returned.

Therefore, (a) can also be described as: MOVW AX , #LOWW #0FFFFFFFCH

MOVW AX , #LOWW (NOT 3H) ; (a)

NOT） 0000 0000 0000 0000

1111 1111 1111 1111

0000 0000 0000 0011

1111 1111 1111 1100

54 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

AND

[Function]

- Performs an AND (logical product) operation between the value of the 1st term of an expression and the

value of its 2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the AND operator.

[Application Example]

- AND operation is performed between the two values "6FAH" and "0FH" as follows:

The result "0AH" is returned. Therefore, (a) in the above expression can also be described as: MOV A ,

#0AH

MOV A , #6FAH AND 0FH ; (a)

AND） 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1111

0000 0000 0000 1010

0000 0110 1111 1010

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 55

OR

[Function]

- Performs an OR (Logical sum) operation between the value of the 1st term of an expression and the value

of its 2nd term on a bit-by-bit basis and returns the result.

A blank is required before and after the OR operator.

[Application Example]

- OR operation is performed between the two values "0AH" and "1101B" as follows:

The result "0FH" is returned.

Therefore, (a) in the above expression can also be described as: MOV A , #0FH

MOV A , #0AH OR 1101B ; (a)

OR） 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 1101

0000 0000 0000 1111

0000 0000 0000 1010

56 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

XOR

[Function]

- Performs an Exclusive-OR operation between the value of the 1st term of an expression and the value of its

2nd term on a bit-by-bit basis and returns the result. A blank is required before and after the XOR operator.

[Application Example]

- XOR operation is performed between the two values "9AH" and "9DH" as follows:

The result "7H" is returned.

Therefore, (a) in the above expression can also be described as: MOV A , #7H

MOV A , #9AH XOR 9DH ; (a)

XOR） 0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 0000 0000

0000 0000 1001 1101

0000 0000 0000 0111

0000 0000 1001 1010

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 57

2.6 Relational Operators

The following relational operators are available.

- EQ (=)

- NE (< >)

- GT (>)

- GE (>=)

- LT (<)

- LE (<=)

58 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

EQ (=)

[Function]

- Returns 0FFH (True) if the value of the 1st term of an expression is equal to the value of its 2nd term, and

00H (False) if both values are not equal.

A blank is required before and after the EQ operator.

[Application Example]

- In (a) above, the expression "A1 EQ (A2 + 4H)" becomes "12C4H EQ (12C0H + 4H)".

The operator returns 0FFH because the value of the 1st term is equal to the value of the 2nd term.

- In (b) above, the expression "A1 EQ A2" becomes "12C4H EQ 12C0H".

The operator returns 00H because the value of the 1st term is not equal to the value of the 2nd term.

A1 EQU 12C4H
A2 EQU 12C0H

 MOV A , #A1 EQ (A2 + 4H) ; (a)
 MOV X , #A1 EQ A2 ; (b)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 59

NE (< >)

[Function]

- Returns 0FFH (True) if the value of the 1st term of an expression is not equal to the value of its 2nd term,

and 00H (False) if both values are equal.

A blank is required before and after the NE operator.

[Application Example]

- In (a) above, the expression "A1 NE A2" becomes "5678H NE 5670H".

The operator returns 0FFH because the value of the 1st term is not equal to the value of the 2nd term.

- In (b) above, the expression "A1 NE (A2 + 8H)" becomes "5678H NE (5670H + 8H)".

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

A1 EQU 5678H
A2 EQU 5670H

 MOV A , #A1 NE A2 ; (a)
 MOV A , #A1 NE (A2 + 8H) ; (b)

60 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

GT (>)

[Function]

- Returns 0FFH (True) if the value of the 1st term of an expression is greater than the value of its 2nd term,

and 00H (False) if the value of the 1st term is equal to or less than the value of the 2nd term.

A blank is required before and after the GT operator.

[Application Example]

- In (a) above, the expression "A1 GT A2" becomes "1023H GT 1013H".

The operator returns 0FFH because the value of the 1st term is greater than the value of the 2nd term.

- In (b) above, the expression "A1 GT (A2 + 10H)" becomes "1023H GT (1013H + 10H)".

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

A1 EQU 1023H
A2 EQU 1013H

 MOV A , #A1 GT A2 ; (a)
 MOV X , #A1 GT (A2 + 10H) ; (b)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 61

GE (>=)

[Function]

- Returns 0FFH (True) if the value of the 1st term of an expression is greater than or equal to the value of its

2nd term, and 00H (False) if the value of the 1st term is less than the value of the 2nd term.

A blank is required before and after the GE operator.

[Application Example]

- In (a) above, the expression "A1 GE A2" becomes "2037H GE 2015H".

The operator returns 0FFH because the value of the 1st term is greater than the value of the 2nd term.

- In (b) above, the expression "A1 GE (A2 + 23H)" becomes "2037H GE (2015H + 23H)".

The operator returns 00H because the value of the 1st term is less than the value of the 2nd term.

A1 EQU 2037H
A2 EQU 2015H

 MOV A , #A1 GE A2 ; (a)
 MOV X , #A1 GE (A2 + 23H) ; (b)

62 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

LT (<)

[Function]

- Returns 0FFH (True) if the value of the 1st term of an expression is less than the value of its 2nd term, and

00H (False) if the value of the 1st term is equal to or greater than the value of the 2nd term.

A blank is required before and after the LT operator.

[Application Example]

- In (a) above, the expression "A1 LT A2" becomes "1000H LT 1020H".

The operator returns 0FFH because the value of the 1st term is less than the value of the 2nd term.

- In (b) above, the expression "(A1 + 20H) LT A2" becomes "(1000H + 20H) LT 1020H".

The operator returns 00H because the value of the 1st term is equal to the value of the 2nd term.

A1 EQU 1000H
A2 EQU 1020H

 MOV A , #A1 LT A2 ; (a)
 MOV X , # (A1 + 20H) LT A2 ; (b)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 63

LE (<=)

[Function]

- Returns 0FFH (True) if the value of the 1st term of an expression is less than or equal to the value of its 2nd

term, and 00H (False) if the value of the 1st term is greater than the value of the 2nd term.

A blank is required before and after the LE operator.

[Application Example]

- In (a) above, the expression "A1 LE A2" becomes "103AH LE 1040H".

The operator returns 0FFH because the value of the 1st term is less than the value of the 2nd term.

- In (b) above, the expression "(A1 + 7H) LE A2" becomes "(103AH + 7H) LE 1040H".

The operator returns 00H because the value of the 1st term is greater than the value of the 2nd term.

A1 EQU 103AH
A2 EQU 1040H

 MOV A , #A1 LE A2 ; (a)
 MOV X , # (A1 + 7H) LE A2 ; (b)

64 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.7 Shift Operators

The following shift operators are available.

- SHR

- SHL

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 65

SHR

[Function]

- Returns a value obtained by shifting the value of the 1st term of an expression to the right the number of bits

specified by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the

high-order bits.

A blank is required before and after the SHR operator.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits

exceeds 32, the space is automatically filled with zeros.

[Application Example]

- This operator shifts the value "01AFH" to the right by 5 bits.

The value "000DH" is returned.

Therefore, (a) in the above example can also be described as: MOV A , #0DH

MOV A , #01AFH SHR 5 ; (a)

0000 0000 0000 0000 0000 0001 1010 1111

0000 0000 0000 0000 0000 0000 0000 1101 0111 1

0's are inserted. Right-shifted by 5 bits.

66 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

SHL

[Function]

- Returns a value obtained by shifting the value of the 1st term of an expression to the left the number of bits

specified by the value of the 2nd term. Zeros equivalent to the specified number of bits shifted move into the

low-order bits.

A blank is required before and after the SHL operator.

If the number of shifted bits is 0, the value of the first term is returned as is. If the number of shifted bits

exceeds 32, the space is automatically filled with zeros.

[Application Example]

- This operator shifts the value "21H" to the left by 2 bits.

The value "84H" is returned.

Therefore, (a) in the above example can also be described as: MOV A , #84H

MOV A , #21H SHL 2 ; (a)

0000 0000 0000 0000 0000 0000 0010 0001

0000 0000 0000 0000 0000 0000 1000 010000

Left-shifted by 2 bits. 0's are inserted.

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 67

2.8 Byte-Separating Operators

The following byte-separating operators are available.

- HIGH

- LOW

68 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

HIGH

[Function]

- Returns the high-order 8-bit value of a term.

A blank is required between the HIGH operator and the term.

[Application Example]

- By executing a MOV instruction, this operator returns the high-order 8-bit value "12H" of the expression

"1234H".

Therefore, (a) in the above example can also be described as: MOV A , #12H

[Remark]

- A HIGH operation for an SFR name is performed, using either of the following description methods.

Or,

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>

MOV A , #HIGH 1234H ; (a)

HIGHΔSFR-name

HIGH[Δ]([Δ]SFR-name[Δ])

Symbol field Mnemonic field Operand field
 MOV R0 , #HIGH PM0
 MOV R1 , #HIGH PM1 + 1H ; Equivalent to
 ; #(HIGH PM1) + 1
 MOV R1 , #HIGH (PM1 + 1H) ; An error is returned
 ; because operands other
 ; than HIGH, LOW, HIGHW,
 ; and LOWW are specified
 ; as the SFR name

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 69

LOW

[Function]

- Returns the low-order 8-bit value of a term.

A blank is required between the LOW operator and the term.

[Application Example]

- By executing a MOV instruction, this operator returns the low-order 8-bit value "34H" of the expression

"1234H".

Therefore, (b) in the above example can also be described as: MOV A , #34H

[Remark]

- A LOW operation for an SFR name is performed, using either of the following description methods.

Or,

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>

MOV A , #LOW 1234H ; (b)

LOWΔSFR-name

LOW[Δ]([Δ]SFR-name[Δ])

Symbol field Mnemonic field Operand field
 MOV R0 , #LOW PM0
 MOV R1 , #LOW PM1 + 1H ; Equivalent to
 ; #(LOW PM1) + 1
 MOV R1 , #LOW (PM1 + 1H) ; An error is returned
 ; because operands other
 ; than HIGH, LOW, HIGHW,
 ; and LOWW are specified
 ; as the SFR name

70 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.9 Word-Separating Operators

The following word-separating operators are available.

- HIGHW

- LOWW

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 71

HIGHW

[Function]

- Returns the high-order 8-bit value of a term.

A blank is required between the HIGHW operator and the term.

[Application Example]

- By executing a MOVW instruction, this operator returns the high-order 16-bit value "1234H" of the

expression "12345678H".

Therefore, (a) in the above example can also be described as: MOVW AX , #1234H

- By executing the MOV instruction on line (b), the higher address of label LAB is set to the ES register.

[Remark]

- A HIGHW operation for an SFR name is performed, using either of the following description methods.

Or,

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>

MOVW AX , #HIGHW 12345678H ; (a)

MOV ES , #HIGHW LAB ; (b)
MOVW AX , ES:!LAB

HIGHWΔSFR-name

HIGHW[Δ]([Δ]SFR-name[Δ])

Symbol field Mnemonic field Operand field
 MOVW RP0 , #HIGHW PM0
 MOVW RP1 , #HIGHW PM1 + 1H ; Equivalent to
 ; #(HIGHW PM1) + 1
 MOVW RP1 , #HIGHW (PM1 + 1H) ; An error is
 ; returned because
 ; operands other than
 ; HIGH, LOW, HIGHW,
 ; and LOWW are
 ; specified as the SFR
 ; name

72 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

LOWW

[Function]

- Returns the low-order 8-bit value of a term.

A blank is required between the LOW operator and the term.

[Application Example]

- By executing a MOV instruction, this operator returns the low-order 16-bit value "5678H" of the expression

"12345678H".

Therefore, (a) in the above example can also be described as: MOVW AX , #5678H

[Remark]

- A LOWW operation for an SFR name is performed, using either of the following description methods.

Or,

The result obtained from the operation is an operand of the absolute NUMBER attribute.

No other operations can be performed for the SFR name.

<Example>

MOVW A , #LOWW 12345678H ; (a)

LOWWΔSFR-name

LOWW[Δ]([Δ]SFR-name[Δ])

Symbol field Mnemonic field Operand field
 MOVW RP0 , #LOWW PM0
 MOVW RP1 , #LOWW PM1 + 1H ; Equivalent to
 ; #(LOWW PM1) + 1
 MOVW RP1 , #LOWW (PM1 + 1H) ; An error is
 ; returned because
 ; operands other than
 ; HIGH, LOW, HIGHW,
 ; and LOWW are
 ; specified as the SFR
 ; name

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 73

2.10 Special Operators

The following special operators are available.

- DATAPOS

- BITPOS

- MASK

74 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

DATAPOS

[Function]

- Returns the address portion (byte address) of a bit symbol.

[Application Example]

- An EQU directive defines the name "SYM" with a value of 0FE68H.6.

"DATAPOS SYM" represents "DATAPOS 0FE68H.6", and "0FE68H" is returned.

Therefore, (a) in the above example can also be described as: MOV A , !0FE68H

SYM EQU 0FE68H.6

 MOV A , !DATAPOS SYM ; (a)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 75

BITPOS

[Function]

- Returns the bit portion (bit position) of a bit symbol.

[Application Example]

- An EQU directive defines the name "SYM" with a value of 0FE68H.6.

"BITPOS.SYM" represents "BITPOS 0FE68H.6", and "6" is returned.

A CLR1 instruction clears [HL].6 to 0.

SYM EQU 0FE68H.6

 CLR1 [HL].BITPOS SYM

76 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

MASK

[Function]

- Returns a 16-bit value in which the specified bit position is 1 and all others are set to 0.

[Application Example]

- A MOVW instruction returns the value "8089H".

MOVW AX , #MASK (0 , 3 , 0FE00H.7 , 15)

MASK (0 , 3 , 0FE00H.7 , 15)

F E D C B A 9 8 7 6 5 4 3 2

1 0 0 0 0 0 0 0 0 0 0 0 0 111

1 0

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 77

2.11 Other Operator

The following other operator is available.

- ()

78 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

()

[Function]

- Causes an operation in parentheses to be performed prior to operations outside the parentheses.

This operator is used to change the order of precedence of other operators.

If parentheses are nested at multiple levels, the expression in the innermost parentheses will be calculated

first.

[Application Example]

Calculations are performed in the order of expressions (1), (2) and the value "14" is returned as a result.

If parentheses are not used,

Calculations are performed in the order (1), (2) shown above, and the value "10" is returned as a result.

See Table 2-5, for the order of precedence of operators.

MOV A , # (4 + 3) * 2

(4 + 3) * 2

(1)

(2)

4 + 3 * 2

(1)

(2)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 79

2.12 Restrictions on Operations

The operation of an expression is performed by connecting terms with operator(s). Elements that can be

described as terms include constants, $, names, and labels. Each term has a relocation attribute and a symbol

attribute.

Depending on the types of relocation attribute and symbol attribute inherent in each term, operators that can

work on the term are limited. Therefore, when describing an expression, it is important to pay attention to the

relocation attribute and symbol attribute of each of the terms constituting the expression.

2.12.1 Operators and relocation attributes

As previously mentioned, each of the terms that constitute an expression has a relocation attribute and symbol

attribute.

Terms can be divided into three types when classified by their relocation attributes: Absolute terms, relocatable

terms, and external reference terms.

Types of relocation attributes in operations, the nature of each attribute, and terms applicable to each attribute

are shown below.

Note The following 6 operators can work on external reference terms: "+", "-", "HIGH", "LOW", "HIGHW",

"LOWW",. Only one external reference symbol can be described in an expression. In this case, the

external reference symbol must be connected with a "+" operator.

Combinations of the type of operator and terms on which each operator can work are shown below.

Table 2-6 Types of Relocation Attributes

Type Nature Applicable Terms

Absolute term
Term whose value and
constant are determined at
assembly time

- Constants
- Labels defined within an absolute segment
- $ indicating the location address defined within

an absolute segment
- Names defined with constants, the above

labels, the above $, or absolute values

Relocatable term Term whose value is not
determined at assembly time

- Labels defined within a relocatable segment
- $ indicating the location address defined within

a relocatable segment
- Names defined with a relocatable symbol

External reference
termNote

Term that externally references
the symbol of another module

- Labels defined with the EXTRN directive
- Names defined with the EXTBIT directive

80 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Table 2-7 Combinations of Terms and Operators by Relocation Attribute (Relocatable Terms)

Type of Operator

Relocation Attribute of Term

X: ABS
Y: ABS

X: ABS
Y: REL

X: REL
Y: ABS

X: REL
Y: REL

X + Y A R R -

X - Y A - R ANote 1

X * Y A - - -

X / Y A - - -

X MOD Y A - - -

X SHL Y A - - -

X SHR Y A - - -

X EQ Y A - - ANote 1

X LT Y A - - ANote 1

X LE Y A - - ANote 1

X GT Y A - - ANote 1

X GE Y A - - ANote 1

X NE Y A - - ANote 1

X AND Y A - - -

X OR Y A - - -

X XOR Y A - - -

NOT X A A - -

+ X A A R R

- X A A - -

HIGH X A A RNote 2 RNote 2

LOW X A A RNote 2 RNote 2

HIGHW X A A RNote 2 RNote 2

LOWW X A A RNote 2 RNote 2

MASK (X) A A - -

DATAPOS X.Y A - - -

BITPOS X.Y A - - -

MASK (X.Y) A - - -

DATAPOS X A A R R

BITPOS X A A A A

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 81

ABS: Absolute term

REL: Relocatable term

A: The result of the operation becomes an absolute term.

R: The result of the operation becomes a relocatable term.

-: The operation cannot be performed.

Note 1 The operation can only be performed if X and Y are defined within the same segment, and not

relocatable terms on which HIGH, LOW, HIGHW, LOWW, DATAPOS are operated.

Note 2 The operation can only be performed if X and Y are not relocatable terms on which HIGH, LOW,

HIGHW, LOWW, DATAPOS are operated.

The following 6 operators can work on external reference terms: "+", "-", "HIGH", "LOW", "HIGHW", and

"LOWW" (however, note that only one external reference term can be described in an expression).

Combinations of the types of operators and external reference terms on which each operator can work

areclassified according to relocation attributes in the following table.

Table 2-8 Combinations of Terms and Operators by Relocation Attribute (External Reference Terms)

Type of Operator

Relocation Attribute of Term

X: ABS
Y: EXT

X: EXT
Y: ABS

X: REL
Y: EXT

X: EXT
Y: REL

X: EXT
Y: EXT

X + Y E E - - -

X - Y - E - - -

+ X A E R E E

HIGH X A ENote 1 RNote 2 ENote 1 ENote 1

LOW X A ENote 1 RNote 2 ENote 1 ENote 1

HIGHW X A ENote 1 RNote 2 ENote 1 ENote 1

LOWW X A ENote 1 RNote 2 ENote 1 ENote 1

MASK (X) A - - - -

DATAPOS X.Y - - - - -

BITPOS X.Y - - - - -

MASK (X.Y) - - - - -

DATAPOS X A E R E E

BITPOS X A E A E E

82 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

ABS: Absolute term

EXT: External reference terms

REL: Relocatable term

A: The result of the operation becomes an absolute term.

E: The result of the operation becomes an external reference term.

R: The result of the operation becomes a relocatable term.

-: The operation cannot be performed.

Note 1 The operation can only be performed if X and Y are not external reference terms on which HIGH,

LOW, HIGHW, LOWW, DATAPOS, BITPOS are operated.

Note 2 The operation can only be performed if X and Y are not relocatable terms on which HIGH, LOW,

HIGHW, LOWW, DATAPOS are operated.

2.12.2 Operators and symbol attributes

As previously mentioned, each of the terms that constitute an expression has a symbol attribute in addition to a

relocation attribute. Terms can be divided into two types when classified by their symbol attributes: NUMBER terms

and ADDRESS terms.

Types of symbol attributes in operations and terms applicable to each attribute are shown below.

Combinations of the type of operator and terms on which each operator can work when classified by their symbol

attributes are shown below.

Table 2-9 Types of Symbol Attributes in Operations

Type of Symbol Attribute Applicable Terms

NUMBER term - Symbols that have NUMBER attribute
- Constants

ADDRESS term - Symbols that have ADDRESS attribute
- “$” indicating the location counter

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 83

ADDRESS: ADDRESS term

NUMBER: NUMBER term

A: The result of the operation becomes an ADDRESS term.

N: The result of the operation becomes a NUMBER term.

-: The operation cannot be performed.

Table 2-10 Combinations of Terms and Operators by Symbol Attribute

Type of Operator

Symbol Attribute of Term

X: ADDRESS
Y: ADDRESS

X: ADDRESS
Y: NUMBER

X: NUMBER
Y: ADDRESS

X: NUMBER
Y: NUMBER

X + Y - A A N

X - Y N A - N

X * Y - - - N

X / Y A A A N

X MOD Y N A N N

X SHL Y N N N N

X SHR Y N N N N

X EQ Y N N N N

X LT Y N N N N

X LE Y N N N N

X GT Y N N N N

X GE Y N N N N

X NE Y N N N N

X AND Y N N N N

X OR Y N N N N

X XOR Y N N N N

NOT X N N N N

+ X N N N N

- X N N N N

HIGH X A A N N

LOW X A A N N

HIGHW X A A N N

LOWW X A A N N

DATAPOS X A A N N

MASK X N N N N

84 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.12.3 How to check restrictions on the operation

An example of an operation by the relocation attribute and by symbol attribute of each term is shown here.

<Example>

Here, assume that "TABLE" is a label defined in a relocatable code segment.

[Operator and relocation attribute]

Because "TABLE + 5H" is "relocatable term+absolute term", this operation is applied to Table 2-7.

Type of operator: X + Y

Relocation attribute of term: X: REL, Y: ABS

From the table, you will find that the result is R (namely, a relocatable term).

[Operator and symbol attribute]

Because "TABLE + 5H" is "ADDRESS term+NUMBER term", this operation is applied to Table 2-10.

Type of operator: X + Y

Symbol attribute of term: X: ADDRESS, Y: NUMBER

From the table, you will find that the result is A (namely, an ADDRESS term).

BR $TABLE + 5H

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 85

2.13 Definition of Absolute Expression

If values have been determined when the expression is evaluated during assembly, such an expression is called

an absolute expression.

The following expressions are called absolute expressions.

- Constants

- Expressions that are composed only of constants (constant expression)

- Constants, EQU symbol defined in a constant expression, or SET symbol

- Expressions that involve certain operations for the above objects

Remark Only backward reference is possible for symbols.

86 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

2.14 Bit Position Specifier

Bits can be accessed by using the bit position specifier (.).

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 87

.

[Description Format]

Note For details on the specific description, see the user's manual of each device.

[Function]

- The bit position specifier specifies a byte address with its 1st term and the position of a bit by its 2nd term. A

specific bit can be accessed by this bit position specifier.

[Explanation]

- A bit term refers to an expression that uses a bit position specifier.

- The bit position specifier is not affected by the precedence order of operators. The left side of the bit position

specifier is recognized as the 1st term and its right side as the 2nd term.

- The following restrictions apply to the 1st term:

(1) An expression with the NUMBER or ADDRESS attribute, an SFR name capable of bit access or

register name (A) can be described.

(2) When an absolute expression is described in the 1st term, it must be within the range 0H to 0FFFFFH.

(3) An external reference symbol can be described.

- The following restrictions apply to the 2nd term:

(1) The value of an expression must be in the range of 0 to 7. If this value range is exceeded, an error

occurs.

(2) Only an absolute expression with the NUMBER attribute can be described.

(3) No external reference symbol can be described.

X (1st Term) Y (2nd Term)

General register A Expression (0 to 7)

Control register PSW Expression (0 to 7)

Special function register sfrNote Expression (0 to 7)

Memory [HL]Note Expression (0 to 7)

X[Δ].[Δ]Y

Bit term

88 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

[Operations and Relocation Attributes]

- Combinations of the 1st and 2nd terms by relocation attribute are shown below.

ABS: Absolute term

REL: Relocatable term

EXT: External reference terms

A: The result of the operation becomes an absolute term.

E: The result of the operation becomes an external reference term.

R: The result of the operation becomes a relocatable term.

-: The operation cannot be performed.

[Values of Bit Symbols]

- When a bit symbol is defined by describing a bit term using the bit position specifier in the operand field of

the EQU directive, the value that the bit symbol will have is shown below.

Note 1 For a detailed description, refer to the user's manual of each device.

Note 2 bit = 0 to 7

Note 3 FFFXXH indicates the address of an sfr.

Note 4 XXXXXH indicates the value of an expression.

[Application Example]

Combination of Terms X: ABS ABS REL REL ABS EXT REL EXT EXT

Combination of Terms Y: ABS REL ABS REL EXT ABS EXT REL EXT

X.Y A - R - - E - - -

Operand Type Symbol Value

A.bitNote 2 1.bit

PSW.bitNote 2 FFFFAH.bit

sfrNote 1.bitNote 2 FFFXXH.bitNote 3

expression.bitNote 2 XXXXXH.bitNote 4

SET1 0FFE20H.3
SET1 A.5
CLR1 P1.2
SET1 1 + 0FFE30H.3 ; Equals 0FFE31H.3
SET1 0FFE40H.4 + 2 ; Equals 0FFE40H.6

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 89

2.15 Characteristics of Operands

Instructions and directives requiring an operand or operands differ from one type of instruction to another in the

size and address range of the required operand value and in the symbol attribute of the operand.

For example, the instruction "MOV r, #byte" functions to transfer the value indicated by "byte" to register "r". In

this case, because r is an 8-bit register, the size of the data "byte" to be transferred must be 8 bits or less.

If an instruction is described as "MOV R0, #100H", an assembly error occurs, because the size of the 2nd

operand "100H" of the instruction exceeds the capacity of the 8-bit register R0.

When describing an operand, therefore, attention must be paid to the following points:

- Is the size of the operand value or its address range suitable for the operand (numerical data, name, or label)

of the instruction?

- Is the symbol attribute suitable for the operand (name or label) of the instruction?

2.15.1 Size and address range of operand value

Certain conditions are set for the size and address range of the value of the numerical data, name, or label that

can be described as the operand of an instruction.

With instructions, conditions for the size and address range of an operand value are governed by the operand

representation format of each instruction. With directives, conditions for the size and address range of an operand

value are governed by the type of instructions.

These conditions are shown below.

Table 2-11 Ranges of Operand Values of Instructions

Operand
Representation Format Range of Values

byte 8-bit value 0H to FFH

word

word [B]
word [C]
word [BC]

- Numeric constants and NUMBER attribute symbols
0H to FFFFH

- ADDRESS attribute symbols
Within the range of (1) or in the area of (2)

(1) F0000H to FFFFFH

(2) The area mirrored in the RAM space when MAA =
0 (01000H to 0xxxxH) or the area mirrored in the
RAM space when MAA = 1 (11000H to
1xxxxH)Note 1

ES : word [B]
ES : word [C]
ES : word [BC]

- Numeric constants and NUMBER attribute symbols
0H to FFFFH

- ADDRESS attribute symbols
0H to FFFFFH

Other than above 16-bit value : 0H to FFFFH

saddr FFE20H to FFF1FHNote 4

saddrp Even value of FFE20H to FFF1FHNote 4

90 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

sfr FFF20H to FFFFFH : Special function register symbols (Symbol of SFR), and
numeric constants and NUMBER attribute symbolsNote 5

sfrp
FFF20H to FFFFFH : Special function register symbols (Symbol of SFR that can
be manipulated in 16-bit units, even values only), and numeric constants and
NUMBER attribute symbolsNote 5

addr20

!!addr20 0H to FFFFFH

$addr20
0H to FFFFFH, and an address following a branch
instruction to the branch destination is in the range from -
80H to +7FH

$!addr20
0H to FFFFFH, and an address following a branch or call
instruction to the branch destination is in the range from -
8000H to +7FFFH

addr16

!addr16
(BR, CALL
instruction)

0H to FFFFH
(the same range specifiable for both numeric constants
and symbols)

!addr16Note 2

(instructions other
than BR and CALL)

- Numeric constants and NUMBER attribute symbolNote 3

0H to FFFFH

- ADDRESS attribute symbolNote 3

Within the range of (1) or in the area of (2)

(1) F0000H to FFFFFH

(2) The area mirrored in the RAM space when MAA =
0 (Example: 01000H to 0xxxxH) or the area
mirrored in the RAM space when MAA = 1
(Example: 11000H to 1xxxxH)Note 1

ES:!addr16

- Numeric constants and NUMBER attribute symbolNote 3

0H to FFFFH

- ADDRESS attribute symbolNote 3

0H to FFFFFH

!addr16.bit

- DBIT symbols, SFBIT attribute or SABIT attribute bit
symbols, bit symbols defined with the EQU directive
(only when an ADDRESS attribute symbol is included
as an operand)
Within the range of (1) or in the area of (2)

(1) F0000H to FFFFFH

(2) The area mirrored in the RAM space when MAA =
0 (Example: 01000H to 0xxxxH) or the area
mirrored in the RAM space when MAA = 1
(Example: 11000H to 1xxxxH)Note 1

- Bit symbols other than above
0H to FFFFH

ES : !addr16.bit

- DBIT symbols, SFBIT attribute or SABIT attribute bit
symbols, bit symbols defined with the EQU directive
(only when an ADDRESS attribute symbol is included
as an operand)
0H to FFFFFH

- Bit symbols other than above
0H to FFFFH

addr5 0080H to 00BFH (CALLT instruction table area, even values only)

Operand
Representation Format Range of Values

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 91

Note 1 The address ranges to be mirrored in the RAM space differ depending on the device used. For

details, refer to the user's manual of the device used.

Note 2 To describe sfr or 2ndsfr as an operand, it can be described as !sfr or !2ndsfr. These are output as

the operands for !addr16 in the code.

2ndsfr can be described without appending "!", but it is output as an operand for !addr16 in the code.

Note 3 Only even addresses can be specified for using 16-bit data.

Note 4 To keep compatibility with the 78K0 Series, values from FE20H to FF1FH can be described for

numeric constants and NUMBER attribute symbols only.

Note 5 For numeric constants and NUMBER attribute symbols, checking read/write access for an SFR at the

specified address is not performed.

[The reason why an operand's symbol attribute affects the value range that can be specified for addr16 and
word]

When using addr16 or word, the symbol attribute described for the operand affects the range of values that can

be specified for the operand. The reasons are explained below.

For details on symbol attributes, refer to "2.2.3 (4) Symbol attributes".

(1) !addr16 (instructions other than BR and CALL)

Example 1 explains the reason why a range of values that can be specified as an operand of !addr16

(instructions other than BR and CALL) varies between numeric constants, NUMBER attribute symbols and

ADDRESS attribute symbols.

<Example 1>

bit 3-bit value 0 to 7

n 2-bit value 0 to 3

NUMBER0 EQU 0F100H ; (a)
NUMBER1 EQU 0F102H
NUMBER2 EQU 0F103H

D0 DSEG AT 0FF100H
ADDRESS0: DS 1
ADDRESS1: DS 1
ADDRESS2: DS 1

 CSEG
 MOV !NUMBER0 , A ; (b)
 MOV !0F100H , A ; (c)
 MOV !ADDRESS0 , A ; (d)

Operand
Representation Format Range of Values

92 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

The code of line (a) includes a NUMBER attribute symbol. The following explains the case when this symbol

is described as an operand of !addr16.

Direct addressing is performed based on operand !addr16 in instruction set "MOV !addr16 , A", and the

processing "transferring the value in register A to address 0FF100H" is performed in (b). The code of line (a)

includes a NUMBER attribute symbol, which can be replaced with (c), therefore, the NUMBER attribute

symbol NUMBER0 described for !addr16 and numeric value 0F100H indicate address 0FF100H.

That is, using the NUMBER attribute symbol, !addr16 (instructions other than BR and CALL) can take the

values at "0H to FFFFH", which means addresses F0000H to FFFFFH.

Next, the following explains the case when the same kind of processing is performed using label ADDRESS0

(ADDRESS attribute symbol).

The symbol value of ADDRESS0 on line (d) indicates "FxxxxH to FFFFFH" in the RAM space, whereas addr16

targets the range "0000H to FFFFH", which results in an error. If label ADDRESS0 (ADDRESS attribute

symbol) is described for the operand, the code can be simplified by taking the range of operand values

"F0000H to FFFFFH".

That is, the ADDRESS attribute symbol of !addr16 (instructions other than BR and CALL) can take the values

at "0H to FFFFH", so it can be described for the operand as is.

Moreover, mirroring of the ROM area to the RAM area must be handled with description of !addr16.

In Example 2, the segment of MO is located in the ROM space, which is mirrored to the RAM space. The MO

segment is located to "01000H to 0xxxxH" when MAA = 0, or "11000H to 0xxxxH" when MAA = 1.

The symbol value of ADDRESS0 on line (e) therefore indicates the value at "01000H to 0xxxxH" or "11000H to

1xxxxH". This makes describing like line (e) possible, which references a symbol in the segment to be

mirrored, the !addr16 takes the range "01000H to 0xxxxH" or "11000H to 1xxxxH".

That is, the ADDRESS attribute symbol of !addr16 (instructions other than BR and CALL) can take the values

at "01000H to 0xxxxH" or "11000H to 0xxxxH", so it can be described for the operand as is.

<Example 2>

M0 CSEG MIRRORP
ADDRESS0: DB 12H
ADDRESS1: DB 34H
ADDRESS2: DB 56H
 CSEG
 MOV A , !ADDRESS0 ; (e)

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 93

(2) ES:!addr16

Example 3 explains the reason why a range of values that can be specified as an operand of ES:!addr16

varies between numeric constants, NUMBER attribute symbols and ADDRESS attribute symbols.

<Example 3>

The following explains the case when performing the processing "transferring the value at ADDRESS0 to

register A" on lines (f) and (g).

The symbol value of ADDRESS0 on line (g) is "12345H", whereas addr16 targets the range "0000H to

FFFFH", which results in an error.

This makes describing like line (g) possible, so the code can be simplified by taking the range of "0H to

FFFFFH" for ADDRESS0.

That is, the ADDRESS attribute symbol of ES:!addr16 can take the values at "0H to FFFFFH", so it can be

described for the operand as is.

(3) !addr16.bit，ES:!addr16.bit

Example 4 explains the reason why a range of values that can be specified as operands of !addr16.bit and

ES:!addr16.bit varies between DBIT symbols, SFBIT attribute and SABIT attribute bit symbols, bit symbols

defined with the EQU directive (only when an ADDRESS attribute symbol is included as an operand) and other

symbols.

<Example 4>

DATA CSEG AT 12345H
ADDRESS0: DB 12H
ADDRESS1: DB 34H
ADDRESS2: DB 56H

 CSEG
 MOV ES , #HIGHW ADDRESS0 ; (f)
 MOV A , ES:!ADDRESS0 ; (g)

 BSEG
DBITSYM0 DBIT ; (h)
DBITSYM1 DBIT
DBITSYM2 DBIT

BIT1_PM0 EQU PM0.1 ; (i)
BIT2_P0 EQU P0.2 ; (j)

 DSEG
ADDRESS0: DS 1
ADDRESS1: DS 1
ADDRESS2: DS 1

ADR_BIT0 EQU ADDRESS0.0 ; (k)
ADR_BIT1 EQU ADDRESS0.1
ADR_BIT2 EQU ADDRESS0.2

 CSEG
 SET1 !DBITSYM0 ; (l)
 SET1 !BIT1_PM0 ; (m)
 SET1 !BIT2_P0 ; (n)
 SET1 !ADR_BIT0 ; (o)

94 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Describing of the DBIT symbol on line (h), SFBIT attribute and SABIT attribute bit symbols on lines (i) and (j),

and the bit symbol defined with the EQU directive on line (k) (only when an ADDRESS attribute symbol is

included as an operand) as operands for !addr16.bit is made possible, as stated on lines (l) to (o), so the range

of values varies depending on the symbol attribute described.

For the same reason, the range of values varies depending on the symbol attribute described for

ES:!addr16.bit.

(4) word

Example 5 explains the reason why a range of values that can be specified as word operands varies between

numeric constants, NUMBER attribute symbols and ADDRESS attribute symbols.

<Example 5>

Since labels (ADDRESS attribute symbols) are often described for operands that use "word" as operands,

such as word[B], word[C], and word[BC] on lines (p) to (r), the code can be simplified by making label

descriptions possible, in the same manner as !addr16.

For the same reason, the code for ES:word[B], ES:word[C], ES:word[BC] can be simplified.

 DSEG
ADDRESS0: DS 1
ADDRESS1: DS 1
ADDRESS2: DS 1
 CSEG
 MOV B , #0
 MOV ADDRESS0[B] , A ; (p)
 MOV C , #1
 MOV ADDRESS0[C] , A ; (q)
 MOVW BC , #2
 MOV ADDRESS0[BC] , AX ; (r)

Table 2-12 Ranges of Operand Values of Directives

Type of Directive Directive Range of Values

Segment definition directives

CSEG AT 0H to FFFFH (excluding SFR and 2ndSFR)

DSEG AT 0H to FFFFH (excluding SFR and 2ndSFR)

BSEG AT 0H to FFFFH (excluding SFR and 2ndSFR)

ORG 0H to FFFFH (excluding SFR and 2ndSFR)

Symbol definition directives
EQU 20-bit value 0H to FFFFFH

SET 20-bit value 0H to FFFFFH

Memory initialization and area
reservation directives

DB 8-bit value 0H to FFH

DW 16-bit value 0H to FFFFH

DG 20-bit value 0H to FFFFFH

DS 8-bit value 0H to FFH

Automatic branch instruction
selection directive BR/CALL 0H to FFFFFH

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 95

2.15.2 Size of operands required for instructions

Instructions can be classified into machine instructions and directives. For instructions that require immediate

data and symbols as operands, the size of the operand required varies for each instruction. Therefore, an error

occurs when data in excess of the size of the operand required for the instruction is described.

The operations of expressions are carried out with unsigned 32 bits. If the evaluation result exceeds

0FFFFFFFFH (32 bits), a warning message is output.

However, when relocatable or external-reference symbols are described in an operand, the values are not

determined within the assembler. Instead, the linker determines the values and checks the value range.

2.15.3 Symbol attributes and relocation attributes of operands

When names, labels, and $ (which indicate location counters) are described as instruction operands, they may

or may not be describable as operands. This depends on the symbol attributes and relocation attributes (see "2.12

Restrictions on Operations") that serve as the terms of their expressions, as well as on the direction of reference in

the case of names and labels.

Reference direction for names and labels can be backward reference or forward reference.

- Backward reference: A name or label referenced as an operand, which is defined in a line above (before) the

name or label

- Forward reference: A name or label referenced as an operand, which is defined in a line below (after) the

name or label

These symbol attributes and relocation attributes, as well as direction of reference for names and labels, are

shown below.

<Example>

 NAME TEST
 CSEG
L1 :
 BR !L1
 BR !L2
L2 :
 END

Backward reference

Forward reference

96 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

Forward: Forward reference

Backward: Backward reference

OK: Description possible

NG: An error

-: Description impossible

Note 1 The defined symbol specifying sfr or sfrp (sfr area where saddr and sfr are not overlapped) as an

operand of EQU directive is only referenced backward. Forward reference is prohibited.

Note 2 If an sfr reserved word in the saddr area has been described for an instruction in which a combination

of sfr/sfrp changed from saddr/saddrp exists in the operand combination, a code is output as saddr/

saddrp.

Note 3 sfr reserved word in saddr area

Note 4 sfrp reserved word in saddr area

Note 5 Only sfr reserved words that allow 8-bit accessing

Note 6 Only sfr reserved words that allow 16-bit accessing

Note 7 !sfr and !2ndsfr can be specified only for operand !addr16 of instructions other than BR and CALL.

Table 2-13 Properties of Described Symbols as Operands

Symbol
Attributes NUMBER ADDRESS NUMBER

ADDRESS
sfr Reserved
WordsNote 1

Relocation
Attributes Absolute Terms Absolute Terms Relocatable

Terms

External
Reference

Terms

Reference
Pattern

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

sfr 2ndsfr

 D
escription Form

at

byte OK OK OK OK OK OK OK OK NG NG

word OK OK OK OK OK OK OK OK NG NG

saddr OK OK OK OK OK OK OK OK OK
Note 3

OK
Note 3

saddrp OK OK OK OK OK OK OK OK OK
Note 2, 4

OK
Note 2, 4

sfr OK OK NG NG NG NG NG NG OK
Note 2, 5

OK
Note 2, 5

sfrp OK OK NG NG NG NG NG NG OK
Note 2, 6

OK
Note 2, 6

addr20 OK OK OK OK OK OK OK OK NG NG

addr16 OK OK OK OK OK OK OK OK OK
Note 7

OK
Note 7

addr5 OK OK OK OK OK OK OK OK NG NG

bit OK OK NG NG NG NG NG NG NG NG

n OK OK OK OK NG NG NG NG NG NG

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

User’s Manual U18546EJ1V0UM 97

OK: Description possible

-: Description impossible

Note 1 Only an absolute expression can be described.

Note 2 An error occurs if an expression including one of the following patterns is described.

- ADDRESS attribute - ADDRESS attribute

- ADDRESS attribute relational operator ADDRESS attribute

- HIGH absolute ADDRESS attribute

- LOW absolute ADDRESS attribute

- HIGHW absolute ADDRESS attribute

- LOWW absolute ADDRESS attribute

- DATAPOS absolute ADDRESS attribute

- MASK absolute ADDRESS attribute

Table 2-14 Properties of Described Symbols as Operands of Directives

Symbol
Attributes NUMBER ADDRESS, SADDR BIT

Relocation
Attributes

Absolute
Terms

Absolute
Terms

Relocatable
Terms

External
Reference

Terms

Absolute
Terms

Relocatable
Terms

External
Reference

Terms

Reference
Direction

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

B
ackw

ard

Forw
ard

 D
irective

ORG OK
Note 1

- - - - - - - - - - - - -

EQUNote 2 OK - OK - OK
Note 3

- - - OK - OK
Note 3

- - -

SET OK
Note 1

- - - - - - - - - - - - -

DB

Size OK
Note 1

- - - - - - - - - - - - -

Initial
value

OK OK OK OK OK OK OK OK - - - - - -

DW

Size OK
Note 1

- - - - - - - - - - - - -

Initial
value

OK OK OK OK OK OK OK OK - - - - - -

DG

Size OK
Note 1

- - - - - - - - - - - - -

Initial
value

OK OK OK OK OK OK OK OK - - - - - -

DS OK
Note 4

- - - - - - - - - - - - -

BR/CALL OK - - - - - - - - - - - - -

98 User’s Manual U18546EJ1V0UM

CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS

- When the operation results can be affected by optimization from the above 8 patterns.

Note 3 A term created by the HIGH/LOW/HIGHW/LOWW/DATAPOS/MASK operator that has a relocatable

term is not allowed.

Note 4 Refer to "3.4 Memory Initialization and Area Reservation Directives ".

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 99

CHAPTER 3 DIRECTIVES

This chapter explains the directives.

Directives are instructions that direct all types of instructions necessary for the RA78K0R to perform a series of

processes.

3.1 Overview

Instructions are translated into object codes (machine language) as a result of assembling, but directives are not

converted into object codes in principle. Directives contain the following functions mainly:

- To facilitate description of source programs

- To initialize memory and reserve memory areas

- To provide the information required for assemblers and linkers to perform their intended processing

The following table shows the types of directives.

The following sections explain the details of each directive.

In the description format of each directive, "[]" indicates that the parameter in square brackets may be omitted

from specification, and "..." indicates the repetition of description in the same format.

Table 3-1 List of Directives

Type Directives

Segment Definition Directives CSEG, DSEG, BSEG, ORG

Symbol Definition Directives EQU, SET

Memory Initialization and Area Reservation
Directives DB, DW, DG, DS, DBIT

Linkage Directives EXTRN, EXTBIT, PUBLIC

Object Module Name Declaration Directive NAME

Automatic Branch Instruction Selection Directives BR, CALL

Macro Directives MACRO, LOCAL, REPT, IRP, EXITM, ENDM

Assembly Termination Directive END

100 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

3.2 Segment Definition Directives

A source module must be described in units of segments.

Segment definition directives are used to define these segments. Segments are divided into the following four

types:

- Code segments

- Data segments

- Bit segments

- Absolute segments

The type of segment determines the address range in memory in which each segment will be located.

The following table shows the method of defining each segment and the memory address at which each

segment is located.

If the user wishes to determine the memory location of a segment, describe the segment as an absolute

segment. For the stack area, the user needs to reserve an area in the data segment and set it in the stack pointer.

Segments cannot be located in the following areas.

Table 3-2 Segment Definition Methods and Memory Address Location

Type of Segment Method of Definition Memory Address at Which Each
Segment Is Located

Code segment CSEG directive Within the internal or external ROM
address

Data segment DSEG directive Within the internal or external RAM
address

Bit segment BSEG directive Within the saddr area in the internal
RAM

Absolute segment
Specifies location address (AT location
address) to relocation attribute with
CSEG, DSEG, or BSEG directive

Specified address

Option byte area C0 to C2H (user option bytes), C3H (on-chip debug
option byte)

When specify security ID C4H to CDH

When use the on-chip-debug function 02H to 03H, CE to D7H (reserved for on-chip
debugging)
Area of the program size, starting from the address
specified with the -go option by the user

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 101

An example of segment location is shown below.

Figure 3-1 Memory Location of Segments

The following segment definition directives are available.

- CSEG

- DSEG

- BSEG

- ORG

Source module

Source module Source module

<One source module>

<Memory>

Data segment

Absolute segment which
belongs to data segment

Bit segment

Code segment

Absolute segment which
belongs to code segment

saddr

RAM

ROM

FFFFFH

00000H

102 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

CSEG

[Description Format]

[Function]

- The CSEG directive indicates to the assembler the start of a code segment.

- All instructions described following the CSEG directive belong to the code segment until it comes across a

Segment Definition Directives (CSEG, DSEG, BSEG, or ORG) or the END directive, and finally those

instructions are located within a ROM address after being converted into machine language.

[Use]

- The CSEG directive is used to describe instructions, DB, DW directives, etc. in the code segment defined by

the CSEG directive.

However, to relocate the code segment from a fixed address, "AT absolute-expression" must be described

as its relocation attribute in the operand field.

- Description of one functional unit such as a subroutine should be defined as a single code segment.

If the unit is relatively large or if the subroutine is highly versatile (i.e. can be utilized for development of

other programs), the subroutine should be defined as a single module.

 Symbol field Mnemonic field Operand field Comment field

 [segment-name] CSEG [relocation-attribute] [; comment]

<Source module> <Memory>

Code
segment

ROM

RAM

 NAME T1

 :

 DSEG

 :

 CSEG

 :

 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 103

[Explanation]

- The start address of a code segment can be specified with the ORG directive.

It can also be specified by describing the relocation attribute "AT absolute-expression".

- A relocation attribute defines a range of location addresses for a code segment.

Relocation attributes are shown below.

Table 3-3 Relocation Attributes of CSEG

Relocation Attribute Description Format Explanation

CALLT0 CALLT0

Tells the assembler to locate the specified
segment so that the start address of the
segment becomes a multiple of 2 within the
address range 00080H to 000BFH.

FIXED FIXED
Tells the assembler to locate the beginning of
the specified segment within the address
range 000C0H to 0FFFFH.

BASE BASE
Tells the assembler to locate the beginning of
the specified segment within the address
range 000C0H to 0FFFFH.

AT AT absolute-expression
Tells the assembler to locate the specified
segment to an absolute address (excluding
SFR and 2ndSFR).

UNIT UNIT
Tells the assembler to locate the specified
segment to any address (000C0H to EFFFFH
in memory area "ROM").

UNITP UNITP

Tells the assembler to locate the specified
segment to any address, so that the start of the
address may be an even number (000C0H to
EFFFFH in memory area "ROM").

IXRAM IXRAM
Tells the assembler to locate the specified
segment to any address (000C0H to EFFFFH
in memory area "ROM").

SECUR_ID SECUR_ID

It is a security ID specific attribute. Not specify
except security ID.
Tells the assembler to locate the specified
segment within the address range 000C4H to
000CDH.

PAGE64KP PAGE64KP

Tells the assembler to locates the specified
segment in memory area "ROM" that does not
extend over a 64 KB boundary, so that the start
of the address may be an even number.
The same-named segments but located in
different files are not combined.

UNIT64KP UNIT64KP

Tells the assembler to locates the specified
segment in memory area "ROM" that does not
extend over a 64 KB boundary, so that the start
of the address may be an even number.
The same-named segments are combined.

104 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

Note The address ranges to be mirrored in the RAM space differ depending on the device used.

- If no relocation attribute is specified for the code segment, the assembler will assume that "UNIT" has been

specified.

- If a relocation attribute other than those listed in Table 3-3 is specified, the assembler will output an error and

assume that "UNIT" has been specified. An error occurs if the size of each code segment exceeds that of

the area specified by its relocation attribute.

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler will output an

error message and continue processing by assuming the value of the expression to be "0".

- By describing a segment name in the symbol field of the CSEG directive, the code segment can be named.

If no segment name is specified for a code segment, the assembler will automatically give a default segment

name to the code segment.

The default segment names of the code segments are shown below.

MIRRORP MIRRORP

Tells the assembler to locates the specified
segment in the area mirrored in the RAM
space when MAA = 0 (01000H to 0xxxxH) or
the area mirrored in the RAM space when
MAA = 1 (11000H to 1xxxxH).Note

OPT_BYTE OPT_BYTE

It is a user option byte and on-chip debugging
specific attribute. Not specify except user
option byte and on-chip debugging.
Tells the assembler to locate the specified
segment within the address range 000C0H to
000C3H.

Relocation Attribute Default Segment Name

CALLT0 ?CSEGT0

FIXED ?CSEGFX

UNIT (or omitted) ?CSEG

UNITP ?CSEGUP

IXRAM ?CSEGIX

BASE ?CSEGB

SECUR_ID ?CSEGSI

PAGE64KP ?CSEGP64

UNIT64KP ?CSEGU64

MIRRORP ?CSEGMIP

OPT_BYTE ?CSEGOB0

AT Segment name cannot be omitted.

Relocation Attribute Description Format Explanation

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 105

- An error occurs if the segment name is omitted when the relocation attribute is AT.

- If two or more code segments have the same relocation attribute (except AT), these code segments may

have the same segment name.

These same-named code segments are processed as a single code segment within the assembler.

An error occurs if the same-named segments differ in their relocation attributes. Therefore, the number of

the same-named segments for each relocation attribute is one.

- Description of a code segment can be divided into units. The same relocation attribute and the same-

named code segment described in one module are handled by the assembler as a series of segments.

Caution 1 Description of a code segment whose relocation attribute is AT cannot be divided into units.

Caution 2 Insert a 1-byte interval, as necessary, so that the address specified by relocation attribute

CALLT0 may be an even number.

- The same-named data segments in two or more different modules can be specified only when their

relocation attributes are UNIT, CALLT0, FIXED, UNITP, BASE, PAGE64KP, UNIT64KP, MIRRORP, or

SECUR_ID, and are combined into a single data segment at linkage.

- No segment name can be referenced as a symbol.

- The total number of segments that can be output by the assembler is up to 256 alias names, including those

defined with the ORG directive. The same-named segments are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

- Specify user option byte and on-chip debugging by using OPT_BYTE.

An error occurs if the option byte is specified for the chip without the option byte feature.

When the user option byte is not specified for the chip having the user option byte feature, define a default

segment of "?CSEGOB0" to each address and set the initial value by reading from a device file.

[Application Example]

(1) The assembler interprets the segment name as "C1", and the relocation attribute as "UNIT".

(2) The assembler interprets the segment name as "C2", and the relocation attribute as "CALLT0".

(3) The assembler interprets the segment name as "?CSEGFX", and the relocation attribute as "FIXED".

(4) An error occurs because the segment name "C1" was defined as the relocation attribute "UNIT" in (1).

(5) The assembler interprets the segment name as "?CSEG", and the relocation attribute as "UNIT".

 NAME SAMP1
C1 CSEG ; (1)

C2 CSEG CALLT0 ; (2)

 CSEG FIXED ; (3)

C1 CSEG CALLT0 ; (4) <-- Error

 CSEG ; (5)

 END

106 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

DSEG

[Description Format]

[Function]

- The DSEG directive indicates to the assembler the start of a data segment.

- A memory defined by the DS directive following the DSEG directive belongs to the data segment until it

comes across a Segment Definition Directives (CSEG, DSEG, BSEG, or ORG) or the END directive, and

finally it is reserved within the RAM address.

[Use]

- The DS directive is mainly described in the data segment defined by the DSEG directive.

Data segments are located within the RAM area. Therefore, no instructions can be described in any data

segment.

- In a data segment, a RAM work area used in a program is reserved by the DS directive and a label is

attached to each work area. Use this label when describing a source program.

Each area reserved as a data segment is located by the linker so that it does not overlap with any other work

areas on the RAM (stack area, and work areas defined by other modules).

The linker outputs a warning message if the data segment overlaps a general-purpose register area. The

output level of the warning message can be changed using the warning message specification option (-w).

 Symbol field Mnemonic field Operand field Comment field

 [segment-name] DSEG [relocation-attribute] [; comment]

<Source module> <Memory>

Data
segment

ROM

RAM

 NAME T1

 :

 DSEG

 :

 CSEG

 :

 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 107

[Explanation]

- The start address of a data segment can be specified with the ORG directive.

It can also be specified by describing the relocation attribute "AT" followed by an absolute expression in the

operand field of the DSEG directive.

- A relocation attribute defines a range of location addresses for a data segment.

The relocation attributes available for data segments are shown below.

Note The address represented by xxxx varies depending on the device used.

Value Specified by -w Check Target

0 No areas

1 RB0

2 RB0 to RB3

Table 3-4 Relocation Attributes of DSEG

Relocation Attribute Description Format Explanation

SADDR SADDR
Tells the assembler to locate the specified
segment in the saddr area (saddr area: FFE20H
to FFEFFH).

SADDRP SADDRP
Tells the assembler to locate the specified
segment from an even-numbered address of the
saddr area (saddr area: FFE20H to FFEFFH).

AT AT absolute-expression
Tells the assembler to locate the specified
segment in an absolute address (excluding SFR
and 2ndSFR).

UNIT UNIT or no specification
Tells the assembler to locate the specified
segment in the internal or any external location
(within the memory area name "RAM").

UNITP UNITP

Tells the assembler to locate the specified
segment in the internal or any external location
from an even-numbered address (within the
memory area name "RAM").

BASEP BASEP

Tells the assembler to locates the specified
segment in the internal RAM area so that the
start of the address may be an even number (not
including saddr area: FxxxxH to FFEFFH).Note

PAGE64KP PAGE64KP

Tells the assembler to locates the specified
segment in memory area "RAM" that does not
extend over a 64 KB boundary, so that the start
of the address may be an even number.
The same-named segments but located in
different files are not combined.

UNIT64KP UNIT64KP

Tells the assembler to locates the specified
segment in memory area "RAM" that does not
extend over a 64 KB boundary, so that the start
of the address may be an even number.
The same-named segments are combined.

108 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

- Relocation attributes provided for the 78K0 Series assembler can also be described, which function in the

same manner as "UNIT".

The following table lists the relocation attributes of DSEG provided for the 78K0 Series.

- If no relocation attribute is specified for the data segment, the assembler will assume that "UNIT" has been

specified.

- If a relocation attribute other than those listed in Table 3-4 is specified, the assembler will output an error and

assume that "UNIT" has been specified. An error occurs if the size of each data segment exceeds that of

the area specified by its relocation attribute.

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler will output an

error and continue processing by assuming the value of the expression to be "0".

- Machine language instructions (including BR directive) cannot be described in a data segment. If described,

an error is output and the line is ignored.

- By describing a segment name in the symbol field of the DSEG directive, the data segment can be named.

If no segment name is specified for a data segment, the assembler automatically gives a default segment

name.

The default segment names of the data segments are shown below.

Relocation Attribute Description Format

IHRAM IHRAM

LRAM LRAM

DSPRAM DSPRAM

IXRAM IXRAM

Relocation Attribute Default Segment Name

SADDR ?DSEGS

SADDRP ?DSEGSP

UNIT (or no specification) ?DSEG

UNITP ?DSEGUP

IHRAM ?DSEGIH

LRAM ?DSEGL

DSPRAM ?DSEGDSP

IXRAM ?DSEGIX

BASEP ?DSEGBP

PAGE64KP ?DSEGP64

UNIT64KP ?DSEGU64

AT Segment name cannot be omitted.

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 109

- If two or more data segments have the same relocation attribute (except AT), these data segments may

have the same segment name.

These segments are processed as a single data segment within the assembler.

- Description of a data segment can be divided into units. The same relocation attribute and the same-named

code segment described in one module are handled by the assembler as a series of segments.

Caution 1 Description of a code segment whose relocation attribute is AT cannot be divided into units.

Caution 2 When the relocation attribute is SADDR, insert a 1-byte interval, as necessary, so that the

address immediately after a DESG directive is described may be an even number.

- If the relocation attribute is SADDRP, the specified segment is located so that the address immediately after

the DSEG directive is described becomes a multiple of 2.

- An error occurs if the same-named segments differ in their relocation attributes. Therefore, the number of

the same-named segments for each relocation attribute is one.

- The same-named data segments in two or more different modules can be specified only when their

relocation attributes are UNIT, UNITP, SADDR, SADDRP, LRAM, IHRAM, DSPRAM, IXRAM, BASEP,

PAGE64KP, or UNIT64KP, and are combined into a single data segment at linkage.

- No segment name can be referenced as a symbol.

- The total number of segments that can be output by the assembler is up to 255 alias segments including

those defined with the ORG directive. The same-named segments are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

[Application Example]

(1) The start of a data segment is defined with the DSEG directive.

Because its relocation attribute is omitted, "UNIT" is assumed. The default segment name is "?DSEG".

(2) This description corresponds to "MOV A, !addr16".

(3) This description corresponds to "MOV A, saddr".

Relocatable label "WORK2" cannot be described as "saddr". Therefore, an error occurs as a result of this

description.

(4) This description corresponds to "MOVW rp, #word".

 NAME SAMP1
 DSEG ; (1)
WORK1 : DS 2
WORK2 : DS 1
 CSEG
 MOV A , !WORK2 ; (2)
 MOV A , WORK2 ; (3) <-- Error
 MOVW DE , #WORK1 ; (4)
 MOVW AX , WORK1 ; (5) <-- Error

 END

110 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

(5) This description corresponds to "MOVW AX, saddrp".

Relocatable label "WORK1" cannot be described as "saddrp". Therefore, an error occurs as a result of

this description.

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 111

BSEG

[Description Format]

[Function]

- The BSEG directive indicates to the assembler the start of a bit segment.

- A bit segment is a segment that defines the RAM addresses to be used in the source module.

- A memory area that is defined by the DBIT directive after the BSEG directive until it comes across a

Segment Definition Directives (CSEG, DSEG, or BSEG) or the END directive belongs to the bit segment.

[Use]

- Describe the DBIT directive in the bit segment defined by the BSEG directive (see [Application Example]).

- No instructions can be described in any bit segment.

 Symbol field Mnemonic field Operand field Comment field

 [segment-name] BSEG [relocation-attribute] [; comment]

<Source module> <Memory>

Bit
segment

ROM

RAM

 NAME T1
 BSEG

 :

 DSEG

 :

 CSEG

 :

 END

112 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

[Explanation]

- The start address of a bit segment can be specified by describing "AT absolute-expression" in the relocation

attribute field.

- A relocation attribute defines a range of location addresses for a bit segment.

Relocation attributes available for bit segments are shown below.

- If no relocation attribute is specified for the bit segment, the assembler assumes that "UNIT" is specified.

- If a relocation attribute other than those listed in Table 3-5 is specified, the assembler outputs an error and

assumes that "UNIT" is specified. An error occurs if the size of each bit segment exceeds that of the area

specified by its relocation attribute.

- In both the assembler and the linker, the location counter in a bit segment is displayed in the form "0xxxxx.b"

(The byte address is hexadecimal 5 digits and the bit position is hexadecimal 1 digit (0 to 7)).

<Absolute>

<Relocatable>

Remark Within a relocatable bit segment, the byte address specifies an offset value in byte units from

the beginning of the segment.

In a symbol table output by the object converter, a bit offset from the beginning of an area

where a bit is defined is displayed and output.

Table 3-5 Relocation Attributes of BSEG

Relocation Attribute Description Format Explanation

AT AT absolute-expression

Tells the assembler to locate the starting
address of the specified segment in the 0th bit of
an absolute address. Specification in bit units is
prohibited (00000H to FFFFFH)(excluding SFR
and 2ndSFR).

UNIT UNIT or no specification Tells the assembler to locate the specified
segment in any location (FFE20H to FFEFFH).

Byte
Address

Bit Position

0 1 2 3 4 5 6 7

0FFE20H 0FFE20H.0 0FFE20H.1 0FFE20H.2 0FFE20H.3 0FFE20H.4 0FFE20H.5 0FFE20H.6 0FFE20H.7

0FFE21H 0FFE21H.0 0FFE21H.1 0FFE21H.2 0FFE21H.3 0FFE21H.4 0FFE21H.5 0FFE21H.6 0FFE21H.7

Byte
Address

Bit Position

0 1 2 3 4 5 6 7

0H 0H.0 0H.1 0H.2 0H.3 0H.4 0H.5 0H.6 0H.7

1H 1H.0 1H.1 1H.2 1H.3 1H.4 1H.5 1H.6 1H.7

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 113

- If the absolute expression specified with the relocation attribute "AT" is illegal, the assembler outputs an

error message and continues processing while assuming the value of the expression to be "0".

- By describing a segment name in the symbol field of the BSEG directive, the bit segment can be named.

If no segment name is specified for a bit segment, the assembler automatically gives a default segment

name.

The following table shows the default segment names.

- If the relocation attribute is "UNIT", two or more data segments can have the same segment name (except

AT). These segments are processed as a single segment within the assembler.

Therefore, the number of same-named segments for each relocation attribute is one.

- The same-named bit segments name must have the same relocation attribute UNIT (when the relocation

attribute is AT, specifying the same name for multiple segments is prohibited).

- If the relocation attribute of the same-named segments in a module is not UNIT, an error is output and the

line is ignored.

- The same-named bit segments in two or more different modules will be combined into a single bit segment

at linkage time.

- No segment name can be referenced as a symbol.

- Bit segments are located at 0H to FFFFFH by the linker.

- Labels cannot be described in a bit segment.

- The only instructions that can be described in the bit segments are the DBIT, EQU, SET, PUBLIC, EXTBIT,

EXTRN, MACRO, REPT, IRP, ENDM directive, macro definition and macro reference. Description of

instructions other than these causes in an error.

Symbol Value Bit Offset

0FFE20H.0 0000

0FFE20H.1 0001

0FFE20H.2 0002

 : :

0FFE20H.7 0007

0FFE21H.0 0008

0FFE21H.1 0009

 : :

0FFE80H.0 0300

 : :

Relocation Attribute Default Segment Name

UNIT (or no specification) ?BSEG

AT Segment name cannot be omitted.

114 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

- The total number of segments that the assembler outputs is up to 256 alias segments, with segments

defined by the ORG directive. The segments having the same name are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

[Application Example]

(1) Bit addresses (bits 0 of 0FFE20H) are defined with consideration given to byte address boundaries.

(2) Bit addresses (bits 1 of 0FFE20H) are defined with consideration given to byte address boundaries.

(3) A bit segment is defined with the BSEG directive.

Because its relocation attribute is omitted, the relocation attribute "UNIT" and the segment name "?BSEG"

are assumed.

In each bit segment, a bit work area is defined for each bit with the DBIT directive. A bit segment should

be described at the early part of the module body. Bit address FLAG2 defined within the bit segment is

located without considering the byte address boundary.

(4) This description can be replaced with "SET1 FLAG.0". This FLAG indicates a byte address.

(5) In this description, no consideration is given to byte address boundaries.

 NAME SAMP1

FLAG EQU 0FFE20H
FLAG0 EQU FLAG.0 ; (1)
FLAG1 EQU FLAG.1 ; (2)

 BSEG ; (3)
FLAG2 DBIT

 CSEG
 SET1 FLAG0 ; (4)
 SET1 FLAG2 ; (5)

 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 115

ORG

[Description Format]

[Function]

- The ORG directive sets the value of the expression specified by its operand of the location counter.

- After the ORG directive, described instructions or reserved memory area belongs to an absolute segment

until it comes across a Segment Definition Directives (CSEG, DSEG, BSEG, or ORG) or the END directive,

and they are located from the address specified by an operand.

[Use]

- Specify the ORG directive to locate a code segment or data segment from a specific address.

 [Explanation]

- The absolute segment defined with the ORG directive belongs to the code segment or data segment defined

with the CSEG or DSEG directive immediately before this ORG directive.

Within an absolute segment that belongs to a data segment, no instructions can be described.

An absolute segment that belongs to a bit segment cannot be described with the ORG directive.

- The code segment or data segment defined with the ORG directive is interpreted as a code segment or data

segment of the relocation attribute "AT".

- By describing a segment name in the symbol field of the ORG directive, the absolute segment can be

named.

The maximum number of characters that can be recognized as a segment name is 8.

 Symbol field Mnemonic field Operand field Comment field

 [segment-name] ORG absolute-expression [; comment]

<Source module> <Memory>

Absolute
segment

ROM

RAM

 NAME T1
 DESG
 BSEG AT 0FFE20H

 :

 CSEG

 :

 ORG 1000H

 :

 END

Absolute
segment

1000H

0FFE20H

116 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

- The same-named segments in a module, which are defined with the ORG directive, are handled in the same

manner as segments of the AT attribute, which are defined with the CSEG or DESG directive.

- The same-named segments in different modules, which are defined with the ORG directive, are handled in

the same manner as segments of the AT attribute, which are defined with the CSEG or DESG directive.

- If no segment name is specified for an absolute segment, the assembler will automatically assign the default

segment name "?A0nnnnn", where "nnnnn" indicates the five-digit hexadecimal start address (00000 to

FFFFF) of the segment specified.

- If neither CSEG nor DSEG directive has been described before the ORG directive, the absolute segment

defined by the ORG directive is interpreted as an absolute segment in a code segment.

- If a name or label is described as the operand of the ORG directive, the name or label must be an absolute

term that has already been defined in the source module.

- If illegal objects are described for absolute expressions, or if the evaluated value of an absolute expression

exceeds 00000H to FFEFFH, the assembler outputs an error and continues processing, assuming that the

value of the absolute expression is 00000H.

- Absolute expressions for operands are evaluated in unsigned 32-bit units.

- No segment name can be referenced as a symbol.

- The total number of segments that the assembler outputs is up to 256alias segments, with segments defined

by the Segment Definition Directives. The segments having the same name are counted as one.

- The maximum number of characters recognizable as a segment name is 8.

- The uppercase and lowercase characters of a segment name are distinguished.

[Application Example]

(1) An absolute segment that belongs to a data segment is defined.

This absolute segment will be located from the short direct addressing area that starts from address

"FFE20H". Because specification of the segment name is omitted, the assembler automatically assigns

the name "“?A0FFE20".

(2) An error occurs because no instruction can be described within an absolute segment that belongs to a

data segment.

 NAME SAMP1

 DSEG
 ORG 0FFE20H ; (1)
SADR1 : DS 1
SADR2 : DS 1
SADR3 : DS 2

MAIN0 ORG 100H
 MOV A , SADR1 ; (2) <-- Error

 CSEG ; (3)
MAIN1 ORG 1000H ; (4)
 MOV A , SADR2
 MOVW AX , SADR3

 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 117

(3) This directive declares the start of a code segment.

(4) This absolute segment is located in an area that starts from address "1000H".

118 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

3.3 Symbol Definition Directives

Symbol definition directives assign names to numerical data to be used for describing a source module. These

names clarify the meaning of each data value and make the contents of the source module easy to understand.

Symbol definition directives inform the assembler of the value of each name to be used in the source module.

The following symbol definition directives are available:

- EQU

- SET

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 119

EQU

[Description Format]

[Function]

- The EQU directive defines a name that has the value and attributes (symbol attribute and relocation

attribute) of the expression specified in the operand field.

[Use]

- Define numerical data to be used in the source module as a name with the EQU directive and describe the

name in the operand of an instruction in place of the numerical data.

Numerical data to be frequently used in the source module is recommended to be defined as a name. If you

must change a data value in the source module, all you need to do is to change the operand value of the

name.

[Explanation]

- The EQU directive may be described anywhere in a source program.

- A symbol defined with the EQU directive cannot be redefined with the SET directive, nor as a label. In

addition, a symbol or label defined with the SET directive cannot be redefined with the EQU directive, nor as

a label.

- When a name or label is to be described in the operand of the EQU directive, use the name or label that has

already been defined in the source module.

No external reference term can be described as the operand of this directive.

SFRs and SFR bit symbols can be described.

- An expression including a term created by a HIGH/LOW/HIGHW/LOWW/DATAPOS/BITPOS operator that

has a relocatable term in its operand cannot be described.

- An error occurs if an expression with any of the following patterns of operands is described:

(1) Expression 1 with ADDRESS attribute - Expression 2 with ADDRESS attribute

Either of the following conditions (1) and (2) is fulfilled in the above expression (a) or (b):

(a) If label 1 in the expression 1 with ADDRESS attribute and label 2 in the expression 2 with

ADDRESS attribute belong to the same segment and if a BR directive for which the number of

bytes of the object code cannot be determined is described between the two labels

(b) If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the

object code cannot be determined is described between the beginning of the segment and label

(2) Expression 1 with ADDRESS attribute attributeRelational operator Expression 2 with ADDRESS

attribute

(3) HIGH absolute expression with ADDRESS attribute

(4) LOW absolute expression with ADDRESS attribute

 Symbol field Mnemonic field Operand field Comment field

 name EQU expression [; comment]

120 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

(5) HIGHW absolute expression with ADDRESS attribute

(6) LOWW absolute expression with ADDRESS attribute

(7) DATAPOS absolute expression with ADDRESS attribute

(8) BITPOS absolute expression with ADDRESS attribute

(9) The following (a) is fulfilled in the expression (3) to (9):

(a) If a BR directive for which the number of bytes of the object code cannot be determined instantly is

described between the label in the expression with ADDRESS attribute and the beginning of the

segment to which the label belongs

- If an error exists in the description format of the operand, the assembler will output an error message, but

will attempt to store the value of the operand as the value of the name described in the symbol field to the

extent that it can analyze.

- A name defined with the EQU directive cannot be redefined within the same source module.

- A name that has defined a bit value with the EQU directive will have an address and bit position as value.

- The following table shows the bit values that can be described as the operand of the EQU directive and the

range in which these bit values can be referenced.

Note 1 1bit = 0 to 7

Note 2 For a detailed description, refer to the user's manual of each device.

Note 3 0FFFXXH: the address of an sfr

Note 4 0FXXXXH: 2ndsfr area

Note 5 0FXXXXH: saddr area (0FFE20H to 0FFF1FH)

Note 6 0XXXXXH: 0H to 0FFFFFH

Operand Type Symbol Value Reference Range

A.bitNote 1 1.bit

Can be referenced within the same module only.
PSW.bitNote 1 0FFFFAH.bit

sfrNote 2.bitNote 1 0FFFXXHNote 3.bit

2ndsfrNote 2.bitNote 1 0FXXXXHNote 4.bit

saddr.bitNote 1 0FFXXXHNote 5.bit
Can be referenced from another module.

expression.bitNote 1 0XXXXXHNote 6.bit

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 121

[Application Example]

(1) The name "WORK1" has the value "0FFE20H", symbol attribute "NUMBER", and relocation attribute

"ABSOLUTE".

(2) The name "WORK10" is assigned to bit value "WORK1.0", which is in the operand format "saddr.bit".

"WORK1", which is described in an operand, is already defined at the value "0FFE20H", in (1) above.

(3) The name "P02" is assigned to the bit value "P0.2", which is in the operand format "sfr.bit".

(4) The name "A4" is assigned to the bit value "A.4", which is in the operand format "A.bit".

(5) The name "PSW5" is assigned to the bit value "PSW.5", which is in the operand format "PSW.bit".

(6) This description corresponds to "SET1 saddr.bit".

(7) This description corresponds to "SET1 sfr.bit".

(8) This description corresponds to "SET1 A.bit".

(9) This description corresponds to "SET1 PSW.bit".

Names that have defined "A.bit", and "PSW.bit" as in (4) through (5) can be referenced only within the same

module.

A name that has defined "sfr.bit", "saddr.bit", "expression.bit" can also be referenced from another module as

an external definition symbol (see "3.5 Linkage Directives").

As a result of assembling the source module in the application example, the following assemble list is

generated.

 NAME SAMP1

WORK1 EQU 0FFE20H ; (1)
WORK10 EQU WORK1.0 ; (2)
P02 EQU P0.2 ; (3)
A4 EQU A.4 ; (4)
PSW5 EQU PSW.5 ; (5)

 SET1 WORK10 ; (6)
 SET1 P02 ; (7)
 SET1 A4 ; (8)
 SET1 PSW5 ; (9)

 END

122 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

<Assemble list>

On lines (2) through (5) of the assemble list, the bit address values of the bit values defined as names are

indicated in the object code field.

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMP
 2 2
 3 3 (FFE20) WORK1 EQU 0FFE20H ; (1)
 4 4 (FFE20.0) WORK10 EQU WORK1.0 ; (2)
 5 5 (FFF00.2) P02 EQU P0.2 ; (3)
 6 6 (00001.4) A4 EQU A.4 ; (4)
 7 7 (FFFFA.5) PSW5 EQU PSW.5 ; (5)
 8 8
 9 9 00000 710220 SET1 WORK10 ; (6)
 10 10 00003 712200 SET1 P02 ; (7)
 11 11 00006 71CA SET1 A4 ; (8)
 12 12 00008 715AFA SET1 PSW5 ; (9)
 13 13
 14 14 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 123

SET

[Description Format]

[Function]

- The SET directive defines a name that has the value and attributes (symbol attribute and relocation

attribute) of the expression specified in the operand field.

- The value and attribute of a name defined with the SET directive can be redefined within the same module.

These values and attribute are valid until the same name is redefined.

[Use]

- Define numerical data (a variable) to be used in the source module as a name and describe it in the operand

of an instruction in place of the numerical data (a variable).

If you wish to change the value of a name in the source module, a different value can be defined for the

same name using the SET directive again.

[Explanation]

- An absolute expression must be described in the operand field of the SET directive.

- The SET directive may be described anywhere in a source program.

However, a name that has been defined with the SET directive cannot be forward-referenced.

- If an error is detected in the statement in which a name is defined with the SET directive, the assembler

outputs an error message but will attempt to store the value of the operand as the value of the name

described in the symbol field to the extent that it can analyze.

- A symbol defined with the EQU directive cannot be redefined with the SET directive.

A symbol defined with the SET directive cannot be redefined with the EQU directive.

- A bit symbol cannot be defined.

 Symbol field Mnemonic field Operand field Comment field

 name SET absolute-expression [; comment]

124 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

[Application Example]

(1) The name "COUNT" has the value "10H", the symbol attribute "NUMBER", and relocation attribute

"ABSOLUTE". The value and attributes are valid until they are redefined by the SET directive in (3) below.

(2) The value "10H" of the name "COUNT" is transferred to register B.

(3) The value of the name "COUNT" is changed to "20H".

(4) The value "20H" of the name "COUNT" is transferred to register B.

 NAME SAMP1

COUNT SET 10H ; (1)

 CSEG
 MOV B , #COUNT ; (2)
LOOP :
 DEC B
 BNZ $LOOP

COUNT SET 20H ; (3)

 MOV B , #COUNT ; (4)

 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 125

3.4 Memory Initialization and Area Reservation Directives

Memory initializing directives define the constant data to be used in a source program.

The values of the defined constant data are generated as object codes.

Area reservation directives reserve memory areas to be used in a program.

The following memory initialization and area reservation directives are available:

- DB

- DW

- DG

- DS

- DBIT

126 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

DB

[Description Format]

[Function]

- The DB directive tells the assembler to initialize a byte area.

The number of bytes to be initialized can be specified as "size".

- The DB directive also tells the assembler to initialize a memory area in byte units with the initial value(s)

specified in the operand field.

[Use]

- Use the DB directive when defining an expression or character string used in the program.

[Explanation]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified. Otherwise,

an initial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler initializes an area equivalent to the

specified number of bytes with the value "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler

outputs an error message and will not execute initialization.

(2) With initial value specification:

(a) Expression

The value of an expression must be 8-bit data. Therefore, the value of the operand must be in the

range of 0H to 0FFH. If the value exceeds 8 bits, the assembler will use only lower 8 bits of the

value as valid data and output an error.

(b) Character string

If a character string is described as the operand, an 8-bit ASCII code will be reserved for each

character in the string.

- The DB directive cannot be described in a bit segment.

- Two or more initial values may be specified within a statement line of the DB directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

 Symbol field Mnemonic field Operand field Comment field

 [label :] DB (size) [; comment]
 or
 [label :] DB initial-value[, ...] [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 127

[Application Example]

(1) Because the size is specified, the assembler will initialize each byte area with the value "00H".

(2) A 6-byte area is initialized with character string 'ABCDEF'.

(3) A 3-byte area is initialized with "0AH, 0BH, 0CH".

(4) A 4-byte area is initialized with "00H".

(5) Because the value of expression "AB" + 1 is 4143H (4142H + 1) and exceeds the range of 0 to 0FFH,

this description occurs in an error.

 NAME SAMP1
 CSEG
WORK1 : DB (1) ; (1)
WORK2 : DB (2) ; (1)
 CSEG
MASSAG : DB 'ABCDEF' ; (2)
DATA1 : DB 0AH , 0BH , 0CH ; (3)
DATA2 : DB (3 + 1) ; (4)
DATA3 : DB 'AB' + 1 ; (5) <-- Error

 END

128 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

DW

[Description Format]

[Function]

- The DW directive tells the assembler to initialize a word area.

The number of words to be initialized can be specified as "size".

- The DW directive also tells the assembler to initialize a memory area in word units (2 bytes) with the initial

value(s) specified in the operand field.

[Use]

- Use the DW directive when defining a 16-bit numeric constant such as an address or data used in the

program.

[Explanation]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified; otherwise an

initial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler will initialize an area equivalent to the

specified number of words with the value "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler

outputs an error and will not execute initialization.

(2) With initial value specification:

(a) Constant

16 bits or less.

(b) Expression

The value of an expression must be stored as a 16-bit data.

No character string can be described as an initial value.

- The DW directive cannot be described in a bit segment.

- The upper 2 digits of the specified initial value are stored in the HIGH address and the lower 2 digits of the

value in the LOW address.

- Two or more initial values may be specified within a statement line of the DW directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

 Symbol field Mnemonic field Operand field Comment field

 [label :] DW (size) [; comment]
 or
 [label :] DW initial-value[, ...] [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 129

[Application Example]

(1) Because the size is specified, the assembler will initialize each word with the value "00H".

(2) Vector entry addresses are defined with the DW directives.

(3) A 2-word area is initialized with value "34127856".

Caution The HIGH address of memory is initialized with the upper 2 digits of the word value. The LOW

address of memory is initialized with the lower 2 digits of the word value.

 NAME SAMP1
 CSEG
WORK1 : DW (10) ; (1)
WORK2 : DW (128) ; (1)
 CSEG
 ORG 10H
 DW MAIN ; (2)
 DW SUB1 ; (2)

 CSEG
MAIN :
 CSEG
SUB1 :

DATA : DW 1234H , 5678H ; (3)

 END

<Source module> <Memory>

 NAME SAMLE

 CSEG
 ORG 1000H
 DW 1234H

 :
 :
 :

 END

1 2

3 4

Upper 2 digits

Lower 2 digits

HIGH

LOW

<Example>

130 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

DG

[Description Format]

[Function]

- The DG directive tells the assembler to initialize a 20-bit area in 32-bit (4-byte) units. The initial value or size

can be specified as an operand.

- The DG directive also tells the assembler to initialize a memory area in 4 bytes units with the initial value(s)

specified in the operand field.

[Use]

- Use the DG directive when defining a 20-bit numeric constant such as an address or data used in the

program.

[Explanation]

- If a value in the operand field is parenthesized, the assembler assumes that a size is specified; otherwise an

initial value is assumed.

(1) With size specification:

(a) If a size is specified in the operand field, the assembler will initialize an area equivalent to the

specified numbers x 4 bytes, with "00H".

(b) An absolute expression must be described as a size. If the size description is illegal, the assembler

outputs an error and will not execute initialization.

(2) With initial value specification:

(a) Constant

20 bits or less.

(b) Expression

The value of an expression must be stored as a 16-bit data.

No character string can be described as an initial value.

- The DG directive cannot be described in a bit segment.

- The highest byte of the specified initial value is stored in the HIGH WORD address, the lowest byte is stored

in the LOW address, and the higher byte of the lowest 2 bytes is stored in the HIGH address in the memory.

- Two or more initial values may be specified within a statement line of the DW directive.

- As an initial value, an expression that includes a relocatable symbol or external reference symbol may be

described.

 Symbol field Mnemonic field Operand field Comment field

 [label :] DG (size) [; comment]
 or
 [label :] DG initial-value[, ...] [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 131

[Application Example]

(1) A 4-byte area is initialized with value "4523010089670500".

(2) The 40-byte (10 x 4 bytes) area is initialized with "00H".

Caution For the 20-bit value, the HIGH WORD address in the memory is initialized with the highest byte,

the LOW address in the memory is initialized with the lowest byte, and the HIGH address is

initialized with the higher byte of the lowest 2 bytes.

 NAME SAMP1

DATA1 : DG 12345H , 56789H ; (1)
DATA2 : DG (10) ; (2)

 END

<Source module>

NAME SAMP1
 CSEG
DATA1: DG 12345H , 56789H
 :
 END

00

HIGH

LOW

<Memory>
<Example>

05

67

89

00

01

23

45

HW

HW

H

H

L

L

HW： HIGH WORD
H ： HIGH
L ： LOW

132 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

DS

[Description Format]

[Function]

- The DS directive tells the assembler to reserve a memory area for the number of bytes specified in the

operand field.

[Use]

- The DS directive is mainly used to reserve a memory (RAM) area to be used in the program.

If a label is specified, the value of the first address of the reserved memory area is assigned to the label. In

the source module, this label is used for description to manipulate the memory.

[Explanation]

- The contents of an area to be reserved with this DS directive are unknown (indefinite).

- The specified absolute expression will be evaluated with unsigned 16 bits.

- When the operand value is "0", no area can be reserved.

- The DS directive cannot be described within a bit segment.

- The symbol (label) defined with the DS directive can be referenced only in the backward direction.

- Only the following parameters extended from an absolute expression can be described in the operand field:

(1) A constant

(2) An expression with constants in which an operation is to be performed (constant expression)

(3) EQU symbol or SET symbol defined with a constant or constant expression

(4) Expression 1 with ADDRESS attribute - expression 2 with ADDRESS attribute

If both label 1 in "expression 1 with ADDRESS attribute" and label 2 in "expression 2 with ADDRESS

attribute" are relocatable, both labels must be defined in the same segment.

However, an error occurs in either of the following two cases:

(a) If label 1 and label 2 belong to the same segment and if a BR directive for which the number of

bytes of the object code cannot be determined is described between the two labels

(b) If label 1 and label 2 differ in segment and if a BR directive for which the number of bytes of the

object code cannot be determined is described between either label and the beginning of the

segment to which the label belongs

(5) Any of the expressions (1) through (4) above on which an operation is to be performed.

- The following parameters cannot be described in the operand field:

(1) External reference symbol

(2) Symbol that has defined "expression 1 with ADDRESS attribute - expression 2 with ADDRESS

attribute" with the EQU directive

 Symbol field Mnemonic field Operand field Comment field

 [label :] DS absolute-expression [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 133

(3) Location counter ($) is described in either expression 1 or expression 2 in the form of "expression 1 with

ADDRESS attribute - expression 2 with ADDRESS attribute"

(4) Symbol that defines with the EQU directive an expression with the ADDRESS attribute on which the

HIGH/LOW/DATAPOS/BITPOS operator is to be operated

[Application Example]

(1) A 10-byte working area is reserved, but the contents of the area are unknown (indefinite). Label "TABLE1"

is allocated to the start of the address.

(2) A 1-byte working area is reserved.

(3) A 2-byte working area is reserved.

 NAME SAMPLE
 DSEG
TABLE1 : DS 10 ; (1)
WORK1 : DS 2 ; (2)
WORK2 : DS 1 ; (3)
 CSEG
 MOVW HL , #TABLE1
 MOV A , !WORK2
 MOVW BC , #WORK1

 END

134 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

DBIT

[Description Format]

[Function]

- The DBIT directive tells the assembler to reserve a 1-bit memory area within a bit segment.

[Use]

- Use the DBIT directive to reserve a bit area within a bit segment.

[Explanation]

- The DBIT directive is described only in a bit segment.

- The contents of a 1-bit area reserved with the DBIT directive are unknown (indefinite).

- If a name is specified in the Symbol field, the name has an address and a bit position as its value.

- The defined name can be described at the place where saddr.bit, addr16.bit, ES:addr16.bit is required.

[Application Example]

(1) By these three DBIT directives, the assembler will reserve three 1-bit areas and define names (BIT1,

BIT2, and BIT3) each having an address and a bit position as its value.

(2) This description corresponds to "SET1 saddr.bit" and describes the name "BIT1" of the bit area reserved

in (1) above as operand "saddr.bit".

(3) This description corresponds to "CLR1 saddr.bit" and describes name "BIT2" as "saddr.bit".

 NAME SAMPLE
 BSEG
BIT1 DBIT ; (1)
BIT2 DBIT ; (1)
BIT3 DBIT ; (1)

 CSEG
 SET1 BIT1 ; (2)

 CLR1 BIT2 ; (3)

 END

 Symbol field Mnemonic field Operand field Comment field

 [name] DBIT None [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 135

3.5 Linkage Directives

Linkage directives clarify the relativity to reference a symbol defined in the other modules.

Consider a case where a program is created by being divided into two modules: Module 1 and Module 2. In

Module 1, when a symbol defined in Module 2 is referenced, the symbol cannot be used without declaration in

each module. For this reason, some sort of signal or indication such as "I want to use the symbol" or "You may use

the symbol" is required to be issued between the two modules.

In Module 1, the external reference declaration of a symbol issues to indicate that a symbol defined in another

module must be referenced. In Module 2, the external definition declaration of a symbol issues to indicate that the

defined symbol may be referenced in another module.

The symbol can be referenced for the first time when both the external reference declaration and the external

definition declaration are effectively made.

Linkage directives function to establish this interrelationship and are available in the following two types:

- To declare external reference of a symbol: EXTRN and EXTBIT directives

- To declare external definition of a symbol: PUBLIC directive

Figure 3-2 Relationship of Symbols Between Two Modules

In module 1 in the above, the symbol "MDL2" defined in module 2 is referenced in (2). Therefore, the symbol is

declared as an external reference with the EXTRN directive in (1).

In module 2, the symbol "MDL2" to be referenced from module 1 is declared as an external definition with the

PUBLIC directive in (3).

The linker checks whether or not this external reference of the symbol corresponds to the external definition of

the symbol.

The following linkage directives are available:

- EXTRN

- EXTBIT

- PUBLIC

<Module 1>

NAME MODUL1
EXTRN MDL2 ; (1)
CSEG

 :

BR !MDL2 ; (2)

 :

END

<Module 2>

NAME MODUL2
PUBLIC MDL2 ; (3)
CSEG

 :

MDL2 :

 :

END

136 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

EXTRN

[Description Format]

[Function]

- The EXTRN directive declares to the linker that a symbol (other than bit symbols) in another module is to be

referenced in this module.

[Use]

- When referencing a symbol defined in another module, the EXTRN directive must be used to declare the

symbol as an external reference.

- The resulting operation varies depending on the description format for operands.

[Explanation]

- The EXTRN directive may be described anywhere in a source program (see "2.1 Basic Configuration").

- Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).

- When referencing a symbol having a bit value, the symbol must be declared as an external reference with

the EXTBIT directive.

- The symbol declared with the EXTRN directive must be declared in another module with a PUBLIC

directive.

- No error is output even if a symbol declared with the EXTRN directive is not referenced in the module.

- No macro name can be described as the operand of EXTRN directive (see "CHAPTER 5 MACROS" for the

macro name).

- The EXTRN directive enables only one EXTRN declaration for a symbol in an entire module. For the second

and subsequent EXTRN declarations for the symbol, the linker will output a warning.

- A symbol that has been declared cannot be described as the operand of the EXTRN directive. Conversely, a

symbol that has been declared as EXTRN cannot be redefined or declared with any other directive.

- An area within a 64 KB area (0H to 0FFFFH) can be referenced using a symbol defined with the EXTRN

directive. A symbol name declared in the format of "BASE(symbol name)" can be referenced from the 64

KB area.

BASE(symbol-name[, ...]) The specified symbol is regarded as a symbol in an area within a
64 KB area (0H to 0FFFF) and can be referenced.

No relocation attribute specified
After located by the linker, processing is performed in accordance
with the area for which PUBLIC is declared and then can be
referenced.

 Symbol field Mnemonic field Operand field Comment field

 [label :] EXTRN symbol-name [, ...] [; comment]
 or
 [label :] EXTRN BASE(symbol-name[, ...]) [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 137

[Application Example]

<Module 1>

<Module 2>

(1) This EXTRN directive declares symbols "SYM1", "SYM2" and "SYM3" to be referenced in (2), (3) and (4)

as external references.

Two or more symbols may be described in the operand field.

(2) This DW instruction references symbol "SYM1".

(3) This MOV instruction references symbol "SYM2" and outputs a code that references an saddr area.

(4) This BR instruction references symbol "SYM3" and outputs a code that references an area within a 64 KB

area (0H to 0FFFFH).The symbols "SYM1", "SYM2" and "SYM3" are declared as external definitions.

(5) The symbol "SYM1" is defined.

(6) The symbol "SYM2" is defined.

(7) The symbol "SYM3" is defined.

 NAME SAMP1
 EXTRN SYM1 , SYM2 , BASE (SYM3) ; (1)
 CSEG
S1 : DW SYM1 ; (2)
 MOV A , SYM2 ; (3)
 BR !SYM3 ; (4)

 END

 NAME SAMP2
 PUBLIC SYM1 , SYM2 , SYM3 ; (4)

 CSEG
SYM1 EQU 0FFH ; (5)
DATA1 DSEG SADDR
SYM2 : DB 012H ; (6)
C1 CSEG BASE
SYM3 : MOV A , #20H ; (7)

 END

138 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

EXTBIT

[Description Format]

[Function]

- The EXTBIT directive declares to the linker that a bit symbol in another module is to be referenced in this

module.

[Use]

- When referencing a symbol that has a bit value and has been defined in another module, the EXTBIT

directive must be used to declare the symbol as an external reference.

[Explanation]

- The EXTBIT directive may be described anywhere in a source program.

- Up to 20 symbols can be specified in the operand field by delimiting each symbol with a comma (,).

- A symbol declared with the EXTBIT directive must be declared with a PUBLIC directive in another module.

- The EXTBIT directive enables only one EXTBIT declaration for a symbol in an entire module. For the

second and subsequent EXTBIT declarations for the symbol, the linker will output a warning.

- No error is output even if a symbol declared with the EXTRN directive is not referenced in the module.

[Application Example]

<Module 1>

<Module 2>

NAME SAMP1
EXTBIT FLAG1 , FLAG2 ; (1)
CSEG
SET1 FLAG1 ; (2)
CLR1 FLAG2 ; (3)

END

 NAME SAMP2
 PUBLIC FLAG1 , FLAG2 ; (4)
 BSEG
FLAG1 DBIT ; (5)
FLAG2 DBIT ; (6)
 CSEG
 NOP

 END

 Symbol field Mnemonic field Operand field Comment field

 [label :] EXTBIT bit-symbol-name[, ...] [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 139

(1) This EXTBIT directive declares symbols "FLAG1" and "FLAG2" to be referenced as external references.

Two or more symbols may be described in the operand field.

(2) This SET1 instruction references symbol "FLAG1".

This description corresponds to "SET1 saddr.bit".

(3) This CLR1 instruction references symbol "FLAG2".

This description corresponds to "CLR1 saddr.bit".

(4) This PUBLIC directive defines symbols "FLAG1" and "FLAG2".

(5) This DBIT directive defines symbol "FLAG1" as a bit symbol of SADDR area.

(6) This DBIT directive defines symbol "FLAG2" as a bit symbol of SADDR area.

140 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

PUBLIC

[Description Format]

[Function]

- The PUBLIC directive declares to the linker that the symbol described in the operand field is a symbol to be

referenced from another module.

[Use]

- When defining a symbol (including bit symbol) to be referenced from another module, the PUBLIC directive

must be used to declare the symbol as an external definition.

[Explanation]

- The PUBLIC directive may be described anywhere in a source program.

- Up to 20 symbols can be specified in the operand field by delimiting each symbol name with a comma (,).

- Symbol(s) to be described in the operand field must be defined within the same module.

- The PUBLIC directive enables only one PUBLIC declaration for a symbol in an entire module. The second

and subsequent PUBLIC declarations for the symbol will be ignored by the linker.

- Bit symbols in each bit area can be declared with PUBLIC.

- The following symbols cannot be used as the operand of the PUBLIC directive:

(1) Name defined with the SET directive

(2) Symbol defined with the EXTRN or EXTBIT directive within the same module

(3) Segment name

(4) Module name

(5) Macro name

(6) Symbol not defined within the module

(7) Symbol defining an operand with a SFBIT attribute with the EQU directive

(8) Symbol defining an sfr and 2ndSFR with the EQU directive (however, the place where sfr area and

saddr area are overlapped is excluded)

 Symbol field Mnemonic field Operand field Comment field

 [label :] PUBLIC symbol-name[, ...] [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 141

[Application Example]

<Module 1>

<Module 2>

<Module 3>

(1) This PUBLIC directive declares that symbols "A1" and "A2" are to be referenced from other modules.

(2) This PUBLIC directive declares that symbol "B1" is to be referenced from another module.

(3) This PUBLIC directive declares that symbol "C1" is to be referenced from another module.

 NAME SAMP1
 PUBLIC A1 , A2 ; (1)
 EXTRN B1
 EXTBIT C1

A1 EQU 10H
A2 EQU 0FFE20H.1

 CSEG
 BR B1
 SET1 C1

 END

 NAME SAMP2
 PUBLIC B1 ; (2)
 EXTRN A1
 CSEG
B1 :
 MOV C , #LOW (A1)

 END

 NAME SAMP3
 PUBLIC C1 ; (3)
 EXTBIT A2
C1 EQU 0FFE21H.0
 CSEG
 CLR1 A2

 END

142 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

3.6 Object Module Name Declaration Directive

The object module name declaration directive gives a module name to an object module to be created by the

RA78K0R assembler.

The following object module name declaration directive is available:

- NAME

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 143

NAME

[Description Format]

[Function]

- The NAME directive assigns the object module name described in the operand field to an object module to

be output by the assembler.

[Use]

- A module name is required for each object module in symbolic debugging with a debugger.

[Explanation]

- The NAME directive may be described anywhere in a source program.

- For the conventions of module name description, see the conventions on symbol description in "2.2.3

Symbol field".

- Characters that can be specified as a module name are those characters permitted by the operating system

of the assembler software other than "(" (28H) or ")" (29H) or 2-byte characters.

- No module name can be described as the operand of any directive other than NAME or of any instruction.

- If the NAME directive is omitted, the assembler will assume the primary name (first 256 characters) of the

input source module file as the module name. The primary name is converted to capital letters for retrieval.

If two or more module names are specified, the assembler will output a warning and ignore the second and

subsequent module name declarations.

- A module name to be described in the operand field must not exceed 256 characters.

- The uppercase and lowercase characters of a symbol name are distinguished.

[Application Example]

(1) This NAME directive declares "SAMPLE" as a module name.

 NAME SAMPLE ; (1)
 DSEG
BIT1 : DBIT

 CSEG
 MOV A , B

 END

 Symbol field Mnemonic field Operand field Comment field

 [label :] NAME object-module-name [; comment]

144 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

3.7 Automatic Branch Instruction Selection Directives

Unconditional branch instructions directly describe a branch destination address as their operand. Two such

instructions, "BR !addr20" and "BR $addr20", are available.

Since the number of bytes used for each directive is different, the user must select and use the most appropriate

operand according to the address range of the branch destination, in order to create a program with high memory

utilization efficiency.

For this reason, there was a need for a directive that directs the RA78K0R to automatically select the two-byte or

three-byte branch instruction according to the address range of the branch destination. This is called automatic

branch instruction selection directive.

The following automatic branch instruction selection directive is available:

- BR

- CALL

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 145

BR

[Description Format]

[Function]

- The BR directive tells the assembler to automatically select a 2-, 3-, or 4-byte BR branch instruction

according to the value range of the expression specified in the operand field and to generate the object code

applicable to the selected instruction.

[Use]

- Among the branch instructions listed below, the assembler determines the address range of the branch

destination and automatically selects and outputs an instruction which uses the fewest number of bytes as

much as possible. Use the BR directive if it is unclear whether a 2-byte branch instruction can be described.

If an operand (branch destination) is located in a relocatable segment different from that to which the

directive is located, and outside the BASE area, the directive will be substituted with a 4-byte instruction and

the output.

If a directive and an operand (branch destination) are located in different segments and outside the BASE

area, and their types are different, the directive will be substituted with a 4-byte instruction, even if the

operand is located in an absolute segment.

If a directive and the branch destination are located in different segments and in the BASE area, the

directive will be substituted with a 3-byte instruction (BR !addr20).

Remark The different type means the different relocatable segments if the BR directive is located in an

absolute segment, or an absolute segment if the BR directive is located in a relocatable segment.

- If it is definitely known which of a 2-, 3-, or 4-byte branch instruction should be described, describe the

applicable instruction. This shortens the assembly time in comparison with describing the BR directive.

Branch Instruction Description

“BR $addr20” (2 bytes) Can be used if the address range of the branch destination is within the
range of -80H to +7FH, from an address following the BR directive.

“BR !addr20” (3 bytes) Can be used if the address range of the branch destination is within 64
KB.

“BR $!addr20” (3 bytes) Calculates the displacement from the branch destination and can be
used if the displacement is within the range of -8000H to +7FFFH

“BR !!addr20” (4 bytes) Used in cases other than above

 Symbol field Mnemonic field Operand field Comment field

 [label :] BR expression [; comment]

146 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

[Explanation]

- The BR directive can only be used within a code segment.

- The direct jump destination is described as the operand of the BR directive. "$" indicating the current

location counter at the beginning of an expression cannot be described.

- For optimization, the following conditions must be satisfied.

(1) No more than 1 label or forward-reference symbol in the expression.

(2) Do not describe an EQU symbol with the ADDRESS attribute.

(3) Do not describe an EQU defined symbol for "expression 1 with ADDRESS attribute - expression 2 with

ADDRESS attribute".

(4) Do not describe an expression with ADDRESS attribute on which the HIGH/LOW/HIGHW/LOWW/

DATAPOS/BITPOS operator has been operated.

If these conditions are not met, the 4-byte BR instruction will be selected.

[Application Example]

(1) This BR directive generates a 2-byte branch instruction (BR $addr20) because the displacement between

this line and the branch destination is within the range of -80H and +7FH.

(2) The branch destination of this BR directive is within 64 KB, so the BR directive will be substituted with a 3-

byte branch instruction (BR !addr20).

(3) This BR directive will be substituted with the 4-byte branch instruction (BR !!addr20).

(4) This BR directive will be substituted with the 3-byte branch instruction (BR !addr20) because the

displacement between this line and the branch destination is without the range of -8000H and +7FFFH.

ADDRESS NAME SAMPLE
 C1 CSEG AT 50H
00050H BR L1 ; (1)
00052H BR L2 ; (2)
00055H BR L3 ; (3)

0007DH L1 :
0FFFFH L2 :
10000H L3 :

 C2 CSEG AT 20050H
20050H BR L4 ; (4)
27FFFH L4 :

 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 147

CALL

[Description Format]

[Function]

- The CALL directive tells the assembler to automatically select a 3- or 4-byte BR branch instruction

according to the value range of the expression specified in the operand field and to generate the object code

applicable to the selected instruction.

[Use]

- Among the branch instructions listed below, the assembler determines the address range of the branch

destination and automatically selects and outputs an instruction which uses the fewest number of bytes as

much as possible. Use the CALL directive if it is unclear whether a 3-byte branch instruction can be

described.

If an operand (branch destination) is located in a relocatable segment different from that to which the

directive is located, and outside the BASE area, the directive will be substituted with a 4-byte instruction and

the output.

If a directive and an operand (branch destination) are located in different segments and outside the BASE

area, and their types are different, the directive will be substituted with a 4-byte instruction, even if the

operand is located in an absolute segment.

If a directive and the branch destination are located in different segments and in the BASE area, the

directive will be substituted with a 3-byte instruction (BR !addr20).

Remark The different type means the different relocatable segments if the CALL directive is located in an

absolute segment, or an absolute segment if the CALL directive is located in a relocatable

segment.

- If it is definitely known which of a 3- or 4-byte branch instruction should be described, describe the

applicable instruction. This shortens the assembly time in comparison with describing the CALL directive.

Branch Instruction Description

“CALL !addr20“ (3 bytes) Can be used if the address range of the branch destination is within 64
KB.

“CALL $!addr20“ (3 bytes) Calculates the displacement from the branch destination and can be
used if the displacement is within the range of -8000H to +7FFFH

“CALL !!addr20“ (4 bytes) Used in cases other than above

 Symbol field Mnemonic field Operand field Comment field

 [label :] CALL expression [; comment]

148 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

[Explanation]

- The CALL directive can only be used within a code segment.

- The direct jump destination is described as the operand of the CALL directive.

- For optimization, the following conditions must be satisfied.

(1) No more than 1 label or forward-reference symbol in the expression.

(2) Do not describe an EQU symbol with the ADDRESS attribute.

(3) Do not describe an EQU defined symbol for "expression 1 with ADDRESS attribute - expression 2 with

ADDRESS attribute".

(4) Do not describe an expression with ADDRESS attribute on which the HIGH/LOW/HIGHW/LOWW/

DATAPOS/BITPOS operator has been operated.

If these conditions are not met, the 4-byte CALL instruction will be selected.

[Application Example]

(1) The branch destination of this CALL directive is within 64 KB, so the CALL directive will be substituted

with a 3-byte branch instruction (CALL !addr20).

(2) This CALL directive will be substituted with the 4-byte branch instruction (CALL !!addr20).

(3) This CALL directive will be substituted with the 3-byte branch instruction (CALL !addr20) because the

displacement between this line and the branch destination is without the range of -8000H and +7FFFH.

ADDRESS NAME SAMPLE
 C1 CSEG AT 50H
00050H CALL L1 ; (1)
00053H CALL L2 ; (2)
08052H L1 :
0FFFFH L2 :

 C2 CSEG AT 20050H
20050H CALL L3 ; (3)
27FFFH L3 :

 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 149

3.8 Macro Directives

When you describe a source program, it is troublesome to describe a series of frequently used instruction groups

over and over again, and this may cause an increase in the number of description or coding errors.

By using the macro function with macro directives, the need to repeatedly describe the same group of

instructions can be eliminated, thereby increasing coding efficiency of the program. The basic function of a macro

is the substitution of a series of statements with a name.

The following macro directives are available:

- MACRO

- LOCAL

- REPT

- IRP

- EXITM

- ENDM

150 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

MACRO

[Description Format]

[Function]

- The MACRO directive executes a macro definition by assigning the macro name specified in the symbol

field to a series of statements (called a macro body) described between this directive and the ENDM

directive.

[Use]

- Define a series of frequently used statements in the source program with a macro name. After its definition

only describe the defined macro name (see "5.2.2 Macro reference"), and the macro body corresponding to

the macro name is expanded.

[Explanation]

- The MACRO directive must be paired with the ENDM directive.

- For the macro name to be described in the symbol field, see the conventions of symbol description in "2.2.3

Symbol field".

- To reference a macro, describe the defined macro name in the mnemonic field.

- For the formal parameter(s) to be described in the operand field, the same rules as the conventions of

symbol description will apply.

- Up to 16 formal parameters can be described per macro directive.

- Formal parameters are valid only within the macro body.

- An error occurs if any reserved word is described as a formal parameter. However, if a user-defined symbol

is described, its recognition as a formal parameter will take precedence.

- The number of formal parameters must be the same as the number of actual parameters.

- A name or label defined within the macro body if declared with the LOCAL directive becomes effective with

respect to one-time macro expansion.

- Nesting of macros (i.e., to refer to other macros within the macro body) is allowed up to eight levels including

REPT and IRP directives.

- The number of macros that can be defined within a single source module is not specifically limited. In other

words, macros may be defined as long as there is memory space available.

- Formal parameter definition lines, reference lines, and symbol names are not output to a cross-reference

list.

- Two or more segments must not be defined in a macro body. If defined, an error will be output.

 Symbol field Mnemonic field Operand field Comment field

 macro-name MACRO [formal-parameter[, ...]] [; comment]
 :
 Macro body
 :
 ENDM [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 151

[Application Example]

(1) A macro is defined by specifying macro name "ADMAC" and two formal parameters "PARA1" and

"PARA2".

(2) This directive indicates the end of the macro definition.

(3) Macro "ADMAC" is referenced.

 NAME SAMPLE

ADMAC MACRO PARA1 , PARA2 ; (1)
 MOV A , #PARA1
 ADD A , #PARA2
 ENDM ; (2)

 ADMAC 10H , 20H ; (3)

 END

152 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

LOCAL

[Description Format]

[Function]

- The LOCAL directive declares that the symbol name specified in the operand field is a local symbol that is

valid only within the macro body.

[Use]

- If a macro that defines a symbol within the macro body is referenced more than once, the assembler will

output a double definition error for the symbol. By using the LOCAL directive, you can reference (or call) a

macro, which defines symbol(s) within the macro body, more than once.

[Explanation]

- For the conventions on symbol names to be described in the operand field, see the conventions on symbol

description in "2.2.3 Symbol field".

- A symbol declared as LOCAL will be substituted with a symbol "??RAnnnn" (where n = 0000 to FFFF) at

each macro expansion. The symbol "??RAnnnn" after the macro replacement will be handled in the same

way as a global symbol and will be stored in the symbol table, and can thus be referenced under the symbol

name "??RAnnnn".

- If a symbol is described within a macro body and the macro is referenced more than once, it means that the

symbol would be defined more than once in the source module. For this reason, it is necessary to declare

that the symbol is a local symbol that is valid only within the macro body.

- The LOCAL directive can be used only within a macro definition.

- The LOCAL directive must be described before using the symbol specified in the operand field (in other

words, the LOCAL directive must be described at the beginning of the macro body).

- Symbol names to be defined with the LOCAL directive within a source module must be all different (in other

words, the same name cannot be used for local symbols to be used in each macro).

- The number of local symbols that can be specified in the operand field is not limited as long as they are all

within a line. However, the number of symbols within a macro body is limited to 64. If 65 or more local

symbols are declared, the assembler will output an error and store the macro definition as an empty macro

body. Nothing will be expanded even if the macro is called.

- Macros defined with the LOCAL directive cannot be nested.

- Symbols defined with the LOCAL directive cannot be called (referenced) from outside the macro.

- No reserved word can be described as a symbol name in the operand field. However, if a symbol same as

the user-defined symbol is described, its recognition as a local symbol will take precedence.

- A symbol declared as the operand of the LOCAL directive will not be output to a cross-reference list and

symbol table list.

 Symbol field Mnemonic field Operand field Comment field

 None LOCAL symbol-name[, ...] [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 153

- The statement line of the LOCAL directive will not be output at the time of the macro expansion.

- If a LOCAL declaration is made within a macro definition for which a symbol has the same name as a formal

parameter of that macro definition, an error will be output.

[Application Example]

(1) This LOCAL directive defines symbol name "LLAB" as a local symbol.

(2) This BR instruction references local symbol "LLAB" within macro MAC1.

(3) This macro reference calls macro MAC1.

(4) Because local symbol "LLAB" is referenced outside the definition of macro MAC1, this description results

in an error.

(5) This macro reference calls macro MAC1.

 NAME SAMPLE

 ; Macro definition
MAC1 MACRO
 LOCAL LLAB ; (1)
LLAB : ;
 BR $LLAB ; (2)
 ENDM ;

 ; Source text
REF1 : MAC1 ; (3)

??RA0000 :
 BR $??RA0000 ; (2)

 BR !LLAB ; (4) <-- Error

REF2 : MAC1 ; (5)

??RA0001 :
 BR $??RA0001 ; (2)

 END

154 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

The assemble list of the above application example is shown below.

<Assemble list>

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMPLE
 2 2 M MAC1 MACRO
 3 3 M LOCAL LLAB ; (1)
 4 4 M LLAB :
 5 5 M BR $LLAB ; (2)
 6 6 M ENDM
 7 7
 8 8 000000 REF1 : MAC1 ; (3)
 9 #1 ;
 10 000000 #1 ??RA0000:
 11 000000 14FE #1 BR $??RA0000 ; (2)
 9 12
 10 13 000002 2C0000 BR !LLAB ; (4)
*** ERROR E2407 , STNO 13 (0) Undefined symbol reference 'LLAB'
*** ERROR E2303 , STNO 13 (13) Illegal expression
 11 14
 12 15 000005 REF2 : MAC1 ; (5)
 16 #1 ;
 17 000005 #1 ??RA0001 :
 18 000005 14FE #1 BR $??RA0001 ; (2)
 13 19
 14 20 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 155

REPT

[Description Format]

[Function]

- The REPT directive tells the assembler to repeatedly expand a series of statements described between this

directive and the ENDM directive (called the REPT-ENDM block) the number of times equivalent to the

value of the expression specified in the operand field.

[Use]

- Use the REPT and ENDM directives to describe a series of statements repeatedly in a source program.

[Explanation]

- An error occurs if the REPT directive is not paired with the ENDM directive.

- In the REPT-ENDM block, macro references, REPT directives, and IRP directives can be nested up to eight

levels.

- If the EXITM directive appears in the REPT-ENDM block, subsequent expansion of the REPT-ENDM block

by the assembler is terminated.

- Assembly control instructions may be described in the REPT-ENDM block.

- Macro definitions cannot be described in the REPT-ENDM block.

- The absolute expression described in the operand field is evaluated with unsigned 16 bits.

If the value of the expression is 0, nothing is expanded.

[Application Example]

(1) This REPT directive tells the assembler to expand the REPT-ENDM block three consecutive times.

(2) This directive indicates the end of the REPT-ENDM block.

When the above source program is assembled, the REPT-ENDM block is expanded as shown in the following

assemble list:

NAME SAMP1
CSEG
 ; REPT-ENDM block
REPT 3 ; (1)
 INC B
 DEC C
 ; Source text
ENDM ; (2)

END

 Symbol field Mnemonic field Operand field Comment field

 [label :] REPT absolute-expression [; comment]
 :
 ENDM [; comment]

156 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

<Assemble list>

The REPT-ENDM block defined by statements (1) and (2) has been expanded three times.

On the assemble list, the definition statements (1) and (2) by the REPT directive in the source module is not

displayed.

NAME SAMP1
CSEG
REPT 3
 INC B
 DEC C
ENDM
 INC B
 DEC C
 INC B
 DEC C
 INC B
 DEC C

END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 157

IRP

[Description Format]

[Function]

- The IRP directive tells the assembler to repeatedly expand a series of statements described between this

directive and the ENDM directive (called the IRP-ENDM block) the number of times equivalent to the

number of actual parameters while replacing the formal parameter with the actual parameters specified in

the operand field.

[Use]

- Use the IRP and ENDM directives to describe a series of statements, only some of which become variables,

repeatedly in a source program.

[Explanation]

- The IRP directive must be paired with the ENDM directive.

- Up to 16 actual parameters may be described in the operand field.

- In the IRP-ENDM block, macro references, REPT and IRP directives can be nested up to eight levels.

- If the EXITM directive appears in the IRP-ENDM block, subsequent expansion of the IRP-ENDM block by

the assembler is terminated.

- Macro definitions cannot be described in the IRP-ENDM block.

- Assembly control instructions may be described in the IRP-ENDM block.

[Application Example]

(1) The formal parameter is "PARA" and the actual parameters are the following three: "0AH", "0BH", and

"0CH".

This IRP directive tells the assembler to expand the IRP-ENDM block three times (i.e., the number of

actual parameters) while replacing the formal parameter "PARA" with the actual parameters "0AH", "0BH",

and "0CH".

NAME SAMP1
CSEG

IRP PARA , <0AH , 0BH , 0CH> ; (1)
 ; IRP-ENDM block
ADD A , #PARA
MOV [DE] , A
ENDM ; (2)
 ; Source text
END

 Symbol field Mnemonic field Operand field Comment field

 [label :] IRP formal-parameter, [; comment]
 <[actual-parameter[, ...]]>
 :
 ENDM [; comment]

158 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

(2) This directive indicates the end of the IRP-ENDM block.

When the above source program is assembled, the IRP-ENDM block is expanded as shown in the following

assemble list:

<Assemble list>

The IRP-ENDM block defined by statements (1) and (2) has been expanded three times (equivalent to the

number of actual parameters).

(3) In this ADD instruction, PARA is replaced with 0AH.

(4) In this ADD instruction, PARA is replaced with 0BH.

(5) In this ADD instruction, PARA is replaced with 0CH.

NAME SAMP1
CSEG
 ; IRP-ENDM block
ADD A , #0AH ; (3)
MOV [DE] , A
ADD A , #0BH ; (4)
MOV [DE] , A
ADD A , #0CH ; (5)
MOV [DE] , A
 ; Source text
END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 159

EXITM

[Description Format]

[Function]

- The EXITM directive forcibly terminates the expansion of the macro body defined by the MACRO directive

and the repetition by the REPT-ENDM or IRP-ENDM block.

[Use]

- This function is mainly used when a conditional assembly function (see "4.7 Conditional Assembly Control

Instructions") is used in the macro body defined with the MACRO directive.

- If conditional assembly functions are used in combination with other instructions in the macro body, part of

the source program that must not be assembled is likely to be assembled unless control is returned from the

macro by force using this EXITM directive. In such cases, be sure to use the EXITM directive.

[Explanation]

- If the EXITM directive is described in a macro body, instructions up to the ENDM directive will be stored as

the macro body.

- The EXITM directive indicates the end of a macro only during the macro expansion.

- If something is described in the operand field of the EXITM directive, the assembler will output an error but

will execute the EXITM processing.

- If the EXITM directive appears in a macro body, the assembler will return by force the nesting level of IF/_IF/

ELSE/ELSEIF/_ELSEIF/ENDIF blocks to the level when the assembler entered the macro body.

- If the EXITM directive appears in an INCLUDE file resulting from expanding the INCLUDE control instruction

described in a macro body, the assembler will accept the EXITM directive as valid and terminate the macro

expansion at that level.

 Symbol field Mnemonic field Operand field Comment field

 [label :] IEXITM None [; comment]

160 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

[Application Example]

(1) The macro "MAC1" uses conditional assembly functions (2) and (4) through (8) within the macro body.

(2) An IF block for conditional assembly is defined here.

If switch name "SW1" is true (not "0"), the ELSE block is assembled.

(3) This directive terminates by force the expansion of the macro body in (4) and thereafter.

If this EXITM directive is omitted, the assembler proceeds to the assembly process in (6) and thereafter

when the macro is expanded.

(4) An ELSE block for conditional assembly is defined here.

If switch name "SW1" is false ("0"), the ELSE block is assembled.

(5) This ENDIF control instruction indicates the end of the conditional assembly.

(6) Another IF block for conditional assembly is defined here.

If switch name "SW2" is true (not "0"), the following IF block is assembled.

(7) Another ELSE block for conditional assembly is defined.

If switch name "SW2" is false ("0"), the ELSE block is assembled.

(8) This ENDIF instruction indicates the end of the conditional assembly processes in (6) and (7).

(9) This directive indicates the end of the macro body.

(10) This SET control instruction gives true value (not "0") to switch name "SW1" and sets the condition of

the conditional assembly.

(11) This macro reference calls macro "MAC1".

Remark In the example here, conditional assembly control instructions are used. See "4.7 Conditional

Assembly Control Instructions". See "CHAPTER 5 MACROS" for the macro body and macro

expansion.

 NAME SAMP1
MAC1 MACRO ; (1)
 ; macro body
 NOT1 CY
$ IF (SW1) ; (2) <-- IF block
 BT A.1 , $L1
 EXITM ; (3)
$ ELSE ; (4) <-- ELSE block
 MOV1 CY , A.1
 MOV A , #0
$ ENDIF ; (5)
$ IF (SW2) ; (6) <-- IF block
 BR [HL]
$ ELSE ; (7) <-- ELSE block
 BR [DE]
$ ENDIF ; (8)
 ; Source text
 ENDM ; (9)

 CSEG
$ SET (SW1) ; (10)
 MAC1 ; (11) <-- Macro reference
L1 : NOP

 END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 161

The assemble list of the above application example is shown below.

<Assemble list>

The macro body of macro "MAC1" is expanded by referring to the macro in (11). Because true value is set in

switch name "SW1" in (10), the first IF block in the macro body is assembled. Because the EXITM directive

is described at the end of the IF block, the subsequent macro expansion is not executed.

 NAME SAMP1
MAC1 MACRO ; (1)
 :
 ENDM ; (9)
 CSEG
$ SET (SW1) ; (10)
 MAC1 ; (11)
 ; Macro-expanded part
 NOT1 CY
$ IF (SW1)
 BT A.1 , $L1
 ; Source text
L1 : NOP

 END

162 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

ENDM

[Description Format]

[Function]

- The ENDM directive instructs the assembler to terminate the execution of a series of statements defined as

the functions of the macro.

[Use]

- The ENDM directive must always be described at the end of a series of statements following the MACRO,

REPT, and/or the IRP directives.

[Explanation]

- A series of statements described between the MACRO directive and ENDM directive becomes a macro

body.

- A series of statements described between the REPT directive and ENDM directive becomes a REPT-ENDM

block.

- A series of statements described between the IRP directive and ENDM directive becomes an IRP-ENDM

block.

[Application Examples]

<Example 1: MACRO-ENDM>

<Example 2: REPT-ENDM>

 NAME SAMP1
ADMAC MACRO PARA1 , PARA2
 MOV A , #PARA1
 ADD A , #PARA2
 ENDM
 :
 END

NAME SAMP2
CSEG
 :
REPT 3
 INC B
 DEC C
ENDM
 :
END

 Symbol field Mnemonic field Operand field Comment field

 None ENDM None [; comment]

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 163

<Example 3: IRP-ENDM>

NAME SAMP3
CSEG
 :
IRP PARA , <1 , 2 , 3>
 ADD A , #PARA
 MOV [DE] , A
ENDM
 :
END

164 User’s Manual U18546EJ1V0UM

CHAPTER 3 DIRECTIVES

3.9 Assembly Termination Directive

The assembly termination directive informs the assembler of the end of a source module. This assembly

termination directive must always be described at the end of each source module.

The assembler processes a series of statements up to the assembly termination directive as a source module.

Therefore, if the assembly termination directive exists before the ENDM in a REPT block or an IRP block, the

REPT block or IRP block becomes invalid.

The following assembly termination directive is available:

- END

CHAPTER 3 DIRECTIVES

User’s Manual U18546EJ1V0UM 165

END

[Description Format]

[Function]

- The END directive indicates to the assembler the end of a source module.

[Use]

- The END directive must always be described at the end of each source module.

[Explanation]

- The assembler continues to assemble a source module until the END directive appears in the source

module. Therefore, the END directive is required at the end of each source module.

- Always input a line-feed (LF) code after the END directive.

- If any statement other than blank, tab, LF, or comments appears after the END directive, the assembler

outputs a warning message.

[Application Example]

(1) Always describe the END directive at the end of each source module.

NAME SAMPLE
DSEG
 :
CSEG
 :
END ; (1)

 Symbol field Mnemonic field Operand field Comment field

 None END None [; comment]

166 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

CHAPTER 4 CONTROL INSTRUCTIONS

This chapter explains the control instructions.

Control instructions provide detailed directions on the operation of the assembler.

4.1 Overview

Control instructions are described in a source program to provide detailed directions on the operation of the

assembler.

These instructions are not subject to object code generation.

Control instructions are available in the following types:

Control instructions are described in a source program in the same way as the assembler directives.

Table 4-1 List of Control Instructions

Type of Control Instruction Control Instruction

Processor Type Specification Control Instruction PROCESSOR

Debug Information Output Control Instructions DEBUG/NODEBUG, DEBUGA/NODEBUGA

Cross-Reference List Output Specification Control
Instructions XREF/NOXREF, SYMLIST/NOSYMLIST

Inclusion Control Instruction lNCLUDE

Assembly List Control Instructions

EJECT, LIST/NOLIST, GEN/NOGEN,
COND/NOCOND, TITLE, SUBTITLE,
FORMFEED/NOFORMFEED, WIDTH,
LENGTH, TAB

Conditional Assembly Control Instructions IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF,
SET/RESET

Kanji Code (2-byte code) Control Instruction KANJICODE

Other Control Instructions TOL_INF, DGS, DGL

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 167

Of the control instructions listed in Table 4-1, the following instructions have the same functions as assembler

options that can be specified in the startup command line of the assembler.

Table 4-2 Control Instructions and Assembler Options

For the method of specifying the control instructions and assembler options by command line, see the RA78K0R

Series Assembler Package Operation User's Manual.

Control Instructions Assembler Options

PROCESSOR -c

DEBUG/NODEBUG -g/-ng

DEBUGA/NODEBUGA -ga/-nga

XREF/NOXREF -kx/-nkx

SYMLIST/NOSYMLIST -ks/-nks

TITLE -lh

FORMFEED/NOFORMFEED -lf/-nlf

WIDTH -lw

LENGTH -ll

TAB -lt

168 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

4.2 Processor Type Specification Control Instruction

The processor type specification control instruction specifies in a source module file the type of target device

subject to assembly.

The following processor type specification control instruction is available:

- PROCESSOR

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 169

PROCESSOR

[Description Format]

[Function]

- The PROCESSOR control instruction specifies in a source module file the processor type of the target

device subject to assembly.

[Use]

- The processor type of the target device subject to assembly must always be specified in the source module

file or in the startup command line of the assembler.

- If you omit the processor type specification for the target device subject to assembly in each source module

file, you must specify the processor type at each assembly operation. Therefore, by specifying the target

device subject to assembly in each source module file, you can save time and trouble when starting up the

assembler.

[Explanation]

- The PROCESSOR control instruction can be described only in the header section of a source module file. If

the control instruction is described elsewhere, the assembler will be aborted.

- For the specifiable processor name, refer to the user's manual of the device used or "Device Files Operating

Precautions".

- If the specified processor type differs from the actual target device subject to assembly, the assembler will

be aborted.

- Only one PROCESSOR control instruction can be specified in the module header.

- The processor type of the target device subject to assembly may also be specified with the assembler option

(-c) in the startup command line of the assembler. If the specified processor type differs between the source

module file and the startup command line, the assembler will output a warning message and give

precedence to the processor type specification in the startup command line.

- Even when the assembler option (-c) has been specified in the startup command line, the assembler

performs a syntax check on the PROCESSOR control instruction.

- If the processor type is not specified in either the source module file or the startup command line, the

assembler will be aborted.

[Application Example]

[Δ]$[Δ]PROCESSOR[Δ]([Δ]processor-type[Δ])
[Δ]$[Δ]PC[Δ]([Δ]processor-type[Δ]) ; Abbreviated format

$ PROCESSOR (f1166a0)
$ DEBUG
$ XREF

 NAME TEST
 :
 CSEG

170 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

4.3 Debug Information Output Control Instructions

The debug information output control instructions are used to specify in a source module file the output or non-

output of debugging information to an object module file created from the source module file.

The following debug information output control instructions are available:

- DEBUG/NODEBUG

- DEBUGA/NODEBUGA

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 171

DEBUG/NODEBUG

[Description Format]

[Function]

- The DEBUG control instruction tells the assembler to add local symbol information to an object module file.

- The NODEBUG control instruction tells the assembler not to add local symbol information to an object

module file. However, in this case as well, the segment name is output to an object module file.

- "Local symbol information" refers to symbols other than module names and PUBLIC, EXTRN, and EXTBIT

symbols.

[Use]

- Use the DEBUG control instruction when symbolic debugging including local symbols is to be performed.

- Use the NODEBUG control instruction when:

(1) Symbolic debugging is to be performed for global symbols only

(2) Debugging is to be performed without symbols

(3) Only objects are required (as for evaluation with PROM)

[Explanation]

- The DEBUG or NODEBUG control instruction can be described only in the header section of a source

module file.

- If the DEBUG or NODEBUG control instruction is omitted, the assembler will assume that the DEBUG

control instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes

precedence over the others.

- The addition of local symbol information can be specified using the assembler option (-g/-ng) in the startup

command line.

- If the control instruction specification in the source module file differs from the specification in the startup

command line, the specification in the command line takes precedence.

- Even when the assembler option (-ng) has been specified, the assembler performs a syntax check on the

DEBUG or NODEBUG control instruction.

[Δ]$[Δ]DEBUG ; Default assumption
[Δ]$[Δ]DG ; Abbreviated format
[Δ]$[Δ]NODEBUG
[Δ]$[Δ]NODG ; Abbreviated format

172 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

DEBUGA/NODEBUGA

[Description Format]

[Function]

- The DEBUGA control instruction tells the assembler to add assembler source debugging information to an

object module file.

- The NODEBUGA control instruction tells the assembler not to add assembler source debugging information

to an object module file.

[Use]

- Use the DEBUGA control instruction when debugging is to be performed at the assembler source level. An

integrated debugger will be necessary for debugging at the source level.

- Use the NODEBUGA control instruction when:

(1) Debugging is to be performed without the assembler source

(2) Only objects are required (as for evaluation with PROM)

[Explanation]

- The DEBUGA or NODEBUGA control instruction can be described only in the header section of a source

module file.

- If the DEBUGA or NODEBUGA control instruction is omitted, the assembler will assume that the DEBUGA

control instruction has been specified.

- If two or more of these control instructions are specified, the last specified control instruction takes

precedence over the others.

- The addition of assembler source debugging information can be specified using the assembler option (-ga/-

nga) in the startup command line.

- If the control instruction specification in the source module file differs from the specification in the startup

command line, the specification in the command line takes precedence.

- Even when the assembler option (-nga) has been specified, the assembler performs a syntax check on the

DEBUGA or NODEBUGA control instruction.

- If compiling the debug information output by the C compiler, do not describe the debug information output

control instructions when assembling the output assemble source. The control instructions necessary at

assembly are output to assembler source as control statements by the C compiler.

[Δ]$[Δ]DEBUGA ; Default assumption
[Δ]$[Δ]NODEBUGA

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 173

4.4 Cross-Reference List Output Specification Control
Instructions

The cross-reference list output specification control instructions are used in a source module file to specify the

output or non-output of a cross-reference list.

The following cross-reference list output specification control instructions are available:

- XREF/NOXREF

- SYMLIST/NOSYMLIST

174 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

XREF/NOXREF

[Description Format]

[Function]

- The XREF control instruction tells the assembler to output a cross-reference list to an assembly list file.

- The NOXREF control instruction tells the assembler not to output a cross-reference list to an assembly list

file.

[Use]

- Use the XREF control instruction to output a cross-reference list when you want information on where each

of the symbols defined in the source module file is referenced or how many such symbols are referenced in

the source module file.

- If you must specify the output or non-output of a cross-reference list at each assembly operation, you may

save time and labor by specifying the XREF and NOXREF control instruction in the source module file.

[Explanation]

- The XREF or NOXREF control instruction can be described only in the header section of a source module

file.

- If two or more of these control instructions are specified, the last specified control instruction takes

precedence over the others.

- Output or non-output of a cross-reference list can also be specified by the assembler option (-kx/-nkx) in the

startup command line.

- If the control instruction specification in the source module file differs from the assembler option specification

in the startup command line, the specification in the command line will take precedence over that in the

source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler

performs a syntax check on the XREF/NOXREF control instruction.

[Δ]$[Δ]XREF
[Δ]$[Δ]XR ; Abbreviated format
[Δ]$[Δ]NOXREF ; Default assumption
[Δ]$[Δ]NOXR ; Abbreviated format

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 175

SYMLIST/NOSYMLIST

[Description Format]

[Function]

- The SYMLIST control instruction tells the assembler to output a symbol list to a list file.

- The NOSYMLIST control instruction tells the assembler not to output a symbol list to a list file.

[Use]

- Use the SYMLIST control instruction to output a symbol list.

[Explanation]

- The SYMLIST or NOSYMLIST control instruction can be described only in the header section of a source

module file.

- If two or more of these control instructions are specified, the last specified control instruction takes

precedence over the others.

- Output of a symbol list can also be specified by the assembler option (-ks/-nks) in the startup command line.

- If the control instruction specification in the source module file differs from the assembler option specification

in the startup command line, the specification in the command line will take precedence over that in the

source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler

performs a syntax check on the SYMLIST/NOSYMLIST control instruction.

[Δ]$[Δ]SYMLIST
[Δ]$[Δ]NOSYMLIST ; Default assumption

176 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

4.5 Inclusion Control Instruction

The inclusion control instruction is used in a source module file to specify the inclusion of another module file in

the source module file.

By making effective use of this control instruction, you can save time and labor in describing a source program.

The following inclusion control instruction is available:

- lNCLUDE

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 177

lNCLUDE

[Description Format]

[Function]

- The INCLUDE control instruction tells the assembler to insert and expand the contents of a specified file

beginning on a specified line in the source program for assembly.

[Use]

- A relatively large group of statements that may be shared by two or more source modules should be

combined into a single file as an INCLUDE file. If the group of statements must be used in each source

module, specify the filename of the required INCLUDE file with the INCLUDE control instruction. With this

control instruction, you can greatly reduce time and labor in describing source modules.

[Explanation]

- The INCLUDE control instruction can only be described in ordinary source programs.

- The pathname or drive name of an INCLUDE file can be specified with the assembler option (-I).

- The assembler searches INCLUDE file read paths in the following sequence:

(1) When an INCLUDE file is specified without pathname specification

(a) Path in which the source file exists

(b) Path specified by the assembler option (-I)

(c) Path specified by the environment variable INC78K0R

(2) When an INCLUDE file is specified with a pathname

If the INCLUDE file is specified with a drive name or a pathname which begins with backslash (\), the

path specified with the INCLUDE file will be prefixed to the INCLUDE filename. If the INCLUDE file is

specified with a relative path (which does not begin with \), a pathname will be prefixed to the INCLUDE

filename in the order described in (1) above.

- Nesting of INCLUDE files is allowed up to seven levels. In other words, the nesting level display of

INCLUDE files in the assembly list is up to 8 (the term "nesting" here refers to the specification of one or

more other INCLUDE files in an INCLUDE file).

- The END directive need not be described in an INCLUDE file.

- If the specified INCLUDE file cannot be opened, the assembler will abort operation.

- An INCLUDE file must be closed with IF or _IF control instruction that is properly paired with an ENDIF

control instruction within the INCLUDE file. If the IF level at the entry of the INCLUDE file expansion does

not correspond with the IF level immediately after the INCLUDE file expansion, the assembler will output an

error message and force the IF level to return to that level at the entry of the INCLUDE file expansion.

[Δ]$[Δ]INCLUDE[Δ]([Δ]filename[Δ])
[Δ]$[Δ]IC[Δ]([Δ]filename[Δ]) ; Abbreviated format

178 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

- When defining a macro in an INCLUDE file, the macro definition must be closed in the INCLUDE file. If an

ENDM directive appears unexpectedly (without the corresponding MACRO directive) in the INCLUDE file,

an error message will be output and the ENDM directive will be ignored. If an ENDM directive is missing for

the MACRO directive described in the INCLUDE file, the assembler will output an error message but will

process the macro definition by assuming that the corresponding ENDM directive has been described.

- Two or more segments cannot be defined in an include file. An error is output, if defined.

[Application Example]

(1) This control instruction specifies "EQU.INC" as the INCLUDE file.

(2) This control instruction specifies "SET1.INC" as the INCLUDE file.

(3) This control instruction specifies "SET2.INC" as the INCLUDE file.

(4) This control instruction specifies "SET3.INC" as the INCLUDE file.

Note 1 Two or more $IC control instructions can be specified in the source file. The same INCLUDE file

may also be specified more than once.

Note 2 Two or more $IC control instructions may be specified for INCLUDE file "EQU.INC".

Note 3 No $IC control instruction can be specified in any of the INCLUDE files "SET1.INC", "SET2.INC",

and "SET3.INC".

When this source program is assembled, the contents of the INCLUDE file will be expanded as follows:

 NAME SAMPLE
 EXTRN L1 , L2
 PUBLIC L3
$ INCLUDE (EQU.INC) ; (1)
 CSEG
 :
 END

<Source program>Note 1

 SYMA EQU 10H
$ INCLUDE (SET1.INC) ; (2)
 SYMB EQU 20H
$ INCLUDE (SET2.INC) ; (3)
 :
$ INCLUDE (SET3.INC) ; (4)
 SYMZ EQU 100H

<EQU.INC>Note 2

SYM1 SET 10H

<SET1.INC>Note 3

SYM1 SET 20H

<SET2.INC>Note 3

SYM1 SET 30H

<SET3.INC>Note 3

 NAME SAMPLE
 EXTRN L1 , L2
 PUBLIC L3
$ INCLUDE (EQU.INC) ; (1)
 SYMA EQU 10H
& INCLUDE (SET1.INC) ; (2)
 SYM1 SET 10H
 SYMB EQU 20H
& INCLUDE (SET2.INC) ; (3)
 SYM1 SET 20H
& INCLUDE (SET3.INC) ; (4)
 SYM1 SET 30H
 SYMZ EQU 100H
 CSEG
 :
 END

The contents of INCLUDE file
"EQU.INC" have been expanded.

The contents of INCLUDE file
"SET1.INC" have been expanded.

The contents of INCLUDE file
"SET2.INC" have been expanded.

The contents of INCLUDE file
"SET3.INC" have been expanded.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 179

4.6 Assembly List Control Instructions

The assembly list control instructions are used in a source module file to control the output format of an

assembly list such as page ejection, suppression of list output, and subtitle output.

The assembly list control instructions include:

- EJECT

- LIST/NOLIST

- GEN/NOGEN

- COND/NOCOND

- TITLE

- SUBTITLE

- FORMFEED/NOFORMFEED

- WIDTH

- LENGTH

- TAB

180 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

EJECT

[Description Format]

[Default Assumption]

- EJECT control instruction is not specified.

[Function]

- The EJECT control instruction causes the assembler to execute page ejection (formfeed) of an assembly

list.

[Use]

- Describe the EJECT control instruction in a line of the source module at which page ejection of the assembly

list is required.

[Explanation]

- The EJECT control instruction can only be described in ordinary source programs.

- Page ejection of the assembly list is executed after the image of the EJECT control instruction itself is

output.

- If the assembler option (-np) or (-llo) is specified in the startup command line or if the assembly list output is

disabled by another control instruction, the EJECT control instruction becomes invalid. See the RA78K0R

Series Assembler Package Operation User's Manual for those assembler options.

- If an illegal description follows the EJECT control instruction, the assembler will output an error message.

[Application Example]

(1) Page ejection is executed with the EJECT control instruction.

The assemble list of the above application example is shown below.

[Δ]$[Δ]EJECT
[Δ]$[Δ]EJ ; Abbreviated format

 :
 MOV [DE+] , A
 BR $$
$ EJECT ; (1)
 :
 CSEG
 :
 END

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 181

<Assembly list>

 :
 MOV [DE+] , A
 BR $$
$ EJECT ; (1)
-- page ejection ------------
 :
 CSEG
 :
 END

182 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

LIST/NOLIST

[Description Format]

[Function]

- The LIST control instruction indicates to the assembler the line at which assembly list output must start.

- The NOLIST control instruction indicates to the assembler the line at which assembly list output must be

suppressed.

All source statements described after the NOLIST control instruction specification will be assembled, but will

not be output on the assembly list until the LIST control instruction appears in the source program.

[Use]

- Use the NOLIST control instruction to limit the amount of assembly list output.

- Use the LIST control instruction to cancel the assembly list output suppression specified by the NOLIST

control instruction.

By using a combination of NOLIST and LIST control instructions, you can control the amount of assembly

list output as well as the contents of the list.

[Explanation]

- The LIST/NOLIST control instruction can only be described in ordinary source programs.

- The NOLIST control instruction functions to suppress assembly list output and is not intended to stop the

assembly process.

- If the LIST control instruction is specified after the NOLIST control instruction, statements described after the

LIST control instruction will be output again on the assembly list. The image of the LIST or NOLIST control

instruction will also be output on the assembly list.

- If neither the LIST nor NOLIST control instruction is specified, all statements in the source module will be

output to an assembly list.

[Application Example]

[Δ]$[Δ]LIST ; Default assumption
[Δ]$[Δ]LI ; Abbreviated format
[Δ]$[Δ]NOLIST
[Δ]$[Δ]NOLI ; Abbreviated format

 NAME SAMP1
$ NOLIST ; (1)
DATA1 EQU 10H ; The statement will not be output to the assembly list.
DATA2 EQU 11H ; The statement will not be output to the assembly list.
 : ; The statement will not be output to the assembly list.
DATAX EQU 20H ; The statement will not be output to the assembly list.
DATAY EQU 20H ; The statement will not be output to the assembly list.
$ LIST ; (2)
 CSEG
 :
 END

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 183

(1) Because the NOLIST control instruction is specified here, statements after "$ NOLIST" and up to the LIST

control instruction in (2) will not be output on the assembly list.

The image of the NOLIST control instruction itself will be output on the assembly list.

(2) Because the LIST control instruction is specified here, statements after this control instruction will be

output again on the assembly list. The image of the LIST control instruction itself will also be output on the

assembly list.

184 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

GEN/NOGEN

[Description Format]

[Function]

- The GEN control instruction tells the assembler to output macro definition lines, macro reference lines, and

macro-expanded lines to an assembly list.

- The NOGEN control instruction tells the assembler to output macro definition lines and macro reference

lines but to suppress macro-expanded lines.

[Use]

- Use the GEN/NOGEN control instruction to limit the amount of assembly list output.

[Explanation]

- The GEN/NOGEN control instruction can only be described in ordinary source programs.

- If neither the GEN nor NOGEN control instruction is specified, macro definition lines, macro reference lines,

and macro-expanded lines will be output to an assembly list.

- The specified list control takes place after the image of the GEN or NOGEN control instruction itself has

been printed on the assembly list.

- The assembler continues its processing and increments the statement number (STNO) count even after the

list output control by the NOGEN control instruction.

- If the GEN control instruction is specified after the NOGEN control instruction, the assembler will resume the

output of macro-expanded lines.

[Application Example]

The assemble list of the above application example is shown below.

[Δ]$[Δ]GEN ; Default assumption
[Δ]$[Δ]NOGEN

 NAME SAMP
$ NOGEN ; (1)
ADMAC MACRO PARA1 , PARA2
 MOV A , #PARA1
 ADD A , #PARA2
 ENDM
 CSEG
 ADMAC 10H , 20H

 END

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 185

<Assembly list>

(1) Because the NOGEN control instruction is specified, the macro-expanded lines will not be output to the

assembly list.

 NAME SAMP1
$ NOGEN ; (1)
ADMAC MACRO PARA1 , PARA2
 MOV A , #PARA1
 ADD A , #PARA2
 ENDM
 CSEG
 ADMAC 10H , 20H
 MOV A , #10H ; The macro-expanded lines will not be output.
 AUD A , #20H ; The macro-expanded lines will not be output.

 END

186 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

COND/NOCOND

[Description Format]

[Function]

- The COND control instruction tells the assembler to output lines that have satisfied the conditional assembly

condition as well as those which have not satisfied the conditional assembly condition to an assembly list.

- The NOCOND control instruction tells the assembler to output only lines that have satisfied the conditional

assembly condition to an assembly list. The output of lines that have not satisfied the conditional assembly

condition and lines in which IF/_IF, ELSEIF/_ELSEIF, ELSE, and ENDIF have been described will be

suppressed.

[Use]

- Use the COND/NOCOND control instruction to limit the amount of assembly list output.

[Explanation]

- The COND/NOCOND control instruction can only be described in ordinary source programs.

- If neither the COND nor NOCOND control instruction is specified, the assembler will output lines that have

satisfied the conditional assembly condition as well as those which have not satisfied the conditional

assembly condition to an assembly list.

- The specified list control takes place after the image of the COND or NOCOND control instruction itself has

been printed on the assembly list.

- The assembler increments the ALNO and STNO counts even after the list output control by the NOCOND

control instruction.

- If the COND control instruction is specified after the NOCOND control instruction, the assembler will resume

the output of lines that have not satisfied the conditional assembly condition and lines in which IF/_IF,

ELSEIF/_ELSEIF, ELSE, and ENDIF have been described.

[Application Example]

[Δ]$[Δ]COND ; Default assumption
[Δ]$[Δ]NOCOND

 NAME SAMP

$ NOCOND
$ SET (SW1)
$ IF (SW1) ; This part, though assembled, will not
 ; be outout to the list.
 MOV A, #1H
$ ELSE ; This part, though assembled, will not
 ; be outout to the list.
 MOV A , #0H ; This part, though assembled, will not
 ; be outout to the list.
$ ENDIF ; This part, though assembled, will not
 ; be outout to the list.

 END

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 187

TITLE

[Description Format]

[Default Assumption]

- When the TITLE control instruction is not specified, the TITLE column of the assembly list header is left

blank.

[Function]

- The TITLE control instruction specifies the character string to be printed in the TITLE column at each page

header of an assembly list, symbol table list, or cross-reference list.

[Use]

- Use the TITLE control instruction to print a title on each page of a list so that the contents of the list can be

easily identified.

- If you need to specify a title with the assembler option at each assembly time, you can save time and labor

in starting the assembler by describing this control instruction in the source module file.

[Explanation]

- The TITLE control instruction can be described only in the header section of a source module file.

- If two or more TITLE control instructions are specified at the same time, the assembler will accept only the

last specified TITLE control instruction as valid.

- Up to 60 characters can be specified as the title string. If the specified title string consists of 61 or more

characters, the assembler will accept only the first 60 characters of the string as valid.

However, if the character length specification per line of an assembly list file (a quantity "X") is 119

characters or less, "X - 60 characters" will be acceptable.

- If a single quotation mark (') is to be used as part of the title string, describe the single quotation mark twice

in succession.

- If no title string is specified (the number of characters in the title string = 0), the assembler will leave the

TITLE column blank.

- If any character not included in "2.2.2 Character set" is found in the specified title string, the assembler will

output "!" in place of the illegal character in the TITLE column.

- A title for an assembly list can also be specified with the assembler option (-lh) in the startup command line

of the assembler.

[Δ]$[Δ]TITLE[Δ]([Δ]'title-string'[Δ])
[Δ]$[Δ]TT[Δ]([Δ]'title-string'[Δ]) ; Abbreviated format

188 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

[Application Example]

The assemble list of the above application example is shown below. (with the number of lines per page

specified as 72).

<Assembly list>

$ PROCESSOR (f1166a0)
$ TITLE ('THIS IS TITLE')
 NAME SAMPLE
 CSEG
 MOV A , B

 END

78K0R Series Assembler Vx.xx THIS IS TITLE Date: xx xxx xxxx Page: 1

Command : -ll72 sample.asm
Para-file :
In-file : sample.asm
Obj-file : sample.rel
Prn-file : sample.prn

 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 $ PROCESSOR (f1166a0)
 2 2 $ TITLE ('THIS IS TITLE')
 3 3 NAME SAMPLE
 4 4 ---- CSEG
 5 5 00000 63 MOV A , B
 6 6
 7 7 END

Segment information :

ADRS LEN NAME

00000 00001H ?CSEG

Target chip : uPD78F1166_A0
Device file : Vx.xx
Assembly complete , 0 error(s) and 0 warning(s) found. (0)

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 189

SUBTITLE

[Description Format]

[Default Assumption]

- When the SUBTITLE control instruction is not specified, the SUBTITLE section of the assembly list header

is left blank.

[Function]

- The SUBTITLE control instruction specifies the character string to be printed in the SUBTITLE section at

each page header of an assembly list.

[Use]

- Use the SUBTITLE control instruction to print a subtitle on each page of an assembly list so that the

contents of the assembly list can be easily identified. The character string of a subtitle may be changed for

each page.

[Explanation]

- The SUBTITLE control instruction can only be described in ordinary source programs.

- Up to 72 characters can be specified as the subtitle string.

If the specified title string consists of 73 or more characters, the assembler will accept only the first 72

characters of the string as valid. A 2-byte character is counted as two characters, and tab is counted as one

character.

- The character string specified with the SUBTITLE control instruction will be printed in the SUBTITLE section

on the page after the page on which the SUBTITLE control instruction has been specified. However, if the

control instruction is specified at the top (first line) of a page, the subtitle will be printed on that page.

- If the SUBTITLE control instruction has not been specified, the assembler will leave the SUBTITLE section

blank.

- If a single quotation mark (') is to be used as part of the character string, describe the single quotation mark

twice in succession.

- If the character string in the SUBTITLE section is 0, the SUBTITLE column will be left blank.

- If any character not included in "2.2.2 Character set" is found in the specified subtitle string, the assembler

will output "!" in place of the illegal character in the SUBTITLE column. If CR (0DH) is described, an error

occurs and nothing will be output in the assembly list. If 00H is described, nothing from that point to the

closing single quotation mark (') will be output.

[Δ]$[Δ]SUBTITLE[Δ]([Δ]'title-string'[Δ])
[Δ]$[Δ]ST[Δ]([Δ]'title-string'[Δ]) ; Abbreviated format

190 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

[Application Example]

(1) This control instruction specifies the character string "THIS IS SUBTITLE 1".

(2) This control instruction specifies a page ejection.

(3) This control instruction specifies the character string "THIS IS SUBTITLE 2".

(4) This control instruction specifies a page ejection.

(5) This control instruction specifies the character string "THIS IS SUBTITLE 3".

 NAME SAMP
 CSEG
$ SUBTITLE ('THIS IS SUBTITLE 1') ; (1)
$ EJECT ; (2)
 CSEG
$ SUBTITLE ('THIS IS SUBTITLE 2') ; (3)
$ EJECT ; (4)
$ SUBTITLE ('THIS IS SUBTITLE 3') ; (5)

 END

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 191

The assembly list for this example appears as follows (with the number of lines per page specified as 80).

<Assembly list>

78K0R Series Assembler Vx.xx Date: xx xxx xxxx Page: 1

Command : -cf1166a0 -ll80 sample.asm
Para-file :
In-file : sample.asm
Obj-file : sample.rel
Prn-file : sample.prn
 Assemble list

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 1 1 NAME SAMP
 2 2 ----- CSEG
 3 3 $ SUBTITLE ('THIS IS SUBTITLE 1') ; (1)
 4 4 $ EJECT ; (2)
-- page ejection --------------
78K0R Series Assembler Vx.xx Date:xx xxx xxxx Page: 2

THIS IS SUBTITLE 1

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 5 5 ----- CSEG
 6 6 $ SUBTITLE ('THIS IS SUBTITLE 2') ; (3)
 7 7 $ EJECT ; (4)
-- page ejection --------------
78K0R Series Assembler Vx.xx Date:xx xxx xxxx Page: 3

THIS IS SUBTITLE 2

ALNO STNO ADRS OBJECT M I SOURCE STATEMENT

 8 8 $ SUBTITLE ('THIS IS SUBTITLE 3') ; (5)
 9 9
10 10 END

Segment informations :

ADRS LEN NAME

00000 00000H ?CSEG

Target chip : uPD78F1166_A0
Device file : Vx.xx
Assembly complete , 0 error(s) and 0 warning(s) found. (0)

192 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

FORMFEED/NOFORMFEED

[Description Format]

[Function]

- The FORMFEED control instruction tells the assembler to output a FORMFEED code at the end of an

assembly list file.

- The NOFORMFEED control instruction tells the assembler not to output a FORMFEED code at the end of

an assembly list file.

[Use]

- Use the FORMFEED control instruction when you want to start a new page after printing the contents of an

assembly list file.

[Explanation]

- The FORMFEED or NOFORMFEED control instruction can be described only in the header section of a

source module file.

- At the time of printing an assembly list, the last page of the list may not come out if printing ends in the

middle of a page. In such a case, add a FORMFEED code to the end of the assembly list using the

FORMFEED control instruction or assembler option (-lf).

In many cases, a FORMFEED code will be output at the end of a file. For this reason, if a FORMFEED code

exists at the end of a list file, an unwanted white page may be ejected. To prevent this, the NOFORMFEED

control instruction or assembler option (-nlf) has been set as a default value.

- If two or more FORMFEED/NOFORMFEED control instructions are specified at the same time, only the last

specified control instruction will become valid.

- The output or non-output of a formfeed code may also be specified with the assembler option (-lf) or (-nlf) in

the startup command line of the assembler.

- If the control instruction specification (FORMFEED/NOFORMFEED) in the source module differs from the

specification (-lf/-nlf) in the startup command line, the specification in the startup command line will take

precedence over that in the source module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler

performs a syntax check on the FORMFEED or NOFORMFEED control instruction.

[Δ]$[Δ]FORMFEED
[Δ]$[Δ]NOFORMFEED ; Default assumption

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 193

WIDTH

[Description Format]

[Default Assumption]

- $WIDTH (132)

[Function]

- The WIDTH control instruction specifies the number of columns (characters) per line of a list file.

"columns-per-line" must be a value in the range of 72 to 260.

[Use]

- Use the WIDTH control instruction when you want to change the number of columns per line of a list file.

[Explanation]

- The WIDTH control instruction can be described only in the header section of a source module file.

- If two or more WIDTH control instructions are specified at the same time, only the last specified control

instruction will become valid.

- The number of columns per line of a list file may also be specified with the assembler option (-lw) in the

startup command line of the assembler.

- If the control instruction specification (WIDTH) in the source module differs from the specification (-lw) in the

startup command line, the specification in the command line will take precedence over that in the source

module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler

performs a syntax check on the WIDTH control instruction.

[Δ]$[Δ]WIDTH[Δ]([Δ]columns-per-line[Δ])

194 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

LENGTH

[Description Format]

[Default Assumption]

- $LENGTH (66)

[Function]

- The LENGTH control instruction specifies the number of lines per page of a list file. "lines-per-page" may be

"0" or a value in the range of 20 to 32767.

[Use]

- Use the LENGTH control instruction when you want to change the number of lines per page of a list file.

[Explanation]

- The LENGTH control instruction can be described only in the header section of a source module file.

- If two or more LENGTH control instructions are specified at the same time, only the last specified control

instruction will become valid.

- The number of columns per line of a list file may also be specified with the assembler option (-ll) in the

startup command line of the assembler.

- If the control instruction specification (LENGTH) in the source module differs from the specification (-ll) in the

startup command line, the specification in the command line will take precedence over that in the source

module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler

performs a syntax check on the LENGTH control instruction.

[Δ]$[Δ]LENGTH[Δ]([Δ]lines-per-page[Δ])

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 195

TAB

[Description Format]

[Default Assumption]

- $TAB (8)

[Function]

- The TAB control instruction specifies the number of columns as tab stops on a list file. "number-of-columns"

may be a value in the range of 0 to 8.

- The TAB control instruction specifies the number of columns that becomes the basis of tabulation

processing to output any list by replacing a HT (Horizontal Tabulation) code in a source module with several

blank characters on the list.

[Use]

- Use HT code to reduce the number of blanks when the number of characters per line of any list is reduced

using the TAB control instruction.

[Explanation]

- The TAB control instruction can be described only in the header section of a source module file.

- If two or more TAB control instructions are specified at the same time, only the last specified control

instruction will become valid.

- The number of tab stops may also be specified with the assembler option (-lt) in the startup command line of

the assembler.

- If the control instruction specification (TAB) in the source module differs from the specification (-lt) in the

startup command line, the specification in the command line will take precedence over that in the source

module.

- Even when the assembler option (-np) has been specified in the startup command line, the assembler

performs a syntax check on the TAB control instruction.

[Δ]$[Δ]TAB[Δ]([Δ]number-of-columns[Δ])

196 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

4.7 Conditional Assembly Control Instructions

The conditional assembly control instructions are used to select a series of statements in a source module as

those subject to assembly or not subject to assembly, by setting switches for conditional assembly.

By making effective use of the control instructions, you can assemble a source module that excludes unwanted

statements, with little or no change to the source module.

The following conditional assembly control instructions are available:

- IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

- SET/RESET

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 197

IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF

[Description Format]

[Function]

- The control instructions set the conditions to limit source statements subject to assembly.

Source statements described between the IF or _IF control instruction and the ENDIF control instruction are

subject to conditional assembly.

- If the evaluated value of the conditional expression or the switch name specified by the IF or _IF control

instruction (i.e., IF or _IF condition) is true (other than 00H), source statements described after this IF or _IF

control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/

_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly processing,

the assembler will proceed to the statement next to the ENDIF control instruction.

If the IF or _IF condition is false (00H), source statements described after this IF or _IF control instruction

until the appearance of the next conditional assembly control instruction (ELSEIF/_ELSEIF, ELSE, or

ENDIF) in the source program will not be assembled.

- The ELSEIF or _ELSEIF control instruction is checked for true/false status only when the conditions of all

the conditional assembly control instructions described before this ELSEIF or _ELSEIF control instruction

are not satisfied (i.e. the evaluated values are false).

If the evaluated value of the conditional expression or the switch name specified by the ELSEIF or _ELSEIF

control instruction (i.e. ELSEIF or _ELSEIF condition) is true, source statements described after this ELSEIF

or _ELSEIF control instruction until the appearance of the next conditional assembly control instruction

(ELSEIF/_ELSEIF, ELSE, or ENDIF) in the source program will be assembled. For subsequent assembly

processing, the assembler will proceed to the statement next to the ENDIF control instruction.

If the ELSEIF or _ELSEIF condition is false, source statements described after this ELSEIF or _ELSEIF

control instruction until the appearance of the next conditional assembly control instruction (ELSEIF/

_ELSEIF, ELSE, or ENDIF) in the source program will not be assembled.

- If the conditions of all the IF/_IF and ELSEIF/_ELSEIF control instructions described before the ELSE

control instruction are not satisfied (i.e., all the switch names are false), source statements described after

this ELSE control instruction until the appearance of the ENDIF control instruction in the source program will

be assembled.

- The ENDIF control instruction indicates to the assembler the termination of source statements subject to

conditional assembly.

[Δ]$[Δ]IF[Δ]([Δ]switch-name[[Δ]:[Δ]switch-name]...[Δ])
or [Δ]$[Δ]_IFΔconditional-expression
 :
[Δ]$[Δ]ELSEIF[Δ]([Δ]switch-name[[Δ]:[Δ]switch-name]...[Δ])
or [Δ]$[Δ]_ELSEIFΔconditional-expression
 :
[Δ]$[Δ]ELSE
 :
[Δ]$[Δ]ENDIF

198 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

[Use]

- With these conditional assembly control instructions, source statements subject to assembly can be

changed without major modifications to the source program.

- If a statement for debugging that becomes necessary only during the program development is described in

a source program, whether or not the debugging statement should be assembled (translated into machine

language) can be specified by setting switches for conditional assembly.

[Explanation]

- The IF and ELSEIF control instructions are used for true/false condition judgment with switch name(s),

whereas the _IF and _ELSEIF control instructions are used for true/false condition judgment with a

conditional expression.

Both IF/ELSEIF and _IF/_ELSEIF may be used in combination. In other words, ELSEIF/_ELSEIF may be

used in a pair with IF or _IF and ENDIF.

- Describe absolute expression for a conditional expression.

- The rules of describing switch names are the same as the conventions of symbol description (for details,

see "2.2.3 Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- If the two or more switch names are to be specified with the IF or ELSEIF control instruction, delimit each

switch name with a colon (:).

Up to five switch names can be used per module.

- When two or more switch names have been specified with the IF or ELSEIF control instruction, the IF or

ELSEIF condition is judged to be satisfied if one of the switch name values is true.

- The value of each switch name to be specified with the IF or ELSEIF control instruction must be defined with

the SET/RESET control instruction.

Therefore, if the value of the switch name specified with the IF or ELSEIF control instruction is not set in the

source module with the SET or RESET control instruction in advance, it is assumed to be reset.

- If the specified switch name or conditional expression contains an illegal description, the assembler will

output an error message and determine that the evaluated value is false.

- When describing the IF or _IF control instruction, the IF or _IF control instruction must always be paired with

the ENDIF control instruction.

- If an IF-ENDIF block is described in a macro body and control is transferred back from the macro at that

level by EXITM processing, the assembler will force the IF level to return to that level at the entry of the

macro body. In this case, no error occurs.

- Description of an IF-ENDIF block in another IF-ENDIF block is referred to as nesting of IF control

instructions. Nesting of IF control instructions is allowed up to 8 levels.

- In conditional assembly, object codes will not be generated for statements not assembled, but these

statements will be output without change on the assembly list. If you do not wish to output these statements,

use the $NOCOND control instruction.

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 199

[Application Examples]

<Example 1>

(1) If the value of switch name "SW1" is true, statements in "text1" will be assembled.

If the value of switch name "SW1" is false, statements in "text1" will not be assembled.

The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction

described in "text0".

(2) This instruction indicates the end of the source statement range for conditional assembly.

<Example 2>

(1) The value of switch name "SW1" has been set to true or false with the SET or RESET control instruction

described in "text0".

If the value of switch name "SW1" is true, statements in "text1" will be assembled and statements in

"text2" will not be assembled.

(2) If the value of switch name "SW1" in (1) is false, statements in "text1" will not be assembled and

statements in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

<Example 3>

 text0
$ IF (SW1) ; (1)
 text1
$ ENDIF ; (2)
 :
 END

 text0
$ IF (SW1) ; (1)
 text1
$ ELSE ; (2)
 text2
$ ENDIF ; (3)
 :
 END

 text0
$ IF (SW1 : SW2) ; (1)
 text1
$ ELSEIF (SW3) ; (2)
 text2
$ ELSEIF (SW4) ; (3)
 text3
$ ELSE ; (4)
 text4
$ ENDIF ; (5)
 :
 END

200 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

(1) The values of switch names "SW1", "SW2", and "SW3" have been set to true or false with the SET or

RESET control instruction described in "text0".

If the value of switch name "SW1" or "SW2" is true, statements in "text1" will be assembled and

statements in "text2", "text3", and "text4" will not be assembled.

If the values of switch names "SW1" and "SW2" are false, statements in "text1" will not be assembled and

statements after (2) will be conditionally assembled.

(2) If the values of switch names "SW1" and "SW2" in (1) are false and the value of switch name "SW3" is

true, statements in "text2" will be assembled and statements in "text1", "text3", and "text4" will not be

assembled.

(3) If the values of switch names "SW1" and "SW2" in (1) and "SW3" in (2) are false and the value of switch

name "SW4" is true, statements in "text3" will be assembled and statements in "text1", "text2", and "text4"

will not be assembled.

(4) If the values of switch names "SW1" and "SW2" in (1), "SW3" in (2), and "SW4" in (3) are all false,

statements in "text4" will be assembled and statements in "text1", "text2", and "text3" will not be

assembled.

(5) This instruction indicates the end of the source statement range for conditional assembly.

<Example 4>

(1) The value of switch name "SYMA" has been defined with the EQU or SET directive described in "text0".

If the symbol name "SYMA" is true (not "0"), statements in "text1" will be assembled and "text2" will not be

assembled.

(2) If the value of the symbol name "SYMA" is "0", and "SYMB" and "SYMC" have the same value,

statements in "text2" will be assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly.

 text0
$ _IF (SYMA) ; (1)
 text1
$ _ELSEIF (SYMB = SYMC) ; (2)
 text2
$ ENDIF ; (3)
 :
 END

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 201

SET/RESET

[Description Format]

[Function]

- The SET and RESET control instructions give a value to each switch name to be specified with the IF or

ELSEIF control instruction.

- The SET control instruction gives a true value (0FFH) to each switch name specified in its operand.

- The RESET control instruction gives a false value (00H) to each switch name specified in its operand.

[Use]

- Describe the SET control instruction to give a true value (0FFH) to each switch name to be specified with the

IF or ELSEIF control instruction.

- Describe the RESET control instruction to give a false value (00H) to each switch name to be specified with

the IF or ELSEIF control instruction.

[Explanation]

- With the SET and RESET control instructions, at least one switch name must be described.

The conventions for describing switch names are the same as the conventions for describing symbols (see

"2.2.3 Symbol field").

However, the maximum number of characters that can be recognized as a switch name is always 31.

- The specified switch name(s) may be the same as user-defined symbol(s) other than reserved words and

other switch names.

- If two or more switch names are to be specified with the SET or RESET control instruction, delimit each

switch name with a colon (:). Up to 1,000 switch names can be used per module.

- A switch name once set to "true" with the SET control instruction can be changed to "false" with the RESET

control instruction, and vice versa.

- A switch name to be specified with the IF or ELSEIF control instruction must be defined at least once with

the SET or RESET control instruction in the source module before describing the IF or ELSEIF control

instruction.

- Switch names will not be output to a cross-reference list.

[Δ]$[Δ]SET[Δ]([Δ]switch-name[[Δ]:[Δ]switch-name]...[Δ])
[Δ]$[Δ]RESET[Δ]([Δ]switch-name[[Δ]:[Δ]switch-name]...[Δ])

202 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

[Application Example]

(1) This instruction gives a true value (0FFH) to switch name "SW1".

(2) Because the true value has been given to switch name "SW1" in (1) above, statements in "text1" will be

assembled.

(3) This instruction indicates the end of the source statement range for conditional assembly that starts from

(2).

(4) This instruction gives a false value (00H) to switch names "SW1" and "SW2", respectively.

(5) Because the false value has been given to switch name "SW1" in (4) above, statements in "text2" will not

be assembled.

(6) Because the false value has also been given to switch name "SW2" in (4) above, statements in "text3" will

not be assembled.

(7) Because both switch names "SW1" and "SW2" are false in (5) and (6) above, statements in "text4" will be

assembled.

(8) This instruction indicates the end of the source statement range for conditional assembly that starts from

(5).

$ SET (SW1) ; (1)
 :
$ IF (SW1) ; (2)
 text1
$ ENDIF ; (3)
 :
$ RESET (SW1 : SW2) ; (4)
 :
$ IF (SW1) ; (5)
 text2
$ ELSEIF (SW2) ; (6)
 text3
$ ELSE ; (7)
 text4
$ ENDIF ; (8)
 :
 END

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 203

4.8 Kanji Code (2-byte code) Control Instruction

The kanji code control instructions are used to specify the interpretation of the kanji code (2-byte code) of the

kanji (2-byte character) in the comment line.

The following kanji code control instructions are available:

- KANJICODE

204 User’s Manual U18546EJ1V0UM

CHAPTER 4 CONTROL INSTRUCTIONS

KANJICODE

[Description Format]

[Default Assumption]

- $KANJICODE SJIS

[Use]

- Use to specify the interpretation of the kanji code (2-byte code) of the kanji (2-byte character) in the

comment line.

[Function]

- The KANJICODE control instruction can be described only in the header section of a source module file.

- If two or more KANJICODE control instructions are specified in the header section of a source module file at

the same time, only the last specified control instruction will become valid.

- Kanji code specification stops may also be specified with the assembler option (-zs/-ze/-zn) in the startup

command line of the assembler.

- If the control instruction specification (KANJICODE) in the source module differs from the specification (-zs/-

ze/-zn) in the startup command line, the specification in the command line will take precedence over that in

the source module.

- Even when the assembler option (-zs/-ze/-zn) has been specified in the startup command line, the

assembler performs a syntax check on the KANJICODE control instruction.

[Δ]$[Δ]KANJICODE[Δ]kanji-code

CHAPTER 4 CONTROL INSTRUCTIONS

User’s Manual U18546EJ1V0UM 205

4.9 Other Control Instructions

The following control instructions are special control instructions output by high-level programs such as C

compiler and structured assembler preprocessor:

- $TOL_INF

- $DGS

- $DGL

206 User’s Manual U18546EJ1V0UM

CHAPTER 5 MACROS

CHAPTER 5 MACROS

This chapter explains how to use a macro function.

A macro is a very useful function when you need to describe a series of statements repeatedly in a source

program.

5.1 Overview

When you must describe a series or group of instructions repeatedly in a source program, a macro function is

very useful for program description.

The macro function refers to the expansion of a series of statements (an instruction group) defined as a macro

body with MACRO and ENDM directives into the location where the macro name is referenced.

A macro is used to increase the coding efficiency of a source program and is different from a subroutine.

Macros and subroutines have distinct features as explained below. For effective use, select either a macro or a

subroutine according to the specific purpose.

(1) Subroutines

- Describe a process that must be repeated many times in a program as a single subroutine. The

subroutine will be converted into machine language by the assembler only once.

- To call the subroutine, you only need to describe a subroutine call instruction (generally, instructions to set

arguments are also described before and after the subroutine).

Effective use of subroutines enables program memory to be used with high efficiency.

- By coding a series of processes in a program as subroutines, the program can be structured (this

structuring makes the overall structure of the program easy for the programmer to understand, making

program design easy).

(2) Macros

- The basic function of a macro is the replacement of a group of instructions with a name.

A series (or group) of instructions defined as a macro body with MACRO and ENDM directives will be

expanded into the location where the macro name is referenced. When the assembler finds a macro

reference, the assembler expands the macro body and converts the group of instructions into machine

language while replacing the formal parameter(s) of the macro body with the actual parameters at the

time of the macro reference.

- Parameters can be described for a macro.

For example, if there are instruction groups that are the same in processing procedure but are different in

the data to be described in the operand, define a macro by assigning formal parameter(s) to the data. By

describing the macro name and the actual parameter(s) at macro reference time, the assembler can cope

with various instruction groups that differ only in part of the statement description.

Programming techniques using subroutines are mainly used to reduce memory size and structure programs,

whereas macros are used to increase the coding efficiency of the program.

CHAPTER 5 MACROS

User’s Manual U18546EJ1V0UM 207

5.2 Utilization of Macros

5.2.1 Macro definition

A macro is defined with the MACRO and ENDM directives.

[Description Format]

[Function]

- The MACRO directive executes a macro definition by assigning the macro name specified in the symbol

field to a series of statements (called a macro body) described between this directive and the ENDM

directive.

[Application Example]

The above example shows a simple macro definition that specifies the addition of two values "PARA1" and

"PARA2" and the storage of the result in register A. The macro is given a name "ADMAC" and "PARA1" and

"PARA2" are formal parameters.

For details, see "3.8 Macro Directives".

ADMAC MACRO PARA1 , PARA2
 MOV A , #PARA1
 ADD A , #PARA2
 ENDM

 Symbol field Mnemonic field Operand field Comment field

 macro-name MACRO [[formal-parameter[, ...]] [; comment]
 :
 ENDM [; comment]

208 User’s Manual U18546EJ1V0UM

CHAPTER 5 MACROS

5.2.2 Macro reference

To call a macro, the already defined macro name must be described in the mnemonic field of the source

program.

[Description Format]

[Function]

- This statement description calls the macro body assigned to the macro name specified in the mnemonic

field.

[Use]

- Use this statement description to call a macro body.

[Explanation]

- The macro name to be specified in the mnemonic field must have been defined before the macro reference.

- Up to 16 actual parameters may be specified per line by delimiting each actual parameter with a comma (,).

- No blank can be described in the character string constituting an actual parameter.

- When describing a comma (,), semicolon (;), blank, or tab in an actual parameter, enclose the character

string that includes any of these special characters with a pair of single quotation marks.

- Formal parameters are replaced with their corresponding actual parameters in sequence from left to right.

A warning will be output if the number of formal parameters is not equal to the number of actual parameters.

[Application Example]

This macro reference calls the already defined macro name "ADMAC".

10H and 20H are actual parameters.

 NAME SAMPLE
ADMAC MACRO PARA1 , PARA2
 MOV A , #PARA1
 ADD A , #PARA2
 ENDM

 CSEG
 :
 ADMAC 10H , 20H
 :
 END

 Symbol field Mnemonic field Operand field Comment field

 [label :] macro-name [[actual-parameter[, ...]] [; comment]

CHAPTER 5 MACROS

User’s Manual U18546EJ1V0UM 209

5.2.3 Macro expansion

The assembler processes a macro as follows:

- The assembler expands the macro body corresponding to the referenced macro name to the location where

the macro name is referenced.

- The assembler assembles statements in the expanded macro body in the same way as other statements.

5.2.4 Application example

When the macro referenced in "5.2.2 Macro reference" is assembled, the macro body will be expanded as

shown below.

(1) By the macro reference, the macro body will be expanded. The formal parameters within the macro body will

be replaced with the actual parameters.

 NAME SAMPLE

 ; Macro definition
ADMAC MACRO PARA1 , PARA2
 MOV A , #PARA1
 ADD A , #PARA2
 ENDM

 ; Source text
 CSEG
 :

 ; Macro expansion
 ADMAC 10H , 20H ; (1)
 MOV A , #10H
 ADD A , #20H

 ; Source text
 :
 END

210 User’s Manual U18546EJ1V0UM

CHAPTER 5 MACROS

5.3 Symbols within Macros

Symbols that can be defined in a macro are divided into two types: global symbols and local symbols.

(1) Global symbols

- A global symbol is a symbol that can be referenced from any statement within a source program.

Therefore . if a macro in which the global symbol has been defined is referenced more than once to

expand a series of statements . the symbol will cause a double definition error.

- Symbols not defined with the LOCAL directive are global symbols.

(2) Local symbols

- A local symbol is a symbol defined with the LOCAL directive (see "3.8 Macro Directives").

- A local symbol can be referenced within the macro declared as LOCAL with the LOCAL directive.

- No local symbol can be referenced from outside the macro.

[Application Example]

(1) This LOCAL directive defines label "LLAB" as a local symbol.

(2) This LOCAL directive defines label "LLAB" as a local symbol.

(3) This LOCAL directive defines label "GLAB" as a global symbol.

(4) This BR instruction references local symbol "LLAB" in macro "MAC1".

(5) This BR instruction references global symbol "GLAB" in macro "MAC1".

(6) This statement references macro "MAC1".

(7) This BR instruction references local symbol "LLAB" from outside the definition of macro "MAC1".

This description causes an error when the source program is assembled.

(8) This statement references macro "MAC1".

The same macro is referenced twice.

 NAME SAMPLE
 ; Macro definition
MAC1 MACRO
 LOCAL LLAB ; (1)
LLAB : ; (2)
 :
GLAB : ; (3)
 BR LLAB ; (4)
 BR GLAB ; (5)
 ENDM
 :
 ; Source text
REF1 : MAC1 ; (6) <-- Macro reference
 :
 BR LLAB ; (7) <-- Error
 :
REF2 : MAC1 ; (8) <-- Macro reference
 :
GLAB : ; (9) <-- Error
 :
 END

CHAPTER 5 MACROS

User’s Manual U18546EJ1V0UM 211

(9) This LOCAL directive defines label "GLAB" as a global symbol.

The same label is defined twice.

This description causes an error when the source program is assembled.

The assemble list of the above application example is shown below.

<Assembly list>

Global symbol "GLAB" has been defined in macro "MAC1". Because macro "MAC1" is referenced twice .

global symbol "GLAB" causes a double definition error as a result of expanding a series of statements in the

macro body.

 NAME SAMPLE
 :
REF1 : MAC1
 ; Macro expansion
??RA0000 :
 :
GLAB : <-- Error
 BR ??RA0000
 BR GLAB
 ; Source text
 :
 BR !LLAB <-- Error
 BR !GLAB
 :
REF2 : MAC1
 ; Macro expansion
??RA0001 :
 :
GLAB : <-- Error
 BR ??RA0001
 BR GLAB
 ; Source text
 :
 END

212 User’s Manual U18546EJ1V0UM

CHAPTER 5 MACROS

5.4 Macro Operators

Two types of macro operators are available: "& (ampersand)" and "' (single quotation mark)".

(1) & (Concatenation)

- The ampersand "&" concatenates one character string to another within a macro body.

At macro expansion time, the character string on the left of the ampersand is concatenated to the

character string on the right of the sign. The "&" itself disappears after concatenating the strings.

- At macro definition time, a string before or after "&" in a symbol can be recognized as a formal parameter

or LOCAL symbol. At macro expansion time, the formal parameter or LOCAL symbol before or after "&" is

evaluated as a symbol and can be concatenated in the symbol.

- The "&" sign enclosed in a pair of single quotation marks is simply handled as data.

- Two "&" signs described in succession are handled as a single "&" sign.

[Application Example]

<Macro definition>

<Macro reference>

MAC MACRO P
LAB&P : <-- Formal parameter 'P' is recognized.
 D&B 10H
 DB 'P'
 DB P
 DB '&P'
 ENDM

 MAC 1H
LAB1H :
 DB 10H <-- 'D' and 'B' are concatenated and become 'DB'.
 DB 'P'
 DB 1H
 DB '&P' <-- & enclosed in a pair of single quotation marks
 is simply handled as data.

CHAPTER 5 MACROS

User’s Manual U18546EJ1V0UM 213

(2) ' (Single quotation mark)

- If a character string enclosed by a pair of single quotation marks is described at the beginning of an actual

parameter in a macro reference line or an IRP directive or after a delimiting character, the character string

will be interpreted as an actual parameter. The character string will be passed to the actual parameter

without the enclosing single quotation marks.

- If a character string enclosed by a pair of single quotation marks exists in a macro body, the character

string will simply be handled as data.

- To use a single quotation mark as a single quotation mark in text, describe the single quotation mark twice

in succession.

[Application Example]

When the source program in the above example is assembled, macro "MAC1" will be expanded as shown

below.

<Assembly list>

 NAME SAMP
MAC1 MACRO P
 IRP Q , <P>
 MOV A , #Q
 ENDM
ENDM

 MAC1 '10 , 20 , 30'

IRP Q , <10 , 20 , 30>
 MOV A , #Q
ENDM
 MOV A , #10 ; IRP expansion
 MOV A , #20 ; IRP expansion
 MOV A , #30 ; IRP expansion

214 User’s Manual U18546EJ1V0UM

CHAPTER 6 PRODUCT UTILIZATION

CHAPTER 6 PRODUCT UTILIZATION

This chapter introduces some measures recommended for effective utilization of the RA78K0R assembler

package.

6.1 Saving Time and Trouble in Starting Up the Assembler

The device type (-c) or kanji code (-zs/-ze/-zn), which are specified in the command line during assembler

startup, can be written as control instructions, in the source module. This allows omission of specification in the

command line.

The cross-reference list output control instruction (XREF) should also be specified in the module header.

<Example>

$ PROCESSOR (f1166a0)
$ KANJICODE SJIS
$ XRFF

 NAME TEST

C1 CSEG
 :
 END

CHAPTER 6 PRODUCT UTILIZATION

User’s Manual U18546EJ1V0UM 215

6.2 How to Develop Programs with High Memory Utilization
Efficiency

The short direct addressing area is an area that can be accessed with instructions of short byte length as

compared with other data memory areas.Therefore, by using this area efficiently, a program with high memory

utilization efficiency can be developed.

Declare the short direct addressing area in one module.

In this way, even if all the variables which you intended to locate in the short direct addressing area cannot be

located there, you can make changes easily so that only variables to be accessed frequently are located in the

short direct addressing area.

[Application Example]

<Module 1>

<Module 2>

 PUBLIC TMP1 , TMP2
WORK DSEG AT 0FFE20H
TMP1 : DS 2 ; word
TMP2 : DS 1 ; byte

 EXTRN TMP1 , TMP2
SAB CSEG
 MOVW TMP1 , #1234H
 MOV TMP2 , #56H
 :

216 User’s Manual U18546EJ1V0UM

APPENDIX A LIST OF RESERVED WORDS

APPENDIX A LIST OF RESERVED WORDS

Reserved words are available in six types: machine language instructions, directives, control instructions,

operators, register names, and sfr symbols. The reserved words are character strings reserved in advance by the

assembler and cannot be used for other than the intended purposes.

Types of reserved words that can be described in the respective fields of a source program are shown below.

Table A-1 Types of Reserved Words

Type Explanation

Symbol field No reserved words can be described in this field.

Mnemonic field Only machine language instructions and directives can be described in this field.

Operand field Only operators, sfr symbols, and register names can be described in this field.

Comment field All reserved words can be described in this field.

Table A-2 List of Reserved Words

Type Reserved Word

Operators

AND BITPOS DATAPOS EQ (=)
GE (>=) GT (>) HIGH HIGHW
LE (<=) LOW LOWW LT (<)
MASK MOD NE (< >) NOT
OR SHL SHR XOR

Directives

AT BASE BASEP BR
BSEG CALLT0 CSEG DB
DBIT DG DS DSEG
DSPRAM DW END ENDM
ENDS EQU EXITM EXTBIT
EXTRN FIXED IHRAM IRP
IXRAM LOCAL LRAM MACRO
MIRRORP NAME OPT_BYTE ORG
PAGE64KP PUBLIC REPT SADDR
SADDRP SECUR_ID SET UNIT
UNIT64KP UNITP

Control instructions

COND/NOCOND DEBUG/NODEBUG
DEBUGA/NODEBUGA [DG/NODG] EJECT [EJ]
FORMFEED/NOFORMFEED GEN/NOGEN
IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF
lNCLUDE [IC] KANJICODE
LENGTH LIST/NOLIST [LI/NOLI]
PROCESSOR [PC] SET/RESET
SUBTITLE [ST] SYMLIST/NOSYMLIST
TAB TITLE [TT]
WIDTH XREF/NOXREF [XR/NOXR]

Others DGL DGS SFR SFRP
TOL_INF

APPENDIX A LIST OF RESERVED WORDS

User’s Manual U18546EJ1V0UM 217

Remark The items in brackets following the control instructions indicate the abbreviated format.

For the sfr list, refer to the user's manual of each device.

For the interrupt request source list, refer to the user's manual of each device.

For the machine language instructions and list of register names, refer to the user's manual of each device.

218 User’s Manual U18546EJ1V0UM

APPENDIX B LIST OF DIRECTIVES

APPENDIX B LIST OF DIRECTIVES

Table B-1 List of Directives

Directive
Function

Classification Remarks
Symbol

Field
Mnemonic

Field Operand Field Comment
Field

[segment
-name] CSEG [relocation-attribute] [; comment] Declares the start of

a code segment.

[segment
-name] DSEG [relocation-attribute] [; comment] Declares the start of

a data segment.

[segment
-name] BSEG [relocation-attribute] [; comment] Declares the start of

a bit segment.

[segment
-name] ORG absolute-expression [; comment]

Declares the start of
an absolute
segment.

Forward reference of
symbols within an
operand is prohibited.

name EQU expression [; comment] Defines a name.

name: symbol
Forward or external
reference of symbols
within an operand is
prohibited.

name SET absolute-expression [; comment] Defines a
redefinable name.

name: symbol
Forward reference of
symbols within an
operand is prohibited.

[label :] DB (size)
or initial-value[, ...] [; comment]

Initializes or
reserves a byte data
area.

label: symbol
A character string can
be located in place of
an initial value.

[label :] DW (size)
or initial-value[, ...] [; comment]

Initializes or
reserves a word
data area.

label: symbol

[label :] DG (size)
or initial-value[, ...] [; comment]

Initializes or
reserves a 4-byte
data area.

label: symbol

[label :] DS absolute-expression [; comment] Reserves byte data
area.

name: symbol
Forward reference of
symbols within an
operand is prohibited.

name DBIT None [; comment] Reserves a bit data
area.

name: symbol
Forward reference of
symbols within an
operand is prohibited.

[label :] EXTRN
symbol-name[, ...]
 or BASE(symbol-
name[, ...])

[; comment]
Declares an
external reference
name.

APPENDIX B LIST OF DIRECTIVES

User’s Manual U18546EJ1V0UM 219

[label :] EXTBIT bit-symbol-name[,
...] [; comment]

Declares an
external reference
name.

Symbol names are
limited to those
having a bit value.

[label :] PUBLIC symbol-name[, ...] [; comment]
Declares an
external definition
name.

[label :] NAME object-module-
name [; comment] Defines a module

name.
module name:
symbol

[label :] BR expression [; comment]
Automatically
selects a branch
instruction.

label: symbol

[label :] CALL expression [; comment]
Automatically
selects a branch
instruction.

label: symbol

macro-
name MACRO [formal-parameter[,

...]] [; comment] Defines a macro. macro-name: symbol

[label :] LOCAL symbol-name[, ...] [; comment]
Defines a symbol
valid only within a
macro.

Can only be used in
the macro definition.

[label :] REPT absolute-expression [; comment]
Specifies repeat
count during macro
expansion.

label: symbol

[label :] IRP
formal-parameter,
<actual-parameter[,
...]>

[; comment]
Assigns an actual
parameter to a
formal parameter.

label: symbol

[label :] EXITM None [; comment] Interrupts macro
expansion.

Can only be used in
the macro definition.

None ENDM None [; comment] Terminates macro
definition.

Can only be used in
the macro definition.

None END None [; comment] Indicates the end of
the source module.

Directive
Function

Classification Remarks
Symbol

Field
Mnemonic

Field Operand Field Comment
Field

220 User’s Manual U18546EJ1V0UM

INDEX

Numerics
78K0 compatible macro function ... 21

A
?A0nnnnn ... 34
Absolute assembler ... 17
Absolute segment ... 24
Absolute term ... 79
ADDRESS term ... 35, 82
Alphabetic character ... 30
AND operator ... 54
Area reservation directive ... 125
Assembler ... 14
Assembler option ... 167
Assembler package ... 14
Assembly language ... 15
Assembly list control instruction ... 179
Assembly termination directive ... 164
AT ... 103, 107, 108, 112, 113
Automatic branch instruction selection directive
... 144

B
Backward reference ... 95
BASE ... 103
BASEP ... 107, 108
Binary constant ... 37
BIT ... 35
Bit segment ... 24
Bit Symbol ... 88
BITPOS operator ... 75
BR ... 145
?BSEG ... 34
BSEG ... 35, 111

C
CALL ... 147
CALLT0 ... 103
Character set ... 30
Character-string constant ... 37
Code segment ... 24
Comment field ... 40, 216
Concatenation ... 212
COND ... 186
Conditional assembly control instruction ... 196
Conditional assembly function ... 21
Constant ... 37
Control instruction ... 166
Cross-reference list output specification control
instruction ... 173
?CSEG ... 34
CSEG ... 35, 102
?CSEGB ... 34
?CSEGBU64 ... 34

?CSEGFX ... 34
?CSEGMIP ... 34
?CSEGOB0 ... 34
?CSEGP64 ... 34
?CSEGSI ... 34
?CSEGT0 ... 34
?CSEGUP ... 34

D
Data segment ... 24
DATAPOS operator ... 74
DB ... 126
DBIT ... 134
DEBUG ... 171
Debug information output control instruction ... 170
DEBUGA ... 172
Decimal constant ... 37
DG ... 130
DGL ... 205
DGS ... 205
Directive ... 99, 218
DS ... 132
?DSEG ... 34
DSEG ... 35, 106
?DSEGBP ... 34
?DSEGP64 ... 34
?DSEGS ... 34
?DSEGSP ... 34
?DSEGU64 ... 34
?DSEGUP ... 34
DSPRAM ... 108
DW ... 128, 130

E
EJECT ... 180
ELSE ... 197
ELSEIF ... 197
END ... 165
ENDIF ... 197
ENDM ... 162
EQ operator ... 58
EQU ... 119
EXITM ... 159
Expression ... 41
External reference name ... 32
External reference term ... 79

F
FIXED ... 103
FORMFEED ... 192
Forward reference ... 95

User’s Manual U18546EJ1V0UM 221

G
GE operator ... 61
GEN ... 184
General register ... 38
General register pair ... 38
Global symbol ... 210
GT operator ... 60

H
Hexadecimal constant ... 37
HIGH operator ... 68
HIGHW operator ... 71

I
IF ... 197
IHRAM ... 108
Inclusion control instruction ... 176
IRP ... 157
IRP-ENDM block ... 157
IXRAM ... 103, 108

K
Kanji code (2-byte code) control instructions ... 203

L
Label ... 32
LE operator ... 63
LENGTH ... 194
Librarian ... 14
Linkage directive ... 135
Linker ... 14
LIST ... 182
List converter ... 14
lNCLUDE ... 177
LOCAL ... 152
Local symbol ... 210
LOW operator ... 69
LOWW operator ... 72
LRAM ... 108
LT operator ... 62

M
Machine language ... 15
MACRO ... 35, 150
Macro ... 206
Macro definition ... 207
Macro directive ... 149
Macro expansion ... 209
Macro function ... 21
Macro name ... 32
Macro operator ... 212
Macro reference ... 208
MASK operator ... 76
Memory initializing directive ... 125
MIRRORP ... 104
Mnemonic field ... 36, 216
MOD (Remainder) operator ... 49
Modular programming ... 17

MODULE ... 35
Module body ... 24
Module header ... 23
Module name ... 32
Module tail ... 24

N
Name ... 32
NE operator ... 59
NOCOND ... 186
NODEBUG ... 171
NODEBUGA ... 172
NOFORMFEED ... 192
NOGEN ... 184
NOLIST ... 182
NOSYMLIST ... 175
NOT operator ... 53
NOXREF ... 174
NUMBER ... 35
NUMBER term ... 82
Numeric constant ... 37

O
Object converter ... 14
Octal constant ... 37
Operand ... 89
Operand field ... 36, 216
Operator ... 41
OPT_BYTE ... 104
Optimize function ... 21
OR operator ... 55
Order of precedence of Operator ... 42
ORG ... 115

P
PAGE64KP ... 103, 107, 108
PM+ ... 14
PROCESSOR ... 169
Processor type specification control instruction ... 168

R
Relocatable assembler ... 17
Relocatable term ... 79
Relocation attribute ... 79, 95
REPT ... 155
REPT-ENDM block ... 155
RESET ... 201

S
SADDR ... 107, 108
SADDRP ... 107, 108
SECUR_ID ... 103
Segment name ... 32
segments ... 24
SET ... 123, 201
SHL (Shift Left) operator ... 66
SHR (Shift Right) operator ... 65
Source module ... 22, 165

222 User’s Manual U18546EJ1V0UM

Special character ... 38
Special function register ... 38
Subroutine ... 206
SUBTITLE ... 189
Symbol ... 210
Symbol attribute ... 35, 95
Symbol definition directive ... 118
Symbol field ... 32, 216
SYMLIST ... 175

T
TAB ... 195
TITLE ... 187
TOL_INF ... 205

U
UNIT ... 103, 107, 112, 113
UNIT (or no specification) ... 108
UNIT64KP ... 103, 107, 108
UNITP ... 103, 107, 108

W
WIDTH ... 193

X
XOR operator ... 56
XREF ... 174

NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/

[America]

NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
 800-366-9782
http://www.am.necel.com/

[Asia & Oceania]

NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/

Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/

Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/

NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/

NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/

NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/

NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/

For further information,
please contact:

G0706

[Europe]

NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/

Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0

Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0

Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0

United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133

Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800

Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787

Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00

Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541

Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10

	COVER
	INTRODUCTION
	CHAPTER 1 GENERAL
	1.1 Assembler Overview
	1.1.1 What is an assembler?
	1.1.2 Development of microcontroller-applied products and the role of RA78K0R
	1.1.3 Relocatable assembler

	1.2 Reminders Before Program Development
	1.2.1 Quantitative limits for RA78K0R

	1.3 Features of RA78K0R

	CHAPTER 2 HOW TO DESCRIBE SOURCE PROGRAMS
	2.1 Basic Configuration
	2.1.1 Module header
	2.1.2 Module body
	2.1.3 Module tail
	2.1.4 Overall configuration of source program
	2.1.5 Description example

	2.2 Description Method
	2.2.1 Configuration
	2.2.2 Character set
	2.2.3 Symbol field
	2.2.4 Mnemonic field
	2.2.5 Operand field
	2.2.6 Comment field

	2.3 Expressions and Operators
	2.4 Arithmetic Operators
	+
	-
	*
	/
	MOD
	+ sign
	- sign

	2.5 Logical Operators
	NOT
	AND
	OR
	XOR

	2.6 Relational Operators
	EQ (=)
	NE (< >)
	GT (>)
	GE (>=)
	LT (<)
	LE (<=)

	2.7 Shift Operators
	SHR
	SHL

	2.8 Byte-Separating Operators
	HIGH
	LOW

	2.9 Word-Separating Operators
	HIGHW
	LOWW

	2.10 Special Operators
	DATAPOS
	BITPOS
	MASK

	2.11 Other Operator
	()

	2.12 Restrictions on Operations
	2.12.1 Operators and relocation attributes
	2.12.2 Operators and symbol attributes
	2.12.3 How to check restrictions on the operation

	2.13 Definition of Absolute Expression
	2.14 Bit Position Specifier
	.

	2.15 Characteristics of Operands
	2.15.1 Size and address range of operand value
	2.15.2 Size of operands required for instructions
	2.15.3 Symbol attributes and relocation attributes of operands

	CHAPTER 3 DIRECTIVES
	3.1 Overview
	3.2 Segment Definition Directives
	CSEG
	DSEG
	BSEG
	ORG

	3.3 Symbol Definition Directives
	EQU
	SET

	3.4 Memory Initialization and Area Reservation Directives
	DB
	DW
	DG
	DS
	DBIT

	3.5 Linkage Directives
	EXTRN
	EXTBIT
	PUBLIC

	3.6 Object Module Name Declaration Directive
	NAME

	3.7 Automatic Branch Instruction Selection Directives
	BR
	CALL

	3.8 Macro Directives
	MACRO
	LOCAL
	REPT
	IRP
	EXITM
	ENDM

	3.9 Assembly Termination Directive
	END

	CHAPTER 4 CONTROL INSTRUCTIONS
	4.1 Overview
	4.2 Processor Type Specification Control Instruction
	PROCESSOR

	4.3 Debug Information Output Control Instructions
	DEBUG/NODEBUG
	DEBUGA/NODEBUGA

	4.4 Cross-Reference List Output Specification Control Instructions
	XREF/NOXREF
	SYMLIST/NOSYMLIST

	4.5 Inclusion Control Instruction
	lNCLUDE

	4.6 Assembly List Control Instructions
	EJECT
	LIST/NOLIST
	GEN/NOGEN
	COND/NOCOND
	TITLE
	SUBTITLE
	FORMFEED/NOFORMFEED
	WIDTH
	LENGTH
	TAB

	4.7 Conditional Assembly Control Instructions
	IF/_IF/ELSEIF/_ELSEIF/ELSE/ENDIF
	SET/RESET

	4.8 Kanji Code (2-byte code) Control Instruction
	KANJICODE

	4.9 Other Control Instructions

	CHAPTER 5 MACROS
	5.1 Overview
	5.2 Utilization of Macros
	5.2.1 Macro definition
	5.2.2 Macro reference
	5.2.3 Macro expansion
	5.2.4 Application example

	5.3 Symbols within Macros
	5.4 Macro Operators

	CHAPTER 6 PRODUCT UTILIZATION
	6.1 Saving Time and Trouble in Starting Up the Assembler
	6.2 How to Develop Programs with High Memory Utilization Efficiency

	APPENDIX A LIST OF RESERVED WORDS
	APPENDIX B LIST OF DIRECTIVES
	INDEX

